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Abstract The Landauer Principle connects the information theoretic notion of en-
tropy to the physics of statistical mechanics. When a physical system performs a
logical operation that erases or loses information, without a copy being preserved, it
must transfer a minimum amount of heat, kBT log(2), to the environment. How can
there be such a connection between the abstract idea of information and the concrete
physical reality of heat? To address this question, we adopt the Jaynes approach of
grounding statistical mechanics in the Shannon notion of entropy. Probability is a
quantification of incomplete information. Entropy should not be conceived in terms
of disorder, but rather as a measure on a probability distribution that characterizes
the amount of missing information the distribution represents. The thermodynamic
entropy is a special case of the Shannon entropy applied to a physical system in
equilibrium with a heat bath so that its average energy is fixed. The thermal prob-
ability distribution is obtained by maximizing the Shannon entropy, subject to the
physical constraints of the problem. It is then possible to naturally extend this de-
scription to include a physical memory device, which must be in a nonequilibrium
long-lived metastable state. We can then explicitly demonstrate how the requirement
for a fundamental minimum energy dissipation is tied to erasure of an unknown bit.
Both classical and quantum cases are considered. We show that the classical ther-
modynamic entropy is in some situations best matched in quantum mechanics, not
by the von Neumann entropy, but by a perhaps less familiar quantity—the quan-
tum entropy of outcomes. The case of free expansion of an ideal quantum gas is
examined in this context.
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1 Introduction: What is information?

When we look out into the physical world, we do not see information. Rather, we
see the physical world and the way things are. Or at least that is what we can hope to
see, discern, reconstruct, or model, from evidence and experimentation. According
to our best theories, what we find in the physical world are particles and fields, or
perhaps more correctly: fields and the particles that are the quanta of those fields.

One use of the term “information” refers to this raw information–the state of
the physical world or part of it. Physics is naturally particularly concerned with
raw information. The second and actually more common use of the term “informa-
tion” denotes encoded information.” This is information that supervenes on the raw
information and can be expressed in a set of symbols, or most fundamentally, in
bits. Encoded information is the domain of information theory. Connecting the two,
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representing encoded information and information processing in physical systems,
is often the work of applied physics and electrical engineering. The questions ad-
dressed here have principally to do with the nature of the application of information
theory to physical systems and the consequences of the physical law for information
processing procedures.

1.1 Raw information

The particles and fields of the physical world may exist in a number of states, per-
mitted by the physical law, and the particular state of a specific physical system can
be specified by a set of numbers. An electron can have spin up (+1) or spin down
(-1) relative to a given magnetic field. Perhaps this particular rock was found on
the lunar surface at this particular lunar latitude and longitude with this mass and
composition. The x-component of electric field at a particular point in space has a
specific value this time. The electron may be found in the left well or the right well,
etc. The values which describe the state of a physical system are the raw information
contained in the physical system itself. The raw information is often quite a lot of
information. It might include, for example, the position, electron configuration, and
nuclear state of each and every atom (or subatomic particle) in a piece of material.

Separability. In order to discuss the raw information present in a particular phys-
ical system, it is necessary to conceptually separate the system from the rest of the
physical world. The simplest case of such a separation is one in which the system
is in fact completely isolated, with no physical coupling or entanglement to any
other system. More commonly, we rely on an approximate separation, wherein the
interaction with the environment may be minimal or at least can be reasonably well
characterized. In many cases, for example, the optical field couples the system to the
environment. Some of the details of the raw information about a rock on the moon
is flowing out into space as photons. The rock is also in thermal contact with the
lunar surface, so the details of the motion of its individual atoms are being affected
by thermal fluctuations from the underlying material.

When a system is not perfectly isolated, like the moon rock, raw information can
flow to or from the environment. Some information is lost and other information is
gained. Micro-bombardment has perhaps altered the moon rock so that some chemi-
cal information about its earlier constitution is no longer available. That information
may have moved out into the environment carried by the raw information in photons
and surface vibrations, for example. Moreover, information present in the rock now
perhaps includes historical information about the environment recorded through the
interactions with the environment over millennia. To the trained lunar geologist, the
fine structure still visible in the sample might preserve a record of a previous cat-
aclysm that occurred 4 billion years ago. So some raw information about earlier
events in the solar system has been transferred to and stored in the rock. The in-
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formation in the rock may exclude a vast number of historical scenarios. The mere
existence of the moon rock means that many conceivable historical sequences, such
as the sun exploding or a Mars-size planet colliding with the moon, did not occur.

Quantum mechanics makes separability of physical systems even more challenging–
we can only point to some of the issues here. Even an isolated system will generally
be in a quantum superposition state. Strictly speaking, such a system has no val-
ues of dynamical variables like position, momentum, spin, or energy, until one of
these is measured. An isolated need not be in an energy eigenstate, for example–in
which case it is inaccurate to say that it “has” a particular value of energy. More-
over a physical system can be quantum mechanically entangled with the some or
many parts of the environment. No complete description of the quantum state of
one part of an entangled system can be given. Some quantum information is shared
with other subsystems and is not local to any.

Is information conserved? If the physical system is not completely isolated,
then information is clearly not conserved in the system itself. As discussed above,
information can flow into or out from the system and so we cannot from the current
information reconstruct the past state of the system. It may be possible then for two
different past system states to evolve into one present state, for example two differ-
ent levels of excitation might relax to a single ground state. Many-to-one dynamics
are possible because of the environment which can, in this case for example, absorb
the excitation energy and with it information about the prior state. Of course it may
be that enough raw information is retained that a partial reconstruction is possible.
When we use a physical system as a memory device, it is a requirement that some
important aspects of the past can be inferred from the current state, e.g., what was
the bit most recently recorded?

In classical physics, if we imagine a complete description of an entirely isolated
system, or of the whole universe conceived as an isolated system, then raw informa-
tion is indeed conserved by the physical law. The classical mechanical worldview
of the world as reversible machinery in motion was famously expressed by Laplace
describing an “intellect” subsequently known as Laplace’s Demon:

We may regard the present state of the universe as the effect of
its past and the cause of its future. An intellect which at a certain
moment would know all forces that set nature in motion, and all
positions of all items of which nature is composed, if this intel-
lect were also vast enough to submit these data to analysis, it
would embrace in a single formula the movements of the great-
est bodies of the universe and those of the tiniest atom; for such
an intellect nothing would be uncertain and the future just like
the past would be present before its eyes. 1

Because the microscopic laws of classical physics are reversible, we can solve
the equations of motion forward or backward in time. In this sense, for an isolated

1 Pierre Simon Laplace, A Philosophical Essay on Probabilities, 1814
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system the raw information is conserved. No new raw information is generated in-
ternal to the system, and in virtue of being isolated, no raw information flows in
or out. For example, an isolated container of classical gas molecules has a current
state consisting of the positions and momenta of all the molecules. From this raw
information about the present, the past positions and momenta can be inferred by
solving the equations of motion backward in time.

Quantum mechanically for a fully isolated system, information is conserved by
unitary evolution of the quantum state vector and this is time-reversible. One impor-
tant caveat is that measurement of any quantity (which would presumably require
interaction with another system) breaks the isolation and thus destroys the reversibil-
ity. Yet, measurements seem to happen all the time independent of humans, though
we do not understand in detail what is required to produce a measurement event
rather than just entanglement of the target system with the measurement system. 2

Measurement, which can be triggered by small environmental interactions, forces
a quantum system to choose a new state–an eigenstate of the operator that corre-
sponds to the measured quantity. New raw information, in the form of measurement
outcomes, is created, and old quantum information is destroyed.

1.2 Encoded information

By the term “information” we most often mean what we refer to here as encoded
information.” Consider a clay tablet on which someone has impressed arrow-shaped
indentations in different orientations, or a row of capacitors each of which holds ei-
ther zero charge or +Q, or a street sign on which has been painted the word “Stop”
or “Slow.” The raw information consists of the precise shape of the tablet with its in-
dentations, the presence or absence of electrons on each capacitor, the configuration
of paint pigment on the sign. The encoded information is also present, but not as
additional raw information. Encoded information supervenes on the physical, raw
information, through another element—the encoding scheme.

An encoding scheme consists of a partition of the possible states of the phys-
ical system, the raw information, and an association between each element of the
partition and abstract symbols. A particular arrangement of paint pigments is asso-
ciated with the symbol “S”. The partition is broad enough to include variations in
the precise shape of the pigment. The binary “1” might be associated with a certain
amount of positive charge stored on the capacitor, give or take a margin of error.
Some regions of the systems state space have no associated symbol—the pigment is
in an indiscernible pattern, or the amount of charge is too low to be clearly signif-
icant. The usual encoding scheme partitions the space of possible raw information

2 This is the famous Measurement Problem in quantum mechanics. The term is immediately mis-
leading because prior to the measurement, a quantum system does not in general have an underly-
ing value of the measured result.
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states into areas representing symbols in a generalized alphabet, and a broad region
representing invalid, meaning nothing is encoded there.

Encoded information is deliberate. Encoded information is therefore observer-
dependent. For the information to be accessible requires access to both (a) the phys-
ical system containing the raw information, and (b) the encoding scheme to map
the raw information onto a set of symbols. One or two lanterns are in the bell tower.
The raw information includes their detailed construction and precise position, poten-
tially down to the atomic level. The encoding scheme consists of the mapping “one
lantern” → “The British are coming by land” and “two lanterns” → “The British
are coming by sea.”

If one lacks knowledge of the encoding scheme, encoded information is at least
unavailable information and some would argue it is not information at all, even
though the raw information is present. Prior to discovering the Rosetta stone, Egyp-
tian hieroglyphics were just raw information–patterns on walls.

A standard disclaimer: information theory is not about the semantic content of a
string of symbols, it is only concerned with the “size” of the container. Consider the
two sentences below.

That man wears red hats.

All men wear black hats.

The second sentence conveys much more information than the first, in the colloquial
sense of meaningful and consequential knowledge. But because both sentences con-
tain the same number of symbols, they have the same information theoretic size (at
least prior to any further possible compression). Neither are we concerned with the
truth or falsity of the information as it is connected with the way things actually are.
The second sentence is certainly false. Information theory is not concerned with
categories like false information or disinformation.

Reversibility of an operation on bits (a computation) is a mathematical feature of
the operation. If one can correctly infer from the output of the operation what the
input symbols were, then we say the process is logically reversible. The Landauer
principle connects logical reversibility (input symbols can be inferred from output
symbols) to physical reversibility (the physical process can be run backwards to
reconstruct the input state). If raw information is transferred from the computational
system to the large and complex environment, it cannot be reconstructed and so has
been irreversibly lost.

Biological information. DNA encodes information for the synthesis of pro-
teins with an encoding scheme involving “codons” composed of three-nucleotide
sequences. It is now common to describe many processes in living systems as infor-
mation systems–signaling, replication, sensing, transduction, etc. Information here
is usually encoded in structure (as in DNA or RNA) or through the varying concen-
tration of specific molecules. This is, of course, just a way of speaking at a higher
level about raw information in chemical reactions. We normally understand this to
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be information conceived by analogy to that deliberately encoded by humans, which
is taken to be encoded information sensu stricto.

1.3 Present strategy

Our goal here is to connect what we know about the evolution of raw information,
guided by the physical law, and the encoded information that supervenes on it. The
particular focus here is on the Landauer Principle that connects a logical erasure
of encoded information with the physical transfer of heat to the environment. Why
should that be? Both the logical process and the physical process involve the concept
of entropy. But entropy was defined as a physical thermodynamic and statistical me-
chanical quantity by Clausius, Boltzmann, Gibbs and von Neumann, and only later
defined by Shannon as an information theoretic quantity. Some argue that informa-
tion theoretic entropy has nothing to do with thermodynamic entropy so that the
Landauer Principle makes a category error simply because the two words are iden-
tical. [1] Norton argues that mistaking unknown bits for a “bit gas” and thereby
confusing the two entropy concepts is simply silly. [2]

To disentangle this requires several steps. The next section attempts to articu-
late carefully the concept of probability, which has both information theoretic and
physical uses. Section 3 introduces the Shannon notion of entropy, here called the
Shannon measure of information (SMI) as a measure on a probability distribution.
The Jaynes principle of maximum entropy is then used for the information the-
oretic problem of constructing a probability distribution given limited knowledge
about outcomes that can be expressed as mathematical constraints. The results are
of immediately familiar to anyone acquainted with statistical mechanics. Section 4
follows Jaynes path in making the connection to physics. This can then be applied
to the Landauer Principle as discussed in Section 5. A key result here is a concrete
and specific calculation of entropy and heat flow in a minimal physical system. The
quantum formulation in Section 6 requires extension of the basic formalism to open
systems. The connection to Shannon entropy is made both through the usual von
Neumann entropy and through the less-familiar “entropy of outcomes.” The quan-
tum calculation of free expansion of a gas is revealing in this regard. By grounding
statistical mechanics explicitly in the information theoretic notion of entropy, we
can firmly establish the connections that make the Landauer Principle clear and
compelling.

2 Probability

We first consider two classical systems.
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System 1: A fair die. A fair six-sided die is randomly cast on a table top. The pos-
sible results are 1,2, ...,6, and the probability of obtaining each result are identical.

P1 = P2 = P3 = P4 = P5 = P6 = 1/6 (1)

System 2: An ideal gas. We consider a monatomic gas with a very large number
N of non-interacting atoms (e.g., argon) in a volume V with pressure P. Let us
assume the system is in thermal contact with a heat bath with temperature T . A heat
bath is a system with thermodynamically many degrees of freedom that has long-
since stabilized all average measures. If the accessible microstates of the system are
enumerated and have energies Ei, then the well-known Boltzmann result (to which
we will return) is that the probability of finding the system in state j is

Pj =
e−E j/kBT

∑
j

e−E j/kBT . (2)

It is worth noting a few features of this basic description. We take it as understood
in the classical case that at any particular time a specific system indeed has a specific
state, and that the state which follows is determined by the previous state and the
physical law. At the moment I toss the die into the air it has a certain position,
velocity, and angular momentum about some axis. Knowing that, as well as perhaps
the details of the air currents in the room and the landing surface properties, one
could imagine calculating the precise trajectory including any bouncing on the table.
The resulting motion, right through until the die settles on the surface, could in
principle be calculated, and was certainly determined at the moment the die left my
hand.

Similarly, for the ideal gas: the positions and momenta of all the N particles
constitutes the actual, objective, state of the system at a particular time. There is a
“fact of the matter” as to what the microstate of the gas (this liter of argon on my
desk) is right now. It is a practical impossibility for us to measure all these dynamical
quantities, particularly at the same instant, but they presumably exist.

