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Abstract 

Pipelining is a technique that has long since been con- 
sidered fimdamental by computer architects. However, the 
worm o f  nanoelectronics is pushing the idea o f  pipelining to 
new and lower levels - particularly the device level. How 
this qffects circuits and the relationship between their tim- 
ing, architecture, and design will be studied in the con- 
text o f  an inherently se(f-latching nanotechnology termed 
Quantum Celhdar Automata (QCA). Results indicate that 
this nanotechnology offers the potential .for "free" multi- 
threading and "processing-in-wire ". All o f  this could be 
accomplished in a technology that could be almost three 
orders' o f  magnitude denser than an equivalent design fab- 
ricated in a process at the end o f  the CMOS curve, 

1. Introduction 

Pipelining as a technique has been with us every day for 
almost 40 years. It has been designed into our basic circuits, 
and governed the way we partition larger logic functions. 
Technology and market forces have pushed clock speeds 
to realms where speed of light dictates smaller and smaller 
amounts of logic per stage. More and more we even rely on 
transitory storage effects (as in wave pipelining) to push the 
cycle time to lower and lower limits. This in turn has forced 
us to introduce new instruction and architectural level ar- 
tifacts such as vectors, systolic arrays, and more recently 
multi-threading. As we look toward the near future, we see 
this trend continuing, especially as we approach the sup- 
posed end of CMOS at 0.05 microns (50 nanometers). 

When we look at alternative technologies, we often see 
this same phenomena of shrinking stage size appearing at 
the basic technology level. Older technologies such as 
Charge Coupled Devices and newer self-latching technolo- 
gies such as Josephson junctions and Rapid Flux Single 
Quantum devices bring pipelining down to the device level. 
To date, the unique application niches and difficult imple- 
mentation environments of such technologies has discour- 
aged researchers from seriously considering their effects on 

design. However, it may be time to reconsider the inter- 
action between timing, architecture, and design. The driv= 
ing force is the rapidly expanding world of nanoelectronics, 
where devices as small as a molecule may be feasible. 

This paper is the outgrowth of design work with one such 
technology just recently demonstrated, but for which there 
is strong evidence that room temperature systems made 
from 2 nm devices may only be a few years away. This 
technology, termed Quantum Cellular Automata (QCA), is 
at its base, self-latching, where information is stored at each 
device by the positions of single electrons, and logic func- 
tions are performed not by electron flow but by Coulombic 
interactions. The result is a technology where even the in- 
terconnect is made out of the same self-latching devices as 
the logic functions, bringing "pipelining" down well below 
the level of even a simple logic gate. 

Thus, while focused on QCAs, our goal in this paper is to 

reopen the topic of pipelining at an extremely low level, and 
begin to explore how what today are high level techniques - 
such as multi-threading - may in fact in the future become 

part  and parcel of micro-organizational levels of design. To 
support this, Sec. 2 first reviews the QCA technology to in- 
troduce where this ultra low level pipelining originates. Sec. 
3 discusses the concept of a "clock" in such a context. Sec. 
4 provides a motivational example of what the technology 
may mean in terms of comparison at the dataflow level to 
the CMOS roadmap. Sec. 5 then explores what is perhaps 
a more fundamental issue - what does such a technology 
mean to the design of the state machines that control such 
data flows? Sec. 6 introduces a canonical approach to their 
design and gives examples. Sec. 7 will describe a primitive 
architecture. Sec. 8 concludes with a discussion of what are 
the most important near term research issues. 

2. The QCA Device, Circuits, and Experiments 

2.1. The Device 

A high-level diagram of a four-dot QCA cell appears in 
Fig. 1. It consists of four quantum dots that are positioned 
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to form a square. (Note: Future QCA cells have the po- 
tential to shrink dots to regions within specially designed 
molecules). Exactly two mobile electrons are loaded in the 
cell and can move to different quantum dots in the QCA 
cell by means of electron tunneling. Coulombic repulsion 
will cause the electrons to occupy only the comers of the 
QCA cell resulting in two specific polarizations (see Fig. 1 ). 
These polarizations represent the places where the electrons 
are as far apart from one another as possible (which hence 
minimizes the Coulombic repulsion between them) without 
escaping the confines of the cell. Electron tunneling is as- 
sumed to be completely controllable by potential barriers 
that can be raised and lowered between adjacent QCA cells 
by means of capacitive plates [14]. 

P = + I  P = - I  
(Binar y 1 ) (Binar y 0) 

Figure 1. QCA cell polarizations. 

2.2. C i rcu i t s  

The fundamental QCA logical circuit is the three-input 
majority gate (Fig. 2) [14]. Computation is performed by 
driving the device cell (cell 4 in the figure) to its lowest en- 
ergy state. This occurs when it assumes the polarization of 
the majority of the three input cells. The device cell will 
always assume the majority polarization because in this po- 
larization, electron repulsion between the electrons in the 
three input cells and the device cell will be at a minimum. 

