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Abstract

We consider the problem of subspace optimization for cée¢é@non-coherent MIMO radar based
on various measures such as capacity, diversity, and pitipath detection. In subspace centralized
non-coherent MIMO radar (SC-MIMO), a subset of stationsiested based on channel knowledge or
channel statistics to reduce system complexity while siamdously attempting to optimize the perfor-
mance of the reduced-dimension centralized MIMO radaesysf he radar transmitters are assumed to
be sufficiently separated (e.g., at different locationsjiédd spatially white channel transfer gains and
are assumed to operate on a non-interference basis thrimgtdivision or frequency-division multi-
plexing. Detection optimization for the SC-MIMO system ilNayman Pearson sense is found to be
equivalent to selecting the subspace that maximizes thigeRios norm of the corresponding channel
matrix. Information-theoretic measures for capacity aine ity are also applied to the problem of
subspace selection. Channels with temporal coherence thmmeare long relative to the radar system'’s
latencies and channels with coherence times that are dlative to the radar system’s latencies are
considered. In the former case, metrics are based upomiastous channel estimates, whereas in the
latter case, average channel estimates are used. Nunseratgbtes are conducted to illustrate the use of
the metrics for optimizing system performance.
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1 Introduction

Distributed MIMO radar is a research area that has receiver@asing attention lately, see, e.g., [5, 3, 10].
A salient feature of distributed radar is its ability to sitameously engage a target from multiple aspect
angles. While the legacy radar is confined to viewing thedigigm a single aspect angle at any given time
instant, the distributed radar utilizes waveforms fromtisgtig diverse stations to illuminate the target and
detect reflected target energy from multiple aspect anggédng advantage of aspect-dependent RCS to
significantly improve the ability to detect and track tagyefhe benefit over a single station implementation
comes at the cost of increased system complexity includiogerdemanding inter-station communications
for data fusion and coordination among the stations. GivemuHiplicity of stations, down-selecting the
number of stations used in processing provides one mechdaiseduce system complexity, where the sta-
tions are selected in a manner that optimizes the perforenam¢he number of resources that are dedicated
to the task. We refer to this architecture as subspace deattanon-coherent MIMO radar (SC-MIMO).
The SC-MIMO radar architecture, exemplified in Figure 1,hamcterized by the optimized selection of
a subset of spatially diverse radar stations and joint m®ing of the received signals from this subset at
a common fusion center. The transmitters are assumed toffiesily separated to yield spatially white
channel transfer gains and are assumed to operate on atedesience basis through time- or frequency



multiplexing, which facilitates both the separation of #ignals at the receivers and the application of
associated Doppler compensation tapering for signal tiondig.

Subspace optimization measures in SC-MIMO are exploregtilme system performance in terms of
probability of detection, information-theoretic capgcand channel diversity, where optimized system per-
formance in each of these senses is achieved by selectimgltspace that maximizes measures associated
with the MIMO channel matrix. Information-theoretic mesisuch as capacity and diversity are considered
because of their ability to characterize MIMO channels ineaner that could potentially be exploited by an
SC-MIMO system. For the case of SC-MIMO radar detectiongrarfince, joint detection optimization in
a Neyman-Pearson sense with noncoherent square-law giregés shown to be equivalent to maximizing
the Froebenius norm of the SC-MIMO radar channel matrix. dii@nnel capacity measure is optimized by
maximizing the determinant of the channel matrix [6, 12]védsity can be optimized by evaluating corre-
lations between the elements of the channel matrix [8]. &lsedspace optimization measures are applied
in the case of slowly changing channels wherein the chartmetges can readily be tracked and utilized
by the radar system for optimal subspace selection. Omimniz measures are also applied in the case of
channels that change faster than can be tracked and exiplyitéhe radar system. In this case, average
channel estimates, rather than instantaneous chanmabéssi, are employed in the optimization strategies.
The channel capacity measure in this case is achieved bstiagléhe sub space that maximizes the sum
of the eigenvalues associated with the corresponding ehanatrix. In relation to the waveform design
approaches addressed in [2], these metrics representaditer approaches to optimizing the performance
of a MIMO radar system.

