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We present a numerical technique for open-boundary quantum transmission problems which yields, 
as the direct solutions of appropriate eigenvalue problems, the energies of(i) quasi-bound states and 
transmission poles, (ii) transmission ones, and (iii) transmission zeros. The eigenvalue problem 
results from reducing the inhomogeneous transmission problem to a homogeneous problem by 
forcing the in-coming source term to zero. This homogeneous problem can be transformed to a 
standard linear eigenvalue problem. By treating either the transmission amplitude t(E) or the 
reflection amplitude r(E) as the known source term, this method also can be used to calculate the 
positions of transmission zeros and ones. We demonstrate the utility of this technique with several 
examples, such as single- and double-barrier resonant tunneling and quantum waveguide systems, 
including t-stubs and loops. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

A common computational problem is to determine the 
quasi-bound states of a resonant transmitting quantum sys- 
tem. It is well known that the quasi-bound states of an open 
(leaky) system are related to the true bound states of the 
corresponding closed (isolated) system.’ While it is well 
known that the true bound states may be obtained by solving 
an eigenvalue problem, there has been no d@ect way of com- 
puting the corresponding quasi-bound state energies. In this 
article, we present a technique which allows, by the direct 
solution of an eigenvalue problem, the computation of the 
positions and life times of quasi-bound states and the ener- 
gies of transmission ones and zeros. 

For an isolated system, the bound states satisfy the time- 
independent Schrijdinger equation, 

(H-ED)$=O. (1) 

In discretized numerical form, the above equation represents 
a vector equation. Because the wave function at the bound- 
ary is zero, the Hamiltonian matrix H is Hermitian and the 
system has only bound states. 

For an open system, the Hamiltonian matrix H is no 
longer Hermitian, hence the system possesses quasi-bound 
states.2 As is customary, we model the open system as the 
previously isolated system comected to reservoirs by 
current-carrying leads,‘-’ schematically shown in Fig. 1. For 
a given energy E, the wave functions in the left- and right- 
hand side leads are plane waves with wave numbers k, and 
k, , respectively. The resulting complex-valued boundary 
conditions render the system’s Hamiltonian matrix non- 
Hermitian. 

The prototypical transmission problem is schematically 
shown in Fig. l(a), where an in-coming flux with amplitude 
a(E) (the “forcing term”) leads to out-going transmitted and 
reflected waves, with amplitudes t(E) and r(E), respectively 
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(the “system response”). As will be shown in Section II [Eq. 
(22)], the unknown system wave function is given as the 
solution of the following inhomogeneous problem, 

(H-kLBL--kRBR-ED)+=-a(E)P. (2) 

The left-hand side contains the matrices H and D, which are 
the same as for the corresponding bound-state problem, and 
which is obtained by setting the wave function to zero at the 
boundaries, compare to Eq. (1). The current-carrying open- 
system boundary conditions are represented by the complex 
and sparse matrices BL and BR; in fact, they only possess a 
non-zero entry at the boundary. + is the unknown wave func- 
tion vector which can be used to calculate the amplitudes 
t(E) [and r(E)]. The right-hand side contains the forcing 
term, a(E)P. For any given amplitude of the in-coming flux, 
a(E) , the solution of the system is uniquely determined. 

Quasi-bound states are characterized by a complex en- 
ergy, E = E, - X, where the real part E, gives the energy of 
the resonance and its imaginary part I’ is related to the life- 
time 7 by 7=ril(2136 It is well known that quasi-bound states 
lead to poles of the propagator (and the transmission 
amplitude),7 and therefore one can solve Eq. (2) in the 
complex-energy plane to locate the position of the poles. 
Another way to find these poles is to search for the zero of 
the determinant of the coefficient matrix 
det(H-k,BL-k,BR--ED)=O; a zero of the determinant 
means that Eq. (2) has no nontrivial solution, or + [or t(E)] 
possesses poles. Usually, this can be done by numerical 
search techniques, such as a Newton iteration method.8V9 

In this article, we present a direct solution method which 
yields the complex-valued quasi-bound state energies as the 
solutions of a conventional linear eigenvalue problem. 
Searching for the zeros of the system determinant of the 
inhomogeneous problem (2), is equivalent to finding the ei- 
genvalues of the corresponding homogeneous problem, 

(H-kLBL-kRBR-ED)+=O. (3) 
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FIG. 1. Schematic diagram of a resonant transmitting structure coupled to 
two leads; (a) shows an incident wave from the left with its transmitted and 
reflected components; (b) shows no incident wave from the left (transmis- 
sion poles); (c) shows no reflected wave in the left (transmission ones); (d) 
shows no transmitted wave in the right (transmission zeros). 

