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The behavior of rings of four small-capacitance tunnel junctions that are charged with two extra 
electrons is examined. Single electron charging effects result in quantization of charge on the 
metal electrode islands. To minimize the total electrostatic energy, the electrons localize on 
opposite electrodes, leading to a charge alignment in one of two configurations. We consider 
such rings as cells that may be capacitively coupled to each other in a cellular automaton 
architecture. The interaction between cells results in strong bistable saturation in the cell’s 
charge alignment which may be used to encode binary information. Lines of such cells can be 
viewed as binary wires. 

I. INTRODUCTION 

Several schemes have been proposed for using Cou- 
lomb elects in small metal tunnel junctions to produce 
potentially useful behavior.‘82 These have primarily ex- 
ploited the Coulomb blockade of a tunneling current to 
produce single electron transistor action. The behavior of 
one- and two-dimensional arrays of small-capacitance tun- 
nel junctions has also received considerable attention.3 

Recently, we have theoretically examined the behavior 
of few-electron systems composed of quantum dots such as 
are usually fabricated in semiconductor heterostructures. 
We have shown bistable saturation in the charge alignment 
within quantum-dot cells that are Coulombically coupled 
to neighboring cells. This bistable interaction has formed 
the basis of a new architecture, termed quantum cellular 
automata (QCA) .&’ Within the framework of this archi- 
tecture, we have performed quantum simulations of de- 
signs for implementing binary wires, programmable logic 
gates, coplanar wire crossings, and circuits as complex as 
full adders.’ The key advantages of the architecture are ( 1) 
only coupling between neighboring cells is necessary and 
this coupling is provided by the Coulomb interaction, (2) 
no power needs to be supplied to cells except at the edges 
of the array, (3) the design is robust in that it is insensitive 
to variations in physical parameters from cell to cell, and 
(4) as devices are reduced in dimension, the performance 
improves. 

We examine here the behavior of cells composed of 
rings of metallic tunnel junctions with very small capaci- 
tance. The behavior of the rings is dominated by Coulomb 
exclusion effects.’ We demonstrate that cells formed from 
these metal capacitors have the requisite bistable saturation 
and near-neighbor coupling behavior needed to provide the 
basis for an alternative implementation of the QCA archi- 
tecture. The cell described here differs from those de- 
scribed elsewherebs in two fundamental ways. First, the 
cell is fabricated from small metal “islands” rather than 
from depleted two-dimensional electron gas and therefore 
contains many conduction electrons. Second, the coupling 
between islands and between cells is capacitive rather than 
simply Coulombic-the relevant Hamiltonian contains the 

capacitance matrix for the metallic array. This capacitive 
coupling is more amenable to control and design than the 
bare Coulomb interaction used in semiconductor imple- 
mentation. 

II. MODEL 

We consider a cell consisting of four metal electrodes 
with small-capacitance tunnel junctions between them ar- 
ranged in a ring, as shown schematically in Fig. 1 (a). Each 
cell is occupied by two extra electrons supplied by the 
grounded substrate. The two electrons tend to occupy an- 
tipodal electrodes in the cell due to their mutual Coulomb 
repulsion.” This results in a preferential alignment of cell 
charge along one of the two perpendicular cell axes, as 
shown in Fig. 1 (b). We define a polarization P which mea- 
sures the extent of this alignment. If the charge on elec- 
trode i is pi, then the polarization is defined as 

(1) 

If the extra electrons are completely localized on electrodes 
1 and 3, the polarization is + 1; if they are localized on 
electrodes 2 and 4, the polarization is - 1. The presence of 
tunneling between electrodes means that the number of 
electrons on a metal electrode is not necessarily a good 
quantum number (it is a good quantum number in the 
limit of very little tunneling), so the pls need not be inte- 
gers. Neighboring cells are capacitively coupled but no tun- 
neling occurs between them. 

The Hamiltonian” that describes the extra electrons in 
a cell labelled k can be written as follows: 

Hk=i ijG~u k e2(C-‘)i,jf$ fij+ c 
iacell k 

e’(C-‘)& Cj 

jBcell k 

+ I ,EXl, k fi,j(&j+a)Zi>. . (2) 

i>j 

Here C is the capacitance matrix describing the cell and the 
conductors surrounding it. The operators a] and aj create 
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FIG. 1. (a) The ring of tunnel junctions that forms a basic cell. (b) 
Coulomb effects tend to localize the two extra electrons in one of the two 
configurations shown. These have polarization of + 1 and - 1. (c) Two 
capacitively coupled cells. 

