
Exploring and Exploiting Wire-Level Pipelining in Emerging Technologies

Michael Thaddeus Niemier
University of Notre Dame

Dept. of Computer Science and Engineering
Notre Dame, IN 46556, USA

mniemier@nd.edu

Peter M. Kogge
University of Notre Dame

Dept. of Computer Science and Engineering
Notre Dame, IN 46556, USA

kogge@wizard.cse.nd.edu

Abstract

Pipelining is a technique that has long since been con-
sidered fimdamental by computer architects. However, the
worm o f nanoelectronics is pushing the idea o f pipelining to
new and lower levels - particularly the device level. How
this qffects circuits and the relationship between their tim-
ing, architecture, and design will be studied in the con-
text o f an inherently se(f-latching nanotechnology termed
Quantum Celhdar Automata (QCA). Results indicate that
this nanotechnology offers the potential .for "free" multi-
threading and "processing-in-wire ". All o f this could be
accomplished in a technology that could be almost three
orders' o f magnitude denser than an equivalent design fab-
ricated in a process at the end o f the CMOS curve,

1. Introduction

Pipelining as a technique has been with us every day for
almost 40 years. It has been designed into our basic circuits,
and governed the way we partition larger logic functions.
Technology and market forces have pushed clock speeds
to realms where speed of light dictates smaller and smaller
amounts of logic per stage. More and more we even rely on
transitory storage effects (as in wave pipelining) to push the
cycle time to lower and lower limits. This in turn has forced
us to introduce new instruction and architectural level ar-
tifacts such as vectors, systolic arrays, and more recently
multi-threading. As we look toward the near future, we see
this trend continuing, especially as we approach the sup-
posed end of CMOS at 0.05 microns (50 nanometers).

When we look at alternative technologies, we often see
this same phenomena of shrinking stage size appearing at
the basic technology level. Older technologies such as
Charge Coupled Devices and newer self-latching technolo-
gies such as Josephson junctions and Rapid Flux Single
Quantum devices bring pipelining down to the device level.
To date, the unique application niches and difficult imple-
mentation environments of such technologies has discour-
aged researchers from seriously considering their effects on

design. However, it may be time to reconsider the inter-
action between timing, architecture, and design. The driv=
ing force is the rapidly expanding world of nanoelectronics,
where devices as small as a molecule may be feasible.

This paper is the outgrowth of design work with one such
technology just recently demonstrated, but for which there
is strong evidence that room temperature systems made
from 2 nm devices may only be a few years away. This
technology, termed Quantum Cellular Automata (QCA), is
at its base, self-latching, where information is stored at each
device by the positions of single electrons, and logic func-
tions are performed not by electron flow but by Coulombic
interactions. The result is a technology where even the in-
terconnect is made out of the same self-latching devices as
the logic functions, bringing "pipelining" down well below
the level of even a simple logic gate.

Thus, while focused on QCAs, our goal in this paper is to

reopen the topic of pipelining at an extremely low level, and
begin to explore how what today are high level techniques -
such as multi-threading - may in fact in the future become

part and parcel of micro-organizational levels of design. To
support this, Sec. 2 first reviews the QCA technology to in-
troduce where this ultra low level pipelining originates. Sec.
3 discusses the concept of a "clock" in such a context. Sec.
4 provides a motivational example of what the technology
may mean in terms of comparison at the dataflow level to
the CMOS roadmap. Sec. 5 then explores what is perhaps
a more fundamental issue - what does such a technology
mean to the design of the state machines that control such
data flows? Sec. 6 introduces a canonical approach to their
design and gives examples. Sec. 7 will describe a primitive
architecture. Sec. 8 concludes with a discussion of what are
the most important near term research issues.

2. The QCA Device, Circuits, and Experiments

2.1. The Device

A high-level diagram of a four-dot QCA cell appears in
Fig. 1. It consists of four quantum dots that are positioned

166
1063-6897/01 $10.00 © 2001 IEEE

to form a square. (Note: Future QCA cells have the po-
tential to shrink dots to regions within specially designed
molecules). Exactly two mobile electrons are loaded in the
cell and can move to different quantum dots in the QCA
cell by means of electron tunneling. Coulombic repulsion
will cause the electrons to occupy only the comers of the
QCA cell resulting in two specific polarizations (see Fig. 1).
These polarizations represent the places where the electrons
are as far apart from one another as possible (which hence
minimizes the Coulombic repulsion between them) without
escaping the confines of the cell. Electron tunneling is as-
sumed to be completely controllable by potential barriers
that can be raised and lowered between adjacent QCA cells
by means of capacitive plates [14].

P = + I P = - I
(Binar y 1) (Binar y 0)

Figure 1. QCA cell polarizations.

2.2. C i rcu i t s

The fundamental QCA logical circuit is the three-input
majority gate (Fig. 2) [14]. Computation is performed by
driving the device cell (cell 4 in the figure) to its lowest en-
ergy state. This occurs when it assumes the polarization of
the majority of the three input cells. The device cell will
always assume the majority polarization because in this po-
larization, electron repulsion between the electrons in the
three input cells and the device cell will be at a minimum.

Cell 4 (device cell)

Cell 1 (input) ~] : .';,I / Cell 5 (output)

Cell 2 (input) ~ 1 - - Cell 3 (input)

Figure 2. The fundamental QCA logical de-
vice.

