
DESIGNING DIGITAL SYSTEMS IN QUANTUM CELLULAR AUTOMATA

A Thesis

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Masters of Science in Computer Science and Engineering

by

Michael Thaddeus Niemier, B.S.

Peter M. Kogge, Director

Department of Computer Science and Engineering

Notre Dame, Indiana

January 2004

DESIGNING DIGITAL SYSTEMS IN QUANTUM CELLULAR AUTOMATA

Abstract

by

Michael Thaddeus Niemier

The Quantum Cellular Automata (QCA) is currently being investigated as an

alternative to CMOS VLSI. While some simple logical circuits and devices have been

studied, little if any work has been done in considering the architecture for systems

of QCA devices. This work presents one of the first such efforts when considering

systems of QCA devices. Namely, a simple but complete processor dataflow has

been designed exclusively in QCA. Additionally, techniques for floorplanning and

simulating circuits have also been developed. Size projections for the dataflow de-

signed are striking, as the design has the potential to be 900 times smaller than

an end of the CMOS curve equivalent. Basic QCA device physics, floorplanning

techniques, actual designs, simulation techniques, and size and power projections

are discussed.

For mom and dad.

What you have taught me can best be summed up with this quote from Paulo

Coelho’s “The Alchemist”, ”Everyone on earth has a treasure that awaits him, his

heart said. We, people’s hearts, seldom say much about those treasures, because

people no longer want to go in search of them. We speak of them only to children.

Later, we simply let life proceed in its own direction, toward its own fate. But,

unfortunately, very few follow the path laid out for them – the path to their

destinies, and to happiness. Most people see the world as a threatening place, and,

because they do, the word turns out, indeed, to be a threatening place.”

Thanks for being the exception.

Your love and support has helped me get this far and undoubtedly will help me

along the rest of the way.

ii

CONTENTS

FIGURES . vi

ACKNOWLEDGEMENTS . ix

CHAPTER 1: INTRODUCTION . 1
1.1 An Introduction to the Problem . 1
1.2 An (Alternative) Solution . 1
1.3 Developing the Solution . 2
1.4 Previous Work / QCA Design . 3
1.5 A Summary of the Current Work . 4
1.6 A Thesis Map . 6

CHAPTER 2: A BACKGROUND IN QCA DEVICES, THE QCA CLOCK,
AND THE SIMPLE 12 MICROPROCESSOR 8
2.1 QCA Device Background . 8

2.1.1 The Basic QCA Device . 8
2.1.2 The Basic QCA Logical Device – The Majority Gate 10
2.1.3 A Straight “90-Degree” QCA Wire 11
2.1.4 A Straight “45-Degree” QCA Wire 11
2.1.5 An Off-Center “90-Degree” QCA Wire 13
2.1.6 QCA Wires Crossing in the Plane 14
2.1.7 A Simple QCA Circuit . 14

2.2 The QCA Clock . 16
2.2.1 The Basics . 16
2.2.2 How it Actually Works . 17

2.3 Simple 12 . 21
2.3.1 The Simple 12 Dataflow . 23
2.3.2 The Simple 12 Instruction Set 23
2.3.3 Functions of the Simple 12 ALU 24

CHAPTER 3: DATAFLOW DRIVEN CLOCKING FLOORPLANS 25
3.1 A First-Cut of the Simple 12 ALU . 25

3.1.1 The Adder Unit . 26
3.1.2 The Logic Unit . 27
3.1.3 The Intermediate Signal Generation Unit 28
3.1.4 The Final Product . 29

iii

3.2 Problems with the First-Cut of the Simple 12 ALU 30
3.2.1 Wire Length . 31
3.2.2 Clocking Zone Width . 32
3.2.3 Number of QCA Cells per Clocking Phase 32
3.2.4 Lack of Feedback . 34
3.2.5 Wasted Area . 34

3.3 Floorplanning . 35
3.3.1 Trapezoidal Clocking . 35
3.3.2 Feedback and Trapezoidal Clocking 36
3.3.3 A Universal Clocking Cell . 37
3.3.4 Universal Clocking Floorplans and Data and Control Routing 38

3.4 A Few Final Floorplanning Comments 39

CHAPTER 4: ACTUAL DESIGNS . 41
4.1 “Second-Cut” Designs . 41
4.2 Feedback and its Applications – The Remaining Problem 43

4.2.1 A Simple Feedback Example 44
4.2.2 An Introduction to Registers and Latches 46

4.3 Putting Some Pieces Together . 48
4.4 Interconnect . 48

4.4.1 Interconnect Clocking Zone Width and Wire Length 51
4.4.2 The Number of QCA Cells per Interconnect Clocking Zone . . 53

4.5 State Machines . 53
4.5.1 A Simple State Machine . 54
4.5.2 Requirements for a QCA State Machine 55
4.5.3 Control Signal Routing . 57

CHAPTER 5: SIMULATORS AND SIMULATIONS 59
5.1 The VERY Brief History of QCA Simulators 59
5.2 An Introduction to the Q-BERT Interface and Engine 60
5.3 Q-BERT’s Engine – for a Simple, Propagation Based Simulator . . . 62
5.4 Architectural Simulation Rules . 64

5.4.1 A 90-Degree Cell Interacting with a 90-Degree Cell 64
5.4.2 A 45-Degree Cell Interacting with a 45-Degree Cell 64
5.4.3 A 90-Degree Cell Interacting with an Off-center 90-Degree Cell 65
5.4.4 A 90-Degree Cell Getting a Value from a 45-Degree Wire . . . 65
5.4.5 An Input Cell of a Majority Gate Interacting with a Device

Cell of a Majority Gate . 66
5.4.6 A Device Cell of a Majority Gate Interacting with a 90-Degree

Cell . 68
5.4.7 A Crossover . 68
5.4.8 Ripping a Value from a 90-Degree Cell to a 45-Degree Cell . . 68

5.5 Details of Q-BERT’s Engine . 69
5.5.1 The Color Array . 70
5.5.2 The Device Matrix . 70
5.5.3 The Contents Array . 70
5.5.4 The Changable Array . 70

iv

5.5.5 The Data Array . 71
5.5.6 The Timestamp Array . 71
5.5.7 The Majority Gate Count Array and The Majority Gate De-

vice Array . 72
5.5.8 Putting it all Together . 74

5.6 A “Clocked” Simulator” . 75
5.6.1 Adding Clocking Zones . 75
5.6.2 The “Hold” Situation” . 76
5.6.3 Clocking Data Structures . 77

5.7 Q-BERT’s Engine – for a Clocked Simulator 78
5.7.1 Startup . 78
5.7.2 The Release Problem and its Consequences 79

5.8 Future Simulator Improvements . 81

CHAPTER 6: SIZE COMPARISONS . 82
6.1 QCA Dimensions . 82
6.2 Density Comparisons . 83
6.3 Odds and Ends . 84
6.4 A QCA ”Roadmap” . 85

6.4.1 Limitations . 85
6.4.2 Destinations . 85

CHAPTER 7: CONCLUSIONS AND FUTURE WORK 87
7.1 Oh the Places We’ve Gone . 87
7.2 The Future . 90

7.2.1 Technology Issues . 90
7.2.2 Logic Design . 91
7.2.3 Architecture . 93
7.2.4 Design Automation Tools . 93

v

FIGURES

2.1 QCA cell polarizations and representations of binary 1 and binary 0. 9

2.2 The fundamental QCA logical device - the majority gate. 10

2.3 Interaction between 2 cells. 11

2.4 A QCA ”wire” . 12

2.5 (a) Ripping off a Binary 1; (b) Ripping of a Binary 0. 12

2.6 A nonrectangular binary wire. 13

2.7 Off-center wire issues. 13

2.8 Two wires crossing in the plane. 15

2.9 A 2x1 QCA multiplexor with logical equation: Y = AS’ + BS. 16

2.10 The four phases of the QCA clock. 18

2.11 The four phases of the QCA clock (an alternative expression). 18

2.12 An example of QCA clock transitions. 19

2.13 The Simple 12 datapath. 23

3.1 A block diagram of the adder used in the QCA Simple 12 ALU. . . . 26

3.2 A first-cut of the adder for the QCA Simple 12 ALU. 27

3.3 A first-cut of the logic unit for the QCA Simple 12 ALU. 28

3.4 A first-cut of the intermediate signal generation unit for the QCA
Simple 12 ALU. 29

3.5 1st cut of the QCA Simple 12 ALU. 30

3.6 1st cut of the QCA Simple 12 ALU. 31

3.7 A description of trapezoidal clocking. 35

3.8 A QCA ”tournament bracket” and potential for very dense circuits. . 36

3.9 A trapezoidal clocking floorplan with clocking zones. 37

vi

3.10 The universal clocking cell. 38

3.11 The universal clocking floorplan. 39

3.12 A Universal Clocking Floorplan with data and control signal routing. 40

4.1 A ”second-cut” design of the QCA Simple 12 ALU. 42

4.2 Another ”second-cut” design of the QCA Simple 12 ALU. 44

4.3 A simple example of feedback in a QCA circuit schematic. 45

4.4 A block diagram for a QCA latch. 47

4.5 A schematic for a QCA latch. 47

4.6 A complete 1-bit dataflow of the QCA Simple 12. 49

4.7 A 2-bit QCA Simple 12 ALU with registers and interconnect. 50

4.8 Stacked Clocking Zones. 53

4.9 A simple QCA “one-hot” state machine. 54

4.10 State Transition Diagram for Simple 12. 57

5.1 (a.) A graphical illustration of ripping a value off of a 45-degree wire
to a 90-degree cell; (b.) A graphical illustration of potential cases of
a majority gate input cell interacting with a majority gate cell. 61

5.2 A screenshot of the Q-BERT GUI before simulation. 62

5.3 A graphical illustration of potential straight-adjacent 90-degree cell
interactions. 65

5.4 A graphical illustration of potential off-center 90-degree cell interac-
tions. 65

5.5 A graphical illustration of ripping a value off of a 45-degree wire to a
90-degree cell. 66

5.6 Possible 45-degree wire and 90-degree cell interactions. 67

5.7 Situation for a crossover. 68

5.8 Situation for a crossover. 69

5.9 An example of a “dedicated” QCA cell with a majority gate (hence
the majority gate is an OR gate) . 71

5.10 Potential logic gate configurations. 72

5.11 A potential QCA ”wire” in the hold phase at startup 76

vii

5.12 (a.) A hold clocking zone constructed from nonrectangular elements;
(b.) A hold clocking zone constructed from rectangular elements . . . 78

6.1 Assumed dimensions associated with QCA cells (standard). 82

6.2 Assumed dimensions associated with QCA cells (molecular). 83

7.1 The power-delay-product for QCA and other technologies. 89

viii

ACKNOWLEDGEMENTS

I would like to give special thanks to my advisor Dr. Peter Kogge for allowing me

to pursue this project. The possibilities seem endless and remember, with nanoelec-

tronics, “there’s plenty of room at the bottom”!

Thanks also to Dr. Craig Lent and Dr. Wolfgang Porod for many useful discus-

sions and opportunities.

I would also like to thank the National Science Foundation for providing a fel-

lowship and funding for this work. Additionally, thanks to the University of Notre

Dame for providing an Arthur J. Schmidtt Presidential Fellowship.

To all of my friends I thank you for your assistance and support. In particu-

lar, I would like to thank Jason Keith, Shannon Kuntz, and Richard Murphy for

productive (and sometimes unproductive) discussions. I would also like to thank

undergraduates Michael Kontz and Walter Tuholski for their contributions to this

project. Thanks also to Michael Macedonia for assistance with LaTeX to properly

format this entire document!

Finally, I would like to thank Ferris Bueller for reminding me that, “Life moves

pretty fast. If you don’t stop and look around once in awhile, you could miss it.”

And, Jackie Robinson for reminding me that, “A life is not important except for

the impact it has on other lives.”

ix

CHAPTER 1

INTRODUCTION

1.1 An Introduction to the Problem

In 1965, Gordon Moore predicted that the number of transistors that could be in-

tegrated into a single die would grow exponentially with time. Moore’s law has

governed microprocessor manufacturing processes, and consequently microproces-

sor performance ever since. However, recent studies indicate that during the next

two decades, the laws of nature will begin to govern microprocessor design and

fabrication.

Today many integrated circuits are manufactured at 0.25-0.33 micron processes.

As device sizes decrease to an order of 0.05 microns (a technology that is cur-

rently unrealizable), physical limitations of conventional electronics including power

consumption, interconnect, and lithography will become increasingly difficult to

surmount [10]. In fact, studies indicate that as early as 2010, the physical limits

of transistor sizing may be reached [1]. Thus, it may not be possible to continue

the norms of doubling the number of devices in a microprocessor every two years

and doubling the clock rate every three years. Consequently to maintain trends of

increasing microprocessor performance, other technologies should be studied.

1.2 An (Alternative) Solution

As an alternative to CMOS-VLSI, researchers have proposed an approach to com-

puting with quantum dots, the quantum cellular automata (QCA). First proposed

1

in 1994, unlike conventional computers in which information is transferred from

one place to another by means of electrical current, QCA transfers information by

propagating a polarization state [12, 11].

QCA is based upon the encoding of binary information in the charge configura-

tion within quantum dot cells. Computational power is provided by the Coulombic

interaction between QCA cells. No current flows between cells and no power or infor-

mation is delivered to individual internal cells. The local interconnections between

cells are provided by the physics of cell-to-cell interaction due to the rearrangement

of electron positions [12].

While there is still much work to be done, early experimental results indicate

that QCA may be an extremely viable alternative to CMOS. QCA cells and a sim-

ple QCA logical device have been successfully fabricated and tested [3]. However,

the actual design of many of the circuits and devices required for a QCA micropro-

cessor have not yet even been considered. What is required is a methodology for

constructing and designing QCA circuits that are essential for a design such as a mi-

croprocessor. Furthermore, understanding how microprocessor components should

be built/designed, should assist in the design of QCA physical devices. In short,

what is required is a reference QCA architecture and the design tools to manipulate

and analyze it.

1.3 Developing the Solution

In an effort to successfully develop a viable, understandable, and usable QCA archi-

tecture, the following four tasks have been accomplished: (1.) The first micropro-

cessor dataflow has been designed completely with QCA devices. (2.) Floorplanning

techniques have been developed to efficiently design and layout QCA circuits to al-

low for the fastest possible clock rate and circuits with the minimum required area.

2

(3.) A library of design rules for QCA circuits has been built. (4.) A simulator for

QCA program has been written. This allows a QCA design or architecture to be

constructed and simulated in a easy and efficient manner.

These four accomplishments provide an excellent starting point for future QCA

designs and prove that QCA circuits can function logically (the physical realization

must still be determined) and implement equivalent versions of CMOS circuits. Also,

resulting designs can be and have been used to calculate area models/density gains

and will later be used to calculate power and clock rate estimates and models.

1.4 Previous Work / QCA Design

Prior to this research, little work has been done in considering the architecture for

systems of QCA devices. Basic logical devices and an adder have been designed by

Lent, et al [12]. Such devices were simulated and verified with a program called

AQUINAS (more in Chapter 5).

Memory has been studied by Terry Fountain, et al. at the University College

of London and a complex SRAM cell has undergone successful simulation. Addi-

tionally, a simple shift register has also been constructed and simulated [6]. Both of

these design schematics take advantage of an architecture developed by Fountain,

et al. called the SQUARES architecture. The SQUARES architecture essentially

consists of cells that are 5 QCA cells wide and 5 QCA cells high. A library of various

QCA functional devices (see Chapter 2 for logic device types) such as a majority

gate was then built up (with each device “housed” in a square) and use to construct

the various schematics. While resulting in successful simulations, the drawback to

the SQUARES architecture was that designs using it had less than optimal density.

