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Model quantum dot cells are investigated as potential building blocks for quantum cellular 
automata architectures. Each cell holds a few electrons and interacts Coulombically with nearby 
cells. In acceptable cell designs, the charge density tends to align along one of two cell axes. 
Thus, a cell “polarization,” which can be used to encode binary information, is defined. The 
polarization of a cell is affected in a very nonlinear manner by the polarization of its neighbors. 
This interaction is quantified by calculating a cell-cell response function. Effects of nonzero 
temperature on the response of a model cell are investigated. The effects of multiple neighbors 
on a cell are examined and programmable logic gate structures based on these ideas are 
discussed. 

1. INTRODUCTlON 

For many years, the size of microelectronic-devices has 
been shrinking, and this has led to faster, denser circuits. 
Despite these improvements, the basic computing para- 
digm has remained virtually unchanged because device op- 
eration has been largely unaltered, apart from resealing. 
There is now much interest in extremely dense device ar- 
rays forming locally interconnected architectures like cel- 
lular automata (CA) ’ and cellular neural networks.’ Such 
architectures could lead to changes in device structure of a 
less evolutionary and more revolutionary nature. 

At the same time, many researchers have been inves- 
tigating ways to use quantum structures as electronic de- 
vices. In the course of such research, a great deal has been 
learned about the behavior of electrons in very small struc- 
tures. Because of the size of the structures involved, an 
outstanding difficulty is providing a scheme in which one 
of these quantum devices, which typically carry nanoam- 
Peres of current, could be used to drive several other sim- 
ilar devices. In addition, the capacitance of the wires 
needed to interconnect such structures would tend to dom- 
inate their behavior. Therefore, locally connected architec- 
tures like CA’s may be an attractive paradigm for imple- 
menting quantum device architectures3 

CA architectures composed of nanometer-scaled quan- 
tum devices that are coupled through the Coulomb iuter- 
action (no current flows between devices) have been pro- 
posed by the authors elsewhere.& We call such 
architectures quantum cellular automata (QCA). The 
QCA contains an array of quantum-dot cells that are con- 
nected locally by the interactions of the electrons contained 
within them. The quantum state of each multidot cell en- 
codes the “logical” state of that cell. For this reason, each 
cell should ideally have exactly two stable states, since this 
will allow direct encoding of binary information.’ Such 
two-state cells also need to exhibit bistable saturation to 
ensure that noise or small geometric variations do not over- 
whelm the signal. 

To function as a CA, the state of each cell should be 
dependent on the states of its neighbors. In this paper, we 
compare the cell-cell coupling and bistable saturation of 

several different quantum cell designs that might form the 
basis of quantum cellular automata. All these designs have 
certain characteristics in common: a few (typically four or 
five) quantum dots connected by coupling coefficients and 
populated by a total of one to three electrons. In these cells 
the required interaction between neighbors is caused by the 
mutual Coulombic repulsion of the electrons contained in 
the cells. We use a very simple model of each cell, neglect- 
ing details relating to exactly how the quantum dot struc- 
tures are realized, but focusing on the charge distribution 
among the dots and the Coulomb coupling between cells. 
We define a cell-cell response function that characterizes 
the interaction between neighboring cells. 

In the next section we will introduce the theoretical 
model of the “standard cell,” on which much of the work 
of Refs. 4-6 is based. It is the most thoroughly investigated 
cell design because it displays strong bistable saturation. 
We discuss the model IIamiltonian used for the cell, the 
method used to calculate the cell-cell response function, 
and the effects of nonzero temperature. In Sec. III we com- 
pare various other cell designs. Among these are different 
geometric arrangements of the quantum dots, one and 
three electron cells, and continuous quantum dashes. In 
Sec. IV, we extend our results to include the effects of 
multiple neighbors on a cell. We show that such effects in 
a system with three nearest neighbors can be thought of as 
majority voting logic. We show how this behavior can be 
used to implement programmable logic gates, and then 
show other possible implementations for dedicated AND 
and OR gates. A discussion and conclusion follow in Sec. 
V. 

