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Heat generation limits the performance of state-of-the-art integrated circuits, originating from the wasteful
static CMOS operating principle. Near-term solutions like adiabatic charging for energy recovery and limiting
friction-type heat sources provide considerable improvement. However, these methods do not address the
ultimate thermodynamic necessity to expel energy related to information loss in the computing process. In
emerging beyond-CMOS technologies, this bit erasure heat alone can overwhelm the cooling capacity and
set the limits of the computing performance. Therefore, logical information loss is becoming an important
factor for digital circuit design, and tools have to be developed for analysis and optimization. This article
presents a framework for estimating the amount of information loss in complex logic circuits, demonstrating
the method by modeling the irreversible bit erasures in a standard binary adder structure. Binary addition
is one of the most often used and highly optimized digital designs, and we estimate the erasure bounds for
components on various levels of design abstraction, showing that the actual logic gate implementations have
orders of magnitude higher loss than the addition operation itself would require. The method and the results
can be used to optimize circuits for a higher degree of logical reversibility and energy conservation.
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1. INTRODUCTION

Heat generation limits the computing performance and the range of available applica-
tions of integrated circuit technology, and indeed, the most important design concern
of modern ICs is the related electrical power [ITRS 2012]. The problem of heat dis-
sipation dominates the continued evolution of CMOS processors in this era of “dark
silicon,” in which to avoid overheating, whole sections of a chip may need to be powered
down—a dramatic inability to use the carefully fabricated resources. The steady rise in
microprocessor clock speeds has nearly halted because of power issues; scaled CMOS
transistors could individually be switching at much faster rates, but because they are
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so densely packed on a modern chip, the additional heat created by running faster
would be overwhelming.

As presently used, CMOS transistors switch in a way which is maximally wasteful—
transferring essentially all the energy of a stored bit into heat at every rapid-state
transition. The loss can be greatly reduced by utilizing adiabatic CMOS, which can
recover most of the signal energy [Starosel’skii 2001]. There is also considerable search
underway for the “next switch,” a different binary device that could perform general-
purpose computing but would generate far less heat. Potential emerging devices like
quantum-dot cellular automata (QCA) have inherent capability to propagate and reuse
the signal energy instead of expelling it as heat [Lent and Tougaw 1997].

Every conceivable switching device loses some energy due to friction-like physical
phenomena, but these losses can be made as small as desired, by utilizing predicted
technology improvements and purposefully lowering the relative switching speed. An-
other loss component, which has always been present, but has been insignificant in
traditional static CMOS, is the energy loss related to information erasure [Keyes and
Landauer 1970]. According to Landauer’s Principle, the erasure of a logical bit always
mirrors a physical change in entropy, which causes at least a minimum constant quan-
tum of energy to be expelled as heat. In (quasi-)adiabatic CMOS, the bit erasures alone
can be a major source of heat, while in the extremely energy-efficient beyond-CMOS
technologies, the bit erasures can generate enough heat to overwhelm the cooling ca-
pacity, and consequently, set the performance limit.

Energy-efficient computer arithmetic is critical for low-power systems, including the
underlying layers of all computing systems in the future, while the most important and
common arithmetic operation is the binary addition. Standard adders [Koren 2002] are
based on irreversible logic, which leads necessarily to energy loss originating from the
bit erasures. In this article, we construct abstract models for quantifying the amount
of information loss in a standard ripple carry adder structure. The number of average
bit erasures in actual implementations is significantly higher than the minimum of the
operation itself, which indicates potential for optimization for reversibility. The main
contributions of this work can be summarized as follows.

—To the best of our knowledge, this work is the first that tracks the information loss
properties of complex digital circuits in detail.

—A method is developed to systematically abstract the information loss in comput-
ing operations, refining the model step by step to the level of actual logic circuits,
revealing the difference between the lower bounds and the actual expected losses.

—The most important arithmetic operation, binary addition, is characterized regarding
the information loss properties, and the losses in a standard adder structure and the
circuit implementations are compared to this ultimate bound.

This article is organized as follows. Section 2 discusses the connection between logical
and physical reversibility, how to quantify the information loss, and the assumptions
of our modeling approach, while Section 3 discusses the theoretical monolithic addition
operation. The ripple carry adder structure and an ideal standard gate abstraction are
analyzed in Section 4, and selected practical gate-level implementations are analyzed
in Section 5. Section 6 presents the statistical results on the information loss properties,
while the conclusion follows in Section 7.