In general, this is a highly non-linear eigenvalue problem 
since H depends both upon k and E. For example, if we 
expand the wave function in terms of plane waves, then the 
matrix H contains terms which are exponential in the wave 
number [mexp(ikx)], and Eq. (3) cannot be solved by stan- 
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FIG. 2. Schematic diagram of resonant transmission systems and their po- 
tential profile for a given bias; (a) shows some typical resonant structures; 
(b) shows a resonant transmission system with an applied bias. 

dard eigenvalue routines. However, using the finite element 
method,” the unknown wave function is expanded by linear 
shaie functions, and the coefficient matrix of Eq. (3) be- 
comes a quadratic function of the wave number k. As we will 
show below, one can then transform this quadratic nonlinear 
matrix equation into a linear eigenvalue problem with in- 
creased matrix dimension. 

The transition from the above inhomogeneous problem 
(2) to the homogeneous problem has a geometric interpreta- 
tion: The homogeneous problem is obtained by setting the 
incoming forcing term to zero, as schematically depicted in 
Fig. l(b). The eigen-states of (3) are the quasi-bound states 
which “leak out” on both sides of the open system. 

Using an argument similar to the above treatment, we 
can also view the-transmitted (or reflected) waves as the 
forcing terms; t(E) or r(E) would then be the known vari- 
able in Rq. (2). Replacing a(E) on the right-hand side of Eq. 
(2) by either one of them (and moving a(E) as the now 
unknown variable onto the left-hand side), we obtain linear 
inhomogeneous problems similar to Eq. (2). It is obvious that 
the solutions of these new problems correspond to either 
transmission ones (t = 1 and r= 0), see Fig. l(c), or trans- 
mission zeros (t=O and r= I), see Fig. l(d). 

From a mathematical viewpoint, there are (n + 1) vari- 
ables but only n equations in (2). We  can choose any one of 
them as the known variable, and then the rest of the system is 
uniquely determined. Forcing this known (or source) vari- 
able to zero, leads to an eigenvalue problem. The three cases 
of interest are: 

(1) transmission poles [a(E)=O], 
(2) transmission ones [r(E) = 01, and 
(3) transmission zeros [t(E) = 01. 

This article is organized as follows: In Sec. II, we for- 
mulate the inhomogeneous problem for transmission; in Sec. 
III, we formulate the eigenvalue problem for transmission 
poles for cases with and without bias; in Sec. IV, we formu- 
late the eigenvalue problem for transmission ones; in Sec. V, 
we formulate the eigenvalue problem for transmission zeros; 
in Sec. VI, we apply this eigenvalue method to several ex- 
amples to demonstrate its utility. Finally, we summarize and 
give concluding comments. 

II. TRANSMISSION PROBLEM 

A. Formulation 

In this section, we formulate the inhomogeneous prob- 
lem for transmission in quasi-one-dimensional quantum 
waveguide systems, which are schematically shown in Fig. 
2(a). These structures include double-barrier and single 
quantum well structures, t-stubs, and loops. The one- 
dimensional effective mass S&r&linger equation, 

--- (4) 

has to be solved for the problem domain [x, JR]. 
The wave functions in the asymptotic regions on the left 

and right are 

2178 J. Appl. Phys., Vol. 78, No. 4, 15 August 1995 Shao et al. 



(54 

(5b) 

The amplitude of the in-coming plane wave with energy E is 
denoted by a(E). The resulting reflection and transmission 
amplitudes are denoted by r(E) and t(E), respectively. 

Using an effective-mass model,. the energy E is related 
to the wave number k by [see Fig. 2(b)], 

kL= 
&mfW--FL) 

i-i ’ 

kR= d2mi(E-Fd 
n * (6b) 

Here, rnf is the effective mass of the carrier (.I’=L,R). The 
Fermi energies on the left- and right-hand sides, denoted by 

(64 

FL and FR , respectively, are related to the external bias Vbias 
by 

FL-FR=eVbias, (7) 
e is electronic charge. Note that the wave numbers kL and k, 
are given by the carrier energy E and the applied bias Vbias. 

The transmission and reflection amplitudes t(E) and 
r(E) are obtained from the wave functions eR and $L by 

t(E)=cjl,(xR ,E)emikRxR, (84 

r(E)=[$L(xL,E)-eikLxL]eikLxL, @b) 
with xL being the left-hand boundary of the system and xR 
the right-hand boundary. 

