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The behavior of linear arrays of cells composed of quantum dots is examined. Each cell holds 
two electrons and interacts Coulombically with neighboring cells. The electrons in the cell tend 
to align along one of two axes resulting in a cell “polarization” which can be used to encode 
binary information. The ground-state polarization of a cell is a highly nonlinear function of the 
polarization of its neighbors. The resulting bistable saturation can be used to transmit binary 
information along the line of cells, thus forming a binary wire. 

I. INTRODUCTION 

Many investigators have noted the connection between 
quantum devices and locally interconnected architectures.’ 
The small currents and charges inherent in quantum de- 
vices are poorly suited for driving large numbers of devices, 
particularly conventional devices. Requiring that a quan- 
tum device interact only with its neighbors is much more 
promising. Despite the appeal of this synthesis, few pro- 
posals including both a specification of the component 
quantum devices and the coupling between them have 
appeared.2 

Recently, a specific proposal for a quantum cellular 
automata (QCA) implementation has been made by the 
authors et al. 3,4 The scheme is based on a quantum.cell 
composed of several quantum dots and containing two 
electrons. Coulomb repulsion between the electrons causes 
the charge in the cell to align along one of two directions. 
These two alignment states, “polarizations,” are used to 
encode binary information. The Coulomb coupling of the 
charge distribution in one cell to the charge in neighboring 
cells provides a physics-based local coupling between cells. 
The coupling leads to a highly bistable saturation behavior 
in the polarization, avoiding some of the criticisms of usual 
quantum interference-based device characteristics.’ Spe- 
cific arrangements of cells which can function as AND and 
OR gates have been proposed. 

In this article we examine in detail the linear arrays of 
such quantum-dot cells which form the “wires” in the 
QCA scheme proposed. In the following section we review 
the physics of the basic cell and the model proposed in Ref. 
3. Section III presents the theoretical machinery, a Hartree 
self-consistency scheme, which we use to examine arrays of 
cells. Section IV contains the examination of the behavior 
of a linear array of cells. We show that for a large range of 
physical parameters, the linear array behaves as a binary 
wire. Section V contains a discussion of the results. 

II. COUPLED QUANTUM CELLS 

The quantum-dot cell is shown schematically in Fig. 
1 (a). It consists of four quantum dots on the corners of a 
square and one central dot.6 The cell is occupied by two 
electrons.7’8 Tunneling occurs between near neighbors and 
next-nearest neighbors but the barriers between cells are 
assumed sufficient to completely suppress electron tunnel- 

ing between cells. We treat the quantum dots in the site 
representation, ignoring any degrees of freedom within the 
dot. 

A. Cell polarization 

The Coulomb interaction causes the two electrons to 
tend to occupy antipodal sites. The two-electron ground 
state may then consist of the electrons aligned along one of 
two perpendicular axes as shown in Fig. 1 (b). We define a 
quantity called the cell polarization which measures the 
extent to which the charge is aligned along one of these two 
axes. We denote the single-particle density at site i as pr. 
The polarization is then defined as 

p= (Pit-P3) - (pz+p4) 

-po+p,+p2+p3+p4 * (1) 

If the two electrons are entirely localized in sites 1 and 3, 
then the polarization P= 1. If the electrons are on sites 2 
and 4, P= - 1. An isolated cell would have a ground state 
which is a linear combination of these two polarizations, 
hence a net polarization of zero.’ 

6. The cell Hamiltonian 

We construct a simple model of the cell using a tight- 
binding Hubbard-type Hamiltonian. For an isolated cell, 
the Hamiltonian can be written 

%?l= X Eoni,,+ C tt,r(a~8/,b+a~,~~,g) 
i,u i> j,cr 

-I- zEpi,tni,l+ ,,zg, VQ ~~~~~~ * 
I I f I 

(2) 

Here ai,* is the annihilation operator which destroys a par- 
ticle at site i (i=O,1,2,3,4) with spin o. The number oper- 
ator for site i and spin (T is represented by ni,o. The on-site 
energy for each dot is Eo, the coupling between the ith and 
jth dot is ti,j, and the on-site charging energy (the Cou- 
lomb cost for two electrons of opposite spin occupying the 
same dot) is EQ. The last term in the Hamiltonian repre- 
sents the Coulombic potential energy for two electrons lo- 
cated at sites i and j at positions Ri and Rj . 