2. PRELIMINARIES

Traditional circuit design does not explicitly consider heat generation related to in-
formation loss, but the ongoing strive for energy-efficient technologies will eventually
lead to large-scale utilization of circuits capable of energy recovery and energy reuse.
Eventually, all computing circuits will belong to this category, regardless of the specific
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implementation technology, and they will have to account for the information loss,
which is fundamental in nature. But how good could the circuits and devices possibly
be? Can a computer operate in principle without needing to generate heat? Of course,
a device in the real world operating at a useful speed will always have some losses,
but is there some necessary connection between computation and heat generation
that requires a minimum amount of heat dissipation per bit? Understanding the link
between physics and information is important for both guiding the search for a new
basic binary device and for creating new ways of employing CMOS transistors that
are more energy conscious. A pre-requisite for insightful design is the development
of figures of merit for quantifying irreversible information loss in the computing
hardware.

2.1. Link between Logical and Physical Reversibility

The key concepts are logical reversibility and physical reversibility. Logical reversibil-
ity is a property of a logical operation that maps a set of input bits onto a set of output
bits. If the inputs can be deduced from the outputs, the mapping is logically reversible.
Physical reversibility is a consequence of the fact that for an isolated system, the mi-
croscopic laws of physics are time reversible. As a consequence, given the final physical
state of a system, one could, in principle, solve the equations of motion backwards in
time and deduce the initial state of the system. Implementing a logical computation
with a physical system involves mapping the physical initial and final states onto com-
putational states. To perform a computation on a particular set of inputs, one prepares
the system in the appropriate initial physical state and then lets the system evolve
under physical law. The output is then read by subsequently measuring the final phys-
ical state, identifying it with the corresponding computational output. There exists a
fundamental duality between the computation and the physical implementation.

The logical reversibility of a computation and the physical reversibility of a system
which implements it are closely related. An isolated physical system can only imple-
ment a logically reversible computation. This follows simply from the fact that we
could use the reversible laws of physics to deduce the logical input bits from the output
state. Therefore, if we want to implement a logically irreversible computation with a
physical system, the system cannot be isolated—it must be coupled to the environ-
ment. A logically irreversible operation such as AND or ERASE involves the loss of
information; from knowing the output, one cannot determine the input. Where did the
information go? It was present in the initial physical state of the system but is not
available in the final physical state. The information must have been transferred from
the system into the many untraceable degrees of freedom in the environment and is
now irrecoverably lost in the complexity of that motion. Of course, if we could enlarge
our system description to include all the relevant environmental degrees of freedom—
all the positions of all the atoms in the substrate and chip holder for example—then
we could deduce from the much larger final state what the input state must have been.
But we cannot, and so we label the transfer of information and the associated energy
from the system to the environment “heat generation.” The development of statistical
mechanics showed that thermodynamics is just mechanics applied in the context of
our insurmountable ignorance and lack of information regarding the detailed motion
of the very large systems.

Keyes and Landauer argued that the loss of information from the physical system
that implements a computation results in a fundamental lower bound on how much
heat is generated by a computation [1970]. This result follows from a thermodynamic
(Boltzmann) entropy argument. One bit can be in two states, so the associated entropy
is S = kgln 2 Erasing an unknown bit, changing either 0 or 1 to a NULL state, means
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there is a transfer of this entropy to the environment with associate free energy:
AE =TS = kgT In 2. 1)

Thus a physical implementation of a bit erasure or any logical operation that loses 1 bit
of information must necessarily dissipate an amount of heat greater than or equal to
AE Note that at room temperature, this is about 3zdJ, nearly three orders of magnitudes
lower than the end-of-the-roadmap CMOS transistor switching energy.

The fundamental lower limit is even lower than that. Bennett subsequently showed
how any logically irreversible computation could be embedded within a logically re-
versible computation [1973]. Therefore, even logically irreversible operations, by em-
bedding them in a larger computation, can be implemented with physically reversible
processes. As a practical matter, this is often costly in terms of layout complexity, be-
cause all intermediate results have to be preserved. Nevertheless the fundamental
lower limit for heat generation in a computation is 0.

