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Abstract—Hybrid control systems, that is, systems which contain both continuous dynamics
and discrete event dynamics are studied in this paper. First, a model is introduced that describes
the continuous plant and discrete event controller along with an interface which connects them. A
Discrete Event System (DES) automaton description is employed to describe the plant together with
the interface and it is used to analyze the hybrid control system. Controllability is defined for hybrid
control systems, enhancing existing DES control concepts. It is then used to obtain a controller
design method for hybrid control systems.
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1. INTRODUCTION

Hybrid systems contain two distinct types of systems, systems with continuous dynamics and
systems with discrete event dynamics, that interact with each other. Hybrid control systems
typically arise when continuous processes interact with, or are supervised by, sequential machines.
Since the continuous and discrete dynamics coexist and interact with each other, it is important
to develop models that accurately describe the dynamic behavior of such hybrid systems. In
this way it is possible to develop control strategies that take fully into consideration the relation
and interaction of the continuous and discrete parts of the system. In the past, models for the
continuous and discrete event subsystems were developed separately; the control law was then
derived in a rather empirical fashion, except in special cases such as the case of digital controllers
for linear time-invariant systems. The study of hybrid control systems is essential in designing
sequential supervisory controllers for continuous systems, and it is central in designing intelligent
control systems with a high degree of autonomy [1,2]. Examples of hybrid control systems are
common in practice and are found in such applications as flexible manufacturing, chemical process
control, electric power distribution, and computer communication networks. A simple example
of a hybrid control system is the heating and cooling system of a typical home. The furnace and
air conditioner, along with the heat flow characteristics of the home, form a continuous system
which is to be controlled. The thermostat is a simple discrete event system which basically
handles the symbols too hot, too cold, and normal. The temperature of the room is translated
into these representations in the thermostat and the thermostat’s response is translated back to
electrical currents which control the furnace, air conditioner, blower, etc. That is, the thermostat
(controller) only sees a quantized, or symbolic, version of the output (temperature) of the home
(plant). It generates a finite number of piecewise constant signals that translate into commands
to turn on or off the furnace or the air conditioner.
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The hybrid control systems of interest here consist of a continuous (state, variable) system to
be controlled, also called the plant, and a discrete event controller connected to the plant via an
interface. It is generally assumed that the dynamic behavior of the plant is governed by a set of
known nonlinear ordinary differential or difference equations, however our development below is
based on the state trajectories of the plant rather than the particular mechanism in force that
generated those trajectories; that is, our results apply, under certain assumptions, to systems
where a differential or difference equation description is not known or may not even exist. In
the approach described below, the plant contains all continuous subsystems of the hybrid control
system, such as any conventional continuous controller that may have been developed, a clock
if time and synchronous operations are to be modeled, etc. The controller is an event driven,
asynchronous discrete event system {(DES), described here by a finite state automaton. The hybrid
control system also contains an interface that provides the means for communication between the
continuous plant and the DES controller; see Figure 1. The interface receives information from
the plant in the form of measurements of a continuous variable, such as the continuous state, and
issues a sequence of symbols to the DES controller. It also receives a sequence of control symbols
from the controller and issues (piecewise) continuous input commands to the plant.

Controller

A

Tn] X[n]

actuator | Interface |generator|

r(t) x(t)
Y

Plant

Figure 1. Hybrid control system.

The interface plays a key role in determining the dynamic behavior of the hybrid control
system. Understanding how the interface affects the properties of the hybrid system is one of
the fundamental issues in the theory of hybrid control systems. In our model, the interface
has been chosen to be simply a partitioning of the state space and this is done without loss of
generality. If memory is necessary to derive an effective control law, it is included in the DES
controller and not in the interface. Also, the piecewise continuous command signal issued by
the interface is simply a staircase signal, not unlike the output of a zero-order hold in a digital
control system. Including an appropriate continuous system at (the input of) the plant, signals
such as ramps, sinusoids, etc., can be generated if desired. The simple interface used in our
model allows analysis of the hybrid control system, and in particular development of properties
such as controllability [3], stability [4], and determinism, in addition to synthesis results and the
development of controller design methodologies [5,6]. The simplicity of our interface with the
resulting benefits in identifying central issues and concepts in hybrid control systems is perhaps
the main characteristic of our approach. It is also what has been distinguishing our approach
from other approaches (with more complex interfaces, or with restrictions on the class of systems
studied) since early versions of our model first appeared in 1991 [7,8].

In general, the design of the interface depends not only on the plant to be controlled, but also on
the control policies available, as well as on the control goals to be attained. Certain control goals
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may require, for example, detailed feedback information, while for others coarser quantization
levels of the signals may be sufficient. The former case corresponds to finer partitioning of the
feedback signal space, while the latter corresponds to coarser partitioning. The fact that different
control goals may require different types of information about the plant is not surprising, as it is
rather well known that to stabilize a system, for example, requires less detailed information about
the system’s dynamic behavior than to do tracking. Note that in general, the fewer the distinct
regions in the partitioned signal space, the simpler (fewer states) the resulting DES plant model
will be, and this will result in a simpler DES controller design. Since the systems to be controlled
via hybrid controllers are typically complex, it is important to make every effort to use only the
necessary information to attain the control goals, as this leads to simpler interfaces that issue
only the necessary number of distinct symbols, and to simpler DES plant models and controllers.
The question of systematically determining the minimum amount of information needed from the
plant in order to achieve particular control goals using a finite number of distinct control policies
is an important and still open question; our work in [6] partially resolves this question.

The hybrid control system model presented in this paper is close to the model of [9], which was
also developed for control purposes (in particular control design; our model is for analysis and
design). Other models include [10]; see also the earlier references therein. The models in [11,12]
are more general but they are developed primarily for simulation purposes. The model of [13]
is developed for control, but the interface is rather complex. Other approaches include [14-21].
The paper by Branicky et al. [22] presents a rather detailed comparison of some of the models.
Early work also included [23,24]. For recent developments in hybrid systems research, see [25].

