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ABSTRACT
Event triggered systems are feedback systems that sample
the state when the novelty in that state exceeds a thresh-
old. Prior work has demonstrated that event-triggered feed-
back may have inter-sampling intervals that are, on aver-
age, greater than the sampling periods found in comparably
performing periodic sampled data systems. This fact has
been used to justify the claim that event-triggered systems
are more efficient in their use of communication or com-
putational resources than periodic sampled data systems.
If, however, one accounts for quantization effects and max-
imum acceptable delays, then it is quite possible that the
actual bit rates generated by event triggered systems may
be greater than that of periodically triggered systems. This
paper examines the bit-rates required to asymptotically sta-
bilize nonlinear event triggered systems. In particular, this
paper uses the scaling relationships between maximum de-
lay, inter-sampling interval, and quantization error to bound
stabilizing bit-rates for quantized event triggered control
systems. Conditions are presented under which the stabi-
lizing bit rates asymptotically go to a constant. In some
cases, it is possible to show that this bit rate asymptotically
goes to zero as the system approaches its equilibrium.
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1. INTRODUCTION
State-dependent event-triggered control systems are sys-

tems that transmit the system state over the feedback chan-
nel when the difference between the current state and last
sampled-state exceeds a state-dependent threshold. These
systems were originally viewed as embedded computational
systems [10]. In this case, one was interested in reducing how
often the system state was sampled, as a means of reducing
processor utilization. The concept of event-triggering can be
easily extended to networked control systems [6] and wire-
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less sensor-actuator networks [1], in which case the sampled
state is transmitted over a communication channel.

Early interest in event-triggered control was driven by ex-
perimental results suggesting that these systems could have
longer inter-sampling intervals than comparably performing
periodic sampled-data systems [8, 9, 12]. In extending this
idea to networked control systems, one might suppose that
event-triggering can also reduce the system’s usage of the
communication channel since it might reduce the frequency
at which feedback states are transported across the chan-
nel. This extension, however, is complicated by the fact
that the communication channel is discrete in nature. Sam-
pled states must first be quantized into a finite number of
bits before being transmitted across the channel. Moreover,
the transmitted bits must be delivered with a delay that
does not de-stabilize the system. So an accurate measure
of channel usage is the bit rate as defined by the number
of bits per sampled state divided by the acceptable delay in
message delivery. It means that the system’s stabilizing bit
rate (i.e., the bit rate assuring closed-loop stability) rather
than the inter-transmission interval (i.e. the time between
consecutive transmissions of the sampled state) provides a
more realistic measure of channel usage in event-triggered
networked control systems.

Prior work in state-dependent event-triggered control has
used two different techniques to bound the inter-transmission
times and acceptable delays. The method used in [9] bounds
the minimum inter-transmission delay as a function of the
open-loop system’s Lipschitz constant. This work goes on
to show that system stability is preserved for sufficiently s-
mall delays. More accurate measures of inter-transmission
intervals were obtained in [3] using scaling properties of ho-
mogeneous systems. Quantitative bounds on both the inter-
transmission time and maximum acceptable delay were ob-
tained for self-triggered L2 systems in [13] and networked
control systems [15]. The results in [13, 15] are significan-
t because they show how the delay and inter-transmission
time scale as a function of the last sampled state. These
scaling properties led to the characterization [14] of event-
triggered systems whose inter-transmission times exhibited
efficient attentiveness (i.e. the inter-transmission intervals
asymptotically approach infinity as the state approaches its
equilibrium point). The approach used in this paper builds
upon the techniques used in [14] to characterize how sta-
bilizing bit rates scale as the system state approaches the
equilibrium point.

This paper’s bounds on stabilizing bit rates is reminiscent
of earlier work on dynamic quantization. Prior work showed



that static quantization maps required an infinite number of
bits to achieve asymptotic stability [5]. With a finite number
of bits, the best one can achieve is ultimate boundedness [16]
when using static maps. This led to the development of dy-
namic quantization maps [4] in which the quantization map
is dynamically varied to track state uncertainty. For lin-
ear systems, one was able to obtain bounds on the bit rate
that were necessary and sufficient for stability, assuming a
single sample delay [11]. In the case of nonlinear system-
s, lower bounds on the quantization rate were obtained [7].
The quantization maps developed in this paper are dynamic
maps, similar to those used in [7]. This paper shows that the
bit rates sufficient for stabilizing a nonlinear system asymp-
totically approach a constant for many cases. Under certain
conditions, we recover the same bounds reported in [7]. Re-
markably, we can sometimes find event-triggered systems
whose stabilizing bit rates possess the efficient attentiveness
property described in [14]; i.e., the bit rate asymptotically
goes to zero as the system state approaches its equilibrium
point.
The remainder of this paper is organized as follows. The

notational conventions used throughout the paper are de-
scribed in section 2. Section 3 describes the system mod-
el. Results on the asymptotic stability of quantized event
triggered systems will be found in section 4. The paper’s
main results characterizing the asymptotic properties of the
stabilizing bit rates will be found in section 5. Section 6 de-
scribes simulation results supporting the paper’s main find-
ings. Conclusions are stated in section 7.

2. MATHEMATICAL PRELIMINARIES
Throughout this paper the linear space of real n-vectors

will be denoted as Rn and the set of non-negative reals will
be denoted as R+. The norm of a vector x ∈ Rn will be
denoted as ‖x‖. Given the real-valued function x(·) : R+ →
Rn, we let x(t) denote the value x takes at time t ∈ R+.
The L infinity norm of a function x(·) : R+ → Rn is defined
as ‖x‖L∞ = ess supt≥0 ‖x(t)‖. This function is said to be
essentially bounded if ‖x‖L∞ = M < ∞ and the linear
space of all essentially bounded real-valued functions will be
denoted as L∞. A subset Ω ⊂ Rn is said to be compact
if it is closed and bounded. We say a function g has the
minimum order ζ, where ζ satisfies

ζ = min{η ∈ R : lim
s→0

g(s)
sη

&= 0}.