Fig. 3 illustrates a representation of what is called a "90-
degree wire". Assume that the middle cell in Fig. 3 was

originally in a polarization opposite of that of the first cell.
Thus, if the first cell represents an input cell, the electrons
would move as illustrated by the arrows in the figure to take
on a polarization that minimizes the Coulombic repulsion
between the neighboring cells [14].

State Propagation Direction

Figure 3. Interaction between 2 cells.

A QCA wire can also be comprised of cells oriented at
45-degrees [14]. With the 45-degree orientation, as the bi-
nary value propagates down the length of the wire, it alter-
nates between polarization P = +1 and polarization P = -1.
A complemented or uncomplemented value can be ripped
offthis wire by placing a "ripper cell" at the proper location
and considering the direction of signal propagation (this is
determined in part by electron position and will not be elab-
orated upon here) [14], [6]. The significant advantage of
the 45-degree wire is that both a transmitted value and its
complement can be obtained from a wire without the use of
an explicit inverter! Also, QCA cells do not have to be in
a perfectly straight line to transmit binary signals correctly.
Cells with a 90-degree orientation can be off-center, and a
binary value will still be transmitted successfully. Finally,
QCA wires possess the unique property that they are able to
cross in the plane without the destruction of the value being
transmitted on either wire. However, this property holds
only if the QCA wires are of different orientations (i.e. a
45-degree wire crossing a 90-degree wire) [14].

2.3. E x p e r i m e n t s

The previous two subsections have described how a the-
oretical QCA device and theoretical QCA circuits would
function. It is this theory on which many of the designs for
QCA dataflows and state machines are based - and from
which we will be able to comment on the effects of a self-
latching technology on "conventional" dataflows and state
machines. However, it is imperative to emphasize that QCA
has moved beyond the realm of theory as actual devices and
circuits have been constructed.

For instance, QCA cells made of metal islands with tun-
nel junctions have been fabricated. Cell operation has been
demonstrated at very low temperatures (70 mK) [7], [11]. 3-
input majority gate logic [1], [1 I], a QCA wire [8], clocked
QCA cells [9], single-bit memory [10], and power gain
have also all been demonstrated. Finally, work is currently
underway to raise the cell operating temperature to 20K -
70K. In addition to work with "metal dots", researchers are
also working to build QCA cells using chemical molecules

167

[3]. The benefit of chemical molecules is two fold. First,
their operating temperature would be much closer to room
temperature. Second, a QCA circuit built from chemical
molecules should lead to an almost two-order of magnitude
density increase over an equivalent circuit built with metal
dots. Currently, several promising candidate molecules that
could function at room temperature exist.

3. T h e C l o c k

Unlike the standard CMOS clock, the QCA clock has
more than just a high and a low phase, but rather, four
phases. Also, individual QCA cells are not clocked/timed
separately. The support required to clock each cell individ-
ually could easily overwhelm the simplification won by the
inherent local interconnectivity of the QCA architecture [4].
However, an array of QCA cells can be divided into zones
that offer the advantage of multi-phase clocking and group
pipelining. For each zone, a single potential modulates the
inter-dot barriers in all of the cells [4].

This clocking scheme allows one zone of QCA cells to
perform a certain calculation, have its state frozen by the
raising of its interdot barriers, and have the output act as the
input to a successor zone (i.e. clocking zone 1 can act as in-
put to clocking zone 2). It is this mechanism that provides
the inherent self-latching associated with QCA. During the
calculation phase, the successor zone is kept in an unpolar-
ized state so it does not influence the calculation. Each of
the four clocking zones corresponds to one of four differ-
ent clocking phases. Physically neighboring zones concur-
rently receive temporally neighboring clocking phases [4].

Finally, it is important to stress what exactly is meant by
the QCA "clock". As mentioned above, the QCA clock has
more than a high and a low phase. Also, it is not a "sig-
nal" with four different phases. Rather, the clock changes
phase when the potential barriers that affect a group of QCA
cells (referred to as a clocking zone) are raised or lowered
or remain raised or lowered (thus accounting for the four
clock phases). Furthermore, all of the cells within a clock-
ing zone obviously are in the same phase. One clock cycle
occurs when a given clocking zone cycles through the four
different clock phases. What exactly the "clock" does is to
trap one zone of cells in a specific polarization which in turn
allows other cells in neighboring zones to make appropriate
changes.

During the first clock phase, the switch phase, QCA cells
begin unpolarized and their interdot potential barriers are
low. The barriers are then raised during this phase and the
QCA cells become polarized according to the state of their
driver (i.e. their input cell). It is in this clock phase that the
actual computation occurs. By the end of this clock phase,
barriers are high enough to suppress any electron tunneling
and cell states are fixed. During the second clock phase, the
holdphase, barriers are held high so the outputs of the sub-

array can be used as inputs to the next stage. In the third
clock phase, the release phase, barriers are lowered and
cells are allowed to relax to an unpolarized state. Finally,
during the fourth clock phase, the relax phase, cell barriers
remain lowered and cells remain in an unpolarized state [4].
As can be seen from the example in Fig. 4, clocking zones
clearly "latch" data which allows it to be transferred from
one clocking zone to another.

