
Distributed Switching Control to Achieve Resilience to
Deep Fades in Leader-Follower Nonholonomic Systems

Bin Hu
Department of Electrical Engineering

University of Notre Dame
Notre Dame, Indiana

bhu2@nd.edu

Michael D. Lemmon
Department of Electrical Engineering

University of Notre Dame
Notre Dame, Indiana
lemmon@nd.edu

ABSTRACT
Leader-follower formation control is a widely used distributed con-
trol strategy that often needs systems to exchange information over
a wireless radio communication network to coordinate their forma-
tions. These wireless networks are subject to deep fades, where a
severe drop in the quality of the communication link occurs. Such
deep fades may significantly impact the formation’s performance
and stability, and cause unexpected safety problems. In many appli-
cations, however, the variation in channel state is a function of the
system’s kinematic states. This suggests that one can use channel
state information as a feedback signal to recover the performance
loss caused by a deep fade. This paper derives sufficient conditions
to assure almost-sure practical stability of a leader-follower non-
holonomic system in the presence of deep fades. These conditions
relate the channel state to the system’s convergence rate. This paper
uses this fact to switch the controller. Simulation results are used
to illustrate the main findings in the paper.

Categories and Subject Descriptors
B.1.0 [Control Structures and Microprogramming]: General;
H.1.1 [Models and Principles]: Systems and Information The-
ory—General Systems Theory

Keywords
Distributed switching control, Deep fading, Resilience, Channel
state information, Almost sure practical stability

1. INTRODUCTION
In the past decade, formation control has found extensive appli-

cations in industry and academia [2, 12, 9, 11, 5]. In formation
control, the agents coordinate with each other to form and main-
tain a specified formation. The coordination is often conducted
distributedly over a wireless radio communication network. It is
well known that such communication networks are subject to deep
fading, which causes a severe drop in the network’s quality-of-
service (QoS). These deep fades negatively impact the formation’s
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performance and stability by interfering with the coordination be-
tween agents. The loss of coordination may cause serious safety
issues in applications like smart transportation system [17], un-
manned aerial vehicles system[14] and underwater autonomous ve-
hicles[13]. These issues can be addressed by developing a resilient
control system that detect such deep fades and adaptively reconfig-
ures its controller to maintain a minimum performance level.

Channel fading is often characterized in terms of channel gain
[16]. Channel gain represents the signal strength ratio of receiv-
ing signal over transmission signal. It is usually modeled as an
independent and identical distributed (i.i.d) random process with
Rayleigh or Rician distribution. This model is inadequate in two
aspects. First, the fading process exhibits memory which is better
modeled as a Markov random process with two states [18]. Second,
the i.i.d. channel model ignores the impact that the formation’s
kinematic states have on the channel. Vehicle-to-Vehicle (V2V)[4]
systems provide an example in which the velocity and relative dis-
tance of the vehicles significantly affect the channel state. More-
over, for those wireless communication systems using directional
antennae [20, 1], changes in the relative vehicle orientation could
also lead to a deep fade.

The loss of information caused by deep fades negatively limits
the performance that can be achieved by the control system. Prior
work [19, 15, 6] characterized the minimum stabilizing bit rate for
linear time-invariant system assuming constant channel gain. As
noted above, the assumption on constant channel gain is overly
simplistic for fading channels. An initial attempt to study the im-
pact of the time-varying channel gains on mean square stability ap-
peared in [10]. This work, however, assumed the channel gain was
functionally independent from the physical system’s dynamics. In
[7], the authors examined a more realistic fading channel model in
which the channel is exponentially bursty and is dependent on the
norm of the physical system’s states. This paper extends the prior
work in [7] to a two-dimensional leader-follower formation control
problem.

Another unique aspect of this paper is the use of almost-sure
practical stability to characterize system safety. By "safety", we
mean that the probability of a system’s deviation from a bounded
set asymptotically goes to zero as time gets large. The asymptotic
nature of such probability bounds is captured in almost-sure sta-
bility concepts. Much of the prior work has instead focused on
mean-square stability (MSS) which do not provide strong safety
guarantees in the sense mentioned above. The focus on almost-
sure characterizations of safety is therefore another unique feature
of this paper.

Leader-follower formations are useful for their simplicity and
scalability. This paper studies the leader-follower control scheme
for nonholonomic systems using directional antennae to access the



wireless communication network. Assuming an exponentially bursty
channel model, this paper derives conditions that are sufficient for
the system to have almost-sure practical stability [8]. The pa-
per uses this characterization to propose adaptive control schemes
that switch feedback controllers in response to changes in channel
state. The simulation results demonstrate the merits of the proposed
method.

2. MATHEMATICAL PRELIMINARIES
Let Z and R denote the set of integers and real numbers, respec-

tively. Let Z+ and R+ denote the set of positive integers and non-
negative real numbers, respectively. Let Rn denote the n-dimensional
Euclidean vector space. The ∞-norm on the vector x ∈ Rn is |x| =
max |xi| : 1 ≤ i ≤ n, and the corresponding induced matrix norm is
∥A∥ = max1≤i≤n ∑n

j=1 |A
j
i |. Given a vector x ∈ Rn, we let xi ∈ R

for i = 1,2, . . . ,n denote the ith element of vector x. We let f (·) :
R→Rn denote a function mapping the real line onto vectors in Rn.

Let f (t)∈Rn denote the value that function f takes at time t ∈R.
Let {τk}∞

k=0 denote a strictly monotone increasing sequence with
τk ∈ R+ for all k ∈ Z+ and τk < τk+1. Then, f (τk) denotes the
value of function f at time τk. For simplicity, we let f (k) denote
f (τk) if its meaning is clear in the context. The left-hand limit at
τk ∈R of a function f (·) : R→ Rn is denoted by f (k−). Similarly,
the right-hand limit of the function f (k) is denoted by f (k+).

Consider a continuous-time random process {x(t)∈Rn : t ∈R+}
whose sample paths are right-continuous and satisfy the following
differential equation,

ẋ(t) = f (x(t),u(t),w(t),d(t)) (1)

where f (0,0,0,0) = 0, u(·) : R+ → Rm is a control input, d(t) is
an external L∞ disturbance with |d(t)|L∞ = D and w(t) is a jump
process

w(t) =
∞

∑
ℓ=1

wℓδ (t − τℓ) (2)

in which {wℓ, ℓ∈Z+} is a Markov process describing the ℓth jump’s
size at jump instants {τℓ}∞

ℓ=1. The expectation of this stochastic
process at time t will be denoted as E(x(t)).