For our (‘standard cell,” on which most of the numer- 
ical results reported here are based, we obtain the values of 
the parameters in the Hamiltonian from a simple, experi- 
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FIG. 1. Schematic of quantum cell. The geometry of the cell is shown in 
(a). The solid lines indicate tunneling between the quantum dots. The 
tunneling energy between the inner dot and the outer dots is r, and the 
tunneling energy between adjacent outer dots is f’. The Coulomb repul- 
sion between the two electrons which occupy the cell results in ground- 
state configurations with the electrons aligned in the two orientations 
shown in (b). The polarization defined by Eq. (1) takes the values 1 and 
- 1 for these two configurations. 

mentally reasonable model. We take E. to be the ground- 
state energy of a circular quantum dot with diameter 
D= 10 nm holding an electron with effective mass 
m*=0.067mo. The near-neighbor distance between dot 
centers a is taken to be 20 nm. The Coulomb coupling 
strength VQ is calculated for a material with a dielectric 
constant of 10. We take EQ= Ve/( D/3). The coupling 
energy between the outer dots and the central dot is 
t=toi=0.3 meV (i=1,4), and the next-nearest neighbor 
coupling connecting the outer dots, t’, is taken to be t/10 
(consistent with one-dimensional calculations for reason- 
able barriers). The range of possible values of these param- 
eters is explored systematically below where we show that 
the important bistable saturation behavior is present for a 
wide range of parameters. 

The interaction of the cell with the surrounding envi- 
ronment, including other neighboring cells, is contained in 
a second term in the Hamiltonian which we write as G&. 
We solve the time-independent Schrijdinger equation for 
the state of the cell 1 q,) under the influence of the neigh- 
boring cells; 

(G’++;::,) I‘u,>=EnI~,). (3) 
The spins of the two electrons in a cell can be either aligned 
or antialigned, with corresponding changes in the spatial 
part of the wave function due to the Pauli principle. We 
will restrict our attention to the case of antialigned spins 
here because that is the ground-state configuration; the 
spin-aligned case exhibits nearly identical behavior. The 
Hamiltonian is diagonalized directly in the basis of few- 
electron states. We calculate single particle densities pi 
from the two-particle ground-state wave function 1 To), 

Pi= 5 (yOIni,c71yO)~ (4) 

and from the densities, calculate the resultant polarization 
P from Eq. (1). 

FIG. 2. The eigenstate energies for cell 1 as a function of the polarization 
of adjacent cell 2. The polarization of the eigenstates is indicated by the 
inset diagrams. The low-energy state is always the one with the same 
polarization as the “driver” cell 2. Slight exchange splitting (between the 
spatially symmetric and antisymmetric states) is evident for very small 
values of Pz . 

To maintain charge neutrality, a fixed positive charge 
j5 with magnitude (2/5)e is assumed at each site. If cells 
had a net total charge then electrons in cells at the periph- 
ery of a line of cells would tend to respond mostly to the 
net charge of the other cells. In a semiconductor realiza- 
tion, the neutralizing positive charge would be provided by 
ionized donor impurities and charge on the surface of 
metal gates. 

C. Calculating the cell-cell response function 

To be useful in cellular automata-type architectures,‘o 
the polarization of one cell must be strongly coupled to the 
polarization of neighboring cells. Consider the case of two 
nearby cells shown in the inset of Fig. 2. Suppose the 
charge distribution in the right-hand-side cell, labeled cell 
2, is tied. We assume cell 2 has polarization P2, and that 
the charge density on site 0 is negligible (this means the 
charge density is completely determined by the polariza- 
tion). For a given polarization of cell 2, we can compute 
the electrostatic potential at each site in cell 1. This addi- 
tional potential energy is then included in the total cell 
Hamiltonian. Thus, the perturbing Hamiltonian is 

~~r=~“= C Vi’ni,,, 
iecdl 1,~ 

where 

(5) 

v= c v (Pik-P) 

k#m,j ’ I~k,j-Rm,il (6) 

is the potential at site i in cell m due to the charges in all 
other cells. We denote the position of site j in cell k as Rk,, 
and the single-particle density at site j in cell k as p:. The 
total Hamiltonian for cell 1 is then 

@L$g”+@~ (7) 
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FIG. 3. The cell-cell response function (after Ref. 3). The induced cell 
polarization PI is plotted as a function of the neighboring cell polarization 
P2. The solid line shows the polarization of the spin-antisymmetric state 
and the dotted line shows the polarization of the (nearly degenerate) 
spin-symmetric state. 