In conclusion, it should be mentioned that clocking sig-
nals can be distributed by metal lines underlying the array,
with a feature size much larger than the cells. This kind
of "hot clock" acts as an energy source to replace the un-
avoidable energy lost to the environment through dissipa-
tive events. Clocked QCA cells exhibit power gain, essen-
tial to restoring logic levels in real circuits. Also, a brief
word should be said about clock rate. In the design in Fig.
6, the most common wire length consists of 5 cells while
the longest wire consists of 51 cells. Assuming a poten-
tial device switching speed of 10-1~ s (resulting in a power
dissipation of approximately 10-lo W per device) [13], the
five cell wire could be clocked at a rate of 2 THz while the
51 cell wire could be clocked at a rate of about 20 GHz. (Of
course the clock rate for the whole design would obviously
have to be the 20 GHz rate).

4. Motivational Examples and a QCA Dataflow

This section will show how inherent latching or "pipelin-
ing" at the device level can affect an actual design. It will
begin by discussing methods designed to counter and ex-
ploit the need for implicit latching, and will end with full
designs that have been simulated. These designs will then
be analyzed to show both the strengths and weaknesses of
pipelining at the device level.

4.1. Floorplanning

As was seen in Sec. 3 it is the nature of the clock that
leads to the inherent self-latching in QCA. In particular, Fig.
4 illustrates that even a simple 5 cell wire can be pipelined.
Given this constraint, and before attempting any large scale
designs, we felt the need to develop methods to success-
fully factor self-latching out of the "equation" of a design
and furthermore find a means to exploit it [5]. Thus, a study
of floorplanning was performed in the context of a micro-
processor called Simple 12 (Fig. 6). Our goal was to design
it entirely in QCA. Again, although simple, it exhibits al-
most all of the attributes of a more complex design. While
many interesting results arose from this study [5], two were
most fundamental (Fig. 5). The first was a floorplan that
allows a feedback path to be generated given the constraints
of the QCA clock.

The shaded areas in Fig. 5a represent clocking zones
each in a specific clock phase. The white arrows show the
direction of information propagation through the logic in

168

. ~ i ii~ ~ ' DDD E!
a . i

Switch Relax Release i Hold Switch

m RR
I Ho!d Switch Relax Release Hold

i N
~ Release Hold Switch Relax Release

I RelaXswi~tc h ~ ~ ' ; l ~ H ° l d Switch ! R e l a

Relax i H61d "

. . . .

Cloc king Cloc king Cloc king Cioc king Cloc king
Zone1 i Zone2 Zone3 Zone4 Zone5

b.

Figure 4. Part (a.) shows a physical 5-cell
wire while part (b.) shows a value propagat-
ing down the wire.

each zone. The numbers in each zone reflect the relative
phase of the clock in that zone so that at time i a zone la-
beledj is in phase (i + j) mod 4. Assume for example that
the bottom "trapezoid" is computational logic. Data could
be fed back to the input of the top trapezoid assumed to be
in clocking zone 0 at the far left after "switching" to the
computed value in clocking zone 0 at the far right. It can
easily be seen that the clocking phases are traversed in the
proper order. Also, a signal can start at a given point and
an in-phase path exists to return to that point - the defini-
tion of feedback. The second floorplan result came from
questioning whether or not the clocking zone arrangement
of Fig. 5a could be extended to allow efficient and easy 2D
wire routing. Thus, could the clocking zones be arranged
or tiled so that there are multiple "wire" loops and "wire"
crossings and still allow feedback? Such a pattern is illus-
trated in Fig. 5b. Thus, these general floorplans provide a
means for the easy routing of wire and circuit components

a.

m
|

2
2

b°

=Figure 5. Two floorplans with clocking zones.

given the overhead of self-latching.

4.2. Comple te Designs

The floorplans discussed above provided the foundation
for the design of the Simple 12 dataflow. Simple 12 operates
on 12-bit pieces of data and such a design was constructed,
measured, simulated, and even fabricated in CMOS [6]. For
clarity, one bit of that design appears in Fig. 6 with each
subcomponent matched up with the Simple 12 dataflow. As
discussed below, Fig. 6 allows many tasks that are "archi-
tecturally desirable" to be done "for free". This is by-in-
large due to inherent self-latching. However, there is also
a minor problem with this design that must be and is taken
into account in future work.

By far, the two most interesting architectural "innova-
tions" of an inherently self-latching technology at the gate
level are first, something that we call "processing-in-wire"
and second, the ability to multi-thread a circuit for "free".

To understand how processing-in-wire works, Fig. 7
shows part of the Simple 12 logic unit plus intermediate
signal generation logic that zeros an ALU input so it can
perform a specific function. This "Zero A" logic is placed
"directly after" the output of the ALU - or more specifi-
cally, above it in the "feedback trapezoid". Thus, the A in-
put to the ALU is zeroed on the way back to the input of the
ALU. Essentially, useful computation is being performed
"in wire" for free! Why is it free? Well, even if there was
no logic in the feedback path from the output of the AEU
back to the input of the Simple 12 dataflow, a wire would be
spread out over the clocking zones back to the input. Thus,
whether or not computation is done in these clocking zones,
the same n clocking zones still must be traversed.

169

Data Bus

Add

f +

Mux

. [. :,

I I
I I
i i
I I
I Memory I
I I

I I

J

/ /

S i g n a I G e n e r a t i o n = ~ ~ :' : ':t ~ ° + o~1

, =:i: :i:: : = = = @ ~ 5 ,

"nit u::=.=.=~ ' ? [. - , . ! . ~ u a a l ~ a

• : . - - c = . . ~.===+=:z .. " " ~ ' . ' u u . . ~ u a E:

~======J=
_=~==~! , .?

!

Figure 6. A complete 1-bit dataflow of the QCA Simple 12.