Cell 4 (device cell) 

Cell 1 (input) ~ ] :  .';,I / Cell 5 (output) 

Cell 2 (input) ~ 1 - -  Cell 3 (input) 

Figure 2. The fundamental QCA logical de- 
vice. 

Fig. 3 illustrates a representation of what is called a "90- 
degree wire". Assume that the middle cell in Fig. 3 was 

originally in a polarization opposite of  that of the first cell. 
Thus, if the first cell represents an input cell, the electrons 
would move as illustrated by the arrows in the figure to take 
on a polarization that minimizes the Coulombic repulsion 
between the neighboring cells [14]. 

State Propagation Direction 

Figure 3. Interaction between 2 cells. 

A QCA wire can also be comprised of cells oriented at 
45-degrees [14]. With the 45-degree orientation, as the bi- 
nary value propagates down the length of the wire, it alter- 
nates between polarization P = +1 and polarization P = -1. 
A complemented or uncomplemented value can be ripped 
offthis wire by placing a "ripper cell" at the proper location 
and considering the direction of signal propagation (this is 
determined in part by electron position and will not be elab- 
orated upon here) [14], [6]. The significant advantage of 
the 45-degree wire is that both a transmitted value and its 
complement can be obtained from a wire without the use of 
an explicit inverter! Also, QCA cells do not have to be in 
a perfectly straight line to transmit binary signals correctly. 
Cells with a 90-degree orientation can be off-center, and a 
binary value will still be transmitted successfully. Finally, 
QCA wires possess the unique property that they are able to 
cross in the plane without the destruction of the value being 
transmitted on either wire. However, this property holds 
only if the QCA wires are of different orientations (i.e. a 
45-degree wire crossing a 90-degree wire) [14]. 

2.3. E x p e r i m e n t s  

The previous two subsections have described how a the- 
oretical QCA device and theoretical QCA circuits would 
function. It is this theory on which many of the designs for 
QCA dataflows and state machines are based - and from 
which we will be able to comment on the effects of a self- 
latching technology on "conventional" dataflows and state 
machines. However, it is imperative to emphasize that QCA 
has moved beyond the realm of theory as actual devices and 
circuits have been constructed. 

For instance, QCA cells made of metal islands with tun- 
nel junctions have been fabricated. Cell operation has been 
demonstrated at very low temperatures (70 mK) [7], [ 11 ]. 3- 
input majority gate logic [1], [1 I], a QCA wire [8], clocked 
QCA cells [9], single-bit memory [10], and power gain 
have also all been demonstrated. Finally, work is currently 
underway to raise the cell operating temperature to 20K - 
70K. In addition to work with "metal dots", researchers are 
also working to build QCA cells using chemical molecules 
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[3]. The benefit of chemical molecules is two fold. First, 
their operating temperature would be much closer to room 
temperature. Second, a QCA circuit built from chemical 
molecules should lead to an almost two-order of magnitude 
density increase over an equivalent circuit built with metal 
dots. Currently, several promising candidate molecules that 
could function at room temperature exist. 

3. T h e  C l o c k  

Unlike the standard CMOS clock, the QCA clock has 
more than just a high and a low phase, but rather, four 
phases. Also, individual QCA cells are not clocked/timed 
separately. The support required to clock each cell individ- 
ually could easily overwhelm the simplification won by the 
inherent local interconnectivity of the QCA architecture [4]. 
However, an array of QCA cells can be divided into zones 
that offer the advantage of multi-phase clocking and group 
pipelining. For each zone, a single potential modulates the 
inter-dot barriers in all of the cells [4]. 

This clocking scheme allows one zone of QCA cells to 
perform a certain calculation, have its state frozen by the 
raising of its interdot barriers, and have the output act as the 
input to a successor zone (i.e. clocking zone 1 can act as in- 
put to clocking zone 2). It is this mechanism that provides 
the inherent self-latching associated with QCA. During the 
calculation phase, the successor zone is kept in an unpolar- 
ized state so it does not influence the calculation. Each of 
the four clocking zones corresponds to one of four differ- 
ent clocking phases. Physically neighboring zones concur- 
rently receive temporally neighboring clocking phases [4]. 

Finally, it is important to stress what exactly is meant by 
the QCA "clock". As mentioned above, the QCA clock has 
more than a high and a low phase. Also, it is not a "sig- 
nal" with four different phases. Rather, the clock changes 
phase when the potential barriers that affect a group of QCA 
cells (referred to as a clocking zone) are raised or lowered 
or remain raised or lowered (thus accounting for the four 
clock phases). Furthermore, all of the cells within a clock- 
ing zone obviously are in the same phase. One clock cycle 
occurs when a given clocking zone cycles through the four 
different clock phases. What exactly the "clock" does is to 
trap one zone of cells in a specific polarization which in turn 
allows other cells in neighboring zones to make appropriate 
changes. 