The two-electron Schrodinger equation is solved using this 
Hamiltonian for various values of P2. The ground-state 
polarization of cell 1, PI, is then computed as described in 
the previous section. 

Figure 2 shows the splitting between the ground state 
and first excited state of cell 1 as a function of P2. (Actu- 
ally, each state is an exchange-split pair of spatially sym- 
metric and antisymmetric states, but the splitting is hardly 
resolved at the energy scale shown here.) The perturbation 
rapidly separates states of opposite polarization. The exci- 
tation energy for a completely polarized cell to an excited 
state of opposite polarization is about 0.8 meV for our 
standard cell. Figure 3 shows PI as a function of P,--the 
cell-cell response function. A very small polarization in cell 
2 causes cell 1 to be very strongly polarized. As the figure 
shows, the polarization saturates very quickly to either 
P- -l- 1 or P= - 1. This bistable saturation is the basis of 
the effects described in this article. 

As discussed at greater length in Ref. 4, the abruptness 
of the cell-cell response function depends on the ratio of 
the kinetic energy coupling parameter, f in Eq. (2)) to the 
Coulomb terms in the Hamiltonian. The magnitude of t 
depends exponentially on both the distance between the 
dots and the height of the potential barrier between them. 

111. HARTREE SELF-CONSISTENT SOLUTION FOR 
MANY CELLS 

In the analysis of the previous section, the two-electron 
eigenstates were calculated for a single cell. It is important 
to note that for the Hamiltonian employed these are exact 
two-particle eigenstates. This was possible because we 
could explicitly enumerate all possible two-electron states 
and diagonalize the Hamiltonian in this basis set. We now 
want to analyze linear arrays of many cells. Exact diago- 
nalization methods then become intractable because the 
number of possible many-electron states increases rapidly 
as the number of electrons increases. We must therefore 
turn to an approximate technique. 

It should be stressed that the ICHA still treats Cou- 
bmbic, exchange, and correlation effects between electrons 
in the same cell exactly. The Hartree mean-field approach 
is used to treat self-consistently the interaction between 
electrons in different cells. ‘I 

It is relevant to point out that we do not require co- 
herence of the many-electron wave function across the 
whole array of cells. All that is required to support this 
analysis is that the wave function is coherent across a sin- 
gle cell. No information about the phase of the wave func- 
tion in other cells is relevant to the wavefunction in a given 
cell-only the charge densities in other cells need be 
known. 

IV. LINES OF QUANTUM CELLS 

The potential at each site of a given cell depends on the Figure 4 shows schematically a line of two-electron 
charge density at each site of all other cells. We will treat quantum cells. The distance between centers of adjacent 

FIG. 4. A linear array of interacting cells. Each cell holds two electrons. 
Hopping between cells is assumed to be completely suppressed, 

the charge in all other cells as the generator of a Hartree- 
type potential and solve iteratively for the self-consistent 
.solution in all cells. This approximation, which we call the 
intercellular Hartree approximation (ICHA), can be 
stated formally as follows. Let \Ilgk be the two-electron 
ground-state wave function for cell k. We begin with an 
initial guess for the densities. Then, for each cell we calcu- 
late the potential due to charges in all other cells using Rq. 
(6). Although the neighboring cells will normally domi- 
nate, we do not restrict the analysis to near-neighbors only, 
but include the effect of all other cells. For a cell k, this 
results in a perturbation of the isolated cell Hamiltonian of 
Eq. (2): 

for 

H$= 2 v$zj,*. 
&cell k,a 

The Schrijdinger equation for each cell is now solved 
the two-electron ground-state eigenfunction, 

m;*‘+Hc,e”) 1 Y,k) ==lgl Y,“). (9) 
From the ground-state eigenfunctions we calculate the 

improved single-particle densities, 

(10) 

The improved densities are then used in Eq. (6) and 
the system is iterated until convergence is achieved. Once 
the system converges, the many-electron energy Etot is 
computed from the sum of the cell eigenenergies using the 
usual Hartree correction term to account for overcounting 
of the Coulomb interaction energy between cells, 
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FIG. 5. The response of a line of cells. The polarization of cell 1 [shown 
in (b) with a darker outline] is fixed and the ground-state polarization 
induced in the line of cells is calculated. The plot shows the induced 
polarization for a driver polarization of P=O.9,0.8,0.6,0.4,0.2, and 0.02. 
For the case of the weakest driver polarization, P=O.O2, the charge den- 
sities on each site are shown in (b) . The diameter of each dot is propor- 
tional to the charge density on that site. The Hamiltonian parameters 
used here are those of the “standard cell” discussed in the text. The result 
shows that even a slight polarization in a driver cell induces nearly com- 
plete polarization in the line of cells. 