II. A MODEL QUANTUM CELL 

The model “standard cell” design, shown schemati- 
cally in Fig. 1 (a), consists of five quantum dots located at 
the corners and the center of a square. Tunneling occurs 
between the central site and all four of the outer sites 
(near-neighbor tunneling), and to a lesser degree between 
neighboring outer sites (next-near-neighbor tunneling). It 
is assumed that the potential barriers between cells are 
high enough to completely suppress intercellular tunneling. 
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FIG. 1. Schematic of the basic five-site cell. (a) The geometry of the cell. 
The tunneling energy between the middle site and an outer site is desig- 
nated by f, while t’ is the tunneling energy between two outer sites. (b) 
Coulombic repulsion causes the electrons to occupy antipodal sites within 
the cell. These two bistable states result in cell polarizations of P= + 1 
and P=-1 [SIX. Eq. (l)]. 

The cell is occupied by a total of two electrons hopping 
among the five sites; these electrons tend to occupy antip- 
odal outer sites within the cell due to their mutual electro- 
static repulsion [see Fig. l(b)]. 

We will show that these two stable states are degener- 
ate iu an isolated cell, but an electrostatic perturbation in 
the cell’s environment (such as that caused by neighboring 
cells) splits the degeneracy and causes one of these config- 
urations to become the cell ground state. Altering the per- 
turbation causes the cell to switch between the states in an 
abrupt and nonlinear manner. This very desirable bistable 
saturation behavior is due to a combination of quantum 
coni?nement, Coulombic repulsion, and the discreteness of 
electronic charge. 

A. Cell polarization 

Since Coulomb repulsion causes the electrons to oc- 
cupy antipodal sites, the ground state charge density may 
have the electrons aligned along one of the two diagonal 
axes shown in Fig. 1 (b). We therefore define the cell po- 
larization, a quantity that measures the extent to which the 
charge density is aligned along one of these axes. The po- 
larizat.ion is defined as 

p= h+P3) - (pz+p4) - 
Po+p1+p2+p3+p4’ 

(1) 

where pi denotes the electron probability density at site i. 
As in Fig. 1 (b), electrons completely localized on sites 1 
and 3 will result in P= 1, while electrons on sites 2 and 4 
yield P= - 1. An isolated cell would have a ground state 
that is a linear combination of these two states, and would 
therefore have a net polarization of zero.8 

B. Model cell Hamiltonian 9 

We employ a simple model of the quantum cell that 
uses a tight-binding Hubbard-type Hamiltonian. We rep- 

resent the quantum dots as sites, ignoring any degrees of 
freedom internal to the dot. The Hamiltonian for a single 
isolated cell can be written as 

W’“= c Eo ni,o+ c ti,j(ai,,taj,o+aj,oj,~) i,cl i> j,u 

+ $E@i,t n,,+ ,,zc, VQ 122i:l * (2) 
> ? I 3 

Here ai,* is the annihilation operator that destroys a parti- 
cle at site i (i=O,1,2,3,4) with spin IJ. The number opera- 
tor for site i and spin (T is represented by Q. E. is the 
on-site energy for each dot, tu is the energy associated with 
tunneling between dots i and j, and EQ is the on-site charg- 
ing energy (the purely Coulombic cost for two electrons of 
oppqsite spin to occupy the same dot). The last term in (2) 
represents the Coulombic potential energy due to electrons 
on the ith and fib sites at positions RI and Ri. VQ is an 
electrostatic parameter fixed by fundamental constants and 
the dielectric constant of the material used to form the 
cells. 

For the cell described above we use values of the pa- 
rameters in the Hamiltonian based on a simple, experimen- 
tally reasonable model. We take E. to be the ground state 
energy of a circular quantum dot of diameter 10 nm hold- 
ing an electron with effective mass m*=0.067 m,. The 
near-neighbor distance between dot centers, a, is taken to 
be 20 nm. The Coulomb coupling strength, V,, is calcu- 
lated for a material with a dielectric constant of 10, and EQ 
is taken to be Vd( D/3).9 The coupling energy between an 
outer dot and the central dot is teto,j=0.3 meV (i 
= 1,2,3,4), and the next-near-neighbor coupling connect- 
ing the outer dots, t’, is taken to be t/10 (consistent with 
one-dimensional calculations for a barrier height of 150 
meV).‘O 

The spins of the two electrons in the cell can be either 
parallel or antiparallel. We consider here the case of elec- 
trons with antiparallel spins, since that is the ground state 
of the cell. Calculations with electrons having parallel spins 
yield qualitatively very similar results. 