It should be mentioned that the development of the SQUARES architecture

stemmed from a perceived problem called the “time-delay problem”. It was believed

3

that in order for a QCA logical gate to switch successfully, all inputs to it had to

arrive at the device cell at exactly the same time. However, this does not appear

to be the case. More will be said about the functionality of QCA logical gates in

Chapters 2 and 5.

Again, with these research efforts, by-in- large only QCA devices were considered,

not the systems of devices and their interactions that are absolutely necessary for

QCA to be considered a viable replacement to CMOS circuits.

1.5 A Summary of the Current Work

Initial work on the QCA architecture was spent understanding how QCA cells

worked physically and understanding the few existing QCA logical circuit designs

(i.e. the adder). To become more familiar with the new paradigms of the technology,

other QCA components, such as an XOR gate and a multiplexor using the QCA

logical device – the majority gate, were designed and studied. In doing so, it was

discovered that for some circuits/devices a QCA version could only be constructed

by implementing the direct logical equation (i.e. XOR = A’B + AB’). However,

for circuits such as the adder, simplified versions could be constructed with QCA

majority gates. (More will be said about this in Chapter 2).

It was then determined that it would be extremely valuable to create a program

that could translate a schematic containing conventional Boolean logic gates/equations

into a schematic consisting entirely of QCA majority gates/majority gate logic.

Mentor Graphics’ AutoLogic II was chosen to accomplish this task. It allows a

schematic created with general library components to be mapped to a specific tech-

nology provided that a library for that technology exists. The goal was to create

such a QCA library with the hope that, once completed, this tool would take as

input any conventional schematic, Boolean equation, or VHDL code and generate

4

its minimized equivalent in QCA. Additionally, the possibility of having AutoLogic

II perform some initial routing of QCA ”wire”, cells, and gates was considered.

However, as development of the QCA AutoLogic II library continued and an

understanding of QCA device physics was enhanced, two extremely important real-

izations were made. First, a complete set of QCA design rules that were essential for

a complete and thorough CAD program had not yet been fully developed. Second,

it was discovered that AutoLogic II could not satisfactorily handle several of the

QCA design requirements that had been encountered. While AutoLogic II could

translate the logic for a QCA circuit design (from CMOS to QCA), making al-

lowances for specific design layout requirements proved to be much more difficult.

For this and similar reasons, attention was focused on more hand-crafted designs

that would allow QCA design issues to be encountered first-hand and would allow

for the development of specific design rules.

As QCA is being investigated as an alternative to CMOS, an ultimate goal should

be to build complete microcomputers from QCA cells. With this thought in mind, it

was determined that a simple microprocessor should be constructed by hand (in the

same manner that the first Intel 8086 processor was constructed). The processor

of choice, Simple 12 (see Chapter 2 for more information), was advantageous for

multiple reasons. Most importantly, while the processor was simple enough to be

designed by hand, it still contained the basic elements that are part of any micro-

processor (i.e. arithmetic and logic units, registers, latches, etc.). Hence, solutions

to the difficulties encountered and overcome in this design will apply to even more

complex systems and processors and will form our desired design rule library.

The design process began by performing a layout of the Simple 12 ALU. The

first-cut of this design was completed largely by translating the logic of an exist-

ing transistor version of the ALU to an equivalent QCA representation. Problems

5

encountered during this design process were largely related to floorplanning. An ex-

tensive study of floorplanning was conducted and several viable floorplans for QCA

circuits were developed. Finally, QCA logical circuits were overlaid on floorplans

that were designed. While performing these ”hand-crafted” designs, a library of

design rules was constructed.

Initial designs/layouts were completed in Mentor Graphics’ Design Architect

using symbols to represent QCA cells. While this was an extremely easy-to-use

layout tool, it provided no means for simulating designs for logical correctness. To

solve this problem, a tool for laying-out and simulating large QCA designs was

written. This simulator allows cells, wires, logical devices, etc. to be placed on a

grid like structure to form a specific circuit. Design rules were compiled and form

the engine of the simulator which is used to test the circuit for logical correctness.

These design tools were then used to simulate and reanalyze existing design

schematics. Not only did this provide a concrete verification of the logical correct-

ness of a Simple 12 dataflow, but it also assisted in determining places for design

optimization – particularly with regard to minimizing the longest path/wire. The

simulator was also used to design and explore other circuits that would be needed

for a complex system such as a microprocessor (i.e. state machines).

1.6 A Thesis Map

Chapter 2 of this thesis will provide the necessary background about QCA physical

devices, QCA logical devices, the QCA clock, and the Simple 12 microprocessor.

Essentially, it will discuss QCA from a logic designers point of view. Basic devices

such as wires and logic gates will be illustrated and explained. Additionally, a basic

description of how a single QCA device functions will also be included. Details about

the how the QCA clock functions and the Simple 12 microprocessor – the processor

6

for which a dataflow was designed in QCA – will also be included. Chapter 3 will

discuss dataflow driven floorplanning for QCA circuits and Chapter 4 will show how

the floorplans discussed in Chapter 3 apply to a real design. Chapter 5 will discuss

the development of the QCA simulator/layout tool. Design rules will be discussed

in detail here. Chapter 6 will provide density comparisons of QCA designs versus

CMOS designs and will also address power and clock rate concerns. Finally, Chapter

7 will conclude with a plan for future work.

7

CHAPTER 2

A BACKGROUND IN QCA DEVICES, THE QCA CLOCK, AND THE SIMPLE
12 MICROPROCESSOR

This chapter will provide the background material needed for a full and complete

discussion of the work to be presented in this thesis. It will begin with a discussion

of the QCA device. This discussion will then extend to logical circuits that are

constructed from the basic QCA device. Then, a discussion on how QCA devices

are “clocked” will ensue. Finally, the chapter will conclude with background material

for the Simple 12 microprocessor that will be constructed from QCA devices.

2.1 QCA Device Background

QCA cells perform computation by interacting Coulombically with neighboring cells

to influence each other’s polarization. In the following subsections we review some

simple, yet essential, QCA logical devices: a majority gate, QCA ”wires”, and more

complex combinations of QCA cells.

2.1.1 The Basic QCA Device

A high-level diagram of a four-dot QCA cell appears in Figure 2.1. Four quan-

tum dots are positioned to form a square. Quantum dots are small semi-conductor

or metal islands with a diameter that is small enough to make their charging en-

ergy greater than kBT (where kB is Boltzmann’s constant and T is the operating

8

temperature). (In the future, they will shrink to regions within specially designed

molecules.) If this is the case, they will trap individual charge barriers [11, 12].

Exactly two mobile electrons are loaded in the cell and can move to different

quantum dots in the QCA cell by means of electron tunneling. Tunneling paths are

represented by the lines connecting the quantum dots in 2.1. Coulombic repulsion

will cause the electrons to occupy only the corners of the QCA cell resulting in two

specific polarizations (see below). This figure represents places where the electrons

are as far as possible from each other without escaping the confines of the cell.

Electron tunneling is assumed to be completely controllable by potential barriers

(that would exist underneath the cell) that can be raised and lowered between

adjacent QCA cells by means of capacitive plates.

P = +1
(Binary 1)

P = -1
(Binary 0)

Quantum Dots

Electrons
Quantum Dots Quantum Dots

Electron Electron

Figure 2.1. QCA cell polarizations and representations of binary 1 and binary 0.

For an isolated cell there are two energetically minimal equivalent arrangements

of the two electrons in the QCA cell, denoted cell polarization P = +1 and cell

polarization P = -1. Cell polarization P = +1 represents a binary 1 while cell

polarization P = -1 represents a binary 0. This concept is also illustrated graphically

in Figure 2.1.

It is also worth noting that there is an unpolarized state (which will be discussed

in later chapters) as well. In an unpolarized state, interdot potential barriers are

lowered which reduces the confinement of the electrons on the individual quantum

9

dots. Consequently, the cells exhibit little or no polarization and the two-electron

wave functions have delocalized across the cell [8].

2.1.2 The Basic QCA Logical Device – The Majority Gate

The fundamental QCA logical circuit is the three-input majority gate that appears

in Figure 2.2 [12]. Computation is performed with the majority gate by driving the

device cell (cell 4 in the figure) to its lowest energy state. This happens when it

assumes the polarization of the majority of the three input cells. We define an input

cell simply as one that is changed by a signal that is propagating in a direction that is

toward the device cell. The device cell will always assume the majority polarization

because it is this polarization where electron repulsion between the electrons in the

three input cells and the device cell will be at a minimum.

Cell 1 (input)

Cell 3 (input)Cell 2 (input)

Cell 4 (device cell)

Cell 5 (output)

Figure 2.2. The fundamental QCA logical device - the majority gate.

To understand how the device cell reaches its lowest energy state (and hence

P=+1 in Figure 2.2), consider the Coulombic interaction between cells 1 and 4,

cells 2 and 4, and cells 3 and 4. Coulombic interaction between electrons in cells 1

and 4 would normally result in cell 4 changing its polarization because of electron

repulsion (assuming cell 1 is an input cell). However, cells 2 and 3 also influence

the polarization of cell 4 and have polarization P=+1. Consequently, because the

majority of the cells influencing the device cell have polarization P=+1, it too

10

will also assume this polarization because the forces of Coulombic interaction are

stronger for it than for P=-1.

2.1.3 A Straight “90-Degree” QCA Wire

Figure 2.4 illustrates how a binary value propagates down the length of a QCA

”wire”[12] . In this figure, the wire is a horizontal row of QCA cells. The binary

signal propagates from left-to-right because of the Coulombic interactions between

cells. (See Figure 2.3)

State Propagation Direction

. . .

Figure 2.3. Interaction between 2 cells.

In Figure 2.4, cell 1 has polarization P = -1 and cell 2 has polarization P = +1.

(Again, we assume that charges in cell 1 are trapped in polarization P= - 1 but

those in cells 2-9 are not. Because of this, there is no danger that the wire could

“reverse directions” and have a polarization propagate in the direction from which

it came). A binary 0 (from polarization P = -1) will propagate down the length of

the wire because of the Coulombic interactions between cells. Initially, the electron

repulsion caused by Coulombic interaction between cell 1 and cell 2 will cause cell 2

to change polarizations. Then, the electron repulsion between cell 2 and cell 3 will

cause cell 3 to change polarizations. This process will continue down the length of

the QCA ”wire”.

2.1.4 A Straight “45-Degree” QCA Wire

A QCA wire can also be comprised of cells oriented at 45-degrees as opposed to

the 90-degree orientation discussed above [12]. With the 45-degree orientation, as

11

Coulombic interaction causes Cell 2 to switch polarizations

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9

Cell 1 = Input cell (Cells 2-9 have potential barriers lowered)

Figure 2.4. A QCA ”wire”

the binary value propagates down the length of the wire, it alternates between

polarization P = +1 and polarization P = -1. A complemented or uncomplemented

value can be ripped off the wire by placing a ripper cell at the proper location and

considering the direction of signal propagation (this is explained in detail in the

Design Rules section of Chapter 5). The significant advantage of the 45-degree wire

is that both a transmitted value and its complement can be obtained from a wire

without the use of an explicit inverter! An illustration of a value being transmitted

on a 45-degree wire and an example of ripping off a value from that wire appears in

Figure 2.5 a and Figure 2.5 b.

Uncomplemented Copy

Complemented Copy

Original signal
propagation

(a) (b)

Input Cell (Binary 1) Input Cell

Original signal
propagation

(Binary 0)

Figure 2.5. (a) Ripping off a Binary 1; (b) Ripping of a Binary 0.

12

2.1.5 An Off-Center “90-Degree” QCA Wire

Also, QCA cells do not have to be in a perfectly straight line to transmit binary

signals correctly. Cells with a 90-degree orientation can be placed next to one

another, but off center, and a binary value will still be transmitted successfully as

depicted in Figure 2.6 [12].

Cells off-center

Cells off-center

Cells off-center

Figure 2.6. A nonrectangular binary wire.

However, there is a restriction on this. Consider the cases illustrated in Figure

2.7:

R

θ

 Polarization Okay Polarization
Weak/Indefinite

 Polarization Okay The Defining Rule
Ekink (r, Θ) ~ r-5 cos(4θ)

Figure 2.7. Off-center wire issues.

In the first row of this figure, there is off-center 90-degree wire labeled “Po-

larization Okay” and another labeled “Polarization Weak/Indefinite”. If the two

13

quantum dots of the middle cell are below the center lines of its neighboring cells

then the polarization will be weak/indefinite. If not, the value will be transmitted

successfully.

In the first figure of the second row of Figure 2.7, the “middle” QCA cell is

entirely below both “neighboring” cells. In this case, the middle cell’s polarization

will be different than its two neighbors (thus, it has the function of an inverter).

Finally, the second figure of the second row of Figure 2.7 dictates the amount of

“off-centeredness” thought possible. Its behavior is influenced by equation 2.1.

Ekink(r, Θ) '
1

r5
cos(4θ) (2.1)

Ekink refers to the amount of energy that would be required for a successful

switch. Thus, it is governed by the distance and angle constraints of equation 2.1.

2.1.6 QCA Wires Crossing in the Plane

Finally, QCA wires possess the unique property that they are able to cross in the

plane without the destruction of the value being transmitted on either wire. How-

ever, this property holds only if the QCA wires are of different orientations (i.e. one

wire is a 45-degree wire and the other is a 90-degree wire) and is shown in Figure

2.8 [12].

2.1.7 A Simple QCA Circuit

To implement more complicated logical functions, a subset of simple logical gates is

required. For example, it would be impossible to implement a multiplexor, decoder,

or adder in QCA without a logical AND gate, OR gate, or inverter. It has been

demonstrated that a value’s complement can be obtained simply by ripping it off

a 45-degree wire at the proper location. Implementing the logical AND and OR

functions is also quite simple.

14

45-degree wire

90-degree wire

Figure 2.8. Two wires crossing in the plane.

The logical function for the majority gate is:

Y = AB + BC + AC (2.2)

The AND function can be implemented by setting one value (A, B, or C) in

equation 2.2 to a logical 0. Similarly, the OR function can be implemented by

setting one value (A, B, or C) in equation 2.2 to a logical 1. This results in the

equations:

AND = AB + B(0) + A(0) = AB (2.3)

OR = AB + B(1) + A(1) = A + B (2.4)

It is worth noting that because this property exists (i.e. the ability to generate

the AND and OR functions) and given the fact that it is possible to obtain the

inverse of a signal value, the QCA logic set is functionally complete meaning that

any logical circuit can be generated with QCA devices.

More complex logical circuits (such as the multiplexor in Figure 2.9) can then be

constructed from at least AND and OR gates if not clever combinations of majority

gates. QCA cells labeled anchored in Figure 2.9 have their electron polarization

frozen to successfully implement AND and OR functions.

15

S’

S

B

A

YAnchored

AND gate

AND gate

OR gate

Figure 2.9. A 2x1 QCA multiplexor with logical equation: Y = AS’ + BS.

2.2 The QCA Clock

This subsection will explain and discuss how the QCA clock works. Unlike the

standard CMOS clock, the QCA clock has more than a high and a low phase. The

phases of the QCA clock and examples are discussed below.

2.2.1 The Basics

The clock in QCA is multi-phased. Individual QCA cells are not timed separately.

