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Abstract—For soft real-time systems, timing constraints are not
as stringent as those in hard real-time systems: some constraint
violations are permitted as long as the amount of violation is
within a given limit. The allowed flexibility for soft real-time
systems can be utilized to improve system’s other quality-of-
service (QoS) properties, such as energy consumption. One way
to enforce constraint violation limit is to allow an expansion
of timing constraint feasible region, but restrict the expansion in
such a way that the relaxed constraint feasible region sufficiently
resembles the original one. In this paper, we first introduce a
new metric, constraint set similarity, to quantify the resemblance
between two different timing constraint sets. Because directly
calculating the exact value of the metric involves calculating the
size of a polytope which is a # P-hard problem [1], we instead
introduce an efficient method for estimating its bound. We further
discuss how this metric can be exploited for evaluating trade-
offs between timing constraint compromises and system’s other
QoS property gains. We use energy consumption reduction as an
example to show the application of the proposed metric.

I. INTRODUCTION

Real-time and embedded systems often face trade-offs be-
tween time and limited resources such as energy. For hard
real-time systems, all timeliness requirements must be met and
thus optimizing other properties such as minimizing energy
consumption must not violate timing constraints. For soft real-
time systems, on the other hand, the requirement for timing
constraint satisfaction guarantees is not as stringent. Such
timing flexibility allowed by soft real-time systems can often
be utilized to improve system’s other QoS properties, such as
reduce total energy consumption.

A challenging task in investigating the trade-offs between
timing constraint satisfaction and other QoS properties is
how to quantify the degree of timing constraint satisfaction.
That is, how do we measure the level of satisfaction for
some given timing behavior with respect to a set of timing
constraints? Another closely related challenge is to determine
which timing constraints to be relaxed and by how much in
order to achieve certain other QoS objectives, e.g., energy
consumption bound. Though some researchers have studied
problems that are somewhat related to the above problems (to
be discussed in the next section), we contend that there exists
no systematic approach for tackling these challenges.

In this paper, we propose a framework for measuring timing
constraint satisfaction which can be used to address the above

Xiaobo Sharon Hu

Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556
shu@nd.edu

two challenges. Specifically, we introduce a novel metric, i.e.,
constraint set similarity, to capture the resemblance between
two timing constraint sets. It is defined in terms of the
common feasible region of two systems constrained by the two
given timing constraint sets. This value reflects the probability
of timing constraint satisfaction when the original timing
constraints are modified for, e.g., improving QoS properties.

However, directly calculating the exact value of similarity
between two sets of timing constraints is computationally in-
tractable. To overcome this difficulty, we leverage the concept
of similarity bound and derive a closed form formula for
computing a tight similarity bound. This bound can be used
to guide the design process and provide confidence guarantees
on certain QoS properties.

To show how one may use the timing constraint similarity
metric to guide a design process, we discuss a detailed design
example in which a set of soft real-time tasks are executed
on a multiprocessor system-on-chip (MPSoC) and the goal
is to trade timing constraint satisfaction for reducing energy
consumption. This example serves as a demonstration to show
that the similarity metric provides an effective tool to measure
and guide the trade-offs between different QoS properties.

The rest of this paper is organized as follows. Next section
provides a motivating example and reviews related work.
Section III introduces a timing constraint set normal form. It
is used to establish the constraint similarity metric. Section IV
presents the similarity metric that quantifies how much one set
of timing constraints resembles another. Section V applies the
theory of timing constraint similarities to an MPSoC system
to reduce its total energy consumption with minimal changes
to the satisfaction of original timing constraints. Finally, we
conclude and point out future work in Section VI.

II. MOTIVATION AND RELATED WORK

To be able to quantify the level at which a timing constraint
is satisfied in a soft real-time system has several important
implications. It provides a systematic way to compare different
system implementations when none of them can strictly meet
the given timing constraints. In addition, it allows studies of
“what if” scenarios where certain timing constraints are re-
laxed to some extent to improve other QoS properties. Further,
it can be used to judiciously decide design specifications.
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One intuitive way to quantify the level of timing constraint
satisfaction is to measure the probability with which a system
satisfying a set of modified timing constraints still satisfies
the original timing constraints. With such a probability, de-
sign alternatives with different timing behavior can be easily
compared. We use a simple example to illustrate this point.

Example 1: Consider scheduling a task j with a relative
deadline of 22ms on an MPSoC with three cores my, mo, and
mg. The worst-case execution times (WCETs) of j on m1, mo,
and mg are 20ms, 25ms, and 30ms with peak power1 10W,
7TW, and 6W, respectively. For simplicity, we also assume that
the actual execution times are uniformly distributed between
5ms and respective WCETs. Now, if we need to limit the peak
power to be less than 8W, but allow some deadline misses,
we can schedule the task on either mo or mg. If we schedule
the task on me, for instance, what we can guarantee is the
satisfaction of a constraint with a relative deadline of 25ms,
rather than 22ms. Similarly, with the task on mg, we can
guarantee the satisfaction of a deadline of 30ms. In other
words, in this example, to maintain the peak power below
8W, we have two different approaches. Now, the question is
from timing perspective, which one is a better option?

If task j is executed on msy, the probability of the system

22-5

satisfying the original timing constraint of 22ms is 5z=2 =

85%. The probability reduces to 22=2 = 68% if task j is
executed on mg. So for this simple example, the answer to the
question above is obvious. That is, from the timing perspective,
using my is better than mg. Note that this conclusion coincides
with the intuition that 25ms is ‘closer’ to 22ms than 30ms.
However, this may not always be true — One could easily
see this by considering the extreme case where the best-case
execution time of j on mgy is greater than 22ms. (]

From the above simple example, one can see that the prob-
ability with which a system satisfying a set of modified timing
constraints still satisfies the original timing constraints can be
used effectively to compare design alternatives with different
timing behaviors. Now the challenge is how to measure such
a probability when there are more complex timing constraints
involved. Furthermore, given the timing constraint satisfaction
as one of the system comparison criteria, how can we find a
subset of constraints from a given constraint set and modify
them so that the required non-timing properties (e.g., power
consumption) are satisfied, but the timing property change is
minimal, or the timing property is the most similar (closest)
to the original one? The goal of this paper is to address these
questions by introducing a new metric.