To maintain charge neutrality in the cell, a fixed pos- 
itive charge ii, corresponding to a charge of (2/5) e, is also 
assumed on each site. In a single isolated cell this just 
renormalizes Eo, but the fixed charge is important when 
simulating systems with more than one cell. If each cell 
had a net negative charge, then electrons near the edges of 
a’group of cells would respond mostly to the net negative 
charge of the other cells. In a semiconductor realization, 
the fixed positive charge would likely be provided by ion- 
ized donor impurities and charge on the surface of metal 
gates. 

The interaction of a cell with its electrostatic environ- 
ment (including neighboring cells) is contained in a sec- 
ond Hamiltonian term, which we write as e,$. We solve 
the time-independent Schriidinger equation for the nth 
eigenstate of the cell, 1 Y,), under the influence of the 
neighboring cells: 

(fC?l+C:,) I ‘u,> =E,z I ‘y,>. 
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FIG. 2. Cell-cell response function for the basic Eve-site cells shown in 
the inset. This shows the polarization P, induced in cell 1 by the fixed 
polarization of its neighbor, Pz . The solid line corresponds to antiparallel 
spins, and the dotted line to parallel spins. The two are nearly degenerate, 
especially for significantly large values of P2. 

The total Hamiltonian is diagonalized directly in the basis 
of two-particle site kets. We calculate the single-particle 
density, pi, from the two-particle ground-state wave func- 
tion IYe) by finding the expectation value of the number 
operator for site i: 

pi= C (YO 1 n&ml yO>- (4) 
rJ 

We can then use these densities to calculate the cell polar- 
ization P as in Eq. (1). 

C. Calculating the cell-cell response function 

To be useful in cellular automata-type architectures, 
the state of a cell must be strongly influenced by the states 
of neighboring cells. To demonstrate how one of these cells 
is influenced by the state of its neighbor, consider the two 
cells shown in the inset to Fig. 2. The cell centers are 
separated by a distance of 3a=60 mn. We assume cell 2 
has a given polarization P2 and that the electron density on 
the central site is negligible. This means that the charge 
density is completely determined by the cell polarization. 
For the corresponding electron density on each site of cell 
2, we calculate the electrostatic potential at each site of cell 
1. This additional potential energy is then included in the 
Hamiltonian for cell 1. Thus the perturbing Hamiltonian 
component is / 

Ek.r=TU= ,,l$ 1 ~ vh,cn 
where 

(5) 

)7+ c v (pGp) 
k#W Q [ R,,---R,,il (6) 

is the potential at site i in cell m due to the charges in all 
other cells. We denote the position of site j in cell k as 
Rkj, and the electron density at site j in cell k as p:. The 
total Hamiltonian for cell 1 is then 

F”=Hp+~u. (7) 

The two-electron time-independent Schriidinger equation 
is solved using this Hamiltonian for a series of values of P2 

0.4 

0.2 

0.0 

-0.2 

-0.4 

FIG. 3. The lowest four eigenstate energies of cell 1 induced by the 
polarization of cell 2. The insets show that the lowest two energy states 
always correspond to the same polarization direction, as in the driver. 
Slight exchange splitting effects between spatially symmetric and spatially 
antisymmetric states breaks the fourfold degeneracy for very small values 
of Pz. 

in the range [ - 1, + 11. The ground state polarization of 
cell 1, PI, is then computed for each value of P2, as de- 
scribed in the previous section. Thus, we can plot the in- 
duced polarization of cell 1 as a function of the polariza- 
tion of cell 2. This function P, ( P2), which we call the 
cell-cell response function, is one measure of how well a 
cell will operate in a quantum cellular automaton architec- 
ture. 