The wiring required to clock each cell individually could easily overwhelm the sim-

plification won by the inherent local interconnectivity of the QCA architecture [8].

However, an array of QCA cells can be divided into subarrays that offer the advan-

tage of multi-phase clocking and pipelining. For each subarray, a single potential

modulates the inter-dot barriers in all of the cells in a given array [8].

16

This clocking scheme allows one subarray to perform a certain calculation, have

its state frozen by the raising of its interdot barriers, and have the output of that

subarray act as the input to a successor array (i.e. clocking subarray 1 can act as

input to clocking subarray 2). During the calculation phase, the successor array is

kept in an unpolarized state so it does not influence the calculation. Each of the four

clocking subarrays corresponds to one of four different clocking phases. Neighboring

subarrays concurrently receive neighboring clocking phases [8].

Finally, it is important to reiterate and stress what exactly is meant when re-

ferring to the QCA “clock”. As mentioned above, the QCA clock has more than a

high and a low phase. Additionally, it is not a “signal” with four different phases.

Rather, it can be said that the clock changes phase when the potential barriers that

affect a group of QCA cells (referred to as a clocking zone) are raised or lowered or

remain raised or lowered (thus accounting for the four clock phases). Furthermore,

all of the cells within a clocking zone obviously are in the same phase. It is said that

one clock cycle occurs when a given clocking zone cycles through the four different

clock phases. What exactly the “clock” does is to trap one set of cells in a specific

polarization which in turn allows other cells to make appropriate changes. More

will be said about this in the next subsectixon.

2.2.2 How it Actually Works

During the first clock phase, the switch phase, QCA cells begin unpolarized and

their interdot potential barriers are low. The barriers are then raised during this

phase and the QCA cells become polarized according to the state of their driver (i.e.

their input cell). It is in this clock phase that the actual computation (or switching)

occurs. By the end of this clock phase, barriers are high enough to suppress any

electron tunneling and cell states are fixed. During the second clock phase, the hold

17

phase, barriers are held high so the outputs of the subarray can be used as inputs

to the next stage. In the third clock phase, the release phase, barriers are lowered

and cells are allowed to relax to an unpolarized state. Finally, during the fourth

clock phase, the relax phase, cell barriers remain lowered and cells remain in an

unpolarized state [8]. The four clock phases are illustrated in two different ways

in Figure 2.10 and Figure 2.11 while an example of a value being transmitted on a

QCA wire is illustrated in Figure 2.12.

Switch Release RelaxHold

Figure 2.10. The four phases of the QCA clock.

E-field
Barrier

Switch Hold Release Relax Time

Figure 2.11. The four phases of the QCA clock (an alternative expression).

Figure 2.12 represents a 5 cell segment of QCA wire with each region representing

a cell. Figure 2.12 essentially has four significant parts to it. First, the figure is

divided into 5 vertically shaded regions with the label ”clocking zone x” appearing

in each region. Second, essentially 5 representations of the horizontal QCA wire

are illustrated in Figure 2.12 and the state of the wire is shown at 5 different time

18

Switch

Hold

Release

Relax

Switch

Hold Switch

Release Hold Switch

Switch Relax Release Hold Switch

Relax

Relax

Relax

Relax

Release

Release

Release

Hold

Hold

Switch

Time Step
1

Time Step
2

Time Step
3

Time Step
4

Time Step
5

Clocking Zone 1 Clocking Zone 2 Clocking Zone 3 Clocking Zone 4 Clocking Zone 5

The clock phases in time step 1 appearing to the right of the dark
line represent the clock phases that clocking zones 2, 3, 4, and 5
must be started in to ensure that a signal propagates through the
design correctly.

The clock phases in this
shaded region represent the
transitions that will be taken to arrive
at the desired clock phase at the
desired time.

The clock phases to the left of the dark line show the propagation of a binary 0 (polarization P = -1)
(assumed to come from an input cell with frozen polarization).

Figure 2.12. An example of QCA clock transitions.

steps. Third, the state transitions for cells that make up the wire are illustrated for

each time step and are based on what clocking zone the particular cell is a part of.

Fourth, this figure is divided into 2 parts by a thick black line. Only cells to the left

of the black line will have a meaningful change of state during a given time step.

Nevertheless, cells to the right of the black line still ”exist” as they are part of the

wire.

They also illustrate that clocking zones must be ”initialized”. What is meant

by this? Clocking zones must traverse through the four phases as follows. From

switch, the zone transitions to hold. From hold, the zone transitions to release.

From release, the zone transitions to relax. Finally, from relax, the zone transitions

19

back to switch. Such a transition order is important because if cells in one clocking

zone are in the hold phase, cells in an adjacent zone should be in the switch phase

– with the cells in the clocking zone that is in the hold phase acting as inputs to

cells in the clocking zone that is in the switch phase. In Figure 2.12, in time step 2,

this in fact the situation. However, to ensure that during time step 2, the cells in

clocking zone 2 are in the switch phase, it must be started in the relax phase. Thus,

when the zones change phases after the first time step, zone 1 will go to hold while

zone 2 will go to switch.

Assuming that there is a frozen input cell with polarization P=+1 (binary 1) to

the left of this wire, a value would propagate down the length of a wire as follows:

Cells immediately to the left of the input cell (clocking zone 1) would begin in

the switch phase (in time step 1). As mentioned earlier, in the switch phase, the

potential barriers for the zone would be low. During this phase, they would be

raised and the cells would become polarized according to the state of their driver

(in this case, the input cell with polarization P=+1).

In time step 2, clocking zone 1 would transition to the hold phase while clocking

zone 2 would transition to the switch phase. The barriers of clocking zone 1 are

held high and cell polarizations and states are frozen. Clocking zone 1 serves as the

input to clocking zone 2 (in the switch phase) and the cells in clocking zone 2 are

polarized according to the states of the cells in clocking zone 1.

In time step 3, clocking zone 1 would transition to the release phase, clocking

zone 2 to the hold phase, and clocking zone 3 to the switch phase. Clocking zones

2 and 3 would interact in the exact same manner in time step 3 that clocking zones

1 and 2 did in time step 2. However, in time step 3, the cells in clocking zone 1

will enter the release phase. Here, potential barriers are lowered and the cells are

20

allowed to relax to an unpolarized and neutral state. This is done so that cells in

clocking zone 1 will be allowed to obtain a new value for transmission on the ”wire”.

In time step 4, clocking zone 1 would transition to the relax phase, clocking zone

2 to the release phase, clocking zone 3 to the hold phase, and clocking zone 4 to the

switch phase.

The effects of the release, hold, and switch phases have been explained in detail

for previous time steps. However, the purpose of the relax phase warrants some

further commentary. It would appear that this clock phase is not really necessary.

Why not simply proceed from release back to switch? After all, the cells in the

release phase have been unpolarized and have no state. The relax phase is nec-

essary because, as mentioned earlier, this clock phase sequencing is done so that

the subarray does not influence the next calculation (i.e. a switch clocking phase

follows the relaxed clocking phase but if a switch clocking phase were to directly

follow a release clocking phase, the switched clocking phase could affect the QCA

polarizations of the release clocking phase).

In time step 5, clocking zone 1 returns to the first clock phase (switch) and

repolarizes. A new value could now be transmitted down this QCA wire. The other

clocking zones make the usual transitions discussed above.

At this point and time it is worth mentioning that there is some inherent pipelin-

ing built into the QCA technology. After every 4 time steps, it is possible to put a

new value onto a QCA wire.

2.3 Simple 12

While there is still much work to be done, early results indicate that QCA is a

very viable alternative to CMOS. QCA cells and a QCA majority gate have been

fabricated and tested successfully. However, the actual design of many of the circuits

21

and devices required for a QCA microprocessor have not yet even been considered.

What is required is a methodology for constructing and designing the QCA circuits

that are essential for a design such as a microprocessor. Furthermore, understanding

how circuits are built should assist in the actual design of the devices themselves.

It will also serve to open a discussion about architectural issues of QCA and other

nanotechnologies.

As a means for generating the QCA architecture an obvious first step is to

translate existing CMOS designs directly into QCA majority gate logic. However,

while such a translation is possible, the nature of QCA devices will require an

architecture that is radically different from conventional CMOS.

The inherent pipelining associated with QCA and the logical device and clocking

methodology discussed above are only several of the ways that QCA designs differ

from conventional CMOS designs. To develop a library of design rules and hence

the QCA architecture, we are designing and simulating a custom design of a mi-

croprocessor called Simple 12 entirely in QCA. The advantages of choosing Simple

12 are three fold. First, the processor IS simple. Simple 12 has 12-bit data words,

an 8-bit addressable memory, and uses minimal hardware. Consequently, much of

the physical layout can be performed by hand. Second, an actual processor will be

designed with an instruction set that includes arithmetic instructions, loads, stores,

and jumps. Therefore, solutions to the difficulties encountered in this design will

apply to even more complex systems of custom and synthesized logic. Third, we

have completed and fabricated a two micron CMOS Simple 12. Thus, it will be

possible to make comparisons to an existing design in a technology on which we are

trying to improve.

22

2.3.1 The Simple 12 Dataflow

A high-level block diagram of Simple 12 appears in Figure 2.13. Again, although

simple, it exhibits almost all of the major attributes of a more complex design. As

mentioned, the design includes three registers, address and data buses, feedback

paths, and a memory interface.

Memory

Data Bus

Address Bus

Control

A

ALU

B

Mux

Instruction
Register

Program
Counter

Accumulator

Figure 2.13. The Simple 12 datapath.

A sample instruction might be executed as follows: The program counter (PC)

supplies the address of the instruction to memory. While the instruction is being

fetched, the PC can be incremented by 1 using the sole ALU. Next, using data from

the Accumulator and the Data Bus (which could have data from the Instruction

Register for instance), the ALU will perform an operation and store the result in

the proper location (i.e. Accumulator, memory, etc.).

2.3.2 The Simple 12 Instruction Set

Simple 12 has 4 basic classes of instructions. The Jump class will change the value of

PC. Memory access class instructions will load and store information from memory.

Operand class instructions execute logical and arithmetic operations. Finally, the

23

reserved class of instructions consists of opcodes not used in the original design.

The Simple 12 Instruction set appears in Table 2.1.

Table 2.1. The Simple 12 Instruction Set.

Opcode Mnemonic Register Transfer Language
0000 JMP X PC <– X
0001 JN X if A < 0 then PC <– X else PC++
0010 JZ X if A = 0 then PC <– X else PC++
0100 LOAD X A <– M(X) || PC++
0101 STORE X M(X) <– A || PC++
1000 AND X A <– A AND M(X) || PC++
1001 OR X A <– A OR M(X) || PC++
1010 ADD X A <– A + M(X) || PC++
1011 SUB X A <– A − M(X) || PC++

2.3.3 Functions of the Simple 12 ALU

To successfully execute the above instructions, the Simple 12 ALU must be able to

generate the following outputs (where A and B are inputs into the ALU): A+B,

A-B, A AND B, A OR B, B, B+1, and 0. To generate these outputs several control

signals are needed that serve as inputs to the intermediate signal generation logic

of the ALU. They are summarized below.

The ZeroA signal is used to perform the B+1 operation. Specifically, the A input

must be set to a logical 0. If this is desired, this signal is set low and ANDed with

the A input. In all other cases, the signal should be a logical 1/high.

Logic/Adder is used to control the multiplexor that selects between the output

of the arithmetic unit and the logic unit.

B-Invert is used to perform the A-B operation. Specifically, the signal is used to

generate the inverse of B if it is required so that twos complement addition can be

performed. It is the input to an XOR gate along with B. This signal also controls

the multiplexor of the logic unit to select between A AND B and A OR B.

24

CHAPTER 3

DATAFLOW DRIVEN CLOCKING FLOORPLANS

This chapter will discuss floorplanning. In particular, it will answer the question of

how one arranges QCA cells to perform logical and useful computation within the

constaints of clocking zones and the QCA clock. First-cut designs and floorplans

will be illustrated and discussed. Problems that exist within first-cut designs will

be identified and solutions will be proposed.

3.1 A First-Cut of the Simple 12 ALU

The QCA ALU was largely designed by translating the logic of the transistor version

of the ALU to an equivalent QCA representation. Essentially, equivalent QCA ma-

jority gate representations of the transistor logic were determined and implemented.

The only difference between the QCA ALU and the transistor ALU is that the QCA

ALU did not use a mirror adder, but the full adder designed by Lent, et al [8] (the

CMOS design used a full adder).

The design of the ALU can essentially be broken down into three blocks. One

block represents the adder, another block represents the portion of the ALU that

performs operations such as AND and OR (the logic unit), and the last block con-

tains logic for intermediate ALU signal generation. Each block will be discussed in

a separate subsection below.

25

3.1.1 The Adder Unit

As was mentioned above, the QCA adder does not use the mirror adder that was

included in the Simple 12 CMOS design, but rather a full adder designed by Lent,

et al [8]. A majority gate schematic of the full adder appears in Figure 3.1. It can

easily be seen that by using majority gates, the adder that is produced is significantly

different from a ”normal” or conventional full adder. This majority gate single-bit

full adder (first-cut) requires five majority gates and three inverters and appears in

Figure 3.2. As can be seen in Figure 3.2, the data lines for inputs A, B, and C are

45-degree wires. Thus, the need for explicit inverters is eliminated (note: values are

not necessarily ripped off in the correct places from these 45-degree wires. These

design rules were not determined until later and were in fact determined from this

first cut design. If a values complement must be ripped off, it is indicated by the

use of an inverter. If the original value is desired, a buffer symbol is used.) The 5

majority gates are marked with dots in Figure 3.2.

M

M

M

M S

M Ci

A B Ci-1

M

Majority Gate

Figure 3.1. A block diagram of the adder used in the QCA Simple 12 ALU.

26

Figure 3.2. A first-cut of the adder for the QCA Simple 12 ALU.

3.1.2 The Logic Unit

To successfully execute the complete Simple 12 instruction set, the ALU must be

able to generate the following outputs: A+B, A-B, A AND B, A OR B, B, B+1, and

0. The logic unit of the ALU will generate the outputs: A AND B, A OR B, B, and

0. (The output of the logic unit is then multiplexed with the output of the adder

unit and one output from the ALU is generated). The logic unit consists only of a

majority gate with an input cell anchored so that it performs the AND operation,

a majority gate with an input cell anchored so that it performs the OR operation,

and a 2x1 multiplexor to select between the output of the AND and OR gate. A

first-cut of the schematic of the logic unit for the QCA Simple 12 ALU appears in

Figure 3.3.

27

Figure 3.3. A first-cut of the logic unit for the QCA Simple 12 ALU.

3.1.3 The Intermediate Signal Generation Unit

In Section 3.1.2, it was indicated that the logic unit had to generate the following

outputs: A AND B, A OR B, B, and 0. One mechanism for generating B would be

to OR every bit of B with a logical 0. However, to perform this operation, the other

input to the logic unit, A, must be set to 0. In this case, the intermediate signal

generation logic will perform such an operation by setting the ZeroA signal low and

ANDing it with the A input. Thus, the new ”A” input will automatically be a

0. Similarly, a method for generating the 0 output would be to AND any B input

with a logical 0. The A input can be zeroed as mentioned above and ANDed with B

generating a 0 for any B input. Finally, it should be mentioned that the intermediate

signal generation unit is also used to assist with adder operations – particularly A-B.

28

This unit will generate the complement of B if a subtraction operation is desired by

XORing B with a control signal B-Invert. This will allow twos complement addition

to be performed. The intermediate signal generation schematic (first-cut) for the

QCA Simple 12 ALU appears in Figure 3.4.