and annihiiate, respectively, an extra electron on conductor 
i. The number operator i&E&i counts the number of extra 
electrons. The first term in Eq. (2) represents the electro- 
static energy due to the interaction of charges within the 
cell. The second term represents the energy of interaction 
between the conductors in the cell and the charges on 
neighboring conductors. The third term represents the tun- 
neling of the extra electrons through the tunnel junctions 
between the conductors in the cell. The Coulombic effects 
in the first two terms tend to localize the electrons on 
antipodal electrodes. The tunneling term opposes this lo- 
calization, a reflection of the kinetic cost of confinement. 
We take ti,j to be nonzero only between electrodes con- 
nected by a tunnel junction. All the tunnel junctions have 
the same tunneling energy t, which we express as a, ratio to 
the charging energy of the junction12 

(we2 
ti,i+ 1 =t=F * (3) 

The capacitance matrix C describes the capacitance of the 
four electrodes in the cell and the closest electrodes in each 
neighboring cell. For example, if the cell k has a neighbor- 
ing cell to the right and left of it, C would include the 
nearest two electrodes in each cell. The size of C would 
therefore be 8 X 8. The capacitance to ground of each con- 
ductor is also included. 

It is important to note that conductors in adjacent cells 
alter the cell Hamiltonian in two ways. First, they change 

the capacitance of the electrodes in the cell, thus altering 
the first term in the cell Hamiltonian (2) through changes 
in the capacitance matrix. The first term in this way in- 
cludes the effect of the image charge induced on a (possibly 
uncharged) nearby conductor by the presence of charge in 
the cell. Second, if the nearby conductors are charged, they 
change the second term in the cell Hamiltonian which ac- 
counts for the Coulombic repulsion between an electron in 
the cell and one in a neighboring cell. 

111. RESULTS 

We examine the response of a cell to polarization, as 
just defined, of a neighboring cell. Consider a single cell, 
labeled cell 1, capacitively coupled to an adjoining cell, 
labeled cell 2, as shown in Fig. 1 (c) . The charge on elec- 
trodes 5 and 6 couples to the Hamiltonian for cell 1. We 
use values of the capacitances consistent with those exper- 
imentally determined for the structure described in Ref. 13. 
We take the tunnel junction capacitance Cj=600 aF, the 
capacitance to the grounded substrate C,=SO aF, and the 
cell-cell coupling capacitance Cc=25 al;. Note that all 
electrodes have the same shape and size and therefore the 
same capacitance to ground. 

A charge of ( 1 -Pz> ( -e/2) is placed on electrode 5, 
a charge of ( 1 +Pz) ( -e/2) is placed on electrode 6, and 
the value of Pz is varied from - 1 to + 1. (Because the 
remaining electrodes in cell 2 do not couple directly to cell 
1, they play no role here.) For each value of the polariza- 
tion P2, we calculate the Hamiltonian for cell 1 and solve 
the corresponding SchrSdinger equation. From the two- 
electron ground-state wave function, we calculate the 
charge on each site by calculating the expectation value of 
the (extra electron) number operator, pi= -e(&). The 
induced polarization of cell 1 can then be calculated using 
Eq. (1). 

The polarization of cell 1 as a function of the polariza- 
tion of the driver cell 2 we term the cell-cell response func- 
tion; it is shown in Fig. 2 for a =O.OOl, 0.005, and 0.01. 
The highly nonlinear saturation of this function at both 
extremes of the polarization is key to the behavior of cel- 
lular arrays and makes the cells described promising can- 
didates for cellular automata application. Even a rather 
slight polarization of a cell induces a nearly complete po- 
larization of the neighboring cell. Because each cell in an 
array is essentially always polarized, the polarization of the 
cell can be used to encode binary information. 

As a (and therefore t) increases, the response curve 
becomes less abrupt. Higher values of the tunneling energy 
t correspond to more tunneling. As tunneling increases, the 
(always approximate) requirement that the particle num- 
ber in each electrode be quantized is relaxed. The elec- 
tronic wave function distributes itself among the four elec- 
trodes in order to minimize the kinetic energy cost of 
confinement. For the QCA architecture to be effective, the 
particle number must be nearly quantized, so we require 
that the tunneling energy t be sufficiently small. This cor- 
responds to the usual requirement that the resistance of the 
tunnel junctions be large compared to the quantum resis- 
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FIG. 2. The cell-cell response function for two capacitively coupled cells 
as shown in Fig. 1 (c). The polarization of cell 2 ia fixed and the induced 
polarization of cell 1 is calculated by solving the two-electron Schrijclmger 
equation using the Hamiltonian (2). The strong bistable saturation of the 
induced polarization is the basis for CA behavior in these cells. Even a 
slight polarization of a cell induces a large polarization in a neighboring 
cell. The parameter a is the ratio of the tunneling matrix element to the 
charging energy of one capacitor. Small values of a correspond to less 
tunneling across the capacitor. 

tance, RQ=h/(4e2), for Coulomb blockade effects to be 
observable.2 

We consider next a linear array of capacitively coupled 
cells. The Hamiltonian for an array of cells is simply the 
sum of the cell Hamiltonians, the coupling between cells 
being already explicit in (2). The wave functions for elec- 
trons in different cells do not overlap. We therefore use a 
direct-product basis composed of state vectors for each 
cell. We solve the time-independent Schriidinger equation 
for the ground state of the array in this basis using a 
Hartree-type self-consistent scheme, the intercellular Har- 
tree approximation.4 The Schrtidinger equation is solved 
for each cell in the array, with the charges in all other cells 
kept fixed. The charges in each cell are then iteratively 
updated until convergence is obtained. 