We use the language and calculus of probabilities because we lack a complete
knowledge of the state and its change over time. The probabilities are therefore
“observer-relative.” A robotic die tosser with fairly precise launching techniques
might be able to predict, say, that the outcomes would more likely be a 4,5 or 6. An
observer who knew more microscopic information about the ideal gas could reason-
ably assign a different set of probabilities to the microstates of the system. Equation
(2) represents the probabilities that any observer who knew only the macroscopic
quantities T , N, and V , should assign to the microstates of the specific system in
front of them. It is not in that sense "subjective." It does not depend on who the
observer is or on their emotional or mental state.

Laplace’s demon, who knows the position and momentum of each particle in the
universe, has no need of probabilities. The physical law as understood in classical
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mechanics enables the computation of all future states from a complete description
of the present state. It is a practical impossibility to make such a calculation, given
human limitations and also the limitations of the physical resources available in
the universe for computation. But the point of principle is important. The classical
universe is simply solving its equations of motion forward in time.

We are adopting a Bayes/Jaynes approach here that probabilities are to be under-
stood as numerical expressions of partial knowledge, incomplete information, of a
present state, or a future event. A probability P = 1 represents certain knowledge
that the event will occur, a probability P = 0 means the event certainly will not oc-
cur, and a real value between 1 and 0 represents greater or lesser partial knowledge
that the event will occur. Equations (1) and (2) specify the probability for a future
measurements of the state of each system.

On the classical account, a measurement of the system (e.g. looking at the die)
reveals an existing fact of the system’s state that was true the instant before the mea-
surement occurred. Therefore, we do not need to distinguish between a the prob-
ability of a measurement event having a certain outcome and the system having a
certain state. We can equally well talk about the probability of the die being on the
surface with a 5 showing and the die being seen to be a 5, or revealed to be a 5 when
a shaker cup is lifted. The quantum account, discussed in Sec. 6, is different.

Confirmatory evidence that a probability distribution was correct would be the
relative frequencies of many such measurements on many essentially identically
prepared systems. For the die of (1), that would take many tosses of a fair die. For
the thermodynamic case of (2), that means with the same macroscopic variables—
an ensemble average in the limit of many trials.

Another feature of this probabilistic analysis is revealed in the phrase “accessible
microstate.” There is always a background knowledge of the system which precedes
the assignment of probabilities and limits the set of possibilities considered to what
we will call the accessible region (AR). In the case of the die, for instance, we are
assuming that the die will in fact land on the table and have a face up. We decide to
ignore other possible sequences of events. Perhaps it falls off the table, bounces and
lands tilted up against a table leg with a corner of the die facing upward. Perhaps a
meteor impacts the table with catastrophic results before the die can land. For the
gas, we assume of course that the container doesn’t leak, that a passing ultra-high
energy cosmic ray doesn’t deposit extra energy in the gas, etc. A set of extremely
low-probability possibilities are removed from consideration at the outset, normally
without comment. The AR must be kept in mind because what constitutes “complete
ignorance” about the outcome is, as in the case of the die above, uniform probability
over the AR, not uniform probability over every conceivable outcome. 3 We always
begin some background knowledge.

3 We will not wade into the subtler issues involved, but refer the reader to Chapter 12 of Jaynes. [3]
The quantum treatment in Sec. 6 actually makes the choice of basis explicit, and therefore clarifies
the question: "Ignorance with respect to what?".
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Fig. 1 Schematic of accessible region (AR) of state space. Circles represent possible system state
and line represent possible transitions. Some state, those shown outside the dotted line, are reason-
able to practically ignore because they are either too rare or difficult to access.

3 Information theory

3.1 SMI: The Shannon measure of information

Claude Shannon, considering the transmission of symbols in communication, intro-
duced a measure on a probability distribution which he called the entropy. Using
the term “entropy” was well-motivated, and was the course of action advised by von
Neumann, but it has resulted in some confusion. We will adopt the strategy of Ben
Naim and call this measure the Shannon Measure of Information (SMI). [4, 5]

The SMI characterizes a probability distribution P = [P1,P2, ...,Pk, ...,PN ] by a
real non-negative number, measured in bits, computed from the distribution.

SMI[P] =−
N

∑
k=1

Pk log2(Pk) (3)

The SMI is a measure of the the amount of information, in bits, that one is missing if
all one knows about the current state or future outcomes is the probability distribu-
tion P. If one outcome, say event 2, is certain, then P2 = 1 and Pk = 0 for all other
k. In that case the SMI is 0; there is no missing information. If all the probabilities
are equal, Pk = 1/N for all k and the SMI is log2(N) bits. If N is an even power of
2, this is clear: N = 4 corresponds to 2 bits missing; N = 8 corresponds to 3 missing
bits, etc.

Figures 2a and 2b show graphically the cases of a probability distribution among
8 outcomes for the case when the outcome is certain to be event 2
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P(2) = [0, 1, 0, 0, 0, 0] SMI = 0 bits, (4)

and when all outcomes are equally likely:

Puniform =

[
1
8
,

1
8
,

1
8
,

1
8
,

1
8
,

1
8
,

1
8
,

1
8

]
SMI = 3 bits. (5)

Figure 2c shows the case when the probability distribution is

P = [0.15, 0.20, 0.30, 0.15, 0.05, 0.05, 0.05, 0.05] SMI = 2.67 bits. (6)

The SMI is intermediate between the uniform N = 4, SMI= 2 and the uniform
N = 8, SMI=3 cases. With this probability distribution we know something about
which events are likely to occur. There is an 80% chance that the result will be
events 1–4, for example. We have somewhat less missing information that if we
only knew Puniform. It is convenient that SMI could also stand for “Shannon Missing
Information.”

3.2 SMI and the question game

To understand how the phrase “missing information” can have a precise meaning,
it is helpful to consider a variation of the game of twenty questions and see how
the SMI functions both to play the game and to make predictions. We consider the
Question Game in which a player called the chooser selects one of set of N num-
bered items and the player called the questioner asks a series of yes/no questions
with the object of deducing the index of the item chosen with the fewest number of
questions.

Suppose, for example, N = 8 and the chooser picks an item at random, i.e. the
probability for each choice is 1/8 as in Fig. 2b. One strategy for the questioner is to
ask “Is it 1?”, then “Is it 2?”, then “Is it 3?” and so on. On average the questioner
would ask N/2 questions before learning the choice. This is, of course, a poor strat-
egy.

The optimal strategy for a uniform probability distribution is the familiar bi-
nary search using repeated bipartitions. The questioner asks “Is the item in the set
{1,2,3,4}?”, and if the answer is yes, asks “Is it in {3,4}?”, and if the answer is no,
asks “Is it item 1?”, and thereby has determined the choice using only 3 questions.
This will work every time. The SMI of the uniform probability distribution over 8
choices, log2(8) = 3 bits, is the number of yes/no questions one needs to ask to de-
termine the choice using the optimal strategy. The amount of missing information
was initially 3 bits. With the answer to each question, the questioner received an
additional 1 bit of information, until finally there was no information missing and
the identity of chosen item was certain to the questioner.
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Fig. 2 Probability distributions and associated Shannon Measure of Information (SMI). (a) If ex-
actly one state has unit probability, then there is certainty about which state the system will be found
in and no information is missing; the SMI is 0. (b) The case of uniform probability for 8 possible
states has an SMI= log2(8) = 3. (c) In general the probability distribution reflects some missing
information, but less than complete ignorance. The amount of missing information is quantified by
the SMI.

Suppose the selector was not selecting entirely at random, but was making the
choice according the probability distribution of Equation (6) shown in Fig. 2c. We
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could imagine that the chooser is randomly drawing numbered balls from a large
container. Each ball as a number [1, ...,N] on it but there are more 3’s than 2’s and
so forth according to the ratios in (6). The questioner knows the probability distribu-
tion. The binary search as above is now not the optimal strategy. The set {1,2,3,4}
has a total probability of 80%, so asking the first question as above seems like almost
wasting a question—the answer is not providing as much information.

The optimal strategy is now as follows:

1. Let the set S be the set of possible items {1,2, ...,N} and Pk,k = 1,2, ...N be the
probabilities that each item is selected.

2. Consider all possible bipartitions of the set S into two non-empty sets, Sleft and
Sright.

For each bipartition S→
{

Sleft,Sright

}
:

a. Sum the probabilities of the individual events in each set and renormalize to
get two numbers: Pleft and Pright that sum to 1.

b. Calculate the SMI of the probability distribution for the bipartition Pbp =
[Pleft,Pright] using Equation (3).

3. Choose the bipartition with the largest SMI and ask the chooser the question:

“Is the item in Sleft?”.

4. If the answer is yes, replace S with Sleft.

If the answer is no, replace S with Sright.

5. Repeat from step (2) until there is only one item in the set S.

For our example using (6), an initial bipartition

S→{{1,2,3,5},{4,6,7,8}}

has an SMI of 0.88129 but

S→{{3,4,5},{1,2,6,7,8}}

has an SMI of 1.0, making the corresponding question a very productive question
whose answer yields a full bit of information.

Now we imagine the chooser and the questioner playing the game many times
with the same probability distribution P (we may suppose the numbered balls are
replaced as they are drawn). Many times the optimal bipartition of the remaining
set has an SMI of less than 1. Sometimes the questioner gets lucky and is able to
deduce the chosen item in 2 questions, and sometimes it takes 3 or 4. Over very
many games, what is the average number of questions required? One might have
hoped the answer would be SMI[P], but it is not quite that simple. In one simulation,
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an average over 50,000 games yields an average number of questions
〈
Nq
〉
= 2.70,

whereas the SMI is 2.67. The constraint is actually

SMI[P] <
〈
Nq
〉
< SMI[P]+1 (7)

which of course becomes relatively tight for large N.

We can interpret the series of yes/no answers in the game as 1’s and 0’s encoded
in a string stored in a binary register. (We will assume that we have compressed
the string using an optimal scheme–a Huffman code–so that common question se-
quences are encoded with fewer bits than rare sequences.) The average number of
questions is bounded by SMI[P]+1. Since the SMI need not be integer and we can
only have an integer number of bit positions in the register, we need need to round
up to the nearest integer. We conclude that the average size of a binary register
necessary to specify a particular item choice, given probability distribution P, is

N(binary register) = ceil(SMI[P]+1). (8)

The SMI is a quantitative measure of missing information. It is helpful to keep
in mind which party is missing the information. Who is missing the information?
The chooser is holding the item in her hand. She is not missing any information, for
her there is complete certainty about what the chosen item is and the SMI is 0. It
is the questioner who is missing the information and relying on knowledge of the
probability distribution to ask good questions. The SMI in this case is a measure of
questioner’s missing information about the item, when his information about which
item is chosen is incomplete and characterized by probability distribution P.

Jaynes makes this point about Shannon’s original problem of a sender transmit-
ting a message, encoded in a set of symbols, through a communication channel to
a receiver.4 The sender knows everything about the content of the message; there
is no probability distribution involved and no missing information for him. Prior to
getting the message, the receiver, by contrast, knows nothing about the content of
message, perhaps not even the language that the message will be in. Normally the
designer of the communication system does not know in advance what the specific
messages will be, but suppose the designer does know something about the message,
for example the language of the message and the probabilities of the occurrence of
each letter in that language. He can then use the SMI of that probability distribu-
tion to create an efficient encoding scheme (i.e., a data compression algorithm). The
SMI of the language characterizes the incomplete information of the designer of the
information system. If the designer knows more about the messages, the SMI is less
and he can make an even more efficient system. The sender has complete informa-
tion, the receiver has no information (yet), and the designer has partial information
characterized by a probability distribution and its associated SMI.

4 Jaynes [3], p. 634.
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3.3 Information gain

For the Question Game above, the SMI characterized the initial missing information
of the receiver when all he knew was the probability distribution P (Eq. (6), Fig. 2c).
If the receiver had no information at all, the probability distribution he would have
to use is just the uniform probability Puniform of Equation (5). We can therefore ask
how much information did he gain when he was given P. We define the informa-
tion gained from the knowledge of the probability distribution P as the difference
between the SMI (missing information) of Puniform and the SMI of P.

I[P] ≡ SMI[Puniform]−SMI[P] (9)

I[P] = log2(N)+
N

∑
k=1

Pk log2(Pk) (10)

We are here using the uniform probability distribution over the AR to represent com-
plete ignorance and asking how much information was gained by having been given
the probability distribution P. In information theory, this quantity is known as the
relative entropy of P with respect to P(uniform), or the Kullback–Leibler divergence
between the two. [6]

3.4 Shannon measure for continuous distributions

Can we define the SMI of a probability density P(x) defined for a continuous out-
come x?

A natural approach is to consider the SMI of a finite discretization of x ∈ [0,L]
at each point xk = k∆x. We note that the probability density P(x) will now have the
units inverse to the units of x. The probability of the event occurring in the small
interval of width ∆x around xk is Pk = P(xk)∆x. The SMI on this discrete set of
N = (L/∆x)+1 outcomes can be written

SMI[P∆x(x)] =−∑
k
(P(xk)∆x) log2[(P(xk)∆x)]. (11)

If we try to take the limit of this expression as ∆x → 0, however, this quantity
diverges.

Shannon suggested, but did not derive, the following expression, usually called
the differential entropy for a probability density P(x).

Sdiff[P(x)] =−
∫

P(x) log2[P(x)]dx (12)
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This normally converges, but turns out to have several problems if it is interpreted as
a direct analogy to the discrete SMI: (a) the units of the expression are not correct,
(b) it can be negative for some distributions, (c) it is not invariant under a change of
variables, and (d) it does not smoothly match the discrete case in the usual Riemann
limit of (11).

The fundamental problem with formulating the amount of missing information,
an SMI, for a continuous distribution is simply that a particular value of x from a
continuous range takes an infinite amount of information to specify. There are an
infinite number of yes/no questions required to specify an arbitrary point on the real
axis. So the answer to the question “How much information is missing if all I know
is the continuous probability distribution P(x)?” turns out to be an infinite number
of bits.

It can be argued that for any physical system, the precision of measurement (or
quantum effects) limit the distinguishable values of the measurable x to a finite
discrete set, so (11) is always the relevant measure.

We can, however, clearly establish the related measure I[P(x)] for a continuous
distribution by analogy with (9). We take the probability density reflecting complete
ignorance to be the uniform distribution on the accessible regions x = [0,L] to be
Puniform(x) = 1/L. We can then define the information gain of P(x) for both the
continuous probability density and its finite discretization.