Now, what about the notion of"free" multithreading?
Before answering this question it is best to point out a
"problem" in Fig. 6 - namely the longest path from input-
to-input is spread out over 16 clocking zones. Thus, given
that a bit of data can move through four clocking zones
during one clock cycle, it will take four clock cycles for
one very simple operation to finish. While, this would ap-
pear to be bad, as it turns out, the inherent self-latching
of QCA should allow multiple computations/instructions to
execute simultaneously. In Fig. 6, potential wave-fronts
or "threads" are represented by *'s in respective clocking

zones. Essentially, each shaded region can represent a dif-
ferent possible ongoing instruction. Thus, by examining
Fig. 6 one can see that it is possible to have 4 computa-
tions/instructions executing simultaneously. Plus, the in-
herent self-latching of QCA allows the multithreading to be
done "free" without explicit registers, latches, or timing.

There is one additional "benefit" ofQCA - its size. Area
measurements were taken for the 12-bit QCA design and
the equivalent area was determined from an actual MOSIS
CMOS implementation of Simple 12. (Note: it should be
stressed that both of these designs were hand-crafted. For

170

E

Feedback - i = a ~

-zz g . ~ "
~q

r -

g

These wires connect to
form feedback path --

Figure 7. An example of "processing in wire".

the CMOS design, each transistor in the dataflow was laid
out by hand. Similarly, in the QCA version, each QCA cell
was laid out by hand. This was done in an effort to create
the densest possible design.) It was determined that QCA
offers at least almost an order of magnitude area density
increase over the equivalent CMOS design when scaled to
0.05 micron. With molecular dots, potential density gains
approach three orders of magnitude [6]!

It is now imperative that we point out a potential "prob-
lem" with Fig. 6. Examine the two vertical wires to the
left of the "Intermediate ALU Signal Generation Logic"•
These two wires are necessarily long (as, for example, out-
put from the accumulator must be sent to the adder unit
which is at the "bottom" of this design). When generat-
ing designs in QCA, a significant effort should be made to
keep a length of a wire within a given clocking zone to a
minimum. There are two very important reasons to do this.
First, the probability that a QCA cell will switch success-
fully decreases in proportion to the distance a particular cell
is from a frozen input at the beginning of the "wire". Thus,
simply, for shorter wires there is a higher probability that
all cells making up the wire will switch successfully [4].
This should also explain why in Fig. 6 one could not simply
have one long wire in one clocking zone that constituted the
feedback path and instead that wire must be broken up over
multiple clocking zones (which processing-in-wire then ex-
ploits). Additionally, wire length will determine the clock
rate - the rate at which clocking zones can change clock
phases. This is so because, before a given zone can change
phase, every cell within the zone must make the appropriate

polarization changes. Obviously, the longest path dictates
the time for a signal to propagate down the length of it.
As one will see in the next section, minimizing wire length
and exploiting inherent self-latching will be the two driving
forces behind additional designs.

5. One-Hot State Machines

Given that a dataflow for a self-latching architecture has
been constructed, we concluded that the next logical step
in additional circuit development would be to generate con-
trol logic/state machines for the dataflow in Sec. 4 and to
study the effects of a self-latching architecture on state ma-
chines in general. Thus, the work discussed in this section
will begin with the development of the one-hot state ma-
chine that controls the state transitions for Simple 12. Be-
fore discussing actual designs, it is important to point out
two things• First, a Simple 12 instruction can be in one of
three states - stopped, iFetch (instruction fetch), and exe-
cute. Thus, a Simple 12 one-hot will obviously need three
flip-fops. The second item deals with the nature of one-hot
state machines: for each state, Si, the corresponding state
variable yi is set to 1, or is "hot", while all other flip-flops
are set to 0. These transitions should take place simuha-
neously during the same clock cycle. It is this notion of
simultaneous switching that will define much of our work
with state machines in QCA.

5.1. The Simple 12 O n e - H o t

A schematic of the three state Simple 12 one-hot appears
in Fig. 8, with one flip-flop for each state. Now, when this
design is implemented in QCA, there is no n e e d for an ex-
plicit flip-flop circuit. Why? Clocking zones will make the
QCA cells act as inherent latches, controlled by clocking
zones changing clock phases. Thus, state information will
be represented in three different clocking zones with each
clocking zone representing a bit of"state"• A first cut of
this machine in QCA appears on the right of Fig. 8.

As one can see, three clocking zones hold the computed
information that would be stored in three flip-flops. Note
that there are two execute feedback paths. This wire was du-
plicated because both the stopped state and the iFetch state
depend on execute state information. Also wire routing was
actually simplified by having the execute state information
branch in two directions. It is actually these two "wires"
that are the most important feature of this particular de-
sign. Like the feedback path for the QCA dataflow, they
are spread over 4 clocking zones in an effort to break-up
and eliminate long wires. However, unlike the QCA Simple
12 dataflow, this technique will not work tbr this (or most)
one-hot state machines. Why is this? The problem centers
around the next state of this one-hot state machine depend-
ing on information from the previous state• Assume for ex-
ample that a computation has occurred in Fig. 8 during one

171

/ 1 1 -

+ -~t~__' L" • :. :__: _::'::! "\ ~Stoppecl State B i t _ ~. i 1 ~ . ~/ I' l l1 ~ . .:;:~¢:E ~ . ~ l ie

Figure 8. A first-cut of the QCA Simple 12 one-hot.

clock cycle. Thus, data has moved from the inputs to the
clocking zones labeled "stopped", "iFetch", and "execute".
In theory, a new set of data bits could now enter the inputs
of the design so that another state transition calculation can
begin. And as mentioned, this state transition calculation
requires information about the previous state. However, a
problem arises given the fact that the feedback paths con-
taining information about the execu te state will take another
clock cycle to arrive back at the inputs (because the wire is
divided up over four clocking zones!). This will only lead
to erroneous state data!