Figure 3.4. A first-cut of the intermediate signal generation unit for the QCA Simple
12 ALU.

3.1.4 The Final Product

In Figure 3.5, the 3 parts of the Simple 12 ALU – adder, logic unit, and intermediate

signal generation logic – are joined to form the first-cut of the Simple 12 ALU.

Problems that exist with this design will be discussed in the next subsection and

solutions to such problems will be discussed in the subsection after that.

29

Logic
Unit

Adder

Intermediate ALU signal

Cloc king zone

generation logic

Figure 3.5. 1st cut of the QCA Simple 12 ALU.

3.2 Problems with the First-Cut of the Simple 12 ALU

The first-cut of the Simple 12 ALU has 5 significant problems. First, wire lengths

vary from extremely short (i.e. 4 QCA cells in length) to extremely long (i.e. 36

QCA cells in length). Second, the clocking zones in this first-cut have non-uniform

widths. Third, some clocking zones contain a very large number of QCA cells while

others only contain a few. Fourth, there is no means for generating feedback in

this design. Fifth, and finally, there is a large amount of white-space/wasted area

in this design. Why the above 5 characteristics are problems will be discussed

in the subsections below. Additionally, the problems are illustrated in Figure 3.6.

30

These problems (and more importantly solutions to them) must be considered when

designing future circuits.

Problem 1: Wire length

Problem 3: Number of cells per
clocking zone Problem 4: No Feedbac k

Problem 5: W asted Area

Problem 2: Cloc king zone width

Figure 3.6. 1st cut of the QCA Simple 12 ALU.

3.2.1 Wire Length

When generating designs in QCA, a significant effort should be made to keep the

length of a wire within a given clocking zone to a minimum. There are two very

important reasons to do this. First, as wire length grows, the probability that a

QCA cell will switch successfully decreases in proportion to the distance a particular

cell is from a frozen input at the beginning of the ”wire” [8]. Consequently, for

shorter wires, there is a higher probability that all cells making up the wire will

31

switch successfully. Additionally, wire length will determine the clock rate – or in

other words, the rate at which clocking zones can change clock phases. This is so

because, before a given zone can change phase, every cell within the zone must

make appropriate polarization changes. Obviously, the longer the wire, the longer

the time for a signal to propagate down the length of it.

3.2.2 Clocking Zone Width

Like wire length, there are also two important reasons for keeping clocking zone

width to a minimum. The first reason centers around the desire to keep wire lengths

at a minimum. If clocking zone widths are narrow, it will force the designer to keep

wire lengths small (at least in one dimension). For example, in most of the clocking

zones in Figure 3.6, a horizontal wire is composed of no more than 5 cells. A second

reason centers around uniformity. A conscious effort has been made to make circuits

that have been designed in QCA as uniform as possible. This was done to hopefully

increase the manufacturability of the circuits and designs if and when that time

comes.

3.2.3 Number of QCA Cells per Clocking Phase

As can easily be seen in Figure 3.6, there is a large disparity between the number

of QCA cells in some clocking zones when compared to the number of QCA cells in

other clocking zones (i.e. in the clocking zone at the far right of Figure 3.6 there

are only 8 cells in the zone while in the clocking zone in the middle of Figure 3.6

there are 211 in the zone).

If too many cells are included in a single clocking zone, the clock rate could

deteriorate (simply because the time for all cells to make there required transitions

will most likely increase). However, more importantly, for arrays of cells on the order

of 103 (i.e. 103 cells per clocking zone), there will be a tendency for the system to

32

settle into an excited state rather than a ground state – and a cell is in a ground

state when it has a definitive polarization, and hence logical value. This occurs

because of thermodynamic effects.

It is worthwhile to include a short discussion of what exactly thermodynamic

effects are. Such effects were first described by Lent, et al. If thermal fluctuations

excite an array of cells above its ground state, i.e. so that the cell does not have a

definite polarization, wrong answers can appear at the outputs of a circuit. To be

robust, the excitation energy must be well above kBT . It can be determined from

calculations that a maximum operating temperature for cells depends in part on the

size of a cell. As cell sizes decrease, the energy separations between states increase

and higher temperature operation is possible [8]

Additionally, consider a linear array of N cells acting as a wire transmitting a

logical 1. The ground state for such a configuration would be all of the cells obtaining

the same polarization as that of the input (or driving cell). The first excited state

of this array will consist of the first m cells polarized in a representative binary 1

state and N-m cells in the binary 0 state. This excitation energy of this state (Ek)

is the energy of introducing a “kink” in the polarization. The energy is independent

of where the kink occurs (i.e. the exact value of m). As the array N becomes

larger, the kink energy Ek remains the same. But, the entropy of this excited state

increases (as there are more ways to make a “mistake” in a larger array). When

the array size reaches a certain size, the free energy of the mistake state becomes

lower than the free energy of the correct state. A complete analysis reveals that the

maximum number of cells in a single array is given by eEk/kBT . This again requires

the excitation energies to be significantly larger than kBT . Finally, the kink energy

increases as the system is scaled to smaller sizes [8].

33

3.2.4 Lack of Feedback

A significant ”logical” problem with the design appearing in Figure 3.6 is the com-

plete absence of physical feedback – namely, a value generated as output from the

circuit has no means for traveling back to the input. Physical feedback is all but

essential in most useful microprocessors and finite state machines. (As a simple

example, consider a register. Any processor should be capable of writing to a reg-

ister and using a register as input. Thus, a path should exist from the output of a

dataflow, to a register, and back to the input of that dataflow. Without feedback,

this would be impossible.) Furthermore, as seen in Figure 9, the Simple 12 dataflow

requires some form of physical feedback. However, in Figure 3.6 data flows only in

one direction. Some method of allowing the output of a given circuit to be used

again at the input must be generated.

3.2.5 Wasted Area

A final problem with the design appearing in Figure 3.6 is that it is not very space

efficient (examples of wasted area are illustrated with circles). A significant cause of

wasted space in this design comes as a result of the intermediate signal generation

logic. Both the logic and adder unit require the A and B inputs to be changed to

perform certain operations. Consequently, the intermediate signals must be gener-

ated before inputs reach the logic or adder unit. In the first-cut design, data flows

only in one direction (to the right). Therefore, the intermediate signal generation

logic must precede the logic and adder units. However, despite its importance in

precedence, the intermediate signal generation logic is actually two very simple cir-

cuits. As a result, not much area is required. Still, because it comes before the

other two units, space is wasted.

34

3.3 Floorplanning

This subsection will discuss methods for solving the 5 problems discussed in the

previous subsection. Many of the solutions stem from a specific arrangement of

clocking zones onto which a QCA circuit is overlayed. For this reason, this section

is entitled ”Floorplanning”.

3.3.1 Trapezoidal Clocking

As discussed in section 3.2.5, a significant problem with the first-cut design is wasted

area in the design. In particular, this wasted area comes from logic required to gen-

erate intermediate ALU data. To remedy this particular problem, the new technique

of ”trapezoidal clocking” will be introduced. In Figure 3.7, QCA logic to generate

intermediate ALU data is not placed in front of the computational logic but rather,

below it. Instead of leaving large gaps – or areas with no logic (like those appearing

in Figure 3.6), ”trapezoids” containing computational logic and intermediate signal

generation logic can be fit together to minimize wasted area. Thus, data will flow in

two different directions. It should be noted that the dotted lines in Figure 3.7 rep-

resent clocking zone boundaries. Thus, the computational and intermediate signal

generation logic would still be divided up into clocking zones as depicted in Figure

3.6.

Direction of computational logic

Direction of intermediate

QCA cells for computation

QCA cells for intermediate
ALU signal logicALU signals

Intermediate signals are then
fed up to the computation section.

Figure 3.7. A description of trapezoidal clocking.

35

It is also worth noting that QCA inherently lends itself to such a ”trapezoidal”

structure. In QCA circuits, an output is usually generated from a single gate or wire.

If it is a logical gate from which the output comes, that gate usually performed a

computation by using inputs generated from 2 or 3 other logical gates. This process

most likely continues ”backwards” until some inputs are reached. In this way, it is

not unlike a ”tournament bracket” in which there are an initial n slots and after a

certain number of m stages, a single slot remains. As illustrated in Figure 3.8 (and

in the first cut designs appearing in the figures of section 3.2), QCA circuits have a

very similar form. By allowing data to flow in two directions (as shown in Figure

3.7) and by carefully fitting ”trapezoids” together it would seem very possible that

very dense and compact QCA circuits could be generated.

Figure 3.8. A QCA ”tournament bracket” and potential for very dense circuits.

3.3.2 Feedback and Trapezoidal Clocking

Trapezoidal clocking does not only provide a means for minimizing total area. It

can also be used to implement a feedback path in QCA circuits. In Figure 3.9, the

36

four clocking phases are each given a number (1, 2, 3, and 4) and a color shade.

These correspond to the four different clock phases that were discussed in Section

2.2.2. and illustrated in Figures 7 and 8. If the top ”trapezoid” is computational

logic, data can be fed back to the input (assumed to be in clocking zone 1 at the far

left) after ”switching” in clocking zone 1 at the far right. White arrows illustrate

the feedback path through the numbered clocking zones. It can easily be seen that

the clocking phases are traversed in the proper order (i.e. in the order 1, 2, 3, 4 –

and so that the required clock phases are always adjacent to one another to allow

for correct signal propagation). Furthermore, a signal can start at a given point and

a path exists to return to that point – the definition of feedback.

1 2 3 4 1

1 4 3 2 1

Figure 3.9. A trapezoidal clocking floorplan with clocking zones.

3.3.3 A Universal Clocking Cell

The next question to be asked is whether or not the clocking zone arrangement

illustrated in Figure 3.9 can be extended to allow efficient and easy wire routing.

Thus, can the clocking zones be arranged or tiled so that there are multiple ”wire”

loops and ”wire” crossings and still allow feedback? Such a floorplan is necessary

because for designs and components (such as the QCA Simple 12 ALU) multiple

control and data input and output wires will have to be included in the design. The

ALU also requires some feedback mechanism. Furthermore, a standardized clocking

37

floorplan would provide a start for a new design, as a way to run wire and generate

feedback would already exist. Such a pattern is possible and is illustrated in Figure

3.10. As seen in Figure 3.10, several different loops can be generated that cross

(recall that 45 and 90-degree QCA wires can cross in the plane with no interference

of either value being transmitted on either wire) and do not violate the condition

that the clocking zones must be traversed in the order 1, 2, 3, 4.

1

1

4 3 2 1 4 3 2 1

2 3 4 1 2 3 4 1

11

11

3 3 3 3

Figure 3.10. The universal clocking cell.

3.3.4 Universal Clocking Floorplans and Data and Control Routing

The pattern that appears in Figure 3.10 can be tiled to form a universal clocking

floorplan (UCF). The UCF allows large designs to be constructed and allows ex-

tremely complicated paths of QCA wires to be constructed without violating the

condition that the clocking zones must be traversed in the order 1, 2, 3, 4 (as il-

lustrated in Figure 3.11). Also, some potential and feasible wire paths are also

included. (Note: the pattern in Figure 3.10 is rotated 90 degrees in Figure 3.11).

The UCF solves the problem of physical feedback in QCA circuitry for large

designs. Also, it provides a mechanism for tracing complicated paths while still

traversing the clocking zones in the proper order. Furthermore, it provides an

extremely efficient manner to run data signals and control signals (Figure 3.12).

38

1

2

3

4

Figure 3.11. The universal clocking floorplan.

Data signals can be run horizontally while control signals are run vertically (or vice

versa). This is directly analogous to CMOS VLSI where one layer of metal is run

in the vertical direction and used to transmit data signals or control signals, while

another layer of metal is run perpendicular to the first and used to transmit data

or control signals.

3.4 A Few Final Floorplanning Comments

It should be noted that in most cases, the exact universal floorplan appearing in

Figure 3.11f will not be used for every design. Specific circuits may require slight

variations of it (i.e. slightly wider or taller clocking zones, etc.). However, what the

UCF does provide is a means for starting any design. It also provides fundamental

39

Control Signals

Data Signals

1 2 3 4

Figure 3.12. A Universal Clocking Floorplan with data and control signal routing.

mechanisms for routing control and data signals as well as a means for generating

feedback.

40

CHAPTER 4

ACTUAL DESIGNS

This chapter will begin by discussing the floorplanning techniques developed to

solve the design problems discussed in Chapter 3 – particularly, how they effect ”real

designs”. While the ”second-cut” of the QCA Simple 12 dataflow has now undergone

some significant optimizations and revisions, feedback is still not present in the

design. While methods have been discussed in Chapter 3 for generating feedback

in QCA circuits, no circuits with feedback have yet been described. Several circuits

involving feedback will be discussed and described in this chapter including simple

wires, latches, and registers. After concepts needed for QCA registers and latches

have been introduced, specific latch/register requirements for the QCA Simple 12

will be mentioned. These latches/registers will then be integrated into the overall

design for the existing QCA Simple 12 dataflow. Finally, a brief discussion of state

machines and state machine logic will be presented – particularly as to how it relates

to the idea of the control unit for the QCA Simple 12.

4.1 “Second-Cut” Designs

Using floorplanning techniques developed and discussed in Chapter 3, the first-cut

design of the QCA Simple 12 ALU was reworked to solve the problems of long wire

length, inconsistent clocking zone width, the large disparity of QCA cells in wires

across some clocking zones, the lack of physical feedback, and wasted area in the

41

design. The design first created to address some of these problems appears in Figure

4.1. As one can see in the figure, this ”second-cut” design does not address all of

the problems listed above. For instance, there is still a lack of physical feedback

and wasted area in the design. Additionally, there are also still a few cases of

”long” wires. However, the clocking zone widths have been made more uniform, the

number of cells in a given clocking zone have been reduced, and wire lengths have

been shortened.

Logic Unit

Adder Unit

Wasted Area!!!
Still a problem:

No Feedback!!!
Still a problem:

★

Intermediate ALU Signal Generation Logic

Still a problem: Long Wire!!!

Figure 4.1. A ”second-cut” design of the QCA Simple 12 ALU.

It is worth mentioning that one potential solution employed in this ”second-cut”

design to help reduce the number of cells per clocking zone really has nothing to

do with innovative floorplanning (i.e. arranging/tiling clocking zones in a specific

order). In this ”second-cut” design, some clocking zones are simply divided in half

to reduce the number of cells in the given zone. Adjacent zones can still have the

same phase but are reduced in size to reduce the thermodynamic effects of having

42

too many cells in a given zone (see ?). (It should be noted that future designs do

not specifically employ this feature as the number of cells in our design are not

numerous enough for thermodynamic effects to be a concern.)

As illustrated in Figure 4.1, three significant problems still exist. In an attempt

to solve the remaining problems, another design was generated and appears in Figure

4.2. As seen in Figure 4.2, the problems of wasted area and long wire lengths have

all but been eliminated. The method used to eliminate wasted area was to simply

duplicate portions of the intermediate signal generation logic – in particular the

logic needed to zero the A input. This logic was simply placed in front of the adder

unit and the logic unit. As this logic only involves an AND gate, the additional

QCA cells required were minimal. Interestingly, this duplication of logic actually

solves two problems at the same time. The duplication of logic eliminates the need

for long ”routing wires” to carry signals to various portions of the ALU. This not

only saves area, but also reduces wire length!

It should be mentioned that there is no need to duplicate the logic that will

change the B input signal for various ALU operations. The B signal only needs to

be altered if the output from the adder unit is desired. Consequently, the ”normal”

B input can be fed to the logic unit.