In this paper, a model is presented in Section 2 that is developed for hybrid control system
analysis and design. This model is general and it is characterized by a simple interface. This allows
the development of a DES plant model in Section 3, which includes the continuous plant together
with the interface. In particular, DES plant properties such as determinism and observability
are introduced and discussed, as well as the notion of controllability, which is an extension of
the corresponding controllability notion in logical DESs. Given control goals, such as forbidden
states, a design methodology is presented that leads to a DES controller. This design method is
an extension of the corresponding method in logical DES. An alternative approach in modeling
is to consider a discrete-time plant instead of a continuous-time plant [7,26]. This approach
leads to simpler mathematical analysis, as it avoids the issue of continuous trajectories crossing
hypersurfaces—this approach is outlined in Section 5.

Note that early versions of the results discussed in this paper have appeared in [8,27-30].

2. HYBRID CONTROL SYSTEM MODELING

A hybrid control system can be divided into three parts, the plant, interface, and controller,
as shown in Figure 1. In this model, the plant represents the continuous-time components of the
system, while the controller represents the discrete-event portions. The interface is the necessary
mechanism by which the former two communicate. The models used for each of these three parts,
as well as the way they interact are now described.

2.1. Plant

The plant is the part of the model which represents the entire continuous portion of the hybrid
control system. The distinguishing feature of the plant is that it has a continuous state space,
where the states take on values that are real numbers, and evolve with time according to a set
of differential equations. Motivated by tradition, this part of the model is referred to as the
plant but since it contains all the continuous dynamics, it can also contain a conventional, i.e.,
continuous-time, controller.

The plant is a nonlinear, time-invariant system represented by a set of ordinary differential
equations.

X(t) = f (x(t),x(t)), (1)
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where x(t) € X and r(t) € R are the state and input vectors, respectively, and X C ®*, R C 8™,
with ¢ € (a,b) some time interval. For any r(¢) € R, the function f: X x R — X is continuous
in x and meets the conditions for existence and uniqueness of solutions for initial states, xo € X.
Note that the plant input and state are continuous-time vector valued signals. Boldface letters
are used here to denote vectors and vector valued signals.

2.2. Controller

The controller is a discrete event system which is modeled as a deterministic automaton. This
automaton is spemﬁed by a quintuple, (S X,R, 8, @), where S is the set of states, X is the set of
plant symbols R is the set of controller symbols, 6 : § x X — § is the state transition function,
and ¢ : S — R is the output function. The symbols in set R are called controller symbols because
they are generated by the controller. Likewise, the symbols in set X are called plant symbols
and are generated based on events in the plant. The action of the controller is described by the
equations

§[n] = & (8[n — 1), Z[n]), (2)
Fn] = ¢ (3[nl), (3)

where 3[n] € S, Z[n] € X, and #[n] € R. The index n is analogous to a time index in that it
specifies the order of the symbols in the sequence. The input and output signals associated with
the controller are sequences of symbols.

Tildes are used to indicate a symbol valued set or sequence. For example, X is the set of plant
symbols and #[n] is the n*® symbol of a sequence of plant symbols. Subscripts are also used, e.g.,
#; which denotes the i*h member of the symbol alphabet X.

2.3. Interface

The controller and plant cannot communicate directly in a hybrid control system because each
utilizes a different type of signal. Thus, an interface is required which can convert continuous-time
signals to sequences of symbols, and vice versa. The way that this conversion is accomplished
determines, to a great extent, the nature of the overall hybrid control system. The interface
consists of two simple subsystems, the generator and actuator.

The generator issues symbols to the controller and plays the role of a quantizer of the signals
analogous to an A/D converter (sampler) in a digital control system. The actuator injects the
appropriate control signal into the plant and it is analogous to a D/A converter (typically a
zero-order hold) in a digital control system. The generator and the actuator perform, however,
more general functions than their counterparts in a typical digital control system.

2.3.1. Plant events and the generator

The generator is the subsystem of the interface which converts the continuous-time output
(state) of the plant to an asynchronous, symbolic input for the controller. To perform this task,
two processes must be in place. First, a triggering mechanism is required which will determine
when a plant symbol should be generated. Second, a process to determine which particular plant
symbol should be generated is required.

In the generator, the triggering mechanism is based on the idea of plant events. A plant event
is simply an occurrence in the plant, an idea borrowed from the field of discrete event systems. In
the case of hybrid control, a plant event is defined by specifying a hypersurface which separates
the plant’s state space. The plant event occurs whenever the plant state trajectory crosses this
hypersurface. The basis for this definition of a plant event is that an event is considered to be
the realization of a specified condition. This condition can be given as an open region of the
state space, separated from the remainder of the state space by a hypersurface. If the state
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crosses the hypersurface into the given open region, the event has occurred. Mathematically,
the set of plant events recognized by the generator is determined by a set of smooth functionals,
{h; : R* — R,¢ € I}, defined on the state space of the plant. Each functional must satisfy the
condition,

which ensures that the null space of the functional, N'(h;) = {£ € R™ : h;(£) = 0}, forms an n— 1
dimensional smooth hypersurface separating the state space.

Let the sequence of plant events be denoted e, where e[n] = i means that the n'® plant event
was triggered by crossing the hypersurface defined by h;. Let the sequence of plant event instants
be given by T, where 7.[n] is the time of the n'" plant event and 7.[0] = 0. By definition, these
sequences satisfy the following conditions.

hi(x(7en])) =0,
eln]=i=>< 386 >0 st Ve,0<e<b, thi(x(re[n] +¢€)) <0, (5)
F82 >0 st Ve,0<e <8, Thi(x(1e[n] —82)) >0, Thi(x(re[n] —¢€)) >0,

and
Vn,Tein] < refn+ 1)V (7e[n] = re[n + 1) Ae[n] < e[n + 1]). (6)

The first group, equation (5), contains three conditions:

(1) at the time of the plant event, the plant state lies on the triggering hypersurface,
(ii) immediately after the event, the plant state lies on the negative (positive) side of the
triggering hypersurface, and
(iii) prior to reaching the triggering hypersurface, the plant state lied on the negative (positive)
side.

The fourth condition, equation (6), concerns the ordering of the sequences. It requires that plant
events be ordered chronologically and simultaneous plant events be ordered according to their
number, that is, the value of 1.