Now, for this simple design, the problem is not that dif-
ficult to correct. A revised design appears in Fig. 9. As
one can see, several clocking zones have been eliminated in
the feedback paths that provide information about the pre-
vious execu te state. Now, new data can enter this state ma-
chine after one clock cycle occurs and the correct data from
feedback paths will arrive at the same time. While the wire
length has increased in the clocking zone that contains in-
formation about the iFetch state, the longest wires in this
zone are 15 and 16 cells, which is not unreasonable.

However, the two important things to think about when
considering this corrected design do not involve wire length
at all. But rather that first, a "true" one-hot design (i.e. one
where all state bits switch simultaneously) is possible in a
technology with inherent latching. And second, that this
true one-hot design has been constructed for a s i mp l e state
machine with only 3 states. Admittedly however, the com-
binational logic the precedes each state is minimal and can
thus fit in 4 clocking zones - and thus be processed in one
"clock". State machines with a greater number of states and
combinational logic that requires more than one clock to
process must be studied further in an effort to see if "true"
one-hots with inherent self-latching are still feasible.

5.2. A More Complicated One-Hot

In an effort to investigate one of the two concerns men-
tioned above, we moved to implement another one-hot state

machine in QCA. This was a controller for a last-in, first-
out stack [2]. The controller has 5 states and hence 5 flip-
flops, with each state's value depending on its neighbor(s)
and itself (i.e. state y0 would therefore depend on y0 and
yl) . The combinational logic that precedes each flip-flop
consists of a network of three 2-input AND gates (whose
inputs are control signals and state feedback) which in turn
feed into a 3-input OR gate. However, two of the states re-
quire the control signals' complements while another state
(y l) requires an additional level of combinational logic (a
2-input NOR gate for 2 input signals PUSH and POP). Fi-
nally, a small amount of combinational logic uses output
from several of the state flip flops, plus control signals, to
generate some final output signals.

Efforts to generate a "circular" design analogous to the
3-state one-hot for Sirnple 12 (i.e. a design where the clock-
ing zone that contained state information directly abutted a
clocking zone that required it as input to the combinational
logic that would compute the next state) for the LIFO con-
troller quickly proved to be infeasible. It became quickly
apparent that there were simply too many state dependen-
cies to generate a design with reasonably shaped clocking
zones and wire lengths that would still function as a true
one-hot. In other words, while such a "circular" design the-
oretically could have been generated, it would never be im-
plementable.

6. Canonical State Machines Implementations

The problem that arose in Sec. 5.2 was that QCA one-
hot state machines with a significant number of states and
excess combinational logic would not necessarily exhibit an
important property of a logically correct one-hot state ma-
chine• Namely, the bits representing individual states would
not switch simultaneously. Because of this, we began to in-
vestigate other ways in which a one-hot state machine could
be implemented in QCA in which this most important prop-
erty would still hold.

Now, one way to ensure that the QCA cells represent-

172

r >~ '~: '~ Sta ~ ~ , "~ , ~ .~--

• i Fe t ch ; = ! = = s (
. I L - - - . . _ - - , ,ol %

• ~ - - ~ - ~ ; " F ' i :~:' ~T~

" _ _ ~ -~/ . " , , ~ ~ ! ; ! I]~ i ~ ' ~

• ' " i Fe t ch S ta te B i t /CZ
....... " ~ i ~ , ~'~ !~ ~i~, ~i (.

Figure 9. A revised QCA Simple 12 one-hot.

ing state information for any one-hot state machine would
switch simultaneously would simply be to place the cells
representing each state in the same clocking zone. One
manner in which such a design might be created would have
the QCA wires representing each state stacked linearly in a
given clocking zone. Thus, a different bit of data for each
state would exist; and that fact that they were all in one
clocking zone would cause all bits to change at the same
time.

6.1. An Updated Design

This idea was tested with the LIFO controller. A QCA
equivalent appears in Fig. 10. There are three important
things to point out about this design. First, there is a comb-
like structure that contains state information and feedback
paths to the combinational logic that precedes each state.
Second, the NOR gate (mentioned above) that precedes the
second state's block of combinational logic is conspicu-
ously missing from the QCA implementation. Third, in
Sec. 4.2 we mentioned that long wires were undesirable.
It can clearly be seen that in the clocking zones that follow
the "latched" state information there are several very long
wires. These three issues will be discussed below.

As mentioned, the comb-like structure in this design con-
tains state information and feedback paths to the combina-
tional logic that determines each state. There are two im-
portant things to point out about it. First, the "comb" is
one large clocking zone. Thus, when it enters the switch
clocking phase, all state information will be updated simul-
taneously. Second, each feedback wire in this comb-shaped
clocking zone is no longer than 25 cells long and a signifi-
cant effort has been made to keep wire length at a minimum.
And more importantly, feedback information arrives at the
combinational logic preceding each state at the proper time
- i.e. so that adjacent clocking zones are in the appropri-
ate phases to propagate data from one to the other. Thus,
this comb-like structure solves the two major problems that
we encountered earlier. First, all bits are now guaranteed to
switch simultaneously. Second, data arrives at the proper

-~i~!~1=~'~ ~=~ ~ F

Figure 10. A QCA controller for a last-in, first-
out stack.

place at the proper time taking into account the inherent
latching that the QCA clock enforces.