4.2 Feedback and its Applications – The Remaining Problem

The two second-cut designs have addressed four of the five design issues associated

with the first-cut design of Chapter 3. Wire lengths have been reduced, clocking zone

widths have been made uniform, the number of cells in a given QCA clocking zone

have been reduced to a reasonable number, and wasted area has been eliminated.

However, physical feedback does still not exist in any of the first or second-cut

designs. This is not to say that it is impossible to generate feedback in QCA circuits.

43

Adder Unit

Logic Unit

Intermediate ALU Signal
Generation Logic

Longest Wire No Feedback!!!
Still a problem:

Figure 4.2. Another ”second-cut” design of the QCA Simple 12 ALU.

Floorplanning techniques discussed in Chapter 3 clearly indicate that feedback is

possible. However, it has not yet been incorporated into any of the designs.

Feedback is most important as it allows a value to be stored for a given length of

time – and is thus essential for registers and latches. A discussion of registers/latches

in QCA will follow shortly. However, first a simple example of a QCA feedback

circuit will be provided.

4.2.1 A Simple Feedback Example

Figure 4.3 shows a portion of the QCA Simple 12 ALU (part of the logic unit and

intermediate signal generation logic) that uses the Chapter 3 floorplanning technique

illustrated in Figure 18 to feed a value from the output of the ALU back to the input.

While no registers or latches are implemented, this figure serves to demonstrate that

feedback is possible in an actual circuit.

44

Feedback Trapezoid

F
ee

db
ac

k
P

at
h

Logic Unit

Zer o A
Logic

Figure 4.3. A simple example of feedback in a QCA circuit schematic.

There are two other interesting things about this design that are also worthy of

mention. First, a portion of this design provides the first illustration of trapezoidal

clocking in an actual QCA circuit schematic (it is highlighted in Figure 4.3). Second,

in this schematic, part of the intermediate signal generation logic is placed ”directly

after” the output of the ALU – or more specifically, above it in the ”feedback

trapezoid”. Thus, the A input to the ALU is zeroed on the way back to the input of

the ALU. Essentially, useful computation is being performed ”in wire”! While this

technique is not used in many of the designs to follow, it is a valuable technique that

can be used to save area and perform useful computation during signal transport.

45

4.2.2 An Introduction to Registers and Latches

Given that the movement of binary data in QCA is ballistic, what if an arbitrary

delay is required for data being sent to a computational unit? (Note: ballistic data

refers to the fact that a bit of binary QCA data will not stay on a wire indefinitely.

When the clocking zone that the particular bit of data is in changes phase, there is

a real possibility that the given bit could be lost if it is not copied) For example,

at times a mechanism will be necessary to preserve a given binary value until other

binary inputs arrive at the device cell of a majority gate. How can a ”preservation”

delay be added?

A common method for storing a bit of binary data is to use a flip-flop. A

”generic” flip-flop usually has a 1-bit data signal input, a clock signal input, a

reset signal input, a write-enable signal input, a 1-bit data signal output, and a

complemented 1-bit data signal output. For different combinations of the clock,

reset, and write-enable input signals, the binary value stored in the flip-flop will

remain the same or be overwritten. Obviously, a similar functioning QCA device

is required. Figure 4.4 illustrates the basic requirements for and design of a QCA

”flip-flop”.

The design essentially consists of a 2 x 1 multiplexor with intrinsic latching re-

sulting from spreading the circuit over multiple sets of clocking zones. The two data

inputs to the multiplexor in Figure 4.4 are a 1-bit data input and a 1-bit input from

a feedback/delay path. A multiplexor control signal selects between the two inputs

and selects either the old value stored in a feedback loop or a new value from some

circuit. Thus, the device has the same functionality as a latch. A new value is sent

back to some input and stored in the feedback loop or the new value is discarded

and the old value remains in the feedback loop.

46

2x1 Mux
D (Data input)

Input from feedback path

Mux control signal

To feedback

Figure 4.4. A block diagram for a QCA latch.

An actual schematic depicting the design appearing in Figure 4.4 is shown in

Figure 4.5. Like the simple feedback example in Figure 4.3, processing is essentially

being done ”in wire” here as well. How? Well, the output of the ALU in Figure

4.5 will take a certain number of n clock cycles to arrive back at the input to the

ALU. If logic gates or devices are included within the clocking zones that a signal

passes through to arrive back at the input, n clocking zones will still be required.

Thus, essentially, the register logic/operations are performed for ”free” and do not

necessarily add to the critical path of a circuit.

Data Input

Multiplexor Control Signal

Feedback Path through 4 clocking zones

And Gates

Or Gate

Propagation Direction

Figure 4.5. A schematic for a QCA latch.

So, just how does a multiplexor function as a latch/register? As mentioned

above, intrinsic latching results from spreading part of the circuit over a set of

47

clocking zones. This ”feedback path”/intrinsic latching is highlighted in Figure 4.5.

Essentially, the output of the multiplexor is fed back to the input of some circuit and

back to one of the inputs of the multiplexor. The output of the multiplexor arrives

back at the input of the multiplexor by traversing a wire that spans at least four

clocking zones. What this really means is that this feedback path can provide an

arbitrary delay of n clocks (as each of the four clocking zones will traverse through

the four clock phases during the signal traversal on the wire). A register/latch will

provide the exact same functionality – namely, a delay of some arbitrary number of

clock cycles.

4.3 Putting Some Pieces Together

The latch design depicted in Figure 4.5 is exactly what is needed for the QCA

Simple 12. A latch for the Accumulator and the PC as well as a multiplexor to

select between the PC and the data bus have been added to the design in Figure

4.2. The new design appears in Figure 4.6.

4.4 Interconnect

The design in Figure 4.6 represents a complete one bit dataflow for the QCA Simple

12 (the Instruction register is considered to be part of the control flow). However,

designs larger than one bit must be generated. Consequently, issues of interconnect

must be addressed. In particular, how do you chain multiple bits of a dataflow

together to generate something akin to a ripple carry adder?

In CMOS VLSI, the solution to this problem is to have the carry-out bit of

the nth dataflow bit slice be at the same level as that of the carry-in bit of the

(n+1)th dataflow bit slice (i.e. the carry-out bit of the nth dataflow bit slice and

the carry-in bit of the (n+1)th bit slice will form a perfectly “straight wire”/be

48

Memory

Data Bus

Address Bus

Control

A

ALU

B

Mux

Instruction
Register

Program
Counter

Accumulator

Adder Unit

Logic Unit

B-Mux

Program Counter

Accumulator

Output Mux

Intermediate ALU
Signal Generation

Logic

Figure 4.6. A complete 1-bit dataflow of the QCA Simple 12.

49

logically connected when placed adjacent to one another). Thus, the carry-out bit

will simply turn into the carry-in bit for the next bit slice over. The solution is the

same for a QCA circuit. Two bit slices of the QCA Simple 12 ALU that are linked

together are shown in Figure 4.7.

Interconnect Clocking Zone

Interconnect Clocking ZoneAccumulator Accumulator

B-Mux B-MuxPC PC

Adder Adder

Logic Unit
Logic Unit

Intermediate...Logic Intermediate...Logic

Figure 4.7. A 2-bit QCA Simple 12 ALU with registers and interconnect.

Upon examining Figure 4.7, perhaps the most notable features of the design

are the wide clocking zones that precede the logic, adder, and intermediate signal

generation logic before each bit. These clocking zones seemingly incorporate many

of the design issues that were said to be undesirable in Chapter 3 and eliminated in

other designs in this chapter. For instance, the ”interconnect” clocking zones have

a different width from all of the other clocking zones in the design. Additionally,

there is a very large number of QCA cells within each ”interconnect” clocking zone.

Finally, wire lengths are extremely long in each of the ”interconnect” zones. So,

50

what affect does each of the three issues listed above really have on this design.

Each will be addressed in the following subsections.

4.4.1 Interconnect Clocking Zone Width and Wire Length

While clocking zone width was labeled an ”undesirable” in Chapter 3, this does

not mean that ”wider” clocking zones are ”unfunctional”. An attempt was made

to limit clocking zone width for two reasons. First, it would reduce wire length.

As mentioned in Chapter 3, wire lengths should be as short as possible to ensure

that all cells in a wire switch successfully, and to help generate the shortest possible

clock period (the clock rate will be governed by the time it takes for all cells in the

longest critical path to finish switching).

However, in the interconnect clocking zones, clocking zone width really has no

effect on wire length. Instead wires are necessarily long because between bit slices,

control and input signals must enter from the top and bottom of the design. For

example, the input from the data bus is required by both the logic unit and the

adder unit. However, it enters the ALU via the B-Mux which is at the bottom of

this design. Consequently, a long wire must be used to transfer this input to the

adder unit and to the logic unit at the top of this design. This is similar for other

input signals and feedback signals.

So, what effect does this have on the functionality of this design? The main

concern with regard to wire length is to make sure that all cells in the wire do in

fact switch and that the signal does not ”degrade” sufficiently so that a cell gets

stuck in a metastable state. (Note: A metastable state is one in which a local energy

minimum is reached, but not the true ground state of the system – i.e. a definite

polarization in this case resulting from a logical computation [8]). The problem of

ideal wire lengths is still being studied by the technologists. Therefore an attempt

51

is being made to keep wire lengths as short as possible (within reason). The other

issue regarding wire length is how it affects clock rate. Because the longest wire

in this design appears in the interconnect clocking zone, it will effectively set the

critical path and have a large influence on the clock rate. In other words, the clock

rate will have to be slow enough to ensure that all cells in a given zone actually

switch during the switch clocking phase before the clocking zone changes to a hold

phase.

It is definitely worth mentioning that having interconnect govern a given design’s

clock rate is not exclusive to QCA. In CMOS VLSI designs, interconnect can have

a significant effect on clock rate.

Finally, there are two potential solutions to the problem of wire length. One

solution would be to route various control and data signals from the top and bottom

of the design (this is in fact done in the design of Figure 4.7 in several cases). This

would help shorten wire lengths. However, in the case of an input coming from the

B-Mux of the QCA Simple 12, this would not help solve the problem of wire length

(as the B-Mux is only at the bottom of the design).

Another solution might be to add small clocking zones stacked vertically between

bits. An example is depicted in Figure 4.8. This would allow longer wires to be

”shortened” as they would be spread out over different clocking zones. However,

this might very well pose a routing and timing nightmare when considering the fact

that all inputs must arrive to both the logic and adder unit at the same time. If a

signal was routed up from the B-Mux to the logic unit of the ALU, it would have to

pass through several additional clocking zones which would ensure that the B input

arrived at the logic unit and the adder unit at different times.

52

Figure 4.8. Stacked Clocking Zones.

4.4.2 The Number of QCA Cells per Interconnect Clocking Zone

The number of QCA cells in the interconnect clocking zones is not a significant

problem at all. For thermodynamic effects to cause signal degradation, there must

be on the order of 103 cells per clocking zone. There is no where near this many in

the design of Figure 4.7.

4.5 State Machines

To conclude this chapter, a brief discussion of state machines – particularly as how

they apply to control logic generation – will be presented. First, a simple QCA

state machine will be presented. Then a brief discussion of the state machine logic

required for the QCA Simple 12 will be presented. This discussion will include state

transition diagrams and offer possibilities for routing control signals from the state

machine/control logic to the Simple 12 dataflow.

53

4.5.1 A Simple State Machine

A picture of a very simple ”one-hot” state machine appears in Figure 4.9 (in a

”one-hot” state machine, a 1-bit storage device – i.e. register or latch – exists

for each state; if the machine is currently in state k, the kth storage device will

contain a logical ”1” while all other flip flops will contain a logical ”0”). The QCA

representation of this state machine also appears in Figure 4.9. As with the Simple

12 dataflow, registers/latches are implemented intrinsically by spreading out wire

over four clocking zones. The state bit can then be ripped out of the appropriate

clocking zone to serve as input to the control logic.

And Gate
State 0

State 1

State 2

And Gate

And Gate

Figure 4.9. A simple QCA “one-hot” state machine.

54

4.5.2 Requirements for a QCA State Machine

To successfully execute all of the instructions in the Simple 12 instruction set, 11

control signals must be generated. These are summarized in the subsections below:

Accumulator Mux Control

Controls whether or not the value in the accumulator will be saved or will be over-

written by selecting the input from the feedback path or the input from the ALU

output.

PC Mux Control

Controls whether or not the value in the PC will be saved or will be overwritten by

selecting the input from the feedback path or the input from the ALU output.

B-Mux Control

Controls whether or not the PC or a value from the Data Bus is used as the ”B”

input to the ALU.

B-Invert

This signal is used in performing the A-B operation. Specifically, it is used to

generate the complement of B by XORing it with the B input. The B-Invert signal

also controls the multiplexor that selects between the AND and OR portion of the

logic unit.

Carry-In

This initial Carry-in bit (i.e. the 0th bit) must be set to ”1” in certain circumstances

(i.e. generating the ALU output B+1 to increment the PC by 1).

55

Zero-A

This control signal is used to 0 the A input to perform the B+1 and 0 operations.

Logic-Or-Adder

This control signal selects between the output of the logic unit and the output of

the adder unit to determine the final output of the ALU.

Memory Write Enable

This signal controls whether or not a value sent to memory will actually be written

to memory (not a concern for the dataflow designs above).

A-Or-Memory

Controls whether or not the accumulator or memory data is placed on the data bus

(not a concern for the dataflow designs above).

IR Mux Control

Controls whether or not the value in the IR will be saved or will be overwritten by

selecting the input from the feedback path or the input from the ALU output (not

a concern for the dataflow designs above).

PC-Or-IR

Controls which device writes to the address bus (not a concern for the dataflow

design above).

The control signals generated will be based on what the current control state

is and what the opcode of the instruction being executed is. State transitions are

summarized below in Figure 4.10:

Essentially, this simple state machine can be implemented as a ”one-hot” state

machine. This information (i.e. a state is represented as either a 0 or 1) and the 4

56

Stopped Ifetch Execute

While Start Signal
NOT “ 1”

Start Signal = 1

Specific contr ol signals
generated based on opcode
of instruction being
executed.

Figure 4.10. State Transition Diagram for Simple 12.

bit opcode of the current instruction can then act as inputs to some control logic

block to generate the required control signals for the QCA Simple 12 dataflow.

4.5.3 Control Signal Routing

Finally, routing control signals to the actual dataflow in a QCA design should be

briefly discussed. The most difficult part of control signal routing will be (not

surprisingly) timing. This problem does not explicitly evolve from getting various

control signals to multiple bits. In fact, control signal wires should be able run along

the top and bottom of the Simple 12 design. Thus, they will arrive at bits slices

along with other signals such as a Carry-in signal from a previous bit slice. However,

given the fact that some control signals ”start” in the middle of the design (i.e. the

B-Mux control signal enters the design in a clocking zone that is ”in the middle” of

it), synchronization will be a difficult task. This will be an extensive focus of future

research.

It is also worth answering (or proposing an answer to) the following question:

namely, in a one-hot design composed of QCA cells, how does one assure that all

bits of the QCA “registers” switch at the same time. Additionally, how does one

assure that all control signals switch at the same time. This problem is analogous

57

to clock skew in CMOS VLSI. The simplest answer to this question is clocking zone

alignment. Particularly, properly aligning clocking zones and routing wire through

clocking zones should solve this “problem”. Nevertheless, it will receive extensive

study in future work.