In CMOS, a bit is represented by charge stored on a capacitor—either a transistor
gate or a specifically fabricated storage capacitor. If the information is erased by just
discharging the capacitor to ground, the maximum amount of heat is dissipated. But if|
as is often the case, there is a copy of the bit elsewhere in the circuit, it can be used to
erase the information with very little heat dissipation. Dissipation of as little as AE =
0.01%kgT as recently been demonstrated experimentally [Boechler et al. 2010; Orlov
et al. 2012]. Practical trade-offs in speed and circuit complexity of adiabatic CMOS have
by now a substantial literature [Younis and Knight Jr. 1993; Starosel skii 2001]. The key
to furthering this development is exploring erasure-aware alternatives to conventional
approaches, because at molecular densities, the power dissipation constraints are even
more formidable, and developing adiabatic and information-conserving switching for
the nanoscale is even more crucial [Timler and Lent 2003; Lent et al. 2006]. To this
end, we outline in the following a systematic method for quantifying the amount of
irreversible information loss in digital circuits.

2.2, Quantifying Logical Information Loss

In order to evaluate the performance of existing and emerging computing hardware
regarding the conservation of information, we must develop methods to quantify the
amount of information loss related to various steps of the computing process. To this
goal, we utilize Shannon’s information theory and define the amount of information
content in the inputs and outputs of an abstract computing component, based on the
probabilities of each occurring logic case, which is defined as an instance of specific
signal values. The difference in self-information is a measure of loss in this particular
step, and with the specific logic input, and we can utilize another indicator, the differ-
ence in information entropy between input and output “ports” of the component as an
average loss metric for the whole input space.

Self-information I (x;) also known as surprisal, measures the information content,
that is, the specific entropy contribution of an individual input logic case x; of a com-
puting component:

I(x;) =log, ( ) = —logy (P (%)), (2)

P (x;)

where P (x;) is the probability of the occurrence of the input case x;. Similarly, the
self-information I (y;) of an individual output logic case y; of a component is

I(y,) = log, ( — _logy (P(y)), 3)

75)
P(y;)
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Table I. Information Transformation in Binary AND Gate with Equiprobable Inputs

INPUT OUTPUT SELF-INFORMATION
Case | Prob. | Bits Case | Prob. Bit Input Output Difference
X Px) |a|b| y; P(yj) | a AND b | I(x;) (bits) | I(y;) (bits) | AL ; = I(x;) — I(y;) (bits)
X1 00
X2 01| m 3/4 0 5 0.415 1.585 bits (= log, 3 bits)
X3 174 |10
X4 111 y 1/4 1 2 0 bits

where P(y;) is the probability of the occurrence of the output case y;. The difference in
self-information between each possible combination of input-output pairs is

AL j = I(xi)—l(yj). 4)

Assuming equiprobable input, we can write Eq. (4) in terms of just the number n; of
input cases x; mapped to the specific output logic case y;:

AIJ‘ = Zogz (TLJ) (5)

As an example, consider a two-input binary AND gate, which has one transition where
the difference of information content is zero bits and three transitions where the dif-
ference is log, 3 ~ 1.585 bits, with the assumption that the inputs are uniformly
distributed. Table I gives the self-information in each input and output case and the
difference for each possible transition.

We can consider also the average information content through the input port of the
computing component. This is known as information entropy H(X) and defined as the
expectation value of the self-information:

H(X) = Ex[I(x;)] = — Zyex P(x;)loga (P(x;)), (6)

where Xis the set of all input logic cases. This probability-weighted average of the self-
information measures the amount of uncertainty associated with the input. Similarly,
the information entropy H (Y) of the output port is

H(Y) = Ey[I(yj)] = — Zy,cy P(y;)log2 (P(y;)), (7

where Y is the set of all output logic cases. The difference in information entropy
between the input and output port is

AHxy = HX) — H(Y), (8)

which represents the average information loss in this particular computation. In the
AND gate example, equiprobable inputs give the maximized input entropy H(X) = 2
bits and the corresponding output entropy H(Y) ~ 0.811 bits, resulting in AHxy =
1.189 bits. In other words, the input signal set of the AND gate is capable of removing
2 bits of uncertainty, while the output signal is 1.189 bits less capable, on average.
Once the AND operation has been performed and the inputs forgotten, we have only
the information of the output signal available, which is 1.189 bits less than the inputs
typically carry. This corresponds to an entropy decrease of S = 1.189%k5In2 and the
related energy loss of AE =TS = 1.189%kpT In 2 ~ 3.3zd at room temperature.

