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The wave functions and currents in a circular quantum dot in a perpendicular magnetic field are
calculated. The current in condensed (high-field) eigenstates is composed of concentric rings of
current flowing in opposite directions. The current flow near the dot center flows in the direction
opposite that expected from the Lorentz force. It is this inner circulation that is responsible for the
“reverse” current flow associated with edge states. The correspondence between the quantum-
mechanical currents and classical-particle trajectories is examined.

I. INTRODUCTION

Under a perpendicular applied magnetic field, the
unconfined states of a two-dimensional electron gas
(2DEG) form infinitely degenerate Landau levels whose
energy increases linearly with the applied field. The
Landau-level eigenstates can be thought of as localized
states corresponding to the cyclotron orbits of classical
electrons. If the 2DEG is confined further in the plane
by a potential barrier, the energy of the states near the
boundary will be altered. Further, it has long been recog-
nized that states near the boundary produce a current
which flows in a direction opposite to the circulation of
inner orbits. These edge states, and their importance as a
paramagnetic correction to the Landau diamagnetism,
were discussed by Darwin,! who considered electrons in a
parabolic confining potential for which analytic solutions
exist. Further investigation of the effects of the edge
states was done by Dingle,? and more recently, by Rob-
nik.?

Interest in the behavior of small systems which are
confined in three dimensions has been stimulated by the
fabrication of individual dots and quantum-dot arrays in
semiconductors.*”7 Kumar, Laux, and Stern have solved
the Schrodinger and Poisson equations self-consistently
in three dimensions to obtain the electronic states for a
quantum dot in a magnetic field.® Maksym and Chakra-
borty have examined the effects of electron-electron in-
teractions in parabolic dots.’

In this paper we examine the one-electron states of a
circular dot in a magnetic field. We take a simpler ap-
proach than Kumar, Laux, and Stern, using a fixed po-
tential and assuming complete confinement in the plane
of the 2DEG. Attention is focused here on the currents
induced by the applied field and the correspondence be-
tween the quantum-mechanical results and classical cy-
clotron orbits. Our aim is to establish the precise nature
of edge states and their relationship to the classical ““skip-
ping” orbits. The self-consistent potential obtained by
Kumar, Laux, and Stern can be approximated by a flat
potential with parabolic walls. After examining the
hard-wall boundary case, we consider the effect of such
soft walls. The numerical approach used here is similar
to that of Stikova, Smrcka, and Isihara,'® and Weisz and
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Berggren.!! The calculation is performed in the frame-

work of a single-band effective-mass model, neglecting
electron-electron interactions and ignoring spin effects.
Results for the circular dot which is completely confined
in the plane are applicable directly to a cylindrical quan-
tum wire. Fabrication of such structures has been report-
ed by Reed and co-workers.’

II. THEORY

We consider the bound states of a particle in a two-
dimensional circular quantum dot with an applied mag-
netic field described by a vector potential A. The canoni-
cal momentum is given by

P=m*V+qgA . (1)
The effective-mass Hamiltonian for such a particle bound
in an axially symmetric potential V, is

H=—1_(P—gAQ+v, . @)

2m*
A completely unconstrained 2DEG in an applied magnet-
ic field is described by the Landau Hamiltonian H ,

1
2m*

H, = (P—qgA)?. (3)
We examine the case of a perpendicular magnetic field
B=VX A=B;Z and use the symmetric gauge for the
vector potential:

A=(—Byy/2,Byx/2,0) . 4)
The Hamiltonian can then be written in the form
2
1 24 p2yy e mroc o o
H=——(P2+P})+—"L,+ X:+Y)+v,,
2m*( o ) > L. 3 ( ) .

(5)

where L, is the operator associated with the z component
of angular momentum

L,=XP,—YP, , (6)

and
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1) (7
is the cyclotron frequency defined so that an electron has
a positive w, corresponding to a counterclockwise orbit
in the plane.

The bound states of the quantum dot (for any field) can
be labeled by the radial quantum number n, and the an-
gular quantum number m. At zero magnetic field, the
Hamiltonian is symmetric under time reversal so that
E(n,,m)=E(n,,|m|). The application of the magnetic
field breaks this symmetry and the energy of positive-m
states increase while negative-m states are lowered. The
perturbation is dominated for low fields by the term
linear in the field. The resulting splitting is due to the fa-
miliar paramagnetic interaction between a magnetic di-
pole and the applied field. As the field increases the (di-
amagnetic) quadratic term in (5), due to the induced
current, becomes significant. Negative-m states which in-
itially were reduced in energy, begin to increase and com-
bine together, undergoing a transition from paramagnetic
states to diamagnetic states at a field strength which de-
pends on m. The negative-m states which have under-
gone this transition combine with n; +1 states with posi-
tive or zero m (states that are always diamagnetic) to
form the degenerate Landau levels (labeled by quantum
number n;). We refer to the coalescence of these energy
levels as “Landau condensation” after Robnik.?