During the first clock phase, the switch phase, QCA cells 
begin unpolarized and their interdot potential barriers are 
low. The barriers are then raised during this phase and the 
QCA cells become polarized according to the state of their 
driver (i.e. their input cell). It is in this clock phase that the 
actual computation occurs. By the end of this clock phase, 
barriers are high enough to suppress any electron tunneling 
and cell states are fixed. During the second clock phase, the 
holdphase, barriers are held high so the outputs of the sub- 

array can be used as inputs to the next stage. In the third 
clock phase, the release phase, barriers are lowered and 
cells are allowed to relax to an unpolarized state. Finally, 
during the fourth clock phase, the relax phase, cell barriers 
remain lowered and cells remain in an unpolarized state [4]. 
As can be seen from the example in Fig. 4, clocking zones 
clearly "latch" data which allows it to be transferred from 
one clocking zone to another. 

In conclusion, it should be mentioned that clocking sig- 
nals can be distributed by metal lines underlying the array, 
with a feature size much larger than the cells. This kind 
of "hot clock" acts as an energy source to replace the un- 
avoidable energy lost to the environment through dissipa- 
tive events. Clocked QCA cells exhibit power gain, essen- 
tial to restoring logic levels in real circuits. Also, a brief 
word should be said about clock rate. In the design in Fig. 
6, the most common wire length consists of 5 cells while 
the longest wire consists of 51 cells. Assuming a poten- 
tial device switching speed of 10-1~ s (resulting in a power 
dissipation of approximately 10-lo W per device) [13], the 
five cell wire could be clocked at a rate of 2 THz while the 
51 cell wire could be clocked at a rate of about 20 GHz. (Of 
course the clock rate for the whole design would obviously 
have to be the 20 GHz rate). 

4. Motivational Examples and a QCA Dataflow 

This section will show how inherent latching or "pipelin- 
ing" at the device level can affect an actual design. It will 
begin by discussing methods designed to counter and ex- 
ploit the need for implicit latching, and will end with full 
designs that have been simulated. These designs will then 
be analyzed to show both the strengths and weaknesses of 
pipelining at the device level. 

4.1. Floorplanning 

As was seen in Sec. 3 it is the nature of the clock that 
leads to the inherent self-latching in QCA. In particular, Fig. 
4 illustrates that even a simple 5 cell wire can be pipelined. 
Given this constraint, and before attempting any large scale 
designs, we felt the need to develop methods to success- 
fully factor self-latching out of the "equation" of a design 
and furthermore find a means to exploit it [5]. Thus, a study 
of floorplanning was performed in the context of a micro- 
processor called Simple 12 (Fig. 6). Our goal was to design 
it entirely in QCA. Again, although simple, it exhibits al- 
most all of the attributes of a more complex design. While 
many interesting results arose from this study [5], two were 
most fundamental (Fig. 5). The first was a floorplan that 
allows a feedback path to be generated given the constraints 
of the QCA clock. 

The shaded areas in Fig. 5a represent clocking zones 
each in a specific clock phase. The white arrows show the 
direction of information propagation through the logic in 
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Figure 4. Part (a.) shows a physical 5-cell 
wire while part (b.) shows a value propagat- 
ing down the wire. 

each zone. The numbers in each zone reflect the relative 
phase of the clock in that zone so that at time i a zone la- 
beledj is in phase (i + j)  mod 4. Assume for example that 
the bottom "trapezoid" is computational logic. Data could 
be fed back to the input of the top trapezoid assumed to be 
in clocking zone 0 at the far left after "switching" to the 
computed value in clocking zone 0 at the far right. It can 
easily be seen that the clocking phases are traversed in the 
proper order. Also, a signal can start at a given point and 
an in-phase path exists to return to that point - the defini- 
tion of feedback. The second floorplan result came from 
questioning whether or not the clocking zone arrangement 
of Fig. 5a could be extended to allow efficient and easy 2D 
wire routing. Thus, could the clocking zones be arranged 
or tiled so that there are multiple "wire" loops and "wire" 
crossings and still allow feedback? Such a pattern is illus- 
trated in Fig. 5b. Thus, these general floorplans provide a 
means for the easy routing of wire and circuit components 

a. 

m 
| 

2 
2 

b°  

=Figure 5. Two floorplans with clocking zones. 

given the overhead of self-latching. 

4.2. Comple te  Designs 

The floorplans discussed above provided the foundation 
for the design of the Simple 12 dataflow. Simple 12 operates 
on 12-bit pieces of data and such a design was constructed, 
measured, simulated, and even fabricated in CMOS [6]. For 
clarity, one bit of that design appears in Fig. 6 with each 
subcomponent matched up with the Simple 12 dataflow. As 
discussed below, Fig. 6 allows many tasks that are "archi- 
tecturally desirable" to be done "for free". This is by-in- 
large due to inherent self-latching. However, there is also 
a minor problem with this design that must be and is taken 
into account in future work. 

By far, the two most interesting architectural "innova- 
tions" of an inherently self-latching technology at the gate 
level are first, something that we call "processing-in-wire" 
and second, the ability to multi-thread a circuit for "free". 