Figure 2 shows the cell-cell response function for the 
standard cell. The highly nonlinear nature of the response 
indicates that a small polarization in cell 2 causes a very 
strong polarization in its neighbor, cell 1. The figure also 
shows that the polarization of cell 1 saturates very quickly 
to a value of + 1 or - 1. This bistable saturation is the basis 
of the quantum cellular automata, since it means that we 
can encode bit information using the cell polarization. We 
assign the bit value of 1 to the P= + 1 state and the bit 
value 0 to the P= - 1 state. Since the cell is almost always 
in a highly polarized state ( ] PI = l), the state of the cell 
will be indeterminate only if the electrostatic environment 
due to other cells is perfectly symmetric. 

Figure 3 shows the lowest four eigenenergies of cell 1 
as a function of the polarization of cell 2. This shows that 
the perturbation due to the polarization of cell 2 quickly 
separates the states of opposite polarization. For a com- 
pletely polarized standard cell, the excitation energy from 
the ground state to the first excited state with opposite 
polarization is about 0.8 meV. This corresponds to a tem- 
perature of about 9 K. 

The abruptness of the cell-cell response function de- 
pends on the ratio of the tunneling energy, t in Eq. (2), to 
the Coulomb energy for electrons on neighboring sites. The 
magnitude of the tunneling energy depends exponentially 
on both the distance between dots and the height of the 
potential barrier between them. Figure 4 shows the cell- 
cell response function for different values of the tunneling 
energy t. The switching becomes more abrupt as t de- 
creases. Of course, if t goes to zero, the tunneling would be 
completely suppressed and no switching would occur. Ex- 
tremely small values of t would similarly slow the switch- 
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FIG. 4. The cell-cell response function of the basic flve-site cell for var- 
ious values of the parameter f in F$ (2) (after Ref. 4). The induced 
polarization in cell 1 is plotted as a function of the polarization of its 
neighbor, cell 2. The curves correspond to t=0.2 meV (solid line), k0.3 
meV (dotted line), k0.5 meV (dashed line), and k0.7 meV (dot- 
dashed line). Note the horizontal axis only shows P2 in the range [-0.1, 
+0.1]. 

ing time. For t=0.3 meV, the standard cell value, we es- 
timate the tunneling time as +i/t=2 ps. 

D. Nonzero temperature cell-cell response 

We extend the calculation of the cell-cell response 
function to nonzero temperatures by calculating the ther- 
mal expectation value of the electron density at each site of 
the cell, 

T3,(YnI &I WJ * e --E,/(kgT) 
pi” ( (Ai) > = -+e-WW-) * (8) 

Evaluating the thermal average requires knowledge of the 
excited states of the cell as well as the ground states. Using 
the results of Eq. (8), the polarization of the cell can be 
calculated as before using Eq. ( 1). The results of such a 
calculation for the standard cell (with the next-near- 
neighbor coupling t’=O) are shown in Fig. 5. The curve 
for T==O is the same as in Fig. 2. The nonlinearity of the 
response degrades as the temperature increases. For tem- 

-1.0 -0.5 0.0 0.5 1.0 
PI 

FIG. 5. The cell-cell response function for the standard cell with t’ =0 at 
various temperatures. The response degrades as temperature increases. 
Above 4.2 K, the response would be unacceptable for use in a QCA. This 
maximum operating temperature is highly dependent on the physical size 
of the cell; molecule-sized cells would behave in a satisfactory manner up 
to room temperature. 
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peratures up to 4.2 K, the response is good, but for higher 
temperatures it would probably be unacceptable for use in 
a QCA. 

Note that this maximum operating temperature will 
increase as the size of the cell decreases. Thus, although a 
20 nm design rule requires cryogenic temperatures for 
satisfactory operation, the design scales to smaller sizes 
easily and a much smaller, possibly macromolecular, 
implementation” would work at room temperature. 

111. ALTERNATIVE QUANTUM CELLS 

While the cell described above has demonstrated an 
excellent cell-cell response, there is no reason to discount 
other possible cell designs. Slight modifications to this cell 
give rise to a family of similar cells whose behavior can 
provide insight into the nature of the system. 