The minimum order of g is indicated by Og.
A given real valued function V (·) : Rn → R is positive

definite if V (x) > 0 for all x &= 0. The function V is said
to be radially unbounded if V (x) → ∞ as ‖x‖ → ∞. A
function α(·) : R+ → R+ is class K if it is continuous, strictly
increasing and α(0) = 0. A function β : R+ × R+ → R+ is
class KL if β(·, t) is class K for each fixed t ≥ 0 and β(r, t)
decreases to 0 as t → ∞ for each fixed r ≥ 0.
Let Ω be a closed and bounded subset of Rn. We say

f(·) : Ω→ Rn is Lipschitz on Ω if for any x, y ∈ Ω, we know
there exists a constant L ≥ 0 such that

‖f(x)− f(y)‖ ≤ L‖x− y‖

Consider a system whose state trajectory x(·) : R+ → Rn

satisfies the initial value problem,

ẋ(t) = f(x(t)), x(0) = x0

A point x ∈ Rn is an equilibrium point of f if f(x) = 0. We
say that the equilibrium point is stable if for all ε > 0 there
exists δ > 0 such that ‖x0 − x‖ < δ implies ‖x(t) − x‖ < ε
for all t ≥ 0. We say the equilibrium point is asymptotically
stable if it is stable and x(t) → 0 as t → ∞.

Consider a system whose state trajectory x(·) : R+ → Rn

satisfies the initial value problem,

ẋ(t) = f(x(t), w(t)), x(0) = x0 (1)

where w(·) : [0,∞) → Rm is an essentially bounded real
function.

Let V : Rn → R be a continuously differentiable function
such that

α(‖x‖) ≤ V ≤ α(‖x‖), (2)

∂V
∂x

f(x,w) ≤ −α(‖x‖) + γ(‖w‖L∞), (3)

for all (x,w) ∈ Rn×Rm, where α, α are class K∞ functions,
and α, γ are class K functions, then the system (1) is input-
to-state stable (ISS). The function V is called ISS-Lyapunov
function.

3. PROBLEM STATEMENT
The system under study is a networked event-triggered

control system with quantization. Figure 1 is a block dia-
gram showing the components of this system.

Figure 1: Networked Event-Triggered Control Sys-
tem with Quantization

The plant ’s state trajectory x(·) : R+ → Rn is an absolute-
ly continuous function satisfying the initial value problem,

ẋ(t) = f(x(t), u(t)), x(0) = x0 (4)

where f : Rn × Rm → Rn is locally Lipschitz and satisfies
f(0, 0) = 0. The control signal u(·) : R+ → Rm is generated
by the controller in figure 1. The vector x0 ∈ Rn is the
plant’s initial condition.

The system state, x(t), at time t is measured by the event
detector. The event detector decides when to hand over
the system state to the quantizer. The sequence of sampling
times is denoted as {sk}∞k=0. For notational convenience, the
kth consecutively sampled state x(sk) will be denoted as xk.
The kth inter-sampling interval is defined as Tk = sk+1−sk.

Upon receiving the sampled state, xk ∈ Rn, the quantizer
converts this real vector into a finite bit representation. This
quantized state is denoted as x̂k ∈ Rn. The finite nature of
the representation is modeled as a quantization error

eq(‖xk‖) ≥ ‖xk − x̂k‖ (5)

where eq(·) : R+ → R+ is actually a class K function of the
norm of the last sampled state. By representing the quanti-
zation error in this manner, we obtain a dynamic quantizer



similar to that used in previous papers on dynamic quanti-
zation [11, 7].
We define the gap between the current state and quantized

state as ek(t) = x(t) − x̂k. We assume that quantization is
done instantaneously and that the quantizer transmits the
quantized sampled state, x̂k, across the channel. The trans-
mission times are therefore equivalent to the sampling times
generated by the event trigger. The rest of the paper uses
the terms transmission and sampling in an interchangeable
way. The sampling times {sk} are generated by the event
trigger so that the gap is always less than a state-dependent
threshold function

‖ek(t)‖ ≤ θ(‖x̂k‖) (6)

for all t ∈ [sk, sk+1] where k = 0, 1, . . . ,∞. The function
θ(·) : R+ → R+ is a class K function called the threshold
function.
We assume that the quantized state, x̂k, is always suc-

cessfully delivered to the controller. The channel, howev-
er, is assumed to introduce a finite delay into the delivery
time. In particular, the arrival time of the kth sampled s-
tate x̂k at the controller is denoted as ak ∈ R+. This time
is strictly greater than sk. The delay of the kth message
is Dk = ak − sk. We need to assume some orderliness to
the transmission and delivery of such messages. In particu-
lar, we require that the transmission times, sk, and arrival
times, ak, satisfy the following order sk < ak ≤ sk+1 for
k = 0, 1, . . . ,∞. Such a sequence of transmissions and ar-
rivals will be said to be admissible.
Upon the arrival of the kth quantized state, x̂k, at the

controller, a control input is computed and then held until
the next quantized state is received. In other words, the
control signal takes the form

u(t) = uk = K(x̂k) (7)

for t ∈ [ak, ak+1). The function K(·) : Rn → Rm satisfying
K(0) = 0. As has been done in previous papers [9], this
paper assumes that K is chosen so the system

ż(t) = f(z(t),K(z(t) + e(t))) (8)

is input-to-state stable with respect to the signal e ∈ L∞.
This means, of course, that there exists a function V (·) :
R+ → R+ satisfying the conditions in equations (2-3). Note
that this can be a very restrictive assumption since such K
may not always exist [2].