An alternative, and perhaps simpler way of expressing the conditions of (5) is by the condition
hi(x(t)) =0, £h;(x(t)) # 0. In this case, the assumption is made that the derivative is nonzero;
that is, £h;(x(t)) # 0 at the crossing. Note however, that these conditions do not take into

account gltle case where the crossing occurs exactly at an inflection point. When a‘-’lzhi(x(t)) =0,
one must use (5).

A plant event will only cause a plant symbol to be generated if the hypersurface is crossed
in the negative direction. The reason for this is that in many applications, sensors only detect
when a threshold is crossed in one direction, e.g., a thermostat. When the hypersurface is crossed
in the opposite direction the event is silent, and for convenience, assume that a null symbol, ¢,
is generated. At each time in the sequence 7.[n], a plant symbol is generated according to the
function o, : N(h;) — X. The sequence of plant symbols can now be defined as

(7)

_ a; (x(7e[n})), nonsilent event,
iln) = {

€, silent event,

where 7 identifies the hypersurface which was crossed. Alternatively, one could select the interface
to generate information bearing symbols when crossed in either direction. This is not as flexible
and leads to some difficulties in the analysis of the hybrid control system. Our definition in (7)
is more general and can easily model this case. See the thermostat example in 3.3 below.

2.3.2. The actuator

The actuator converts the sequence of controller symbols to a plant input signal, using the
function vy : R — R™, as follows.
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) = Sy (Finl) T 0,7l el + 1)) (8)

n=0

where I(t, 71, 72) is a characteristic function taking on the value of unity over the time interval

[71,72) and zero elsewhere. The time of the nt! control symbol. 7.Inl. whi

1,72 1 il 21& LILIIC 91414 A 2181020 'CL vy WY

sequence of plant symbol instants, defined in (5), is according to
Te[n] = Te[n] + 74, (9)

where 7; is the total delay associated with the interface and controller. Following the occurrence

of a plant event, it takes a time of 7; for a new control policy to be used by the plant. It will be

assumed that 7.[n] < 7c[n] < Te{n + 1].

The plant input, r(t), can only take on certain constant lues where each value is associated
o 1+

with cular controller svmhn] Thus. the nlant in

vith a particular controller symbol. Thus, the plar

may change only when a controller symbol occurs.

REMARK. The model presented uses the plant state, x(¢), as the feedback signal. When the state
is not available for measurement, a plant output signal, y(¢), can also be used. This case is not

treated in this paper.

REMARK. In the interface a delay, 74 was introduced. The presence of the delay is necessary for
two reasons. First, from a practical point of view, the generator will not be able to detect an
event until after the state has actually crossed the hypersurface. Second, if a chattering control
strategy is used, the delay partially determines the chattering period. It is, of course, possible
for two plant events to occur within the period of a single delay. In such a case, each event will
be acted upon, in turn, T4 after it occurs. In this way, the delay can pose a problem for the

In a hybrid control system, the plant taken together with the actuator and generator, behaves
like a discrete event system; it accepts symbolic inputs via the actuator and produces symbolic
outputs via the generator. This situation is somewhat analogous to the way a continuous-time
plant, equipped with a zero order hold and a sampler, “looks” like a discrete-time plant. In a
hybrid control system, the DES which models the plant, actuator, and generator is called the
DES plant model. From the DES controller’s point of view, it is the DES plant model which is
controlled.

It must be pointed out that the DES plant model is an approximation of the actual plant-
actuator-generator combination. Since the DES plant model has a discrete state space, it cannot
model the exact behavior of a system which has a continuous state space. The exact relationship
between the two will be discussed after the description of the DES plant model.

The DES plant model] is a nondeterministic automaton, represented ma.thematmally by a quin-
tuple, (P, X VR, Y, /\) P is the set of states, X is the set of plant symbols, and R is the set of
control symbols. 9 : P x R — 2% is the state transition function; for a given DES plant state and
hisch DEQ nlant atatea arn nahlad Tha autniid Panetian

enarifiog ur a
SPULILCE waulil /o pPladiv Suaivcs are enaocied. ine Uuoyuu Luu\,muu,

A:PxP— 2)? maps the previous and current state to a set of plant symbols.

The set of DES plant model states, P, is based upon the set of hypersurfaces realized in
the generator. Each open region in the state space of the plant, bounded by hypersurfaces,
is associated with a state of the DES plant. Whenever a plant event occurs, there is a state
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transition in the DES plant. Stating this more rigorously, an equivalence relation, =,, can be
defined on the set {£ € R™ : h;(€) £ 0,1 € I'} as follows:

él =p 52 <~ hz(gl)hq(fz) >0, Viel. (10)

Each of the equivalence classes of this relation is associated with a unique DES plant state.
Thus it is convenient to index the set of states, P, with a binary vector, b € {0,1}/, such that
b; is the i*" element of b and Py is associated with the set {EeR” b =1 h(E) < 0}
The equivalence relation is not defined for states which lie on the hypersurfaces. When the
continuous state touches a hypersurface, the DES plant model remains in its previous state until
the hypersurface is crossed.

Formally, the set of DES plant states is defined as a set of equivalence classes on the state
space of the plant.

DEFINITION 1. The set of DES plant states, P, is defined as follows:

P={€cR:h(&)#0,0el}/=,. (11)
So. for example, the state py is defined as
Dp={6€R":b;=0=h(§) >0and b, =1 = hy(£) <0} (12)

Now the DES plant state can be defined for a system.
DEFINITION 2. The DES plant state, p[n}, is defined as follows.
pln] = Pe, (13)
where
lim+ x(7e[n] + €) € Pp. (14)

e—0

So the state of the DES corresponds to the most recently entered region of the plant state space.
The limit must be used because at exactly 7.[n] the continuous state will be on a boundary.

The reason for this definition of state for the DES plant model is that it represents how much
can be known about the system by observing the plant symbols without actually calculating the
trajectories. So after a plant symbol is generated nothing can be ascertained beyond the resulting
region.

Now we are in a position to determine the state transition function, 1, and the output func-
tion, A. First we define adjacency for DES plant states.

DEFINITION 3. Two DES plant states, py, P, are adjacent at (i € I,€ € N'(h;)), if for all j € I,
N(h;) = N(h;) = b; # ci,
N{(h;) # N(hi) = b = ¢,
€ € PN Pe,
where Py represents the closure of py.