In looking for other model cells, there are several ap- 
proaches we can take. The most obvious of these is to alter 
the number of sites and their geometric arrangement. Al- 
ternatively, the cell occupation can be altered. Finally, tun- 
neling between the intracellular sites can be increased, de- 
creased, or effectively eliminated by varying the potential 
barriers between the sites. 

A. Four quantum cells 

In this section we will investigate the cell-cell response 
of four different quantum cells. While these four are rep- 
resentative of the sort of cells one might consider, they in 
no way exhaust the study of new bell designs. 

The first cell, included mainly as a standard by which 
to judge the others, is the original cell described above with 
t=0.3 meV. This will be called cell A. Next will be the 
same cell with no tunneling between the outer neighbors 
(t’=O). We will refer to this as cell B. Cell C omits the 
presence of the central site and allows tunneling only be- 
tween the four outer sites. Finally, cell D inhibits tunneling 
even further, allowing it only between sites 1 and 2 and 
between sites 3 and 4. Schematic diagrams of these four 
cell designs are shown in Fig. 6 (a). 

In a semiconductor realization of these cells, the min- 
imum spacing between nearest-neighbor sites will be lim- 
ited by the fabrication technology. For this reason, these 
cells are designed with a constant 20 nm design rule (the 
nearest neighbors in each cell are 20 nm apart). While this 
makes cells C and D smaller, it is the most physically 
reasonable way to compare their operation. The spacing 
between interacting cells is set at three times the near- 
neighbor dot spacing. 

It is possible to consider cell B as an approximation to 
cell A that neglects tunneling between outer neighbors. In 
reality there will always be a certain amount of tunneling 
between outer sites, but this tunneling can be made arbi- 
trarily small by selectively increasing the potential barriers 
between the outer sites. The same increase in potential 
barriers would be needed to suppress horizontal tunneling 
in cell D. 

Figure 6(b) shows the cell-cell response functions for 
these four cells. This figure shows that cells A and B have 
very similar responses, and both are superior to cells C and 
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FIG. 6. Four geometric variations on the simple model quantum cell. (a) 
Schematic diagrams of the four cells. Cells C and D occupy less area, but 
all four cells are drawn with the same minimum spacing between neigh- 
bors. Cells B and D will require potential variation between the sites to 
selectively inhibit tunneling. (b) The cell-cell response function for each 
of these cell designs. Cell B has the best response, but the improvement 
over A is small. 

D. Thus, elimination of the central site as in cells C and D 
degrades the response. This leads us back to the five-site 
cell we originally considered. Since the complete suppres- 
sion of next-near-neighbor coupling as in cell B might in- 
troduce additional fabrication difficulty with little improve- 
ment in the cell response, cell A may be the most practical 
of these four cell designs. 

B. One- and three-electron cells 

As an alternative to changing the geometry of the cell, 
we can also alter the electron occupancy. Figure 7 shows 
the cell-cell response function for cell A occupied by a 
single electron, and Fig. 8 shows the response for the same 
cell with three electrons (two parallel spins, one antipar- 
allel) . These nearly linear response functions never become 

L--2 a- 0.0 

-0.5 E 

p2 
FIG. 7. The cell-cell response function for the basic five-site cell occupied 
by a single electron. The weak response indicates that such a cell is 
unsuitable as the basis of a QCA. 

-l.OL I cL_ -I_. i 
-0.5 0.0 0.5 

P2 

FIG. 8. Cell-cell response function for the basic five-site cell occupied by 
three electrons. Such a cell is also unacceptable as the basis of a QCA. 

strongly polarized, even for fully polarized neighbors. This 
indicates that such cells would perform very poorly as the 
basis of a quantum cellular automaton.” 

C. Quantum dashes and double wells 

Proposals have been made for one-electron “quantum 
dash” cells that appear qualitatively similar to the cells we 
have discussed here.13 In this section we investigate the 
cell-cell response function of single-electron quantum 
dashes and compare this to a very similar double quantum 
well to show how important the discreteness of electronic 
charge is to the nonlinearity of the response functions seen 
in the previous sections. 