4. ASYMPTOTIC STABILITY
This section characterizes a threshold function eq. (6) and

a quantization error function eq. (5) such that the event-
triggered system described in section 3 is asymptotically sta-
ble. As noted in the preceding section, the control function
K eq. (7) is assumed to leave the system in equation (8)
input-to-state stable with respect to the error e that enters
through the controller. In particular, we assume there exists
an ISS-Lyapunov function for system equation (8) with class
K functions α and γ that satisfy inequality (3). The func-
tions, α and γ, may be viewed as specifications on the tran-
sient and steady-state behavior, respectively, of the closed-
loop system. With this view of these two functions, we will
find it convenient to introduce a function ξ(·) : R+ → R+

that takes values

ξ(s) = γ−1(ςα(s)) (9)

for some constant ς ∈ (0, 1) and s ∈ R+.
Recall that the plant for this system is characterized by

the function f on the right hand side of equation (4). We
assume that this function is Lipschitz on compacts. In par-
ticular, this means if we let Ωk be a compact set contain-
ing the origin and all possible trajectories of ek(t) for any
t ∈ [ak, ak+1), then

‖f(x,K(x̂k)))‖ ≤ ψ(x̂k,K(x̂k)) + LΩk‖ek‖ (10)

where ψk(x̂k,K(x̂k)) = ‖f(x̂k,K(x̂k))‖,and ek(t) = x(t) −
x̂k is the gap function defined earlier. We can think of LΩk

as the Lipschitz constant over compact set Ωk.
With these preliminaries we now state the main theorem

of this section.

Theorem 4.1. Consider the system described in section
3. Assume that the threshold function θ and quantization
error eq satisfy

θ(‖x̂k‖) < ξ(‖x̂k‖) (11)

eq(‖xk‖) < θ(‖x̂k‖), and eq(‖xk‖) ≤ ‖xk‖ (12)

for all x̂k, xk ∈ Γ, with ξ(·) : R+ → R+ taking values

ξ(s) = sup
{
ε ∈ R+ : ε ≤ ξ(s− ε), ε ≤ s, ∀s ∈ R+

}
, (13)

and Γ = {x ∈ Rn : ‖x‖ ≤ 2α−1 ◦ α(‖x0‖)}.
If the actual channel delay Dk = ak − sk is always less

than Dk = min{T k, D̂k} for all k = 0, 1, . . . ,∞, where

T k =
1

LΩk

(
ln

(
1 +

LΩkθ(‖x̂k‖)
Ψk,k−1(x̂k, x̂k−1)

)

− ln

(
1 +

LΩkeq(‖xk‖)
Ψk,k−1(x̂k, x̂k−1)

))
(14)

D̂k =
1

LΩk−1

(
ln

(
1 + LΩk−1

ξ(‖x̂k−1)‖
ψ(x̂k−1, uk−1)

)

− ln

(
1 + LΩk−1

θ(‖x̂k−1‖)
ψ(x̂k−1, uk−1)

))
, (15)

and

Ψk,k−1(x̂k, x̂k−1) =(1− ρk)|ψ(x̂k,K(x̂k))− ψ(x̂k,K(x̂k−1))|
+ ψ(x̂k,K(x̂k−1)), (16)

Ωk = {x ∈ Rn : ‖x‖ ≤ ‖x̂k‖+ ξ(‖x̂k‖)} and ρk = Dk/Tk,
Then the closed-loop event triggered system is asymptot-

ically stable and the inter-sampling interval Tk is always
bounded below by T k which is strictly greater than zero.

Proof. We first show that x̂k is always bounded by some
class KL function. Once this is shown, it’s easy to see that
Ωk is always bounded, and hence we have finite LΩk for all
k = 0, 1, · · · ,∞. Based on the fact that LΩk is always finite,
we, then, prove that V̇ < 0 for all t ≥ 0, and the asymptotic
stability can be shown.

We first show that xk is always bounded by some class KL
function. If this is true, then x̂k must be bounded. We know
that there exists an ISS-Lyapunov function V such that (2)
and (3) hold. If this V also satisfies

V̇ =
∂V
∂x

f(x,K(x̂k)) ≤ −(1− ς)α(‖x‖),

for all x ∈ Rn, all t ∈ [ak, ak+1), all k = 0, 1, · · · , k̄ and some
ς ∈ (0, 1), then there must exist a class KL function β such
that ‖x(t)‖ ≤ β(‖x0‖, t) for all t ∈ [0, ak̄+1).



Now, let’s assume that there exists an integer k′ such that

‖xk‖ ≤ β(‖x0‖, sk), ∀k = 0, 1, · · · , k′

‖xk′+1‖ > β(‖x0‖, sk′+1). (17)

Next, we show that V̇ ≤ −(1−ς)α(‖x‖) for all t ∈ [0, ak′+1).
Therefore, ‖x(t)‖ ≤ β(‖x0‖, t) should hold for all t ∈ [0, ak′+1),
which contradicts our assumption that ‖xk′+1‖ > β(‖x0‖, sk′+1).
To do so, we have to establish that V̇ ≤ −(1 − ς)α(‖x‖)

for all t ∈ [ak, ak+1), and all k = 0, 1, · · · , k′. Since ‖x(t)‖ ≤
β(‖x0‖, t) for all t ∈ [0, sk′ ], we know that ‖xk‖ are bounded
for all k = 0, 1, · · · , k′, and hence Ωk is also bounded. It
means that we can always find a finite Lipschitz constant
LΩk for all x, x̂ ∈ Ωk.
We first show that ek(t) < ξ(‖x̂k‖) during the interval

[sk, sk+1], and then show that the inequality still holds dur-
ing interval [sk+1, ak+1) with the maximum delay Dk given
by (15). Finally, we can derive that V̇ ≤ −(1− ς)α(‖x‖) by
showing that ξ(‖x̂k‖) ≤ ξ(x(t)) for all t ∈ [ak, ak+1) and all
k = 0, 1, · · · , k′.
During interval [sk, sk+1], from inequality (11), it’s easy

to show that ‖ek(t)‖ ≤ θ(‖x̂k‖) ≤ ξ(‖x̂k‖). Besides, from
the dynamic behavior of the gap ek(t) in this interval, we
can also find the minimum inter-sampling interval which will
be used in the next step.
The dynamic behavior of ek(t) satisfies

ėk(t) = f(x̂k + ek(t),K(x̂k)), ∀t ∈ [ak, ak+1).