To understand how processing-in-wire works, Fig. 7 
shows part of the Simple 12 logic unit plus intermediate 
signal generation logic that zeros an ALU input so it can 
perform a specific function. This "Zero A" logic is placed 
"directly after" the output of the ALU - or more specifi- 
cally, above it in the "feedback trapezoid". Thus, the A in- 
put to the ALU is zeroed on the way back to the input of the 
ALU. Essentially, useful computation is being performed 
"in wire" for free! Why is it free? Well, even if there was 
no logic in the feedback path from the output of the AEU 
back to the input of the Simple 12 dataflow, a wire would be 
spread out over the clocking zones back to the input. Thus, 
whether or not computation is done in these clocking zones, 
the same n clocking zones still must be traversed. 
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Figure 6. A complete 1-bit dataflow of the QCA Simple 12. 

Now, what about the notion of"free" multithreading? 
Before answering this question it is best to point out a 
"problem" in Fig. 6 - namely the longest path from input- 
to-input is spread out over 16 clocking zones. Thus, given 
that a bit of data can move through four clocking zones 
during one clock cycle, it will take four clock cycles for 
one very simple operation to finish. While, this would ap- 
pear to be bad, as it turns out, the inherent self-latching 
of QCA should allow multiple computations/instructions to 
execute simultaneously. In Fig. 6, potential wave-fronts 
or "threads" are represented by *'s in respective clocking 

zones. Essentially, each shaded region can represent a dif- 
ferent possible ongoing instruction. Thus, by examining 
Fig. 6 one can see that it is possible to have 4 computa- 
tions/instructions executing simultaneously. Plus, the in- 
herent self-latching of QCA allows the multithreading to be 
done "free" without explicit registers, latches, or timing. 

There is one additional "benefit" ofQCA - its size. Area 
measurements were taken for the 12-bit QCA design and 
the equivalent area was determined from an actual MOSIS 
CMOS implementation of Simple 12. (Note: it should be 
stressed that both of these designs were hand-crafted. For 
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Figure 7. An example of "processing in wire". 

the CMOS design, each transistor in the dataflow was laid 
out by hand. Similarly, in the QCA version, each QCA cell 
was laid out by hand. This was done in an effort to create 
the densest possible design.) It was determined that QCA 
offers at least almost an order of magnitude area density 
increase over the equivalent CMOS design when scaled to 
0.05 micron. With molecular dots, potential density gains 
approach three orders of magnitude [6]! 

It is now imperative that we point out a potential "prob- 
lem" with Fig. 6. Examine the two vertical wires to the 
left of the "Intermediate ALU Signal Generation Logic"• 
These two wires are necessarily long (as, for example, out- 
put from the accumulator must be sent to the adder unit 
which is at the "bottom" of this design). When generat- 
ing designs in QCA, a significant effort should be made to 
keep a length of a wire within a given clocking zone to a 
minimum. There are two very important reasons to do this. 
First, the probability that a QCA cell will switch success- 
fully decreases in proportion to the distance a particular cell 
is from a frozen input at the beginning of the "wire". Thus, 
simply, for shorter wires there is a higher probability that 
all cells making up the wire will switch successfully [4]. 
This should also explain why in Fig. 6 one could not simply 
have one long wire in one clocking zone that constituted the 
feedback path and instead that wire must be broken up over 
multiple clocking zones (which processing-in-wire then ex- 
ploits). Additionally, wire length will determine the clock 
rate - the rate at which clocking zones can change clock 
phases. This is so because, before a given zone can change 
phase, every cell within the zone must make the appropriate 

polarization changes. Obviously, the longest path dictates 
the time for a signal to propagate down the length of it. 
As one will see in the next section, minimizing wire length 
and exploiting inherent self-latching will be the two driving 
forces behind additional designs. 

5. One-Hot State Machines 

Given that a dataflow for a self-latching architecture has 
been constructed, we concluded that the next logical step 
in additional circuit development would be to generate con- 
trol logic/state machines for the dataflow in Sec. 4 and to 
study the effects of a self-latching architecture on state ma- 
chines in general. Thus, the work discussed in this section 
will begin with the development of the one-hot state ma- 
chine that controls the state transitions for Simple 12. Be- 
fore discussing actual designs, it is important to point out 
two things• First, a Simple 12 instruction can be in one of 
three states - stopped, iFetch (instruction fetch), and exe- 
cute. Thus, a Simple 12 one-hot will obviously need three 
flip-fops. The second item deals with the nature of one-hot 
state machines: for each state, Si,  the corresponding state 
variable yi is set to 1, or is "hot", while all other flip-flops 
are set to 0. These transitions should take place simuha- 
neously during the same clock cycle. It is this notion of 
simultaneous switching that will define much of our work 
with state machines in QCA. 

5.1. The  Simple  12 O n e - H o t  

A schematic of the three state Simple 12 one-hot appears 
in Fig. 8, with one flip-flop for each state. Now, when this 
design is implemented in QCA, there is no  n e e d  for an ex- 
plicit flip-flop circuit. Why? Clocking zones will make the 
QCA cells act as inherent latches, controlled by clocking 
zones changing clock phases. Thus, state information will 
be represented in three different clocking zones with each 
clocking zone representing a bit of"state"• A first cut of 
this machine in QCA appears on the right of Fig. 8. 