The reduction in the logical capability to remove uncertainty can be interpreted
as information loss regarding the path of evolution of the computing system. Ac-
cording to Landauer’s Principle, each lost bit has an inevitable energy cost, gener-
ating at least about 3zJ of heat to the environment at room temperature. While
the amount of information loss heat per bit is in the region of 3 x 102! J/bit,
thepredicted logic densities of molecular electronics can reach 102 gates/cm? and the
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inherent switching frequencies 10'2 Hz, which translates into maximum heat power
Pinformation = 10721 J/bit x 1012 bit/em? x10'2 Hz = 103 W/em? = 1000 W/em?, even
with each gate losing only a single bit. This is outside the limits of our cooling capacity,
and therefore we must analyze the information loss and find ways to reduce it. The
probabilistic framework presented here will be utilized to track the information loss in
computer arithmetic algorithms, hardware structures, and logic gate implementations.
Specifically, we evaluate the standard approach to binary addition on several levels of
abstraction in the following sections.

2.3. Simulating the Information Loss of Binary Addition Operation

Binary addition is one of the most important arithmetic operations, and it is inherently
irreversible. However, typical adder implementations perform much more erasures
than is theoretically required. The results in this article are based on a MATLAB
simulation of the monolithic theoretical operation and the standard ripple carry adder
structure, modeled to include accumulated uncertainty of the logical state trajectory
during the computation. Exhaustive simulation through all values of both operand
words is performed for several word lengths, and 2D maps of information loss are
acquired and statistics calculated.

An important assumption in the following analysis is that the overall distribution of
the logical input, the top-level binary input operand words, is uniform. The equiproba-
ble distribution is not exactly correct for many applications, but we chose this to analyze
the information transformation of the computing hardware itself, without the distur-
bance induced by the probabilistics of a specific application. We also treat each of the
computing components as an individual, whose simulated response is only dependent
on the specific input value to that component. The component cannot utilize the state of
the other components in the system to infer additional information, and the component
does not vary assumptions about the distribution of its own input bits. The component
independently assumes that all of its own input logic cases are equiprobable. This
division of the system into separate components can be justified similarly as in the
Hamiltonian computer models where each logical operation involves only a small num-
ber of physical entities [Peres 1985].

Another assumption concerns the role of circuit fanouts on different levels. While a
physical fanout can cause irreversible information loss, this depends very strongly on
the specific implementation and could be avoided. Therefore, we decide to regard the
fanouts as information-conserving entities in the logical-level analysis.

Based on the truth tables and transformation characteristics of idealized computing
components on different levels of abstraction, as illustrated in Figure 1, we proceed
from theoretical monolithic addition towards gate-level adder implementations. The
following models A and B are fully theoretical idealizations, while models C, D, and E
each use a different logic gate set. The components in each model receive the normal
routed signals from each other, but are otherwise independent and do not use other
information to limit their input space. Note that we can distinguish between global
and local reversibility/irreversibility: the monolithic addition operation (model A) has
a certain amount of irreversible information loss, which can be considered global and
affects also the lower level models, which implement the addition. However, the lower
level models have their own local irreversibility, specific to each abstraction level. Local
irreversibility is not upper-bounded by the global irreversibility; even if the top-level
global operation were fully reversible, the local implementation could be irreversible
and could lose any amount of logical information [Peres 1985]. Based on our study,
irreversibility on a higher level seems to set a lower bound for the average lower-level
local irreversibility.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 2, Article 10, Pub. date: October 2014.



Quantifying Irreversible Information Loss in Digital Circuits 10:7
/I\/Ionolithic Unsigned B={b,, ..., bo} A={a,,, ..., do} N\
I Binary Addition |
: n-bit Ripple Carry Adder l
I Gp1bpy a; by a, b, a, by ag by |

‘4 v i vy 4 v I
| FA, 4 FA, FA, FA, HA, |
I (logic PR

ates) (logic (logic (logic (logic
I :: g C3 gaés} ‘? gatis) Cy gatis) Co gatis) :
| (=) v v v v v
Sn-1 S3 Sz S1 So |
\ lS ={Sp, Sp1s s So} J

— e ——— ——— — — — — — — — — — — —

Fig. 1. Hierarchy of models for binary addition, from highest abstraction level to lowest. Model A: theoretical
monolithic operation; model B: ripple carry adder structure with ideal HA/FA components; models C, D, E:
components implemented with logic gates.

3. MONOLITHIC BINARY ADDITION (MODEL A)

Binary addition, one of the most important arithmetic operations, is inherently ir-
reversible. The number of inherent bit erasures is important, since according to
Landauer’s Principle, each erasure generates at least the fundamental amount of heat,
regardless of the implementation approach [Keyes and Landauer 1970]. As per Eq. (1),
this is at room temperature AE = 3 zJ, and usually much more is dissipated. The
monolithic model presented here provides a lower bound for the average bit erasures
in any adder implementation.

