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Abstract—Nanocircuits will suffer from heat dissipation due to
irreversible information erasure, which is a potential new limiting
factor for the maximum operating frequencies of the future cir-
cuit technologies. This paper estimates the degree of information
loss in the binary multiplier structures and demonstrates that the
standard hardware approaches are sub-optimal, by several orders
of magnitude in comparison with the determined theoretical
limit of the multiplication operation. The hardware analysis
is based on the arithmetic units proposed for implementation
with quantum-dot cellular automata (QCA), a circuit technology
reaching molecular device densities and extremely high signal
energy conservation. The results are generally applicable to all
other emerging technologies based on the majority logic gate.

I. INTRODUCTION

Computing power has been for a long time closely related
to the energy-efficiency of the underlying technology, and heat
dissipation is the limiting factor for modern integrated circuits,
with the energy waste of the CMOS inherent to the operating
principle of the voltage mode logic. While the technologies
foreseen in the future are expected to improve the energy-
efficiency by orders of magnitude, they will still be limited
by the electrical power. However, the underlying mechanism
heating the circuits might be fundamentally different. [1]

A significant and potentially also the major source of heat
in the circuits constructed with the foreseen nanoscale com-
ponents is the irreversibility induced dissipation, originating
from the thermodynamics of decreasing system entropy during
the computation. This effect has remained hidden behind
the huge energy waste inherent to the transistor technolo-
gies. Quantum-dot cellular automata (QCA) is a promising
computing paradigm with a path to transistor-less molecular
implementations, based on bistable cellular automata used to
construct both the logic and the interconnects. A major benefit
of this approach is the reuse of signal energy throughout the
circuit, resulting in very high power efficiency [2]. Combined
with the ultra-high device density and switching frequency
reaching the terahertz regime, this raises the irreversibility
induced dissipation as a significant design factor [3].

Recent work on the logical irreversibility presented sur-
prisingly tight operating frequency limits for computer arith-
metic based on high density nanoscale components. For dense
layout binary adders implemented with molecular QCA, the
predicted operating frequency was limited to at most tens of
gigahertz [4], while multiplier designs with significantly lower
logic density were limited to around two hundred gigahertz in
a very optimistic analysis [5]. The combination of nanometer

wide devices and information loss clearly prevents the tech-
nology switching rate to be transformed into the desired clock
frequencies in the hundreds of gigahertz regime, which would
otherwise be reasonable for the pipelined logic designs. A
comparison of standard adder structures proposed for QCA
indicates that a simple pipelined ripple carry adder (RCA)
would have the smallest loss of logical information [6].

This paper quantifies the information loss in standard
hardware structures for the binary multiplication, which is
one of the most common arithmetic operations. The heat
per operation varies between the structures, which can now
be evaluated from new perspective based on this pioneering
work, to the best knowledge of the authors. We will start by
defining the relationship between information loss and heat
generation, followed by the development of bounds for the
multiplication operation with considerable cost savings via
exclusion of zero operands. Next, the worst case bit erasures in
the majority logic QCA implementations are compared, based
on the gate counts and runtime clock cycles, indicating that
direct accumulation of the summands with an array multiplier
would outperform the existing serialized approaches.

II. IRREVERSIBILITY AND HEAT GENERATION

The continued evolution of modern CMOS processing chips
face many challenges related to scaling device sizes, arguably
the most fundamental being the power dissipation problem.
Present microprocessors with dissipation of 50–100 W/cm2

press the limits of air cooling, while the ITRS 2009 Roadmap
projects fully scaled CMOS at a device density of 1010 cm-2,
a switching speed of 12 THz, and a switching energy of 3
aJ [1]. If all of these devices were switching at full rate, the
chip would generate heat at a rate of 360 kW/cm2. In the short
term this has motivated sophisticated power management and
heat sinking, but also forced examination of more fundamental
issues. It has become clear that logic transistor operation is
inherently wasteful in terms of heat production. Overcoming
this will require a new basic element, the ”next switch.”
The QCA paradigm is a promising candidate in this search,
though any nano-scale transistor replacement technology must
satisfy the essential requirement of exhibiting dramatically
lower power dissipation during switching. But how good could
it be? Is heat generation somehow fundamentally necessary for
computation? In particular, is there a minimum amount of heat
that must be dissipated to compute a bit of information? Why
are heat and information in any way connected?
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For an isolated system, the microscopic laws of physics are
time reversible (excluding some exotic processes involving the
electroweak force). This physical reversibility means that given
the final physical state of a system, one could in principle
solve the equations of motion backwards in time and deduce
the initial state of the system. For a computation to be logically
reversible means that given the outputs of the computation, one
could deduce what the inputs must have been. Implementing
a computation with a physical system involves mapping the
physical initial and final states onto computational states. To
perform a computation on a particular set of inputs, one
prepares the system in the appropriate initial physical state and
then lets the system evolve under physical law. The output is
then read by subsequently measuring the final physical state,
identifying it with the corresponding computational output.