At the two edges of the system, we have the following 
boundary conditions by matching the wave function and its 
derivative to plane waves on both sides,’ 

g(xL)=peik~x~+re-ik~x~, (94 

@(XL) = ikL(ae%%- re-%.xL) 

=2ikLaeikLxL--ikL@(xL), @b) 

@(xR) = teikRxR, (94 

$‘(XR)=ikRteikRXR=ik&(XR). (94 
Note that the wave functions at the boundaries are related to 
the transmission amplitude t(E) and the reflection amplitude 
r(E). 
B. Finite element discretization 

Equations (4), (9b), and (9d) constitute a boundary value 
problem for the wave function, $(x) , on the problem domain 
[xL ,xR] . In this section we develop a weak variational state- 
ment of this problem and a finite dimensional approximation 
by the finite element method. 

Multiplying Eq. (4) by an arbitrary test function 4 (as- 
sumed sufficiently smooth), and integrating over the problem 
domain yields, 

(10) 

Integration of Eq. (10) by parts then gives 

$ @‘(xR) 4(x;) - + @‘(XL) &XL) 

J XR 
- xL --& J)‘@ dx+ ; 

s 
xR(E-V)i,h$ dx=O. 

XL 

W? 

Using Eqs. (9b) and (9d) results in 

(1 
XR 

- 
xL & $‘4’ dx+ & j-xRWP dx 

XL 

I 
xRt+b4 dx=-$ kLa(E)qb(x,)eikLxL. W) XI. - 

We now state the weak variational problem equivalent to the 
boundary value problem defined by Eqs. (4), (9b), and (9d). 

Problem: Find @l(x) on [xL ,x,1 such that Eq. (4) is sat- 
isfied for all test functions 4. This formulation of the prob- 
lem will form the basis of our solution method. Note that the 
open boundary conditions introduce the terms proportional to 
k in Eq. (4), i.e., the first two terms on the left-hand side and 
the right-hand side term. These terms; which are underlined 
for clarity, would be zero for the bound-state problem. 

We now develop a finite dimensional approximation to 
the above variational problem by the finite element method. 
We first discretize the solution domain with II nodal points 
with coordinates Xi, where x t =xL and x, = xR . We expand 
the wave function @and the test function + in terms of linear 
shape functions Ui as, 

(134 

Wb) 

where $i and +i are the function values at the nodal point xl ; 
the shape functions have the property that Uj(xi) = Sij .I0 The 
vector containing the values of the wave function at the 
nodal points is denoted by $, such that ej= @(xj). With this, 
we have 

+txR) = @II 9 +cxR) = 4,) (144 

@(XL) = $4 I 4GL> = 41. W) 

The discretized form of the weak variational form of the 
Schriidinger Eq. (12) becomes 
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j’$ h&7) +(xd +--$ kLQ’(Xd qf4xLj PT=? kLeikLXL( 1,O ,..., 0), 
mL* 

W-4 

+E 9 $, +ji @ifxRUiU, dx 
XL 

=-$ k,a(E)&xL)eikLXL. (15) 

The above equation can also be written in the following form 

I XR 1 
U,U, dx-l-E; 

I 
XR 

- - 

xL m*(x) 
UiUj dx 

XL 

2 
---T 

I 

n 
XR 

fi- XL 
VUiUj dx = 2 +j$ kLaSjleikLXL. 

i 
(16) j=l 

Since 4 is an arbitrary test function, Eq. (16) must hold 
individually for each term +i in the sum with index j, which 
results in a set of n linear equations, 

w12 0 0 

W?,l *. . -*. 0 
0 -. . *. . **. 
0 0 --. -a. 

0 0 0 W+--lj 

X 

where 

@l 
h 

Ll 

rl/, 

2ikLe%XL 

4 
0 
0 

1 0 

W=H-ED, 

Hij= XR I --& U;lJ, dx+$ 
I 

XR 
VUiUj dx, 

XL XL 

Dij=~ xRiJiUj dx. 
I XL 

Using the definitions 

$T=bhr+22,...4h,)? 