When two DES plant states are adjacent at (7,£), it means that the regions corresponding to
these states are separated by the hypersurface A'(h;), and the point € lies on this hypersurface on
the boundary of both regions. Thus, £ identifies a possible transition point between the regions.

The following proposition states that for a given DES plant state, 5, and control symbol, 7,

a possible successor state is p. if the stated conditions are met. Assume that the hypersurfaces
defined by h, do not have inflection points; see comments following (5).

PROPOSITION 1. Given a hybrid control system described by (1)-(9), with f and h; smooth, if
Jdie I and & € N(h;) such that the following conditions are satisfied:

e P, and p. are adjacent at (i,§),

o by =0= V. hi(&) f(& (7)) <0, and

e b =1= va:hz(g) : f(gv’Y(Fk)) >0,
then p. € ¥(Pp, Tk).
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PROOF. Assume there exists (i € I, £ € M(h;)) which satisfy the proposition for some B, Pe,
and 7. Consider a trajectory, X, such that at time ¢, x(¢) = £ and %(¢) = f(x(¢), v(«)). By the
adjacency assumption, we know that x(t) € Py, and along with the other two conditions of the
proposition, we know that x(¢t~) € p». The adjacency assumption also means that x(t) € p., and
along with the other two conditions of the proposition, we know that x(¢t*) € p.. So therefore,
there is a state transition at time ¢ from g to p. with the control symbol 7. |

The usefulness of this proposition is that it allows the extraction of a DES automaton model
of the continuous plant and interface. Note that in certain cases this is a rather straightforward
task. For instance, it is known that if a particular region boundary is only crossed in one direction
under a given command, then the conditions of the proposition need only be tested at a single
point on the boundary. This condition is true for the double integrator example, which follows.
In general, this may not be the case, but one can restrict the area of interest to an operating
region of the plant state space, thus reducing the computations required. The general conditions
under which a DES plant model can be easily extracted have yet to be derived. A special case is
the case of timed automata, where the continuous plant is of the form X constant, treated in [15]
among others.

The output function, A, can be found by a similar procedure described in the next proposition.

PROPOSITION 2. Given a hybrid control system described by (1)-(9), with f and h; smooth,
Z¢ € M(Pv,Pe) if and only if 3(i,€), which satisfies Proposition 1 for some 7y, and such that
@;(§) = Z.

ProOF. This proposition follows immediately from the definition of the generator. In particular,
the plant symbol generated by a plant event is defined as a;(§) where £ is the continuous-time
plant state at the time of the plant event. ]

3.2. The DES Plant Model as an Approximation

As stated above, the DES plant model is an approximation of the actual hybrid system. Specif-
ically, the state of the DES plant model is an approximation of the state of the continuous plant.
As a result, the future behavior cannot be determined uniquely, in general, from knowledge of the
DES plant state. The approach taken here is to incorporate all the possible future behaviors into
the DES plant model. From a control point of view this means that if undesirable behaviors can
be eliminated from the DES plant (through appropriate control policies) then these behaviors
can likewise be eliminated from the actual system. On the other hand, just because a control
policy permits a given behavior in the DES plant, is no guarantee that that behavior will occur
in the actual system; this phenomenon is due to the nondeterminism in the DES plant model.
The issues of determinism and nondeterminism are further discussed at the end of this section.

3.3. Example—Furnace and Thermostat

Consider a system made up of a thermostat, room, and heater. If the thermostat is set at 70°F,
and assuming it is colder outside, the system behaves as follows. If the room temperature falls
below 70 degrees the heater starts and remains on until the room temperature exceeds 75 degrees
at which point the heater shuts off. For simplicity, we will assume that when the heater is on it
produces heat at a constant rate.

The plant in this hybrid control system is made up of the heater and room, and it can be
modeled with the following differential equation:

x(t) = 0025 (To — x(£)) + .02r(t). (15)

Here, x(t) is the room temperature, To is the outside temperature, and r(t) is the voltage into
the heater. Temperatures are in degrees Fahrenheit and time is in minutes.
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The generator and controller are found in the thermostat. The generator partitions the state
space with two hypersurfaces.

hi(x) = x — 70, (16)
ho(x) = —x + 75. (17)

The first hypersurface detects when the temperature falls below 70°F and the second detects
when the temperature rises above 75°F. The events are represented symbolically to the controller

a1(€) = cold, (18)
as(€) = hot. (19)

It is common to see bimetallic strips performing this function in an actual thermostat, where the
band is physically connected to the controller. The controller has two states (typically it is just
a switch in the thermostat) as illustrated in Figure 2. The output function of the thermostat
controller provides two controller symbols, on and off.

#(81) =on #(82) = off. (20)

hot

cold

Figure 2. Controller in thermostat.

Finally the actuator converts the symbolic output of the controller to a continuous input for
the plant.
~(on) = 110 v(off) = 0. (21)

In this case, the plant input is the voltage supply to the heater, 0 or 110 volts. Physically, the
symbolic output from the controller could be a low voltage signal, say 0 or 12 volts, or perhaps
a pneumatic signal.

The thermostat/heater example has a simple DES plant model which is useful to illustrate
how these models work. Figure 3 shows the DES plant model for the heater/thermostat. The
convention for labeling the arcs is to list the controller symbols which enable the transition
followed by a “/” and then the plant symbols which can be generated by the transition. Notice
that two of the transitions are labeled with null symbols, €. This reflects the fact that nothing
actually happens in the system at these transitions. When the controller receives a null symbol
it remains in the same state and reissues the current controller symbol. This is equivalent to the
controller doing nothing, but it serves to keep all the symbolic sequences, 3, p, etc., in phase with
each other.

on/e on/ hot

off / cold off /€

Figure 3. DES plant for thermostat/heater.
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In Section 4, an approach to DES controller design is presented that is based on the DES plant
model derived above. In general the DES plant model is a nondeterministic automaton. In fact,
this is the case for all the examples in the next section. Below we briefly discuss the concepts of
determinism and quasideterminism.