Since we’ve shown that ‖ek(t)‖ < ξ(‖x̂k‖) for all t ∈ [sk, sk+1],
it’s easy to see that x(t), x̂k ∈ Ωk for all t ∈ [sk, sk+1] and
all k = 0, 1, · · · , k′. So, from (10) the derivative of ‖ek(t)‖
satisfies

d‖ek(t)‖
dt

≤ ‖ėk(t)‖ ≤ ψ(x̂k,K(x̂k−1)) + LΩk‖ek(t)‖, (18)

for all t ∈ [sk, ak). Solving the dynamic inequality, we have

‖ek(ak)‖ ≤ eq(‖xk‖)eLΩk
Dk +

ψ(x̂k,K(x̂k−1))
LΩk

(eLΩk
Dk − 1).

For interval [ak, ak+1), the derivative of ‖ek(t)‖ satisfies

d‖ek(t)‖
dt

≤ ‖ėk(t)‖ ≤ ψ(x̂k,K(x̂k)) + LΩk‖ek(t)‖. (19)

With ‖ek(ak)‖ as the initial condition, we have

‖ek(sk+1)‖ ≤Ψk,k−1(x̂k, x̂k−1)
LΩk

(eLΩk
Tk − 1)

+ eq(‖xk‖)eLΩk
Tk . (20)

We know that at sk+1, ‖ek(sk+1)‖ = θ(‖x̂k‖). Together with
(20), we derive that Tk ≥ T k, where T k is given by (14).
Moreover, with (12), it’s easy to see that Tk ≥ T k > 0. So
we know that during time interval [ak, ak + T k], there is no
sampling. Since Dk ≤ Dk ≤ T k, we can make sure that no
sampling occurs during interval [sk, ak].
Now, let’s show that ‖ek(t)‖ ≤ ξ(‖x̂k‖) for t ∈ [sk+1, ak+1)

for k = 0, 1, · · · , k′. We assume that it is not true. In this
case, since Dk+1 is the maximum delay, there must exist-
s D′

k+1 < Dk+1 < D̂k+1 such that at time sk+1 + D′
k+1,

‖ek(sk+1 +D′
k+1)‖ = ξ(‖x̂k‖), and ‖ek(t)‖ ≤ ξ(‖x̂k‖) for all

t ∈ [sk+1, sk+1+D′
k+1]. So, we can use the same technology

to show that

‖ek(sk+1 +D′
k+1)‖

≤θ(‖x̂k‖)eLΩk
D′

k+1 +
ψ(x̂k,K(x̂k))

LΩk

(eLΩk
D′

k+1 − 1). (21)

Since ‖ek(sk+1 + D′
k+1)‖ = ξ(‖x̂k‖), we can derive that

D′
k+1 ≥ D̂k+1, which contradicts the assertion that D′

k+1 <

D̂k+1. So the assumption which says that there exist some
t ∈ [sk+1, ak+1) such that ‖ek(t)‖ > ξ(‖x̂k‖) is not true.
So, we can conclude that ‖ek(t)‖ ≤ ξ(‖x̂k‖) for all t ∈
[sk+1, ak+1).

By now, we have shown that ‖ek(t)‖ ≤ ξ(‖x̂k‖) for all
t ∈ [sk, ak+1), and k = 0, 1, · · · , k′. The next, we will show
that ξ(‖x̂k‖) < ξ(‖x(t)‖) for all t ∈ [0, ak′+1).

From (13), we can derive that

ξ(‖x̂k‖) ≤ ξ(‖x̂k‖ − ξ(‖x̂k‖)) ≤ ξ(‖x̂k‖ − ‖ek(t)‖)
≤ ξ(‖x(t)‖), (22)

for all t ∈ [sk, ak+1), and all k = 0, 1, · · · , k′. Since ‖ek(t)‖ ≤
ξ(‖x̂k‖) ≤ ξ(‖x̂k‖) for all t ∈ [sk, ak+1), and k = 0, 1, · · · , k′,
together with (3) and (9), we can show that

V̇ ≤ −(1− ς)α(‖x(t)‖), (23)

for some constant ς ∈ (0, 1), all t ∈ [sk, ak+1), and all k =
0, 1, · · · , k′, i.e. all t ∈ [0, ak′+1).

Therefore, ‖x(t)‖ ≤ β(‖x0‖, t) for all t ∈ [0, ak′+1), and
hence ‖xk′+1‖ ≤ β(‖x0‖, sk′+1). It contradicts our assump-
tion in (17), which demonstrates that ‖xk‖ ≤ β(‖x0‖, sk),
for all k = 0, 1, · · · ,∞. If ‖xk‖ is bounded, x̂k is also bound-
ed, and hence so is Ωk. From the fact that the system locally
Lipschitz, we can conclude that LΩk is always bounded.

Since we have proven LΩk is always bounded, we can fol-
low the same idea of proving that xk is bounded to show
that (23) is true for all t ≥ 0, and hence the asymptotic
stability of the system is shown.

Remark 4.2. Inequality (11) and (12) assure that D̂k

and T k are positive, and hence guarantee that Dk is al-
ways positive. We know that at time sk+1, ‖ek‖ = θ(‖x̂k‖).
Meanwhile, ξ(‖x̂k‖) is an upper bound on ‖ek‖ to assure
asymptotic stability. Since (11) holds, it means that we can
accept some positive amount of delay such that ‖ek‖ can go
beyond θ(‖x̂k‖) but within ξ(‖x̂k‖). (12) assures that the
minimum inter-sampling interval T k is always positive. We
know that at sk, ‖ek‖ is bounded from above by the quanti-
zation error ēq(‖xk‖). If (12) holds, the next sampling time
should be some time in the future. Since Dk takes the min-
imum of D̂k and T k which are both positive, Dk is positive,
too.