Now, as mentioned, a NOR gate precedes the combina-

173

tional logic before state yl. It should also be noted that
there are inverters that precede states yO and y4, but as was
discussed in Sec. 2.2, it is possible in QCA to generate the
complement of a signal without the use of an inverter. How-
ever, the NORing of the PUSH and POP signal must still
somehow be accomplished. An additional problem arises
given the fact that if the NOR gate were to directly pre-
cede the combinational logic before state yl, the combi-
national logic would be spread over more than 4 clocking
zones and thus could not be accomplished in one clock (see
Fig. I0). Our solution to this problem lies in processing-in-
wire. In particular, if this design were to actually be imple-
mented, the PUSH and POP inputs would undoubtedly be
coming from some other part of this design. There is also
a high probability that they would have to traverse n clock-
ing zones. Thus, as PUSH and POP should have definite
values, there is no reason why they could not be "NORed"
together "in transit" to the state machine. This way, output
of the NOR gate could simply act as another input to the
LIFO controller. This allows combinational logic to finish
in one clock cycle and minimizes area.

If one examines Fig. 10 it is easy to see the small amount
of combinational logic that follows the 5 states. This deter-
mines some final output signals needed for this particular
design, depending on state y0 and y4 of the design. Further-
more, in Fig. 10 there are several long wires are required to
bring the information from states y0 and y4 up to the com-
binational logic for processing. Now, given the nature of
this design (i.e. that all states are positioned vertically in
the same clocking zone), there is little that can be done to
avoid this (except perhaps breaking up the wire into separate
clocking zones as was done in the feedback path of Fig. 6
- however, this will only complicate timing). While there is
little that can and will be done about this problem with this
design - it was simply laid out in an effort to test another
means for implementing a more complicated true one-hot -
it illustrates a problem that must and will be addressed in
yet another design. Namely, the ordering of states within a
latch can affect wire length if the state outputs are needed
for other combinational logic.

6.2. The 6-State S imple 12

The final design to be discussed in this paper will be a
six state version of the Simple 12 microprocessor's state
machine. The three states that have been added are EAGen
(Effective Address Generation), no jump, and operand. As
this design consists of up to 5 levels of combinational logic
preceding flip-flops that hold state information, it is read-
ily apparent that it will provide all of the "challenges" dis-
cussed in previous subsections - namely that combinational
logic will have to be spread out over more than 4 clocking
zones/one clock, there is a large number of states, and there
is complex wiring.

The first attempt at translating this design attempted to
make use of the idea discussed above. All of the cells rep-
resenting state were placed in the same clocking zone in
an order that represented their logical transition progres-
sion. Thus, the stopped state was first, the iFetch state was
second, followed by EAGen, No Jump, Operand, and Exe-
cute. This led to a very complicated schematic with jumbled
logic, routing paths, and long wires. Upon examination, we
realized that the reason this happened centered around state
dependencies. For instance, the iFetch state depends on the
previous stopped, no jump, operand, execute, and EAGen
states. As the iFetch state was second from the top in our
preliminary design, it is easy to see that long wires would
be required to provide the combinational logic preceding
the iFetch state with previous state information. Now, the
idea of having all state information represented in a single
clocking zone is appealing as it guarantees the properties of
a true one-hot. Thus, is there a way to minimize long wires
and complicated routing paths so that it still might be used?

Long wires and complicated routing paths arose in our
preliminary design largely because of state dependencies.
And given the arrangements of state information in a single
latch, long wires were required to move this data to other
parts of the design. This fact led us to ask the question of
whether or not the physical locations of state information
could be rearranged to solve these two problems? We began
this investigation by representing the state information for
the 6-state Simple 12 one-hot as a matrix. Essentially, the
rows and columns of the matrix each represent one state of
the one-hot. There is a one in the column of the matrix for
a given state if it depends on the state for the corresponding
row. Otherwise, a zero is placed in the matrix. An initial
representation of such a matrix for the 6-state Simple 12
appears in Fig. 1 la while that for the LIFO controller is in
Fig. 1 lb.

It should be readily apparent that the I s of Fig. 1 lb form
a band down the diagonal of the matrix. It should also be
noted that the states of the LIFO memory controller only
depend upon their neighboring states (i.e. state y l only de-
pends on y0 and y2). Because of this property, wire length
and routing paths for the actual state machine is reasonable.
Thus, it would seem that rearranging the order of the states
in the 6-state Simple 12 to place states that are dependent on
one another closer together could help reduce wire length
and routing complexity.

This is in fact the case. Fig. 12 shows a second repre-
sentation of state ordering for the 6-state Simple 12. Band-
edness is represented both by shading and a number which
is calculated simply by summing the distances of every one
from the diagonal. Obviously a lower number is better. Fig.
1 la shows a virtually non-existent band with a sum of 20.
However, rearranging the order of the states (Fig. 12) indi-
cates signs of a banded matrix and a lower sum of 15. Thus,

174

S ' % i 0 0 0 0
I 0 ' O , 1 0 0 0
E 1,!Q.,1L0 0
N 0 1 0 "Q 0
o o 1 o o 'o ,1
X 1 0 0 0

a.