As related work, many researchers have studied feasibil-
ity probabilities for tasks with varying execution times. Tia
et al. [2] propose a way to find the probability of a single task
meeting its timing constraint, referred to as task feasibility
probability. Kalavade et al. [3] present an approach to compute
the probability of any single task delay exceeding its deadline,
which is equivalent to the task feasibility probability. However,

IThe peak power is the maximum level of energy measured during an
observation period.
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Hu et al. point out in [4] that the probability of each individual
task meeting its timing constraint is not sufficient in several
situations since there often exists strong correlation among
events of tasks meeting their deadlines. The authors give a new
metric that considers the overall system probabilistic behavior
where tasks have their individual deadlines and the correlations
between tasks are captured by precedence constraints. With
this metric in the system-level design exploration process, one
can readily compare the probabilistic timing performance of
alternative designs. Based on [4], Wang et al. [5] define a de-
sign metric called performance yield, which is the probability
of the assigned schedule meeting the predefined performance
constraints. However, none of these works consider the prob-
lem of measuring the level of timing constraint satisfaction
when the original timing constraints cannot be satisfied or are
intentionally modified.

Our study, on the other hand, focuses on a more generalized
constraint model where correlations between tasks are treated
as linear timing constraints. The model is similar to Real-Time
Logic [6] in that the focus is on timing constraints between
event pairs. More specifically, we study similarities between
two different timing constraint sets and use the similarity value
to infer constraint satisfaction probability of a system that
satisfies one set of timing constraints satisfies the other. Note
that some of the researches on more expressive constraint types
such as Linear Real-Time Logic [7] and their feasibility results
can be used in combination with our proposed approach.

Many notions on similarities have been defined in the
literature for process models. Gupta et al. [8] give a pseudo-
metric analogue of bisimulation for generalized semi-Markov
processes and show that two metrically similar processes have
similar observable quantitative properties. Thorsley et al. [9]
use Wasserstein pseudometrics to quantify the similarities
between stochastic processes and introduce an algorithm to
approximate the pseudometrics directly from sampled data
rather than from process models themselves. The notion of
similarity on other models are also studied, e.g., in [10], [11],
[12]. However, the pseudometrics proposed in these works
are used to compare processes. Though there are similarities
between the idea of introducing quantitative metrics to mea-
sure two non-equivalent processes or constraints, the metrics
introduced in this paper not only measures the resemblance
between two sets of timing constrains, but also provides a
quantitative design guidance in deciding the trade-offs between
timing constraint satisfaction and other QoS properties.

Trading one QoS property for another has been studied in
various contexts. For example, reducing energy consumption
through compromising system performance has been consid-
ered in a wide spectrum of computing. To name a few, Mosci-
broda et al. discuss the trade-off between energy efficiency
and rapidity of event dissemination in ad hoc and sensor
networks [13]; in high performance computing, Feng et al.
analyzed NAS and SPEC suites to determine the relationship
between frequency and voltage settings and execution time,
and show that a significant decrease in energy is possible
with a small increase in time [14]. In fact, for real-time and
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embedded system, dynamic voltage scaling techniques, which
reduce system supply voltage for lower operation frequencies,
has been extensively used in various power management
schemes [15], [16], [17]. However, to our best knowledge,
there is no quantitative study of trading timing constraint
satisfaction in soft real-time systems for other QoS properties.

III. TIMING CONSTRAINT SET NORMAL FORM

In this section, we introduce the geometric foundations for
characterizing timing constraint sets. The constraint normal
form defined in this section will be used to establish constraint
similarity metrics in Section IV.

In our system model, we take a commonly used ap-
proach in that system behaviors (or computations) are rep-
resented as data streams, i.e., a sequence of event occurrences
(e1,€2,...,¢,) [18], and a timed data stream is formed by
pairing each event e; with its corresponding occurrence time
t(e;), as defined below [19]:

Definition 1 (Timed Data Stream): A timed data stream
(TDS) is a sequence ((e1,t(e1)), (e2,t(e2)),..., (en,t(en)))
where (t(e1),t(es),...,t(e,)) is a monotonically increasing
sequence with elements in R U{+o00}. Geometrically, a TDS
is a point in | E'|-dimensional space where each axis represents
an event and the projection of the point on the axis represents
the occurrence time of the corresponding event. ]

Without timing constraints, events can occur at any time
instances and thus the set of all TDS’s occupies the entire
nonnegative portion of the |E|-dimensional space. However,
when a set of timing constraints of the form t(e;) — t(e;) <
d(d € Rt U {+oc}) exists, the set of TDS’s satisfying the
set of timing constraints is only a convex region in the |E|-
dimensional space and we call it feasible region throughout
the paper. Feasible regions are the key in comparing timing
constraint sets and we illustrate them in Example 2 and 3.

Example 2 (2-Dimensional Feasible Region): Let s; and
f; be the events that task j starts and finishes, the feasible re-
gion of the relative deadline constraint 0 < t(f;) —t(s;) < 22
in Example 1 is shown in Fig. 1 (shaded area)

) A «s)—1f)<O0ms

L]
840/ 5038

22ms

L]
(28,16)

. ()~ 1(s) < 22ms )
Fig. 1. The feasible region of constraint Oms < t(]/‘j) —t(sj) < 22ms.