The remainder of the paper is organized as follows. The syst®del, including the MIMO radar
channel matrixG is introduced in Section 2. Using this model, Section 3 piesia theoretical development
of target detection optimization in centralized MIMO rad@ubspace architectures are considered in Section
4 and the Frobenius norm of the subspace channel matrixritified as a measure for optimizing detection
probability in SC-MIMO. Optimization in channels with lorgpherence times (i.e., such that the radar can
estimate the instantaneous channel and exploit this kmigelén the subspace selection) are addressed,
and a numerical example is given that illustrates the impéad¢he subspace dimension of the detection
performance. Information-theoretic optimization measuior capacity and diversity are also introduced.
In Section 5, adaptation of the measures for channels with sloherence times are addressed. In these
dynamic channels, the radar cannot adequately track dizdulie instantaneous channel estimate and must
instead resort to exploiting average channel estimatesulRellustrating the potential for joint optimization
of detection probability, capacity and diversity are preéed based upon the revised metrics. Section 6
contains the conclusions of the paper.

2 System Model

A general system model, in accordance with Figure 1, is datow:
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where
K K
Zl(t) = Zzlk(t) = Zglk(t)sk(t —Tk) = 1,2,... ,K k= 1,2,... ,K (3)
k=1 k=1

are the received waveforms at each receivgrjs the received signal component at tHereceive station
from the k" transmit stationg;;, is the complex channel transfer gain from thh transmit station to the
[-th receive stations(t) is the orthogonal unit norm waveforms from thé transmit station at timey,,
andw(t) is additive Gaussian noise. Note ti@tc C**% is not necessarily symmetric (for example if
the radar stations transmit on different frequencies) aatléach elemenj;, in G is proportional to the
square root of the target's RCS and will depend on the taspect angle relative to both the transmit station
and the receive station (see Figure 1). In genegalwill also be a function of the directional transmit and
receive antenna gains, propagation losses, and otherditdelh parameters. We assume that the stations are
deployed in a manner that results in spatially white, butgerally colored, channel transfer gains.

3 Target Detection Optimization in Centralized MIMO Radar

We present formulations based on Neyman-Pearson detdotidhe centralized detection approach. The
development is similar to one found in [4], although we assting utilization of either short term statistics
or long term averages, leading to non-central chi-squateilolitions for the alternative hypothesis; . We
also employ weighted noncoherent detection, where theibations from the radar stations are normalized
relative to the measured noise level at each station. Timesd¢o accommodate asymmetric noise, such
as intentional jamming, that may be present in the RF enmimnt. We also link the optimal detection
solution with the maximization of a channel matrix norm,igiya mechanism for subspace optimization by
expeditiously selecting a subset of radar stations emglayeetection processing.

Assuming that the waveform orthogonality is preservedpiputs of the bank of matched filters

2 = /Zl(T)SZ(t —7)dr (4)

can be expressed as
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wheren;; is the matched filter output’s noise component, which ismgslto be zero-mean complex Gaus-
sian with variancer?”k. The channel transfer gaiy;, is a complex random variable that is approximately
constant over the coherence time. Appropriate Doppler emsgttion of the received signal is assumed to
have been employed at each receiver. Doppler compensatiolvés compensating for Doppler shift im-
parted on the received signal. Methods such as those destus$9, 14, 13, 15, 16] are relevant. Doppler
compensation in the noncoherent MIMO radar case is enalylétebassumption of orthogonal waveforms.
The orthogonal property can be achieved through variougs$adéncluding time multiplexing (e.g., where
each transmitter is assigned to a time slot) or frequencyiphering (e.g., where each transmitter is assigned
to a different frequency). This stands in contrast to thehas of [1] in which the radar waveforms occupy
the same bandwidth and where pseudo-orthogonality is\ahinrough waveform design. The proposed
model exploits short term statistics associated with tisgaht returns, leading to returns (represented by
gix) that exhibit negligible variability over the coherencadé. Normalizing each output with respect to the
noise level (which may be measured, e.g., through CFAR tquks), the normalized outputs are
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where the noise components are zero-mean Gaussian witmeari>. The probability density function
(pdf) of z;;, under each hypothesis is:

CN(0,02)  under Hy
pz(2ik) N{ CN (i, 0?) under H; (7)

whereCN (i1, 02) denotes a complex normal distribution with mgaand variancer®. The test static is
obtained by noncoherently combining the normalized filigipats. The corresponding distributions of the
test statistioy = ||z||? for each hypothesis is given by:
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wherex? denotes a chi-square random variable havirdegrees of freedom [11] ar;df denotes a non-
central chi-square random variable [11] havihdegrees of freedom and a noncentrality parameter

UG =D DG (9)

=1 j=1

For optimal detection in the Neyman-Pearson (NP) senserelagions between the probability of false
alarm, Py, the probability of detection?’;, and the threshold are governed by NP Theorem. The protyabili
of false alarm is given by

Py = /600 p(ylHo)dy =1 - F | (i—i) (10)
For a desired’;, and with the knowledge af?, § may be set using
5= F (- Py (11)
2 Xjge

where FX‘Q1 is the inverse cumulative distribution function of a chitage random variable witBFK?
2K2

degrees of freedom. Note thatis independent of the MIMO radar channel gains. The prothgloif
detection is given by

jo /5  pylHy)dy (12)
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whereF ., is the cumulative distribution function of a noncentral-shjuare random variable with degree
2K2
2K2.



4 Subspace Optimization for Centralized Detection: The Caseof Short Term
Statistics

The concept of subspace optimization for centralized MIM@ar processing may be addressed using re-
sults from the above theoretical development. Subspadamiaption assumes that a set of radar stations are
available for organization into a MIMO radar system. Ratthan utilizing all of the resources for a given
detection problem, the premise is that it might be more dbkirfrom a resource utilization perspective to
employ only a subset of these resources for a given detegtaisiem, where the resources are carefully se-
lected to ensure that detection performance does not suffestantially. We assume a centralized topology,
and hence the central processor needs access to all of traidiss in order to identify the subspace that
will suitably optimize performance. A centralized appriodmsed upon short-term statistics can readily be
achieved in systems where information sharing betweenshddes not introduce latencies that are on the
order of the temporal decorrelation times of the channelsfiex gain statistics. Where latencies associated
with information sharing exceeds a major fraction of theieral decorrelation times, subspace optimiza-
tion based on short term statistics will be marginalizedthia case, optimizations based upon longer-term
average statistics (as described in Sections 5) would be aqgpropriate. A downselection approach has
the benefit of reducing the overall complexity of the problenterms of required resources, the backhaul
communications for coordination and passing of data (orszéapace is assigned), and also the signal pro-
cessing at each radar station and at the fusion center.diseltion, short term statistics are assumed. This
approach would be representative of implementations withlhtency inter-station communications. In the
next section, longer term statistics that exploit averdgmnoel characteristics are addressed.

For the specific case of short-term statistics, the follgntlreorem and the subsequent corollary define
the mechanism for optimizing selection of the radar statimn subspace centralized detection.

Theorem 4.1. Let G, Go, ..., Gy represent aset of L N x Nchannel matrix realizations. Given a constant
false alarmrrate, Py,, and assuming a constant noise variance o2 at the receivers, the channel matrix real-
ization with the largest Froebenius norm yields the largest probability of detection in the Neyman-Pearson
sense.

Proof. For identicalo? at all receivers, and a constant prescrided, the threshold) is given by (11)
and is constant. Using with (9) in (15) where N is used in place of K ai&l, in place of G (to enable
indexing among the different channel realizations), acdgeizing that the cumulative distribution function
is nonlncreasmg with increasing(G,,) leads to the conclusion thd; is monotonically nondecreasing
with s2(G,,), and hence the maxmun?( «) leads to the highes®;. But the Froebenius norm of each
channel realizationis,,, with o« € {1, ..., L}, is given by

N
= /52(Gq) = \/TT[GHGo] = [ D Aav
=1

where theg, ;; are the normalized channel transfer gainsGf for ,i,j = 1,..., N, the A, , are the
eigenvalues oG G, and the dependence of on the channel realizatio&, is expressed. Therefore it
follows that the channel realization yielding the largesiébenius norm maximizeg(G,,) and hence the
probability of detection in the Neyman-Pearson sense. Adeaeged in (16), this metric corresponds to a
maximization of the sum of the eigenvalues@f/ G, over the index range = 1,..., L. O