cells is three times the near-neighbor distance between dots 
in a single cell. If the polarization of the end cell is fixed, 
say to P= + 1, a polarization will be induced in the neigh- 
boring cells. The question we address in this section is 
whether the saturation is sufficiently nonlinear that the 
entire line of cells will be “locked in” to a positive polar- 
ization. If this occurs for physically reasonable values of 
the Hamiltonian parameters, then lines of cells can perhaps 
be viewed as “wires” which transmit information, coded in 
the cell polarization, from one place to another. 
A. Line saturation 

Figure 5 shows the polarization as a function of cell 
number for a line of 10 cells. The polarization of cell 1 is 
set to values of P=O.9, 0.8, 0.6, 0.2, and 0.02, and the 
ground state of the electrons in the remaining nine cells is 
calculated self-consistently using the ICHA method de- 
scribed in the preceding section. The Hamiltonian param- 
eters for these cells are those of the standard cell. These 
parameters yield a very bistable cell response. The result is 
that even a slight polarization in the driver cell results in 
essentially complete polarization of all other cells in the 
line, as is clear in the figure. Figure 5 (b) is a plot of the 
calculated particle densities on each site in the line of cells 
for the case when the driver cell is polarized with only 
P=O.O2. This figure is not a schematic representation, but 
a plot of the calculated single-particle densities. The radius 
of each dot shown is proportional to the particle density at 
the corresponding site. The squares around the cells are 
aids to the eye only; the driver cell is indicated with a 
darker square around it. 

As the tunneling energies t and t’ are increased, the 
two-particle ground-state wave function in each cell be- 
comes less localized in the antipodal sites-the kinetic en- 
ergy term begins to balance and eventually dominate the 
Coulomb term in the Hamiltonian. Figure 6 shows the 
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FIG. 6. The response of a line of cells for a different value of tunneling 
energy parameter. As in Fig. 5, the polarization of cell 1 is fixed and the 
ground-state polarization induced in the line of cells is calculated. The 
plot shows the induced polarization for a driver polarization of P=O.9, 
0.8, 0.6, 0.4, 0.2, and 0.02. The model cells here differ from the standard 
cells used for Fig. 5 in that the tunneling energy i is 1.0 meV and t’ is 
neglected. The result shows that even a slight polarization in a driver cell 
induces a polarization in the line of cells but that the polarization satu- 
rates at a value Pmt (here about 0.85). 

polarization of the line when t= 1.0 meV and t’ =O. Figure 
7 illustrates the case when t= 1.0 meV and t’=t/lO. (The 
polarization of the last cell is always slightly lower because 
it has only one near neighbor.) Notice that in both cases 
the polarization saturates at a constant value, which we 
denote P,,, , several cells away from the driver cell. If the 
driver is polarized at a value larger than Psat , the polariza- 
tion decreases in successive cells until it reaches P,,, . If the 
driver is polarized at a value smaller than Psat, the polar- 
ization increases in successive cells until it reaches Psat. 
The value of Psat depends on the physical parameters in the 
cell Hamiltonian and on the distance between cells. 

If the driver cell has a fixed negative polarization, then 
the line will polarize to a saturation value of - Psat . The 
undriven line has two degenerate ground states of opposite 
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FIG. 7. The response of a line of cells for a different value of tunneling 
energy parameter. The polarization of cell 1 is fixed and the ground-state 
polarization induced in the line of cells is calculated. The plot shows the 
induced polarization for a driver polarization of P=O.9, 0.8, 0.6, 0.4, 0.2, 
and 0.02. For the case of the weakest driver polarization P=O.O2, the 
charge densities on each site are shown in (b). The diameter of each dot 
is proportional to the charge density on that site. ‘Ibe model cells here 
differ from the standard cells used for Fig. 5 in that the tunneling energy 
f is 1 .O meV and f’ = f/IO. The result shows that even a slight polarization 
in a driver cell induces a polarization in the line of cells but that the 
polarization saturates at a value Psat (here about 0.7) which characterizes 
the response of the line. 
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FIG. 8. Failure of a driver cell to polarize the line. In this case the 
tunneling parameters are chosen so that t=1.5 meV and t’=t/lO. The 
result is that the kinetic energy term in the Hamiltonian [Eq. (2)] over- 
whelms the Coulombic terms. A driver cell which is completely polarized 
then induces only a small polarization in its neighbors, and the polariza- 
tion decays quickly down the line. The charge densities are shown in (b). 

polarizations. The perturbation of the driver essentially se- 
lects one of these states as the new ground state, although 
it also modifies it in the region near the driver. Since we 
can change the signs of all polarizations, including the 
fixed drivers, and obtain another ground-state configura- 
tion (a mirror image of the original), we need here only 
consider situations with a positive polarization driver cell. 