I[P(x)] = Sdiff[Puniform(x)]−Sdiff[P(x)] (13)

I[P∆x(x)] = SMI[P∆x
uniform(x)]−SMI[P∆x(x)] (14)

Taking the difference removes the problems mentioned above and (14) is numer-
ically equivalent to a trapezoidal integration of (13) with a discretization of ∆x.

3.5 Jaynes maximum entropy principle

Probability is an expression of incomplete information. Given that we have some
information, how should we construct a probability distribution that reflects that
knowledge, but is otherwise unbiased? The best general procedure, known as Jaynes
Maximum Entropy Principle (better would be: Maximum SMI Principle), is to
choose the probabilities pk to maximize the SMI of the distribution, subject to con-
straints that express what we do know.
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3.6 The microcanonical ensemble

The simplest case is the one in which we know nothing but the rule for probabilities–
that they must add up to 1.

Let us define the Shannon measure with the natural logarithm as the base, a sim-
ple matter of multiplying by log(2) (we take log(x) to denote loge(x)). The quantity
of missing information represented by SMI is then measured in nats rather than bits.

SMI ≡ log(2)SMI =−∑
k

pk log(pk) (15)

We want to write a probability density P = {pk} that maximizes SMI(P) subject
only to the constraint:

∑
k

pk = 1 (16)

Using the method of Lagrange multipliers we construct the Lagrangian

L (P,λ0) =−∑
k

pk log(pk)− (λ0−1)

(
∑
k

pk−1

)
(17)

where 1− λ0 is the Lagrange multiplier.5 We maximize L by setting the partial
derivatives with respect to each of the pk to 0. The equation ∂L /∂λ0 = 0 just
recovers Equation (16).

∂

∂ pk
L (P,λ0) =− log(pk)−1+1−λ0 = 0 (18)

The solution is then
pk = e−λ0 (19)

which is true for all k, so each probability is the same and, using (16) again, we have

∑
k

pk = ∑
k

e−λ0 = Ne−λ0 (20)

e−λ0 =
1
N

(21)

λ0 = log(N) (22)

pk =
1
N
. (23)

Thus our intuition that if we know nothing about the probability distribution we
should make all probabilities equal is recovered from the maximum entropy princi-

5 The factor (1−λ0) is used instead of λ0 to simplify the form of the result.
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ple. The value of SMI at this maximum is:

Smax
MI = −∑

k

1
N

log(
1
N
) (24)

Smax
MI = log(N) (25)

The reader will recognize in Equation (25) the famous Boltzmann expression for
entropy (S= kb logW ), without the Boltzmann constant. It also connects very simply
to the case in Fig. 2b where for N results with equal probability we have an SMI=
log2(N) = 3 bits, the size of the binary register needed to specify one outcome, and
the average number of yes/no questions needed to determine one result.

In terms of choosing balls from an urn our picture is this. An urn contains a
very large number of balls (many more than N), each of which is labeled with a
number k ∈ {1,2, . . .N}. There are the same large number of balls with each index,
so drawing a ball randomly from the urn picks one of possible results with equal
probability.

3.7 The canonical ensemble

Here we consider that each ball in the urn has written on it both the index k
and a value of another quantity we will call A. The values of A are denoted
[a1,a2,a3, . . .aN ]. Every ball with a 1 on it has a1 written on it, and so for each
of the other indices. Suppose that we know the average value of the quantity A, de-
noted 〈A〉. By average here we mean simply an average of the values obtained from
many repeated drawing of balls from the urn. What is the optimal (maximum SMI)
probability distribution pk that will yield the given average 〈A〉?

Following the maximization procedure, we maximize SMI (15) subject to the two
constraints:

1 = ∑
k

pk (26)

〈A〉 = ∑
k

pkak. (27)

We construct the Lagrangian, which now has Lagrange multipliers λ0 and λ1

L =−∑
k

pk log(pk)− (λ0−1)

(
∑
k

pk−1

)
−λ1

(
∑
k

pkak−〈A〉
)

(28)

Maximizing L with respect to each pk, we obtain:
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∂L

∂ pk
=− log(pk)−1+1−λ0−λ1ak = 0 (29)

with the result
pk = e−λ0e−λ1ak . (30)

We define
Z ≡ eλ0 (31)

or
λ0 = log(Z) (32)

We call Z the partition function. The probabilities can therefore be written

pk =
e−λ1ak

Z
. (33)

From the constraint (26) we require

∑
k

pk = 1 =
1
Z ∑

k
e−λ1ak (34)

so
Z = ∑

k
e−λ1ak (35)

and

pk =
e−λ1ak

∑
k

e−λ1ak
(36)

which is the well-known Boltzmann distribution.

If we take the logarithm of Z we obtain a way to express the constraint that the
average value of A is fixed.

∂

∂λ1
log(Z) =

(
1
Z

)
∂

∂λ1
∑
k

e−λ1ak (37)

=

(
1
Z

)
∑
k
(−ak)e−λ1ak =−〈A〉

hence:

〈A〉=− ∂

∂λ1
log(Z). (38)

We define

F ≡− 1
λ1

log(Z). (39)
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Now we can substitute the probability distribution (36) in the resulting probabil-
ity distribution to evaluate the value SMI at this maximum.

Smax
MI = −∑

k
pk log(pk)

= − 1
Z ∑

k
e−λ1ak log

(
e−λ1ak

Z

)

= − 1
Z ∑

k
e−λ1ak

[
log
(

e−λ1ak
)
− log(Z)

]
= − 1

Z ∑
k

e−λ1ak(−λ1ak)+
1
Z ∑

k
e−λ1ak︸ ︷︷ ︸
1

log(Z)

= λ1
1
Z ∑

k
e−λ1ak ak + log(Z)

Smax
MI = log(Z)+λ1 〈A〉 (40)

Notice the contrast between (40) and (25). For the case with no constraints, the
maximum SMI was log(N). The term log(Z) in (40) is the sum over the N expo-
nentials shown in (35), which rapidly decrease in magnitude. This term log(Z) has a
correspondingly much smaller value than log(N); the missing information is much
less. Equation (25) is recovered from (40) when λ1 = 0 and the distribution is again
uniform.

Writing Equation (40) in terms of F we obtain

F = 〈A〉− 1
λ1

Smax
MI . (41)

As an example, take the case of N = 8 and let the values of A be

a = [ 0.0, 1.0, 1.3, 2.1, 2.8, 3.4, 4.0, 6.0 ]. (42)

Suppose we know that 〈A〉= 1.54. The probability distribution pk which maximizes
SMI is the exponential distribution (36) with λ1 = 0.4. This is the probability which
represents just the known facts: the probabilities must add to one and the average
value of A is given. Figure 3 shows the probabilities pk associated with each of the
values of ak.

There is a one-to-one relationship between λ1 and 〈A〉 given by Equations (27)
and (36) and shown in Fig. 4. As λ1 becomes large, the probability accumulates in
the lowest values of A. When λ1 = 0 we recover the uniform distribution. A large
negative λ1 results in more probability at the higher values of A. If all that is known
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is 〈A〉, one must just read off the associated λ1 from Fig. 4 and assign the probability
distribution appropriately using (36). Any other probability distribution would im-
plicitly assume knowledge one does not actually have–it would put in an incorrect,
if unintentional, bias. (Tribus6 calls the Lagrange multiplier λ1 the “temper” of the
distribution, an act of dramatic foreshadowing. [7] )

-1 0 1 2 3 4 5 6 7
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0.05

0.1

0.15

0.2

0.25

0.3

Fig. 3 The probability distribution pk which maximizes the Shannon entropy. In this ex-
ample we assume that each possible outcome of the quantity A is in the set a =
[ 0.0, 1.0, 1.3, 2.1, 2.8, 3.4, 4.0, 6.0 ]. The distribution shown is the one that maximizes the
Shannon information theoretic entropy SMI , subject to the constraint that the average outcome 〈A〉
is known to be 1.54. The result is a Boltzmann distribution (36) with the Langrange multiplier λ1
(see (28)) equal to 0.4. This probability distribution uniquely captures only the known informa-
tion. Any other distribution with the same 〈A〉 would implicitly, and incorrectly, represent more
knowledge than simply knowing the average.

The procedure above can straightforwardly be extended to the case when each
result is labeled with the values of additional quantities that characterize the out-
come. If we have another quantity B with values bk and a known average value 〈B〉,
then we would obtain the corresponding exponential distribution with an additional
parameter λ2.

pk =
e−(λ1ak+λ2bk)

∑
k

e−(λ1ak+λ2bk)
(43)

with
Z = ∑

k
e−(λ1ak+λ2bk) (44)

and

6 Myron Trebus’s thermodynamics text for engineers was an early attempt to popularize Jaynes
grounding of the field on Shannon information theory.
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Fig. 4 For the example shown in Fig. 3, the expectation value (average) of the quantity A is shown
as a function of the Lagrange multiplier λ1. Equations (27) and (36) fix the relationship between
these quantities When λ1 is positive, the probability distribution is weighted toward small values
of A. When λ1 is negative, the probability distribution is weighted toward large values of A. When
λ1 is 0, the probability is uniform for all values of A.

〈B〉=− ∂

∂λ2
log(Z). (45)

Smax
MI = λ1 〈A〉+λ2 〈B〉+ log(Z) (46)

The extension to any number of such quantities proceeds in the same way.

4 Classical statistical mechanics

We now turn to the application of the previous section to physical systems. The
main results of the previous section are familiar mathematical forms from statistical
mechanics. We consider now a physical system in equilibrium with a much larger
system and apply the analysis to derive thermodynamic results. It will then be pos-
sible to see how to extend the analysis to metastable memory systems and dynamic
systems far from equilibrium.
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Fig. 5 A physical system A and very large system B in thermal contact so that energy can flow
between them. The larger system B acts as a heat bath. In addition, Sect. 4.2 considers the case of
diffusive contact, in which both energy and particles can be exchanged between the systems.

4.1 Statistical mechanics of the canonical ensemble

Equilibrium with a thermal bath. Consider a physical system A in thermal contact
and equilibrium with a second physical system B as shown schematically in Fig. 5.
By thermal contact we mean that the two systems can exchange energy with each
other. By equilibrium we mean that whatever transients occurred when they were
put in contact are now over and the expectation value of all physical quantities are
now time-independent. That this happens is based on our empirical experience of
the physical world. System B will represent a thermal bath with very many (e.g.,
1023) degrees of freedom.

Suppose A can exist in N states with energies [E1,E2, . . .Ek, . . . ,EN ] and similarly
for the bath B. We allow that different states k and j may have the same energy. The
energy Ek of each state plays the role of the label on each ball ak in urn described
in the previous section. The energy of neither A nor B is fixed because energy can
fluctuate between them. Because of the fluctuations in energy, system A can be
found in states with different energies at different times. The probabilities of finding
system A in the kth state with energy Ek are denoted PA = [p1, p2, . . . pk, . . . , pN ]. We
define the average energy UA = 〈E〉A and UB = 〈E〉B for each system.

The key assumption connecting information theory to physical systems is this:
We assume the probability of finding the physical system in the state Ek is the same
as the probability of randomly selecting from a set of Ek’s with a probability distri-
bution which maximizes the SMI for each system, given the constraints. Here that
the constraint is that the average energy is U .

The probabilities for each physical system are therefore given by the Boltzmann
probability distribution, Equation (36), which we derived from applying Jaynes
Principle, a purely information theoretic result.



26 Craig S. Lent

p(A)kA
=

e−λ
(A)
1 E(A)

k

∑
kA

e−λ
(A)
1 E(A)

kA

(47)

p(B)kB
=

e−λ
(B)
1 E(B)

k

∑
kB

e−λ
(B)
1 E(B)

kB

(48)

Note that λ1 has the units of inverse energy. From (27) we have

UA = ∑
kA

pkA E(A)
kA

(49)

UB = ∑
kB

pkB . E(B)
kB

(50)

We now define the thermodynamic entropy S(U) of each physical system, A or
B, as kB log(2) times the maximal SMI.

S(U)≡ kB log(2) SMImax ≡ kBSmax
MI (51)

The entropy S is a thermodynamic quantity defined at equilibrium. The SMI, by
contrast can be calculated for any probability distribution whatsoever. In words, (51)
says:

The value of the thermodynamic entropy S(U) is kB log(2) times the amount
of missing information in the probability distribution that maximizes the (in-
formation theoretic) SMI, given the constraint that the average energy is U .

The entropy is a so-called state function. It depends on U , the average energy but
is not determined by the history of the system prior to coming to equilibrium (we
can extend the dependence to other state variables like N and V ).

The conversion factor between the SMI (in units of bits) and the entropy S (in
units of energy/temperature) is kB log(2). We can think of this as the entropy as-
sociated with 1 bit of missing information. The factor log(2) simply converts the
base of the logarithms from the bit-oriented log2 to the more conventional natural
logarithm. The Boltzmann factor kB reflects the historical and convenient choice of
a unit for temperature (which we will introduce below) in Kelvins rather than, say,
in Joules.

If the system A and the bath B are not strongly coupled together we can assume
that the entropy S (and SMI) for the composite A+B system is the sum of the entropy
for each system.

SAB = SA +SB (52)
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This would not be true, for example, if the state of B simply mirrored the state of
A. This lack of correlation (in Shannon’s terms, mutual information) is part of what
we mean by being a thermal bath or reservoir–it has a vast number of degrees of
freedom that are independent of the system degrees of freedom.

Conservation of energy in the composite A+B system gives us the constraint

UAB =UA +UB. (53)

Relying on identification of the thermodynamic entropy with the maximum value of
SMI from Jaynes principle, we can apply Equation (40) to each system:

SA = kB log(ZA)+ kBλAUA (54)
SB = kB log(ZB)+ kBλBUB (55)

Consider now a small energy fluctuation ∆U that increases the average energy of
A, and therefore must decrease the average energy of B by the same amount.

SAB = SA(UA +∆U)+SB(UB−∆U). (56)

We require that SAB be maximal under this variation and so expand each term to first
order.

SAB = SA(UA)+

(
∂SA

∂UA

)
∆U +SB(UB)+

(
∂SB

∂UB

)
(−∆U) (57)

Requiring that the first order change be zero then yields the stationary condition:(
∂SA

∂UA

)
=

(
∂SB

∂UB

)
. (58)

Using equations (54) and (55) to evaluate the partial derivatives, we find

λ
(A)
1 = λ

(B)
1 . (59)

At this point we define the temperature to be inversely proportional the Lagrange
multiplier λ1 associated with the average energy constraint.