In the figure, TDS ((s;,20),(f;,38)) in the feasible re-
gion satisfies the relative deadline constraint, while TDS’s
((f;,16),(s;,28)) and ((sj,8), (f;,40)) outside the feasible
region violates causality ¢(s;) — t(f;) < 0 and deadline
t(f;) —t(s;) < 22, respectively. O

The dimension of feasible regions becomes higher when
the number of constrained events increases. Consider the
following example:

Example 3 (3-Dimensional Feasible Region): Let the set of
timing constraints that specify the relative time spans among

three events be

t(61) — t(eg) S 6, t(ez) — t(61) S 6,
{ tler) —t(es) <7, t(es) —tler) <3, } ()
t(ez) - t(eg) S 9, t(eg) — t(ez) S 14

Each timing constraint confines a half space in the 3-
dimensional space and the intersection of such half spaces
is the feasible region. The feasible region of (1) is shown in

Fig. 2 with its boundaries marked as bold lines.
1(e3)

t(e,))~1(e,)<6 He,)~t(e)=<6

t(e)—-t(e,)<14

te,)—t(e)<9

%

O]

Fig. 2. The feasible region of a constraint set (1).

In the figure, the pentagonal prism circumscribed by all but
the plane representing the constraint t(e3)—#(es) < 14 charac-
terizes the feasible region, i.e., each point (¢(e1),t(ez), t(e3))
in the region satisfies constraint set (1). O

From Example 2 and 3, we can see that a feasible region
characterizes all valid execution time traces, i.e., a system’s
valid timing behaviors under a set of timing constraints. How-
ever, when the dimension of a feasible region becomes higher,
its shape becomes more complex and makes the graphical
representation difficult. Therefore, in order to compare fea-
sible regions, alternative ways to represent high dimensional
feasible regions are needed.

We introduce an algebraic representation to describe fea-
sible regions so that the feasible region comparisons can be
directly made upon the algebraic abstractions. This algebraic
representation builds upon the concept of the most stringent
constraints, which we explain by again using Example 3.
Examine the feasible region of Example 3 shown in Fig. 2.
Note that the shape of the feasible region of (1) does not
change when the constraint ¢(e3) — t(e2) < 14 is changed to
t(es) — t(e2) < 9 (or any other constraint value larger than
9). In fact, t(e3) — t(ez) < 9 is the most stringent timing
constraints between event e3 and e; which can be implied by
the given constraint set.

It is worth noticing the conceptual differences between the
most stringent timing constraint between an event pair implied
from a given set of timing constraints and a feasible region that
satisfies the given set of timing constraints. As in the above
example, in order to satisfy constraints t(e3) — t(e;) < 3 and
t(e1) — t(ez) < 6 in the given constraint set (1), we must
satisfy t(e3) — t(e2) < 9, which is more stringent than the
one (t(es) — t(ea) < 14) given in (1). As we later show that
the feasible region can be characterized by the most stringent
constraints among all event pairs.
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For a given set of timing constraints, we can find the most
stringent constraint set by leveraging the approach of finding
all-pairs shortest paths. Specifically, we construct a constraint
graph G by defining the vertex set of G as the set of events
in the timing constraint set; for every two vertices e;, €; in
G, there is an edge from e; to e; with weight d if there is
a constraint t(e;) — t(e;) < d. The most stringent timing
constraint implied by the given constraint set between every
pair of events, t(e;) —t(e;) < d; ;, can hence be derived from
applying the Floyd-Warshall all-pairs shortest paths algorithm
on G [6]. The most stringent constraint set has an important
property which is summarized in the following lemma.

Lemma 1: The feasible region of a set of real-time con-
straints does not change when constraints between all event
pairs are replaced by the corresponding most stringent con-
straints derived from the Floyd-Warshall algorithm.

Proof: The proof is given in our technical report [20]. (I

An important implication of Lemma 1 is that the shape of
the feasible region is determined solely by the most stringent
timing constraints between all pairs of events. Therefore, the
constraint matrix that represents the most stringent constraints
among all pairs of events uniquely characterizes the shape of
the feasible region. We define this as the normal form of the
constraint set.

Definition 2 (Constraint Set Normal Form): Given a tim-
ing constraint set C' and the corresponding constraint graph
G, its all-pairs shortest paths matrix, denoted as D*, where

0 diy o din
I SR T

p=| . )
a dia 0

and d; ; is the shortest path weight between t(e;) and t(e;) in
the constraint graph G. D* is called constraint set C’s normal
form. O

With Definition 2, the inclusion relation of two feasible
regions defined by two timing constraint sets can be validated
by comparing the constraint sets’ normal forms.

Theorem 1: Given two sets of real-time constraints C' and
C’ on the same set of events®. Let their corresponding normal
forms be D* and D", respectively. The feasible region of C’
is included within that of C if and only if D* > D", ie.,
Vi, j o di; > d.

Proof: The proof is given in our technical report [20]. O

From Theorem 1, we have the following:

D*=D" < D*>D"AD" >D*
& feasible region of C include that of C’
A feasible region of C” include that of C

& feasible regions of C' and C” are identical

In other words, there is a one-to-one correspondence between a
timing constraint normal form and a feasible region. Therefore,

2Note that the event sets of the two constraint sets need not be the same in
order for the two feasible regions to be comparable. One can always extend
both event sets to the same one by adding unconstrained events.
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the constraint normal form bridges the geometric problem of
a feasible region and their corresponding algebraic problem of
linear inequalities and can serve as the algebraic representation
that we stated earlier in this section. We can hence derive
the relationship between feasible regions of two different
constraint sets by studying the constraint normal forms.

IV. SIMILARITIES BETWEEN TIMING CONSTRAINT SETS

Example 1 has shown that timing constraint changes often
affect system’s other QoS properties, i.e., there are trade-offs
between the stringency of timing constraints and other QoS
properties. It is hence important to know how much the timing
behavior compromise is in order to bring QoS benefits.