The highest abstraction level model considers the addition operation as a theoretical
mapping between the input operand and output result spaces, as conceptualized in
Figure 2(a), without taking into account any implementation details. The addition of
two unsigned n bit operands A and B results in at most an (n + 1)-bit result S, with
the largest number of distinct operand pairs, 2n specific cases, compressed into the
single result value 2n — 1, as illustrated in Figure 2(b), corresponding to the worst-case
information loss of n bits [Hanninen and Takala 2010a]. The monolithic operation in-
formation loss for each operand pair in 8-bit addition is shown in Figure 2(c), where the
loss ranges between 0 to 8 bits and the average is about 7 bits, provided equiprobable
distribution of the input operand values. The topography is clearly shaped accord-
ing to the base-2 logarithm of the frequency of occurrence of the result values, as
expected.

4. ADDER STRUCTURE AND HIGH-LEVEL GATE SET

Standard adders based on binary logic [Koren 2002] perform much more bit erasures
than is theoretically required by the addition operation itself, which will become appar-
ent in the following comparison. Selecting a specific technology and a specific structure
can only raise the number of expected erasures compared to the monolithic theoretical
operation. From here onwards, we base all of the following models on the standard
ripple carry adder structure, which we first construct using fully idealized subcompo-
nents, consequently to be divided into basic logic gates. However, the gates are not
necessarily tied to a specific implementation technology.

4.1. Ripple Carry Adder (Model B)

The addition operation is typically implemented by the standard ripple carry adder
(RCA) constructed using half-adder (HA) and full-adder (FA) components [Koren 2002],
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Fig. 2. Monolithic binary addition; (a) conceptual model, (b) frequency of addition results in 2-, 3-, and 4-bit
operation, and (c) simulated information loss in 8-bit unsigned addition for each possible operand pair.

Table Il. Truth Table and Transformation Characteristics of Half Adder

INPUT OUTPUT SELF-INFORMATION
Case | Prob. | Bits | Case | Prob. Bit Input Output Difference
X Pw) |a|b| yj P(y;) | cout | S | I(x;) (bits) | I(y;) (bits) | AL ; = I(x;) — I(y;) (bits)
x1 010 »n 1/4 0o |0 2 0 bits
Y | VAOILE e |0 |1 2 1 1 bits
X3 1 0
X4 111 ys 1/4 1 1 2 0 bits

as depicted in the inner part of Figure 1. Considering these components ideal and
completely characterized by the truth tables and transformation characteristics defined
in Tables II and III, a lower bound can be formed for the average bit erasures in the
standard RCA structure. Exact loss versus. the operand space of an 8-bit unit is shown
in Figure 3(a), ranging from 0 to 12 bits with an average of about 9 bits, assuming
evenly distributed inputs. Loss of a 10-bit unit shown in Figure 3(b) has a range from
0 to 15 bits.
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Table Ill. Truth Table and Transformation Characteristics of Full Adder

INPUT OUTPUT SELF-INFORMATION

Case | Prob. Bits Case | Prob. Bits Input Output Difference
X Px) |a|b|cn| y;i | Pyj) | cout | s | I(x;) (bits) | I(y;) (bits) | AL ; = I(x;) — I(y;) (bits)
X1 00| O Y1 1/8 0 |0 3 0 bits
X9 0|0 1 0 |1 1.415 1.585 bits
X3 01| 0 ¥y 3/8 (= logy 3 bits)
X4 1|10 0
X5 V8 01| 1 3/8 1|0 3 1.415 1.585 bits
%6 101 (= logy 3 bits)
x7 1/1] 0
X8 1)1 1 Y4 1/8 1 1 3 0 bits
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Fig. 3. Ripple carry adder structure with ideal HA/FA components, simulated information loss vs. each
possible operand pair in (a) 8-bit unsigned addition, and (b) 10-bit unsigned addition.

The topography versus the operand axes still shows traces of the curvature of the
theoretical operation, but the dominant feature is the overlaid repeating self-similar
pattern, originating from the discrete implementation using ideal HA/FA components.
It is interesting to note that even though the average loss is higher than the loss in the
monolithic operation, as expected, there are also minima which are significantly lower
than the monolithic average. This is a surprise and indicates that the RCA structure
has some pathological properties of information transformation, which enable some
operand pairs to propagate through the structure conserving relatively large part of
the initial logical information. Similar information loss patterns are present in adders
of all larger operand word lengths.