III. NUMERICAL RESULTS

A. Energy levels

We begin by examining the quantum dot with infinite
hard walls. The potential ¥, is zero if » <R and infinite
otherwise. The effective-mass Schridinger equation for
the Hamiltonian given by (2) was solved numerically us-
ing the finite element method. An effective mass of
0.05m was used. The symmetric gauge given by Eq. (4)
was used. The discretization was performed on a square
49X 49 node mesh. Eigenfunctions and eigenvalues were
calculated using the subspace iteration technique for the
lowest 20 eigenstates.

Figure 1 shows the eigenvalue spectrum as a function
of applied magnetic field for the first 20 eigenstates. The
calculation was performed for a dot with radius R =500
A. Because all of the results scale with the de Broglie
wavelength of the electron, they can be represented in a
dimensionless form by appropriately scaling the energies
and magnetic fields. The eigenenergies are scaled to E,
the energy of the zero-field ground state. The magnetic
field is plotted as the dimensionless quantity

eBmR?
= 8
B i (8)
For the 500-A dot, 8=35 corresponds to 9.21 T and
Ey=1.8 meV.

The condensation of the bound states of the dot into
degenerate Landau levels is clearly evident in the figure.
At every value of the applied field, n, and m remain good
quantum numbers. The components which merge to
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FIG. 1. Bound-state energy levels of a circular quantum dot
as a function of applied magnetic field, B=eB7R?/w#. The en-
ergies are in units of E, the zero-field ground-state energy.

form the first three Landau levels are enumerated below:

n; =0,
n,=0, m=0,—1,—2, , — 00
ny=1, n,=0, m=1,

n,=0, m=2
m

m=0,—1,—2,...,— o .

The condensation seen here does not occur in confining
potentials which are parabolic. In such a potential the
magnetic localization is never sufficient to isolate the
electron from the walls. Parabolic potentials may be
more appropriate for some dot structures examined ex-
perimentally.'>!3 Further, Demel et al.!> have measured
anticrossing of the energy levels in contrast to the cross-
ing behavior in Fig. 1. They interpret these results as due
to electron-electron interactions which are absent in our
model.

B. Current flow

For each eigenstate, the particle (probability) current is
calculated from the computed wave functions ¥(x,y), us-
ing the relations,

J=iotia s (10

jo= = vy —yrvy) an
2m

ia= l*eAiwlz. (12)
m

These relations are for electrons and the symbol e



represents the magnitude of the electronic charge. Writ-
ing the current this way separates the contribution of the
wave function from that of the vector potential. This
division, though gauge dependent, is helpful in under-
standing the nature of the eigenstates.

Figures 2—6 show the calculated current density in the
dot and the probability density |1|? across the dot center
for several eigenstates at a field of B =5 T (=19). Fig-
ures 2 and 3 show the current for the m =0 and m = —2
states of the first Landau level. At this field, these states
have already condensed (i.e., become degenerate with
other states at the energy of a Landau level). Figure 4
shows the uncondensed m =—7, n; =0 level. The un-
condensed n; =1, m =0, and m = —3 states are shown
in Figs. 5 and 6.

The current flows depicted in the figures are not all
easily explained by appealing to the usual classical-orbit
notions. The condensed m =0 state shown in Fig. 2 cor-
responds to the classical picture of counterclockwise or-
bit caused by the Lorenz force on the electron. The
negative-m state shown in Fig. 3 is somewhat more
surprising. Rather than a central, counterclockwise
current, we see a clockwise circulation in the center, sur-
rounded by a counterclockwise outer current. This is
characteristic of all the condensed negative-m states. The
literature has frequently invoked the concept of ‘“‘edge
states” which corresponds to classical orbits that skip
along the perimeter and thus carry the (particle) current
clockwise, opposite that of the counterclockwise current
induced in the bulklike central region. One might expect
to see these edge states characterized by a clockwise
current in the perimeter (edge) region of the dot. The
ny =0, m = —7 state depicted in Fig. 4 corresponds to
this idea. The uncondensed n; =1, m = —3 state in Fig.
6 should also be an edge state. Yet it has a weak perime-
ter current which is counterclockwise (bulklike) and an

probability

nL=O m=0

FIG. 2. Probability currents for the n; =0, m =0 eigenstate
of a circular quantum dot. The magnetic field corresponds to
B=19.0 (B =5 T for a dot with 500-A radius). The probability
density across the dot center is shown in the upper portion of
the figure.
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FIG. 3. Probability currents for the n; =0, m = —2 eigen-
state of a circular quantum dot. The magnetic field corresponds
to B=19.0. The probability density across the dot center is
shown in the upper portion of the figure.