A. Similarities between Constraint Sets

In this section, we focus on quantifying timing behavior
similarities and we base our model on the feasible regions of
timing constraint sets discussed in Section III. The following
example of the similarities between feasible regions in 2 and
3-dimensions gives the intuition. Note that in the following
discussions, for simplicity, we assume that event occurrence
times allowed by a set of constraints are uniformly distributed
in the feasible region of the constraint set and leave the
discussion of non-uniformity to subsection IV-B.

Example 4 (Feasible Region Similarity): In Example 1, the
original constraint was 0 < t(f;) —t(s;) < 22 and the relaxed
one is 0 < t(f;) — t(s;) < 25. The relationship between the

two corresponding feasible regions is depicted in Fig. 3.
«(s;) — () < Oms

25ms
22ms

(f;) — t(s;) < 22ms
(f) — t(s;) < 25ms

0 1{s)
Fig. 3. The feasible regions satisfying constraint (; < t(f5) —t(sy) <22
and 0 < t(f;) — t(s;) < 25.

As can be seen from the figure, timed data stream
((s4,20),(f;,38)) satisfies both constraint sets while
((s5,8),(f;,32)) satisfies only the relaxed deadline. In fact,
the common area of the two feasible regions occupies % =
88% of that of the relaxed deadline 25ms.

Advancing to 3-dimensional feasible regions, consider the

feasible region of the following timing constraint set that has

three events:
t(el) — t(€2) t(62) - t(el) S 77

t(es) — tler) < 2, (3)
t(€3) — t(€2) S 5

t(e1) —t(es)
t(ez) — t(es) < 10,

The relationship between feasible regions satisfying con-
straint sets (1) and (3) is illustrated in Fig.4, where bold lines,
light lines, and the shaded region represent constraint sets
(1), (3), and the intersection between their feasible regions,
respectively.

From Fig.4, we can see that although feasible regions
satisfying constraint sets (1) and (3) are not identical, they
share some common region. Hence, we can expect that they
have some timing behaviors in common. ]

5,
5,

NIAIA
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1(e3)

fe)—1(e,) <5 He,) 1) <7

He)—t(e,) <5

ter)s

2020

Fig. 4. The feasible regions satisfying constraint sets (1) (bold lines) and
(3) (light lines), and their intersection (the shaded region).

Generalizing the above discussions, we define the similarity
between two timing constraint sets as the following:

Definition 3 (Constraint Set Similarity): Let S(C') denote
the size of the feasible region of a timing constraint set C.
Given two timing constraint sets C, C’, the similarity relation
is defined as C ~ C’' = ‘Z((Lcﬁ,)), where C" is the intersection
of C' and C". O

Intuitively, if C ~ C" = P%, i.e., the intersection of
the feasible regions of constraint sets C' and C’ occupies
P% of the feasible region of C’, we know that P% of all
the timed data streams satisfying C’ satisfies C. Therefore,
system satisfying C’ will have a P% guarantee of satisfying
C. Unfortunately, directly calculating the similarity between
two sets of complete timing constraints is difficult. In fact,
calculating the size of a polytope formed by a set of linear
inequalities (S(C) in our context) has been shown to be # P-
hard [1], and thus directly calculating the proportions of the
intersection in any of the feasible regions, i.e., the similarity
metric, by comparing their sizes is costly. To overcome the
computational hurdle of evaluating directly the constraint set
similarity between two constraint sets, we resort to finding
a lower bound on the constraint set similarity such that it is
easily computable and is tight. The following theorem defines
such a bound.

Theorem 2: Given two timing constraint sets C' and C”, and
corresponding normal forms be D* and D", respectively. If
the feasible region of C” is not included in that of C, i.e.,
D* # D'", then the similarity is bounded by:

|El-1

£
. di,j
min —_—
i,j=1,...,n d/*
L A Y]
i#j, di . <d*,

1,0 =717

<C~C(C'<1 4)

where |E| is the cardinality of the event set being constrained,
d; ; and d*; are the corresponding entries in D* and D’ 5
respectively. The similarity reaches upper bound 1 when
feasible region of C" is included in that of C, i.e., D* > D’".
Proof: The proof is given in our technical report [20]. (]

From Theorem 2, one can see that the similarity bound can
be calculated easily once the normal forms of the constraint
sets are available. Comparing similarities of different con-
straint sets then can be indirectly achieved through evaluating
their similarity bounds. Before discussing various implications

of using the similarity bound in Section IV-B, we demonstrate
the use of Theorem 2 on the constraint sets given in Example 4.
From Theorem 2, the ratio of the common region between
(1) and (3) to the feasible region of (3) is bounded by
[%,1) where % = (min{g, 1% )371. Therefore, assuming
a uniform distribution of the event timing behavior in the
feasible regions, Theorem 2 guarantees that at least % = 73%
timed data streams that satisfy (3) also satisfy (1). This gives
us a quantitative measure of the resemblance between systems
constrained by (1) and (3), respectively. Actually, as shown
in [20], the exact ratio of the common region between (1) and
(3) to the feasible region of (3) is % = 91.25%.

B. Discussions

Timed data stream distribution in the feasible region
In the above discussions, we assume that timed data streams
are uniformly distributed in the feasible region of the constraint
set. The bound given in Theorem 2 is based on such an
assumption. However, the definition of constraint feasible
region similarities can be extended to non-uniform cases.
For example, consider two 2-dimensional feasible regions of
constraint sets C' = {t(e1) — t(e2) < 5,t(e2) — t(e1) < 15}
and C" = {t(e1) — t(ea) < 15,t(e2) — t(e1) < 9}. Assuming
timed data streams are not uniformly distributed in the regions,
but are as shown in Fig. 5(a) and 5(b), respectively. Obviously,
in order to compare their similarities, not only their areas but
also the densities within the areas must be considered. For
instance, the intersection of the feasible regions of C' and C’
is denser than the complements of the regions as depicted in
Fig. 5(c). Therefore, the concept S(C) in Definition 3 are to
be extended to weighted sizes.
(e2) t(ex) — e <15 ) (ez) — f(e)) <9

e,
P

7
e)—Hex) <5 ///t(e‘)*l(ez)é 15

E]

(a) (b)

plei, e2)
0,

" Hen)

(©

Fig. 5. Feasible region similarities of non-uniformly distributed TDS’s.

