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Abstract

We consider the problem of subspace optimization for centralized non-coherent MIMO radar based
on various measures such as capacity, diversity, and probability of detection. In subspace centralized
non-coherent MIMO radar (SC-MIMO), a subset of stations is selected based on channel knowledge or
channel statistics to reduce system complexity while simultaneously attempting to optimize the perfor-
mance of the reduced-dimension centralized MIMO radar system. The radar transmitters are assumed to
be sufficiently separated (e.g., at different locations) toyield spatially white channel transfer gains and
are assumed to operate on a non-interference basis through time-division or frequency-division multi-
plexing. Detection optimization for the SC-MIMO system in aNeyman Pearson sense is found to be
equivalent to selecting the subspace that maximizes the Frobenius norm of the corresponding channel
matrix. Information-theoretic measures for capacity and diversity are also applied to the problem of
subspace selection. Channels with temporal coherence times that are long relative to the radar system’s
latencies and channels with coherence times that are short relative to the radar system’s latencies are
considered. In the former case, metrics are based upon instantaneous channel estimates, whereas in the
latter case, average channel estimates are used. Numericalanalyses are conducted to illustrate the use of
the metrics for optimizing system performance.
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1 Introduction

Distributed MIMO radar is a research area that has received increasing attention lately, see, e.g., [5, 3, 10].
A salient feature of distributed radar is its ability to simultaneously engage a target from multiple aspect
angles. While the legacy radar is confined to viewing the target from a single aspect angle at any given time
instant, the distributed radar utilizes waveforms from spatially diverse stations to illuminate the target and
detect reflected target energy from multiple aspect angles,taking advantage of aspect-dependent RCS to
significantly improve the ability to detect and track targets. The benefit over a single station implementation
comes at the cost of increased system complexity including more demanding inter-station communications
for data fusion and coordination among the stations. Given amultiplicity of stations, down-selecting the
number of stations used in processing provides one mechanism to reduce system complexity, where the sta-
tions are selected in a manner that optimizes the performance for the number of resources that are dedicated
to the task. We refer to this architecture as subspace centralized non-coherent MIMO radar (SC-MIMO).
The SC-MIMO radar architecture, exemplified in Figure 1, is characterized by the optimized selection of
a subset of spatially diverse radar stations and joint processing of the received signals from this subset at
a common fusion center. The transmitters are assumed to be sufficiently separated to yield spatially white
channel transfer gains and are assumed to operate on a non-interference basis through time- or frequency
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multiplexing, which facilitates both the separation of thesignals at the receivers and the application of
associated Doppler compensation tapering for signal conditioning.

Subspace optimization measures in SC-MIMO are explored to optimize system performance in terms of
probability of detection, information-theoretic capacity, and channel diversity, where optimized system per-
formance in each of these senses is achieved by selecting thesubspace that maximizes measures associated
with the MIMO channel matrix. Information-theoretic metrics such as capacity and diversity are considered
because of their ability to characterize MIMO channels in a manner that could potentially be exploited by an
SC-MIMO system. For the case of SC-MIMO radar detection performance, joint detection optimization in
a Neyman-Pearson sense with noncoherent square-law processing is shown to be equivalent to maximizing
the Froebenius norm of the SC-MIMO radar channel matrix. Thechannel capacity measure is optimized by
maximizing the determinant of the channel matrix [6, 12]. Diversity can be optimized by evaluating corre-
lations between the elements of the channel matrix [8]. These subspace optimization measures are applied
in the case of slowly changing channels wherein the channel changes can readily be tracked and utilized
by the radar system for optimal subspace selection. Optimization measures are also applied in the case of
channels that change faster than can be tracked and exploited by the radar system. In this case, average
channel estimates, rather than instantaneous channel estimates, are employed in the optimization strategies.
The channel capacity measure in this case is achieved by selecting the sub space that maximizes the sum
of the eigenvalues associated with the corresponding channel matrix. In relation to the waveform design
approaches addressed in [2], these metrics represent alternative approaches to optimizing the performance
of a MIMO radar system.