3.4. Determinism and Quasideterminism

When an automaton is said to be deterministic, it typically means that for a given state and
event, there is only one possible subsequent state. The DES plant model has input (controller
symbols) and output (plant symbols), either of which can treated as the event. If the plant
symbol is considered to be the event then determinism becomes the observability defined above.
Here, however, determinism is defined with respect to the input (controller symbol), which is
more in keeping with the classical systems definition of determinism. Thus, the DES plant model
will be deterministic if the subsequent state can always be determined uniquely from the current
state and input.

There is an advantage to having a hybrid control system in which the DES plant model is
deterministic. It allows the controller to drive the plant state through any desired sequence of
regions provided, of course, that the corresponding state transitions exist in the DES plant model.
If the DES plant model is not deterministic, this will not always be possible. This is because
even if the desired sequence of transitions exists, the sequence of inputs which achieves it may
also permit other sequences.

As mentioned above, determinism is desirable from the standpoint of control. Unfortunately,
given a continuous time plant, it may be difficult or even impossible to design an interface that
leads to a DES plant model which is deterministic. Fortunately it is not generally necessary to
have a deterministic DES plant model in order to control it. We now introduce quasideterminism.
This term is used here to describe a DES plant for which a subsequent state can be determined
uniquely from the current state, the previous input symbol, and the previous output symbol. Note
quasideterminism is similar to the determinism defined above, except that with quasideterminism
the output symbol is included.

It is possible to design an interface that yields a quasideterministic DES plant model by care-
fully designing the plant symbol functions, ;. This can be a computationally demanding task
as it requires calculating trajectories backwards to find out where they enter a given region. The
plant symbol functions are then designed to produce different symbols if the triggering trajec-
tories will eventually flow to different regions under the same control policy. More details on
quasideterminism can be found in [4].

4. SUPERVISORY CONTROL VIA DES PLANT MODELS

In this section, we use the language generated by the DES plant to examine the controllability
of the hybrid control system. This work builds upon the work done by Ramadge and Wonham
on the controllability of discrete event systems in a logical framework [31-35]. Here we adapt
several of those results and apply them to the DES plant model obtained from a hybrid control
system.

Before existing techniques, developed in the logical DES framework can be extended, certain
differences must be dealt with. The Ramadge-Wonham model (RWM) consists of two interacting
DES’s called here the RWM generator and RWM supervisor. The RWM generator is analogous to
the DES plant and the RWM supervisor is analogous to the DES controller. The RWM generator
shares its name with the generator found in the hybrid control system interface, but the two
should not be confused. In the RWM, the plant symbols are usually referred to as “events,” but
we will continue to call them plant symbols to avoid confusion. The plant symbols in the RWM
are divided into two sets, those which are controllable and those which are uncontrollable: X =
X.UX,. A plant symbol being controllable means that the supervisor can prevent it from being
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issued by the RWM generator. When the supervisor prevents a controllable plant symbol from
being issued, the plant symbol is said to be disabled. The plant symbols in X, can be individually
disabled, at any time and in any combination, by a command from the RWM supervisor, while
the plant symbols in X, can never be disabled. This is in contrast to our DES plant where
each command (controller symbol) from the DES controller disables a particular subset of X
determined by the complement of the set given by the transition function, ¥. Furthermore, this
set of disabled plant symbols depends not only on the controller symbol but also the present
state of the DES plant. In addition, there is no guarantee that any arbitrary subset of X can be
disabled while the other plant symbols remain enabled.

The general inability to disable plant symbols individually is what differentiates the DES plant
model from the automata of earlier frameworks.

4.1. The DES Plant Language and Observability

The behavior of a DES can be characterized by the set of all finite sequences of symbols which
it can generate. This set is referred to as the language of the DES, and is denoted by L. Given
the set of all plant symbols, X, the alphabet X* refers to all finite sequences of symbols from the
alphabet. The language, L, is a subset of X*. The following defines which strings, Z, are in the
language of a given DES plant model.

DEFINITION 4. Given a finite sequence of plant symbols, T : N — X, defined over the set
N = {1,..., N}, then & € L if there exists p € P* and 7 € R*, such that the following hold:

Bln+ 1] € Y (P[n], Fln}), Vn € N, (22)
En] € A(P[n — 1], B[n]), VYn € N. (23)

The language of a DES plant model may or may not provide a useful feedback signal to the
controller. For example, suppose there is only one plant symbol and it is associated with every
plant event. The controller would not receive much useful information in such a case. On the
other hand, if the language of the DES plant model is sufficiently rich that its current state
can be ascertained from its initial state and past output then the controller has more detailed
information about the current state of the plant necessary to provide an adequate sequence of
control policies.

DEFINITION 5. A DES plant model is observable if the current state can be determined uniquely
from t~he previous state and plant symbol. That is, observability means that Vpy, p., pg € P and
Tpe X, Iif

Iy € AM(Pbs Pe)
and

Z¢ € A(Pb, Pa)s
then

Pe = Pd.
The following proposition follows immediately from the above definition.

ProrosiTION 3. If a DES plant model is observable, then for any initial state, p[0], and sequence
of plant symbols, ¥, produced by the DES, there exists a unique sequence of DES plant states, p,
capable of producing the sequence %.

ProOF. The definition of observability can be applied iteratively to prove that the each state of
the sequence, P, is determined uniquely by the previous state and current plant symbol. |

In cases where the DES plant model is observable, the above proposition implies the existence
of a mapping, obs : P x L — P*, which takes an initial state together with a string from the
language and maps them to the corresponding sequence of states. The n'" state in the sequence,
P[n], can also be written, obs(go, Z)|n], where gy € P was the initial state.
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4.2. Controllability and Supervisor Design

A DES is controlled by having various symbols disabled by the controller based upon the
sequence of symbols which the DES has already generated. When a DES is controlled, it will
generate a set of symbol sequences which lie in a subset of its language. If we denote this language
of the DES under control as L. then L, C L.

It is possible to determine whether a given RWM generator can be controlled to a desired
language [31]. That is, whether it is possible to design a controller, such that, the RWM generator
will be restricted to some target language K. Such a controller can be designed if K is prefix
closed and

KX,nLCK, (24)

where K represents the set of all prefixes of K. A prefix of K is a sequence of symbols, to which
another sequence can be concatenated to obtain a sequence found in K. A language is said to
be prefix closed if all the prefixes of that language are also in the language.