(18) 

(19) 

cm 

(214 

(H-kLBL-kRBR-ED)i,%=O. (23) 

This is a nonlinear eigenvalue problem since it depends both 
upon energy and the wave number. Solutions only exist for 
certain values of the energy E, and the corresponding values 
of k, and k,. The complexity of, this eigenvalue problem 
depends upon the relationship between E and k. Within an 
effective mass model, there is a quadratic relationship be- 
tween energy E and wave number k, which is given by Eq. 
(64. 
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0 

0 

W(?l- I)n 

i -1 
W,,- rkR 

6 

07) 

BL,2- 
mZ 

1 0 0 0 0 
0 0 **. 0 0 

0 *-. -*. .I. 0 
0 0 *a. ‘-. 0 

0 0 0 0 0 

(21c) 

(21d) 

Equation (17) can be written as 

(H-kLBL-kRBR-ED)+= -a(EjP. (22) - - - 
Note that there is only a single non-zero entry for both BL 
and BR which couple the solution domain to the left lead 
(node 1) and right lead (node nj. 

The terms in Eq. (22) correspond to the ones in Eq. (12). 
All dependencies on the energy, either explicit or implicit in 
the wave numbers, are shown. Again, setting the underlined 
terms to zero reduces the open problem to the closed bound- 
state problem. Note that the coefficient matrix in Eq. (22) is 
a quadratic function of wavenumber kL , and a(E) P depends 
on the in-coming wave amplitude a(E). Note also that the 
coefficient matrix is a tridiagonal matrix for the strictly one- 
dimensional problem. But, for quantum waveguide system 
with resonantly-coupled cavities, there are branch points 
which introduce additional matrix elements. We will see that 
these additional matrix elements are crucial for the eigen- 
value problem leading to transmission zeros in Sec. V. 

From Eqs. (9a) and (14a), we see that t(E) is related to 
$n and r(E) is related to flI. By appropriately rearranging 
the positions of a(E), t(E), and r(E) in Eq. (22), we obtain 
the formalism for transmission poles, zeros, and ones. 

III. NONLINEAR EIGENVALUE PROBLEM FOR 
TRANSMISSION POLES 

In order to find the quasi-bound states of the system, we 
set the in-coming source flux to zero, u(E) = 0, as shown in 
Fig. l(b). This results in the homogeneous problem derived 
froti Eq. (22) by setting the right-hand side to zero, 



If we express the energy E in terms of the wave vector in 
the in-coming lead with wave number k,, the eigenvalue 
problem Eq. (23) becomes 

(A-kLBL-kRBR-k;C)@=O, 124 

where 

A=H-P,D, (254 

A2 
C--D. 

2rnz (25b) 

It is known that the quasi-bound states lead topoles of 
the transmission amplitude (and the propagator) in the 
complex-energy plane. This is equivalent to the vanishing of 
the determinant of the matrix in Eq. (23). The degree of 
nonlinearity of the eigenvahte problem for kL (or kR) de- 
pends upon the applied bias. We will show below that for 
zero bias the resultant eigenvalue problem is of second order, 
and for finite applied bias of fourth order. These higher-order 
problems may be reduced to customary linear eigenvalue 
problems with increased matrix size. The matrix size in- 
creases by a factor of two for the second-order case 
(V,i,,=O), and by a factor of four for the fourth-order case 
ivbias+o)* 

A. Second-order eigenvalue problem for zero bias 

Zero bias implies FL= FR , as shown in Fig. 2(b). We are 
free to choose the zero of the energy scale such that 
FL= FR=O. k, and kR now are related by [from Eq. (6a)], 

1 
kR=& kL. (26) 

We can combine the boundary terms kLBL and kRBR in Eq. 
(24) into one term k,B by defining 

B=BL+ (27) 

Using the definitions of the matrices BL and BR, the elements 
of B are given by 

Btj=-& S,&+ (28) 

With this, Eq. (24) becomes 

(A-k,B-k;C)+=O. (29) 

This is a quadratic eigenvalue problem in k, , which cannot 
be solved by the standard linear eigenvalue solver routines. 
Note that the above second-order eigenvalue problem for the 
quasi-bound states reduces to the usual bound-state eigen- 
value problem (H--ED)+=0 since the term linear in kL van- 
ishes and A=H and k$=ED. 

It is possible to linearize the above problem by doubling 
the matrix dimensions.” Writing the identity, kL@= k,gl, and 
Eq. (29) as a system yields, 

(30) 

Using the definitions 

(314 

(3 1’4 

(3 lc) 

we obtain 
(M(2) - kLN(2))X(2) = 0 (32) 

This is a linear eigenvalue problem with twice the matrix 
size of the original problem, which is contained in the lower 
half of the system of equations. The upper half is identically 
zero. For simplicity, the identity matrix I was chosen for this 
purpose, but any matrix would do as long as the resultant 
matrices M(‘) and Nc2) remain non,singular. 