Since these cells are of a more spatially continuous 
nature than cells previously considered, the site represen- 
tation is no longer useful. Each cell will be modeled as a 
one-dimensional hard-walled square well of width 30 mu. 
The two cells are separated by a distance of 20 nm. These 
dimensions are similar to those of the cells described above. 
We use the finite element method to solve the single- 
electron time-independent Schriidinger equation for each 
one-electron cell. The geometry used to calculate the cell- 
cell response function is shown schematically in Fig. 9 (a). 

Since these cells have only a single axis along which to 
distribute the electronic charge, a new definition of polar- 
ization must be introduced. The new detlnition, which 
takes into account the continuous nature of the probability 
density, is 

p= soI& p(xw+- Sf$%(X)~~ 
SoLPW~~ - 

cq> 

Because of its continuous nature, the charge density in the 
“driver” cell is no longer uniquely determined by specify- 
ing the cell polarization. We therefore fix the charge den- 
sity to be constant in each half of the driver cell. 

The cell-cell response function calculated for such a 
system is shown in Fig. 9(b). As this figure shows, the 
response is quite linear, and cell 1 is virtually unpolarized, 
even for a fully polarized neighbor. The electron probabil- 
ity density as a function of position for cell 1 with a fully 
polarized neighbor (P2= 1) is shown in Fig. 9(c). The 
probability density is nearly symmetric about the center of 
the cell as we would expect for such a small polarization. 
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FIG. 9. The “quantum dash” as a QCA cell. (a) A schematic diagram of 
the cellular arrangement. The length and spacing is similar to that of the 
basic five-site cell in Fig. 1 (a). Each cell is modeled as a one-dimensional 
infinite square well. The cell-cell response is shown in (b). Note that the 
vertical axis only shows P2 over the range [-O.l,+O.l]. (c) The one- 
dimensional charge density in cell 2 for a fully polarized neighbor 
(PI = 1). The nearly symmetric charge density yields a very low polar- 
ization. 

A related cell, the double well, is shown schematically 
in Fig. 10 (a). It is a quantum well of the same dimensions 
as in Fig. 9(a), but the potential in the middle third of the 
well has been raised by 150 meV. This cell is also very 
similar to half of cell D from the last section, so we would 
expect its response to be much better than that of the sim- 
ple quantum dash. 

The calculated response, shown in Fig. 10(b), is in- 
deed much better than that of Fig. 9(b). Its nonlinearity 
and saturation properties are very similar to those of cells 
C and D in Fig. 6(b). This response shows that one- 
electron cells can be used to provide the required nonlinear 
response, but it is also possible to view each pair of these 
cells as a single two-electron cell, which becomes geomet- 
rically very similar to cell D of Fig. 6 (a). 

The fact that such a seemingly small change in the 
nature of the cell should cause such a profound change in 
the cell-cell response function is linked to the fact that 
electron charge is discrete in regions surrounded by high 
potential barriers. That is to say, the expectation value of 
the number operator approaches an integer value as the 
region becomes more and more isolated by the potential 

a> 20 nm 

30 nm 

c> 8 1 -15 0 15 
Position (run) 

FTG. 10. The double well as a QCA cell. (a) A schematic diagram of the 
cellular arrangement. The total dimensions are identical to those of Fig. 8. 
The middle third of each cell contains a 150 meV barrier to isolate the top 
and bottom of the cell. (b) The cell-cell response function for such an 
arrangement. Note that the vertical axis now shows P2 over the range 
[- 1.0, + 1.01. (c) The one-dimensional charge density in cell 2 for a fully 
polarized neighbor (PI = 1). The highly asymmetric charge density re- 
sults in a cell that is almost completely polarized. 

barriers surrounding it. I4 Therefore, almost the entire 
wavefunction will become localized in one-half of the cell if 
a small asymmetry in the electrostatic environment is in- 
troduced. This fact is demonstrated in Fig. 10(c), which 
shows nearly all the charge density on the right half of the 
cell. Since there is no barrier in the middle of the quantum 
dash to isolate the top and bottom of the cell, no such 
localization behavior is seen there, and the charge density 
is always nearly symmetric about the center of the well. 