Remark 4.3. ēq can be chosen such that ēq(s) < θ(s −
ēq(s)) for all s ∈ Γ. We notice that in (12), θ and ēq are
based on different variables. To make the design of quan-
tization error easier, we can chose ēq(s) such that ēq(s) <
θ(s − ēq(s)) for all ēq(s) < s. This inequality implies (12),
since ‖x̂k‖ ≥ ‖xk‖ − ēq(‖xk‖) ≥ 0.

Remark 4.4. LΩk converges to a finite constant as the
state approaches the origin. In the proof of theorem 4.1, we
show that ‖x̂k‖ is always bounded. Since the radius of Ωk

(which is defined as a ball centered at the origin) is a class K
function of x̂k, we can see that as time goes by, Ωk converges
to the origin, and LΩk converges to a finite constant.



Remark 4.5. If we set the quantization error, network
delay and noise to be 0, then the minimum inter-sampling
intervals T k in our work and Wang’s work in [14] are the
same. We both study the event triggered nonlinear systems.
While Wang’s work in [14] considered system noise with-
out quantization error and delay, we consider quantization
error and delay without system noise. If we set the quan-
tization error, network delay and noise to be 0, we can see
that the minimum inter-sampling intervals in both works are
the same.
If we set the quantization error and system noise to be 0,

the minimum inter-sampling intervals and the maximum de-
lays in both works are in similar forms. Wang’s work in [13]
studied the minimum inter-sampling interval and the maxi-
mum delay for event triggered systems. While Wang focused
on linear systems which have system noise but no quantiza-
tion error, we focus on nonlinear systems which have quan-
tization error but no system noise. If we set the quantization
error and system noise to be 0, we can find that the mini-
mum inter-sampling intervals and the maximum delays are
in similar forms.

Remark 4.6. No sampling occurs during the interval [sk,
sk + Dk), so we guarantee that sk < ak ≤ sk+1. With the
maximum delay Dk defined as the minimum of D̂k and T k,
we know that Dk ≤ T k. T k is the minimum inter-sampling
interval, which means that no sampling occurs during time
[sk, sk + T k). Therefore, we can guarantee the admissible
time sequence, i.e. sk < ak ≤ sk+1.

5. STABILIZING BIT-RATE
Stabilizing bit-rate is the bit-rate which is sufficient to

guarantee the asymptotic stability of the system. This sec-
tion studies three conditions under which the stabilizing bit-
rate is 0, finite, and infinite.
Before talking about the stabilizing bit-rate, we first give

a quantization map for the system given quantization er-
ror eq(‖xk‖). Since at sampling time sk, both sensor and
controller understand that ‖ek−1(sk)‖ = θ(‖x̂k−1‖), we on-
ly need to quantize the surface of the box ‖ek−1(sk)‖ ≤
θ(‖x̂k−1‖) (for convenience, we use infinity norm here). First,
we use -log2 2n. bits to identify which side ek−1 lies on, and

then we cut this side uniformly into
⌈

θ(‖x̂k−1‖)
eq(‖xk‖)

⌉n−1
parts.

If ek−1(sk) lies on one of the small parts, then ek−1(sk) will
be quantized as the center of this part, and x̂k can be cal-
culated to be the sum of x̂k−1 and the quantized ek−1(sk).
In all, the number of bits used at the kth sampling is

Nk = -log2 2n.+ (n− 1)

⌈
log2

⌈
θ‖x̂k−1‖
eq(‖xk‖)

⌉⌉
(24)

We should notice that the number of bits transmitted at
each time can be different, since we fix the quantization error
instead of the number of bits. Also because the quantization
error is fixed, uniform quantization minimizes the number
of bits used to quantize the uncertainty set ‖ek−1(sk)‖ =
θ(‖x̂k−1‖).
Now, let’s define the stabilizing bit-rate as

rk =
Nk

D̄k
. (25)

For convenience of the rest of this paper, we define φc(‖x̂k‖)

as a class K function satisfying

ψ(x̂k,K(x̂k)) ≤ φc(‖x̂k‖) (26)

lim
x̂k→0

ψ(x̂k,K(x̂k))
φc(‖x̂k‖)

> 0, (27)

and φu(‖x̂k‖) as a class K function satisfying

uk = ‖K(x̂k)‖ ≤ φu(‖x̂k‖). (28)

lim
x̂k→0

‖K(x̂k)‖
φu(‖x̂k‖)

> 0 (29)

The three conditions under which the stabilizing bit-rate is
0, finite and infinite are studied in the next three subsections.

5.1 Zero stabilizing bit-rate

Theorem 5.1. We assume that all the assumptions in
theorem 4.1 hold, if

lim
s→0

θ(s)
eq(s)

< ∞, (30)

lim
s→0

φc(s)
θ(s)

= lim
s→0

φu(s)
θ(s)

= lim
x→0

LΩk = 0, (31)

then

lim
x→0

rk = 0.

Proof. We first show that limx→0 Nk is bounded with
(30), and then prove that Dk goes to infinity if (31) holds.
With the stabilizing bit-rate defined as rk = Nk

Dk
, we then

demonstrate that limx→0 rk = 0.
Let’s first show that limx→0 Nk < ∞. It is easy to see

that

1 ≤ Oξ = Oξ ≤ Oθ, 1 ≤ Oēq (32)

The first inequality and the first equality can be derived from
(13), the second inequality can be found from (11), and the
third inequality can be shown from (11-13).