1Gallr =

ZZ|90¢ZJ|
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(15)

From a systems perspective, this result implies that maxiraystem performance generally cannot be
achieved if each radar station independently attempts tomize its own monostatic return (e.g., through
beamsteering, maneuvers, etc.). Rather, improved peafurenis more readily achieved if the radar stations



take on a global perspective in their responses in order iomize the sum of the reflected energy received
by all of the sensors. We also note that the requirement @mntidal % implies that the stations influenced
by noise in the environment, such as from a local interfevérjncur channel power transfer attenuations in
the signal processing that are inversely proportional éovtiriance of the noise, i.e., all contributing signals
are normalized to have unit variance.

Corollary 4.2. Under similar assumptions as in Theorem 4.1, but with K > N stations, the subset of N
stations yielding the channel matrix with the largest Froebenius norm provides the maximum probability of
detection in the Neyman Pearson sense, assuming a constant false alarmrate.

Proof. DefineL = (%) as the number of possiblexMN channel realizations. Application of Theorem 4.1
then proves the corollary. O

Computational simulations were employed to evaluate ttadive performance of subspace configura-
tions. Figure 2 depicts results using (15) and (16) thastithte the detection performance of the subspace
optimization approach as a function of the SNR (defined het&& G |?/o? whereG ¢ RY*N andK is
the number of available stations) and the subset size. Esethimulations, a topology &f = 6 stations
was assumed, and subspace sizes of two, three and four tafilans were considered using a false alarm
probability of Py, = 107°. The channel gains assumed in the investigation were drevam &CA/(0, 1)
distribution. Ten channel realizations were averaged tainlthe results. The figure indicates performance
advantages of K-choose-N topologies over topologies wifixél stations. The results also illustrate the
performance dependence on the subset size.

The understanding that the Neyman-Pearson formulatiosutmspace optimization in centralized MIMO
radar is equivalent to optimizations based on the Frobamius of the MIMO radar channel state matrix
invites consideration of other channel-based informatiggoretic measures to optimize MIMO radar sys-
tem performance in some sense. We consider here optimmzauitrics that have been reported for MIMO
system capacity [6, 12] and MIMO system diversity [8]. Thioimation-theoretic formulations are based
upon the channel produ@” G and the correlation matrix derived from the elements of tie@nael matrix
G, respectively. Diversity applies to long-term statistiosl & projected to be useful when assigning MIMO
resources over long periods of time, i.e., when resourdgrasgnt updates are infrequent. Capacity metrics
apply to both short-term and longer-term statistics andigdeoa measure of the ability of the MIMO system
to convey information. This attribute might be instrumeémntaapplications where radar transmissions serve
a dual purpose of conveying communications informatiorievdliso providing illumination signals for radar
detection.

4.1 Capacity Measure

The (theoretical) capacity of a MIMO communications systeitlh a corresponding channel matiix, <
CN*Nis determined from
) (16)

where P is the signal power andV, is the power spectral density of the noise. Given a set of3tNN
channel realizations(71, G», ..., Gy, it is evident that channel capacity is maximized by setecthe
channel matrixG,,., € {G1,Gs,...,G} for which the determinanG G| is maximized overy, where
a =1,2,..., L. This is equivalent to selecting the channel realizatiat thaximizes the product of the
eigenvalues oG G, overa since

P
— I+ —G7aG,
C og<' +NOGaG

GlG,| = H Aot (17)



Therefore, this strategy maximizes the product of the egers ofGY G, overa instead of the sum of
the eigenvalues, leading to a different form of subspacenigstion. The capacity measure yields detection
performance levels that are less than or equal to that foFtbbenious norm measure. The degradation
will generally depends upon the specific channel matrixizaabn. This form of optimization may be
useful to MIMO radar configurations that attempt to emplogarasignals that double as communications
signals (e.g., for sharing information between the radatesgs). For example, a weighted combination
of the sum of the eigenvalues and the product of the eigeesadiG’ G, might be employed to ensure
that both radar and communications functions could be mtbaaly employed. For the case of the single
channel realization represented in Table 1, the detectofopnance and the channel capacity for each of
the six-choose-four configurations are indicated in Figr&€he results illustrate the potential tradeoff that
occurs when trying to jointly maximize the detection penfance and the MIMO communications capacity.
For example th@"¢ subset yields maximum capacity with suboptimal detectieriggmance, whereas the
11*" subset yields maximum probability of detection but with pliimal capacity. While the capacity and
the probability of detection metrics are not necessariliinoged by the same subspace, it is evident that
subpaces leading to good results for one also tend to yiakbreble results for the other. This would be
expected given the inherent relationship between the swigefivalues and the product of eigenvalues.