4.2. Ripple Carry Adder on {XOR,AND,OR} Gate Set (Model C)

The adder model of Figure 4(a) can be subdivided closer to an actual circuit imple-
mentation by constructing the half- and full-adder components using a set of standard
gates {XOR, AND, OR}, based on the structures in Figures 4(b) and 4(c). The ideal
truth Tables IV, V, and VI produce a very flat information loss throughout the operand
pair space of an RCA, resulting an average loss in the 8-bit unit of about 38 bits per
addition, illustrated in Figure 5(a). A topography map of the loss in a 10-bit unit is
shown in Figure 5(b).
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Fig. 4. (a) Composing RCA using a set of standard gates {XOR, AND, OR}, (b) full adder, and (c) half adder.

Table IV. Truth Table and Transformation Characteristics of XOR Gate

INPUT OUTPUT SELF-INFORMATION
Case | Prob. | Bits | Case | Prob. Bit Input Output Difference
x; Px;)) |a | b ¥j P(y;) | a XOR b | I(x;) (bits) | I(y;) (bits) | AL j = I(x;) — I(y;) (bits)
X1 0 0 Y1 2/4 0 1 1 bit
X4 1/4 1|1 9
Xo 0|1 yo 2/4 1 1 1 bit
X3 1 0
Table V. Truth Table and Transformation Characteristics of AND Gate
INPUT OUTPUT SELF-INFORMATION
Case | Prob. | Bits | Case | Prob. Bit Input Output Difference
X Plxj) |a | b ¥j P(y;)) | a AND b | I(x;) (bits) | I(y;) (bits) | AL ; = I(x;) — I(y;) (bits)
x1 0|0 y1 3/4 0 0.415 1.585 bits (= logy 3 bits)
X2 0 1 9
x3 V4 [1]0] 1/4 1 2 0 bits
X4 11
Table VI. Truth Table and Transformation Characteristics of OR Gate
INPUT OUTPUT SELF-INFORMATION
Case | Prob. | Bits | Case | Prob. Bit Input Output Difference
X Px) | a | b ¥j P(y;) | aORb | I(x;) (bits) | I(y;) (bits) | AL ; = I(x;) — I(y;) (bits)
x1 0|0 Y1 1/4 0 2 0 bits
X9 0 1 9
X3 1/4 1|0 Yo 3/4 1 0.415 1.585 bits (= logy 3 bits)
X4 11

The nearly flat topography completely hides any traces of the monolithic addition and
the RCA structure patterns. This presumably originates from the duality of AND and
OR gates canceling each other out in the utilized configuration, while the XOR gate has
fully balanced logical state compression. The gate set turns out to be relatively efficient
in logical information conservation when compared to the other gate-level adders.
However, we are not aware of adequately robust direct physical implementations of
this set, and the gates have to be further divided into subgates with higher information

loss.
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Fig. 5. RCA structure with {XOR,AND,OR} gate set-based HA/FA components, simulated information loss
vs. each possible operand pair in (a) 8-bit unsigned addition, and (b) 10-bit unsigned addition.
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Fig. 6. (a) Composing RCA: (a) HA/FAs structured using gate set {XOR, AND, OR}, and (b) implemented
using only NAND gates.

5. ADDER IMPLEMENTATIONS

Practical digital circuits, including the binary adders, are based on logic gates with
existing and realistic physical implementations available. In traditional complemen-
tary transistor circuits, the unit gate of choice is the two-input NAND, which can be
implemented very efficiently in CMOS and adiabatic CMOS. In several post-transistor
technologies, including quantum-dot cellular automata (QCA) paradigm, the main logic
component is the three-input majority voter gate (MG).

5.1. Ripple Carry Adder on Ideal NAND Gates (Model D)

Low-level implementation of the ripple carry adder has the half-adder and full-adder
components constructed using two-input NAND-gates, typical in standard digital cir-
cuits [Koren 2002]. The HAs/FAs in Figure 6(a) are structured by the abstract gate set
{XOR,AND,OR} of the previous abstraction level, but implemented using only ideal
NAND-gates, as illustrated in Figure 6(b), with the truth table in Table VII. The NAND
performs at worst a 3-to-1 logical state mapping between input and output cases. Infor-
mation loss for an 8-bit ripple carry adder unit is shown in Figure 7, with an average
of about 112 bits lost. Information loss in a 10-bit unit is presented in Figures 8 and 9.