The eigenstates of the system are given as the solutions 
to the above generalized linear eigenvalue problem with a 
doubled matrix dimension of 2pz. However, notice that if kL 
is an eigenvalue, then its negative complex conjugate - kZ is 
also an eigenvalue.12 Therefore, we only need to find half of 
the eigenvalues in problem (32). 

B. Fourth-order eigenvalue problem for non-zero bias 

We now consider the case of an applied bias voltage 
Vbias between the left and right contacts. We choose the 
Fermi level on the left as the zero of the energy scale, i.e., 
FL= 0, and consequently FR= - e Vbiag. The wave numbers 
kL and kR are related by [from Eq. (6a)], 

k: kf 4 2 
----$+:=7 
mR mL 

fi E+ jpeVbiasr 

k; k; 2 ---= 
rnR* rnz p e Vbias a 

(334 

Wb) 

We now express the variables k, and k, in terms of a new set 
of variables k and K, which are defined by 

-&=k+r. Wb) 

The nonlinear eigenvalue problem (24) can now be rewritten 
as 

[A-k( mBL+ &$BR)- K( mBR- &$BL) 

-k2m~C+ktc2m~C-K2m~C]~=0. (35) 
Since k, and k, are related, k and K are also related by 

e Vbias 1 

“=zFk- 
(36) 

We can now replace K by k in (35). After multiplying the 
resulting equation by k2, we obtain a fourth-order eigenvalue 
problem in k, 
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FIG. 3. The quasi-bound states of a multi-barrier resonant tunneling struc- 
ture in an electric field of ?+I50 kV/cm. The lower panel shows the po- 
tential with the quasi-bound state energies. The states are plotted as hori- 
zontal lines at the real energy of the resonance, and the lines are drawn for 
those positions at which the absolute value of the wave function is larger 
than a threshold value. The upper pane1 shows the wave functions over the 
whole structure. offset for claritv. The corresuondina real- and imaginary- 
parts of the resonant states in each ladder are-given in Table I. 

(A’4) -j&4’- k”C’4) -,@D(4) _ ,&cd)) + 0, 

where 

2 

c 

Dt4)= aBL+ ,RBR, (384 

Ec4)= m;C. (38e) 

(37) 

(384 

(38b) 

In the above expressions, the matrices A, BL, BR, and C are 
defined in Eq. (24). Note that the fourth-order eigenvalue 
problem for k in Eq. (37), reduces to the bound state eigen- 
value problem for zero bias. For vbias=O, Ac4)=Bc4)=0 and 
Ct4)= -A. Equation (37) becomes k2(A-kD(4)-k2Ec4)) +=O 
which reduces to (H-ED)+0 since the term containing 
Dc4) vanishes for bound states, A=H and k’rn?C = ED. 

Equation (37) is a fourth-order polynomial in k which 
can be rewritten as 

100 0 

010 0 

0010 

0 0 0 Ec4) 

I *\ 

(39) 

(4Oa) : 

(40’4 

;rz(4,= li+ 

I I k2+ ’ 
\ k3+// 

(4W 

we obtain 

(41) 

Again, I is the identity matrix, and it could be replaced by 
any other matrix that makes the matrices Mc4) and Nc4) non- 
singular. Equation (41) is a generalized linear eigenvalue 
problem with quadrupled dimension of the original matrix. 

IV. NONLINEAR EIGENVALUE PROBLEM FOR 
TRANSMISSION ONES 

Transmission ones occur when the reflection amplitude 
is zero, as can be seen from Fig. l(c). Therefore, we treat 
r(E) as the known variable and a(E) as the unknown vari- 
able. Moving r(E) [note that r(E) is related to @r] to the 
right-hand side in problem (22) and forcing it to zero, we 
obtain an eigenvalue problem for the transmission ones. 

From Eqs. (9a) and (14a), we substitute @r  in Eq. (22) in 
terms of Y(E) and a(E) . Leaving only terms proportional to 
r(E) on the right-hand side leads to the following inhomo- 
geneous problem 

(:H+kLBL-kRBR--D)~--(E)P. (42) 

It is easy to see that the matrices H, D, BR, and BL are the 
same as in Eqs. (19-20, 21d), but P has the new definition, 
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TABLE I. The calculated quasi-bound state energy ladders from Fig. 3. 