Table 1: Scaled Channel Gains Employed in Computationali&gu

Channel Gains (columns are Tx Stations, rows are Rx Stations
1 2 3 4 5 6
1|-0.62+0.51i] 1.37-0.20i | -0.02-1.90i| -0.13 +0.17i| -0.31 - 0.12i| -0.02 - 1.86i
2| -0.60-0.05i| -1.61-0.63i| 1.68-2.15i | 0.27-0.48i | 2.12-1.43i| 0.17 - 0.25i
3| -0.53+0.27i| -0.73+1.33i| 1.15-0.71i | 0.02-1.55i | 2.52 + 1.42i| 1.13 + 0.17i
4| -0.59+0.72i| -1.48 +0.51i| 1.03-0.39i | -0.26 + 0.03i| 1.39-1.11i| -0.40 + 0.13i
5| 0.69-0.46i | -0.32 + 0.47i| -0.99-0.38i| -0.10- 1.61i| 0.94 + 0.54i| -0.85 + 0.68i
6| -0.45-0.11i| 0.52-1.07i| -0.89 +1.29i| 1.48 +1.43i| -0.91-0.72i| 0.03 - 0.09i

4.2 Diversity Measure

A second subspace optimization approach that also findssibagireless communications is one that
maximizes diversity, where the diversity is measured by [8]

v - ()

whereR,, = E[vec(Gq )vec(Go)H] € CN**N s a correlation matrix between the elementsof and
vec(X) is the column stacking operation. This approach is expectedovide robust detection
performance through long-term diversity when severe tiarging channel fading is prevalent and the
latencies encountered in subspace formation and coomminamong the stations exceeds the coherent
time of the fading channels. Figure 4 illustrates the mamgigitof the system diversities that are achievable
in subspaces of dimensid? , R3, andR* as a function of the interstation temporal correlations in
channels with coherence times less than system latencgesuBe temporal diversity estimation requires
longer term statistics, we provide comparative examplatvafrsity performance in the next section.

(18)

5 Subspace Optimization: Longer Term Statistics

In this section, the case of long-term channel statisticefisidered. Under these conditions, the system
does not exploit knowledge of the instantaneous channeixn&ather, it exploits knowledge of the



average channel matrix produ€t[GX G| and the correlation matriR,, = E [vec(Gq)vec(Gq)H].

The need to resort to longer term statistics would be apjatEpin scenarios involving radar stations with
high intercommunications and processing latencies suahigtst be experienced with widely-spaced radar
stations. We shall examine subspace optimization baseu Liparobability of detection using the
Frobenius norm of the average channel estimates, 2) theibapased on the average channel estimates,
and 3) the diversity based on the correlation maRiy, where these matrices take on the following form
for a2 x 2 subspace MIMO radar configuration:

2
|9a,1,1] Ia1,19a,1200,1,2  9a119021P0,13  Ia1,190,2,2Pa,1,4
2
R — | Yar29a11Paz1 |9a,1,2] In1.290,21P0,23 o1,290,2,200,2,4 19
Q * * 2 * ( )
9a,2,192,1,1P,3,1  9q,2,190,1,2P0,3,2 \ga,zl\ 9a,2,19,2,2Pa,3,4
2
9 2.290,1,1Pa41 o 2290120042 Ga 2290210043 |9a,2,2]

and

2 2 * *
Elgic] = . |9a1,11° + Ig*a,z,ll Jau1.190:1,2Pa1.2 +ga,2190£,272p04374 (20)
Jo1,290,1,1Pa,2,1 + G 2290,2,1Pa,4,3 |9a,1,2]% + [9a,2,2

where they, ; ; represent the average channel transfer gains associdted'wandp. ; ; = pa.ji
corresponds to the correlation betweendtieand;®” channel elements inec(G,, ). Extensions to larger
configurations can be similarly computed.