From (24), we know that if limx→0
θ‖x̂k−1‖
eq(‖xk‖)

< ∞, then

limx→0 Nk < ∞. From the fact that ‖xk−x̂k−1‖ = θ(‖x̂k−1‖),
we know that ‖xk‖ ≥ |‖x̂k−1‖ − θ(‖x̂k−1‖)|. So, we have

lim
x→0

θ(‖x̂k−1‖)
eq(‖xk‖)

< lim
x̂k−1→0

θ(‖x̂k−1‖)
eq(|‖x̂k−1‖ − θ(‖x̂k−1‖)|)

= lim
x̂k−1→0

θ(‖x̂k−1‖)
eq(‖x̂k−1‖)

< ∞ (33)

The first equality holds because (32) is true, and the second
inequality is derived from (30).

Next, we show thatDk goes to infinity as x approaches the
origin. It is done by showing that both D̂k and T k converge
to infinity as x approaches the origin.

For D̂k, it can be rewritten as

D̂k =
1

LΩk−1

ln
(
1 + LΩk−1D̃k−1

)
,

where D̃k−1 =
ξ(‖x̂k−1‖)−θ(‖x̂k−1‖)

ψ(x̂k−1,K(x̂k−1))+LΩk−1
θ(‖x̂k−1‖)

.

If

lim
x→0

LΩk−1D̃k−1 > 0,



from (31), we know that D̂k goes to infinity.
If

lim
x→0

LΩk−1D̃k−1 = 0,

then

lim
x→0

D̂k = lim
x̂k−1→0

D̃k−1

≥ lim
x̂k−1→0

1− θ(‖x̂k−1‖)
ξ(‖x̂k−1‖)

φc(‖x̂k−1‖)
ξ(‖x̂k−1‖)

+ LΩk−1

θ(‖x̂k−1‖)
ξ(‖x̂k−1‖)

= ∞

The first inequality holds because of inequality (26), and the
second equality holds because (31) and (32) hold. Therefore,
limx→0 D̂k = ∞.
For T k, it can be rewritten as

T k =
1

LΩk

ln(1 + LΩk T̃k),

where T̃k =
θ(‖x̂k‖)−ēq(‖xk‖)

Ψk,k−1(x̂k,x̂k−1)+LΩk
ēq(‖xk‖) .

If

lim
x→0

LΩk T̃k > 0,

from (31), we know that T k goes to infinity.
If

lim
x→0

LΩk T̃k = 0,

then

lim
x→0

T k = lim
x→0

T̃k

≥ lim
x̂k→0

1− ēq(‖xk‖)
θ(‖x̂k‖)

φc(‖x̂k‖)
θ(‖x̂k‖) + 2

ψ(x̂k,K(x̂k−1))

θ(‖x̂k‖)
+

LΩk
ēq(‖xk‖)

θ(‖x̂k‖)

We know from (31) that limx̂k→0
φc(‖x̂k‖)
θ(‖x̂k‖)

= 0. If we can

show that
ψ(x̂k,K(x̂k−1))

θ(‖x̂k‖) and
LΩk

ēq(‖xk‖)
θ(‖x̂k‖) converge to 0, then

limx→0 T k = ∞.

lim
x→0

ψ(x̂k,K(x̂k−1))
θ(‖x̂k‖)

≤ lim
x̂k→0

(
φc(‖x̂k‖)
θ(‖x̂k‖)

+ L′
Πk,k−1

‖uk − uk−1‖
θ(‖x̂k‖)

)

≤ lim
x̂k→0

L′
Πk,k−1

(
φu(‖x̂k‖)
θ(‖x̂k‖)

+
φu(‖x̂k−1‖)
θ(‖x̂k‖)

)

= lim
x̂k→0

L′
Πk,k−1

φu(‖x̂k−1‖)
θ(‖x̂k‖)

,

where Πk,k−1 = {u ∈ Rm : ‖u‖ ≤ φu(max{‖x̂k‖, ‖x̂k−1‖})}.
Since we’ve shown in theorem 4.1 that x̂k is always bounded,
Πk,k−1 is bounded, and so is L′

Πk,k−1
(the Lipschitz constan-

t of f with respect to u). The first inequality holds because f

is locally Lipschitz with respect to u, i.e.
|ψ(x̂k,uk−1))−ψ(x̂k,uk)|

‖uk−uk−1‖
≤ L′

Πk,k−1
, the second inequality holds because L′

Πk,k−1
< 0,

and inequality (28), (31) hold.
From ‖xk− x̂k−1‖ = θ(‖x̂k−1‖), we can see that ‖x̂k−1‖ ≤

‖xk‖ + θ(‖x̂k−1‖) ≤ ‖xk‖ + ξ(‖xk‖). From ‖xk − x̂k‖ ≤
ēq(‖xk‖), it can be show that ‖x̂k‖ ≥ ‖xk‖ − ēq(‖xk‖) > 0

(the last inequality can be derived from (12)). So,

lim
x→0

ψ(x̂k,K(x̂k−1))
θ(‖x̂k‖)

≤ lim
xk→0

L′
Πk,k−1

φu(‖xk‖+ ξ(‖xk‖))
θ(‖xk‖ − ēq(‖xk‖))

= lim
xk→0

L′
Πk,k−1

φu(ζ1‖xk‖)
θ(ζ2‖xk‖)

= 0.

The inequality, Oēq ≥ 1 in (32), implies the first equality.
The second equality holds because of (31) and (30).

By now, we’ve shown that limx→0
ψ(x̂k,K(x̂k−1))

θ(‖x̂k‖) = 0. Nest,

we show that
LΩk

ēq(‖xk‖)
θ(‖x̂k‖)

converges to 0, too.

lim
x→0

LΩk ēq(‖xk‖)
θ(‖x̂k‖)

≤ lim
x→0

LΩk ēq(‖xk‖)
θ(‖xk‖ − ēq(‖xk‖))

= lim
x→0

LΩk ēq(‖xk‖)
θ(ζ2‖xk‖)

= 0.