Figure 8 shows the cell polarization for a line of cells 
when the line “fails.” The kinetic energy parameters for 
this case are t= 1.5 meV and t’ = t/10. Since the value of t 
is significantly larger than the Coulomb-induced splitting 
between the energy of oppositely polarized states (about 1 
meV) , the bistable response of the cells is very small. Thus, 
even a completely polarized driver cell fails to polarize the 
line. The polarization drops precipitously to zero. 

Two important conclusions follow from these results. 
First, for a line of cells for which the tunneling energies t 
and t’ are small enough to yield strong bistable behavior, a 
line of cells acts like a binary wire. That is, it robustly 
transmits a P= + 1 or - 1 polarization from one end to 
another. In fact it has the very attractive feature that it 
restores degraded signals back to the signal rails (Ps f 1). 
Second, the behavior of the line as a whole is characterized 
by the saturation polarization, P,,, . If Psat is close to unity, 
the line functions very well as a binary wire. If the indi- 
vidual cells are not strongly bistable enough, the value of 
Psat will be significantly less than unity and the line of cells 
will be less effective as a binary wire. If the bistability is 
sufficiently weak, P,,, is zero. In the following subsection 
we examine P,,, as a function of the physical parameters 
which specify the cell Hamiltonian. 

B. Dependence of Psat on physical parameters 

For a long line of cells, all the cells sufficiently removed 
from the ends will have polarization P,,,. The infinite line 
contains two degenerate ground states with P= f P,,, . We 
calculate P,,, by considering a segment of an infinite line. 
Figure 9 shows a “target” cell with three neighbors on each 
side (more distant neighbors have a negligible influence on 

E 8% z!z@E@% E 833 
target cell 

FIG. 9. Schematic view of cell geometry used in self-consistent calcula- 
tion of the polarization of an infinitely long chain of cells. 

the target cell). In the ground state all these cells have the 
same polarization Psat . We solve for Psat iteratively using 
the following scheme: All six neighbors are set to a polar- 
ization corresponding to an initial guess. The resulting po- 
tentials on the sites of the target cell are calculated and the 
two-electron Schriidinger equation is solved for the ground 
state of the target cell. The (induced) polarization of the 
target cell is then calculated from the two-electron wave 
function. The polarization of the six neighbors is now set to 
this calculated value and the process is iterated. The iter- 
ation converges to a fixed point when all cells have the 
same polarization Psat. The saturation polarization calcu- 
lated this way is identical to that obtained by considering a 
long (e.g., 20 cell) line and finding the polarization of the 
innermost cells. 

We focus on the dependence of the saturation polar- 
ization as a function of the physical parameters which en- 
ter the cell Hamiltonian [IQ. (2)]. Figure 10 shows the 
variation of Psat with the kinetic energy parameter t with 
t’ = t/10. All other parameters are kept fixed. This is equiv- 
alent to changing the barrier height between the quantum 
dots. Higher values of t correspond to lower barrier 
heights. As the figure illustrates, for values oft above about 
1 meV (a barrier height of roughly 100 meV for the stan- 
dard cell), the saturation polarization falls quickly to zero. 
The transition occurs near t=l meV because that is 
roughly the energy splitting between the ground state and 
the excited state of opposite- polarization (see Fig. 2). 
When the kinetic energy gain in hopping to neighboring 
sites balances this cost, the tendency of the cell to polarize 
is lost. 

Figure 11 illustrates the variation of Psat with a, the 
near-neighbor distance between quantum dots. As a is var- 
ied, t and t’ are kept constant. The intercellular distance is 

1.0 
0.8 

&3 ;*; 

an‘, 0.2 
0.0 I t I I 

0.0 0.5 1.0 1.5 210 
t (meV) 

FIG. 10. The saturation polarization for an intlnite linear chain of cells as 
a function of the tunneling parameter f. Other cell Hamiltonian parame- 
ters are fixed at the “standard cell” values. 
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FIG. 11. The saturation polarization for an infinite linear chain of cells as 
a function of the near-neighbor site distance a (see Fig. 1). Other cell 
Hamiltonian parameters are tlxed at the “standard cell” values. 

always 3a. The variation of a then has principally the effect 
of changing the strength of the Coulomb interaction be- 
tween the cells and between dots in the same cell. The 
larger a, the weaker the Coulomb interaction and hence the 
weaker the bistable cell behavior. 