1
kBT
≡ λ1 (60)

So (59) gives us that in equilibrium between the two systems

TA = TB. (61)

and, using (54) and (55) again, gives us
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1
T

=

(
∂S
∂U

)
. (62)

The Boltzmann distribution and the thermodynamic partition function for each
system are then given by

pk =
1
Z

e−Ek/kBT (63)

where

Z = ∑
k

e−Ek/kBT . (64)

The average energy U is given by

U = 〈E〉=− ∂

∂β1
log(Z) (65)

or

U = kBT 2 ∂

∂T
log(Z) (66)

The information theoretic expression in (41) now becomes the definition of the
Helmholtz free energy,

F ≡−kBT log(Z) (67)

and (40) becomes
F =U−T S. (68)

If we consider differential changes at constant temperature (and volume) we have

dF = dU−T dS (69)

which is a key thermodynamic identity. At equilibrium we have from (62),

dU = T dS (70)

or,

dS =
dU
T

, (71)

so at equilibrium dF = 0, that is, the free energy is at a minimum.

For a system in thermal equilibrium with a large heat bath the free energy is a
minimum . A large mechanical system that can dissipate energy minimizes its total
energy U , settling down to an energy minimum. The free energy F = U − T S is



Information and Entropy in Physical Systems 29

the corresponding quantity for a system in thermal equilibrium with a heat bath. It
reflects the interplay between lowering the energy and thermal excitation.

We note that Equation (71) is the original Clausius definition of entropy. Thus,
starting with the Shannon information theoretic definition of entropy (3) we have
arrived at both the Boltzmann expression (25) and the thermodynamic expression
of Clausius. The fact that the historical order was exactly opposite this logical order
has been one source of confusion.

External Work. The energy of each state of the system may depend on exter-
nally imposed parameters like the volume V , applied magnetic field B, an applied
electric field, etc. For example, for an ideal gas we take Ek = Ek(V ), then seek the
average value of the differential energy shift with volume. The shift is fundamen-
tally because the single-particle quantum energy levels move up in energy as the
volume is decreased. Classically, it suffices for us to note that a piston must apply
a force in the direction of its motion to squeeze a gas into a smaller volume, thus
doing positive work on the gas. First, we take the derivative of log(Z) with respect
to the volume.

∂

∂V
log(Z) =

∂

∂V ∑
k

e−Ek/kBT

∑
k

e−Ek/kBT =− 1
kBT

〈
∂Ek

∂V

〉
(72)

This average value of the energy shift, using the probabilities in (63) is then defined
to be the pressure.

p≡
〈
−∂Ek

∂V

〉
(73)

The minus sign is because when the volume is decreased the energy increases as
does the pressure. Using (72) we then have:

p =−
(

∂F
∂V

)
T
. (74)

Similarly, for the expectation value of the magnetization

M = −
(

∂F
∂B

)
T

(75)

and so forth.

Applying an external force to the system mechanically, electrically, or magnet-
ically, is another way to increase the average energy of the system. Equation (73)
can be written in terms of this shift.

dU =−pdV (76)



30 Craig S. Lent

This kind of direct transfer of energy from outside the system to, or from, the sys-
tem is called work. So there are two ways the average energy of the system can
be changed: by heat transfer or by work. Heat is the transfer of a certain amount
of energy Q accompanied by a change in entropy. To include both kinds of energy
change, we need to modify (70) to:

dU = dW +dQ. (77)

This is the first law of thermodynamics, the conservation of energy.

In the case of compressing the volume with a frictionless piston, for example,
dW = −pdV . We will be concerned in section 5 with doing electrical work. If a
voltage source transfers differential charge dq across a voltage difference V then,
neglecting the resistance of conductors, it does work

dW =V dq. (78)

We will interpret the symbol V as voltage or volume by context.

4.2 Statistical mechanics of the grand canonical ensemble

We can extend the application of the information theoretic results of the previous
section to the grand canonical ensemble by considering a system and bath both
comprised of particles. Up to now we did not need that assumption so the results
have even broader applicability. If in addition to energy, particles can flow between
the system and the bath, we can label states of the system with both energy Ek and
the number of particle Nk. The number of particles can fluctuate and in equilibrium
we have a constant expectation value 〈N〉. This constraint gives us a distribution
of the form in equation (44), where we now identify λ2 = −µ/kBT , defining the
chemical potential µ ,

pk =
e−(Ek−µNk)/kBT

∑
k

e−(Ek−µNk)/kBT
=

e−(Ek−µNk)/kBT

ZG
(79)

The constraint that the average particle number is 〈N〉 gives us, in analogy to (38):

〈N〉=− ∂

∂λ2
log(ZG) (80)

The corresponding free energy expression is obtained by the same procedure that
connected (40) and (41) to the free energy (67), now using (46) to yield

F =−kBT log(ZG) (81)
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and
F =U +µ 〈N〉−T S. (82)

The chemical potential µ is the driver for particle exchange between systems in
diffusive contact.

Non-interacting Fermions and Bosons. In the special case of a group of non-
interacting particles in thermal and diffusive contact with a reservoir at temperature
T , we can obtain the standard results for fermion and boson statistics using the
probability distribution (79), derived from the information theoretic result (44), and
the basic rules for state occupancy. For this case we consider a fixed set of single-
particle energy levels ei with the ith level occupied by ni particles. The total energy
of a particular configuration of occupancies will be

E = ∑
i

niei N = ∑
i

ni (83)

For fermions, we need only the fact that each level can have occupancy of either
0 or 1 but no greater. The partition function can be written in a factored form with
each factor corresponding to the possible occupancies of each level.

ZG =
(

1+ e−(e1−µ)/kBT
)(

1+ e−(e2−µ)/kBT
)(

1+ e−(e3−µ)/kBT
)
· · · (84)

= ∏
i

(
1+ e−(ei−µ)/kBT

)
(85)

The average occupancy of the jth level is then given by:

〈
n j
〉
=

(
0+1e−(e j−µ)/kBT

)
∏
i6= j

(
1+ e−(ei−µ)/kBT

)
∏
i

(
1+ e−(ei−µ)/kBT

) (86)

=
e−(e j−µ)/kBT

1+ e−(e j−µ)/kBT
(87)

〈
n j
〉
=

1
e(e j−µ)/kBT +1

. (88)

Equation (88) is, of course, the famous Fermi-Dirac distribution function

The factorization of the partition function and subsequent cancellation is a gen-
eral feature of composites of non-interacting systems. Each single-particle energy
level acts like a separate system in thermal and diffusive equilibrium with the reser-
voir.

For bosons, each level can be occupied by any number of particles.
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〈
n j
〉
=

e−(e j−µ)/kBT +2e−2(e j−µ)/kBT +3e−3(e j−µ)/kBT + · · ·
1+ e−(e j−µ)/kBT + e−2(e j−µ)/kBT + e−3(e j−µ)/kBT + · · ·

(89)

The denominator is a geometric series in x = e−(e j−µ)/kBT ) yielding 1/(1− x). In
terms of the same x, the numerator is S = x+ 2x2 + 3x3 + · · · . We note S− xS =
x+x2 +x3 + · · · , which is the geometric series minus 1 or S = x/(1−x)2. We arrive
at the Bose-Einstein distribution function:

〈
n j
〉
=

1
e(e j−µ)/kBT −1

. (90)

4.3 Exploring the system microstates

Consider a monatomic classical ideal gas (no interactions between particles) with N
particles of mass m in a volume V at temperature T in the dilute limit. The dilute
limit is when the density of particles is low enough that the average occupancy of
each energy level is much less than 1. In this case it makes no difference whether
the particle are fermions or bosons. A noble gas is well approximated this way.
The thermodynamic entropy S, and the corresponding SMI, are given by the Sakur-
Tetrode equation:

SMI =
1

kB log(2)
S(N,V,T ) = Nlog2

[
V
N

(
mkBT
2π h̄2

)3/2
]
+

5
2

N (91)

This equation can be derived from the Jaynes Maximum Entropy principle [5] or
from standard thermodynamics. Though describing a classical gas, the expression
contains Planck’s constant because it’s necessary to enumerate the smallest volumes
in phase space (limited by the uncertainty relationship) to give an absolute number.

For a liter of Argon gas at standard temperature and pressure, the SMI from (91)
is about 1023 bits. Recall that this is the average length of the binary register nec-
essary to specify all the accessible microstates of the gas. 7 The number of possible
microstates is therefore

Nmicrostates ≈ 2SMI = 2(1024) ≈ 10(1023). (92)

Let us imagine this liter of argon moving from one accessible microstate to another
according to its internal dynamics. We can imagine a binary register holding the
(compressed) index of the current microstate of the gas which keeps clicking from

7 Note that we assume that state indices (a series of 1’s and 0’s specifying each particular state)
are chosen in an optimal way, employing a so-called Huffman code, that uses fewer bits to specify
more probable states and longer bit sequences for rarer states. The average register length is the
average index length weighted by the state probabilities.
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one number to the next as the gas particle move from state to state. How much
time does it take to go from one state to another? Well, to change states requires
the atomic nuclei to move positions. Suppose the shortest time to move nuclear
positions establishes the “tic” of the clock at which point the microstate register
changes to record the next microstate index. We are looking for an upper bound
to the number of microstates explored in a given time, so we will take the shortest
possible clock tic, the light travel time across a nucleus Ttic ≈ 10−25 seconds. The
nuclei could hardly have changed positions faster than that. How many microstates
could the liter of argon have explored? The time since the big bang is Tuniverse ≈ 1018

seconds. An upper bound on the number of microstates that the liter of argon could
possibly have explored since the beginning of the universe is then

Nmicrostates explored ≤
Tuniverse

Ttic

=
1018s

10−25s
= 1043. (93)

Therefore, the fraction of the accessible microstates that could possibly have been
explored since the universe began is

Nmicrostates explored

Nmicrostates

=
1043

10(1023)
= 10(−1023+43) ≈ 10−(1023). (94)

This is an extremely small number. We conclude that any actual gas is visiting only
an extraordinarily small fraction of it possible microstates. The vast majority of
terms in the sums like the partition function represent states that have never been
realized by the system and will never be realized by the system.

The connection established by Jaynes using Shannon entropy (SMI) put statisti-
cal mechanics on a much firmer footing for both classical and quantum cases. But it
fair to wonder: why does this work so well in so many situations? We can view the
system averages, like the average energy, as time averages. Or we can view these
averages as ensemble averages over many systems with identical macroscopic prop-
erties but different microscopic configurations. In either case, the microscopic state
of a particular system is the result of its particular dynamics, the equations of motion
and its past history or initial state. The connection with information theory is fun-
damentally made by mapping one problem: (a) the physical process of dynamical
motion, onto a second problem (b) the statistics of selecting a ball with an energy
label on it from an urn with an optimal (maximum SMI) distribution of balls given
the average energy.

The number of balls in the urn that corresponds to the possibilities for the phys-
ical system is staggeringly large. Whatever sample we use for the average is, in an
important sense, a very small sample. We have just seen that the system state space
is vastly larger than it could explore in any reasonable time.

The probability distribution is determined by the physical dynamics (classical or
quantum) and yet those dynamics do not matter to statistical mechanics. Statisti-
cal mechanics is remarkably independent of mechanics. We know some dynamical
model systems pull systems into attractors rather than distributing them uniformly
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across state space. So the question becomes: what properties of real physical dy-
namical systems make them so amenable to very accurate description by selecting
“typical” states from the incredibly vast state space available? This is an active re-
search area. An example of sustained and sophisticated work on this issue in the
quantum thermodynamics is the work of Gemmer, Michel, and Mahler. [8]

5 The Landauer principle

The Landauer Principle (LP) asserts that for a physical system representing an in-
formation state, loss of one bit of information necessarily entails dissipation to the
environment of a minimum amount of heat equal to kBT log(2). If information is not
lost, there is no minimum amount of heat dissipation necessary.

Any logically irreversible operation, AND, OR, SUM, etc., involves a loss of
information in the sense that inputs cannot be logically inferred from the outputs.
The archetypal irreversible operation is erasure, so we will focus our attention on
that.

For specific devices the heat dissipation may, of course, be much more than the
fundamental minimum. Modern CMOS transistors operate with orders of magnitude
more energy dissipated by each transition. If the device and associated architecture
is designed optimally (adiabatic logic) it may be possible to lower the dissipation
by switching its state more smoothly and slowly. The Landauer Principle places a
fundamental lower limit on how much heat dissipation must occur, depending on
the amount of information that is lost.

We discuss three arguments for the Landauer Principle. The first, the many-to-
one argument is the one Landauer himself usually employed, though he most often
simply asserted the principle as self-evident. The second grounds the argument on
the Second Law of Thermodynamics. The third is a calculation on a minimal model
system. This has the advantage of being a mathematical result with clear assump-
tions and clear conclusions. Of course it is susceptible to the objection that there
might be another way of constructing a memory that would violate LP. Be that as
it may, it is very clarifying to see LP simply emerge from a simple calculation. It
also forces the issue of how to define the entropy of memory states that cannot be
equilibrium states, using the same approach as in Sec. 4.

5.1 The many-to-one argument

This argument for LP is based on the time-reversal symmetry of the physical law
at the microscale. We will consider a physical system that has three states (or re-
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gions of state space) that encode a binary 1, binary 0, or a null state holding no
information. Why not just use the two binary states? Choosing to define erasure as
‘set-to-zero’ results in a morass of ambiguity because we cannot physically distin-
guish the erasure process from the physical process of writing a 0. Consider the
erasure of a single bit of information that is represented by the physical system. Let
us assume that we do not know the value of the initial bit, 1 or 0, but need to create
with one protocol, a series of externally controlled operations, that will result in the
physical system being set to the null state.

This is shown schematically in Fig. 6. The proposed protocol would be such that
given an initial physical configuration of the system that corresponds to either a 0
or a 1 bit, the protocol would be such that the physical system would evolve in time
under the relevant physical law to the state representing the null bit, as shown in the
figure.
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Fig. 6 The many-to-one quality of bit erasure to a null state. A general-purpose physical erasure
procedure would have to be able to take either a 1 or a 0 state and move it into the null state. It
would have to be the same procedure irrespective of the initial state and so work on an unknown bit.
Reversing the temporal sequence of the procedure should be possible because the microscopic laws
of physics are reversible and one-to-one. There cannot therefore be a unique backward evolution
that would restore the state to its original 1 or 0.