The remainder of the paper is organized as follows. The system model, including the MIMO radar
channel matrixG is introduced in Section 2. Using this model, Section 3 provides a theoretical development
of target detection optimization in centralized MIMO radar. Subspace architectures are considered in Section
4 and the Frobenius norm of the subspace channel matrix is identified as a measure for optimizing detection
probability in SC-MIMO. Optimization in channels with longcoherence times (i.e., such that the radar can
estimate the instantaneous channel and exploit this knowledge in the subspace selection) are addressed,
and a numerical example is given that illustrates the impactof the subspace dimension of the detection
performance. Information-theoretic optimization measures for capacity and diversity are also introduced.
In Section 5, adaptation of the measures for channels with short coherence times are addressed. In these
dynamic channels, the radar cannot adequately track and utilize the instantaneous channel estimate and must
instead resort to exploiting average channel estimates. Results illustrating the potential for joint optimization
of detection probability, capacity and diversity are presented based upon the revised metrics. Section 6
contains the conclusions of the paper.

2 System Model

A general system model, in accordance with Figure 1, is givenbelow:
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= G(t)S(t) + w(t) (2)
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where

zl(t) =

K
∑

k=1

zlk(t) =

K
∑

k=1

glk(t)sk(t − τk) l = 1, 2, . . . ,K k = 1, 2, . . . ,K (3)

are the received waveforms at each receiver,zlk is the received signal component at thelth receive station
from thekth transmit station,glk is the complex channel transfer gain from thek-th transmit station to the
l-th receive station,sk(t) is the orthogonal unit norm waveforms from thekth transmit station at timeτk,
andw(t) is additive Gaussian noise. Note thatG ∈ CK×K is not necessarily symmetric (for example if
the radar stations transmit on different frequencies) and that each elementglk in G is proportional to the
square root of the target’s RCS and will depend on the target aspect angle relative to both the transmit station
and the receive station (see Figure 1). In general,glk will also be a function of the directional transmit and
receive antenna gains, propagation losses, and other link budget parameters. We assume that the stations are
deployed in a manner that results in spatially white, but temporally colored, channel transfer gains.

3 Target Detection Optimization in Centralized MIMO Radar

We present formulations based on Neyman-Pearson detectionfor the centralized detection approach. The
development is similar to one found in [4], although we assume the utilization of either short term statistics
or long term averages, leading to non-central chi-square distributions for the alternative hypothesis,H1. We
also employ weighted noncoherent detection, where the contributions from the radar stations are normalized
relative to the measured noise level at each station. This serves to accommodate asymmetric noise, such
as intentional jamming, that may be present in the RF environment. We also link the optimal detection
solution with the maximization of a channel matrix norm, giving a mechanism for subspace optimization by
expeditiously selecting a subset of radar stations employed in detection processing.

Assuming that the waveform orthogonality is preserved, theoutputs of the bank of matched filters

ẑlk ,

∫

zl(τ)s∗k(t − τ)dτ (4)

can be expressed as

H0 : ẑlk = nlk

H1 : ẑlk = glk + nlk
l = 1, 2, · · · ,K ; k = 1, 2, · · · ,K (5)

wherenlk is the matched filter output’s noise component, which is assumed to be zero-mean complex Gaus-
sian with varianceσ2

nlk
. The channel transfer gainglk is a complex random variable that is approximately

constant over the coherence time. Appropriate Doppler compensation of the received signal is assumed to
have been employed at each receiver. Doppler compensation involves compensating for Doppler shift im-
parted on the received signal. Methods such as those discussed in [9, 14, 13, 15, 16] are relevant. Doppler
compensation in the noncoherent MIMO radar case is enabled by the assumption of orthogonal waveforms.
The orthogonal property can be achieved through various tactics, including time multiplexing (e.g., where
each transmitter is assigned to a time slot) or frequency multiplexing (e.g., where each transmitter is assigned
to a different frequency). This stands in contrast to the methods of [1] in which the radar waveforms occupy
the same bandwidth and where pseudo-orthogonality is achieved through waveform design. The proposed
model exploits short term statistics associated with the bistatic returns, leading to returns (represented by
glk) that exhibit negligible variability over the coherence time. Normalizing each output with respect to the
noise level (which may be measured, e.g., through CFAR techniques), the normalized outputs are