As one can see, three clocking zones hold the computed 
information that would be stored in three flip-flops. Note 
that there are two execute feedback paths. This wire was du- 
plicated because both the stopped state and the iFetch state 
depend on execute state information. Also wire routing was 
actually simplified by having the execute state information 
branch in two directions. It is actually these two "wires" 
that are the most important feature of this particular de- 
sign. Like the feedback path for the QCA dataflow, they 
are spread over 4 clocking zones in an effort to break-up 
and eliminate long wires. However, unlike the QCA Simple 
12 dataflow, this technique will not work tbr this (or most) 
one-hot state machines. Why is this? The problem centers 
around the next state of this one-hot state machine depend- 
ing on information from the previous state• Assume for ex- 
ample that a computation has occurred in Fig. 8 during one 
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Figure 8. A first-cut of the QCA Simple 12 one-hot. 

clock cycle. Thus, data has moved from the inputs to the 
clocking zones labeled "stopped", "iFetch", and "execute". 
In theory, a new set of  data bits could now enter the inputs 
of the design so that another state transition calculation can 
begin. And as mentioned, this state transition calculation 
requires information about the previous state. However, a 
problem arises given the fact that the feedback paths con- 
taining information about the execu te  state will take another 
clock cycle to arrive back at the inputs (because the wire is 
divided up over four clocking zones!). This will only lead 
to erroneous state data! 

Now, for this simple design, the problem is not that dif- 
ficult to correct. A revised design appears in Fig. 9. As 
one can see, several clocking zones have been eliminated in 
the feedback paths that provide information about the pre- 
vious execu te  state. Now, new data can enter this state ma- 
chine after one clock cycle occurs and the correct data from 
feedback paths will arrive at the same time. While the wire 
length has increased in the clocking zone that contains in- 
formation about the iFetch state, the longest wires in this 
zone are 15 and 16 cells, which is not unreasonable. 

However, the two important things to think about when 
considering this corrected design do not involve wire length 
at all. But rather that first, a "true" one-hot design (i.e. one 
where all state bits switch simultaneously) is possible in a 
technology with inherent latching. And second, that this 
true one-hot design has been constructed for a s i mp l e  state 
machine with only 3 states. Admittedly however, the com- 
binational logic the precedes each state is minimal and can 
thus fit in 4 clocking zones - and thus be processed in one 
"clock". State machines with a greater number of states and 
combinational logic that requires more than one clock to 
process must be studied further in an effort to see if "true" 
one-hots with inherent self-latching are still feasible. 

5.2. A More Complicated One-Hot 

In an effort to investigate one of the two concerns men- 
tioned above, we moved to implement another one-hot state 

machine in QCA. This was a controller for a last-in, first- 
out stack [2]. The controller has 5 states and hence 5 flip- 
flops, with each state's value depending on its neighbor(s) 
and itself (i.e. state y0 would therefore depend on y0 and 
yl ) .  The combinational logic that precedes each flip-flop 
consists of a network of three 2-input AND gates (whose 
inputs are control signals and state feedback) which in turn 
feed into a 3-input OR gate. However, two of the states re- 
quire the control signals' complements while another state 
(y l )  requires an additional level of  combinational logic (a 
2-input NOR gate for 2 input signals PUSH and POP). Fi- 
nally, a small amount of combinational logic uses output 
from several of  the state flip flops, plus control signals, to 
generate some final output signals. 

Efforts to generate a "circular" design analogous to the 
3-state one-hot for Sirnple 12 (i.e. a design where the clock- 
ing zone that contained state information directly abutted a 
clocking zone that required it as input to the combinational 
logic that would compute the next state) for the LIFO con- 
troller quickly proved to be infeasible. It became quickly 
apparent that there were simply too many state dependen- 
cies to generate a design with reasonably shaped clocking 
zones and wire lengths that would still function as a true 
one-hot. In other words, while such a "circular" design the- 
oretically could have been generated, it would never be im- 
plementable. 

6. Canonical State Machines Implementations 

The problem that arose in Sec. 5.2 was that QCA one- 
hot state machines with a significant number of states and 
excess combinational logic would not necessarily exhibit an 
important property of a logically correct one-hot state ma- 
chine• Namely, the bits representing individual states would 
not switch simultaneously. Because of this, we began to in- 
vestigate other ways in which a one-hot state machine could 
be implemented in QCA in which this most important prop- 
erty would still hold. 

Now, one way to ensure  that the QCA cells represent- 
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Figure 9. A revised QCA Simple 12 one-hot. 

ing state information for any one-hot state machine would 
switch simultaneously would simply be to place the cells 
representing each state in the same clocking zone. One 
manner in which such a design might be created would have 
the QCA wires representing each state stacked linearly in a 
given clocking zone. Thus, a different bit of data for each 
state would exist; and that fact that they were all in one 
clocking zone would cause all bits to change at the same 
time. 