The system in equations (1-2) is said to be almost-surely practi-
cal stable if for all ε > 0 and ρ > 0, there exists T > 0 and (δ ,λ )
with λ > δ > 0 such that if |x(0)| ≤ δ , then

Pr

{
sup
t≥T

|x(t)|−λ ≥ ε

}
≤ ρ

Given a dynamical system (1-2) and a set, Ω ⊂Rn, of safe states
one says this system is almost-surely safe if the system is almost-
surely practically stable with respect to the set of safe states, Ω.

3. SYSTEM DESCRIPTION

3.1 System Model
Figure 1 shows a string formation of N mobile robots. For each

mobile robot, we consider the following kinematic model,

ẋi = vi cos(θi), ẏi = vi sin(θi), θ̇i = ωi, i = 0,1, . . . ,N −1 (3)

where (xi(t),yi(t)) denotes the vehicle i’s position at time t ∈ R+,
θi(t) is the orientation of the vehicle relative to the x axis at time t.
vi and ωi are the vehicle’s speed and angular velocity that represent
the control input.

As shown in Figure 1, the cascaded formation with N mobile
robots consists of N−1 leader-follower pairs. In each leader-follower

Figure 1: A cascaded formation of nonholonomic vehicular sys-
tem

pair j, we assume that the leader can directly measure its relative
bearing angle α j to the follower. Similarly, the follower can mea-
sure its bearing angle ϕ j to the leader. Both of the vehicles are able
to measure the relative distance L j. What is not directly known
to the follower is the relative bearing angle α j. In this paper, we
consider the case when information about leader’s bearing angle
α j is transmitted over a wireless channel. The channel is accessed
through a directional antenna whose radiation pattern is shown in
Figure 2.

The control objective of the cascaded formation is to have the
follower in each leader-follower pair to regulate its speed and an-
gular velocity to achieve and maintain a desired distance and bear-
ing angle. Let Ld j and αd j denote the desired inter-vehicle distance
and relative bearing angle, respectively, in the jth leader-follower
pair. It will therefore be convenient to characterize the time rate
of change of the relative distance L j and leader’s relative bearing
angle α j as follows [5]

L̇ j = v j−1 cosα j − v j cosϕ j −dω j sinϕ j
α̇ j = 1

L j

(
−v j−1 sinα j − v2 sinϕ j +dω j cosϕ j

)
+ω j−1

(4)

where d is the distance from the vehicle’s center to its front.

3.2 Information Structure
As discussed in the previous section, the leader’s bearing angle

α j in each leader-follower pair must be transmitted to the follower
over a wireless channel. In this regard, the information about α j
that is available to the follower is limited by the following two con-
straints,

• The state measurement α j(t) is only taken at a sequence of
time instants {τk}∞

k=0 that satisfies τk < τk+1,k = 1,2, . . . ,∞.

• The sampled data α j(τk) is quantized with a finite number of
bits R̄ j, and is transmitted over an unreliable wireless chan-
nel with only first R j(k) bits (R j(k) ≤ R̄ j) received at the
follower.

At kth sampling time instant, the triple {α̂ j(k−),U j(k),c j(k)} char-
acterizes the information structure of the leader’s bearing angle
α j(τk) at the leader side. Assume that the measurement α j(τk)
lies in an interval [−U j(k)+ α̂ j(k−),U j(k)+ α̂ j(k−)] with α̂ j(k−)
representing the "center" of the interval and U j(k) representing the

length of the interval. The codeword c j(k) = {b jl(k)}
R̄ j
l=1 consists

of bits b jl(k) ∈ {−1,1}, and is constructed by truncating the first
R̄ j bits of the following infinity bit sequence

B j(k) := {{b jl(k)}∞
l=1 ∈ {−1,1}∞|α j(τk) = α̂ j(k−)+U j(k)

∞

∑
l=1

1
2 j b jl(k)}

This corresponds to a uniform quantization of the sampled state
within the interval [−U j(k)+α̂ j(k−),U j(k)+α̂ j(k−)] with R̄ j num-
ber of bits.



We assume that the follower only successfully receives the first
R j(k) bits in the codeword c j(k). The information structure at the
follower side is another triple {α̂ j(k),U j(k), ĉ j(k)} with ĉ j(k) =

{b jl}
R j(k)
l=1 and α̂ j(k) being constructed as follows

α̂ j(k) = α̂ j(k−)+U j(k)
R j(k)

∑
l=1

1
2 j b jl(k). (5)

α̂ j(k) is an estimate of the leader’s bearing angle α j(k) at time
instant τk.

In order to reconstruct the estimate α̂ j(k), it is necessary to syn-
chronize the leader and follower in the sense that they have the
same information structure. We assume a noiseless feedback chan-
nel, with each successfully received bit being acknowledged to the
leader. This allows one to ensure that the information structures are
synchronized between the leader and follower.

The follower then uses the estimated bearing angle α̂ j(k), and
the measured inter-vehicle distance L j, to select its speed, v j, and
angular velocity ω j to achieve the control objective.

3.3 Wireless Channel
As shown in Figure 2, the leading vehicle in each pair uses a

directional antenna to access the wireless channel. We assume
the channels are free of interference from other leader-follower
pairs, but the channel does exhibit deep fading. Deep faces oc-
cur when the channel gain drops below a threshold and stays below
that threshold level for a random interval of time. Such fades are
often modeled using two-state Markov chains[18].

We adopt an exponentially bounded burstiness (EBB) character-
ization of the fading channel. In particular, let h(·, ·) and γ(·, ·) de-
note continuous, positive and monotone decreasing functions from
R+×R+ to R+. Assume the probability of successfully decoding
R j(k) bits at each sampling time τk satisfies

Pr
{

R j(k)≤ h(|α j(τk)|, |L j(τk)|)−σ
}
≤ e−γ(|α j(τk)|,|L j(τk)|)σ (6)

for |α j(τk)| ≤ π/2 and σ ∈ [0,h(|α j(τk)|, |L j(τk))|] with

Pr
{

R j(k) = 0
}
= 1 (7)

for |α j(τk)| > π/2,∀k ∈ Z+. We say such channels exhibit ex-
ponentially bounded burstiness (EBB). EBB characterizations can
be used to describe a wide range of Markov channel models that
include traditional i.i.d models as well as two-state Markov chain
models. The analysis methods in this paper apply to a wide range
of realistic channel conditions.

The equations (6) and (7) characterize the fact that if the follower
vehicle is out of the antenna’s radiation scope, i.e. |α j(τk)|> π/2,
then the communication link between the vehicles is broken. If the
vehicle is within the scope, i.e. |α j(τk)| ≤ π/2, the probability of
having a low bit rate is exponentially bounded.