When (24) is true for a given RWM generator, the desired language K is said to be controllable,
and provided K is prefix closed, a controller can be designed which will restrict the generator
to the language K. This condition requires that if an uncontrollable symbol occurs after the
generator has produced a prefix of K, the resulting string must still be a prefix of K because the
uncontrollable symbol cannot be prevented.

Since the DES plant model belongs to a slightly different class of automata than the RWM, we
present another definition for controllable language which applies to the DES plant. We assume
in this section that we are dealing with observable DES plant models, that all languages are
prefix closed, and that g is the initial state.

DEFINITION 6. A language, K, is controllable with respect to a given DES plant if Vi € K,
there exists p € R, such that,
Mg, % (g,p)) C K, (25)

where g = obs(go, Z)[N].
This definition requires that for every prefix of the desired language, K, there exists a control, p,
which will enable only symbols which will cause string to remain in K.

PROPOSITION 4. If the language K is controllable according to (6), then a controller can be
designed which will restrict the given DES plant to the language K.

PROOF. Let the controller be given by con : X* — R where con(Z) € {p € R : Z\(q,¥(q,p)) C K,
q = obs(go, #)[N]}. con(Z) is guaranteed to be nonempty by (25). We can now show by induction
that # € Leon = % € K.

(1) VZ € Ly, such that || = 0, we have £ € K. This is trivial because the only such Z is the
null string € and € € K because K is prefix closed.

(2) Let L;* = { : £ € Ly,|%| = i}, that is L¢" is the set of all sequences of length ¢ found
in L;. Given Ls%, Ly"t! = {w € X* : w = £\(q,%(q,con(%)), % € Ls'}. Now with the

definition of con(Z) and (25) we have L¢* ¢ K = L, C K.
Sofelf=>wekK. 1

Since the DES plant can be seen as a generalization of the original RWM, the conditions in (25)
reduce to those of (24) under appropriate restrictions; namely that the plant symbols fall into a
controllable/uncontrollable dichotomy and a control policy exists to disable any combination of
controllable plant symbols. This is indeed the case.

If the desired language is not attainable for a given DES, it may be possible to find a more
restricted language which is. If so, the least restricted behavior is desirable. A method for finding
this behavior which is referred to as the supremal controllable sublanguage, K1, of the desired
language is described and provided in [31,34]. The supremal controllable sublanguage is the
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largest subset of K which can be attained by a controller. K T can be found via the following
iterative procedure:

Ko=K (26)

K1 = {w:wef(,wf(mLcE} (27)

K' = lim K;. (28)
1—CO

Once again, this procedure applies to the RWM. For hybrid control systems, the supremal
controllable sublanguage of the DES plant can be found by a similar iterative scheme:

Ky=K (29)
Ki = {w € K : V& € w 3 p € R such that X (g,%(q,p)) C Ki} (30)
K' = lim K;. (31)

This result yields the following proposition.

PROPOSITION 5. For a DES plant and language K, K is controllable and contains all controllable
sublanguages of K.

Proor. From (30) we have
K' = {w € K : Vi € w 3 p € R such that A (g, %(q, p)) C KT}, (32)
which implies
i e K" = 3 p e R such that £A(g,%(q,p)) C K. (33)

From (33) it is clear that KT is controllable. We prove that every prefix closed, controllable
subset of K is in K by assuming there exists M C K, such that, M is controllable but M ¢ KT
and showing this leads to a contradiction:

M CK st. Mg KT (34)
= JweM st. wg KT (35)
= 3i st.we K, w¢&K; (36)
= diew st. Vpe R,  EMq, (g, p) ¢ K; (37)
= Juw € zMq,%(q,p)) st.w eM, wEK; (38)
= 3Jj<i st.w' € Kj, w' & Kjq. (39)

If the sequence is repeated with i = j and w = w’ we eventually arrive at the conclusion that
w' € M but w’ &€ Ko which violates the assumption that M C K and precludes the existence of
such an M. i

4.3. Example—Double Integrator

The system consists of a double integrator plant which is controlled by a discrete event system.
The plant is given by the differential equation,

. 0 1 0
x(t) = [0 0] x(t) + {1} r(t). (40)
The generator recognizes four plant events.

hi(x) =21,  hao(x) = -1, (41)
hg(x) = X9, h4(x) = —T2. (42)
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These four plant events are generated when the plant state crosses either the x; or z; axis, in
positive or negative direction. Symbols are attached to the plant events as follows:
ar(x) =31,  o2(x) =1y, (43)
as(x) = &g, a4(x) = Zg. (44)
Notice that the same symbol can be used to label more than one plant event and that «; does

not necessarily have to depend on the state x(t). In this example the plant symbol only identifies
the axis which was crossed. Figure 4 illustrates this.

A =x
hz(x) =-X,

il& _ hy(x)=x,
"2? hyx) =%,

Figure 4. Generator for double integrator example.

There are two controller symbols, R = {1, 2}, so the actuator provides two possible inputs to

the plant.
~_{—1 if =1, )
=01 deres (
These inputs were chosen so that the plant can be driven to any state by applying them in the
Proper sequence.

Using Proposition 1, we can extract the DES plant for this system. It is shown in Figure 5. To
illustrate how the DES plant was extracted, start with the DES plant state g (i.e., P1o01) and
consider whether 5 € (P9, 72). ¢ = 1 and £ = [0 1)’ satisfy the conditions of the proposition,
showing that indeed 5 € (fg,72). Proceeding in this way we extract the DES plant model.
At the same time, Proposition 2 is used to find the plant symbols generated by the transitions.
In the sample instance, A(Pg,Ps) there are two possible symbols, #; and e. By convention the
nonsilent symbol takes precedence, so {Z;} = APy, Ps).

Figure 5. DES plant for double integrator.

Let the initial state be go = p5. Then the language generated by this automaton is
L = (Z3(Z2%2)*%1)*. If we want to drive the plant in clockwise circles, then the desired lan-
guage is K = (Z3%1)*. It can be shown that this K is controllable because it satisfies (25).
Therefore according to Proposition 4, a controller can be designed to achieve the stated control
goal.
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4.4, Example-—A More Complex DES Plant Model

This example has a richer behavior and will illustrate the generation of a supremal controllable
sublanguage as well as the design of a controller. We start immediately with the DES plant
model shown in Figure 6.