The logical reversibility of a computation and the physical
reversibility of a system which implements it are related.
An isolated physical system can only implement a logically
reversible computation. This follows simply from the fact that
we could use the reversible laws of physics to deduce the
inputs from the outputs. A consequence is that if we want to
implement a logically irreversible computation with a physical
system, the system cannot be isolated—it must be coupled
to the environment. A logically irreversible operation such
as AND or ERASE involves the loss of information; from
knowing the output, one cannot determine the input. Where did
the information go? It was present in the initial physical state
of the system, but is not available in the final physical state.
The information must have been transferred from the system
into the many, many, untrackable degrees of freedom in the
environment, and is now unrecoverably lost in the complexity
of that motion. Of course if we could enlarge our system
description to include all the relevant environmental degrees of
freedom, then we could deduce from the much larger final state
the input state. But we cannot, and so we label the transfer of
information, and the associated energy, from the system to the
environment ”heat generation.” The development of statistical
mechanics showed that thermodynamics is just mechanics
applied in the context of our insurmountable ignorance, lack
of information, regarding the detailed motion of large systems.

Landauer argued that the loss of information from the
physical system results in a fundamental lower bound on how
much heat is generated by a computation [7]. This result
follows quickly from a thermodynamic (Boltzmann) entropy
argument. One bit can be in 2 states, so the associated entropy
is S = kB ln(2). Erasing an unknown bit, say changing
either 0 or 1 to a NULL state, means there is a transfer of
this entropy to the environment with associate free energy
∆E = TS = kBT ln(2). Thus a physical implementation
of any logical operation that loses 1 bit of information must
necessarily dissipate at least ∆E of heat. Note that at room
temperature this is about 0.004 aJ, nearly three orders of
magnitude lower than end-of-the-roadmap CMOS transistors.

The fundamental lower limit is even lower. Bennett sub-
sequently showed how any logically irreversible computation
could be embedded within a logically reversible computa-

tion [8]. Therefore even logically irreversible operations, by
embedding them in a larger computation, can be implemented
with physically reversible processes. As a practical matter, this
has often a prohibitive cost in the layout complexity, because
all intermediate results have to be preserved. Nevertheless, the
fundamental lower limit for heat generation is 0.

The important design considerations are therefore practi-
cal issues. Present CMOS effectively performs an erasure
every time a transistor switches states—generating hugely
unnecessary levels of heat. To make it to the nanoscale, we
must do much better than that. Now switching the state of
virtually anything in the physical world dissipates some small
amount energy as heat because it’s impossible to completely
isolate a system. There will always be some small residual
energy transfer with the environment through mechanisms
like phonon, plasmon, or molecular vibronic coupling. These
are the quantum mechanical versions of friction. Friction-type
dissipation can always be made smaller, either by more clever
design or by simply moving more slowly; a characteristic of
friction is that it is proportional to the velocity. Erasure events,
by contrast, aren’t amenable to such techniques. They each
have a fundamental heat dissipative cost, and these costs can
accumulate catastrophically at nanoscale densities (1 nm2 foot-
prints corresponds to 1014 cm-2 densities). Even for molecular
nanoelectronics, it is not worth the overhead to do full Bennett-
style embedding in order to completely eliminate erasure costs,
though partial implementation can be very helpful [9]. Design-
ing circuits to be ”erasure-aware” means using computational
elements, like QCA, that don’t unnecessarily erase informa-
tion, and managing carefully where and how often bit erasure
occurs. Making such practical trade-off decisions, informed
by the fundamental thermodynamic issues, is necessary for
achieving nanoscale levels of integration without vaporizing
our cleverly-designed ultrasmall devices.