As shown in Figure 2, the function h(|α j|, |L j|) in EBB model
may be seen as a threshold characterizing the low bit rate region
as a function of current formation’s state. The exponent associ-
ated with exponential decrease is represented by a similar function
γ(|α j|, |L j|). The two functions play different roles in the EBB
model. Function h(|α j|, |L j|) characterizes the fact that as the ab-
solute value of the formation’s state L and α increase, the low bit
rate threshold shrinks and moves toward the origin. Such activity
can be induced due to path loss that is widely considered in the
wireless communication community. On the other hand, the func-
tion γ(|α j|, |L j|) in the exponential bound models the fact that the
likelihood of exhibiting a low bit rate increases as the formation
state is away from the origin.

Figure 2: Exponential Bounded Burstiness (EBB) Model for
directional wireless channel

What should be apparent from the EBB model is that we are ex-
plicitly accounting for the relationship between channel state (R j(k))
and formation configuration. A major goal of this paper is to ex-
ploit that relationship in deciding how to switch between different
controllers to assure almost sure performance.

3.4 Distributed Switching Control
In this paper, the control objective is to steer the cascaded vehic-

ular system shown in Figure 1 to a sequence of desired distances
{Ld j}

N−1
j=1 and bearing angles {αd j}

N−1
j=1 in a distributed fashion,

and then maintain around those set-points.
At each time instant {τk}∞

k=0, the follower of each leader-follower
pair switches among a group of controller gains to regulate its ve-
locity and angular velocity to achieve the control objective. Let
K(k) := {Kα j (k),KL j (k)} denote the controller gain pair used for
leader-follower pair j at time instant τk. These controller gains are
selected from one pair of a collection of values K j = {K j1 ,K j2 , . . . ,K jM}.
Recall that the dynamics of formation configuration is equation (4),
we use standard input to state feedback linearization to generate the
control input[

v j
ω j

]
=

[ −cosϕ j −L j sinϕ j

− sinϕ j
d

L j
d cosϕ j

][
KL j (k)(Ld j −L j)
Kα j (k)(αd j − α̂ j)

]
over the time interval [τk,τk+1). The variable α̂ j(t) is a continu-
ous function over [τk,τk+1), and satisfies the following initial value
problem,

˙̂α j = Kα j (k)(αd j − α̂ j), α̂ j(τk) = α̂ j(k) (8)

where the estimate α̂ j(k) is obtained from equation (5). With this
control, the inter-vehicle distance L j and bearing angle α j satisfy
the following differential equations over [τk,τk+1),[

L̇ j
α̇ j

]
=

[
cosα j 0
−sinα j

L j
1

][
v j−1
ω j−1

]
+

[
KL j (k)(Ld j −L j)
Kα j (k)(αd j − α̂ j)

]
(9)

for all k = 1,2, . . . ,∞.
The equations (8-9) represent the closed-loop system for the leader-

follower pair j and can be viewed as an example of a jump nonlin-
ear system given in equations (1-2). The L∞ disturbance in the jth
leader-follower system is [v j−1,ω j−1]. The estimate of the bear-
ing angle α̂ j forms a jump process with jumps occurring at discrete
time instants {τk}∞

k=1. As shown in equation (5), the magnitude
of the jump at each time instant is stochastically governed by the
length of the uncertainty interval U j(k) and the number of received
bits R j(k). Such jump process significantly impacts the formation
performance of the cascaded system by pushing the formation state
away from the equilibrium, which in turn leads to deep fades with



a high probability. In the next section, we will show how to recon-
figure the local controller gain in response to the changes of U j(k)
and R j(k) such that almost sure performance is assured.

It is apparent from Figure 1 that vehicle j for j = 1,2, . . . ,N −2
plays a leader in leader-follower pair j+1 as well as a follower in
leader-follower pair j. In this regard, vehicle j could observe the
full state α j+1 of the leader-follower subsystem j + 1 because it
serves the leadership in that system. By observing the behavior of
the following vehicle, vehicle j for j = 1,2, . . . ,N − 1 can adjust
its controller gain to overcome large overshoots in the following
system. Such cooperative control strategy lessens the amplification
on the disturbance from the upper leader-follower systems to the
lower systems.

4. MAIN RESULTS
This paper’s main results consist of two parts regarding to the

behavior of inter-vehicle distance L j and bearing angle α j for each
leader-follower pair. The first part of the results provide a suffi-
cient condition under which the inter-vehicle distance L j for j =
1,2, . . . ,N −1 is convergent to a compact invariant set. The second
part of the results derive sufficient conditions for the almost sure
practical stability for the bearing angle α j, j = 1,2, . . . ,N −1.

In the main results, we use the fact that the leader’s action in
each leader-follower pair can be constrained as a function of the
following system’s state to assure the stability for the whole leader-
follower system. Proposition 4.1 provides an explicit characteri-
zation of the bound on the leader’s action, as well as a distributed
way to achieve that bound. Using the results from Proposition 4.1,
one can easily prove the first main result in this paper (Lemma 4.4),
i.e. the convergence of inter-vehicle distance since the distance is
measurable to both leader and follower. The more challenging and
interesting part of the results is to guarantee the almost sure practi-
cal stability for the bearing angle α j, which is presented in section
4.2.

The following Proposition is provided to assure the control in-
put from upper leader-follower subsystem is bounded as a function
of state estimates of the bottom system. The proof is provided in
Appendix.

PROPOSITION 4.1. Consider the closed-loop system in equa-
tions (8-9), let 0 < d ≤ 1, if there exists a sequence of controller
gains {K j(k)}∞

k=0, K j(k) = {KL j (k),Kα j (k)} ∈ K j such that for
given bounded increasing positive functions W j(·) : R+ → R>0
with sups W j(s) = W ∗

j , j = 1,2, . . . ,N − 1, the following inequal-
ity holds for all k = 0,1, . . . ,∞

max
{

KL j (k)(ML j (k)+Ld j ),Kα j (k)|α̃ j(k)|
}
≤

W j(|α̃ j+1(k)|)
(1+ML j (k))

(10)

Where

ML j (k) = max
{

L j(τk),L j(τk+1)
}

L j(t) =
(

Ld j +
W j−1(|α j(k)|)

KL j (k)

)(
1− e−KL j (k)(t−τk)

)
+L j(k)e

−KL j (k)(t−τk)

α̃ j(k) = αd j − α̂ j(k)

then ∣∣∣∣[ v j(t)
ω j(t)

]∣∣∣∣
∞
≤W j(|α̃ j+1(k)|), t ∈ [τk,τk+1) (11)

Because of inequality (11), each leader-follower subsystem j in
equation (9) can bound the external disturbance [v j−1,ω j−1] by ob-
serving its local state estimate α̃ j at each time instatnt τk. Mean-
while, the subsystem j−1 can select its controller gain so that the
control input [v j−1,ω j−1] satisfies the bound in inequality (11) be-
cause the estimate of bearing angle α̃ j is always available to sub-
system j−1. Such property provides a basis to design a distributed
and cooperative switching law to assure the stability for the whole
formation system.