Fiit Second Third 

0 55-9 8X lo-O9 . . 
0 46-4 8X 10:“i . . 
0 37-l 6x 10-13i 
0:28-1:7x10-‘3i 
o.19-1.3x10-‘3i 
0 IO-4 8x lo-“2’ . . 
0 01-3 1x10-*ai 

-0:0*-9:*x 1049i 

-0.17-1.8x10-esi 

1 11-l 4x10-e4i . . 
1 02-4 6X IO-e’i . . 
0.93-3.5x lo-‘? 
0.84-1.5x10-‘3i 
0 75-x 5x lo-‘4i . . 
0 66-3 4X lo-‘? . . 
0 57-2 3X lo-Ogi . . 
0 48-1.0~1O-~“i 
0.39-l 6x lo-‘“i . . 

2 05-8 2X lo-04i . . 
1.96-2.6x 10-O% 
1 87-2 OX10-07i . . 
1.78-6 8X lo-“i 
1 69-2-9x lo-“i . . 
1 60-5 1 X lo-Ogi . . 
1 51-6 2X IO-“i * . 
1.42-4.1 X 10-05i 
1.32-9.0x10-“4i. 

p=,-i&L 

I 9 (43) 

and $r is related to the now unknown in-coming wave am- 
plitude a(E) by #r = a(E)eiktxL. Forcing r(E)=0 in (42) 
leads to an eigenvalue problem similar to (23). The solution 
of this eigenvalue problem follows the same treatment as 
given in the previous section. 

V. NONLINEAR EIGENVALUE PROBLEM FOR 
TRANSMISSION ZEROS 

Transmission zeros occur when the transmission ampli- 
tude is zero, as shown in Fig. l(d). Therefore, we treat t(E) 
as the known variable and a(E) and r(E) as the unknown 
variables. Moving t(E) [note that t(E) is related to &J to 
the right-hand side in problem (22) and forcing it to zero, we 
obtain an eigenvalue problem for the transmission zeros. 

From Eqs. (9a) and (14a), we substitute tlr, in (22) in 
terms of t(E). Rearranging the equation such that only terms 
proportional to t(E) appear on the right-hand side, leads to 
the following inhomogeneous problem 

(H-k,B-ED)+= -t(E)P. W 

Similar to the treatment before, it is easy to see that now 
ti,, = a(E)eikLXI- and W=(H-ED) is given by 

1:: ; *; t;) [),. (45) 

and the matrices B and P have the forms 

p= eikRxR (46a) 

WV 

Forcing t(E) = 0 in (44) leads to an eigenvalue problem 
similar to (23). This problem can be reduced, however, as 
will be shown. 

The matrix on the left-hand side of Eq. (44) is 

ikL 
w11-, WI2 0 

2ikL 
0 - 

mL rnL* 
w,, *-. -1. 0 0 

0 **. *. *** 0 

0 0 **. W(n-1)(,-l) 0 

0 0 0 ~Tn(n-l) 0 

7 (47) 

which can be reduced by removing the first row and the n (th) 
column, 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 
Spatial Coordinate (nm) 

F’IG. 4. The potential profile of a single quantum well in a uniform electric 
field of 150 kV/cm (solid line). The wave function of the first quasi-bound 
states (dashed line) and its position (dash-dotted line) are also shown. 
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TABLE II. Comparison of the calculated quasi-bound state energies for a single quantum well with an 
applied bias. 

E(kV/cm) 

75 

100 

150 

-% 
I- 

EO 

r 
Eo 
r 

Phase-shift Stabilization Search Eigenvalue 
method (eV) method (eV)b method (eV) method (eV)d 

0.025 167 0.025167 0.025167 0.025527 
9.5x 1o-7 4.3x 10-e 9.3x10-7 1.8X10+ 
0.024210 0.024211 0.024211 0.024573 
1.8X10+ 2.0x 10-s 1.8XlO-5 1.8X 10-s 
0.021382 0.021170 0.021372 0.021784 
3.2xlo-4 3.3x10-4 3.2X10-” 4.3x 10-4 

aReference 14. 
bReference 15. 
“Reference 16. 
dThis work. 

1 w21 w,, *.. 
0 w32 --. -. 

0 0 .*- W(n-l)(n-1) . 
\ 0 0 0 W,(,-1) I L 

Therefore, the boundary terms which are proportional to k, 
and lz, no longer appear in the final problem. The resulting 
eigenvalue problem is linear in energy. 

For a pure one-dimensional problem, Eq. (48) does not 
have physical solutions [the only solution is 
(H(,+l)t-ED(i+l)j= 01. This implies that transmission zeros 
do not exist in pure one-dimensional resonant tunneling sys- 
tems, which we know to be true. 