III. REVERSIBILITY OF BINARY MULTIPLICATION

The binary multiplication operation as such is not reversible,
since it performs compression between the input and output
state spaces by a non-bijective mapping. The multiplication of
two n-bit integer operands produces at most a 2n-bit result, but
despite the apparent equivalence in the number of bits, signif-
icant logical information is lost. The reason is the unbalanced
state compression inherent to the highly complicated result
value spectrum shown in Fig. 1(a) for the unsigned operation.
We treat separately the complete spectrum multiplication and
non-trivial multiplication without zero operands.

Complete multiplication. The result value zero compacts
the maximum number of operand pairs in all wordlengths.
Illustrated by the top curve in Fig. 1(b), the number of zero
results c0 is dependent on the wordlength and follows exactly
the power of two’s law defined in Table I, found analytically
by considering the number of trivial operand combinations
leading to the single result. The logical reversal of this worst
case compression requires b0 = n+1 extra bits, which identify
the specific operand value pair uniquely. The extra bits re-
quired to logically reverse the multiplication as one indivisible
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Fig. 1. Unsigned integer multiplication with n-bit operands: a) Beginning of the result value spectrum, b) maximum number of result value occurences in
the complete and non-trivial operations, and c) logical bit erasures per operation, with the total bar height representing the complete multiplication.

logical operation can be interpreted as the minimum amount
of information lost in any irreversible multiplier structure at
best. This loss determines the minimum achievable energy
cost per operation, and provides a common reference point
for comparing the various hardware implementations.

Non-trivial multiplication. Multiplication with zero value
operands can be detected and bypassed past the computation
hardware, and therefore, it is reasonable to consider a logical
operation, which does not include the zero operands and the
corresponding zero result. In this operation, the maximum
number of operand pairs is compacted behind the second
highest bars in the result value spectrum in Fig. 1(a), and
several different results reach this level on each wordlength.
The number of the operand pairs reduced to each second most
occuring result value is illustrated by the bottom curve in
Fig. 1(b) and appears to follow an exponential law, but we have
not determined an exact analytical expression for this. Based
on small wordlength brute force data, a parametric regression
model fitted using nonlinear least squares criteria in Matlab for
the number of operand pairs cnt leading to the specific result
is defined in Table I. This model has a trend of diminishing
relative error with increasing wordlength, making it suitable
for extrapolation. For the logical reversal of the state com-
pression, the number of extra bits bnt required to identify the
operands is sub-linear in respect to the wordlength, following
the logarithmic form defined in Table I.

The number of bit erasures in both types of indivisible
logical operations are shown in Fig. 1(c). The total height
of each bar represents the exact information loss in complete
multiplication, while the bottom portion of the bar represents
the predicted loss in the non-trivial multiplication. The top
portion corresponds to the lost bits related only to the trivial
zero results, and asymptotically with the wordlength, this

TABLE I
MODELS FOR THE MAX NUMBER OF RESULTS AND BIT ERASURES.

Complete multiplication Non-trivial multiplication

Results: c0 = 2n+1 − 1 cnt = p
n+p2
1 + p3

Erasures: b0 = n + 1 bnt = p4 ∗ log(n + p5) + p6

p1 = 1.3560, p2 = 3.5405, p3 = −3.5579
p4 = 122.9461, p5 = 240.9868, p6 = −673.3972

part settles to about 54% of the bar height. Although this
partitioning is based on a prediction model, it seems likely that
the non-trivial multiplication would typically save more than
half of the bit erasures, compared to the complete operation.

IV. BIT ERASURES IN SUMMAND ACCUMULATION

The paper-and-pencil multiplication algorithm of un-
signed binary operands A = (an−1, . . . , a1, a0) and
B = (bn−1, . . . , b1, b0), producing the result M =
(m2n−1, . . . ,m1,m0), where a0, b0, and m0 are the least
significant bits, is defined as follows:

an−1 · · · a1 a0
× bn−1 · · · b1 b0

an−1b0 · · · a1b0 a0b0
an−1b1 · · · a1b1 a0b1 0

.

.