H0 : zlk = ñ
H1 : zlk = g̃lk + ñ

l = 1, 2, · · · ,K ; k = 1, 2, · · · ,K (6)
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where the noise components are zero-mean Gaussian with varianceσ2. The probability density function
(pdf) of zlk under each hypothesis is:

pZ(zlk) ∼

{

CN (0, σ2) under H0

CN (g̃lk, σ
2) under H1

(7)

whereCN (µ, σ2) denotes a complex normal distribution with meanµ and varianceσ2. The test static is
obtained by noncoherently combining the normalized filter outputs. The corresponding distributions of the
test statisticy = ‖z‖2 for each hypothesis is given by:

y = ‖z‖2 =











σ2

2 χ2
2K2 H0

(s2+σ2)
2 χ

′2
2K2 H1

(8)

whereχ2
d denotes a chi-square random variable havingd degrees of freedom [11] andχ

′2
d denotes a non-

central chi-square random variable [11] havingd degrees of freedom and a noncentrality parameter

s2(G) =

K
∑

i=1

K
∑

j=1

g̃2
ij . (9)

For optimal detection in the Neyman-Pearson (NP) sense, therelations between the probability of false
alarm,Pfa, the probability of detection,Pd, and the threshold are governed by NP Theorem. The probability
of false alarm is given by

Pfa =

∫

∞

δ

p(y|H0)dy = 1 − Fχ2

2K2

(
2δ

σ2
) (10)

For a desiredPfa and with the knowledge ofσ2, δ may be set using

δ =
σ2

2
F−1

χ2

2K2

(1 − Pfa) (11)

whereF−1
χ2

2K2

is the inverse cumulative distribution function of a chi-square random variable with2K2

degrees of freedom. Note thatδ is independent of the MIMO radar channel gains. The probability of
detection is given by

Pd =

∫

∞

δ

p(y|H1)dy (12)

= 1 − F
χ
′2

2K2

(

2δ

(s2(G) + σ2)

)

(13)

= 1 − F
χ
′2

2K2

(

σ2

(s2(G) + σ2)
F−1

χ2

2K2

(1 − Pfa)

)

(14)

whereF
χ
′2

2K2

is the cumulative distribution function of a noncentral chi-square random variable with degree

2K2.
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4 Subspace Optimization for Centralized Detection: The Case of Short Term
Statistics

The concept of subspace optimization for centralized MIMO radar processing may be addressed using re-
sults from the above theoretical development. Subspace optimization assumes that a set of radar stations are
available for organization into a MIMO radar system. Ratherthan utilizing all of the resources for a given
detection problem, the premise is that it might be more desirable from a resource utilization perspective to
employ only a subset of these resources for a given detectionproblem, where the resources are carefully se-
lected to ensure that detection performance does not suffersubstantially. We assume a centralized topology,
and hence the central processor needs access to all of the K statistics in order to identify the subspace that
will suitably optimize performance. A centralized approach based upon short-term statistics can readily be
achieved in systems where information sharing between nodes does not introduce latencies that are on the
order of the temporal decorrelation times of the channel transfer gain statistics. Where latencies associated
with information sharing exceeds a major fraction of the temporal decorrelation times, subspace optimiza-
tion based on short term statistics will be marginalized. Inthis case, optimizations based upon longer-term
average statistics (as described in Sections 5) would be more appropriate. A downselection approach has
the benefit of reducing the overall complexity of the problemin terms of required resources, the backhaul
communications for coordination and passing of data (once asubspace is assigned), and also the signal pro-
cessing at each radar station and at the fusion center. In this section, short term statistics are assumed. This
approach would be representative of implementations with low-latency inter-station communications. In the
next section, longer term statistics that exploit average channel characteristics are addressed.