58

CHAPTER 5

SIMULATORS AND SIMULATIONS

This chapter will discuss QCA simulators and simulations. It will begin with the

very brief history of QCA simulators in particular noting what, given existing simu-

lation programs, we hope to achieve with our simulator. Next, a very brief overview

of our existing simulator will be provided. After this subsection, the architectural

simulation rules that comprise the engine of the simulator as well as their develop-

ment will be discussed. Additional subsections will provide more details concerning

data structures used, how values propagate and change, etc. Another subsection

will discuss simple propagation simulators and compare them to a version of the

simulator that allows clocking zones to be added. Next, using clocking zones in the

QCA simulator will be discussed. A section concerning special difficulties encoun-

tered when designing this simulator will follow. Finally, the chapter will conclude

with some ”next steps” to be taken with the QCA simulator.

5.1 The VERY Brief History of QCA Simulators

The first simulator written for QCA devices was called AQUINAS. AQUINAS was

written by the University of Notre Dame’s Electrical Engineering Department and

modeled the interactions between small systems/groups of QCA cells by actually

solving the Schrodinger equation to follow electron movement. Such a simulation

certainly provided a correct result when used to verify the logical correctness of a

59

given design. However, the computation time for even a small circuit was extraor-

dinary (on the order of 2n).

In an attempt to devise a simple logical simulator, a group at the University Col-

lege of London developed a simple ”spreadsheet simulator” in Microsoft Excel. The

goal of the spreadsheet simulator was to use information derived from AQUINAS

and QCA theory (i.e. how groups of QCA cells interact and can be used for logi-

cal computation) to create a set of simple rules to verify the logical correctness of a

given QCA design. The spreadsheet simulator achieved its goal but it was extremely

difficult to create and change large designs (like that of Figure 4.7) with it.

What was desired and needed was a ”happy medium”, namely, a tested engine

based on QCA theory that could verify the logical correctness of a given design with

a user-friendly interface with reasonable simulation speed. This need gave rise to

the Quantum Logic Based Engine Rules Tool (Q-BERT) (written in C++).

5.2 An Introduction to the Q-BERT Interface and Engine

As evidenced by discussions in Chapters 3 and 4 of this paper, QCA designs are

somewhat rigid. What this means is that QCA cells must be in a fairly straight,

vertical or horizontal line to form a wire, majority gate, etc. (The only exception

is an off-center wire and in the designs of Chapter 4 where cells are only off-center

by half of one cell). Additionally, when ripping a value off-of or onto a 45-degree

wire, a 90-degree cell must be placed exactly between two 45-degree cells. Because

of such constraints, a grid structure was devised as a means for ”laying out” QCA

cells. Examples appear in Figure 5.1.

It is worth nothing that the lines connecting the “X’s” in Figure 5.1 do not

represent any particular physical device. They are simply added to give the illusion

of a “wire” and to help indicate the “direction” of wires.

60

X
| |

X
X

45 Degree Wire

90 Degree Cell

Signal Propagation

X

X = Majority Gate Input Cell

= Majority Gate Output Cell

= Majority Gate Device CellXX

X

X

XX
|

|

||

(a) (b)

Figure 5.1. (a.) A graphical illustration of ripping a value off of a 45-degree wire to
a 90-degree cell; (b.) A graphical illustration of potential cases of a majority gate
input cell interacting with a majority gate cell.

Different types of QCA devices (i.e. majority gates, 45-degree wires, 90-degree

cells, etc.) can be added to the grid (and hence the design) by highlighting a grid

square and pressing the appropriate device button. For example, to add a majority

gate, the user should highlight the square where the device cell should be and then

press the majority-gate button. A majority gate will then be added. Devices are

represented by coloring cells appropriately (i.e. a 90-degree cell is represented by a

dark blue ‘X’ while the cells that are part of the majority gate are red). Additionally,

some coloring is done to help the user identify devices. For example, Figure 5.1 a

represents a value being ripped off of a 45-degree wire. A ripper cell is not colored

dark blue, but rather another color to help the user identify what actually happens

when these QCA cells interact.

It is worth noting that in terms of the engine, the colored ripper cell would not

be treated as such, but rather just as a 90-degree cell. This is done to simplify

interaction rules and will be discussed further in the next subsection.

It is also worth noting that the GUI can be and is used to display the results

of a simulation. For instance, after a design has been entered, it can be simulated.

61

During simulation all X’s will change to 0s or 1s based on the interaction rules for

types of QCA cells. A screen shot of part of Q-BERT’s GUI appears in Figure 5.2.

Figure 5.2. A screenshot of the Q-BERT GUI before simulation.

5.3 Q-BERT’s Engine – for a Simple, Propagation Based Simulator

To verify the logical correctness of early designs and to ease the development of

the QCA architectural simulation rules, a simple propagation simulator was first

developed. Such a simulator does not take into affect the effects of clocking zones

in the design. A simulation simply starts at the inputs of the design. Each input

cell is placed on a queue and is assigned timestep 0. Cells adjacent to the input

cells are compared with the design/interaction rules of the engine. If a design rule

62

indicates that the two cells can interact (i.e. a 90-degree cell can interact with an

adjacent 90-degree cell), then the adjacent cell is placed on the queue. When cells

that were initially on the queue are processed, the timestep will be incremented and

the cells placed on the queue during the previous timestep will be tested for possible

interactions. This process will continue until the queue is empty. It gives the user

the appearance that all changes during a given timestep occur simultaneously. As

mentioned, the next thing that will be added to the simulator is the ability to

simulate with clocking zones. Thus, the engine will be applied to cells within a

given zone and a small amount of code will be added to handle interactions between

zones when clock phases indicate that such interactions should take place. More

details about the clocked engine appear in Section 5.6.

Initially, a significant reason for developing the simple QCA propagation simula-

tor (as opposed to directly developing the clocked simulator) was to solidify existing

knowledge about QCA device interactions. However, a secondary (and perhaps

more important) goal quickly became developing efficient methods to implement

QCA architectural simulation rules in code. As mentioned above, QCA devices are

presented to the user via the GUI as 90-degree cells, 45-degree cells, majority gates,

AND gates, OR gates, rippers, etc. However, if the Q-BERT simulation engine

were to treat each cell interaction as a very specific type (i.e. a ripper cell interacts

with a 45-degree wire or a ripper cell interacts with a 90-degree cell), the engine’s

complexity would be enormous.

Given this realization, it was determined that the data should be presented to

the user in one way (i.e. so he or she is able to identify specific devices) but to the

engine in another way. Thus, a data structure was set up so that every device in a

given QCA design/schematic was treated as either a 90-degree, 45-degree, or device

63

cell by the engine. This resulted in only eight architectural simulation rules that

are summarized in the next section.

5.4 Architectural Simulation Rules

Each of the eight possible interaction scenarios is detailed in a different subsection.

They are discussed in terms of what must happen in the engine during a simulation.

It is worth noting at this time that all of the “rules” presented here have been

verified in every manner possible at the current time. Many were derived from

papers referenced in Chapter 2. Additionally, these rules were verified when the

full adder designed by Lent et al [8] was thoroughly tested using the AQUINAS

simulator. Only “design rules” appearing in Section 5.4.4 were not explicitly stated

in a paper. However, they evolve from simple electron positioning and must take

on the polarization specified in Section 5.4.4 because of Coulombic interaction. It is

expected that future physical experiments will be needed to complete verification.

5.4.1 A 90-Degree Cell Interacting with a 90-Degree Cell

All possible situations of this case are represented by Figure 5.3. If a 90-degree cell

changes phase, locations 1, 2, 3, and 4 must be checked for existing 90-degree cells.

If a 90-degree cell exists in any or all of these four locations, it will get the data

associated with the cell that changed with one exception. If a cell in location 1, 2,

3, or 4 changed in the timestep just before cell ? did, then it will not change. Why?

Because cell ? changed in response to this change.

5.4.2 A 45-Degree Cell Interacting with a 45-Degree Cell

This case is identical to the case 5.4.1. However, cells will get the complement of the

value associated with the cell that changed as adjacent 45-degree cells have alternate

polarizations.

64

X

X

X

XX
|

|

||

1

2

3

4

★

All cells are 90 degrees.

Assume the center cell just changed

Therefore, cells 1, 2, 3, 4 should change if
90-Degree cell changes

Figure 5.3. A graphical illustration of potential straight-adjacent 90-degree cell
interactions.

5.4.3 A 90-Degree Cell Interacting with an Off-center 90-Degree Cell

All possible situations of this case are represented by Figure 5.4.

X
★

All shaded cells are 90 degrees.

Assume the center cell just changed

Figure 5.4. A graphical illustration of potential off-center 90-degree cell interactions.

If a 90-degree cell changes, shaded locations must be checked for existing 90-

degree cells. If a 90-degree cell exists in any or all of these locations, it will get the

data associated with the cell that changed with one exception. If a cell in a shaded

location changed in the timestep just before cell ? did, then it will not change. Why?

Because cell ? changed in response to this change.

5.4.4 A 90-Degree Cell Getting a Value from a 45-Degree Wire

Two possible situations are illustrated in Figure 5.5. In Figure 5.5 a, cell ”o” will

receive the complement of the data that is associated with cell * (just like the ”next”

65

45-degree cell of the 45-degree wire). If the signal propagation along the 45-degree

wire was in the opposite direction (i.e. in the ”up” direction), cell ”o” would receive

the data associated with cell * (Note: not the complement. This is because of

electron positions within cells). Because this is a rather complicated case, every

possible interaction between a 45-degree wire and a 90-degree cell is illustrated in

detail in Figure 5.6.

X
| |

X
X

★

*

o

45 Degree Wire

90 Degree Cell

Signal Propagation

X
|

|

X

★*

o
45 Degree Wire

90 Degree Cell

Signal Propagation

X

(a) (b)

Figure 5.5. A graphical illustration of ripping a value off of a 45-degree wire to a
90-degree cell.

5.4.5 An Input Cell of a Majority Gate Interacting with a Device Cell of a Majority
Gate

This case is nearly identical to the case 5.4.1. However, unlike a simple cell in a

90-degree wire, the cell that can be influenced by the cell that changed (i.e. another

90-degree cell) does not just receive the data associated with the cell that changed.

Here, the majority gate device cell should get the majority of the cells that surround

it. In the simple propagation simulator, the simulator will simply wait until all

inputs to arrive for the device cell to change. However, in future versions of the

simulator additional cell states may be introduced in an effort to mimic the lack of

definitiveness in a device cell if all three inputs have not arrived. Still, it is worth

noting that the simple propagation simulator will nearly emulate the functionality

66

Signal Propagation Possibilities (independent of signal propagation direction)

1

0

1
0

1

0

Generalization: If down propagation, ripper gets value; If up propagation, ripper gets value’s

complement.

0

1

1
1

0

0

Generalization: If down propagation, ripper gets value’s complement; If up propagation, ripper

gets value.

01

1

Generalization: If right propagation, ripper gets value; If left propagation, ripper gets value’s

10

0

01

0

Generalization: If right propagation, ripper gets value’s complement; If left propagation, ripper

10

1

complement.

gets value.

Figure 5.6. Possible 45-degree wire and 90-degree cell interactions.

67

of a design and simulator with clocking zones as a majority gate device cell usually

is present just after the start of a clocking zone border. Consequently, all input wire

lengths are nearly identical.

5.4.6 A Device Cell of a Majority Gate Interacting with a 90-Degree Cell

This case is identical to the case 5.4.1. The device cell will simply give its data to

the 90-degree output cell of the majority gate.

5.4.7 A Crossover

One possible case is illustrated in Figure 5.7. In Figure 5.7, if cell H changes, a

check is made to see if a cell of a 45-degree wire is directly in line with it. If it is, a

check must be made for a 90-cell (cell *), on the other side of it. If cell * does exist,

then it will receive the data associated with cell ?. Cell * will then be put on the

queue.

X

X

X

XX
|

|

||

*★

X XX ||

★

*

45 degree wire

90 degree cell that just changed

90 degree cell

Figure 5.7. Situation for a crossover.

5.4.8 Ripping a Value from a 90-Degree Cell to a 45-Degree Cell

All cases are illustrated in Figure 5.8. In all cases, cell * will get the data associated

with cell ”o” and cell ? will get the complement of this data.

68

X
| |

X
X

★

*

o

45 Degree Wire

90 Degree Cell

X
||

X
X

★

*

o

90 Degree Cell

45 Degree Wire

X
|

|
X

★ *

o

45 Degree Wire
90 Degree Cell

X

X
|

|

X

★*

o
45 Degree Wire

90 Degree Cell

X

Figure 5.8. Situation for a crossover.

5.5 Details of Q-BERT’s Engine

As mentioned in section 5.2, a grid structure was chosen as a base for representing

QCA designs. This was done in an effort to promote designs that possessed some

degree of rigidness. In other words, the grid structure forced the user to create

”straight” wires, rip off values from wires in the proper location, etc. Because of

this grid like structure, arrays were chosen as data structures to store data required

by the engine (and the GUI as well). The most important data structures will be

discussed in subsections below. Then, how propagation/simulation occurs will be

discussed in the context of these data structures.

69

5.5.1 The Color Array

This array stores the ”colors” of all of the cells on the grid. Essentially, it has one

purpose – to allow cells displayed on the GUI grid to be colored appropriately in

an effort to identify device types. Thus, if a particular cell is supposed to function

as a ripper, it will be identified as such in this array. When the rendering of the

grid is done for the GUI, information from this array will be used to color the cell

appropriately.

5.5.2 The Device Matrix

The device matrix is similar to the color array. However, the device matrix is used

by the engine, not the GUI. Thus, if a particular cell is supposed to function as a

ripper, it will be identified as a 90-degree cell (recall that for the engine, all QCA

cells in a given design are classified only as 45-degree, 90-degree, or device cells).

5.5.3 The Contents Array

This array holds a string representation of the data for every cell on the grid. It is

not used for any computation or the engine, but rather just holds information (i.e.

whether or not a cell is currently in a state equivalent of a binary 0 or 1 or garbage

data) so that it can easily be rendered in the grid structure of the GUI.

5.5.4 The Changable Array

This array stores information about whether or not a given cell is ”changable”.

What does this mean? Well, physically, certain cells can have their polarizations

”frozen”. Consequently, they will never change state. For instance, this is how an

AND gate or an OR gate is created. One of the input cells of a majority gate is

simply frozen so that it always has a polarization corresponding to a binary 0 or a

binary 1 respectively. (It is worth noting that physically, this could be accomplished

70

by creating a QCA cell with only two quantum dots to form the required polarization

(illustrated in Figure 5.9. It is also worth noting that input cells also fall into this

”unchangable” category). However, this information must be conveyed to the engine

of the simulator (i.e. it would be less than ideal if the engine caused a cell with a

frozen polarization to change). Thus, when a cell is added to a schematic, and its

polarization should be unchangable, a flag in this array will be raised.

Cell 1 (input)

Cell 3 (input)Cell 2 (input)

Cell 4 (device cell)

Cell 5 (output)

Figure 5.9. An example of a “dedicated” QCA cell with a majority gate (hence the
majority gate is an OR gate)

5.5.5 The Data Array

This array stores logical information about the design (i.e. if a cell has a polarization

P=+1, P=-1, or no polarization). It is used first during a simulation to update the

logical values of QCA cells in a schematic, and second when a cell is initially added

to the design to indicate if it has a frozen polarization or no polarization.

5.5.6 The Timestamp Array

As discussed in Section 5.3, timestamps are used to help convey to the user what

cells change during what time. The timestamp array simply stores timestamps for

each cell in the design. In particular, they also provide some degree of simultinaety –

i.e. two parallel wires should have matching cells that will change at identical times.