It is very interesting to note that the topography versus operand axes shows again
the traces of the curvature of the monolithic theoretical operation and the self-similar
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Table VII. Truth Table and Transformation Characteristics of NAND Gate

INPUT OUTPUT SELF-INFORMATION
Case | Prob. | Bits | Case | Prob. Bit Input Output Difference
x; Px;)) |a | b yj P(y;) | a NAND b | I(x;) (bits) | I(y;) (bits) | AL j = I(x;) — I(y;) (bits)
x1 0|0 y 3/4 1 0.415 1.585 bits (= logy 3 bits)
X9 1/4 01 9
x3 110 1/4 0 2 0 bits
X4 11

Information Loss (bits)
Operand Y (dec)

100
Operand X (dec) 250 0 Operand X (dec)

(@) (b)

Fig.7. RCA structure with ideal NAND gate-based components, simulated information loss vs. each possible
operand pair in 8-bit unsigned addition. (a) 3D view, and (b) topography map.
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Fig.8. RCA structure with ideal NAND gate-based components, simulated information loss vs. each possible
operand pair in 10-bit unsigned addition, 3D view.
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Fig.9. RCA structure with ideal NAND gate-based components, simulated information loss vs. each possible
operand pair in 10-bit unsigned addition, topography map.

overlay of the RCA structure patterns, even though they were completely absent from
the structured {XOR,AND,OR} gate-level idealization. This effect originates from the
NAND-based implementation of the AND and OR gates, which are not symmetrical
anymore, from the viewpoint of information loss. The number of bit erasures in this
implementation is an order of magnitude higher than in the previous, more coarse and
abstract idealizations.

5.2. Ripple Carry Adder on Ideal Majority Voter Gates (Model E)

Another physically realistic implementation utilizes three-input majority voter gates
(MG), which are available in several beyond-CMOS technologies, including quantum-
dot cellular automata (QCA) paradigm. Majority gate-based implementation of the
half/full-adders underlying the RCA structure is illustrated in Figure 10 [Hianninen
and Takala 2010b], while the ideal MG has the truth table in Table VIII. The MG
performs a fully balanced and uniform compression of the logical space, which has the
consequence that the RCA erasure number is constant throughout the whole operand
pair space. An 8-bit unit erases a constant 48 bits per addition operation, and a 10-bit
unit erases a constant 60 bits per addition, as illustrated in Figure 11.

The flat topography of the 2D erasure chart indicates that the information loss is
constant versus the operand axes and very competitive against the standard Boolean
gate-based implementations. This suggests that the majority gate is a very suit-
able logic primitive for reversible computation, especially since the potential physical
implementations are predicted to have inherent signal energy transmission from de-
vice to device [Timler and Lent 2003]. Based on our observations, the properties of
balanced and uniform state compression have beneficial consequences on information
loss on the module and structure level, and they can be simply identified in the truth
tables of the basic gates. Therefore, other logic primitives, including the minority voter
gate, may be as useful as the majority gate for reversible computing.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 2, Article 10, Pub. date: October 2014.



10:14 |. K. Hanninen et al.

B={b,4, ..., bo)$ A={a,, .. ao)l

n-bit Ripple Carry Adder Majority gate FA,/HA,

ay b, ai by agbo a;
' ' d by
i1
ves FA, FA, HA,

(logic (logic (logic
G | gates) [*ci| gates) [%o | gates)

: : :
‘ S ={5p, Sp-1 s So}
(a) (®)

Fig. 10. (a) Composing RCA, and (b) full/half adder using only majority voter gates.

Table VIII. Truth Table and Transformation Characteristics of Majority Voter Gate

INPUT OUTPUT SELF-INFORMATION
Case | Prob. Bits Case | Prob. Bits Input Output Difference
X; Pw)|a|b|c| y; P(yj) | Ma,b,c) | I(x;) (bits) | I(y;) (bits) | AL ; = I(x;) — I(y;) (bits)
x1 0|00
x 0|01 . .
xi oT110 y1 4/8 0 1 2 bits (= log, 4 bits)
X4 /8 |1/0/|0 3
X5 011|1
X 1101 . .
xj Ttitol 4/8 1 1 2 bits (= logy 4 bits)
xg 111
o : ~~P 1000 i
- 900 60.5
00 60.6
50— :
v 700 B0 4
% 40~ ! T B 2
g 30 % 00 0
g 20 & 400 59.8
£
E 10 20 300 9.8
0 - i 200 59.4
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Fig. 11. RCA structure with majority voter gate-based HA/FA components, simulated information loss vs.
each possible operand pair in (a) 8-bit unsigned addition, and (b) 10-bit unsigned addition.