Therefore, limx→0 T k = limx→0 D̂k = ∞, which implies
that limx→0 Dk = ∞. Together with the fact that Nk con-
verges to a finite constant, rk goes to 0 as the state ap-
proaches the origin.

Remark 5.2. Equalities in (31) indicate that ‖ek(t)‖ de-
creases faster than θ(‖x̂k‖) and ξ(‖x̂k‖), which leads to in-
finite minimum inter-sampling interval and infinite maxi-
mum delay. From (20), we can see that LΩk , φc(s) and
φu(r) (these two function consist Ψk,k−1(s, r)) reflect how
fast ‖ek(t)‖ changes, and θ(s) is the threshold function. (31)
indicates that φc(s) and φu(s) decrease faster than θ(s).
With the fact that LΩk goes to 0, we can conclude that
‖ek(t)‖ decreases faster than θ if (31) holds. Therefore, as
the state approaches the origin, the inter-sampling interval
becomes longer and longer, and finally goes to infinity. S-
ince ξ decreases slower than θ as x goes to the origin (from
(32)), ξ must decrease slower than ‖ek(t)‖. So, as x goes to

the origin, D̂k converges to infinity. Since both T k and D̂k

go to infinity, the maximum delay Dk also goes to infinity.

Remark 5.3. We don’t consider the case when Nk goes
to infinity as the state approaches the origin, because it is
not practical to transmit infinite bits for one sampling. But
if Nk goes to infinity, which is implied by the violation of
(30), we can show that the stabilizing bit-rate still converges
to 0 if (31) holds.

5.2 Finite stabilizing bit-rate

Theorem 5.4. We assume that all the assumptions in
theorem 4.1 hold. If (30) is true, and

lim
s→0

φc(s)
θ(s)

< ∞, lim
s→0

φu(s)
θ(s)

< ∞, lim
x→0

LΩk = L < ∞ (34)

then there must exist a finite non-negative constant a and b
such that

lim
x→0

rk =
L
ln 2

(a(n− 1) + b). (35)

Proof. Following the same idea in theorem 5.1, we show
that Nk goes to finite. If the maximum delay Dk also con-
verges to a non-zero constant, then the stabilizing bit-rate,
rk, is finite. Taking a close look at rk, we see that rk takes



the form of rk =
LΩk
ln 2 (ak(n−1)+bk). If we can show that rk

converges to a finite number, then there must exist a finite
constant a and b such that (35) holds.
Following the same idea in theorem 5.1, since (34), we can

show that limx→0 D̂k > 0 and limx→0 T k > 0, and hence
limx→0 Dk > 0.

Remark 5.5. Compared with theorem 5.1, theorem 5.4 is
a more general case. We can see that if all the conditions in
theorem 5.1 hold, then the conditions in theorem 5.4 must
be satisfied. It indicates that 5.1 is a special case of 5.4, or
in other words, 5.4 is a more general case of 5.1.

Remark 5.6. Inequalities in(34) indicate that ‖ek(t)‖ de-
creases faster than or comparable to θ(‖x̂k‖) and ξ(‖x̂k‖) as
x goes to the origin. Therefore, the minimum inter-sampling
interval and the maximum delay converge to a finite number.

Remark 5.7. The stabilizing bit-rates in Liberzon’s work
[7] and our work have the similar form. The difference is
that the dimension in our case is n− 1, and we have a bias
term b. When we do the quantization, we only quantize the
surface of the box ‖ek(sk+1)‖ ≤ θ(‖x̂k‖). So our quantiza-
tion dimension is 1 less than the quantization dimension in
[7]. Meanwhile, we need -log2(2n). bits to indicate which
side ek(sk+1) lies on, which gives rise to the bias term b.

5.3 Infinite stabilizing bit-rate

Theorem 5.8. If

lim
s→0

φc(s)
θ(s)

= ∞, or lim
s→0

φu(s)
θ(s)

= ∞, (36)

then the stabilizing bit-rate goes to infinity, i.e.

lim
x→0

rk = ∞.

Proof. First of all, from (24), we can see that the Nk is
always positive.
Following the same steps in the proof of theorem 5.1, we

can show that if (36) holds, then either D̂k or T k converges
to 0, and hence Dk goes to 0.
Therefore, rk goes to infinity.

Remark 5.9. If (36) holds, ‖ek(t)‖ decreases slower than
θ(‖x̂k‖) and ξ(‖x̂k‖) as the state goes to the origin. There-
fore, the minimum inter-sampling interval and the maximum
delay become shorter and shorter as x approaches the origin,
and finally go to 0.

6. SIMULATION RESULTS
In this section, we first design a threshold function θ and

quantization error eq for a nonlinear system to demonstrate
theorem 4.1 and 5.1. Meanwhile, for the nonlinear sys-
tem, we also compare our results with the results in Liber-
zon’s work [7] to show that event triggered quantization can
achieve better performance than the periodic quantization
while using lower bit-rate than the periodic one. Then, theo-
rem 4.1 and 5.4 are tested in a scalar linear case, and demon-
strated to be true.
Now, let’s consider a nonlinear system

ẋ1 = x3
1 + 2x3

2 + u

ẋ2 = −x3
1 − x3

2
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Figure 2: Zero stabilizing bit-rate

with u = −2x̂3
1 − x̂3

2 and x(0) = [1; 1]. We give the Lyapnov
function as V = x4

1 + x4
2. It can be shown that V̇ < 0, if

we set ξ(s) = 0.2796s, ξ(s) = 0.2185s, φc(s) = 2s3, φu(s) =

3s3, θ(s) = 0.015s, eq(s) = 0.005s. In this experiment, we
set LΩk = 21‖x̂k‖.