But, the LP arguments objects, something like Fig. 6 cannot occur. If it did, then
one could start at the null state, and run the protocol backwards. But which state
would then result, 1 or 0? Running a movie of the whole physical process backward
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should be a valid physical process. 8 Fundamental physics takes one (classical or
quantum) state forward in time to a unique future quantum state.

null

null

Fig. 7 The reality of an apparent many-to-one bit erasure process. (a) If a system appears to evolve
as in Fig. 6 under the reversible laws of physics, there must actually be another physical system
coupled to the bit-storing system. The physical state of the copy system is here represented on
the z-axis of the graph. (b) The auxiliary bit could be simply another physical system that makes a
copy of the original bit, for example a neighboring bit or one in a measurement apparatus. Having a
copy allows there to be a different physical process to erase a 1 than to erase a 0, shown as separate
curves in the figure, so the process is reversible. (c) Alternatively, the copy could be contained in
the large system of a thermal bath in contact with the bit system. The copy in that case is encoded
in the many degrees of freedom of the bath and is unrecoverable, leading to an irreversible erasure.
This process transfers entropy and heat to the bath. After erasure, the increased energy of the bath
means there are twice as many accessible bath states—those corresponding to the 1 bit having been
erased, and those corresponding to the 0 bit having been erased.

Therefore, if it looks like the situation of Fig. 6 is occurring, careful examination
will reveal that there is at least one other system involved that is not being properly
accounted for. As shown in Fig. 7a, there must be at least one other degree of free-
dom in the process, shown in the figure as the z-coordinate that, is different between

8 The weak interaction responsible for the decay of the neutral B meson has been directly shown
to violate time reversal symmetry. See J. P. Lees et al., “Observation of Time-Reversal Violation in
the B0 Meson System,” Phys. Rev. Lett. 109, 211801 (2012). We will restrict our considerations to
systems not involving B or K mesons, or the weak interaction.
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the two outcomes. The figure shows the z-coordinate of this auxiliary system ini-
tially at 0, and then moving to ±1 depending on the initial state of the system. The
auxiliary degree of freedom could be, for example, another system which is initially
in the null state and then put by the protocol in the same 1 or 0 state as the primary
system was initially. Of course, it could store the inverse state as well. In this case
the information of the enlarged system, including the original system and the copy,
has not lost the original information.

The auxiliary system could also be a very large complex system like a heat bath.
In this that case the bath, taken as a whole, retains, in an entirely inaccessible way,
a copy of the original bit. Again, the enlarged system+bath has not lost the infor-
mation fundamentally, thus preserving the time-reversibility of the system. There
are two different final states for the bath, one in which it has interacted with the
system in a 1 state and another in which it has interacted with the system in the 0
state. The SMI of the bath has now increased because, knowing only the macrostate
(P,V,T, . . .) of the bath, the information about the which bit was originally stored
in the system is missing. If the bath is at thermal equilibrium at temperature T , the
increase in thermodynamic entropy must be ∆S = kB log(2) with the corresponding
heat transfer to the environment ∆Q = T ∆S = kBT log(2) .

If we deliberately make a copy of the bit, physics does not prevent us from ex-
ploiting the fact that we have a copy to create different erase-one and erase-zero
protocols. We only are forced to pay the Landauer price if there is no copy, or if
there is one and we just fail to make use of it.

5.2 Argument from the second law of thermodynamics

Consider again the small system A in thermal equilibrium with a very large sys-
tem (a heat bath) B as shown in Fig. 5. We will assume that B has temperature T
and that system B is in thermal equilibrium with A and so has the same temper-
ature. We now suppose that there are a set of macroscopic controls that allow us
to externally manipulate the state of B. In examples that we will flesh out below,
these will be electrodes whose electrostatic potential we can change. For the often-
considered example of a perfect single-particle gas, manipulation is typically by
moving pistons and inserting and removing barriers. However it is accomplished,
suppose the entropy SA of A is reduced by the equivalent of one bit of information
(see Equation(51)). This is what we mean by erasure.

SMIA(final)−SMIA(initial) = −1 bit (95)
SA(final)−SA(final) = −kB log(2) =−∆Sbit (96)

The heat bath is large so that this has no effect on its temperature. We will again
assume that the entropy of the global system comprising A and B is the sum of the
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entropies of the components. The internal motion of the heat bath B is not correlated
to the motion of A.

SAB = SA +SB (97)

The manipulations of A we will assume do not perform a measurement of the mi-
crostate of B (or of A). We assume that the manipulation does not give us any new
information about AB. Therefore, the change in entropy of the global system must
be either zero or positive. The amount of information missing about the microstate
of the composite system AB can only increase since we (or anyone or anything doing
the manipulation) have not reduced the missing information about the microstate of
AB. This is the heart of the Second Law of thermodynamics.

∆SAB = ∆SA +∆SB ≥ 0 (98)

Therefore:

∆SB ≥ −∆SA (99)
∆SB ≥ kB log(2) = ∆S(bit) (100)

After the manipulation is complete, the bath system B is in an equilibrium state with
an increased entropy and an energy which is larger by at least the energy corre-
sponding to one bit.

dUB = T dSB ≥ kBT log(2). (101)

This is, as we have stressed, a fundamental minimum, not a characteristic energy.

5.3 Direct calculation of erasure in minimal system

Representing encoded information with the raw information of a physical system
involves both the dynamics of the physical system and the encoding scheme. The
encoding scheme maps areas of the accessible region of the physical state space of
the system to specific information states. Figure 8 represents a physical system with
three states for a single particle which can be in one of three state (dots) indexed 1,
2, and 3. The figure illustrates (a) the particle on the right representing a “1”, (b) the
particle on the left representing a “0”, and (c) the particle in the middle representing
a “null” state containing no binary information.

The encoding scheme for the three logical states can be defined in terms of the
probability of the occupancy of each state. The probability of the system being found
in state 1, 2, or 3, we denote [P1,P2,P3], and the energy of each state is denoted
[E1,E2,E3]. We can choose a threshold value Pth and encode a binary 1 by a state
with P3 > Pth, a binary 0 with P1 > Pth, and the null state with P2 > Pth. If no state
has probability above the threshold, the result is not yet a valid state. This in normal
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Fig. 8 Encoding information with three physical states. A particle can be in one of three dots
encoding (a) a logical 1, (b) a logical 0, or (c) a logical null state. The energy landscape and
probability density for each configuration are shown on the right. The solid circles represent the
probability of finding the particle on a particular dot. Dot 2 acts as the barrier for holding the
particle in the 1 or 0 state in (a) and (b). It acts as the low energy null state in (c). If the bit value
is an unknown 1 or 0, as in (d), then the energy landscape is the same as in (a) or (b), but we must
assign a probability distribution that is evenly divided between the 1 and 0 states.

in the switching regime. A robust system is designed so the logical state is valid and
unambiguous when it is read or copied.

The dots can represent abstract states of the system or literal dots. In the quantum-
dot cellular automata (QCA) scheme, they correspond to localized electron states on
literal quantum dots. We will treat the system completely classically in this section,
and will for convenience assume a single positive charge; the quantum treatment is
taken up in Sec. 6. Actual QCA three-dot cells have been fabricated in metal-dot
systems and synthesized in single-molecules. [9, 10] The threshold probability Pth
in these systems is not set simply arbitrarily, but only needs to be large enough for
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the next stage in logical operations to reset the bit strongly to a logical 1 or 0. Power
gain from stage to stage means that Pth could be 0.8, for example, and still be strong
enough to be effective as transmittable bit information.

We are interested in the process of bit erasure in this system when it is in thermal
contact with a heat bath of temperature T . We can control the energy of each state
with a set of control voltages capacitively coupled to each dot. The energetic land-
scape is shown in (a-c) of (8). We choose a 20kBT energy separation between low,
active (0 or 1) and high energy state. When state 2 is high, it acts as a barrier to hold
the 1 or 0 bit. When state 2 is low it acts as a well to hold the particle in a neutral
position. Thus the energy E2 acts a clock which can latch a bit by being raised, or
erase a bit by being lowered, returning it to the null state.

In the following, we will for convenience simply refer to the fully localized states:
P = [0,0,1] for the 1 state, P = [1,0,0] for the 0 state, and P = [0,1,0] for the null
state. Examining Fig. 8, reveals an important point:

A physical memory containing information cannot be in a
thermal equilibrium state.

The null state is an equilibrium state satisfying the Boltzmann distribution (63),
but neither the 1 nor the 0 state shown in Fig. 8a,b can be. The reason is clear
enough—to be a memory is to hold information stored at a previous time. The state
of a physical memory must depend on the past and not just the current tempera-
ture and applied voltages, and whatever macro constraints are relevant. A thermal
equilibrium state, by contrast, cannot depend on the past, but only on the present
conditions.

A physical memory must be in a long-lived metastable state. When E2 is high
it must create a barrier that is sufficiently opaque to hold the particle in the 1 or 3
states for the relevant timescale—microseconds to years. Beyond that, the details
of the physical dynamics that allow state transitions between states 1, 2, and 3, do
not concern us. The 1 and 0 states of Fig. 8a,b are certainly low energy states–the
problem is they preferentially occupy one active dot and not the other though it has
the same energy. We will assume in our example that the 20kBT barrier of E2 for
these states is indeed adequate to hold a 1 or 0 bit long enough to be a memory.
If a higher barrier was needed, it could be created by raising the potential on dot 2
further.

Entropy for a representing a known or unknown bit. For the 1 or 0 states
shown in Fig. 8a,b, we must take care to return to our derivation of the thermody-
namic entropy S in Sec. 4.1 and now include the fact that we know the value of
the bit. This should be treated as an additional constraint in the Jaynes maximum
entropy principle as developed in Sec. 3.7.

Consider the case when we know the bit stored is a binary 0. We again require
that the thermodynamic entropy be kB log(2) times the SMI of that probability distri-
bution which maximizes the Shannon entropy, subject to the given constraints. The
constraints are now (a) the probabilities sum to 1, (b) the average energy 〈E〉 =U ,
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and (c) P3 = 0. To find the maximum entropy distribution, we construct the La-
grangian, which now has the additional Lagrange multiplier λ3.

L =−∑
k

Pk log(Pk)− (λ0−1)

(
∑
k

Pk−1

)
−λ1

(
∑
k

PkEk−〈E〉
)
−λ3P3 (102)

The Lagrange equation obtained from requiring the extremum with respect to λ3,
∂L /∂λ3 = 0, yields simply P3 = 0 with λ3 arbitrary. We find the extremum of (102)
with respect to all the other Pk’s as before. The derivations of all thermodynamic
quantities derived in Sec. 4.1 go through as before, simply omitting occupancy of
dot 3 as a possibility. The Boltzmann distribution then applies as before to all prob-
abilities but P3. The thermodynamic entropy is then: S = kB log(2)SMI([P1,P2]). If
the bit was a 1, the constraint would be P1 = 0. In this straightforward way we can
apply the definition of thermodynamic entropy to include a state storing a known
bit, even though it represents a nonequilibrium metastable state—as it must.

By contrast, the state shown in Fig. 8d represents a reliably stored but unknown
bit. Since we do not know the value we must assign probabilities P = [0.5,0,0.5],
the probabilities we would get for the equilibrium state with the barrier high (hence
P2 = 0). The associated SMI = 1 bit (one bit of missing information) and the ther-
modynamic entropy S = kB log(2). In terms of thermodynamic quantities, it is indis-
tinguishable from an equilibrium state. But because the barrier is sufficient to hold
the unknown, but definite, bit for the relevant timescale, it should not be imagined
to be switching back and forth. It is not a “bit gas”, as Norton has characterized it
in [2], but is simply unknown.

The null state is an equilibrium state with entropy S = kB log(2)SMI[P] = 0.

Thermodynamic quantities during bit operations. We examine below three
basic operations: writing a bit, erasing an unknown bit, and erasing a known bit.
In each case we will manipulate the three dot energies in time, E1(t),E2(t),E3(t),
according to a protocol designed to accomplish the task. Unless otherwise noted, at
each point in time, we assume the system is in thermal equilibrium with a bath at
temperature T . We assume that the variation in time is at gradual enough that the
system is always in its equilibrium state, except as noted for a stored known bit.
Therefore, temporal dynamics play no essential role here and we use arbitrary units
spanning the event with t = [0,1]. During the operation we calculate the following
four thermodynamic quantities and plot them as functions of time:

1. The equilibrium probabilities P = [P1(t),P2(t),P3(t)] for finding the particle on
each dot.

Pi(t) =
e−Ei(t)/kBT

∑
k

e−Ek(t)/kBT
(103)
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The corresponding expectation value of the charge on the dot is qi(t) = Pi(t)e,
where e is the elementary charge. As discussed above, for a state representing a
known bit, we simply set P1 or P3 to zero.

2. The thermodynamic entropy is given by:

S(t) =−kB log(2)∑
k

Pk(t) log(Pk). (104)

3. The cumulative amount of heat transferred ∆Qbath to the thermal bath from the
beginning of the operation until the time t.

∆Q(t) =−
∫ t

0
dQ =−

∫ t

0
T dS = T (S(0)−S(t)) (105)

The sign is chosen so that net heat flowing from the system to the bath is positive,
and net heat flowing from the bath into the system is negative.

4. The work done on the system by the external control electrodes. The electrical
potential of each dot i is Vi(t) = Ei(t)/e, and the differential work done by the
external circuit is

dWi(it) =−Vi(t)dqi(t). (106)

The minus sign is because when the external circuit raises the dot energy, it actu-
ally decreases the dot charge because the thermal occupancy of the dot is reduced
via (103).

W (t) = ∑
i

∫ t

0
dWi(t ′) =−∑

i

∫ t

0
Vi(t ′)

dqi(t ′)
dt ′

dt ′ (107)

This does not include the work done by the voltage sources on the gate electrodes
that are capacitively coupled to the dots. That is most of the work that the external
circuit does, pushing charge and off the gate capacitors. This motion is dissipa-
tionless if we neglect the residual resistance of conductors; gradual charging and
discharging a capacitor can be done quasi-adiabatically. In any case, dissipation
in the gating circuit is not what we are interested in here. Therefore, the only
contributions to W are when charge flows on or off one of the dots in the system
itself.

The bit operation is determined by the temperature T and the control proto-
col defined by [E1(t),E2(t),E3(t)]. The calculations using (103)-(107) give us in
P(t),S(t),∆Q(t) and W (t).