In a soft real-time system, the distribution of timing values
(such as the completion time of a task) can be evaluated
by methods presented in existing work, e.g., [2], [3], [21],
[22]. The distribution can then be used in combination with
our proposed similarity bound concept to compare timing
behaviors of different designs. The detail of this is beyond
the scope of this paper.
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Symmetry and transitivity of constraint set similarity

It is worth pointing out that the constraint set similarity
relation is neither symmetric nor transitive. From Definition 3,
it is not hard to see that in general C' ~ C’" # C’ ~ C. For
instance, for constraint sets C' = {0 < t(f;) — t(s;) < 22}
and C' = {0 < t(f;) — t(s;) < 25} as given in Example 4,
C ~ C" =88%, while ' ~ C = 1.

Similarly, neither can we infer C ~ C” from C ~ C’
and C' ~ C”. Figure 6 shows an example. In the figure,
the feasible regions of three constraint sets C, C’, and C”
are represented as a tetragon, a pentagon, and a hexagon,
respectively. The similarity between C' and C’ (C ~ C') is
the same for both figure Fig. 6(a) and Fig. 6(b). However,
depending on the positions from which C” similar to C’, C
and C” can be either very similar (as shown in Fig. 6(b)) or
very dissimilar (as shown in Fig. 6(a)).

fes) fes)

s s
. J\ S
fend e et o)

’ \7;\\(/75/ -
(@ (b)

Fig. 6. Similarity relation is not transitive.

The tightness of the similarity bound

From Theorem 2, it is easy to see that as the dimension
of feasible regions gets higher, the similarities between their
corresponding constraint sets decrease significantly due to the
exponent |E| — 1. This is quite intuitive since, on one hand,
as more events and constraints get involved, the chance of
timed data streams satisfying one constraint set but violating
the other gets bigger; on the other hand, from a geometric
point of view, the volume of a polytope is exponential to its
dimension, and so does the similarity between two polytopes.

Dealing with unconstrained event pairs in a constraint set

In Example 4, we illustrate the similarities between timing
constraint sets where there is a constraint, either explicit or im-
plicit, for every pair of events. However, there are cases where
there are event pairs which are not constrained. For example,
for constraint sets C; = {—5 < t(e2) — t(e1) < 22} and
Cy = {t(e2) —t(e1) < 25}, the similarity Cy ~ Cj is close to
0 since in Cy we implicitly have t(e;) — t(e2) < +o00 and the
feasible region is not bounded on the corresponding direction.

In this case, the similarity relation stated in Theorem 2 still
2 5

257 400
07), such O similarities render the metric too coarse. Hence,
a refinement that considers unconstrained events is needed.
For most real-time applications, we observe that events
often form groups such that those within the same group are
pairwisely constrained either explicitly or implicitly as shown
in Section IV-A, and the timing relations between groups are
either nonexistent or constrained by unidirectional constraints

applies, but it approaches to 0 (C; ~ Cz = min {
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such as precedence constraints or delays. Therefore, given two
timing constraint sets C' and C” on the same set of events F, in
order to take the unconstrained event pairs into consideration,
we take the following steps

I. Partition E by strongly connected components of constraint
graphs of C' and C’. We only consider the case where both
partitions are the same. It is not hard to see that each pair of
events in a partition is explicitly or implicitly constrained.

IL. Let F4,..., Ex denote the K partitions and C4,...,Ck
and C1,...,C}% denote the constraints of C' and C’ within

the partitions, respectively. Then C ~ C” is bounded by

~C' > i ~C,
Cr @z mn G~ G ®
. dzi_j |Ex|—1
2 k:rrll,an ’L,]EI}IH,TL, d;: (6)
s

By partitioning events as well as the constraints among
them, we reduce the dimensions of feasible regions of a
constraint sets, filter out constraints that are irrelevant to the
measurement of similarities, and thus get a more fine-grained
view of similarities between the constraint sets.

We demonstrate the approach through a simple example.
Consider vote-and-decide applications where several groups of
voters vote within groups and a decision unit collects decisions
from all groups. A typical constraint set constrains events
within each voting group by relative deadlines to guarantee
voting consistency and defines certain delays for the decision
unit to make decision after all votes are collected. Figure 7
shows the timing constraint graphs of two timing constraint
sets. According to strongly connected components, we parti-
tion the events into Ey = {ej,eq,es}, Ea = {eq,e5}, and
Es = {eg}, where partitions E; and E, are events from the
corresponding voting groups, and partition Fs is the deciding
event. The similarity between the two sets of constraints,

C ~ (', is then lower bounded by min{33, % 1} ~ 69%.

(a) timing constraint graph of C (b) timing constraint graph of C’

Fig. 7. Similarity between general timing constraint sets.

V. IMPROVING SYSTEMS’ QOS PROPERTIES WITH
CONSTRAINT SIMILARITY GUARANTEES

The constraint similarity study is important as it has broad
applications in areas where other types of QoS requirements,
such as total energy consumption, are directly affected by a
system’s timing behaviors. As an example, we consider the
energy-aware task assignment for soft real-time applications
on a multiprocessor system-on-chip (MPSoC) which is similar



©CoO~NOUTA,WNPE

Transactions on Design Automation of Electronic Systems

to the one discussed in [23]. In particular, in this section,
we will demonstrate (a) given the similarity metric and its
bound (Section IV), calculate the probability guarantee that the
original timing constraints are still satisfied by the modified
constraint set for the purpose of reducing total energy con-
sumption; and (b) given a maximum allowed constraint com-
prise, determine the constraint relaxations that best reduces
energy consumption.