REMARK 4.2. Functions W j(·) are upper bounds on the control
inputs of upper leader-follower system and the values of W j(·) at
each time instant τk can also be seen as feedback signals from the
bottom system. Such feedback signals directly constrain the mag-
nitude of control input from upper system, so that the disturbances
are not amplified from upper system to bottom system.

REMARK 4.3. The inequality (10) could be viewed as a switch-
ing rule for the leader-follower pair j to react to the changes on
system j+1’s bearing angle. The switching rule applied over each
time interval [τk,τk+1) is feasible because it is only based on the
information that is available at time τk. Since the function W j is
bounded and positive, we can always find sufficiently small con-
troller gains such that the inequality (10) holds.

4.1 Convergence of Inter-vehicle Distance L j

In this section, we present the first main result of this paper in-
volving the convergence of inter-vehicle distance. The following
lemma provides a sufficient condition on the controller gain KL j ,
under which one can show L j(t) converges at an exponential rate
to an invariant set Ωinv,j centered at the desired inter-vehicle dis-
tance Ld j , for j = 1,2, . . . ,N −1.

LEMMA 4.4. Let the hypothesis of proposition 4.1 hold, con-
sider the system (8-9) with the selected controller gain {KL j ,Kα j}∈
K j. If KL j >

W ∗
j

δ (Ld j−d) and L j(0) > d, then for any sample path,

L j(t) ≥ d for all t ∈ R+ and there exists a finite time T > 0 such
that L j(t) enters and remains in the set

Ωinv,j ≡
{

L j ∈ R+ | |L j −Ld j | ≤
W ∗

j

δKL j

}
for all t ≥ T and any δ ∈ (0,1].

PROOF. Consider the function V (L j)=
1
2 (L j−Ld j )

2 and closed-
loop state equation (9). Taking the directional derivative of V , one
obtains

V̇ (L j) =−KL j (L j −Ld j )
2 +(L j −Ld j ) · v j−1 cosα j

≤−KL j (1−δ )(L j −Ld j )
2 −δ ·KL j (L j −Ld j )

2 + |L−Ld |W ∗
j

for any δ ∈ (0,1]. The last inequality holds because of proposition

4.1. When |L j −Ld j | ≥
W ∗

j
δKL j

, the following dissipative inequality

holds,

V̇ (L j) ≤ −KL j (1−δ )(L j −Ld j )
2

= −2KL j (1−δ )V (L j) (12)

This is sufficient to imply that V (L j(t)) is an exponentially decreas-
ing function of time that enters the set Ωinv,j in finite time. L j(t)> d
for all time since all L j in Ωinv,j satisfy

L j ≥−
W ∗

j

δKL j

+Ld j > d (13)



REMARK 4.5. Note that d is the distance from the center of the
vehicle to the front of the vehicle. As shown in Figure 1, L j(t)> d
simply means that the two vehicles do not collide with each other.

4.2 Almost Sure Practical Stability for Bear-
ing Angle α j

In this section, we provide the second main result of this paper
that assures almost sure practical stability for the bearing angle α j.
Figure 3 is used to interpret the basic idea and results in this section.
Two types of sets are depicted in Figure 3 with one enclosed by the
blue curve, and the other one enclosed by the red curve. The blue
curve enclosed set represents the partition generated by inequality
G(|α j|, |L j|) ≤ η j with associated threshold η j ∈ (0,1), which is
shown in Lemma 4.7. The red-curve enclosed area characterizes
the target set where the system trajectory will converge to almost
surely. The size of the target set is characterized by α∗

j (η j) which
varies as a function of the threshold η j.

The main result states that the bearing angle α j will almost surely
converge to the target set if the system trajectory enters and remains
in the set enclosed by the blue curve. To assure the invariance of
the blue curve enclosed set, we adopt a switching control strategy
to reconfigure the control gain for each leader-follower pair. Fig-
ure 3 shows one possible evolution of the system trajectory α j and
L j with the switching strategy. We use black dots to represent the
estimates of the bearing angle α̂ j(τk) at each sampling time τk. A
bar is used to characterize the uncertainty interval with the estimate
α̂ j(τk) as its center. The length of bar can be viewed as an upper
bound of the quantization error |α j(τk)− α̂ j(τk)|, and increases
as the channel condition decreases. Therefore, the basic idea for
switching is that when the system trajectory approaches the blue
set’s boundary with an increasing uncertainty length, an appropri-
ate controller is re-selected to assure the stochastic variation on the
uncertainty length satisfies a supermartingale like inequality, which
guarantees the system states converge to the target set with proba-
bility one.

Figure 3: Partition of formation state space.

To be more specific about the main result, we first use a dynamic
quantization method to show that the quantization error |α j(τk)−
α̂ j(τk)| can be bounded by a sequence that is recursively constructed
(Lemma 4.6). Then, we present a sufficient condition on the se-
lection of controller, under which the sequence satisfies a super-
martingale like inequality (Lemma 4.7). Finally, the super-martingale
inequality condition leads to the proof of almost sure practical sta-
bility for the sequence (Theorem 4.9), and as well as the bearing
angle α j (Theorem 4.12).

Recall that {α j(k−),U j(k)}∞
k=0 characterizes the quantizer’s state

at each time instance τk. The following lemma gives a recursive
construction for this sequence such that the quantization error re-
mains bounded by some function of U j(k) for all k ≥ 0. Such pre-
dictable bound is used to switch controllers to assure almost sure
performance. Note that the technique used to prove the Lemma
follows the pattern in traditional dynamical quantization [15, 3].

LEMMA 4.6. Consider the closed-loop system (8-9), given the
transmission time sequence {τk}∞

k=0, and controller pairs {KL j (k),
Kα j (k)}∞

k=0. Let Tk = τk+1 − τk, let the hypothesis of proposition
4.1 and Lemma 4.4 hold, the initial ordered pair {α̂ j(0),U j(0)}
is known to both leader and follower, and the initial state α j(0) ∈
[−U j(0),U j(0)], U j(0) ≤ π

2 . If the sequence {α j(k−),U j(k)}∞
k=0

is constructed by the following recursive equation,

U j(k+1) = B j(k)Tk +2−R j(k)U j(k) (14)

α̂ j(k+1−) = (α̂ j(k+)−αd j )e
−Kα j (k)Tk +αd j (15)

where

B j(k) = max
{

1
min{L jmin,L j(k)}

,1
}

W j−1(|α̃ j(k)|)

L jmin =

[
−L̃ j(k)+

W j−1(|α̃ j(k)|)
KL j (k)

]
e−KL j (k)Tk +Ld j −

W j−1(|α̃ j(k)|)
KL j (k)

L̃ j(k) = Ld j −L j(k)

then the bearing angle α j(k) for all j = 1,2, . . . ,N − 1 generated
by system equations (8-9) can be bounded as

|α j(k)− α̂ j(k+)| ≤U j(k) (16)

where U j(k) = 2−R j(k)U j(k) and R j(k) is the number of bits re-
ceived over the time interval [τk,τk+1).