interior current which is clockwise. Below, we examine
the quantum-mechanical argument for these, at first
surprising, current-flow patterns. We then discuss the
correspondence between the quantum wave functions and
the classical orbits.

The current j, can be written in terms of ¢, the com-
plex phase of the wave function, and the probability den-
sity n (r)=|v|%,

jor =" v (e (13)
m

Since each eigenstate of H is an eigenstate of L, with ei-

probability

e S
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FIG. 4. Probability currents for the n; =0, m = —7 eigen-
state of a circular quantum dot. The magnetic field corresponds
to B=19.0. The probability density across the dot center is
shown in the upper portion of the figure.
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FIG. 5. Probability currents for the n; =1, m =0 eigenstate
of a circular quantum dot. The magnetic field corresponds to
B=19.0. The probability density across the dot center is shown
in the upper portion of the figure.

genvalue m#i, we can write the complex phase in polar
coordinates as ¢(r,6)=m 6. Therefore,

. n(r ~

Jo(r)=~%hm9 , (14)

m

where 0 is the unit vector in the @ direction. The zero-
field current of the eigenstate is simply a circulation
around the origin which is proportional to the angular
momentum. In polar coordinates, the explicitly field-
dependent part of the current can be written,

n(r)
2m*

jalr)= eB,r0 . (15)

probability

FIG. 6. Probability currents for the n; =1, m = —3 eigen-
state of a circular quantum dot. The magnetic field corresponds
to B=19.0. The probability density across the dot center is
shown in the upper portion of the figure.
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For states with m >0, both jj and j 4 are positive, i.e.,
the current flows in the counterclockwise direction. This
is the direction in which a classical electron would circu-
late in response to the Lorentz force from the magnetic
field. For states with negative m, however, j, circulates
in the clockwise direction. The nonzero j, is in the op-
posite direction and increases with radial distance r. The
competition between these two terms results in the con-
centric rings of current moving in opposite senses as seen
in Figs. 3, 5, and 6. The r dependence in (15) means that
the current always flows counterclockwise at large
enough 7, provided the probability density has not van-
ished. At small values of 7, the j, term must always dom-
inate and leads to the current circulating in a clockwise
sense near the dot center.

If the wall boundary at the dot perimeter were not
present, all the negative-m states would look similar to
the condensed states—a counterclockwise circulating
outer ring and a clockwise inner ring. The presence of
the wall reduces the probability density near the perime-
ter and effectively blocks the outer ring, leaving only the
clockwise inner ring. At a high enough field, the magnet-
ic field localizes the state closer to the dot center. This
“restores’ the outer ring of current by moving it inward
from the wall region and results in bulklike behavior.
The transition between edge states and bulk states does
not occur by shrinking a current ring going the “wrong”
direction!# and then reversing it as it comes near the dot
center. Rather it occurs by restoring a ring of current go-
ing the “right” direction which has been suppressed by
its proximity to the outer edge. The circulation going the
“wrong” direction is in the center and remains there in
the condensed bulklike states.

C. Connection to classical orbits

In order to make clear the correspondence between the
quantum-mechanical current flows and classical orbits,
let us return to the case of unbound Landau levels de-
scribed by the Hamiltonian H; [Eq. (3) above]. We can
define operators X, and Y, which correspond to the clas-
sical centers of the cyclotron orbits, !’

1
X X i 7 1
0 o, y (16)
Yo=Y+—V, . 17

[

The operators V, and V, are defined by Eq. (1). The
operator I'? is then defined to be the operator corre-
sponding to the square of the distance from the origin to
the orbit center,

r’=x3+v3. (18)

If we take the Landau-level wave functions |n;,m )
which are eigenvalues of L,,

ln,mY=vy2n,m), (19)
yHng,m)=[2(n, —m)+1]L} , (20)

where y? is the eigenvalue of I'? and L,=V'#/eB is the
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FIG. 7. The relationship between o, the cyclotron radius,
and v, the radius of the orbit guide center. The origin is chosen
to be the center of the quantum dot. The dot radius is R.

magnetic length. The classical cyclotron radius is
represented by the operator
32=(X — X))+ (Y —Y,)? 1)
2m*
=L} 7 H, , (22)
so the eigenvalues are given by
32|ny,m)=0%n,m) , (23)
*
o¥n,,m)=L} 2’;2 (n,+ Lo, . (24)

Figure 7 illustrates the relationship between y, o, and the
origin at the dot center. The angular momentum opera-
tor L, is related to I'?> and 32 by

#
2L%

L,= (22-1?), (25)

which is true classically as well.