Writing a bit. Starting from the null state we write a 0 bit using the protocol
shown in Fig. 9. The potential energy of dot 3 is raised first. Then the energy of
dot 2, which holds the particle initially, is ramped up smoothly. As E2 crosses
E1, Fig. 9c, the particle transfers to dot 1. When E2 reaches the high energy state,
E3 can be lowered and the particle is held in the state representing a bit value
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Fig. 9 Protocol for writing a 0 bit. (a) The initial state is null, with the particle on dot 2. (b) Energy
E3 is raised, biasing the system toward the 0 state. (c) The null state energy E2 is smoothly ramped
up, passing the energy E1. At this point the probability of occupying dots 1 or 2 are equal. (d) The
energy E2 is now high and the particle is localized in dot 1, representing a 0 bit. (e) E3 is lowered
again and the particle is held on dot 1 by the barrier. This is a memory storing a 0 bit in a long-
lived metastable state. A memory-storing state cannot be an equilibrium state; it must depend on
the past.

of 0, as shown in Fig. 9d,e. This is, as discussed above, a long-lived metastable
state in which E2 acts as a barrier trapping the particle in dot 1 forming a one-bit
memory.

Figure 10a shows the energies E1(t),E2(t), and E3(t). The probabilities of occu-
pancy of each state are shown in Fig. 10b. At each time 0 < t < 0.9 the probabili-
ties are thermal equilibrium values given by (103). For 0.9 < t < 1, the system is
in the nonequilibrium metastable state where P3 = 0 by assumption. Figure 10c
shows the thermodynamic entropy S(t) in units of kB log(2) (equivalent to the
SMI). As the levels E1 and E2 cross, the entropy increases because there is less
information about which dot the particle is on. At the crossing point the miss-
ing information is 1 bit. What we do not know is the details of the momentary
thermal fluctuations which have put the system in state 1 or state 2. Figure 10d
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(a)

(b)

(c)

(d)

(e)

Fig. 10 Thermodynamic quantities during the process of writing a 0 bit using the protocol of Fig.
9. Time is in arbitrary units from 0 to 1. The system is in thermal equilibrium from t = 0 to t = 0.9,
after which it is in a metastable memory state storing a 0 bit. (a) The dot energies E1,E2,E3 are
shown as functions of time. At t = 0.1, E3 is raised to bias the system toward the 0 state. The
energy of dot 2 is ramped up throughout the process, eventually forming a high barrier to hold the
stored bit information. At t = 0.9 the bias is removed and the bit is firmly latched by t = 1. (b) The
probabilities for dot occupancy P1,P2,P3 are shown as functions of time. (c) The thermodynamic
entropy of the system calculated from equation (104). The peak occurs as E2 nears and then passes
E1. Thermal excitations between dots 1 and 2 make the location of the particle 1 bit less certain.
The peak corresponds to the moment shown in Fig. 9c when E2 = E1. (d) The net heat transferred
to the bath ∆Qbath up to time t, calculated from equation (105). As E2 approaches E1, heat is drawn
from the bath; as E2 moves above E1, the heat energy is returned to the bath. (e) The net work done
by the control circuit on the system W , calculated from equation (107). When the write process
is complete, no net work has been done. This, of course, neglects any heat dissipated within the
control circuit that changes the dot energies (e.g., due to nonzero resistance of conductors).

shows the heat transferred to the environments ∆Q(t)/(kBT log(2)) calculated
from (105). As the crossing point is approached the system takes energy from
the environment to excite thermal occupancy in the higher energy dot (here dot
1). That energy (heat) is returned to the environment as E2 continues to increase.
Figure 10e shows the work done on the system from 0 to t by the external cir-
cuit W (t)/(kBT log(2)) calculated from (107). This is initially negative because
energy is being drawn in from the thermal bath, but nets to zero as the energy is
returned.

Erasing an unknown bit. Figure 11a shows the energy states for a stored bit.
Suppose that this is an unknown bit—there is no other physical copy of the bit
that we can use to bias the system into the state its already in. Therefore, all we
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Fig. 11 Erasure protocols for known and unknown bits. Diagrams (a)-(c) represent the case of an
unknown bit and diagrams (d)-(h) represent the case of a known bit. (a) If the bit value stored is
unknown, the probability of dot occupancy of dots 1 and 3 are equal. Since we do not know in
which direction to bias the system, we can only lower E2 smoothly in time. (b) As E2 is lowered
it passes E1 and E3. When they are degenerate the particle could be in any of the three dots. (c)
Finally the middle state has captured the occupancy and the system is in the null state. (d,e) For the
known bit, here shown to be 0, the system is biased into the state it is already in by raising E3. (f)
As E2 is lowered it passes E1. (g) The system is now in the low energy neutral state. (h) The bias
can then be removed.
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(a)

(b)
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(e)

(f)

Fig. 12 Energy levels, probabilities, and entropy during bit erasure. Plots (a)-(c) are for the case
of an unknown bit and (d)-(f) are for a known bit. (a) For an unknown bit, E2 is simply lowered
to cause the transition to the null state. (b) The probabilities for occupancy of dots 1, 2, and 3 are
shown. Initially P1 = P3 because the bit value is unknown. (c) The entropy of the system is initially
1 bit. At the point where all three energy levels are degenerate S/(kB log(2)) = log2(3)≈ 1.58. The
entropy then decreases as the system localizes completely on dot 2. The net decrease in entropy
is 1 bit. (d) For a known bit, the system can be biased into the state it is in, by raising E3 in this
case, until the switching is complete. (e) The probabilities for occupancy of dots 1, 2, and 3 are
shown for the case of a bit known to be initially 0. Initially only P1 is nonzero because the system
is known to be in the 0 state. (f) The entropy for the case of a known bit increases around the level
crossing of E1 and E2, but is initially and finally 0.

can do to erase the bit, i.e., set it to the null state, is to lower the barrier E2 until it
localizes the charge in the middle dot. We lower it smoothly, crossing the active-
state energies, Fig. 11b, and arrive at the null state shown in Fig. 11c. Again, the
system is assumed to be always in thermal equilibrium with the heat bath.

Figure 12a shows the dot energies as a function of time and Fig. 12b shows the
probabilities. Initially both P1 and P3 are 1/2 and finally P2 = 1. The entropy
shown in Fig. 12c is initially one bit, kB log(2). The entropy increases as E2
passes E1 and E3. At the crossing point the SMI is equal to log2(3) because each
of the three states is equally probable. The entropy drops to zero as the particle
becomes completely localized in dot 2. The erasure of an unknown bit involves
a lowering of the system entropy by 1 bit. Fig. 13a shows the heat transfer to
the environment calculated from (105) for this erasure process. It is initially zero
and then becomes negative as E2 is lowered and thermal excitation increases the
probability of dot 2 being occupied. The heat transfer swings positive as E2 drops
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(b)
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Fig. 13 Heat transfer and work during bit erasure. For the same two protocols of switching as
in Figs. 11 and 12, two calculated thermodynamic quantities are shown. Plots (a) and (b) are for
the case of erasure of an unknown bit, and plots (c) and (d) are for erasure of a known bit. (a)
For erasure of an unknown bit, the plot shows the net heat transferred to the bath ∆Qbath up to
time t, calculated from equation (105). As E2 is lowered, heat is drawn from the bath as thermal
fluctuations excite the system from E1 or E3 to E2. As E2 moves below the level of E1 and E2, heat
energy flows out to the bath as the system de-excites and occupies E2. The net heat transferred to
the environment (i.e., dissipated) in this case is kBT log(2). (b) The net work done by the control
circuit on the system W , calculated from equation (107), for the case of unknown bit erasure. This
is the source of the energy which ends up dissipated as heat to the thermal bath. (c) In the case of a
known bit, switched according to Fig. 11(d)-(h), heat drawn in from the bath as E2 approaches E1 is
returned to the bath as the system moves into the null state. The knowledge of the existing bit state
affects the amount of heat dissipated to the bath precisely because it permits a different erasure
protocol to be operated. (d) Similarly, the net work done by the control circuit on the system W ,
calculated from equation (107), is zero by end of the switching event.

below the crossing point. The final net value of the heat transfered to the environ-
ment is the Landauer Principle limit of kBT log(2). Where did this energy come
from? It came from the external circuit as shown in Fig. 13b, calculated from
(107). The net work done by the circuit during the erasure process is precisely
kBT log(2).

Erasing a known bit. Now consider the situation of erasing a known bit. In this
case we can execute a different set of operations shown in Fig. 11d-h. Figure 11d
shows the dot energies when the system holds a known 0 bit (in a metastable
rather than equilibrium state). Because its known to be a 0, we can raise the
energy of the other state by increasing the potential energy of dot 3 as shown in
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Fig. 11d. Then the energy of dot 2 can be lowered as in Fig. 11f,g. Finally, the
energy of dot 3 is lowered to restore the whole configuration to the null state.

The energy levels, probabilities, and entropy for this process are shown in Fig.
12d-f. During the initial time 0 < t < 0.1, corresponding to the configuration of
Fig. 12d, the probabilities are not the equilibrium values but rather correspond to
the non-equilibrium state of the particle known to be in dot 1. Thereafter thermal
equilibrium is assumed at all times. The difference between the initial probabili-
ties in Figures 12b and 12e is precisely the difference between knowing the value
of the bit stored and not knowing it. The entropy in known-bit erasure, Fig. 12f,
rises as E2 approaches E1, but then falls to zero again as the particle is confined on
dot 2. The reversible heat transfer shown in Fig. 13a is similar; the system draws
in heat from the bath as E2 comes close enough for thermal excitations from dot
1 to dot 2. But as the system localizes by several kBT , the heat is returned to
the bath. The work done on the system, calculated from (107) and shown in Fig.
13a , nets to zero by the end of the switching. This is entirely consistent with the
experimental result that erasing a known bit can dissipate orders of magnitude
less than kBT . [11]

The issue of a “known” versus “unknown” bit of course has nothing to do with
consciousness. “Known” simply means there is another physical representation of
the bit that can be used to bias the system toward the state its already in, as in Fig.
9e. This could be accomplished by a circuit, a computer, or a human brain. In QCA
shift registers, the bias is accomplished by having the neighboring bit holding a copy
of the target bit. [12] The neighbor is Coulombically coupled to the target bit so it
provides an electrostatic bias. Needless to say, one could have a copy of the bit but
not use it to employ the optimum erasure protocol. In that case one would dissipate
at least kBT log(2) amount of heat for each erasure.

Critics sometimes ask: How can “subjective” knowledge of the bit state change
a physical quantity like heat dissipated? The answer is simply because knowing the
existing state allows us to use a different protocol for the erasure, one which initially
biases the system into the state it is already in. In the case illustrated in Figures 9–
13, we initially raise E3 to the high level to erase a known 0 bit, but would initially
raise E1 to a high level to erase a known 1 bit.

The free energy F = U −T S is similarly higher for a known state, because S is
lower, than for an unknown state with higher S. The Szilard engine is an example
of exploiting knowledge of a system state (in that case a single molecule gas) to
draw more energy out of the system. [13] A recent physical realization of this sort
of “information engine” was reported in [14]. 9

Figure 13a is a clear demonstration of the Landauer Principle in the simplest
single-particle system. It requires only equations (103)-(105) above, that is, the
Boltzmann thermal occupancy of energy states, the careful definition of entropy

9 This sort of engine does not, needless to say, violate the second law of thermodynamics or create
a perpetual motion machine of the second kind.
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for memory states, and the calculation of heat flow. The dissipation of kBT log(2) as
heat to the bath is unavoidable.

The erasure of an unknown bit above is at each point in time an equilibrium pro-
cess. It is not, however, time-reversible. Going backwards in the sequence shown in
Fig. 11c,b,a would result in latching a random bit, determined by a momentary bath
fluctuation, not the unknown but definite bit one started with. Imagine the original
unknown bit was the result of a long calculation. It is unknown to us until we read
it (and thereby make a copy), but its definite value has genuine information about
the calculation’s result. The time-reversed protocol would not restore the result, but
replace it with a random bit. The probability distribution for an unknown bit hold-
ing the important result of a long calculation (e.g., target is friend or foe) is identical
with the probability distribution of a meaningless random bit latched from a thermal
fluctuation. 10

By contrast the erasure protocol of Fig. 11d-h is time reversible. It is in fact just
the time-reversed version of the writing protocol shown in Fig. 9. Both assume we
have another copy of the bit to determine bias applied in the writing sequence (do
we raise the potential on dot 1 or dot 3?) and the subsequent erasure.

The main result of this calculation is the difference between the heat dissipated
to the environment for erasure of an unknown bit, shown in Fig. 13a, and that for
erasure of a known bit, shown in Fig. 13c. The Landauer Principle result is clear—
heat energy of kBT log(2) is dissipated for erasure of an unknown bit, but there is no
minimum dissipation required for a known bit. If the bit is known, of course, there
is a copy of the bit somewhere and the information is not truly lost. If the copy is
eventually erased, heat dissipation must occur.

6 Quantum mechanics, entropy, and the nature of the physical
law

6.1 Quantum formalism and probabilities

In quantum mechanics a physical system is described by a state vector |ψ〉, a so-
called Dirac “ket” in a Hilbert space. 11 The state vector is a complete description of
the system. It contains all there is to know about the system—all the physical world
itself “knows” about the system.

10 “Meaningless” is, of course, a question of context—maybe it was meant as a probe to measure
bath fluctuations.
11 A Hilbert space is a complex linear vector space with an inner product that produces a norm on
the space. Using this norm, all Cauchy sequences of vectors in the space converge to a vector in
the space.
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Fig. 14 Quantum state of a particle in two coupled quantum dots. The particle could be in a state
that is fully localized on the left dot, |ψL〉, fully localized on the right dot, |ψR〉, or a symmetric
superposition of the two |ψS〉. (Any normalized linear combination of |ψL〉 and |ψR〉 is possible.) If
the particle is in the superposition state |ψS〉, the result of a measurement of position is not know-
able in advance of the measurement. The indeterminacy is not a reflection of the experimenter’s
ignorance, but is a fundamental feature of the physical world.

The inner product between two state vectors is denoted 〈φ |ψ〉 and gives the
probability amplitude that a system in state |ψ〉 will be measured to be in state |φ〉.
The probability is the absolute square of the probability amplitude.

pφ = |〈φ |ψ〉|2 (108)

Equation (108) is the Born rule.

Dynamical observables, such as position x and momentum p, are represented in
quantum mechanics by Hermitian operators that map one ket onto another ket. Mea-
surements of an observable Q always and only yield eigenvalues qk of the associated
operator Q̂.

Q̂
∣∣φqk

〉
= qk

∣∣φqk

〉
(109)

The eigenvalue spectrum of an operator may be discrete or continuous. The eigen-
states

∣∣φqk

〉
are states which have a definite value of the property Q. The probability

that a measurement of Q on the system in state |ψ〉 will yield a specific eigenvalue
qk is therefore:

pqk =
∣∣〈φqk

∣∣ψ〉∣∣2 (110)

This probability is different in kind from the probabilities we have dealt with
heretofore. Here the probabilistic nature is not because we lack any information that
we could otherwise have. The probabilities here reflect the fact that the physical
law and the current state of the system taken together are fundamentally insufficient
to determine the result of the measurement. This indeterminacy is a feature of the
physical law revealed by quantum mechanics.
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6.2 Quantum mechanical SMI for an observable

We can define the SMI (Shannon Measure of Information) of the probability distri-
bution for measurements of eigenvalues qk when the system is in the state ψ .