PROOF. Let e j(t) = α j(t)− α̂ j(t) denote the estimation error,
and we consider the dynamic of e j(t) over time interval [τk,τk+1),

ė j =
[
− sinα j

L j
1
][ v j−1

ω j−1

]
By inequality d|e j |

dt ≤
∣∣∣ de j

dt

∣∣∣, we have

d|e j|
dt

≤
∣∣∣∣[ − sinα j

L j
1
][ v j−1

ω j−1

]∣∣∣∣ (17)

≤
(

1
|L j|

+1
)∣∣∣∣[ v j−1

ω j−1

]∣∣∣∣
≤

(
1

|L j|
+1
)

W j−1(|α̃ j(k)|) (18)

The last inequality holds because of Proposition 4.1. The explicit
bound on |L j| over time interval [τk,τk+1) can be derived as fol-
lows,

L̇ j ≥ KL j (k)(Ld j −L j)−|v j−1|
≥ KL j (k)(Ld j −L j)−W j−1(|α̃ j(k)|)

Using Gronwall-Bellman inequality over [τk,τk+1) yields,

L j(t) ≥
[

L j(τk)−
(

Ld j −
W j−1(|α̃ j(k)|)

KL j (k)

)]
e−KL j (k)(t−τk)

+ Ld j −
W j−1(|α̃ j(k)|)

KL j (k)
)



Since Ld j ≥
Wj−1(|α̃ j(k)|)

KL j (k)
and L j(t)> d from Lemma 4.4, we know

infτk≤t<τk+1 L j(t) is obtained at either t = τk or t = τk+1,

L j(t) ≥ inf
τk≤t<τk+1

L j(t) = min
{

L jmin,L j(τk)
}

(19)

L jmin =

[
−L̃ j(k)+

W j−1(|α̃ j(k)|)
KL j (k)

]
e−KL j (k)Tk

+ (Ld j −
W j−1(|α̃ j(k)|)

KL j (k)
)

By inequality (19), (18) is rewritten as

d|e j|
dt

≤

(
1

min
{

L jmin,L j(τk)
} +1

)
W j−1(|α̃ j(k)|)

Solving above differential inequality, we have

|e j(t)| ≤

(
1

min
{

L jmin,L j(τk)
} +1

)
W j−1(|α̃ j(k)|)︸ ︷︷ ︸

B j(k)

(t − τk)+ |e j(τk)|

For t → τk+1, one can get |e(k+1−)| ≤ B j(k)Tk + |e j(k)|. And
assume that |e j(k)| ≤ U j(k), then |e(k+1−)| ≤ B j(k)Tk +U j(k).
We know that

|e(k+1+)| ≤ 2−R j(k+1)|e(k+1−)| ≤ 2−R j(k+1) (B j(k)Tk +U j(k)
)

From equation (14) and U j(k+1) = 2−R j(k+1)U j(k+1), we have
|e(k+1+)| ≤ U j(k+ 1). The equation (15) holds by simply con-
sidering the solution to the ODE ˙̃α j = −Kα j α̃ j with initial value
α̃ j = αd j − α̂ j(k+).

With Lemma 4.6, the following lemma provides a sufficient con-
dition on the selection of controller gains that leads to almost-surely
practical stability for the bearing angle α j, j = 1,2, . . . ,N −1.

LEMMA 4.7. Consider the closed loop system in equations (8-
9). Let

G(|α j|, |L j|) = e−h(|α j |,|L j |)γ(|α j |,|L j |)(1+h(|α j|, |L j|)γ(|α j|, |L j|))

be non-negative, monotone increasing function with respect to |α j|
and |L j| respectively. If there exists a sequence of controller gains
{KL j (k),Kα j (k)}∞

k=0 with K j(k) = {KL j (k),Kα j (k)} ∈ K j for all
k ∈ Z such that the Proposition 4.1 and following inequality hold
for any η j ∈ (0,1)

G(α j(k+1),L j(k+1))≤ η j (20)

α j(k+1) = |− α̃ j(k)e
−Kα j (k)Tk +αd j |+B j(k)Tk +U j(k)

L j(k+1) = Ld j +
W j−1(|α̃ j(k)|)

KL j (k)
−
[

L̃ j(k)+
W j−1(|α̃ j(k)|)

KL j (k)

]
e−KL j (k)Tk

then

E
[
U j(k+1)|U j(k)

]
≤ η jU j(k)+η jB j(k)Tk,∀k ∈ Z+ (21)

PROOF. Consider the sequence {U j(k)}∞
k=0 that satisfies equa-

tion (14) in Lemma 4.6, using the argument in [7], the conditional
expectation E

[
U j(k+1)|U j(k)

]
can be bounded as

E
[
U j(k+1)|U j(k)

]
≤ G(|α j(k+1)|, |L j(k+1)|)

(
B j(k)Tk +U j(k)

)
Let G(|α j(k+1)|, |L j(k+1)|)≤ η j, we have final conclusion (21)
hold. In order to select the controller gain {KL j (k),Kα j (k)} for the
time interval [τk,τk+1), the selection decision is made based only

on the information at time instant τk. Thus, we further bound the
state |α j(k+1)| and |L j(k+1)| by considering

|e j(k+1−)|= |α j(k+1−)− α̂ j(k+1−)|
≤U j(k+1) = B j(k)Tk +U j(k)

since α j(k+1) = α j(k+1−), we have

|α j(k+1)| ≤ |α̂ j(k+1−)|+B j(k)Tk +U j(k)

≤ |αd j −
(

αd j − α̂ j(k)
)

e−KL j (k)Tk |+B j(k)Tj +U j(k)

, α j(k+1)

Similarly, we can also bound |L j(k+1)| by L j(k+1) that is shown
in Proposition 4.1,

|L j(k+1)| ≤ L j(k+1) =
(

Ld j +
W j−1(|α̃ j(k)|)

KL j (k)

)(
1− e−KL j (k)Tk

)
+L j(k)e

−KL j (k)Tk

Since the function G(|α j(k+1)|, |L j(k+1)|) is monotone increas-
ing function w.r.t |α j(k+1)| and |L j(k+1)|, then if

G
(
α j(k+1),L j(k+1)

)
≤ η j

we have

G
(
|α j(k+1)|, |L j(k+1)|

)
≤ η j

then the final conclusion holds.