6.1. An Updated Design 

This idea was tested with the LIFO controller. A QCA 
equivalent appears in Fig. 10. There are three important 
things to point out about this design. First, there is a comb- 
like structure that contains state information and feedback 
paths to the combinational logic that precedes each state. 
Second, the NOR gate (mentioned above) that precedes the 
second state's block of combinational logic is conspicu- 
ously missing from the QCA implementation. Third, in 
Sec. 4.2 we mentioned that long wires were undesirable. 
It can clearly be seen that in the clocking zones that follow 
the "latched" state information there are several very long 
wires. These three issues will be discussed below. 

As mentioned, the comb-like structure in this design con- 
tains state information and feedback paths to the combina- 
tional logic that determines each state. There are two im- 
portant things to point out about it. First, the "comb" is 
one large clocking zone. Thus, when it enters the switch 
clocking phase, all state information will be updated simul- 
taneously. Second, each feedback wire in this comb-shaped 
clocking zone is no longer than 25 cells long and a signifi- 
cant effort has been made to keep wire length at a minimum. 
And more importantly, feedback information arrives at the 
combinational logic preceding each state at the proper time 
- i.e. so that adjacent clocking zones are in the appropri- 
ate phases to propagate data from one to the other. Thus, 
this comb-like structure solves the two major problems that 
we encountered earlier. First, all bits are now guaranteed to 
switch simultaneously. Second, data arrives at the proper 

-~i~!~1=~'~ ~=~ ~ F ....... 

Figure 10. A QCA controller for a last-in, first- 
out stack. 

place at the proper time taking into account the inherent 
latching that the QCA clock enforces. 

Now, as mentioned, a NOR gate precedes the combina- 
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tional logic before state yl. It should also be noted that 
there are inverters that precede states yO and y4, but as was 
discussed in Sec. 2.2, it is possible in QCA to generate the 
complement of a signal without the use of an inverter. How- 
ever, the NORing of the PUSH and POP signal must still 
somehow be accomplished. An additional problem arises 
given the fact that if the NOR gate were to directly pre- 
cede the combinational logic before state yl, the combi- 
national logic would be spread over more than 4 clocking 
zones and thus could not be accomplished in one clock (see 
Fig. I0). Our solution to this problem lies in processing-in- 
wire. In particular, if this design were to actually be imple- 
mented, the PUSH and POP inputs would undoubtedly be 
coming from some other part of this design. There is also 
a high probability that they would have to traverse n clock- 
ing zones. Thus, as PUSH and POP should have definite 
values, there is no reason why they could not be "NORed" 
together "in transit" to the state machine. This way, output 
of the NOR gate could simply act as another input to the 
LIFO controller. This allows combinational logic to finish 
in one clock cycle and minimizes area. 

If one examines Fig. 10 it is easy to see the small amount 
of combinational logic that follows the 5 states. This deter- 
mines some final output signals needed for this particular 
design, depending on state y0 and y4 of the design. Further- 
more, in Fig. 10 there are several long wires are required to 
bring the information from states y0 and y4 up to the com- 
binational logic for processing. Now, given the nature of 
this design (i.e. that all states are positioned vertically in 
the same clocking zone), there is little that can be done to 
avoid this (except perhaps breaking up the wire into separate 
clocking zones as was done in the feedback path of Fig. 6 
- however, this will only complicate timing). While there is 
little that can and will be done about this problem with this 
design - it was simply laid out in an effort to test another 
means for implementing a more complicated true one-hot - 
it illustrates a problem that must and will be addressed in 
yet another design. Namely, the ordering of states within a 
latch can affect wire length if the state outputs are needed 
for other combinational logic. 

6.2. The  6-State  S imple  12 

The final design to be discussed in this paper will be a 
six state version of the Simple 12 microprocessor's state 
machine. The three states that have been added are EAGen 
(Effective Address Generation), no jump, and operand. As 
this design consists of up to 5 levels of combinational logic 
preceding flip-flops that hold state information, it is read- 
ily apparent that it will provide all of the "challenges" dis- 
cussed in previous subsections - namely that combinational 
logic will have to be spread out over more than 4 clocking 
zones/one clock, there is a large number of states, and there 
is complex wiring. 

The first attempt at translating this design attempted to 
make use of the idea discussed above. All of the cells rep- 
resenting state were placed in the same clocking zone in 
an order that represented their logical transition progres- 
sion. Thus, the stopped state was first, the iFetch state was 
second, followed by EAGen, No Jump, Operand, and Exe- 
cute. This led to a very complicated schematic with jumbled 
logic, routing paths, and long wires. Upon examination, we 
realized that the reason this happened centered around state 
dependencies. For instance, the iFetch state depends on the 
previous stopped, no jump, operand, execute, and EAGen 
states. As the iFetch state was second from the top in our 
preliminary design, it is easy to see that long wires would 
be required to provide the combinational logic preceding 
the iFetch state with previous state information. Now, the 
idea of having all state information represented in a single 
clocking zone is appealing as it guarantees the properties of 
a true one-hot. Thus, is there a way to minimize long wires 
and complicated routing paths so that it still might be used? 