SMIQ[ψ]≡−∑
k

pk log2(pk) (111)

or

SMIQ[ψ] =−∑
k

∣∣〈φqk

∣∣ψ〉∣∣2 log2

(∣∣〈φqk

∣∣ψ〉∣∣2) (112)

This represents the amount of missing information (in bits) about the outcome of
measurements of Q. This information is missing from the quantum state |ψ〉 itself.
It is not simply missing because of our incomplete knowledge. The physical world
itself does not have this information present until measurement is actually made and
one particular eigenvalue of Q̂ is obtained.

Consider the two-state system illustrated in Fig. 14. A particle can be in the dot
on the left, a state represented by |ψL〉, or in the dot on the right, represented by
|ψR〉. The symmetric superposition of the two is the state represented by the state

|ψS〉= (|ψL〉+ |ψR〉)/
√

2. (113)

This superposition state is a unique feature of quantum mechanics. A measurement
of the position of the particle in state (113) will always find it in either the left dot
or the right dot, each with probability 1/2. We can define an operator corresponding
to the observable position of the particle.

X̂ ≡ |ψR〉〈ψR|− |ψL〉〈ψL| (114)

The eigenvalues of X̂ are +1 and−1 corresponding to the particle on the right or on
the left. The SMI for this operator corresponds to the amount of missing information
about the position of the particle when its in each of these states.

SMIX [ψL] = 0
SMIX [ψR] = 0
SMIX [ψS] = 1 bit (115)

In the first two cases, the position is definite and there is no information about it that
is missing. For the symmetric superposition state, knowing the state tells us nothing
about the position. There is 1 bit of position information missing, even though the
quantum mechanical description of the state is complete.

Note the the SMI depends on the choice of observable as well as the state itself.
For the same state |ψS〉, we could consider the parity operator:



52 Craig S. Lent

Π̂ ≡ |ψL〉〈ψR|+ |ψR〉〈ψL| . (116)

The state |ψS〉 is an eigenstate of Π with eigenvalue 1—it has a definite value of
parity. So there is no missing parity information and SMIΠ is 0. The SMI is basis
dependent; it is not the eigenvalue of a Hermitian operator.

We return to considering the information the quantum state gives us about the
particles position. It is helpful to ask the question in terms of the amount of infor-
mation provided by the physical law. Let us suppose that, given an initial state of the
system and a precise description of all the potentials, fields, and interactions that are
subsequently applied to the particle, the physical law prescribes that at a particular
time the system will be in the state |ψL〉. We may then ask: How much information
about the particle’s position (by which we mean the results of a measurement of
position) does the physical law yield? The answer is 1 bit. For the state |ψR〉 the
physical law also yields 1 bit of information, completely determining where the par-
ticle will be found (on the right). But if the physical law tells us that the particle is
in the state |ψS〉, it gives us 0 bits of information about the position that will be mea-
sured. The information provided by the physical law (evaluating Eq. (9)) is zero. In
general, if there are N eigenvalues of the operator Q̂, then the physical law gives us
a finite amount of information I about the outcome of a measurement of Q, where

I[ψ] = log2(N)−SMIQ[ψ] bits. (117)

Continuous eigenvalues. Consider a wavefunction defined on a continuous
range of positions. Let ψ(x) be the probability amplitude for finding a particle at
position x ∈ [0,L]. If the state for which the particle is exactly found at x is denoted
|x〉, then ψ(x) = 〈x |ψ〉 and the probability density is P(x) = |ψ(x)|2. Consider the
wavefunction and probability distribution shown in Fig. 15 describing a particle in
this interval. We can use the expression for information given by Equation (13) to
calculate the amount of position information which we obtain from the wavefunc-
tion. In this case that is 1.32 bits. It is somewhat more constrained than if it was
localized over half the distance, which would correspond to 1 bit of information
gain. The wavefunction gives us some information about the position, but not com-
plete information. If our detection apparatus gave us discretized information that
the particle’s position was in a particular bin of width ∆x, we could use Equation
(14) in a similar way. Note that we are implicitly assuming, as with any probability
distribution, that there is an accessible region (AR) (see the discussion in Section 2)
that we know the particle is in; here that is the interval [0,L]

Given the quantum state ψ(x) we could as well ask about the results of mea-
surements of the particle momentum p and use the same formalism to calculate the
information about momentum we receive from knowing the wavefunction, Ip. This
value is not the same as the information about position, and again depends on the
range of momentum values considered to be the AR.

Time dependence. The operator Ĥ is the Hamiltonian operator representing the
total energy of the system. For an isolated system described by a time-independent
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Fig. 15 Quantum wavefunction and probability density defined for a particle with a position on
the continous interval x ∈ [0,L]. The top figure shows a wavefunction ψ(x) and the bottom figure
the associated probability density. Given a probability density P(x), one can ask how much infor-
mation about the position of the particle does the wavefunction provide. In this case the result,
from equation (13), is 1.32 bits. That is the Shannon measure of the information (SMI) gained by
knowing the probability distribution compared to a uniform distribution over the accessible region,
which is here the interval [0,L].

Hamiltonian H, the time development of the state vector is determined by the
Schrödinger equation. If the state of the system at t = 0 is given by |ψ(0)〉, then
at any future time we can determine the state by solving the differential equation

ih̄
∂

∂ t
|ψ(t)〉= Ĥ |ψ(t)〉 (118)

or by evaluating the integral form

|ψ(t)〉= e−i Ĥ
h̄ t |ψ(0)〉 . (119)

Although the time evolution of the quantum state is deterministic, the results
of measurements of the state are not, and measurements happen all the time. We
lack a good account of how to describe precisely what circumstances create a
measurement—the “measurement problem.” But it is clear that measurements do
occur, transcript of the history of the physical world is not determined by just the
initial state and the physical law, but in addition by a vast number of events that
could have gone one way or the other, with prescribed probabilities. One particu-
lar outcome actually occurred and was, so to speak, written into the transcript of
history.
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The physical law, in this case quantum mechanics, yields probabilities for possi-
ble outcomes of measurements and the Shannon measure gives us a concrete way of
quantifying how much information about those outcomes the physical law provides.
In the clockwork universe of Laplace’s demon, the physical law provided certainty
about outcomes, given a complete description of the physical state. It turns out that
the physical law simply does not do that. The physical law constrains, but does not
completely constrain, the outcome of measurements. This is a profound fact about
the nature of the physical law. Nor is this just a feature of the present state of quan-
tum theory. Recent Bell test experiments confirm to astonishing accuracy that this
is a feature of the physical world quite independent of quantum mechanics. [15–18]
Any future successor theory would have to contain this feature–the future of the
physical world is not completely constrained by the physical law. It retains some
“freedom.”

6.3 Open quantum systems and density operators

Pure isolated quantum states of a physical system are described by a state vector |ψ〉.
Often we are dealing with a system A that is not isolated but interacting with a very
large system B, which could be a thermal bath or simply the rest of the universe.
We can then no longer describe the system with a state vector but must employ the
formalism of the density matrix. The density matrix folds in two kinds of probabil-
ity: that due to fundamental quantum indeterminacy and that due to our practical
ignorance of the details of the state of a large system. It is helpful to derive it here
so we can see exactly where this quantum probability and classical probability are
brought together.

The starting point is writing the quantum state for the global system. We can
write the state of the A system as a linear combination of basis states |αi〉. The basis
states for the large system B are |βm〉. The state describing the combined global
system of A and B can then be written

|ψ〉= ∑
i,m

Cim |αi;βm〉 (120)

where 〈
αi;βm

∣∣α j;βn
〉
= δi jδmn. (121)

The sum over m here is over a very large number of possible states for the bath (or
universe). We define the global density operator
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ρ̂ = |ψ〉〈ψ| (122)
= ∑

i, j,m,n
CimC∗jn︸ ︷︷ ︸

ρim; jn

|αi;βm〉
〈
α j;βn

∣∣ (123)

= ∑
i, j,m,n

|αi;βm〉ρim; jn
〈
α j;βn

∣∣ (124)

We now focus on the target system A. Any operator Q̂A which acts only on the A
subsystem can be written

Q̂A = ∑
i, j,m
|αi;βm〉Qi j

〈
α j;βm

∣∣ . (125)

The expectation value of Q we can write〈
QA〉≡ 〈ψ ∣∣QA ∣∣ψ〉= ∑

i, j,k, `
m,n, p,q

C∗kpC`q
〈
αk;βp

∣∣αi;βm
〉

QA
i j
〈
α j;βm

∣∣α`;βq
〉
. (126)

We do the sums using (121) and exchange the symbols i and j to obtain〈
QA〉 = ∑

i, j,m
CimC∗jmQA

ji

= ∑
i, j

(
∑
m

CimC∗jm

)
︸ ︷︷ ︸

≡ ρA
i j

QA
ji (127)

= ∑
i, j

ρ
A
i j QA

ji (128)

Therefore we can write 〈
QA〉= Tr(ρ̂A Q̂A) (129)

We have defined the reduced density operator ρA
i j for system A as the sum over the

very large number of basis states for the environment. Our practical ignorance about
the details of the large system B and its interaction with A are all hidden in this sum
over the CimC∗jm terms. Equation (129) defines the operator ρ̂A as the operator on
the A system which has matrix elements ρA

i j in the |αi〉 basis.

Note that comparing Equation (123) and (128) we have

ρ
A
i j = ∑

m
ρim; jm, (130)

which we write compactly as a partial trace of the global density matrix over the B
degrees of freedom represented by the βm states.
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ρ̂
A = TrB(ρ̂). (131)

Several properties of the density matrix can be stated briefly. It can be easily
shown that the density matrix is Hermitian and has unit trace.

ρ̂
† = ρ̂ (132)

Tr(ρ̂) = 1 (133)

If ρ describes a state of a system, the probability of measuring the system and find-
ing it to be in the state φ is given by the expectation value of |φ〉〈φ |, the projection
operator for φ .

pφ = Tr(|φ〉〈φ | ρ̂) (134)

The diagonal elements of the density matrix ρi,i are the probabilities of the system
being found in the basis state |αi〉.

Because ρ̂ is Hermitian it can be diagonalized by a unitary transformation. De-
note the eigenvalues of ρ̂ as ρν and the eigenvectors |ν〉. If the system is in a “pure
state” that could be described by a single state vector, then all the eigenvalues will
be zero except for one. If not, the state is described as “mixed.” In that case the
eigenvalues ρν are the probability of the system being found in the state |ν〉.

The von Neumann Entropy. Von Neumann defined the quantum entropy SvN to
be a measure of this “mixedness.”

SvN(ρ̂)≡−Tr(ρ̂ log(ρ̂)) (135)

The von Neumann entropy is equivalent to the SMI of the eigenvalues of ρ̂ times
log(2), the conversion factor between bases for the logarithm. Alternatively, we can
express the von Neumann entropy in bits, in which case it identical to the Shannon
measure of the density matrix eigenvalues.

SvN(ρ̂) = − log(2) ∑
ν

ρν log2(ρν) (136)

= log(2) SMI([ρ1,ρ2,ρ3, . . . ,ρν , . . .]) (137)

S(bits)
vN (ρ̂) ≡ SvN(ρ̂)/ log(2) (138)

= SMI([ρ1,ρ2,ρ3, . . . ,ρν , . . .]) (139)

We have a set of probabilities ρν and the Shannon measure tells us how much in-
formation is missing given this probability distribution. It is information about the
extent to which the system could be found to be in various of the density matrix
eigenstates. Fortunately, this measure is invariant under unitary transformations, so
SvN is the same regardless of which basis set we use.

Time development of the density matrix. We can consider the case of a system
that is in a mixed state, presumably because of contact with another system in the
past, but which is now isolated. From the Schrödinger equation for |Ψ〉 in (123),
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one can derive the von Neumann equation for the time development of ρ̂:

ih̄
∂ ρ̂

∂ t
= [Ĥ, ρ̂]. (140)

where the square brackets denote the anti-commutator. This holds of course for
pure-state density matrices as well. Equation (140) is also known as the quantum Li-
ouville equation. If the Hamiltonian is time-independent we can equivalently write
the time development as a unitary transformation from the initial state directly:

ρ̂(t) = e−iĤt/h̄
ρ̂(0)e+iĤt/h̄ (141)

The case where the system is in continous contact with the bath is, as one might
suppose, much more difficult because one has to adopt some approximate model of
the behavior of the bath. The most straight-forward is the Lindblad formalism, but
we will not explore that here.

We can say something qualitative about the evolution of the density matrix in
contact with the larger system. The off-diagonal elements of the density matrix are
called “coherences” because they express quantum mechanical coherence between
the system A and the bath B. If the system and bath are initially in a direct product
state, these coherences will quickly vanish (either exponentially or with a Gaussian
shape) and the density matrix will become diagonal in the basis of energy eigen-
states. The reason for this is that the system will become quantum mechanically
entangled with the many degrees of freedom of the larger system and the quantum
complex phases in the sum (127) will average to zero. This can be seen in mod-
erately sized system where the global A+B system can be solved exactly. [19] If
the mean interaction energy between the system and environment is Ese, then the
coherences vanish and a time of the order of h/Ese.

The density matrix is the best local description we can have of the state of the
system. The reality is that the system has no state—only the combined system+bath
really have a quantum state. There is a loss of information from the subsystem as
it interacts and entangles with the larger system, reflected by the loss of the off-
diagonal elements of the density matrix. The global state is pure and the global
information is undiminished, but it cannot be found in any of its subsystems. This
is a uniquely quantum mechanical feature.

Statistical mechanics for open quantum systems. Quantum statistical mechan-
ics starts with the quite reasonable assumption that in thermal equilibrium all the co-
herences have vanished and the density matrix is diagonal in the energy basis with
probabilities given by the Boltzmann distribution. [20]

ρ̂eq =
e−Ĥ/kBT

Z
where Z = Tr(e−Ĥ/kBT ) (142)
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Therefore, somewhat anticlimactically, the quantum treatment of the write and
erase bit operations adds little to the classical analysis in Sec. 5.3. The Hamiltonian
in the basis of dot states [|1〉 , |2〉 , |3〉] is given by

ˆH(t) =
3

∑
k=1
|k〉Ek(t)〈k|− γ

2

∑
k=1

[
|k〉〈k+1|+ |k〉〈k+1|

]
(143)

In order to hold the bit in the metastable state a memory requires, we want the
tunneling energy γ to be small and the barrier height of E2 in the high state to be
large. If E1 = E3, we can define the barrier height as Eb ≡ E2−E1. The effective
barrier to tunneling is through this barrier is then [21]

γe f f =

√
E2

b +8γ2−Eb

4
. (144)

The additional memory design requirement is then to make γ small and Eb large
enough to suppress quantum tunneling for the required bit hold time. The character-
istic tunneling time can be taken to be h/γe f f .