However, physically (with regards to the engine) the cells making up the wire will

71

change at different times. Timestamps assist in representing parallelism. Finally,

as mentioned, timestamps are used to make sure signals propagate in the right

direction and don’t ”backtrack”. The timestamp array simply stores timestamps

for each cell in the design.

5.5.7 The Majority Gate Count Array and The Majority Gate Device Array

The functionality of these two arrays can best be described by explaining exactly

how majority gates might function in a real design. Figure 5.10 offers two potential

ways in which a majority gate might appear in a given design:

Clocking Zone

Clocking ZoneClocking Zone

Configuration 1 Configuration 2

Majority Gate

Majority Gate

Figure 5.10. Potential logic gate configurations.

Seemingly, there should be nothing wrong with Configuration 1 of Figure 5.10.

However, every logical gate in the designs of Chapter 4 is set up with Configuration

2. Why is this? Well, with Configuration 1, the three inputs to the majority gate

will reach the device cell at ”radically” different times. If this were to occur, there

72

is a real possibility that the majority gate will just be treated as a ”wire”. In

other words, when the signal entering from the top of Configuration 1 reaches the

majority/logic gate device cell, the signal would simply fan out in three directions.

Not only might similar things occur with other input signals (i.e. from the left and

bottom), but eventually, signals might even ”collide” as they will be coming from

different directions.

However, with Configuration 2, inputs to the majority/logic gate are essentially

”frozen” in a hold clocking zone. While the ”wires” that act as inputs to the device

cell of the adjacent majority gate are still not of equal length, two of them are and

more importantly, they are extremely short. After conversations with researchers in

the University of Notre Dame Electrical Engineering Department, it was concluded

that such a configuration would function reliably as a majority/logic gate. The

sufficiently short (and almost equal in length) wires will in fact settle into definite

polarizations and the device cell will function as intended.

So, how should this be simulated? While it would be feasible to simulate a

”bounce” or unintended fan out from a device cell, it is really not worth the effort

to do this. The lengths of the three wires that act as inputs to the device cell of a

majority or logic gate are one cell, three cells, and three cells. Thus, initially, the

first cell of each wire would change polarization (based on ”input” cells from the

adjacent clocking zone in the hold phase). Next, the second cell in each of the three

cell wires would change while the one cell wire would affect the device cell. Then,

the third cell in each of the three cell wires would change while the device cell might

affect its adjacent cells (including the output cell of the gate and the third cell of the

three cell wires). Thus, there is a most ”bounceback” on one cell of a wire. Instead

of logically simulating this, two arrays were created to count the number of inputs

73

that arrive at a given majority gate. When all three inputs arrive, the device cell

changes. Logically, the device cell gets the exact value that it should.

5.5.8 Putting it all Together

While the functionality of the engine was discussed briefly in Section 5.3, more

details will be provided here using, in particular, the context of these data structures.

At the start of a simulation, all of the input cells will be placed on a queue, with

a delimiter placed after the initial entries. Also, the timestamps of every cell in the

design will be initialized to some negative number (except the input cells which will

be initialized to have a timestamp of 0). The input cells will be used to check for

potential interactions using the architectural simulation rules of Section 5.4. If the

design rules indicate that cells are properly aligned for an interaction (using data

from the device matrix), the timestamps of the cells involved will also be compared.

If the timestamp of the cell from the queue is greater than the timestamp of the cell

involved in the possible interaction, the interaction will take place.

Based upon the type of interaction that occurred, the data array will be updated

accordingly and the contents array will be changed to reflect the change in polariza-

tion of a given cell in order to convey this information to the user. Additionally, the

cell that just changed will be placed on the queue (following the delimiter initially

placed on the queue). Finally, the timestamp of the cell that just changed will be

changed to the next timestamp. For example, if an input cell had a timestamp of

0, then the cell that changed would get a timestamp of 1. Thus, it is impossible for

a signal to travel ”backwards” because of the timestamp restriction.

When all of the cells on the queue preceding a delimiter have been checked

against the architectural simulation rules, the timestamp will be updated and the

next set of cells on the queue will be checked against the architectural simulation

74

rules. This process will continue until the queue is empty signaling the end of the

simulation.

5.6 A “Clocked” Simulator”

A simple propagation simulator is certainly valuable for verifying the logical cor-

rectness of a design. However, should a complex QCA circuit (such as the designs

in Chapter 4) actually be implemented without clocking zones, the probability of

it functioning correctly is essentially zero. Issues such as wire length and major-

ity/logic gate race conditions would almost assuredly prevent the circuit from work-

ing properly. With this thought in mind, it was obvious that Q-BERT should not

simply verify the logical correctness of a design – it should also mimic the way a cir-

cuit with clocking zones would actually function. Consequently, it was determined

that a means for adding clocking zones to a schematic should exist.

5.6.1 Adding Clocking Zones

It should quickly be mentioned exactly how clocking zones are added to a schematic.

Essentially, the simulator has the ability to define only rectangular clocking zones.

Thus, to add a clocking zone, the user should highlight the grid square that he or

she wants to the be upper left-hand corner of a given zone. Then the user should

press the ”Add Clocking Zone” button. This will launch a dialog box that will

allow the user to select the initial phase that the clocking zone should be in (i.e.

switch, hold, release, or relax). When this phase is selected, the dialog box will

disappear and the user only needs to click the grid square where he or she wants

the lower right-hand corner of the clocking zone to be. While the fact that only

rectangular clocking zones may be added to the design may seem restrictive, it is

actually extremely advantageous as will be seen.

75

5.6.2 The “Hold” Situation”

An interesting problem is how hold clocking zones should be simulated. In the hold

phase, inter-dot potential barriers are held high so the outputs of a subarray (or

the border cells of a clocking zone) can be used as inputs to the next (or adjacent)

clocking zone which should be in the switch phase. However, a problem stems from

the fact that at startup, a clocking zone in the hold phase is adjacent to a clocking

zone in the release phase and a clocking zone in the switch phase. As a result, there

is never any time where cells in the hold phase are ”driven”. This raises the question

of whether or not the cells in the hold phase would have any polarization at all.

After conversations with individuals in the University of Notre Dame Electrical

Engineering Department, it was determined that at startup, cells in the hold phase

would indeed have a definite polarization (after all, potential barriers are high and

electrons must be in definite positions). Nevertheless, exactly what polarization each

cell in a hold zone would have would be unknown and random. Thus, a situation in

Figure 5.11 would be entirely possible.

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8

Figure 5.11. A potential QCA ”wire” in the hold phase at startup

The fact that cells in a hold clocking zone have some initial random polarization

is both good and bad. It is good because if cells in a hold phase initially had no

polarization, we would essentially be dealing with three-state logic. In other words,

a hold clocking zone would be adjacent to a switch clocking zone but there would

be no definite polarization to drive the switch clocking zone! Granted, the driving

cells in the hold clocking zone are random – and thus a circuit must be cleared

76

and initialized at startup. However, this is not any different than any CMOS VLSI

circuit. The negative side to random values in a hold clocking zone at startup stems

from simulation difficulties. Essentially, all border cells of hold clocking zones must

be added to the queue when the engine is invoked. More will be said about how

this is accomplished in a following subsection.

5.6.3 Clocking Data Structures

The addition of clocking zones to Q-BERT also requires the addition of several

data structures to support them. The three most important data structures are the

clocking zone array and the hold clocking zone array(s).

The clocking zone array simply stores a value for every cell in the grid that

corresponds to the state of the clocking zone that a particular cell is in. Thus, at

startup, the clocking zone array entry for a given cell will correspond to the phase

initially assigned to that zone. Similarly, as a simulation progresses and clocking

zones change phase, this array will be updated to store this information.

The hold clocking zone arrays are required to store the initial positions of the

hold clocking zones (i.e. the upper left-hand corner’s and lower right hand corner’s

coordinates are stored). These are required because when the engine is invoked,

border cells of a hold clocking zone that are adjacent to border cells of a switch

clocking zone must be placed on the queue to check for potential cell-to-cell inter-

actions. Thus, there must be some means for determining where the hold clocking

zones are. When a hold clocking zone is added, its upper left-hand corner coordi-

nates and lower right-hand coordinates are added to this array. Then, a nested for

loop can simply use these coordinates to check for the existence of border cells in

the zone.

77

This hold clocking zone ”situation” is the reason that only rectangular clock-

ing zones are allowed. If random clocking zone shapes were allowed, it would be

extremely difficult to determine where border cells were, and storing the upper left-

hand corner and lower right-hand corner of the zone would no longer work for

determining border cells (see Figure 5.12 a). However, by constructing clocking

zones from rectangular blocks, nonrectangular clocking zones can still be created

and the left-hand corner/right-hand corner method can still be used to determine

border cells (see Figure 5.12 b).

X X X X X

X X

X X

X X

X X

X X X X X X X X X

X = border cell

HOLD Nested loop would
incorrectly regard
these as border cells.

X X X X X

X X

X X

X X

X X

X X X X X X X X X

Nested loops
would ignore
these cells

HOLD

Figure 5.12. (a.) A hold clocking zone constructed from nonrectangular elements;
(b.) A hold clocking zone constructed from rectangular elements

5.7 Q-BERT’s Engine – for a Clocked Simulator

This section will explain how Q-BERT’s engine works for a clocked simulator as well

as what changes were made to the engine to successfully implement clocking.

5.7.1 Startup

For the simple propagation simulator, it was discussed in Section 5.3 that, at startup,

each input cell was placed on a queue and assigned timestamp 0. However, with

clocked designs, border cells of hold clocking zones that border switch clocking

zones must be considered. In particular, if they have a cell that the cell of the hold

78

clocking zone can interact with they must also be placed on the initial queue. This

is accomplished as follows:

When the engine is invoked, as before, all input cells are placed on the initial

queue. Then, using the coordinates of the hold clocking zones, every cell on the

border of a hold clocking zone is placed on another queue. The engine design rules

checks are then invoked on the cells placed on this other queue. As before, this

logic simply checks for any potential interactions with adjacent cells (according the

architectural simulation rules of Section 5.4). If a potential interaction(s) exists,

then the clocking zone of the found cell is also examined. If this found cell is in a

switch clocking zone, then the cell of the hold clocking zone is added to the initial

queue. When all border cells in hold clocking zones have been examined and the

initial queue has been updated accordingly, the engine will again be invoked but

this time to simulate the entire design.

5.7.2 The Release Problem and its Consequences

The most difficult part of simulating a design with clocking zones stems from what

occurs during the release clocking phase. When a clocking zone is in a release phase,

its inter-dot potential barriers are lowered and the cells of that zone relax from a

polarized state to an unpolarized state. Thus, transitions such as 0-to-unpolarized

and 1-to-unpolarized must also be considered. Essentially, this adds an extra state

to our engine propagation logic.

That being said, there are two potential ways to assure that such transitions

take place properly. The first method would involve storing the coordinates of every

clocking zone in a given design (in a data structure similar to that used for hold

clocking zones) as well as the phase that the clocking zone is in. During each clock

transition, the following would occur: Hold clocking zones would be unaffected (after

79

all, cells in the hold phase do not change polarizations). Cells in the relax clocking

zone would also be unaffected (after all, cells in the relax phase also do not change

polarizations). Cells in clocking zones that are in the release phase would simply

change from whatever value/polarization that they had to no polarization. This

could be accomplished simply by means of a nested for loop. Cells in clocking zones

that are in the switch phase would simply have the engine invoked upon them as

normal using cells that are on the queue. When the queue becomes empty, clock

phases can be advanced. Then, startup code would have to be reexecuted to place

cells in the hold phase adjacent to cell in the switch phase on the queue. After

every four clock transitions, input cells would also be placed on the queue (because

clocking zones adjacent to them would be in the switch phase).

Another method for solving the release transition problem would be to have the

engine handle it. In other words, if the engine detected two cells that could interact

with the cell that most recently changed being adjacent to another cell in the release

phase, then the cell in the release would change just as a cell in a switch phase that

is adjacent to a cell in the hold phase would. However, in this case, the cell in

the release phase would change to an unpolarized state. While this method avoids

storing the coordinates of all of the clocking zones, it also creates a logic nightmare.

Cases would have to exist for every possible clocking zone border interaction to

determine the proper course of action. Additionally, cells’ timestamps would be

updated at improper times. Thus, while the overhead of the first method is slightly

larger than that of this second method, the first method will result in a much more

”stable” and risk-free simulation. Also, the first method should be faster as every

cell in the design is not being examined during each iteration.

80

5.8 Future Simulator Improvements

It is worth stressing that Q-BERT is a work in progress. Current and future work

with it will center around two axes. First, efforts are currently underway to make

the simulator more user friendly. Something similar to Mentor Graphics Design

Architect is desired. In particular, at present, there is no way for the user to

move components of the design around. Thus, once a gate or a wire is added, for

it to be moved, it must be deleted and redrawn in its new and desired location.

Second, future work will be directed into giving the user the option of having the

engine/simulator define the clocking zones. All that would be required of the user

would be to specify certain locations between cells where he or she would like a

clocking zone border to be. The engine/simulator would then ”draw” the rest of

the zone.

81

CHAPTER 6

SIZE COMPARISONS

This chapter will discuss dimensions that are associated with QCA cells. Area

estimates will be given for our designs. Additionally, the area of a QCA design will

be compared against an equivalent circuit implemented in CMOS VLSI. Density

gains will then be calculated and estimated

6.1 QCA Dimensions

It is now worthwhile to consider the dimensions associated with the QCA technology.

Given current projections for early fabrication runs, the expected distance between

quantum dots is 10 nm as shown in Figure 6.1. Furthermore, the diameter of a

quantum dot is also 10 nm. The distance between centers of adjacent cells is on the

order of 42 nm as there must be a slightly larger separation between electrons of

neighboring cells [5].

20 nm

3b nm

10 nm

10 nm

10 nm
b 10 2nm=

3b 3 10() 2() 42nmª=10 nm

b

20 nm

10 nm

20 nm

10 nm

Figure 6.1. Assumed dimensions associated with QCA cells (standard).

82

Additionally, scientists are currently developing means for scaling the size of a

QCA cell by a factor of 10. Such a dot implementation would be accomplished by

using chemical molecules to form various QCA cells. Figure 6.2 reflects these size

numbers.

2 nm

3b nm

1 nm

1 nm

1 nm

1 nm

b

2 nm

1 nm

2 nm

1 nm

b 2nm=

Figure 6.2. Assumed dimensions associated with QCA cells (molecular).

6.2 Density Comparisons

At present, designs for the complete dataflow of Simple 12 have been completed (see

especially Figure 27 and Figure 28). Additionally, a CMOS VLSI design of the entire

Simple 12 processor exists (using 2 micron design rules). The dimensions for the

CMOS equivalent of the QCA design were taken and compared to the dimensions of

the QCA circuit (essentially, this designed contained a 12-bit dataflow consisting of

the accumulator, b-mux, ALU, and program counter). The results are summarized

below in Table 6.1.

Note that in Table 6.1, no dimensions appear for the 2 micron CMOS VLSI design

of the Simple 12 dataflow. Obviously, few if any circuits (especially microprocessors)

are fabricated using a 2 micron process. Also, we are considering QCA as a potential

replacement for CMOS. Thus, it is more worthwhile to look at processes toward the

end of the CMOS curve (i.e. 0.05 and 0.07 micron processes). As a result, the 2

micron numbers were scaled to given an approximate area for a 12-bit Simple 12

83

Table 6.1. QCA Density Gains over Equivalent CMOS Designs.