REMARK 4.8. Function G(α j,L j) in condition (20) is directly
related to the EBB model, and it generates a partition of the for-
mation state space as shown in Figure 3. Each partition associates
with a threshold η j that characterizes the convergent rate for the
uncertainty set. The aim of switching control strategy is to guaran-
tee the condition (20) holds with a selected η j.

With Lemma 4.6, the following theorem proves that sequence {U j(k)}∞
k=0

is almost-surely convergent to a compact set.

THEOREM 4.9. Suppose the sequence {U j(k)}∞
k=0 is generated

by equation (14) in Lemma 4.6, if there exists a sequence of con-
troller pairs {KL j (k),Kα j (k)}∞

k=0 such that inequality (21) holds
with η j(k) = η j ∈ (0,1) for all k = 0,1, . . . ,∞, then we have

lim
k→∞

Pr
{

U j(k)−U∗
jm > ε

}
≤ lim

k→∞

(
ηk

j U j(0)

ε
−

ηk+1
j

(1−η j)ε
B∗

j T
∗
)

= 0

with U∗
jm =

η j
1−η j

B∗
j T

∗, where B∗
j = supk{B j(k)} and T ∗ = supk{Tk}.

PROOF. Consider the inequality (21), let B∗
j = supk{B j(k)} and

T ∗ = supk{Tk}, then

E
[
U j(k+1)|U j(k)

]
≤ η j(k)U j(k)+η j(k)B∗

j T
∗

Taking the expectation on both side of above inequality and propa-
gating backward, yields

E
[
U j(k+1)

]
≤ ηk+1

j U j(0)+
k+1

∑
i=1

η i
jB

∗
j T

∗

= ηk+1
j U j(0)+

η j

(
1−ηk+1

j

)
1−η j

B∗
jT

∗



then, using Markov inequality, we have for all ε > 0

lim
k→∞

Pr
{

U j(k)−U∗
jm > ε

}
≤ lim

k→∞

E
[
U j(k)−U∗

jm

]
ε

≤ lim
k→∞

(
ηk

j U j(0)

ε
−

ηk+1
j

(1−η j)ε
B∗

j T
∗
)

= 0

REMARK 4.10. From Lemma 4.6, one knows that
B∗

j =
supk{Wj−1(α̃ j(k))}

d . With U∗
jm =

η j
1−η j

B∗
j T

∗, one may have smaller
U∗

jm by reducing the sampling period T∗, function gain W j−1 or
threshold η j.

REMARK 4.11. Though the bound U∗
jm on the limit set is con-

servative since the proof is based on the worst case of B j(k),Tk and
W j−1, the fundamental relationship between U jm and B j(k),Tk,W j−1
still holds for tight bounds.

With Theorem 4.9, we proceed to state the main theorem as fol-
lows,

THEOREM 4.12. Consider the closed-loop system in equations
(8-9), if there exists a sequence of controller pair {KL j (k),Kα j (k)}∞

k=0
such that the hypothesis of Theorem 4.9 holds, then there exists a
positive bounded real number α∗

j , the random process {α j(t)}, t ∈
R+ is almost-surely convergent to a compact set {α j ∈ R||αd j −
α j| ≤ α∗

j }, i.e.

lim
t→∞

Pr{sup
k>t

|αd j −α j(k)|−α∗
j > ε}= 0,∀ε > 0 (22)

where α∗
j =

B∗
j T

∗

1−η j

(
η j +

1

1−e
−K∗α j

Tmin

)
.

PROOF. Consider t ∈ [τk,τk+1), we know

˙̂α j = Kα j (k)
(

αd j − α̂ j(t)
)

with initial value α̂ j(τk). Therefore, let α̃ j(k) = αd j − α̂ j(k), we
have

α̃ j(k+1−) = e−Kα j (k)Tk α̃ j(k)

Let E j(k+1) = α̃ j(k+1)− α̃ j(k+1−), then

α̃ j(k+1) = e−Kα j (k)Tk α̃ j(k)+E j(k+1)

Let K∗
α j

= min{Kα j |Kα j ∈ K j} and Tmin = min{Tk|k ∈ Z+}

|α̃ j(k+1)| ≤ e−K∗
α j

Tmin |α̃ j(k)|+ |E j(k+1)| (23)

The term |E j(k+1)| can be further bounded by

|E j(k+1)| ≤
(
B j(k)Tk +U j(k)

)
(1−2−R j(k+1))

≤ B∗
j T

∗+U j(k)

Taking the expectation on both sides of inequality (23) and using
above bound on |E(k+1)| yields

E
[
|α̃ j(k+1)|

]
≤ e−K∗

α j
TminE

[
|α̃ j(k)|

]
+B∗

j T
∗+E

[
U j(k)

]

Propagating backward above inequality and with the result from
Theorem 4.9, we have

E
[
|α̃ j(k+1)|

]
≤ e−K∗

α j
Tmin(k+1)E

[
|α̃ j(0)|

]
+

1− e−(k+1)K∗
α j

Tmin

1− e−Kα j Tmin
B∗

j T
∗

+
k+1

∑
i=0

e−iK∗
α j

TminE[U j(k− i)]

≤ e−K∗
α j

Tmin(k+1)E
[
|α̃ j(0)|

]
+

1− e−(k+1)K∗
α j

Tmin

1− e−Kα j Tmin
B∗

j T
∗

+
η j

1−η j
B∗

j T
∗

1− e−(k+1)K∗
α j

Tmin

1− e−K∗
α j

Tmin
−

ηk+1
j − e−(k+1)K∗

α j
Tmin

η j − e−K∗
α j

Tmin


+

ηk+1
j − e−(k+1)K∗

α j
Tmin

η j − e−K∗
α j

Tmin
U j(0)

, g(k)+
B∗

j T
∗

(1−η j)(1− e−K∗
α j

Tmin)

Because

E
[
U j(k+1)

]
≤ ηk+1

j U j(0)+
η j

(
1−ηk+1

j

)
1−η j

B∗
jT

∗

= g2(k)+
η j

1−η j
B∗

j T
∗

where gi(k), i = 1,2 are exponentially decaying functions with

limk→∞ gi(k)= 0, i= 1,2, and E
[
|αd j −α j(k)|

]
=E

[
|α̃ j(k)+U j(k)|

]
≤

E
[
|α̃ j(k)

]
+E

[
U j(k)|

]
, then

lim
t→∞

Pr{sup
k>t

|αd j −α j(k)(k)|−α∗
j > ε}

≤ lim
t→∞

E
[
|α̃ j(k)

]
+E

[
U j(k)|

]
−α∗

j

ε
(24)

≤ lim
t→∞

g1(k)+g2(k)
ε

= 0

REMARK 4.13. The inequality (24) holds if the hypothesis of
Markov inequality holds for our cases. Though we are still working
on a rigorous proof to confirm that hypothesis, we believe the final
results hold.