For quantum waveguide systems with resonantly- 
coupled cavities, as was mentioned in Sec. II, there are ad- 
ditional matrix elements in (48). Therefore, in these cases, 
the corresponding matrix (48) has physical solutions. For the 
r-stub and loop structures shown in Fig. 2(a), the eigenvalue 
problem (48) can be further simplified to a real symmetric 
eigenvalue problem, which only possesses real eigenvalues. 
This result is consistent with our previous investigation,13 
where we proved that transmission zeros exist on the real- 
energy axis for r-stub and loop structures. 

VI. EXAMPLES 

In this section, we apply our eigenvalue method to some 
model systems to demonstrate its utility. First, we present a 
multi-barrier resonant tunneling structure with applied exter- 
nal bias. Then, we study a single quantum well structure and 
a double-barrier resonant tunneling structure. Last, we calcu- 
late the positions of transmission poles and zeros in quantum 
waveguide systems, which include t-stub and loop structures. 
We compare the results of our direct eigenvalue method to 
the more conventional method of searching for the zero of 
the system determinant in the complex-energy plane. 

A. Multi-barrier resonant tunneling structure with bias 

As our model system, we consider a lo-barrier resonant 
tunneling structure in an electric field of g=l50 kV/cm. 
Each barrier width and height is 1.0 nm and 5.0 eV, respec- 
tively, and the well width is 5.0 nm. For the finite element 
discretization, we use an average spatial mesh size of 0.2 run 
for the numerical calculation, which yields matrices of di- 
mension 286 in Eq. (24). We choose. the middle of the struc- 
ture as the zero point of the potential. 

Applying our eigenvalue method to this structure, we 
obtain the energies of the quasi-bound states, which are the 

TABLE BI. The first resonant state of two double-barrier resonant tunneling systems obtained by Guo et al. and 
Shao er al. The parameters Lh and L, denote the barrier width and well width, respectively. 

Barrier 
material L/s~) LL4 E~(eV EIWb 

AlGaAs SO 50 0.07348-1.95X10-4i 0.07352-2.04X 10-4i 
45 50 0.07344-3.60X 10-4i 0.07347-3.75x lo+ 
40 50 0.07337-6.50X10-4i 0.07339-6.88X10-4i 
35 50 0.07324-1.20X10-3i 0.07324-1.25X10-3i 
30 50 0.07301-2.25x10-si o.07293-2.33x10-3i 
25 50 0.07258-4.20X10-3i 0.07227-4.30X10-3i 

AlAs 25 45 0.13712-2.00X10-6i 0.13726-2.20X lo-“i 
15 45 0.13799-1.60X10-4i 0.13713-1.80X10-4i 
28 62 0.08524-2.00X 10-7i 0.08532-2.00X 10-7i 

“Reference 17. 
bThis work 
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poles of the transmission amplitude in the complex-energy 
plane. It is well known that no transmission zeros exist in 
this case. It is a relatively easy matter to numerically obtain 
the eigenvalues of the linear system, Eq. (41), with dimen- 
sion 1,144. The results are plotted in Fig. 3, which shows the 
resulting Stark ladder structure. The lower panel displays the 
finite-superlattice potential with the quasi-bound states indi- 
cated by the horizontal lines. A line segment is plotted when 
the wave function is larger than some threshold value, and 
the upper panel shows the wave functions over the whole 
structure, offset from each other for clarity. The formation of 
energy-ladders is evident, which are derived from the indi- 
vidual states in each well, and the complex-energy values are 
also given in Table I. The imaginary part of each pole gives 
the inverse of the lifetime for the corresponding quasi-bound 
state. As one would expect, the longest-lived states are con- 
centrated in the middle of the structure, and states toward the 
edges are more “leaky.” Note that’the imaginary parts vary 
by many orders of magnitude. This makes a direct search for 
the locations of the poles in the complex-energy plane very 
costly since a very fine energy mesh has to be used in order 
to avoid missing poles. In contrast, our direct method yields 
the energies of all poles, without any search, as the soIutions 
of a linear eigenvalue problem. 

5 ISE ' * *-.* '..j 

0.0 3.0 6.0 9.0 12.0 15.0 18.0 0.0 3.0 6.0 9.0 12.0 15.0 18.0 
Real Part of the Energy (R/RI) 

PIG. 5. Contour plots of the absolute value of the transmission amplitude 
for t-stub and loop structures, which are schematically shown in the insets. 
The symbols + and X represent the positions of transmission poles and 
zeros, respectively, which were calculated by our direct eigenvalue method. 
The energy of the first standing wave in the stub (Et = 56.1 meVj is used as 
the unit of energy. 