. 0 0
+ an−1bn−1 · · · a1bn−1 a0bn−1 0 0 0

m2n−1 · · · · · · · · · · · · m1 m0

The basic structures compute each summand aibj once
with an AND-gate, which is based on a reduced three-input
majority gate on QCA and in the worst case erases two bits
of information. This is accompanied with the accumulation
of the summands with a full or serial adder, containing three
majority gates each erasing two bits. Thus, as the number of
summands is n2 and for each of them eight bits are erased, the
cost of worst case bit erasures per finished operation is 8n2.
The hardware specific erasures are illustrated in Fig. 2 and the
estimation models presented in Table II, based on the logic
gate and running cycle analysis described in the following.

Array multiplier. The full array structure [5] has only
the basic cost in information loss, since the paper-and-pencil
algorithm is mapped directly to hardware with normally 100%
utilization rate of the pipeline. This guarantees that the logic
gates neither have idle cycles nor compute with dummy
operands, which would lead to unnecessary logic activity.

The summand generation and accumulation erasures are
present also in the serial-parallel multipliers [10]–[12], which
multiplex the rows and partial products of the algorithm onto
shared hardware, with the penalty of additional serialization
costs estimated in the following. However, the basic cost is
not directly included in the radix-4 recoded multiplier [13],
which operates using a more complex algorithm.
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Fig. 2. Bit erasures in the proposed multiplier implementations.

V. BIT ERASURES OF SERIALIZATION

Serialization of the multiplication operation makes a trade-
off between the computing performance and the circuit area,
but there appears to be also a cost in information loss, due to
underutilization of the pipeline or control of the algorithm.

Serial-parallel multipliers. The approach of collapsing one
dimension of the algorithm into bit-serial operation leads to the
necessity to feed dummy zero operands to inputs, for many
cycles in the middle of computation, in order to avoid the
corruption of pipeline data. This generates unwanted activity
cycles for the logic gates, and can be seen as underutilization
of the pipeline. The basic serial-parallel designs [11], [12] use
a length n chain of AND-gates and adder slices, each pair
losing eight bits per cycle. With the running time of 2n cycles
per operation, the resulting total worst case erasures is 16n2.
An improved carry delay multiplier (CDM) design in [10], [11]
removes one of the slice adders and also 12n bit erasures.

Often both operands are available only in parallel format,
and this requires the serial-parallel multipliers to utilize a data
format converter. A simple design is included in [5], based on
a chain of OR-gates. The n− 1 gates each discard two bits of
logical information, and during the runtime of 2n cycles, the
additional loss is 4n2 − 4n erasures.

Digit-serial multiplier. Recoded radix-4 modified Booth
multiplier [13] represents a mid-point in the degree of par-
allelism of the proposed QCA implementations. While the
partially digit-serial approach brings a performance gain com-
pared to the bit-serial approach, the design is made unattractive
by the huge complexity and area cost. The runtime per
operation is limited to n cycles, but the number of gates active
on each cycle is over 13n2. This leads to the worst case total
information loss of 26n2 + 86n− 2 bits per multiplication.

Most of the radix-4 multiplier bit erasures occure in the
multiplexer chain utilized to select the correct multiple of
the multiplicand for summation. The muxes are responsible
for about 20n2 erasures, which indicates that this would be

TABLE II
MODELS FOR THE WORST CASE MULTIPLIER BIT ERASURES.

Array multiplier [5] 8n2

Serial-parallel [11], [12] 16n2

Serial-parallel carry delay [10], [11] 16n2 − 12n

Radix-4 recoded [13] 26n2 + 86n − 2

*Optional parallel-serial converters [5] 4n2 − 4n

a natural starting point for optimizations, since the simple
logic could possibly be laid out in a way that helps to retain
information, avoiding the worst case per gate loss.

VI. CONCLUSION

The theory of complete binary multiplication requires a
linear number of bit erasures, and without the zero operands,
non-trivial multiplication has information loss determined by
a sub-linear, logarithmic function of the operand wordlength.
In contrast, all of the studied structures for the hardware
implementation have the number of worst case bit erasures
following a square-law, dependent on the wordlength. Based
on this observation, the multipliers should yield to significant
optimization for information loss. Of the QCA designs, the
array multiplier performs best in this regard.

This work presented the worst case bounds for the imple-
mentations, but properly designed physical signal routing and
layout would lead to higher level of retained information.
Future work concentrates on gaining insight into how this
could be achieved, developing deterministic models for the
cost of improving both the logical and physical reversibility.
Accurate models for the power density of the irreversible QCA
layouts open a way to optimize the designs by taking into
account the bit erasures, timing, and circuit area together.
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