5.1 Probability of Detection Based on Average Channel Estimates

Use of long term statistics is applicable to operation iretivarying channels. To circumvent the
difficulties faced in computing the average probability efettion for each subset over these time-varying
fading channels, it is proposed instead to employ a comiputdty simpler metric based on the average
channel product. This strategy results in replacing thesebmatrix producG G, with its expected
value,E [GH G,]. Thus, the proposed measure for estimating detectionpeafice uses (15) and (16),
but wherel'r [E |GYG,]] is used instead dfr [GE G, ] in the computation 0§*(G,,). The resulting

detection metricP; is

N 0'2 _
&“%%:L°@%2QTﬂEKﬁKﬁH+dﬁaizu_P“0 1)

5.2 Capacity Measure Based on Aver age Channel Estimates

We adopt a multiplexing gain metric proposed in [7] to est@raverage capacity based upon the average
channel product estimate [GZ G,]. The metric is given by

C:TﬂD@ﬁ+Df1 (22)

whereD is a diagonal matrix containing the eigenvalueEo[ngGa] . Note that this measure is based on
an optimization of the sum of the eigenvalues and hence ghaelld a strong correlation with thg;

measure. Whereas application of the metric defined in (XR)ires tracking the instantaneous channels,
the application of the metric in (23) is less stringent argléad requires tracking average channel statistics,
which change more slowly. Hence, while the performance isfapproach is moderated due to averaging,
so are the update requirements, lending the approach togatdamplementation in highly variable

channels.



5.3 Example Performance Estimates for Longer Term Statistics

In this subsection, the relative performance as defineddy (22), and (23) are computed. For the
computations, the channel gains in Table 1 are employedjalith randomized correlation coefficients
uniformly distributed over the closed interval [0 1] to gexte £ [Gf Ga] andR,,. The resulting averages
are then employed to compute metrics for each of the chaeaétations corresponding to the radar
station subsets (assuming a six-choose-four downsefegtacess). The resulting measures for each
subset are plotted in Figure 5. Joint optimization of thespaloe can be achieved through optimization
with respect to all three metrics, or with respect to eitherR; vs capacity, the capacity vs diversity, or the
P, vs diversity projections. Note the high correlation thav&lent between the capacity and the
probability of detection measures.

6 Conclusions

Operationally, SC-MIMO radar involves the selection antizattion of a subset of available radar stations
to reduce system complexity while attempting to optimize plerformance of a centralized MIMO radar
system. Subspace optimization criteria based on the MIM&hiell matrix have been proposed, where the
optimization is characterized in terms of probability ofefgion, communications capacity, and channel
diversity. Subspace selection to optimize Neyman-Peatetection statistics in SC-MIMO was found to
be equivalent to the selection of the subspace channebnyatding the maximum Frobenius norm,

which is equivalent to maximizing the sum of the eigenvaloiethe channel matrix produst” G. The
subspace size can be adapted to channel conditions todisatirce utilization while meeting prescribed
performance levels. A diversity metric was also discuskatlis useful for robust performance in fading
channels. Achievable diversities for systems employingrtteasure are reported as a function of the
inter-station temporal correlations. Instantaneous capemeasures drawn from information theory are
also employed. The measures were applied to channels wighcloherence times that enabled the radar
system to exploit instantaneous channel estimates andtmels that changed more quickly than could be
tracked or exploited by the radar system. In this latter caserage channel estimates, rather than
instantaneous channel estimates, were applied to estiheatptimization measures. When channel
averaging is employed, the capacity measure reduces tosunedhat is proportional to the sum of the
eigenvalues of the channel matrix product, and therefanegisdy correlated to the detection metric. The
analysis assumes the availability of six radar stations fichich subsets were selected for detection
processing and illustrates that joint optimization basgohuall three metrics or optimization based upon a
pair of measures using projections onto eitherfhers. Capacity plane, th&; vs. Diversity plane, or the
Capacity vs. Diversity plane is possible.
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