It is worth pointing out that reducing energy consumption
is used only as an example to illustrate our approach. The
similarity metric and the methodologies of using the metric
to guide the trade-offs between timing and other QoS prop-
erties can be applied in a broad spectrum of soft real-time
applications which involve timing and limited resources.

A. System and Task Model

The MPSoC under consideration consists of a set of hetero-
geneous cores M. Let J be the set of tasks to be executed on
M. For each task j € J, the following parameters are used in
our discussions:

e EX(j,m): j’s worst-case execution time on core m,

e ex(j,m): j’s actual execution time when running on core
m, ex(j,m) € (0, EX(j,m)],

o dj: the relative deadline of j,

e s;: the start event of task j,

o fj: the finish event of task j, t(f;) = t(s;) + ex(j, m),

e P(j,m): the power consumption of core m € M when
task j executes on m.

The goal is to determine a static assignment of tasks to cores
to further reduce the energy consumption while ensuring the
required probability of constraint satisfactions guarantees. The
hard real-time version of the problem, where a 100% deadline
satisfaction must be ensured, is discussed in [23]. From the
constraint satisfaction perspective, a deadline miss indicates
that an execution trace falls outside of the feasible region
defined by the given timing constraint set. When we allow
a certain percentage of deadline misses, we actually include
some execution traces outside the original feasible region, or
in other words, the feasible region is expanded. The expanded
feasible region can be considered as a relaxed constraint set.
The constraint similarity study discussed in Section IV allows
us to quantitatively compare the deviations of the changed
constraint from its original set, and hence to select which
constraint(s) to relax based on a quantitative measure.

B. Reducing Total Energy Consumption

As shown in [23], the problem of minimizing to-
tal energy consumption for the MPSoC is to minimize

ZJGIZmGM P( ) EX(]7 ) 6(],’[7’1,) where
. 1 if j is assigned to m
5(j,m) = J 18 e (7
0 otherwise

However, in our case, the actual execution time ex(j, m) is not
a constant value, and we assume it follows a certain probability
distribution over the interval (0, EX(j,m)]. Therefore, the

goal is to minimize the expectation of the total energy con-
sumption and the objective function thus becomes minimizing
Zje] Zmej\l P(.77 m) E [ex(j’ m)} ’ 5(]7 m)

Below, we demonstrate through an example how to use the
similar bound to reduce total energy consumption by relaxing
timing constraints.

Example 5: Consider two tasks j; and jo with relative
deadline constraints d;, = d;, = 20ms and synchronization
constraints |t(s;, ) —t(s;,)| < 5ms. We thus have the following

t(sj1) —

set of constraints:
< 20, t(sj,) <5,
<20, t(SJ ) —t(s5,) <5, (8)
<e, <e

{ (fjl) - t(sjlg
Hsjn) — t(fia)

t(fia) — t(sss
t(sj1) —t(fin)
where t(sj,) — t(f;,) < e(e — 07) guarantees causality. The
normal form of the constraint set (indexed by t(s;,), t(f;,),
t(s;,), t(fj,)) is given by (9).
0 € 5 5+ ¢
20 0 25 25+
l 5 5+ 0 e ] ©))
25 25+¢ 20 0
Now, consider the scheduling problem of task j; and js on
the following MPSoC with 4 cores:

10W  10W
20ms mi mo 20ms
22ms | ms my 25ms
W 5W

where P(ji1,m1) = P(j2,m1) = 10W, EX(j,m) =
EX (j2,m1) = 20ms, etc.

To satisfy the constraint set (8), j; and jo can only be
assigned to m; and mgy, respectively. Assuming the ac-
tual execution time is uniformly distributed in the interval
(0, Ex(j1,m1)], the expected total energy consumption is
10W x 10ms 4+ 10W x 10ms = 200W - ms.

If we are willing to compromise the timing constraints, the
deadline constraint of j; can be relaxed to d;, = 22ms from
20ms, the new constraint set becomes.

{ (fj1) ~\ t(sh) <22 t(sh) - t(8]2) <5, }
t(fin) — t(s5,) <20, t(sjp) —t(s5,) <5, (10)
t(s5) —t(fin) <e t(sjy) —t(fs,) <

with normal form

0 € 5 5+ ¢
l252 526 207 27:61 (11)

25 25+¢ 20 0

Based on Theorem 2, the similarity between these two
constraint sets is lower-bounded by (2 )4 ' ~ 75%. In other
words, a system that satisfies the new constraints (10) has at
least 75% guarantee of satisfying the initial system constraints
(8). The benefit of relaxing the constraint is that we can now
use mg to shedule j; or jo and the expected total energy
consumption is thus reduced to 177W -ms, a 11.5% reduction.

Similarly, if we further relax the deadline constraint of j5 to
d;, = 25ms, one can easily verify that the similarity between
the original and the modified constraint sets is bounded by
[51.2%, 1] ((20)4 ' = 51.2%). In other words, systems

25
that satisfy the modified constraints still have at least 50%
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chance to satisfy the original one. However, with such deadline
relaxation, we can now schedule tasks j; and js on mgs and
my, respectively, with the corresponding expected total energy
consumption reduced to 139.5W - ms, a 30.25% reduction.

Suppose we now have another job j3; with a relative deadline
of 22ms. New constraints ¢(f;,) —t(s;,) < 22ms and ¢(s;,)—
t(f;,) < e need to be inserted into (8). Since j3 has no timing
relations with j; and jo, based on Section IV-B, we partition
the constraint set into two smaller normal forms.