IV. MULTIPLE NEIGHBOR INTERACTIONS 

Thus far, we have only considered the interaction be- 
tween a cell and a single neighboring cell. The natural 
extension of this is to investigate the effects of multiple 
neighbors on the state of a cell. Since this implies consid- 
ering a system that contains several cells and therefore 
several electrons, we cannot use the direct solution method 
described earlier for treating a single cell. For the analysis 
of such systems, we treat the physics within each cell as 
before, including exchange and correlation effects exactly. 
The intercellular interaction is treated self-consistently us- 
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FIG. Il. Majority voting logic. The states of the center and right cells are 
always the same as the majority of the three t&d neighbors. The cells 
with heavy borders have fixed charge densities. These are not schematic 
diagrams; they are the actual results of the ICHA solution of the ground 
state charge densities in this system. The diameter of each dot is propor- 
tional to the charge density on that site. 

ing a Hartree approximation. This method, called the In- 
I tercellular Hartree Approximation (ICHA) is detailed in 

Refs. 5 and 6. 
Figure 11 shows an arrangement of standard cells, 

such that one cell has multiple neighbors. The charge den- 
sities of the cells on the top, left, and bottom are fixed, 
while those of the middle and right cells are free to react to 
the tixed charge. In an actual QCA, the states of the neigh- 
bors would not be fixed; they would be driven by the re- 
sults of previous calculations or come from inputs at the 
edge of the QCA. 

In the specific state shown in Fig. 11, two of the fixed 
neighbors are in the “one” state, and the other is in the 
“zero” state. When the ICHA is used to determine the 
ground state of this system, we find that the states of the 
center and right cells match the state of the majority of the 
tied neighbors. We refer to this feature of the cell behav- 
ior, which is true for all combinations of the three inputs, 
as majority voting logic. Note that Figs. 11-13 are not sche- 
matic,. but plots of the self-consistent electron density on 
each site. The radius of each dot is proportional to the 
single-electron density at that site. 
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FIG. 12. The programmable AND/OR gate. The program line is set to 
one in each system, so the gate is displaying OR logic. All four combi- 
nations of the nonprogram line inputs are shown. The cells with heavy 
borders have 6xed charge densities. Any one of the three inputs could be 
the program line; the left cell is not special. These are not schematic 
diagrams; they are the actual results of the ICHA sohttion of the ground 
state charge densities in each system. The diameter of each dot is propor- 
tional to the charge density on that site. 
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FIG. 13. The nonprogrammable AND gate. All four combinations of the 
inputs are shown. The cells with heavy borders have Exed charge densi- 
ties, while those with dotted borders are geometrically biased toward zero 
as shown in the inset. The bias is sufficient to decrease the on-site energy 
of the affected sites by 1%. Note that the output only equals one if both 
of the inputs are also one. These are not schematic diagrams; they are the 
actual ICHA results of the ground state charge densities in each system. 
The diameter of each dot is proportional to the charge density on that site. 

While majority voting logic behavior is valuable by 
itself, its potential functionality is shown by a particular 
interpretation of the three inputs. In Fig. 12, we have sin- 
gled out one of the three and called it the program signal. 
Note that any one of the three neighbors could serve as the 
program signal, but the one case we are showing (with the 
program line coming in from the left) is sufficient for il- 
lustration purposes. The four systems shown include all 
possible combinations of signals on the two nonprogram 
lines. Since all four systems in Fig. 12 show the program 
line in the “one” state, the central cell can only be zero if 
the other two inputs are both zero. Thus the system real- 
izes the truth table of the OR operation. Likewise, if the 
program signal is zero, the result is zero unless both of the 
other inputs are one. This is a realization of the AND 
operation. 

By interpreting any one of the inputs as a program line, 
we have implemented a programmable AND/OR gate. 
The nature of this gate (AND versus OR) is defined by the 
state of the program line, and the other two inputs are 
applied to the gate thus defined. 