Long wires and complicated routing paths arose in our 
preliminary design largely because of state dependencies. 
And given the arrangements of state information in a single 
latch, long wires were required to move this data to other 
parts of the design. This fact led us to ask the question of 
whether or not the physical locations of state information 
could be rearranged to solve these two problems? We began 
this investigation by representing the state information for 
the 6-state Simple 12 one-hot as a matrix. Essentially, the 
rows and columns of the matrix each represent one state of 
the one-hot. There is a one in the column of the matrix for 
a given state if it depends on the state for the corresponding 
row. Otherwise, a zero is placed in the matrix. An initial 
representation of such a matrix for the 6-state Simple 12 
appears in Fig. 1 la while that for the LIFO controller is in 
Fig. 1 lb. 

It should be readily apparent that the I s of Fig. 1 lb form 
a band down the diagonal of the matrix. It should also be 
noted that the states of the LIFO memory controller only 
depend upon their neighboring states (i.e. state y l  only de- 
pends on y0 and y2). Because of this property, wire length 
and routing paths for the actual state machine is reasonable. 
Thus, it would seem that rearranging the order of the states 
in the 6-state Simple 12 to place states that are dependent on 
one another closer together could help reduce wire length 
and routing complexity. 

This is in fact the case. Fig. 12 shows a second repre- 
sentation of state ordering for the 6-state Simple 12. Band- 
edness is represented both by shading and a number which 
is calculated simply by summing the distances of every one 
from the diagonal. Obviously a lower number is better. Fig. 
1 la shows a virtually non-existent band with a sum of 20. 
However, rearranging the order of the states (Fig. 12) indi- 
cates signs of a banded matrix and a lower sum of 15. Thus, 
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a. 

S = Stop ped 
I = iFetch 
E = Execute 
N = No Jump 
O = Operand 
X = Execute 

Sum from 
diagonal = 20 

yO 1 1 0 0 0 
yl 1 1 1 0 0 
y2 0 1 1 1 0 

y3 0 0 1 1 1  
y41 0 0 0 111 

b. 

Figure 11. A state matrix representation. 

a smaller/narrower band means easier wire routing. (And 
if the band cannot be minimized beyond a reasonable level, 
you can save performance by multi-threading.) This infor- 
mation was then used to create a QCA schematic for the 
6-state Simple 12 in Fig. 13. As one can see, the routing 
requirements for the state machine portion of the design are 
simple and short. 
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I 
E 0 
N 0 

Figure 

1 
0 
0 
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lo 

o Io 
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0 0 

1 0 
1 0 
1 0 0 
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o 

0K 
S = Stopped 

0 I = iFetch 
E = Execute 
N = No Jump 
O = Operand 
X = Execute 

Sum from 
diagonal = 15 

12. A new matrix representation. 

One issue concerning Fig. 13 still must be addressed: 
there are very long wires that make up the feedback paths 
of this design. However, for this particular one-hot state 
machine this simply canno t  be avoided. A comb-like struc- 
ture cannot be used because of combinational logic and state 
dependencies. Also, the combinational logic is spread out 
over more than one clock/4 clocking zones. Thus, there is 
naturally a larger physical distance between the output and 

• iiiiii iii iiiiii iiiiii i!!; iii;iiiii   iiiiiiEiiii iii 4 
Long Feedback Paths 

Figure 13. A QCA six-state Simple 12. 

the input of this design. The only possible solution to break- 
ing up long wires is to spread them out over more clocking 
zones. However, as discussed in Sec. 5.1 this can lead to 
incorrect timing. 

6.3. Relative Correctness  

To expound upon the above idea, we introduce the idea 
of "relative correctness". Relative correctness does not 
mean that output of a state machine would be almost cor- 
rect. Rather, it refers to the fact that the output of a state 
machine would be correct relative to the time of execution. 
This idea can best be explained with an example. 

Let us revisit the 3-state Simple 12 one-hot state ma- 
chine. A different representation/schematic of it appears in 
Fig. 14. Notice that the feedback path for the execu te  state 
is again spread out over 4 clocking zones/latches. Before, 
this would lead to incorrect clocking zone phase alignment. 
However, now, wire (and hence clocking zones/latches) 
have been added to the inputs of the design. Thus, it will 
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now take an extra clock cycle for the next bit of  input to the 
state machine to reach the combinational logic. This in turn 
will allow information about the last state to traverse the 
feedback path and arrive at the proper time when the clock- 
ing zones containing the necessary combinational logic are 
in the proper phases. Thus, long wires have been all but 
eliminated. 

: = : *. .. :: 
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Stopped State Bit/C;' 
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Figure 14. A "relatively correct" 3-state Sim- 
ple 12 one-hot state machine. 

The one negative is that it will now take an extra clock 
cycle to process information through this one-hot state ma- 
chine. However, as was discussed in Sec. 4.2 and will be 
discussed in Sec. 7 it may be possible to inherently multi- 
thread such a self-latching state machine. 