With γ small there will be only slight anti-crossing of the otherwise degenerate
the energy levels as E2 moves up and down to latch or erase a bit. The Hamiltonian
eigenenergies will be very close to the on-site energies of each dot Ek The energy
scale of the switching is much larger than the tunneling energy by design. If the
system is switched slowly enough to always keep it in the thermal ground state,
which was our assumption, then the density matrix is always diagonal in the energy
eigen-basis because the off-diagonal coherences are all 0. The thermodynamic en-
tropy S(t) is then identical to the von Neumann entropy SvN(t). As a result, each
of the Figures (9) through (13) are essentially the same for both the classical and
quantum cases. Where we could expect a difference would be if the switching speed
were fast enough to drive the system out of equilibrium, or stress the ability of the
system to tunnel to the equilibrium state. [22]

6.4 Non-equilibrium quantum system: free expansion of an ideal
quantum gas.

Finally, we will look at a very-far from equilibrium situation to see the differing
roles of the von Neumann entropy and the quantum entropy of outcomes. We first
extend the concept of the entropy of outcomes (111) from pure states to mixed
states described by density matrices. We will now call this quantity SQ, remembering
that it is not the thermodynamic equilibrium entropy S, a state function, but rather
is a dynamical measure of missing information about a particular observable. We
start with a Hermitian operator Q̂ representing an observable, its eigenvalues qi,
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eigenstates |qi〉, and the projection operator onto a particular eigenstate |qi〉〈qi|. For
a system described by the density matrix ρ̂ we define:

pqi = Tr(ρ̂ |qi〉〈qi|) (145)
SQ(ρ̂) ≡ −∑

qi

pqi log2(pqi) = SMI([pq1 , pq2 , pq3 , ...]). (146)

For a dynamic system we will denote SQ(t) = SQ(ρ̂(t)) and see to what degree this
extends the equilibrium notion of the thermodynamic entropy.

Fig. 16 Schematic view of free expansion of single-particle quantum gas on a 1D chain of quantum
dots. The chain consists of a linear array of N quantum dots with near-neighbor Hamiltonian cou-
pling energies γ . For t < 0 (top diagram) the particle is confined to a small initial segment of Ninit
dots in the chain. The coupling elements to the left and right of the segment are set to zero—the
“valves” are closed. The initial state is in thermal equilibrium. At t = 0 the system is isolated from
the bath and the values of coupling elements on the left and right of the segment are switched from
0 to γ (bottom diagram). The one-particle gas is therefore free to expand into the larger container.
The unitary non-equilibrium evolution of the quantum density matrix is given by equation (141).

We consider a very simple system of a single-particle gas in one dimension in
the low density limit. The one-particle gas models an ideal non-interacting gas in
the low-density limit for which one need not take into account the Fermi-Dirac or
Bose-Einstein character of the occupancy statistics. Fig. 16 illustrates the physical
situation. A linear array of N quantum dots, with on-site energy E0, forms a “large”
container. The spatial positions of the dots are taken to be uniform from x1 = 0 to
xN = 100 in arbitrary units. A tunneling matrix element γk couples sites k and k+1.
The Hamiltonian for the system is then

Ĥ =
N

∑
k=1

E0 |k〉〈k|−
N−1

∑
k=1

γk

[
|k〉〈k+1|+ |k〉〈k+1|

]
. (147)



60 Craig S. Lent

All the coupling elements are identical, γk = γ , except those surrounding a segment
of length Ninit dots near the center of the array. These are initially set to γle f t =
γright = 0, isolating the Ninit dots in the small container.

Before t = 0, the gas is in the thermal equilibrium state at temperature T and
is held in the smaller container of Ninit sites. We calculate the initial equilibrium
density matrix

ρ̂
init =

e−Ĥinit/kBT

Tr
(

e−Ĥinit/kBT
) , (148)

where Ĥinit includes only the dots in the small container.

At t = 0 two zero tunnelling matrix elements, γle f t and γright are set to the com-
mon value γ , thus opening the “valves” connecting the small container to the larger
container. The initial Ninit ×Ninit density matrix is embedded in the larger N×N
density matrix describing the whole system and the time development is calculated
directly from the von Neumann equation (141). The container is now assumed to
be isolated from the heat bath. We calculate the case where Ninit = 8, N = 64, and
γ/E0 = 0.1. The mean value of the energy eigenvalues is Em and the temperature is
chosen to be T = Em/(15kB). The smaller container is offset from the center of the
larger container slightly to avoid artifacts of symmetry. Time is measured in units of
τ = h̄/γ .

The probability of dot occupancy at three snapshots in time are shown in Fig.
17. At t = 0 the probability is nonzero only in the smaller container with quantum
confinement effects shown by the rounding of the probability at the container edges.
At t = 5τ the gas is expanding freely into the surrounding container. From t ≈ 20τ

onward the probability fills the larger container, though because the system has no
way to loose energy, quantum oscillations in the probability continue indefinitely. A
snapshot at t = 80τ shows a characteristic distribution.

Fig. 18 shows the probability distribution for each energy eigenstate of the sys-
tem. Before the expansion (t = 0−) there are Ninit = 8 Hamiltonian eigenstates
with the characteristic Boltzmann distribution of probabilities. The red line is the
Boltzmann exponential as a continuous function of energy. Just after the valves are
opened (t = 0+), the number of eigenstates increases to N = 64. This is a far-from-
equilibrium situation so the occupancy is no longer thermal. The red line again
shows the Boltzmann exponential for the initial temperature, now just for compari-
son because there is no temperature for the system after t = 0. The non-equilibrium
distribution in energy is perhaps surprising close to the thermal shape, though less
so at low energies. The probabilities for each allowed energy do not change once the
valves are open because the time evolution (141) is unitary, preserving the projection
onto energy eigenstates, so the (t = 0+) figure is valid for all positive times.

Figure 19 shows two measures of the entropy of the expanding gas. We again note
that a thermodynamic entropy cannot be uniquely defined for this non-equilibrium
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Fig. 17 Free expansion of the quantum gas in 1D. The probability density for the linear chain
shown schematically in Fig. 16 is plotted at three snapshots in time during the unitary evolution
of the density matrix ρ(t) according to (141). At t = 0, the system is confined in the smaller
container near the center of the array. The gas is initially at thermal equilibrium and quantum
confinement effects are visible in the drop-off at the edges. The single particle gas is isolated from
the thermal bath at t = 0 and released to expand into the surrounding larger container. Time is
measured in units of τ = h̄/γ where γ is the inter-dot coupling Hamiltonian matrix element (see
equation (147). The middle plot shows the expanding gas at t = 5τ . The lower plot shows the
probability at t = 80τ , when it has filled the container. Oscillations persist because there is no
energy dissipation mechanism in the model.

situation. The dashed red line shows the von Neumann entropy SvN(t), measured in
bits (calculated from (138)). Unsurprisingly, it is constant, 1.81 bits, throughout the
expansion precisely because the free expansion is a unitary process. The eigenvalues
of the density matrix do not change in time under (141).

The time development of the entropy of outcomes associated with the position
operator, SX (t), calculated from (146) is shown as the solid line in Fig. 19. Initially
Sx ≈ 3, corresponding to the Shannon entropy for 8 = 23 uniformly occupied dots.
It is slighly lower because the probability density at t = 0 is not quite uniform (Fig.
17). It rises smoothly to near a value of 6, corresponding to the Shannon entropy for
64 = 26 uniformly occupied dots. Again, the residual quantum oscillations visible
in Fig. 17 account for the remaining difference.

In this free expansion of an ideal quantum gas, the volume was increased by a
factor of 8, which would correspond to a classical increase of the thermodynamic
entropy by a factor of log2(Vf inal/Vinit) = 3 (see (91)). This is nearly what we see
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Fig. 18 The probability of each eigen-energy prior to expansion, and just after the expan-
sion “valves” are opened for the single particle quantum gas shown in Figs. 16 and 17. Here
kBT/E0 = 0.067 and γ/E0 = 0.1. The initial state is in thermal equilibrium so the probabilities
for each eigenenergy of the smaller container, with Ninit = 8, are given by the Boltzmann distribu-
tion, equation (142) and indicated by the red line in the top figure. Immediately after the opening,
there are more eigenstates because the system is now larger with N = 64, as shown in the lower fig-
ure. The probability associated with each eigenstate is now only approximately thermal (red line)
because the system is no longer in equilibrium. The probabilities in the lower figure are constant
after t = 0+ throughout the unitary evolution of the isolated system.

in Fig. 19 for this entirely quantum mechanical calculation using SX (t). But it is
not reflected in the von Neumann entropy, which is meant to capture the amount of
deviation from a purity in the density matrix. The amount of “mixedness” does not
change during isolated free expansion. Using SX (t) we capture what the classical
version captured–the increase in the amount of position information that is missing.
The entropy of outcomes for energy measurements SE is constant in time with a
value of 4.9 bits.

If the expanded system were to again be put in contact with the bath and allowed
to come to thermal equilibrium, then we would have SvN = 4.78 bits, SE = 4.88 bits,
and SX =5.99 bits (still reflecting the small quantum edge effects). The von Neumann
entropy SvN is the entropy of outcomes SQ for the case when the relevant operator is
the density operator itself, Q = ρ , and it will always have the minimum value over
the space of all Hermitian operators.
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Fig. 19 Two measures of the entropy of the ideal single-particle quantum gas during free expan-
sion. The von Neuman entropy SvN(t), calculated from (138, 139), is constant with a value of 1.81
bits during unitary free expansion (red dashed line). It is a measure of the lack of information about
the quantum state of the system in the density matrix—its “mixedness” or deviation from purity.
The entropy of outcomes for position, SX (t), defined in (146) with Q̂ = X̂ , is shown as the solid
blue line. SX is initially 2.96 bits. If there were no quantum size effects in the probability at t = 0 (
Fig. 17), then we would have SX (0) = 3, corresponding to equal probabilities over 8 = 23 dots. As
the expansion proceeds, SX increases to a value near 6 bits, corresponding to a uniform distribution
over 64 = 26 dots. It is SX that most nearly corresponds to the classical equilibrium result, given
by the Sakur-Tetrode equation (91), for the entropy of a gas related to the volume it fills. Using the
SX (t) as a measure of the missing position information offers a natural extension of equilibrium
entropy to the non-equilibrium case.

7 Discussion

Discussions of information are sometimes confused by failing to distinguish raw
information from encoded information. An encoding scheme adds the mapping be-
tween physical states and logical symbols that makes a physical process, which is
after all just physics in action, a meaningful logical or arithmetic process. Bits are
not part of the ontology of the physical world but rather supervene on physical states.

Logically, the Shannon entropy (SMI), as a measure of missing information in
a probability distribution is the most foundational concept for entropy. Probability
represents a quantification of incomplete knowledge. Jaynes contribution was built
on the insight that the only unbiased way to construct a probability distribution is
to find that distribution which maximizes the SMI, a measure of what is unknown,
subject to the mathematical constraints that arise from what is known. This is a
strict and objective procedure that is the same for all observers who have the same
information available to them.

We have seen in Sec. 3 that applying the Jaynes maximum entropy principle
yields mathematical results which reproduce standard statistical mechanics. Clas-
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sical statistical mechanics is, after all, unnecessary if all the relevant dynamical
quantities are known—that would require only mechanics. Statistical mechanics
concerns what we can know about a system when the details of its dynamics are
unknown. When applied to the problem of a target system in thermal equilibrium
with a large heat bath, the Jaynes procedure precisely connects the information the-
oretic Shannon entropy with the thermodynamic entropy of von Neumann, Gibbs,
Boltzmann, and Clausius. The thermodynamic entropy in equilibrium is (within a
constant) the Shannon entropy of the unique probability distribution which maxi-
mizes the SMI subject to the appropriate constraints. The equilibrium thermody-
namic entropy is a special case of the Shannon entropy applied to particular systems
that have a well-characterized average energy, number of particles, or other macro-
scopic constraints.

The Jaynes formulation of physical entropy as a measure of missing information
is superior to the often-encountered notion of entropy as a measure of disorder. Dis-
order is not a quantifiable idea–it is irredeemably subjective, completely in the mind
of the beholder. Information (in the information theoretic sense measured in bits) is
quantifiable and precise. The information that is missing from a given probability
distribution is quantifiable and objective.

The Landauer Principle connects an information theoretic process, bit erasure,
with a physical process, heat dissipation. Because it concerns a lower bound for
heat dissipation we looked quantitatively at a minimal physical system with a spe-
cific encoding scheme. A key step here was to use the Jaynes definition of thermo-
dynamic entropy to describe a memory storage device which is ipso facto not in an
equilibrium state. This straightforward extension permits a quantitative analysis of
the minimal thermodynamic system when a known or unknown bit is erased. We see
precisely the expected heat dissipation of kB log(2) when an unknown bit is erased,
and no lower bound for the heat dissipated when erasing a known bit (with a copy
preserved).

In the quantum mechanical case, the von Neumann entropy is the SMI of the
eigenvalues of the density matrix. This is a measure of quantum state purity; a pure
state has von Neumann entropy of 0. A quantum treatment of the minimal memory
system acts essentially the same as the classical system because quantum coherences
vanish in thermal equilibrium. It must be emphasized that in quantum mechanics
what is unknown includes the fundamental indeterminacy of the physical law. This
is now known to be not a peculiarity of the quantum mechanical description, but
rather a feature of the nature of the physical world.

Grounding the entropy concept in the Shannon measure also naturally focuses at-
tention on the less well known quantum entropy of outcomes SQ for measurements
of an observable Q. We have seen that in the case of the free expansion of a classical
gas, the quantum analogue of the classical entropy was not the von Neumann en-
tropy, but the entropy of outcomes for the position operator, SX (146). This entropy
is not basis-independent—it depends specifically on the observable in which one is
interested. Whereas the von Neumann entropy captures the amount of information
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missing about the pure state of the system due to entanglement with the environ-
ment, SQ capture the amount of missing information about measurements of the
observable Q. It is applicable to both pure and mixed states.
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