For the specific case of short-term statistics, the following theorem and the subsequent corollary define
the mechanism for optimizing selection of the radar stations for subspace centralized detection.

Theorem 4.1. Let G1,G2, . . . ,GL represent a set of L N×Nchannel matrix realizations. Given a constant
false alarm rate, Pfa, and assuming a constant noise variance σ2 at the receivers, the channel matrix real-
ization with the largest Froebenius norm yields the largest probability of detection in the Neyman-Pearson
sense.

Proof. For identicalσ2 at all receivers, and a constant prescribedPfa, the thresholdδ is given by (11)
and is constant. Usingδ with (9) in (15) where N is used in place of K andGα in place ofG (to enable
indexing among the different channel realizations), and recognizing that the cumulative distribution function
is nonincreasing with increasings2(Gα) leads to the conclusion thatPd is monotonically nondecreasing
with s2(Gα), and hence the maximums2(Gα) leads to the highestPd. But the Froebenius norm of each
channel realization,Gα, with α ∈ {1, . . . , L}, is given by

‖Gα‖F =

√

√

√

√

N
∑

i=1

N
∑

j=1

|g̃α,ij |2 =
√

s2(Gα) =
√

Tr [GH
α Gα] =

√

√

√

√

N
∑

ℓ=1

λα,ℓ (15)

where theg̃α,ij are the normalized channel transfer gains ofGα for , i, j = 1, . . . , N , the λα,ℓ are the
eigenvalues ofGH

α Gα, and the dependence ofs2 on the channel realizationGα is expressed. Therefore it
follows that the channel realization yielding the largest Froebenius norm maximizess2(Gα) and hence the
probability of detection in the Neyman-Pearson sense. As evidenced in (16), this metric corresponds to a
maximization of the sum of the eigenvalues ofG

H
α Gα over the index rangeα = 1, . . . , L.

From a systems perspective, this result implies that maximum system performance generally cannot be
achieved if each radar station independently attempts to maximize its own monostatic return (e.g., through
beamsteering, maneuvers, etc.). Rather, improved performance is more readily achieved if the radar stations
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take on a global perspective in their responses in order to maximize the sum of the reflected energy received
by all of the sensors. We also note that the requirement for identicalσ2 implies that the stations influenced
by noise in the environment, such as from a local interferer,will incur channel power transfer attenuations in
the signal processing that are inversely proportional to the variance of the noise, i.e., all contributing signals
are normalized to have unit variance.

Corollary 4.2. Under similar assumptions as in Theorem 4.1, but with K > N stations, the subset of N
stations yielding the channel matrix with the largest Froebenius norm provides the maximum probability of
detection in the Neyman Pearson sense, assuming a constant false alarm rate.

Proof. DefineL =
(

K
N

)

as the number of possible N×N channel realizations. Application of Theorem 4.1
then proves the corollary.

Computational simulations were employed to evaluate the relative performance of subspace configura-
tions. Figure 2 depicts results using (15) and (16) that illustrate the detection performance of the subspace
optimization approach as a function of the SNR (defined here as |GH

G|2/σ2 whereG ∈ RN×N andK is
the number of available stations) and the subset size. For these simulations, a topology ofK = 6 stations
was assumed, and subspace sizes of two, three and four radar stations were considered using a false alarm
probability ofPfa = 10−5. The channel gains assumed in the investigation were drawn from aCN (0, 1)
distribution. Ten channel realizations were averaged to obtain the results. The figure indicates performance
advantages of K-choose-N topologies over topologies with Nfixed stations. The results also illustrate the
performance dependence on the subset size.