The fact that the rightmost cell always matches the 
central cell means that the result of this calculation can be 
propagated away from the gate, down a QCA rcwire,“15 
and eventually serve as the input to subsequent gates. It is 
necessary to distinguish between driving neighbors .and 
driven neighbors in this system. Since the rightmost cell is 
free to react to the states of its neighbors, it is a driven 
neighbor. Its state will always match that of the central 
cell, so only the three driving neighbors are involved in the 
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majority voting. Of course, once the signal is propagated 
away from this gate, the outgoing cells are being driven 
and can be used as driving neighbors for subsequent gates. 

A dedicated, nonprogrammable implementation of the 
AND gate is shown in Fig. 13. This system has only two 
driving inputs; there is no program signal. The role previ- 
ously played by the program signal, biasing the central cell 
so it can only be in the one state if both of its neighbors are, 
is performed by slightly enlarging the two quantum dots on 
sites 1 and 3 in the central cell.16 This means that the 
ground state of the isolated cell is no longer an unpolarized 
state; the cell is biased toward the zero state and can only 
be persuaded to enter the one state if both of its driving 
neighbors are one. Again, the signal propagates away to 
the right and can be used to drive subsequent gates. A 
dedicated OR gate can similarly be implemented by enlarg- 
ing sites 2 and 4, biasing the cell toward the one state. It 
will only be in the zero state if both of its driving neighbors 
are also zeros. 

V. DISCUSSION 

With the above results, we have demonstrated several 
quantum-dot cells suitable for implementing a quantum 
cellular automata architecture. Examination of the cell- 
cell response function shows that for appropriate cell de- 
signs, the state of a cell is influenced very strongly by the 
state of its neighbors. The highly nonlinear response of the 
cell suggests that a signal that has become degraded by 
noise will be restored to full polarization by subsequent 
cells in the array.15 In this way, the bistable saturation of 
the quantum cell is analogous to the gain in a conventional 
digital device. 

We have assumed throughout that the many electron 
system is in its ground state. In general, a system will start 
in the ground state and then be driven into an excited state 
by externally changing the states of input cells near the 
edge of a QCA array. Inelastic processes, which are usually 
very detrimental to the operation of quantum devices, then 
drive the system back to a new ground state corresponding 
to the new inputs. The details of the temporal evolution of 
the many-electron system as it relaxes to its ground state 
are very complicated. In the QCA scheme, we rely on the 
properties of the system ground state and not the details of 
the relaxation process for doing the computation. This idea 
of “computing with the ground state” and the related con- 
cept of “edge-driven” systems are discussed more thor- 
oughly in Ref. 5. 

The behavior of lines of these cells, the most basic (and 
important) components of a quantum cellular automaton, 
is discussed in Ref. 6. The results show an excellent exam- 
ple of the restoration of full signal strength after degrada- 
tion by noise. In addition, it shows that the particular set of 
parameters we chose in Sec. II B is not critical; there is a 
wide range of parameter values for which the cells transmit 
information from one cell to another.. 

Clearly, fabrication of these devices presents a major 
challenge in the realization of QCA devices, but semicon- 
ductor realizations of such systems using new nanolitho- 
graphic techniques should be possible. It is also possible 

that future realizations of these cells will be on a macro- 
molecular basis. Another challenge, sensing the presence 
or absence of a single electron without disturbing the sys- 
tem, necessary for reading the output state of a QCA de- 
vice, has been successfully addressed. I7 

In conclusion, we have explored the interaction of 
neighboring quantum-dot cells. We have defined the cell- 
cell response function, which characterizes the nonlinearity 
of the coupling between cells, and thus determines suitabil- 
ity of a particular cell design for quantum cellular autom- 
ata implementations. Several cell designs that exhibit the 
required nonlinear response and bistable saturation have 
been examined. Temperature effects degrade cell perfor- 
mance, but analysis in this simple model suggests that op- 
eration at 4.2 K should be within the reach of semiconduc- 
tor implementations. When a cell has several neighbors, its 
state is determined by the state of the majority of the neigh- 
boring cells. This majority voting logic makes possible the 
construction of programmable AND/OR logic gates as 
well as dedicated AND and OR gates. 
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