S = Stop ped
I = iFetch
E = Execute
N = No Jump
O = Operand
X = Execute

Sum from
diagonal = 20

yO 1 1 0 0 0
yl 1 1 1 0 0
y2 0 1 1 1 0

y3 0 0 1 1 1
y41 0 0 0 111

b.

Figure 11. A state matrix representation.

a smaller/narrower band means easier wire routing. (And
if the band cannot be minimized beyond a reasonable level,
you can save performance by multi-threading.) This infor-
mation was then used to create a QCA schematic for the
6-state Simple 12 in Fig. 13. As one can see, the routing
requirements for the state machine portion of the design are
simple and short.

S
X
O
I
E 0
N 0

Figure

1
0
0

0 0
lo

o Io
o [1
0 0

1 0
1 0
1 0 0
"o, 1 o

o

0K
S = Stopped

0 I = iFetch
E = Execute
N = No Jump
O = Operand
X = Execute

Sum from
diagonal = 15

12. A new matrix representation.

One issue concerning Fig. 13 still must be addressed:
there are very long wires that make up the feedback paths
of this design. However, for this particular one-hot state
machine this simply canno t be avoided. A comb-like struc-
ture cannot be used because of combinational logic and state
dependencies. Also, the combinational logic is spread out
over more than one clock/4 clocking zones. Thus, there is
naturally a larger physical distance between the output and

• iiiiii iii iiiiii iiiiii i!!; iii;iiiii iiiiiiEiiii iii 4
Long Feedback Paths

Figure 13. A QCA six-state Simple 12.

the input of this design. The only possible solution to break-
ing up long wires is to spread them out over more clocking
zones. However, as discussed in Sec. 5.1 this can lead to
incorrect timing.

6.3. Relative Correctness

To expound upon the above idea, we introduce the idea
of "relative correctness". Relative correctness does not
mean that output of a state machine would be almost cor-
rect. Rather, it refers to the fact that the output of a state
machine would be correct relative to the time of execution.
This idea can best be explained with an example.

Let us revisit the 3-state Simple 12 one-hot state ma-
chine. A different representation/schematic of it appears in
Fig. 14. Notice that the feedback path for the execu te state
is again spread out over 4 clocking zones/latches. Before,
this would lead to incorrect clocking zone phase alignment.
However, now, wire (and hence clocking zones/latches)
have been added to the inputs of the design. Thus, it will

175

now take an extra clock cycle for the next bit of input to the
state machine to reach the combinational logic. This in turn
will allow information about the last state to traverse the
feedback path and arrive at the proper time when the clock-
ing zones containing the necessary combinational logic are
in the proper phases. Thus, long wires have been all but
eliminated.

: = : *. .. ::
:: :: :: ~ 5 ~" - - i . : - •

Stopped State Bit/C;'
:: N _ D , :

~L~ _1 L I 2-i .'.i: L'; .': [; ~ Z ". 12 ; i ~ . ' i : : ;2. ZL LI L] L

:! 5 .. !~1~, ! !

Fgtch State Bit/CZ)

Figure 14. A "relatively correct" 3-state Sim-
ple 12 one-hot state machine.

The one negative is that it will now take an extra clock
cycle to process information through this one-hot state ma-
chine. However, as was discussed in Sec. 4.2 and will be
discussed in Sec. 7 it may be possible to inherently multi-
thread such a self-latching state machine.

7 . A P r i m i t i v e A r c h i t e c t u r e

The work detailed thus far essentially discusses the com-
ponents of a QCA architecture individually. This section
will briefly describe a potential organization for all of them.
This potential QCA Simple 12 organization will not con-
sider memory. However, every other significant component
of an architecture will be represented. In particular, this or-
ganization will consider the individual bits of the dataflow, a
state machine, logic that uses state information to generate
relevant control signals, any necessary delays required for
the control signals, and the feedback delay imposed by the

fact that the control logic will require information about the
state of the accumulator at the end of the computation - i.e.
whether or not it has a 0 value or is negative for conditional
jumps. Each of these components will be discussed below
- particularly within the context of the inherent "delay" im-
posed by the number of clocking zones required to hold the
logic and/or wire for each.

The first thing to consider are the bits of the dataftow.
By examining Fig. 6, we see that 8 clocking zones (2
clocks) are required for a value to be calculated by the ALU.
However, before any dataflow computation can occur, some
amount of"preprocessing" must be done. Obviously, the
appropriate state of the processor must be determined and
control signals must be generated. A state machine for Sim-
ple 12 was illustrated in Fig. 9. One can obviously see that
4 clocking zones (i.e. one clock) must be traversed to deter-
mine the state of the processor. Thus, before any dataftow
processing can occur, a delay of 1 clock cycle must be in-
curred.

However, this is not the only delay to consider. Control
signals must also be generated. While the control logic for
the Simple 12 dataftow has not yet been designed in QCA,
it has been synthesized• And it is estimated that the delay
(call it B) will be at least 10 clock cycles. Thus, now no
dataflow processing can begin until the delay caused by the
state machine and control logic has been incurred. Addi-
tionally, the control logic and the state machine for Simple
12 require information about the state of the accumulator -
i.e. if it is 0 or negative. This information will not become
available until the last bit of the Simple 12 dataflow finishes
computing. Now, given that each bit of the current dataflow
uses a ripple carry adder, if the dataflow bits are appended
linearly onto one another, there is a potentially huge feed-
back path and associated delay D that must also be factored
into the design.