5. SIMULATION EXPERIMENTS
This section presents simulation experiments examining the re-

silience of our proposed switched controller to deep fades, and also
demonstrates the benefits of using almost sure practical stability as
a safety measurement over the traditional mean square stability.

5.1 Simulation Setup
In the simulation, we consider N = 4 vehicles that is cascaded

in a string as shown in Figure 1. Each leader-follower pair uses a
two-state Markov chain model to simulate the fading channel be-
tween the leader and follower. The two-state Markov chain has
two states with one representing the good channel condition and
the other one representing the bad channel condition. Here, the



"good channel state" simply means the transmitted bit is success-
fully received, while the "bad channel state" means the failure of
receiving the bit.

Following the characterization of Makov chain model in [18],
one can find that the conditional probability for good channel state
is a monotone decreasing function of L j(t)

cosα j(t)
, while the condi-

tional probability for bad channel state is a monotone decreasing
function of cosα j(t)

L j(t)
. The explicit function form depends on the

distribution of the channel gain. In this simulation, we therefore

use p11 = e
−3×10−3(

L j (t)
cosα j (t)

)2

to denote the conditional probability

for the good channel state. Let p22 = e
−6×102(

cosα j (t)
L j (t)

)2

represent
the conditional probability for the bad channel condition. Hence,
the corresponding transition probabilities between these states are
1− p11 and 1− p22. Then, we utilize the EBB model in equation
(6) to characterize the low bit region generated by the two-state
markov chain model. The corresponding functions in EBB model
(6) are

h(α j,L j) = R̄ je
−3×10−4(

L j (t)
cosα j (t)

)2

,γ(α j,L j) = e
−4.5×10−3(

L j (t)
cosα j (t)

)2

with R̄ j = 2 representing two bits are transmitted at each sampling
period.

The 100 ms sampling time that is widely used in mobile robot
system, is selected for each leader-follower pair ( j = 1,2,3), i,e,
Tk = 0.1 sec for all k ∈ Z+. The functions W j−1(·) in Proposition
4.1 are selected to be linear functions W j−1(|α̃ j(t)|) = a j|α̃ j(t)|+
b j with parameters selected as follows

a1 = 0.1,b1 = 0.01;a2 = 0.8,b2 = 2;a3 = 1,b3 = 4

The value of the parameter sets are chosen to be increasing with
respect to j to guarantee the feasibility of the controller selection
for each leader-follower system.

In this simulation, we consider an interesting and realistic sce-
nario that the fourth vehicle from far distance intends to merge into
the other three closed-clustered vehicles. Hence, the initial states
for three leader-follower pairs ( j = 1,2,3) are set as

α1(τ0) =
π
3
,α2(τ0) =

π
4
,α3(τ0) =

π
6
.

with initial uncertainty length U j(τ0) =
π
6 , and

L1(τ0) = 7.1,L2(τ0) = 7.1,L3(τ0) = 99.

By switching controller pairs from the following pool

K j =
{
(KL j ,Kα j ) : 0 < KL j ≤ 100,0 < Kα j ≤ 100

}
.

each leader-follower pair is required to achieve and maintain around
desired setpoints αd j = 0,Ld j = 2, j = 1,2,3.

5.2 Simulation Results
A Monte Carlo method was used to verify that the system has

almost surely practical stability when Proposition 4.1 and Lemma
4.7 hold. Each simulation example is run 100 times over a time
interval from 0 to 10 seconds.

In the first simulation, we select the controllers for each leader-
follower pair from K j, j = 1,2,3 so that Proposition 4.1 and Lemma
4.7 hold at each time instant τk. Figures 4-5 show the maximum and
minimum values of the system states L j and α j, j = 1,2,3 evalu-
ated over all the 100 runs. In both figures, the maximum value
is marked by red lines and the minimum value is marked by blue
lines. The two dashed lines in Figure 5 represent the upper and

lower bound for the relative bearing α , i.e. |α j| ≤ π/2, which char-
acterizes the safety region. We can see from Figures 4-5 that the
maximum and minimum values of the system states asymptotically
converge to a bounded set containing the desired set-points αd j = 0
and Ld j = 2. This is precisely the behavior that one would expect
if the system is almost sure practical stable. These results there-
fore, seem to confirm our statement in Theorem 4.12. Figures 6-7
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Figure 4: The maximum and minimum value of inter-vehicle
distance L j for leader-follower pair, j = 1,2,3.
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Figure 5: The maximum and minimum value of bearing angle
α j for leader-follower pair, j = 1,2,3.

show one sample of switching controller profile and channel state
for each leader-follower pair. The top plot in Figure 6 shows the
switching controller profile for the leader-follower pair 1 with red
line marked as controller gain Kα1 and blue line as controller gain
KL1 . The bottom one is the switching controller profile for leader-
follower pair 2 with the same marking rule. These plots show that
the controller gains stay low at the first two seconds to avoid caus-
ing large disturbance to the bottom system, then switch from low to
high when the systems approach the equilibrium and are confident
that the channel state will always stay good. The top plot in Figure
7 is the switching controller profile for the leader-follower system
3 with same marking rule, and the bottom plot is the channel state



R3(k) that characterizes the number of successfully received bits
at each time interval. We can clearly see from the plots that the
controller for system 3 starts with low gains to compensate the ef-
fect caused by a short string of zero bits at the beginning, and then
switches from low gain to high gain when channel condition stays
good. These results demonstrate that channel state indeed is used
as a feedback signal to switch the controller. In the second simu-
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Figure 6: One sample of switching controller profile for leader-
follower pair 1 and 2
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Figure 7: One sample of switching profile and channel state for
leader-follower pair 3

lation, we studied the benefits of almost sure practical stability as a
safety measurement over the traditional mean square stability. Tra-
ditional mean square stability requires the second moment of the
system state converges to a positive constant value, but it does not
put any constraint on the sample path which might potentially cause
safety issues. For a fair comparison, the same simulation setup and
parameters are applied in this simulation with the only difference
on the controllers. One type of controller used in this simulation
is a mean square stabilizing controller, which is selected to guaran-
tee mean square stability for each leader-follower pair. The other
type of controller is the switching controller proposed in this paper
to guarantee almost sure practical stability for each leader-follower
pair. The switching control strategy uses the mean square stabiliz-
ing controller as its initial controller.