0 € 5 54 ¢
HEE R IR
25 254€¢ 20 0

For (12), the most energy-efficient assignment is to assign
71, J2, and j3 to mq, meo, and mg, respectively, with a total
expected energy consumption of 277W - ms. If the deadlines
for j; and j3 are reduced to 22ms and 25ms, respectively, the
corresponding normal forms are changed from (12) to (13)

0 € 5 54 ¢
22 0 27 27+ € 0 €
l 5 54¢ O e ] and {25 o} (13)
25 254€¢ 20 0

We can then assign ji, jo, and j3 to ms, meo, and my,
respectively, reducing the total expected energy consumption
to 239.5W - ms, 14% reduction. The similarity between (12)

and (13) is bounded by min {(23)"™", (2)*""} ~ 75%. In

other words, we have at least 75% guarantee to satisfy the
initial constraints with the relaxed constraint set. (|

The above examples show that understanding the impli-
cation of constraint changes both from the system timing
property and non-timing properties points of view plays a
key role in conducting design tradeoffs. The similarity metric
provides a quantitative measure about this implication in terms
of timing constraint satisfaction. Specifically, the similarity
bound between the orignal constraint set and that the modified
one quantifies the maximal timing constraint satisfaction com-
promise in order to achieve certain desired QoS improvements.
It thus allows us to make well-found decisions.

For the above examples, we manually picked some timing
constraints to relax and calculated the similarity between the
resultant constraint set and the original one. Under the same
setting given in Example 5, a more interesting problem is:
suppose we are allowed to relax the predefined constraints by
certain amounts, can we determine which constraints to relax
and how to relax them in order to find an assignment that
further reduces expected total energy consumption?

C. Determining Constraint Relaxations

As we have seen from Section V-B, relaxing timing con-
straints can further reduce total energy consumption, and
Theorem 2 gives the bound of similarity between the modified
constraint set and the original one. However, for real systems
with a large number of events and constraints, there are
possibly infinite ways even to relax a single timing constraint,
not to mention there are combinatorial choices of constraints
to relax. Therefore, relaxing constraints through exhaustive
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search is not realistic. Below, we consider one type of design
problems and provide a systematic approach.

Given an application with both timing requirements and
a desired QoS property, suppose that the design problem is
formulated as an optimization of some QoS property under
multiple types of constraints (including timing constraints).
The goal is to find appropriate timing constraints and relax
them to appropriate degrees so that the desired QoS property
can be further improved while the initial timing constraints are
still at least P% satisfied. We introduce the following steps for
solving the problem.

Step 1: Based on given timing constraints, construct the cor-
responding timing constraint graph G. Partition G by strongly
connected components. And for each strongly connected com-
ponent, compute its normal form.

Step 2: Modify the original timing constraints such that each
event pair of a constraint within a partition is constrained by
a variable deadline (instead of the original deadline). Add
new constraints to constrain the newly introduced deadline
variables based on the specified similarity bound P%.

Step 3: Solve the modified optimization problem using stan-
dard algorithms. The optimization solution contains the opti-
mized value of the objective function which is the improved
QoS property value, and the variable assignments which define
the necessary timing constraint relaxations.

In the following, we illustrate the use of the above general
steps through the example given in Section V-B. More specif-
ically, consider the specific example of assigning a set of five
tasks ji,...,J5 to the MPSoC illustrated under the following
timing constraints:

1) The relative deadlines of all tasks are 20ms, i.e., d;; =
djz N ij = dj4 = djs = 20ms;

2) There are synchronization constraints between j; and jo,
and between js and ja, i.e., [t(s;,) —t(s;,)| < Bms and
£(s5,) — t(s5,)| < 5ms:

3) Task j3 and j4 should start no later than 10ms after 5
finishes, i.e., we have constraints ¢(s;,) —t(f;,) < 10ms
and t(sj,) — t(f;;) < 10ms.

Chantem et al. [23] formulate the problem as an MILP to
optimize expected total energy consumption as following:
minimize

.y Elex(j,m

jeJmeM

subject to

Vied: t(f;)=1t(s;)+

> 8G,m)

-EX(j,m) (15)

meM
VjieJ: > 6Gm) =1 (16)
meM
Vei,ej ck: t(ei) — t(ej) < dki,j a7

where E = {s;, f;|j € J}, and (17) generalizes timing con-
straints to a pairwise form (dy, ; are constants obtained from
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the original constraints, for events that are not constrained,
dki,j = -l—OO).3

Solving the MILP gives the non-preemptive schedule of

tasks on the cores such that all timing constraints are met and
the total energy consumption is minimized. Now, if we allow
timing constraint relaxations but require a 75% constraint
satisfaction guarantee, the original MILP needs to be modified
based on the steps given above. In particular,
Step 1: For the constraint set given in (17), construct its
corresponding constraint graph and partition the event set E
into Fy,...,EFx based on the graph’s strongly connected
components. Only timing constraints within partitions are
possible candidates for relaxations. Note that for any j € J,
s; and f; must be in the same partition since they are strongly
connected by the relative deadline of 7, i.e., t(f;) —t(s;) < d,
and t(s;) — t(f;) < e. Therefore, all relative deadlines are
possible to be relaxed.