In the unconfined Landau system, states with negative
angular momentum correspond to classical orbits with
centers displaced from the origin. Quantum mechanical-
ly, the position of the orbit center is not well defined since
one cannot construct states which are simultaneously
eigenstates of the operators X, Y, and H. The distance
v between the orbit center and the origin is a constant of
the motion both classically and quantum mechanically.
The cyclotron radius o is also a good quantum number.
The quantum wave function for a state with negative an-
gular momentum corresponds, then, to all possible classi-
cal orbits of radius o, which centers a distance y from
the origin. A circle of radius y, centered on the origin,
acts as the “guide center” for the classical orbits. As the
magnetic field increases, both ¥ and ¢ become smaller.
Another consequence of Eq. (20) is that states with
m =0,1,2,...,n; will also correspond to classical orbits
with displaced orbit centers.

For the confined system, H=H, +V,, and Egs. (20)
and (24) are no longer strictly valid. For states which are
already condensed and localized in the interior of the
quantum dot, they will be very nearly true. We can ap-
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(a)
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FIG. 8. Classical orbits for four increasing values of the mag-
netic field. The orbits (arrows), guide center (dotted), and dot
wall (solid) are shown. In (a) the guide-center radius is equal to
the dot radius and only a clockwise current results. As the field
increases [(b)—(d)] the guide-center radius shrinks and a coun-
terclockwise current develops around the dot perimeter, while
the clockwise current becomes localized near the dot center.
Orbits are chosen to correspond to specular reflection from the
walls.

proximate the value of the cyclotron radius for a particu-
lar eigenstate |n,,m ) of H by using Eq. (22) to define

o' (E)=L}V2m*E /# , (26)

where we use for E the calculated energy E(n,,m). The
guide-center radius can then be obtained by using (25) to
construct an approximate value,

y'(E,m)=10'2(E)—2mL} , 27)

where again we use the calculated value of the energy.
The effect of the dot walls is then included in the raising

FIG. 9. Probability current for the n; =0, m = —4 eigenstate
of a circular quantum dot. The magnetic field corresponds to
B=11.4 (B =3 T for a dot with 500-A radius). Classical orbits
calculated using Egs. (37) and (38) are superimposed on the nu-
merical solution.
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FIG. 10. Probability current for the n; =0, m = —4 eigen-
state of a circular quantum dot. The magnetic field corresponds
to 3=15.2 (B =4 T for a dot with 500-A radius). Classical or-
bits calculated using Eqgs. (37) and (38) are superimposed on the
numerical solution.

of the eigenenergies for states which are not yet con-
densed in the center. Equations (26) and (27) reduce to
(24) and (20) with the substitution E =(n; +1)fw,.

The classical orbits for the circular dot corresponding
to quantum-mechanical eigenstates of L, are illustrated
in Fig. 8 at various stages of Landau condensation. In
Fig. 8(a), the field is low and the guide-center radius
y=R. The orbits shown correspond to specular
reflection off the dot walls. The current is dominantly
clockwise and characteristic of a pure edge state. The
guide circle (dotted) in Fig. 8(b) is inside the dot, but the
orbit still corresponds to a skipping orbit, reflecting off
the perimeter wall. Notice, however, that a counter-
clockwise current exist in the outer region between the
guide circle and the dot wall. The clockwise current as-
sociated with the edge state in Fig. 8(a) has moved into
the center of the dot. Figures 8(c) and 8(d) show the or-
bits as the magnetic field increases and the state becomes
more localized and condensed. The state shown in Fig.

FIG. 11. Probability current for the n; =0, m = —4 eigen-
state of a circular quantum dot. The magnetic field corresponds
to $=19.0 (B =5 T for a dot with 500-A radius). Classical or-
bits calculating using Egs. (37) and (38) are superimposed on the
numerical solution.
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FIG. 12. Probability current for the n; =0, m = —4 eigen-
state of a circular quantum dot. The magnetic field corresponds
to B=30.4 (B =8 T for a dot with 500-A radius). Classical or-
bits calculated using Egs. (37) and (38) are superimposed on the
numerical solution.