The understanding that the Neyman-Pearson formulation forsubspace optimization in centralized MIMO
radar is equivalent to optimizations based on the Frobeniusnorm of the MIMO radar channel state matrix
invites consideration of other channel-based information-theoretic measures to optimize MIMO radar sys-
tem performance in some sense. We consider here optimization metrics that have been reported for MIMO
system capacity [6, 12] and MIMO system diversity [8]. The information-theoretic formulations are based
upon the channel productGH

G and the correlation matrix derived from the elements of the channel matrix
G, respectively. Diversity applies to long-term statistics and is projected to be useful when assigning MIMO
resources over long periods of time, i.e., when resource assignment updates are infrequent. Capacity metrics
apply to both short-term and longer-term statistics and provide a measure of the ability of the MIMO system
to convey information. This attribute might be instrumental in applications where radar transmissions serve
a dual purpose of conveying communications information while also providing illumination signals for radar
detection.

4.1 Capacity Measure

The (theoretical) capacity of a MIMO communications systemwith a corresponding channel matrixGα ∈
CN×N is determined from

C = log

(∣

∣

∣

∣

I +
P

No

G
H
α Gα

∣

∣

∣

∣

)

(16)

whereP is the signal power andNo is the power spectral density of the noise. Given a set of L N×N
channel realizations,G1, G2, . . . , GL, it is evident that channel capacity is maximized by selecting the
channel matrixGmax ∈ {G1, G2, . . . , GL} for which the determinantGH

α Gα is maximized overα, where
α = 1, 2, . . . , L. This is equivalent to selecting the channel realization that maximizes the product of the
eigenvalues ofGH

α Gα overα since
∣

∣G
H
α Gα

∣

∣ =

N
∏

ℓ=1

λα,ℓ (17)
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Therefore, this strategy maximizes the product of the eigenvalues ofGH
α Gα overα instead of the sum of

the eigenvalues, leading to a different form of subspace optimization. The capacity measure yields detection
performance levels that are less than or equal to that for theFrobenious norm measure. The degradation
will generally depends upon the specific channel matrix realization. This form of optimization may be
useful to MIMO radar configurations that attempt to employ radar signals that double as communications
signals (e.g., for sharing information between the radar systems). For example, a weighted combination
of the sum of the eigenvalues and the product of the eigenvalues ofGH

α Gα might be employed to ensure
that both radar and communications functions could be productively employed. For the case of the single
channel realization represented in Table 1, the detection performance and the channel capacity for each of
the six-choose-four configurations are indicated in Figure3. The results illustrate the potential tradeoff that
occurs when trying to jointly maximize the detection performance and the MIMO communications capacity.
For example the2nd subset yields maximum capacity with suboptimal detection performance, whereas the
11th subset yields maximum probability of detection but with suboptimal capacity. While the capacity and
the probability of detection metrics are not necessarily optimized by the same subspace, it is evident that
subpaces leading to good results for one also tend to yield reasonable results for the other. This would be
expected given the inherent relationship between the sum ofeigenvalues and the product of eigenvalues.

Table 1: Scaled Channel Gains Employed in Computational Studies
Channel Gains (columns are Tx Stations, rows are Rx Stations)

1 2 3 4 5 6
1 -0.62 + 0.51i 1.37 - 0.20i -0.02 - 1.90i -0.13 + 0.17i -0.31 - 0.12i -0.02 - 1.86i
2 -0.60 - 0.05i -1.61 - 0.63i 1.68 - 2.15i 0.27 - 0.48i 2.12 - 1.43i 0.17 - 0.25i
3 -0.53 + 0.27i -0.73 + 1.33i 1.15 - 0.71i 0.02 - 1.55i 2.52 + 1.42i 1.13 + 0.17i
4 -0.59 + 0.72i -1.48 + 0.51i 1.03 - 0.39i -0.26 + 0.03i 1.39 - 1.11i -0.40 + 0.13i
5 0.69 - 0.46i -0.32 + 0.47i -0.99 - 0.38i -0.10 - 1.61i 0.94 + 0.54i -0.85 + 0.68i
6 -0.45 - 0.11i 0.52 - 1.07i -0.89 + 1.29i 1.48 + 1.43i -0.91 - 0.72i 0.03 - 0.09i