Figure 6. DES plant mode! for Example 2.

The language generated by this DES is L = L,, where
Ly = (82 (81 + B4 (8584)" &1 + T3 (Ted3)" (F1 + TedsFa (F584)" 51)))" . (46)

Suppose we want to control the DES so that it never enters state ps. We simple remove the
transitions to P4 and then compute the resulting language. This desired language is therefore,

K = (22 (&1 + £431 + 33 (T623)" 31)) (47)

In this example, the language K is not controllable. This can be seen by considering the string
T2Z3%¢ € K, for which there exists no p € R which will prevent the DES from deviating from K
by generating Zs and entering state pg.

Since K is not controllable, we find the supremal controllable sublanguage of K as defined
in (31). The supremal controllable sublanguage is

K' = Ky = (£2(Z) + Zad1 + $3%1))". (48)

Obtaining a DES controller once the supremal controllable sublanguage has been found is
straightforward. The controller is a DES whose language is given by K' and the output of the
controller in each state, ¢(§), is the controller symbol which enables only transitions which are
found in the controller. The existence of such a controller symbol is guaranteed by the fact
that K7 is controllable. For Example 2, the controller is shown in Figure 7 and its cutput
function, ¢, is as follows:

¢ (31)
¢ (33)

Ta, ¢ (82) = 74, (49)
7y ¢ (84) = 71. (50)

4.5. Example—Distillation Column

This example uses the mode] of a two product distillation column with a single feed. A cornplete
description of the nonlinear model can be found in {36]. Here a condensed description is given
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X

Figure 7. DES controller for Example 2.

to show the source of the DES plant model and provide insight into the physical meaning of the
states and events.

Figure 8 shows the distillation column. F represents the feed flow into the column, B is the
flow of bottom product out of the column, zp is the mole fraction of the light compound in the
bottom product, D is the flow of distillate out of the column, and yp is the mole fraction of light
compound in the distillate. The boilup flow is denoted by V and the reflux flow by L. All units
are in kmol’s and minutes. The column can be controlled by setting the feed, boilup, and reflux.
In general, the goal is to have a high level of light compound in the distillate (yp — 1) and a low
level of light compound in the bottom product (zgp — 0).

Condenser
L
T M
E Distillate D
Q
Feed O
F—» §
k
E LY
[a)

\|_/ Reboiler

Bottom Product

Figure 8. Distillation column.

There are 40 trays stacked vertically in the column. The state consists of the mole fractions of
light compound in the liquid of each tray. The states evolve according to the following equations:

2t = (L + F)xo — Vy; — Bz,

2&; = (L + Fr)zip1 + Vy — (L + Fr)z, — Vs,
2291 = Lzog + Vyao — (L + FL)z21 — Vyar + FLzF,
2899 = Lags + Vyor — Lrge — (V + Fv)y22 + Fyyr,

2&; = Laji1 + (V + Fy)y; — Lz; — (V + Fy)y;,
2241 = (V + Fy)yao — Lzgy — Dz,

where 2 < 1 < 20 and 23 < j < 40. Trays 21 and 22 are special because they are below and above
the feed location. Tray 41 is actually the condenser. The quantities y; are the mole fractions of
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light compound in the vapor, given by

ar;

Y= 1+(a—1)1,;’

where a = 1.5 is relative volatility. Other quantities of interest are

Fr, = 6F,

Fy=F - Fp,

tp = SF — Fyyp
Fy ’

and the outputs are

D=V +Fy-—1L,
B=L+F, -V,
YD = Y41,

rp = I1.

To obtain a hybrid control system, appropriate control policies and plant symbols must be
chosen. Their selection is based on our knowledge of the control goals and the design constraints,
and it will determine the interface. Let the control policies be

L 957 [107 [9.5] [10
rty=|V|ed|10]|,|10|,]10],]10
F 1 0.1 2 2

These input values correspond to 7y, 73,73, and 74. Next., plant symbols are defined based on
events as follows.

I1 B+ D falls below 2
Zo B+ D exceeds 2
I3 xp falls below .13
T4 zp exceeds .13
5 zp falls below .12
Is xp exceeds .12
Z7 xp falls below .08
Igs xp exceeds .08
Zg9 yp falls below .84
Z10 yp exceeds .84
Z11 yp falls below .85
Z12 yp exceeds .85
%13 yp falls below .95

Z14 Yp exceeds .95

We would like to keep zp below .13, yp above .95, and the feed at 2. These conditions
correspond to increased production of high purity products. Simulations reveal that given the
available controls and events this is not possible, that is, even if the initial state is in this region,
no available control policy will cause it to remain there. It is possible to drive the system close
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to this point, however. Specifically, our control goal shall be two-fold: first, to drive the system
near the ideal point, and second, to avoid having a high feed rate (2 kmol/min) when the system
is not near the ideal point.

The distillation column is an example of a rather complex hybrid system. The generator was
designed to recognize 14 different plant events. This leads to 32 distinct regions in the state
space, and therefore, there are 32 DES plant states. Figure 9 shows the DES plant model. The
two states labeled ‘G’ correspond to the desired operating regions of the system. This DES plant
model was extracted by automating the testing process and implementing it on a computer.
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Figure 9. DES plant for distillation column.

A controller was obtained by automating the procedure for finding the supremal controllable
sublanguage. The controller is shown in Figure 10. This controller drives the plant from the
initial state to a loop containing the two good states. Notice that in this figure, the states of the
controller have been labeled with the controller symbol which is generated by that state.

Figure 10. Sample controller for distillation column.

5. HYBRID CONTROL SYSTEM
WITH DISCRETE TIME PLANT

The primary model used in this paper features a continuous-time plant. However, hybrid
control systems with discrete-time plants can also be handled with few adjustments. This section
summarizes the adjustments. First of all, the plant is modeled as a discrete-time system

x(k + 1) = F{x(k),r(k)), (51)
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where x(k) € " and r(k) € R™ are the state and input vectors respectively. F: R" x R™ - R"
is a smooth function.