For Vk = 1,...,K, derive the constraint normal form
Dj for constraints among Fj, ie., for Ve;,e; € Ej,
t(e;) — t(ej) < dj. . For this example we have partitions
Ey = {Sjl’fjlvsjzvsz}’ Es = {513’ f]35514vfj4}v and E3 =
{85, fjs }- The constraint normal forms D}, D3, and D3 on
these partitions are

0 € 5 5+¢€
* * 20 0 25 25 + € * 0 €
Dl_DQ_ 5 54 € 0 € 7D3_|:20 0:|
25 254€ 20 0

(18)
respectively.
Step 2: For constraints within partitions, modify (17) in the
MILP formulation to

Vei,ej eFE,k=1,...,K: t(ei) — t(ej) < d%i,j (19)

%

dki.j
\Ek\*\l/Pi%

where d’ _is the newly introduced variable for constraint re-
laxatlons n the modified MILP, (19) and (20) are responsible
for the selection and relaxation of constraints. From (20), we

have

di, N ()

o > | 5 >P% Q1

ki, ki,

where dj* . is the corresponding entry in the normal form of
the relaxed constraints and thus dF < d. .. According to
Theorem 2 and Section IV-B, the probablhty that the system
satisfying the relaxed constraint set also satisfies the original
constraint set is no less than P%.

For example, for constraint t(s;,) — t(s;,) < 5, we derive
two constraints, i.e., t(s;,) — t(sj,) < d, , andd; . <
|5/V/0.75]; for constraint ¢(s;,) — t(f;;) < 10, since s;, and
s belong to different partitions, the constraint is still in the
modified MILP but cannot be relaxed. Specifically, (17) in the

Vei,ej S Ek,]{) =1,...,K: d/” = \‘ J (20)

3Note that the constraints to guarantee that all tasks execute for their
durations without overlap [23] are omitted from the formulation for clarity of
presentation.

MILP is replaced by the following constraints

( )7t(fh)— 541 fin ) disjlfl LG/VO’?J )
t(sh) _t(sjs) d/s“sj3 ) d/s]-lsj = LB/V()? J )

t(fjs) - t(sjs) < d_/ijSjS ) d/fJ-SSj = L20/ V0.75 J ’
t(sj:s) - t(fjs) <10 ’ t(sj4) - t(f]s) <10

Step 3: Solve the modified MILP using an MILP solver
(such as ILOG CPLEX®). The solution contains the minimum
expected total energy consumption and the assigned value of
i o which is the new constraint values in the correspondingly
relaxed constraints. In this example, solving the modified
instance of the MILP formulation, we have an optimal solution
of 416.5W - ms, with 6(1,1) =1, §(2,3) =1, §(3,2) = 1
5(4,3) = 1, and 6(5,4) = 1. The corresponding schedule
is to run j;, js, and js on core mp, mg, and my from
time 0, respectively, with their new relative deadlines being
20ms, 22ms, and 26ms, respectively. Since jy and j, are
both assigned to core mgs, to void overlap, from time 22ms,
js3 and j4 are scheduled to run on ms and mg, with their new
relative deadlines being 20ms and 22ms, respectively. The
total execution time in this case is 44ms with all constrains
satisfied. However, with the original MILP, we can only
schedule all five tasks on m; and ms, with a minimum total
execution time of 60ms and expected energy consumption of
500W - ms. Therefore, by compromising no more than 25%
of satisfaction guarantees of the original constraints, we gain a
reduction of expected energy consumption and total execution
time by 16.7% and 26.7%, respectively.

Through the above example of reducing total energy
consumption with constraint similarity guarantees, we have
demonstrated that when we do not require 100% constraint
satisfaction guarantees, which is often the case for soft real-
time applications, the flexibility allowed can be used to im-
prove system’s other QoS properties. We have further illustrate
the detailed steps in obtaining better system QoS properties
while still maintaining the required system’s timing behavior
resemblance. It is worth pointing out that the process of
generating timing constraints from system specifications and
the above steps for relaxing these constraints can all be
automated, and thus will not be prohibitive when studying
real-world systems. Step 1 and 2 for formulating the constraint
relaxation MILP requires polynomial time. Solving the MILP
in Step 3 requires exponential time, and is thus the most
computationally expensive part. Currently, we have not found
effective heuristics for runtime constraint relaxations when
system specification parameters could change. However, the
constraint similarity metric itself is not restricted to offline
analysis; in fact, the metric can be used to measure timing
behavior deviations for system parameter changes at runtime.

VI. CONCLUSION

Soft real-time systems allow certain timing flexibilities
that can often be utilized to improve QoS properties of the
systems. However, this flexibilities need to be exploited in
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a quantitative and predictable manner. Specifically, if a set
of timing constraints are allowed to be modified, we need to
measure how much the relaxation differs from the origin set.
Based on this need, in this paper, we introduce a quantitative
metric to compare the similarity between two timing constraint
sets. We based our study on feasible regions and proved that
for a set of timing constraints, its feasible region is uniquely
characterized by the constraint normal form. The similarity
metric is then defined based on the common feasible region of
the given two timing constraint sets, and reflects their mutual
satisfactions. Since directly calculating the similarity metric is
computationally intractable, we give a similarity bound based
on the normal form. We used an MPSoC system to illustrate
how we may use the similarity metric to guide the design
phases for reducing system energy consumption. This example
leads to a more general conclusion that the similarity metric
between timing constraint sets can be used to guide the trade-
offs between different QoS properties.

As future work, we plan to investigate the effect of non-
uniformly distributed timed data streams on the evaluation
of the similarity metric and its bound. Specifically, we will
consider combining our earlier work on non-uniformly dis-
tributed interval-based events [24] with the computation of the
similarity bounds. Intuitively, a set of interval-based events
{I, = [min(Iy),max()],..., I, = [min(I,), max(I,)]},
can be represented as a hypercube in the n-dimensional space
whose density is determined by the joint distribution of all
events. It will be revealing to understand the relationship
between this hypercube with the hyperprism of a timing
constraint set feasible region. This research is significant in
deciding the satisfaction of timing constraints by events of a
more practical model. Regarding the quality of the similarity
bound, we realize that our bound may not be as tight, espe-
cially for higher dimension cases. We will further examine and
improve the quality of the similarity bound.
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