4.2 Diversity Measure

A second subspace optimization approach that also finds a basis in wireless communications is one that
maximizes diversity, where the diversity is measured by [8]

Ψ(Rα) =

(

trRα

‖Rα‖F

)2

(18)

whereRα = E[vec(Gα)vec(Gα)H ] ∈ CN2
×N2

is a correlation matrix between the elements ofGα and
vec(X) is the column stacking operation. This approach is expectedto provide robust detection
performance through long-term diversity when severe time-varying channel fading is prevalent and the
latencies encountered in subspace formation and coordination among the stations exceeds the coherent
time of the fading channels. Figure 4 illustrates the magnitude of the system diversities that are achievable
in subspaces of dimensionR2 , R3, andR4 as a function of the interstation temporal correlations in
channels with coherence times less than system latencies. Because temporal diversity estimation requires
longer term statistics, we provide comparative examples ofdiversity performance in the next section.

5 Subspace Optimization: Longer Term Statistics

In this section, the case of long-term channel statistics isconsidered. Under these conditions, the system
does not exploit knowledge of the instantaneous channel matrix. Rather, it exploits knowledge of the
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average channel matrix productE
[

G
H
α Gα

]

and the correlation matrixRα = E
[

vec(Gα)vec(Gα)H
]

.
The need to resort to longer term statistics would be appropriate in scenarios involving radar stations with
high intercommunications and processing latencies such asmight be experienced with widely-spaced radar
stations. We shall examine subspace optimization based upon 1) probability of detection using the
Frobenius norm of the average channel estimates, 2) the capacity based on the average channel estimates,
and 3) the diversity based on the correlation matrixRα, where these matrices take on the following form
for a2 × 2 subspace MIMO radar configuration:

Rα =









|gα,1,1|
2 g∗α,1,1gα,1,2ρα,1,2 g∗α,1,1gα,2,1ρα,1,3 g∗α,1,1gα,2,2ρα,1,4

g∗α,1,2gα,1,1ρα,2,1 |gα,1,2|
2 g∗α,1,2gα,2,1ρα,2,3 g∗α,1,2gα,2,2ρα,2,4

g∗α,2,1gα,1,1ρα,3,1 g∗α,2,1gα,1,2ρα,3,2 |gα,2,1|
2 g∗α,2,1gα,2,2ρα,3,4

g∗α,2,2gα,1,1ρα,4,1 g∗α,2,2gα,1,2ρα,4,2 g∗α,2,2gα,2,1ρα,4,3 |gα,2,2|
2









(19)

and

E
[

G
H
α Gα

]

=

[

|gα,1,1|
2 + |gα,2,1|

2 g∗α,1,1gα,1,2ρα,1,2 + g∗α,21gα,2,2ρα,3,4

g∗α,1,2gα,1,1ρα,2,1 + g∗α,2,2gα,2,1ρα,4,3 |gα,1,2|
2 + |gα,2,2|

2

]

(20)

where thegα,i,j represent the average channel transfer gains associated with Gα andρα,i,j = ρα,j,i

corresponds to the correlation between theith andjth channel elements invec(Gα). Extensions to larger
configurations can be similarly computed.