6. STATISTICS AND SCALING

The loss of information in the adders usually depends slightly on the specific operand
pair, as visible in the topography maps in Figures 3, 5, and 7-9. The developed abstrac-
tions follow the statistics presented in Table IX.
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Table IX. Statistics for 8-Bit Binary Addition, assuming Uniform Input Operand

Distribution
INFORMATION LOSS STATISTICS (bits)

ABSTRACTION LEVEL Min Avg Max Std. dev.
A. Monolithic theoretical addition 0 7.3 8 1.5 x 10714
B. RCA, ideal HA/FA 0 8.8 12.1 1.5
C. RCA, ideal XOR, AND, OR 37.2 38.4 38.8 0.4
D. RCA, ideal NAND 104.6 | 111.7 | 117.3 2.4
E. RCA, ideal MG 48 48 48 0

i i Averageir
I I i Theory §

10 i I Vvin :
R | I Sto dev

M

" I Std.dev

Information Loss (bits)
Information Los:

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Result Value (dec) Result Value (dec)

0 50 100 150 200 250 300 350 400 450 500

Fig. 12. Model B, ideal RCA: erasure statistics per result value with ideal HA/FA components, showing also
theoretical monolithic operation in yellow, (left) 8-bit operand length, and (right) 10-bit operand length.

The ripple carry adder based on ideal half- and full-adder components (model B) is
the only adder abstraction, where the number of bit erasures is significantly affected by
the specific result value, ranging from 0 to 12 bits, as illustrated in Figure 3(a) for an 8-
bit adder. The statistics of this model in Figure 12 show significant standard deviation
of two bits around the average erasure per each result value. Although the average is
above the erasures of the theoretical operation in Figure 13, there are minima below
this. Apparently, some operand pairs for some specific result values can propagate
through the ideal HA/FA-based RCA conserving logical information surpassing the
theoretical operation, which is a surprise.

The other RCA models have nearly constant erasure rates versus the result values
and operands. The largest deviation is about one bit, less than 1% of the average
erasures, found in the ideal NAND-gate-based model (D) with the statistics versus
result value shown in Figure 14. The XOR-, AND-, OR-set-based model (C) erases
about constant 38 bits and the majority gates-based model (E) erases constant 48 bits
per 8-bit addition, as illustrated versus result value in Figure 15.

The number of bit erasures depends also on the operand word length n of the adder.
The scaling trends for the theoretical operation (model A) and the ideal HA/FA-based
model (B) are linear versus n [Hianninen and Takala 2010a], while this relationship for
the other models has yet not been explored. In summary, models A and B are linear,
while model D behaves worse by an order of magnitude. Models C and E will likely scale
better, but of these, only model E is likely to have a directly corresponding physical
implementation, for example, a quantum-dot cellular automata majority gate.

7. CONCLUSIONS

We believe that eventually all computing circuits will have to utilize energy-recovery
and reuse approaches to achieve the energy efficiency required for sustaining the
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Fig. 13. Model A, theoretical monolithic addition operation: erasures per result value, (left) 8-bit operand
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Fig. 14. Model D, RCA based on NAND gate only: erasure statistics per result value, (left) 8-bit operand

length,

and (right) 10-bit operand length.
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Fig. 15. Erasure statistics per result value with 8-bit operand length, (left) model C, ideal {XOR,AND,OR}
gate set, and (right) model E, ideal majority voter gate, which has no deviation at all.
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continuous growth of computing power in the future. While the physical friction-like
loss effects can be limited by the foreseen technology improvements and techniques,
including adiabatic charging, the energy loss related to the destroying of information
can be limited only by avoiding the loss of logical information itself. A necessary
prerequisite for practical chip design is the capability to assess the information
loss properties of the underlying technology, circuit style, circuit structure, and the
logical operation to be performed. In this work, we have analyzed the information
transformations of relatively complex digital circuits in detail, developing a method to
systematically abstract the information loss in logical operations. The most important
arithmetic operation, binary addition, has been characterized in this regard, both to
demonstrate our analysis method and to obtain understanding of the information loss
in the addition operation itself and the adder implementations.

The binary addition has been modeled on several design abstraction levels and
bounds for information erasure developed for optimizing the circuits from the perspec-
tive of this new goal, reducing the information loss. The gate-level implementations lose
significantly more information than the theory suggests, while there are also surpris-
ing operand combinations which may actually dissipate less heat than the “monolithic”
average value suggested by the theory. This kind of pathological phenomena and the
found complex self-similar structure of the information-loss patterns remain a future
research topic.
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