B. Single quantum well with bias 

In Fig. 4, we show a single quantum well structure in an 
electric field. The well width and depth are 3.7 nm and 0.1 
eV, respectively. This particular structure has been investi- 
gated by several researchers.‘4-‘6 Ahn and Chuangt6 have 
used Airy functions for an exact solution of Schrodinger’s 
equation. By matching the wave functions at the edge of the 
quantum well, they obtain a secular equation. The quasi- 
bound states of the system are then found by searching for 
the zeros of the determinant of this secular equation. 

In our treatment here, we model the system to be 30 nm 
long. We use an average mesh size of 0.2 nm in the calcula- 
tion, which implies that the matrix size of the linear eigen- 
value problem Eq. (41) is 600. We choose.the middle of the 
quantum well as the zero point of the potential. The first 
quasi-bound state for different biases is: 
E0=(0.025527-1.8X10-6i) eV for %=75 kV/cm, 
E0=(0.024573- 1.8X 10m5i) eV for Z=lOO kV/cm, and 
Ea=(0.021784-4.3X 10e4i) eV for g=150 kV/cm, 
where Bis the electric field. Table II shows a comparison of 
our results to those obtained in the other studies.‘4-‘6 

AlAs-GaAs-AlAs structures. Guo and co-workers have in- 
vestigated two specific structures by solving the time inde- 
pendent and time dependent Schrijdinger equations.t7 Their 
calculation (as does ours) accounts for the mass discontinu- 
ity, which is 0.067~ for GaAs, 0.09ma for AlGaAs, and 
0.1 5mo for AlAs, where m. is the free-electron mass. The 
barrier height is 0.23 eV for AlGaAs and 1.355 eV for AlAs. 
Their results of the first resonant state are listed in Table III 
for different barrier and well widths. Using the same param- 
eters, and spatial mesh dimension of 0.05 nm, we calculated 
the resonant states of the above systems using our direct 
eigenvalue method. The results of the lirst resonant state are 
also listed in Table III for comparison. 

D. Quantum waveguide structures 

We show the wave function of the first quasi-bound state 
and its position in Fig. 4 for Z=150 kV/cm. The solid line 
represents the potential profile, the dash-dotted line repre- 
sents the position of the quasi-bound state, and the dashed 
line represents the’absolute value of the wave function. As 
one would expect the wave function is slightly tilted to the 
lower potential region due to the quantum-confined Stark 
effect. 

C. Double-barrier resonant tunneling 

We also study two symmetrical double-barrier resonant 
tunneling systems formed by AlGaAs-GaAs-AlGaAs and 

We also choose several t-stub ‘and loop structures as our 
model systems, which are schematically shown in the insets 
of Fig. 5. The solid lines represent the waveguides which are 
single-moded transmission channels; generalization to the 
multi-moded case is possible, yet cumbersome. The shaded 
boxes represent tunneling barriers (0.5 eV high and 1 nm 
thick), and the full filled box terminates the stub. For the 
t-stub structures, the length of the stub is 10 nm and the 
distance between two tunneling barriers on the main trans- 
mission channel is 4 nm. For the asymmetrical loops shown 
here, the lengths of the two arms are 10 and 11 nm, respec- 
tively. Spatial mesh dimensions of 0.2 nm are used in the 
numerical calculations. It is well known that these systems 
possess both transmission poles and zer0s.t’ The contour 
lines in Fig. 5 represent the absolute value of the transmis- 
sion amplitude in the complex-energy plane, which is ob- 
tained from a solution of the inhomogeneous problem (22). 
Poles and zeros, which occur on the real-energy axis, are 
easily discerned. Using the appropriate eigenvalue problem, 
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we also show the directly calculated locations of the trans- 
mission poles and zeros which are indicated by the + and X 
symbols, respectively. Note the perfect agreement between 
the two methods. Again, our technique directly yields poles 
and zeros without a need to search for them in the complex- 
energy plane. 

VII. SUMMARY 

We presented a new approach for directly calculating the 
positions of transmission poles, ones, and zeros in resonant 
transmitting systems. In general, a transmission problem is 
an inhomogeneous problem. Forcing the in-coming source 
flux to zero results in a nonlinear eigenvalue problem. Using 
the finite element method, furthermore, these nonlinear ei- 
genvalue problems become linear. It is then an easy matter to 
directly calculate the energies of the transmission poles, 
ones, and zeros. This algorithm can be used for systems with 
arbitrary potential profile, and its utility is demonstrated by 
applying it to several examples. 
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