5.1 Probability of Detection Based on Average Channel Estimates

Use of long term statistics is applicable to operation in time-varying channels. To circumvent the
difficulties faced in computing the average probability of detection for each subset over these time-varying
fading channels, it is proposed instead to employ a computationally simpler metric based on the average
channel product. This strategy results in replacing the channel matrix productGH

α Gα with its expected
value,E

[

G
H
α Gα

]

. Thus, the proposed measure for estimating detection performance uses (15) and (16),
but whereTr

[

E
[

G
H
α Gα

]]

is used instead ofTr
[

G
H
α Gα

]

in the computation ofs2(Gα). The resulting
detection metric,̂Pd is

P̂d(Gα) = 1 − F
χ
′2

2K2

(

σ2

(Tr [E [GH
α Gα]] + σ2)

F−1
χ2

2K2

(1 − Pfa)

)

(21)

5.2 Capacity Measure Based on Average Channel Estimates

We adopt a multiplexing gain metric proposed in [7] to estimate average capacity based upon the average
channel product estimateE

[

G
H
α Gα

]

. The metric is given by

C = Tr
[

D
(

σ2
I + D

)

−1
]

(22)

whereD is a diagonal matrix containing the eigenvalues ofE
[

G
H
α Gα

]

. Note that this measure is based on
an optimization of the sum of the eigenvalues and hence should yield a strong correlation with thePd

measure. Whereas application of the metric defined in (18) requires tracking the instantaneous channels,
the application of the metric in (23) is less stringent and instead requires tracking average channel statistics,
which change more slowly. Hence, while the performance of this approach is moderated due to averaging,
so are the update requirements, lending the approach to practical implementation in highly variable
channels.
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5.3 Example Performance Estimates for Longer Term Statistics

In this subsection, the relative performance as defined in (19), (22), and (23) are computed. For the
computations, the channel gains in Table 1 are employed along with randomized correlation coefficients
uniformly distributed over the closed interval [0 1] to generateE

[

G
H
α Gα

]

andRα. The resulting averages
are then employed to compute metrics for each of the channel realizations corresponding to the radar
station subsets (assuming a six-choose-four downselection process). The resulting measures for each
subset are plotted in Figure 5. Joint optimization of the subspace can be achieved through optimization
with respect to all three metrics, or with respect to either thePd vs capacity, the capacity vs diversity, or the
Pd vs diversity projections. Note the high correlation that isevident between the capacity and the
probability of detection measures.

6 Conclusions

Operationally, SC-MIMO radar involves the selection and utilization of a subset of available radar stations
to reduce system complexity while attempting to optimize the performance of a centralized MIMO radar
system. Subspace optimization criteria based on the MIMO channel matrix have been proposed, where the
optimization is characterized in terms of probability of detection, communications capacity, and channel
diversity. Subspace selection to optimize Neyman-Pearsondetection statistics in SC-MIMO was found to
be equivalent to the selection of the subspace channel matrix yielding the maximum Frobenius norm,
which is equivalent to maximizing the sum of the eigenvaluesof the channel matrix productGH

G. The
subspace size can be adapted to channel conditions to limit resource utilization while meeting prescribed
performance levels. A diversity metric was also discussed that is useful for robust performance in fading
channels. Achievable diversities for systems employing this measure are reported as a function of the
inter-station temporal correlations. Instantaneous capacity measures drawn from information theory are
also employed. The measures were applied to channels with long coherence times that enabled the radar
system to exploit instantaneous channel estimates and to channels that changed more quickly than could be
tracked or exploited by the radar system. In this latter case, average channel estimates, rather than
instantaneous channel estimates, were applied to estimatethe optimization measures. When channel
averaging is employed, the capacity measure reduces to a measure that is proportional to the sum of the
eigenvalues of the channel matrix product, and therefore ishighly correlated to the detection metric. The
analysis assumes the availability of six radar stations from which subsets were selected for detection
processing and illustrates that joint optimization based upon all three metrics or optimization based upon a
pair of measures using projections onto either thePd vs. Capacity plane, thePd vs. Diversity plane, or the
Capacity vs. Diversity plane is possible.
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Figure 1: Example of a Subspace Centralized MIMO Radar Architecture
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Figure 2: Detection Performance for Subspace MIMO Radar using the Frobenius Norm withPfa = 10−5.
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Figure 3: Probability of Detection versus Capacity for eachof the 4-Station Subsets
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Figure 5: Comparative Performance of Station Configurations. (∗) correspond to the 3-dimensional results.
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