The generator is defined by a set of smooth functionals, h; : ®* — R, and a function, « :
R" -~ X. Notice that unlike the continuous-time case, there is only one «. Since the plant is
discrete-time, the generator will not be able to identify the exact moment that a hypersurface is
crossed. Rather, it identifies the first sample after a crossing has occurred. So the sequerice of
plant symbol instants is given by the following equations.

7.[0] = 0, (52)
Ten] = min{k > 7.[n — 1] : 34, h; (x(k)) - h; (x (1e[n — 1])) < 0}. (53)

At each plant symbol instant a plant symbol is generated according to «.
Z[n] = a(x(re[n])) . (54)

Again, not all plant events have to be represented by a plant symbol. Such events are silent,
accompanied by the null symbol, e.

The actuator, v : R — R™, converts a sequence of controller symbols to a plant input as
follows:

r(k) = v Fn) I (k, meln], me[n + 1)), (55)
n=0
where I(-) is the following indicator function:

1, if7en] <k <7fn+1]

-
0, if otherwise, (56)

Ik, 7en],7e[n+1]) = {

and 7.[n] is the sequence of control instants. Unlike the continuous-time case, here 7.[n] is an
integer. This sequence is based on the sequence of event instants, defined in (53), according to

Te[n] = To[n] + 74, (57)

where 7y is the delay associated with the controller and is generally equal to one sampling period.

REMARK. In this case, the continuous state of the plant is observed only at discrete instants of
time. The state of the DES plant model is determined by the region containing the continuous
state at that particular time. So one does not have to deal with crossings of hypersurfaces by
continuous trajectories as was the case previously. However, in general, it is difficult to extract a
DES plant model in this case exactly because the crossings of the hypersurfaces are not detected.
Under certain periodicity conditions [37], a deterministic DES plant model can be shown to exist.

5.1. Example—The Double Integrator

The double integrator modeled as a discrete-time plant is

x(k 1) = [(1) Oil] x(k) + [O?l]r(k). (58)

The events are formed by the following two hypersurfaces

hi(§) = &, (59)
ha(€) = &2, (60)
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where £ = [€1,&2]. The events generate plant symbols according to o

Z1, if gl > Oy 52 >0,
_ 527 if 51 < 07 {2 > 07

a(g) - Z3, if gl <0, 62 <0, (61)
24, if 61 >0, &<0.

Note that o effectively identifies which of the four quadrants is being entered.
The actuator provides three possible inputs to the plant.

t

if 7= T1,
y(F) = 0, if7=7ry (62)
1, if 7 = 7s.

6. CONCLUDING REMARKS

The contributions of this paper include and are based on a formal model for hybrid control
systems that uses a simple interface. The model is simple enough to allow analysis and general
enough to include a wide variety of hybrid systems. Conditions are given which allow the ex-
traction of a DES model from the plant and interface. A method for DES controller design is
presented.

The results of this paper were used to design a DES controller for a hybrid control system,
when the plant and control goals are given. There are several important problems that this paper
has not addressed, the most significant being perhaps the systematic design of the interface.
Specifically, the problem of selecting the finite number of inputs to the plant is still largely
unsolved. However, there are cases when the possible inputs are dictated by the particular
application considered; for example, in a satellite when the control jets can only be turned on
or off. The design of the generator has also only been partially solved. In this case as well,
large parts of the generator may be fixed because of availability of certain types of sensors, etc.
In general, using quasideterminism, it is still up to the designer to make the initial selection of
a partition, a selection which has a large impact on the resulting system. In [6], an alternative
approach based on the invariants of the continuous system, where both the interface and the DES
controller are designed, is presented. Finally, the computational issue, which is very important
in hybrid control, was not addressed in this paper.

It is important to note that the core issue in hybrid control systems is the way in which the
interface relates the continuous plant to the DES plant. This issue is rather fundamental and
quite difficult to resolve. Its solution will depend on the answer to the question of what is the
minimum amount of information about the plant that will allow, with the controls available, the
accomplishment of the control objectives.

Note that the approach taken in this paper, where a DES plant model is derived to describe
the dynamic behavior of the continuous plant together with the interface, is similar to one of the
main approaches in digital control (sampled data) systems. There the continuous-time plant is
combined with the A/D and D/A converters, typically a sampler and a zero-order hold, to obtain
a discrete-time plant model. Then the discrete-time controller is designed using discrete-time
control design techniques. Of course attention should be paid to the intersample behavior of the
continuous system and the selection of the sampling period. There is an alternative approach
to digital control design that may lead to an alternative approach to hybrid controller design.
In this approach, the discrete-time controller is an approximation of an existing continuous-
time controller; that is, the control design is carried out in the continuous domain and then
appropriate approximations (similar to the ones used in digital filter design) are employed to
derive the discrete-time controller. This is a convenient design approach, however it does not
take full advantage of the discrete nature of the controller, since the discrete controller can be,
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at best, as good as the continuous controller and behavior such as deadbeat is not attained;
furthermore this approach typically requires higher sampling rates than the previous ones.

In the approach presented in this paper, the derivation of a well defined DES model fcr the
plant, which describes the continuous plant together with the interface, was quite challenging.
Although the idea of obtaining a DES plant model may appear to be simple and straightforward,
especially in view of the choice for the interface, this problem turned out to be very complex.
There were a number of challenging issues that were addressed. These included dealing with
chattering by introducing a delay, with multiple crossings within the time of a single delay, and
crossings at inflection points; also dealing with nondeterministic DES plants and describing the
relation of the DES plant model to the actual system. Several of these problems are avoided
when the continuous state plant is taken to be a discrete-time system, and this was discussed in
Section 5. An important future research direction would be to derive conditions under which the
DES plant model has certain desirable properties. Research toward that goal for the DES plant
model to be deterministic [1] and stable [4] has already been done.

Finally in this paper, finite automata models were used to represent the DES plant model.
This was done because the purpose of this work was to use the tools from the logical theory of
DES, with appropriate modifications, to design controllers for hybrid systems. Note that the
controller used is also a finite automaton. It is of course possible to use other models to represent
the DES plant, such as Petri nets.
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