We ran the system for 300 seconds, and always used Dk

as the delay in the communication network. The state tra-
jectories (solid line for x1, and dashed line for x2) are shown
in the top plot in Figure 2 with x-axis the time axis and
y-axis the state. They show that as time goes by, the two
elements of the state go to 0 asymptotically. The bottom
plot of Figure 2 shows the stabilizing bit-rate calculated from
the simulation (solid line). Its x-axis indicates time, and the
y-axis is log10(rk). We can see that the stabilizing bit-rate
gradually decreases to 0 as x approaches the origin. This
behavior demonstrates theorem 5.1.

Moreover, we are also interested in comparing our result-
s with Liberzon’s work in [7]. To make these two works
comparable, we first find the longest period to stabilize the
system using periodic quantization (uniform quantization),
and then we set the delay of each transmission to be one
period. The longest period we found to stabilize the sys-
tem is T = 0.015s, and the least number of bits of each
transmission is N = 2 log2(-e

LΩk
T .) if -eLΩk

T . is odd, or
2 log2(-e

LΩk
T . + 1), otherwise (In [7], N is required to be

odd). In this experiment, we still use LΩk = 21‖x̂k‖.
The state strategy (dot dashed line for x1, and dotted line

for x2) is shown in the top plot of Figure 2. We see that it
is asymptotically stable, but has very big overshoot in the
transient process. Compared with the performance incurred
by the periodic quantization, the event triggered quantiza-
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Figure 3: Finite stabilizing bit-rate

tion has smoother transient process, and almost the same
convergence rate. Now, let’s look at the stabilizing bit-rate
using the periodic quantization. The lower bound on the
stabilizing bit-rate using periodic transmission is indicated
by crosses. When we look at the actual stabilizing bit-rate
calculated from simulation, we find that it is more than 10
times higher than the theoretical minimum stabilizing bit-
rate in the worst case, though we use the longest period and
the least number of bits. That’s because when we calculate
N , we first compute eLΩk

T which is always only a little bit
above 1, and then take the ceil function of it which becomes
2, finally since it is not odd, we add 1 to it to make it odd.

So we start from e
L

Ωk
T

which is only a little bit above 1,
and end with 3. Hence, the number of bits transmitted is al-
ways greater than the theoretical one, which results in higher
stabilizing bit-rate than the theoretical lower bound on sta-
bilizing bit-rate. This is especially true when LΩk

and T are
small. If we compared the stabilizing bit-rate using periodic
transmission (dashed line) with the stabilizing bit-rate us-
ing event triggered quantization (solid line), we can see that
except at the very beginning of the time, our stabilizing bit-
rate is always less than the stabilizing bit-rate using periodic
transmission. Moreover, our stabilizing bit-rate is even less
than the theoretical lower bound on the stabilizing bit-rate
presented in [7]. In all, we conclude that event triggered
quantization achieves better performance than the period-
ic quantization while using lower bit-rate than the periodic
one.
Now, let’s look at a linear case, we consider a system as

ẋ = 0.09x+ u

with u = −0.1x̂k and x(0) = 1. We choose the Lyapunov
function as V = x2. To achieve as small bit-rate as we
can, we choose ξ(s) = 0.1s, ξ(s) = 1

11s, θ(s) = 1
25s and

eq(s) = 0 (in scalar case, we only need 1 bit to specify
whether ek−1(sk) is positive or negative). According to the
dynamic of the system, φc(s) = 0.01s, φu(s) = 0.1s and
L = 0.09.
The system was run for 300 seconds. The top plot of

Figure 3 shows the state trajectory of the system, which
converges to the origin asymptotically but slowly. The slow
behavior is mainly because when we design the threshold,
our main purpose is to reduce the bit-rate as long as the
asymptotic stability is guaranteed. As our bit-rate is 0.3335

bit/second, x took about 200 seconds to go below 0.05. The
stabilizing bit-rate remains the same at 0.3335 bit/second
for all time. That’s because since every thing is linear, D̂k

is a constant which is always smaller than T k, and hence
Dk is a constant. Since we transmit only 1 bit for every
sampling, the bit-rate of the system remains the same. The
upper bound on stabilizing bit-rate calculated from theorem
5.4 is 0.8142 bit/second. This is greater than the stabilizing
bit-rate calculated from our experiment, which demonstrates
theorem 5.4.

7. DISCUSSION AND FUTURE WORK
This paper explores a way to design the threshold func-

tion and quantization error to achieve zero or finite stabi-
lizing bit-rate. First, a controller needs to be designed such
that the closed loop system is ISS stable with respect to the
local state gap ek = x− x̂k. After the controller is fixed, the
performance function ξ and ξ, an upper bound on the closed
loop dynamic behavior φc, and an upper bound on control
input φu are determined. Based on ξ, φc and φu, the thresh-
old function are chosen such that the conditions in theorem
5.1 or 5.4, and (11) are all satisfied. Once the threshold
function is chosen, the quantization error is decided to make
sure that (12) and (30) hold.

In this paper, we give a quantization map without ful-
ly discussing whether this is the best choice such that the
number of bits Nk is minimized at each sampling time. The
quantization map that we present in this paper only quan-
tizes the surface of an uncertainty set. We are not sure that
this quantization map always uses smallest number of bits
than any other quantization maps to achieve the same quan-
tization level. The fully discussion of how to choose the op-
timal quantization map with event triggering law such that
Nk is minimized while the maximum quantization error ēq
is guaranteed will be in our future work.

In future work, we will also study the case when there
is system noise. Some interesting questions arise. These
questions include how the noise influences the stabilizing bit-
rate, whether the same conditions assure finite stabilizing
bit-rate, how the minimum inter-sampling interval and the
maximum delay changes, and so on.

The work in this paper can be used as a basis to study the
scheduling problem when there are several controllers shar-
ing the same communication network. For one controller, we
know the steady stabilizing bit-rate, the number of bits to be
transmitted, and the maximum delay of the package. When
there are several controllers sharing the same communica-
tion network, it’s important to schedule the transmissions
of the controllers such that all the controllers have enough
information to stabilize their plants while the communica-
tion limit of the network is not exceeded.
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