7 .  A P r i m i t i v e  A r c h i t e c t u r e  

The work detailed thus far essentially discusses the com- 
ponents of a QCA architecture individually. This section 
will briefly describe a potential organization for all of them. 
This potential QCA Simple 12 organization will not con- 
sider memory. However, every other significant component 
of an architecture will be represented. In particular, this or- 
ganization will consider the individual bits of  the dataflow, a 
state machine, logic that uses state information to generate 
relevant control signals, any necessary delays required for 
the control signals, and the feedback delay imposed by the 

fact that the control logic will require information about the 
state of the accumulator at the end of the computation - i.e. 
whether or not it has a 0 value or is negative for conditional 
jumps. Each of these components will be discussed below 
- particularly within the context of the inherent "delay" im- 
posed by the number of clocking zones required to hold the 
logic and/or wire for each. 

The first thing to consider are the bits of  the dataftow. 
By examining Fig. 6, we see that 8 clocking zones (2 
clocks) are required for a value to be calculated by the ALU. 
However, before any dataflow computation can occur, some 
amount of"preprocessing" must be done. Obviously, the 
appropriate state of the processor must be determined and 
control signals must be generated. A state machine for Sim- 
ple 12 was illustrated in Fig. 9. One can obviously see that 
4 clocking zones (i.e. one clock) must be traversed to deter- 
mine the state of the processor. Thus, before any dataftow 
processing can occur, a delay of 1 clock cycle must be in- 
curred. 

However, this is not the only delay to consider. Control 
signals must also be generated. While the control logic for 
the Simple 12 dataftow has not yet been designed in QCA, 
it has been synthesized• And it is estimated that the delay 
(call it B) will be at least 10 clock cycles. Thus, now no 
dataflow processing can begin until the delay caused by the 
state machine and control logic has been incurred. Addi- 
tionally, the control logic and the state machine for Simple 
12 require information about the state of the accumulator - 
i.e. if it is 0 or negative. This information will not become 
available until the last bit of  the Simple 12 dataflow finishes 
computing. Now, given that each bit of  the current dataflow 
uses a ripple carry adder, if the dataflow bits are appended 
linearly onto one another, there is a potentially huge feed- 
back path and associated delay D that must also be factored 
into the design. 

Despite the seemingly large number of delays that need 
to be considered/balanced a reasonable architecture for this 
processor is possible and a potential organization is illus- 
trated in Fig. 15. First, there will be no need to delay the 
control signals after they are generated. These can simply 
be "pipelined" in the same lane with the dataflow bits so 
that they arrive at the appropriate logic at the appropriate 
time. Also, ideally, the delays B and D should be made as 
close to one another as possible to avoid stalls. Finally, if 
necessary, the potentially long feedback path for the zero 
and negative flags can be altered/eliminated by "folding the 
dataflow over" onto itself. This way, the most significant 
bit of  the dataflow will be closer to the state machine and 
control logic. In fact, it can even be manipulated to help 
equalize the B and D delays. 

Finally, there are two other things worth mentioning. 
First, the delays for the control logic (B), the zero and neg- 
ative flag feedback paths (D), the state machine (C), and 
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Figure 15. A potential QCA Simple 12 archi- 
tecture. 

the dataflow bits (A per bit) will affect the degree of multi- 
threading that is possible. Essentially, the number of possi- 
ble threads will be equal to at most the number of clocking 
zones modulo 4 in the longest closed loop comprised by the 
delays A, B, C, and D in Fig. 15. Second, future work will 
study the counterflow pipeline processor architecture as a 
means for future QCA designs. Specifically, this architec- 
ture has the potential for geometric regularity in processor 
chip layout and emphasizes local control to avoid complex 
pipeline stall signals - exactly what is needed in QCA [12]. 

8. Conclusions and Future Work 

This work has succeeded in illustrating that with an in- 
herently self-latched/self-clocked technology, ideas of lay- 
out and timing are more closely tied than ever before. Now, 
an inefficient layout does not just result in longer clock 
cycles - it introduces more clock cycles to a circuit path. 
However, despite this and other potential problems, oppor- 
tunities such as "free" multithreading and processing-in- 
wire offer the potential to make up for delays that a self- 
latching device can create. In fact, in cases where combina- 
tional logic, etc. can fit into four clocking zones (and hence 
one clock), multi-threading and processing-in-wire can ex- 
ploit the characteristics of a self-latching device. Addition- 
ally, techniques from systolic arrays such as retiming may 
allow automated rebalancing. Searching for and exploring 
such opportunities will be an extensive area of future work. 
Memory will also be studied. Placing these developments in 

the context of a potential three orders of magnitude density 
gain over the end of the CMOS curve equivalent certainly 
indicate that both QCA and other self-latching technologies 
deserve further study. 

Finally, the authors would like to acknowledge the Na- 
tional Science Foundation and the Notre Dame Center for 
Nanoelectronics. 
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