Figure 8 shows a comparison of the maximum and minimum
values of the bearing angle α3 for leader-follower pair 3 with the
switching controller case in the top plot and the mean square con-
troller K1 = (5,0.5);K2 = (5,0.5);K3 = (2,50) in the bottom plot.
It is worth noting that (K1,K2,K3) is just one of the many selec-
tions in our simulation. Because of the space limitation, we only
use (K1,K2,K3) as an example to demonstrate the results. It is
clear from Figure 8 that the system’s sample path goes unbounded
as time increases by using a mean square stabilizing controller, but
it converges asymptotically to a bounded set by using a switch-
ing controller. These results suggest that the composition of mean
square stable systems does not guarantee mean square stability for
the whole system, while the composition of almost sure stable sys-
tems may still guarantee almost sure stability for the whole system.
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Figure 8: The maximum and minimum system trajectory for
leader-follower pair 3 with switching controller (Top) and non-
switching controller pair(Bottom) KL3 = 2 and Kα3 = 50

6. CONCLUSIONS
This paper studied the almost sure practical stability for leader-

follower formation control of a class of nonholonomic system in
the presence of deep fades exhibiting exponentially bounded bursti-
ness. The main results are the sufficient conditions to select dis-
tributed switching controller to assure almost sure practical stabil-
ity. The simulation results support our theoretical analysis and also
illustrate the benefit of using almost surely practical stability as a
safety measurement over traditional mean square stability.

Acknowledgments
The authors acknowledge the partial financial support of the Na-
tional Science Foundation (NSF-CNS-1239222).

7. REFERENCES
[1] C. A. Balanis. Antenna theory: analysis and

design/Constantine A. Balanis. J. Wiley, New York, 1982.
[2] T. Balch and R. C. Arkin. Behavior-based formation control

for multirobot teams. Robotics and Automation, IEEE
Transactions on, 14(6):926–939, 1998.

[3] R. W. Brockett and D. Liberzon. Quantized feedback
stabilization of linear systems. Automatic Control, IEEE
Transactions on, 45(7):1279–1289, 2000.



[4] L. Cheng, B. E. Henty, D. D. Stancil, F. Bai, and
P. Mudalige. Mobile vehicle-to-vehicle narrow-band channel
measurement and characterization of the 5.9 ghz dedicated
short range communication (dsrc) frequency band. IEEE
Journal on Selected Areas in Communications,
25(8):1501–1516, 2007.

[5] J. P. Desai, J. Ostrowski, and V. Kumar. Controlling
formations of multiple mobile robots. In Robotics and
Automation, 1998. Proceedings. 1998 IEEE International
Conference on, volume 4, pages 2864–2869. IEEE, 1998.

[6] N. Elia and S. K. Mitter. Stabilization of linear systems with
limited information. IEEE Transactions on Automatic
Control, 46(9):1384–1400, 2001.

[7] B. Hu and M. D. Lemmon. Using channel state feedback to
achieve resilience to deep fades in wireless networked
control systems. In Proceedings of the 2nd international
conference on High Confidence Networked Systems, April
9-11 2013.

[8] H. Kushner. Stochastic Stability and Control. Academic
Press, 1967.

[9] M. Mesbahi and M. Egerstedt. Graph theoretic methods in
multiagent networks. Princeton University Press, 2010.

[10] P. Minero, M. Franceschetti, S. Dey, and G. N. Nair. Data
rate theorem for stabilization over time-varying feedback
channels. IEEE Transactions on Automatic Control,
54(2):243–255, 2009.

[11] N. Moshtagh and A. Jadbabaie. Distributed geodesic control
laws for flocking of nonholonomic agents. Automatic
Control, IEEE Transactions on, 52(4):681–686, 2007.

[12] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and
cooperation in networked multi-agent systems. Proceedings
of the IEEE, 95(1):215–233, 2007.

[13] D. J. Stilwell and B. E. Bishop. Platoons of underwater
vehicles. Control Systems, IEEE, 20(6):45–52, 2000.
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8. APPENDIX
Proof of Proposition 4.1:

PROOF. Consider the infinite norm of the control input given in
equation (8),∣∣∣∣[ v j(t)

ω j(t)

]∣∣∣∣= ∣∣∣∣[ −cosϕ j −L j sinϕ j

− sinϕ j
d

L j
d cosϕ j

][
KL j (k)(Ld j −L j)
Kα j (k)(αd j − α̂ j)

]∣∣∣∣
≤
∥∥∥∥[ −cosϕ j −L j sinϕ j

− sinϕ j
d

L j
d cosϕ j

]∥∥∥∥∣∣∣∣[ KL j (k)(Ld j −L j)
Kα j (k)(αd j − α̂ j)

]∣∣∣∣
≤
(
1+ |L j(t)|

)
max{KL j (k)|L̃ j(t)|,Kα j (k)|α̃ j(t)|}

(25)

with L̃ j(t) = Ld j −L j(t). The supreme of |L j(t)| over time interval
[τk,τk+1) can be obtained by considering

L̇ j(t)≤ KL j (k)(Ld j −L j)(t)+W j−1(|α̃ j(k)|)

Using Gronwall Bellman theorem to solve above inequality and
yield,

L j(t)≤ L j(k)e
−KL j (k)(t−τk)+

(
Ld j +

W j−1(|α j(k)|)
KL j (k)

)(
1− e−KL j (k)(t−τk)

)
, L j(t)

Assume L j(t) > 0 (In Lemma 4.6, we prove that if controller gain
KL j (k) is selected sufficiently large, L j(t) > d > 0 holds for all
t ≥ 0), and because

dL j

dt
=
[
KL j (k)Ld j +W j−1(|α̃ j(k)|)−KL j (k)L j(k)

]
e−KL j (k)(t−τk)

dL j
dt ≥ 0 or dL j

dt < 0 over interval [τk,τk+1). In other words, L j(t)
is a monotone function over [τk,τk+1). Thus supτk≤t<τk+1

L j(t) is
obtained when t = τk or t → τk+1, i.e.

L j(t)≤ sup
τk≤t<τk+1

L j(t)

= max
{

L j(τk),L j(τk+1)
}
, ML j (k) (26)

Note that |L̃ j(t)|= |Ld j −L j(t)| ≤ L j(t)+Ld j , thus

|L̃ j(t)| ≤ Ld j +ML j (k) (27)

By inequalities (26-27), (25) can be further bounded∣∣∣∣[ v j(t)
ω j(t)

]∣∣∣∣
∞
≤ (1+ML j (k))max

{
KL j (k)(Ld j +ML j (k)),Kα j (k)|α̃ j(t)|

}
(28)

with α̃ j(t) = αd j − α̂ j(t) satisfying

˙̃α j =−Kα j (k)α̃ j, t ∈ [τk,τk+1)

with initial value α̃ j(τk). From the solution of the above ODE, it
is obvious that |α̃ j(t)|< |α̃ j(τk)|, then it is straightforward to show
that if the condition (10) is satisfied, the inequality (11) holds.