Despite the seemingly large number of delays that need
to be considered/balanced a reasonable architecture for this
processor is possible and a potential organization is illus-
trated in Fig. 15. First, there will be no need to delay the
control signals after they are generated. These can simply
be "pipelined" in the same lane with the dataflow bits so
that they arrive at the appropriate logic at the appropriate
time. Also, ideally, the delays B and D should be made as
close to one another as possible to avoid stalls. Finally, if
necessary, the potentially long feedback path for the zero
and negative flags can be altered/eliminated by "folding the
dataflow over" onto itself. This way, the most significant
bit of the dataflow will be closer to the state machine and
control logic. In fact, it can even be manipulated to help
equalize the B and D delays.

Finally, there are two other things worth mentioning.
First, the delays for the control logic (B), the zero and neg-
ative flag feedback paths (D), the state machine (C), and

176

 0ata0athb,kl
I I0ata0ath l atapathbit l

0ata athbit o{
State Machine

Figure 15. A potential QCA Simple 12 archi-
tecture.

the dataflow bits (A per bit) will affect the degree of multi-
threading that is possible. Essentially, the number of possi-
ble threads will be equal to at most the number of clocking
zones modulo 4 in the longest closed loop comprised by the
delays A, B, C, and D in Fig. 15. Second, future work will
study the counterflow pipeline processor architecture as a
means for future QCA designs. Specifically, this architec-
ture has the potential for geometric regularity in processor
chip layout and emphasizes local control to avoid complex
pipeline stall signals - exactly what is needed in QCA [12].

8. Conclusions and Future Work

This work has succeeded in illustrating that with an in-
herently self-latched/self-clocked technology, ideas of lay-
out and timing are more closely tied than ever before. Now,
an inefficient layout does not just result in longer clock
cycles - it introduces more clock cycles to a circuit path.
However, despite this and other potential problems, oppor-
tunities such as "free" multithreading and processing-in-
wire offer the potential to make up for delays that a self-
latching device can create. In fact, in cases where combina-
tional logic, etc. can fit into four clocking zones (and hence
one clock), multi-threading and processing-in-wire can ex-
ploit the characteristics of a self-latching device. Addition-
ally, techniques from systolic arrays such as retiming may
allow automated rebalancing. Searching for and exploring
such opportunities will be an extensive area of future work.
Memory will also be studied. Placing these developments in

the context of a potential three orders of magnitude density
gain over the end of the CMOS curve equivalent certainly
indicate that both QCA and other self-latching technologies
deserve further study.

Finally, the authors would like to acknowledge the Na-
tional Science Foundation and the Notre Dame Center for
Nanoelectronics.

References

[1] I. Amlani, A. Orlov, G. Toth, G, H. Bemstein, C. S. Lent,
and G. L. Snider. Digital logic gate using quantum-dot cel-
lular automata. Science, 284:289-291, 1999.

[2] J. Hayes. Introduction to Digital Logic Design. Addison-
Wesley Publishing Company, New York, 1993.

[3] C. Lent. Molecular electronics: Bypassing the transistor
paradigm. Science, 288:1597-1599, 2000.

[4] C. S. Lent and P. D. Tougaw. A device architecture for com-
puting with quantum dots. Proceedings" of the IEEE, 85:541,
1997.

[5] M. Niemier and E Kogge. Logic in wire: Using quantum
dots to implement a microprocessor. In Proceedings of 6th
International Con/erence on Electronics. Circuits and Sys-
tems, 1999.

[6] M. Niemier, M. Kontz, and P. Kogge. A design of and de-
sign tools for a novel quantum dot based microprocessor.
In Proceedings' of the 27th Design Automation Con/erence,
pages 227-232, 2000.

[7] A. Orlov, I. Amlani, G. Bernstein, C. Lent, and G.. Snider.
Realization of a functional cell for quantum-dot cellular au-
tomata. Science, 277:928-930, 1997.

[8] A. Orlov, I. Amlani, C. Lent, G. Bemstein, and G.. Snider.
Experimental demonstration of a binary wire for quantum-
dot cellul ar automata. Applied Physics Letters, 74:2875 77,
1999.

[9] A. Orlov, l.Amlani, R. Kummamuru, R. Ramasubramaniam,
G. Toth, C. Lent, G. Bernstein, and (3. Snider. Experi-
mental demonstration of clocked single-electron switching
in quantum-dot cellular automata. Applied Physics Letters',
77:295-297, 2000.

[10] A. Orlov, R. Kummamuru, R. Ramasubramaniam, G. Toth,
C. Lent, G. Bernstein, and G. Snider. Experimental demon-
stration of a latch in clocked quantum-dot cellular automata.
Applied Physics Letters, 78:1625-1627, 2001.

[11] G. Snider, A. Orlov, I. Amlani, X. Zuo, G. B. stein, C. Lent,
J. Merz, and W. Porod. Quantum-dot cellular automata: Re-
view and recent experiments. J. of Applied Physic, 85:4283-
85, 1999.

[12] R. F. Sproull, I. E. Sutherland, and C. E. Molnar. The coun-
terflow pipeline processor architecture. IEEE Design & Test
of Computers, 11(3):48-59, 1994.

[13] J. Timler and C. Lent. Dissipation and gain in quantum-dot
cellular automata, unpublished.

[14] E Tougaw and C. Lent. Logical devices implemented us-
ing quantum cellular automata. Journal of Applied Physics,
75:1818, 1994.

177