8(c) is not necessarily condensed, since its energy may
still be elevated by proximity to the dot wall.

Figures 9-12 show the computed particle current for
the n; =0, m = —4 state at increasing magnetic fields.
The values of the field are B =3, 4, 5, and 8 T corre-
sponding to B=11.4, 15.2, 19.0, and 30.4. Across this
range, the magnetic field transforms the state from purely
edge-type, Fig. 9, to the nearly completely condensed
bulk-type state shown in Fig. 12. Superimposed on the
results of the Schrodinger solution are the classical orbits
calculated using Eqgs. (26) and (27). The relation between
the classical current flows due to the orbits and the quan-
tum results verifies the explanation above and demon-
strates the utility of the quantities o’ and 7' in describing
the confined states. Orbits computed using the
unconfined 2DEG values o and y yield a much worse
comparison with the calculated current patterns.

IV. SOFT BOUNDARIES

Actual quantum dots or wires would not have abrupt
hard-wall boundaries. The confining potential would be
the result of the self-consistent solution of the Poisson
equation for the band bending inside the semiconductor.

V()

\

FIG. 13. Radial potential profile of quantum dot with para-
bolic walls.
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FIG. 14. Bound-state energy levels of a circular quantum dot
with parabolic walls as a function of applied magnetic field.
The radial potential profile is as depicted in Fig. 13 with a =400
A, R=500 A, and V,=200 meV. B=eBwR?/w# is a dimen-
sionless measure of the magnetic field strength. The energies
are in units of E, the zero-field ground-state energy.

Several calculations have shown that this potential can
often be approximated by a flat (¥ =0) region and para-
bolically increasing walls.®!®!” We are particularly in-
terested in eventually making a connection to the experi-
ments of Reed et al., after whose potential profiles we
have roughly modeled ours. The effects of soft walls on
the energy levels is considered here by calculating the
eigenstates for a confined quantum dot with such a poten-
tial profile, as shown in Fig. 13. The radius of the inner,
flat region is a, the outer radius is R, and the value of the
potential at the outer rim (» =R) is V,. In both of the
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FIG. 15. Bound-state energy levels of a circular quantum dot
with parabolic walls as a function of applied magnetic field.
The radial potential profile is as depicted in Fig. 13 with @ =250
A, R=500 A, and V;=200 meV. B=eB7wR>/w# is a dimen-
sionless measure of the magnetic field strength. The energies
are in units of E, the zero-field ground-state energy.

4185

cases examined here R =500 A, V,=200 meV. Figure
14 shows the energy levels as a function of applied mag-
netic field for @ =400 A. Figure 15 shows the results for
a =250 A. Clearly the primary effect of the walls coming
in closer toward the center is to inhibit condensation un-
til the wave functions are confined by the magnetic field
to the central flat region. The qualitative discussion of
the transformation of the states into Landau levels
remains unchanged.

V. CONCLUSION

In an unconfined 2DEG the degenerate Landau levels
can be decomposed into eigenstates of angular momen-
tum. States with negative angular momentum produce
current distributions consisting of concentric rings with
counter-circulating flows. The negative angular momen-
tum states can be identified with classical orbits with or-
bit centers displaced from the origin. This identification
was made by Darwin in his seminal paper, in which he
examined states in a parbolic confining potential. In that
context, he also correctly identified the negative-m states
with edge states. In a parabolic potential Landau con-
densation never really occurs—the states always feel the
effects of the potential.

In the hard-wall circular dot, negative-m states are
pure edge states only at low magnetic fields. They are
characterized by a single clockwise current flow near the
dot perimeter. As the field increases, a counterclockwise
current appears at the perimeter and the clockwise flow is
squeezed inward. In this intermediate regime, the clock-
wise “skipping” current is not an edge current but rather
a central current. At high fields both rings of opposing
current are localized in the central region of the dot and
the state becomes similar (asymptotically) to bulk Landau
levels.

Numerical solutions of the Schrodinger equation for an
electron in a quantum dot have been performed and the
particle currents associated with particular eigenstates
analyzed. The correspondence between the quantum
current flows and the classical orbits has been established
using approximate expressions for the guide-center radius
and cyclotron radius which include the effect of the
confining potential walls. The effects of softer, parabolic
walls have been examined.

Note added in proof After completion of this work, I
received a copy of work by Geerinckx, Peeters, and De-
vreese,!?® related to the effect of soft boundaries as dis-
cussed in Sec. IV.
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