A linear array of coupled cells is depicted schemati- 
cally in Fig. 3 (a). The polarization of the first cell in the 
array is tied. The charge on each of the electrodes in the 
remaining nine cells is calculated by self-consistently solv- 
ing the Schrlidinger equation for all cells in the array, as 
was previously described. The diameter of each of the dots 
in the figure is proportional to the charge on the corre- 
sponding electrode. Figure 3 (b) displays the results when 
(r=O.OOl. The three driver polarizations shown, P=l.O, 
0.5, and 0.1, are all quite successful at inducing complete 
polarization in the line of cells. The system is in this way 
“forgiving.” Variations in parameters between cells may 
result in a given cell having a slightly lower polarization, 
but the response of the neighbors is so nonlinear that the 
polarization is quickly restored to its saturation value of 
nearly 1 (or - 1) . The nonlinear cell-cell response function 
plays the role of gain in conventional digital devices, re- 
storing the signal level at each stage. The linear array of 
cells thus forms a binary wire capable of transmitting bit 
information encoded in the cell polarization. 

For comparison, Fig. 3(c) displays the results of the 
wire response for the case where a=0.05. In this case tun- 

FIG. 3. Polarization of lines of capacitively coupled cells. (a) Schematic 
of a linear array of tunnel junction rings. (b) The calculated charge on 
each electrode in the array is shown for three different “driver” cell 
polarizations. The diameter of each filled circle is proportional to the 
charge on the corresponding electrode island. The results for small tun- 
neling, corresponding to a=O.OOl are shown in (b) and the results for 
large tunneling, corresponding to a=0.05, are shown in (c). If tunneling 
is too large, the requirement of charge quantization on each island is 
relaxed. 

neling is strong enough to eliminate the quantization of 
charge on each electrode. The polarization nevertheless 
saturates at a value of P=O.31, regardless of the driver 
polarization. This case of strong tunneling, when the wire 
works rather poorly, serves to illustrate the mechanism 
through which it works well when tunneling is weak. 

By directly solving the Hamiltonian system we have 
assumed that the electronic state of the four-metal islands 
in one cell form a quantum mechanical coherent system. If 
the cell is smaller than the phase-breaking length in the 
metal, this assumption is well-justified. If the cell is signif- 
icantly larger, the treatment can be replaced by the semi- 
classical theory.’ Since no current flows through the cir- 
cuit, however, the semi-classical treatment amounts to 
finding the configuration of charges that minimizes the to- 
tal electrostatic energy, subject to the constraint of charge 
quantization on each electrode. This is equivalent to ne- 
glecting the tunneling term in the cell Hamiltonian (2), 
and so corresponds to the small-r limit previously discussed 
and shown in Fig. 3 (b) . 

Experimentally realizing cells of the type we discuss 
presents some challenges, but recent experiments indicate 
they are not insurmountable. Maintaining the double 
charging of each ring could be accomplished by using an 
insulated top gate, a conducting substrate to supply the 
electrons, and a thin tunnel barrier between the cells and 
the substrate to stabilize the charge at integer values. This 
method of controlling the charge state of ultrasmall struc- 
tures has been demonstrated by Meuer et al. I4 and 
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Ashot?” in s-emiconductor quantum dots.t6 The problem 
of setting the polarization of a cell (writing the inputs) and 
sensing the polarization of a cell (reading the outputs) 
amounts to the problem of measuring the presence of in- 
dividual electronic charges on a metal electrode. That this 
is feasible has been experimentally demonstrated by La- 
farge and co-workers. l3 The analogous experiment using a 
semiconductor system has also recently been reported by 
Field et al. I7 As with all structures dependent on single- 
electron effects, those envisioned here would ultimately re- 
quire that both variations in “polarization charges” result- 
ing from variations in work functions and the presence of 
random trapped charges be rigorously controlled. 

IV. CONCLUSIONS 

We have shown that a cell composed of a ring of four 
metal electrodes connected by small-capacitance tunnel 
junctions exhibits bistable behavior when capacitively cou- 
pled to other similar cells. This behavior makes such cells 
candidates for realizing quantum cellular automata archi- 
tectures. 
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