Technology Length Width Area Density Gain
CMOS (0.07 µ) 29.8 µm 45.5 µm 1356.1 µm2 N/A
CMOS (0.05 µ) 32.5 µm 21.3 µm 692.3 µm2 N/A

QCA (“conventional”) 28.1 µm 2.7 µm 75.9 µm2 17.8 (0.07 µ) / 9.1 (0.05 µ)
QCA (“molecular”) 2.81 µm 0.27 µm 7.6 µm2 1787 (0.07 µ) / 912 (0.05 µ)

dataflow for a 0.05 and a 0.07 micron CMOS process and it is these numbers that

appear in Table 6.1.

When comparing the projected densities for a 12-bit CMOS Simple 12 dataflow

against both ”conventional” QCA numbers (those of Figure 44) and ”molecular”

QCA numbers (those of Figure 45), it was concluded that QCA has the potential

to offer substantial density gains. For instance, when comparing the ”conventional”

QCA design against a 0.05 or 0.07 micron process CMOS design, calculations project

that a QCA design would be an order of magnitude more dense. Furthermore, when

comparing the ”molecular” QCA design against the 0.05 and 0.07 micron process

CMOS designs, calculations project that a QCA design results in a three orders

of magnitude density gain. Thus, while there is undoubtedly some error associated

with scaling CMOS designs and with the final numbers of QCA devices, these errors

are certainly within a three order of magnitude density gain.

6.3 Odds and Ends

It is worth noting that all of the designs discussed in this section (i.e. those appearing

in Figure 27 and 28) and the CMOS designs have been simulated and verified for

logical correctness (using simple hand-checking and Q-BERT). All are capable of

performing the operations needed to successfully execute the Simple 12 instruction

84

set. Thus, if constructed, there is no reason to believe that these designs would not

function correctly.

6.4 A QCA ”Roadmap”

Finally, it would be appropriate to discuss the current benefits, limitations, and

projections for actual QCA devices.

6.4.1 Limitations

According to the Technology Roadmap for Nanoelectronics [2], there are two main

problems that must be overcome to successfully implement a QCA circuit. They are

the need for individual adjustment of each cell and the limits of operating tempera-

ture. Individual adjustment of each cell is currently required because of fabrication

tolerances, the presence of stray charges, and need for 4N + 2 excess electrons in

each cell (limits performance degradation). To make cell adjustment possible, leads

are required to load onto the quantum dots the exact and required number of excess

electrons. By attaching leads to cells, straightforward lateral branching from a chain

of cells (a basic feature needed to create logic gates) is prevented [2].

Operating temperature limitations are more fundamental in nature [2]. Operat-

ing temperature limits stem from the weakness of the dipole interactions between

cells which much be significant larger than kT . The current state of the art in QCA

devices is the majority gate. This gate was constructed based on metal-insulator

tunnel junctions which operate at only a few millikelvin [4]. Structures at the molec-

ular level will be needed to approach room temperature operation [2].

6.4.2 Destinations

In order for QCA cells to operate at close to room temperature (and overcome the

two significant limitations discussed above), small cell dimensions on the order only

85

a few nanometers are required [2]. Possible implementations of such cells include

single bistable molecules. These molecules, when in the absence of an external

electric field, will have some valence electrons that can localize in two different

groups of bonds with the same probability. This is analogous to four-dot QCA cells

where, the presence of an external electric dipole field would make one of the two

possible electron configurations energetically favorable [2].

Problems would undoubtedly exist with arranging the molecules in structured

arrays on some substrate. But, if this problem can be overcome, the problem of

fault tolerance will also be solved. Why? Molecules are intrinsically precise. Also,

bound electrons would be sufficiently localized to act as “excess” electrons without

the need for external leads [2].

On remaining issue would still be stray charges unless it becomes possible to

develop substrates virtually free of them [2].

This subsection concludes with some projections from the Technology Roadmap

for Nanoelectronics for the next 6 and 12 years [2]. These are summarized below in

Table 6.2.

Table 6.2. Projections for QCA in various benchmarks.

Benchmark 2006 2012
Feature size 2 nm 10 nm

No. of devices 4 106

Circuit speed 10 kHz 100 GHz
Events / chip / s 4 104 1014

Power supply, Vdd 0.1 mV 0.1 mV
Power dissipation 1 pW (excluding cooling) n/A

Temperature 4 K 4 K

86

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This section will summarize the results from our work with floorplanning for QCA

circuits, applying developed floorplans to actual – and useful – designs, and the

development of tools to simulate and design QCA circuits. Additionally, based on

the results presented here and the rest of the work presented in this thesis, areas of

future work will be presented and discussed in detail.

7.1 Oh the Places We’ve Gone

This research effort began in an effort to investigate the potential of a nanotechnol-

ogy (QCA) as being a viable alternative to CMOS VLSI – particularly with regard

to logic design issues. When work first began, only designs for a memory cell, a shift

register, a simple adder, and a few other basic logical devices existed. However, as

a result of this work, the following ideas and designs have been developed:

To begin, floorplanning techniques have been designed that not only allow de-

signs to be efficiently constructed with QCA cells, but also exploit the four phase

QCA clock. The floorplans that have been developed not only created designs that

are efficient in area usage, but they also offer inherent pipelining and the potential

for multithreading. Additionally, the floorplans were applied to the design of the

dataflow of an actual microprocessor that was successfully implemented in QCA.

The development of Simple 12 allowed design issues to be encountered first hand.

87

Namely, solutions for potential roadblocks such as latch/register implementation,

ALU design, means for feedback, etc. were discovered. Most importantly, these

solutions can be applied and scaled to more complicated designs.

Designs were not simply constructed and implemented in schematic form only.

A simulator and design architect tool were written so that a means for verifying the

logical correctness of a design (other than simply checking it by hand) would exist.

The Simple 12 dataflow was then simulated with this design and was verified for

logical correctness. The development of the simulator also helped develop a family

of design rules (and design rules of thumb) for dataflows that include:

• The idea of dividing clocking zones in half that are logically in the same phase

to minimize thermodynamic effects from having too many QCA cells in one

clocking zone.

• Duplicating portions of intermediate signal generation logic to help eliminate

wasted area and “long” wires.

• Using trapezoidal clocking to eliminate wasted area and to make denser cir-

cuits.

• Performing computation for “free” in “wire”.

• Creating intrinsic latching by spreading a “wire” over four or more clocking

zones.

So, how has research into floorplanning techniques for QCA designs, the actual

development of QCA designs, and work with a QCA simulator paid off with regard to

the original question? Namely, can circuits such as a microprocessor be constructed

in QCA and what benefits will such a design give over CMOS? Well, as seen in

Chapter 6, in the worst case (non-molecular QCA implementation), QCA offers an

88

almost order of magnitude density gain over an equivalent CMOS design (at the

end of the CMOS curve). In the best case (molecular QCA implementation), QCA

offers a density gain of 900 over an equivalent CMOS design.

Finally, it would be appropriate to consider the physics of the QCA device itself.

A meaningful metric to consider is the power-delay-product (PDP). The power-

delay-product can be considered a quality measure for a switching device as it is

simply a measure of the energy consumed by a gate per switching event. A graph

of the PDP for various technologies and where QCA would fit into this mix appears

below in Figure 7.1 [9]. As one can see, the PDP for QCA is well below that of any

other technology.

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-10 10-8 10-6 10-4 10-2

100K ECL
STTL
LSTTL
GaAs DCFL (0.55µm)
Si BiCMOS (0.35µm)
Si CMOS (0.1µm)
GaAs/AlGaAs HBT
Si BJT

P
ro

pa
ga

ti
on

 D
el

ay
 (

s)

Power (W)

1 pJ

1 fJ

1 aJ

1 zJ

QCA

Figure 7.1. The power-delay-product for QCA and other technologies.

89

Given these amazing numbers, further research into the QCA technology and ar-

chitecture is certainly warranted. Potential areas for future exploration and research

are outlined in the next subsection.

7.2 The Future

Based upon the results discussed above, several topics have been identified as sources

for future work and research. First and foremost, Simple 12 must be completed. This

involves developing the control and state machine logic for it as well as studying

how it might work with memory. Also, ways to improve routing must be developed.

Potential problems stem from the existence of ”long” wires in designs. Furthermore,

an efficient and ”safe” method of interconnect (i.e. one that avoids as much as

possible the design problems of Chapter 3) must be considered. Additionally, novel

architectural techniques should be considered. These include but are not limited

to multithreading. Finally, some technology issues must be considered. One of

the most important areas for investigation might be how a clocking zone would

physically be implemented. Each potential area of future work is discussed in a

subsection below (starting from the “bottom up”).

7.2.1 Technology Issues

There are many opportunities for research when considering the ”lowest levels” of

QCA design. For example, means for actually implementing the clocking zones

that are an integral part of all of the designs in this thesis must be developed and

pursued. In particular, a method must be found that assures that there is a sharp

”edge” between two clocking zones. Also, research efforts should be directed into

determining how a specific logical value (i.e a binary 1 or 0) is actually ”read-in”

by the design or ”read-out” by somebody or something in the outside world.

90

Additionally, specific methods and tools for developing power, area, and speed

models for a given design should be researched and developed. Along with this,

the effects of devices with ”defects” and how they affect an overall design should

be considered. Finally, while a rather thorough set of design rules for QCA circuits

has been developed and presented here, work should continue to form a complete

set of design rules that will apply to all possible QCA circuits (i.e. design rules

for memory devices and control and state machine logic should be developed and

enhanced).

7.2.2 Logic Design

Without a doubt, developing the specific control and state machine logic for Simple

12 will be where significant effort and research is next directed. It might actually be

more appropriate to characterize this effort as a mix of research and design however

as some of the necessities to accomplish this task are already in place. For exam-

ple, at present, a sophisticated simulator exists for verifying the logical correctness

of a given design. Additionally, some work has been done with simple QCA state

machines. Also, complete state transition diagrams and the resulting control sig-

nal output for each state and opcode have already been determined. However, a

mechanism to place and route the required logic will also have to be developed.

Based on the discussions of Section 4.4 (interconnect in the Simple 12 dataflow)

and the discussion of the need for control signal routing techniques above, work in the

immediate future will have an extensive focus on methods for efficient interconnect

and routing. Obviously, floorplans are required to properly route and time signals

from the control logic block (as well as from memory). However, more importantly,

floorplanning techniques must be studied further in an effort to eliminate long wires

91

and crowded clocking zones that currently result from the interconnect between two

bit slices of the Simple 12 dataflow.

One potential solution discussed in Section 4.4.1 (Interconnect Clocking Zone

Width and Wire Length) involves stacking small clocking zones vertically between

bits (see Figure 29) in an effort to ”break-up” long wires. However, such a solution

would appear to add an otherwise unnecessary delay to a given design. Additionally,

all of the routing wires would have to fanout from the clocking zone in the middle

of Figure 29 so that all of the inputs to the dataflow were synchronized. While this

is possible, it may become something of a routing nightmare. Nevertheless, this as

well as other solutions will be explored.

Methods for developing both simple and complex memory structures must also

be created and enhanced. As seen in Chapter 4, current designs use a means of

intrinsic latching to store a value in a ”register” for some indefinite period of time.

Such a device seems to work quite well for a circuit such as the Simple 12 dataflow

and would seemingly scale to larger and more complex designs as well. However,

more complex memory devices must also be developed. For instance, some type of

main memory structure (possibly analogous to an SRAM) will be needed. Such a

structure will have to overcome and solve the timing issues sure to be associated

with it – in particular those related to connecting memory associated with a cache,

for example, to the actual dataflow.

Finally, research should focus on developing reconfigurable QCA logic arrays.

With such arrays, the structure of a single chip is a repetition of some more basic

multi-device macro. This in turn can be programmed either after manufacture

or at power-up time to perform different logic functions. Creation of such design

points would allow real device developers to focus on a small number of multi-device

combinations, which if feasible, could be replicated into real systems.

92

7.2.3 Architecture

Because of the inherent pipelining created by the clocking zones of a QCA design,

QCA is an ideal candidate for multithreading. In an ideal situation (i.e. assuming

that all control signal and data routing timing and delay problems can be worked

out successfully), new data bits for a separate instruction stream could enter the

dataflow every time a clocking zone bordering the inputs recycles back to the switch

phase (or in other words it goes through each of its four phases). This would result

in a remarkable throughput.

QCA may also be an ideal candidate for other alternative architectures as well –

a combinator-based PIM like architecture for example. In a combinator system, the

key functions implemented are simple ones that only re-arrange their operands. In

fact, it has been shown that only two simple functions are needed to compute any

computable function [7]. Given the natural pipelined flow of information in a QCA

wire, it appears that many of the basic combinator functions can be implemented

simply in the access logic next to memory, with no degredation in speed as data

moves to its ultimate destination.

Finally, it is worth mentioning that architectural techniques described above can

be applied not only to general purpose processing, but special purpose processing as

well. The possibilities of applying the QCA technology to special purpose processing

(such as digital signal processors) will also be explored.

7.2.4 Design Automation Tools

Finally, as discussed in Section 5.9, work will also be done to enhance design automa-

tion tools. Research and design efforts in the immediate future (currently underway)

will focus on improving the ”user-friendliness” of Q-BERT. Other future work in

the area of QCA design automation will center around letting the engine/simulator

93

define clocking zones. Ideally, the user would simply indicate where specific clocking

zone boundaries would occur and the simulator/engine would construct their bor-

ders. Finally, the possibility of writing a program that would convert conventional

boolean logic (i.e. a schematic containing AND gates, OR gates, NAND gates, XOR

gates, etc.) to a schematic consisting only of optimized majority gate logic should

be explored.

94

List of References

[1] In The National Technology Roadmap for Semiconductors. Semiconductor In-
dustry Association, 1997.

[2] In Technology Roadmap for Nanoelectronics. European Commission IST Pro-
gramme Future and Emerging Technologies, Microelectronics Advanced Re-
search Initiative, 1999.

[3] I. Amlani. Digital logic gate using quantum-dot cellular automata. Science,
284:289, 1999.

[4] I. Amlani, A.O. Orlov, G.L. Snider, and C.S. Lent. Experimental demonstration
of a binary wire for quantum-dot cellular automata. Appl. Phys. Lett., 72:2179,
1999.

[5] G. H. Bernstein, G. Bazan, M. Chen, C. S. Lent, J. L. Merz, A. O. Orlov,
W. Porod, G. L. Snider, and P. D. Tougaw. Practical issues in the realization
of quantum-dot cellular automata. Superlattices and Microstructures, 20:447–
459, 1996.

[6] D. Berzon and T. Fountain. Unpublished.

[7] P. M. Kogge. The Architecture of Symbolic Computers. McGraw-Hill Series in
Supercomputing and Parallel Processing), New York, 1990.

[8] Craig S. Lent and P. Douglas Tougaw. A device architecture for computing
with quantum dots. Proceedings of the IEEE, 85:541, 1997.

[9] Courtesy of Dr. Craig Lent of the University of Notre Dame Electrical Engi-
neering Department.

[10] J.M. Rabaey. Digital Integrated Circuits: A Design Perspective. Prentice Hall
Electronics, New Jersey, 1996.

[11] C.G. Smith. Computation without current. Science, 284:274, 1999.

[12] P.D. Tougaw and C.S. Lent. Logical devices implemented using quantum cel-
lular automata. Journal of Applied Physics, 75:1818, 1994.

95