Although we have focused on results for a particular 
“standard” cell with the specific physical parameters stated 
above, the saturation behavior is clearly determined by the 
ratio of the physical parameters, not their absolute values. 
Consider again the cell Hamiltonian in Eq. (2). The value 
of Es will not affect the polarization behavior because it 
simply adds a constant shift to the total energy. We set 
t’ = t/10 for the near-neighbor and next-nearest-neighbor 
kinetic energy terms. The value of Psat is then determined 
by three values: the kinetic energy parameter t, the site-site 
Coulomb energy parameter Vdu, and the on-site Coulomb 
term Ee. 

Let us examine what these three energy parameters 
correspond to physically. The energy t is half the value of 
the splitting between the spatially symmetric and antisym- 
metric states of a system of two quantum dots. It can also 
be considered as a hopping energy between neighboring 
dots which lowers the total energy by allowing the wave 
function to spread out spatially. The energy V$a is the 
Coulomb energy of two electrons separated by the distance 
a (the near-neighbor interdot separation). The energy Ee 
is the Coulomb energy of two electrons of opposite spin 
occupying the same quantum dot. It is roughly inversely 
proportional to the dot diameter.” 

Consider the three-dimensional parameter space 
spanned by these three physical energies t, Vda, and Ee. 
Systems with the same ratio of t:V$a:E, have identical 
saturation behavior. The locus of equivalent systems is a 
ray passing through the origin in parameter space. There- 
fore, to explore saturation polarization for the entire pa- 
rameter space spanned by these three physical parameters, 
it is sufficient to calculate P,,, on the surface of a sphere in 
the parameter space. This is shown in Fig. 12. The t axis 
has been scaled by a factor of 10. The values of Psat are 
plotted through the gray-scale map shown. The map is 
nonuniform and is chosen to accentuate the very abrupt 

VQla 

P sat 

0.96 - 1.0 

FIG. 12. The values of Pti for the parameter space spanned by the 
parameters in the Hamiltonian. 

transition between values of Psat near unity and values very 
close to zero. 

Figure 12 shows that the saturation behavior is not 
limited to an “island” in the Hamiltonian’s parameter 
space but is “continental.” Further, for most of the param- 
eter space, Psat is very close to 1 or 0. The transition is quite 
abrupt. A detailed examination of the interplay between 
on-site charging effects and near-neighbor effects awaits 
further study. 

V. DlSCUSSlON 

The results presented suggest that the lines of quantum 
cells discussed here are indeed capable of forming binary 
wires in the following sense. Information is encoded in the 
polarization of individual cells. Say a bit value of 1 is rep- 
resented by a polarization P= f 1 and a bit value of 0 is 
represented by a polarization of P= - 1. Suppose the po- 
larization of an end cell is fixed to 1 (perhaps electrostat- 
ically) and the line of cells is allowed to relax to its ground 
state. The ground state will be one for which all the cells 
have polarization 1 (bit value 1). If the end cell is 
switched, and the line again allowed to relax to its ground 
state, all the cells will switch to P== - 1 (bit value 0). This 
mechanism transports information, but not charge, from 
one end of the wire to another. It has the additional feature 
that inputs with polarization less than one, but still posi- 
tive, will be “reset” to be 1. Similarly, degraded negative 
input polarizations will be reset to - 1. The strong nonlin- 
ear bistable response of the coupled-cell system performs a 
role similar to gain in conventional digital devices, con- 
stantly restoring signal levels. 

Note that in this scheme we rely on the ground-state 
configuration of the system-not the transient response. 
We assume inelastic processes are sufficient to relax the 
system to its new ground state after the input is changed. 
The wire “transmits” information in the sense that after 
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this relaxation has occurred, the new ground state is one in 
which the output end of the wire matches the input end. 

In Ref. 4 we discuss the implementation of logical 
gates using the interacting quantum cells analyzed here. 
AND gates, OR gates, and inverters have all been designed 
using these ideas. 

To function well, the cells need to be small enough that 
the Coulomb interaction between electrons in different dots 
is significant. Additionally, the effective barriers to tunnel- 
ing between dots must be large enough that the kinetic 
energy advantage of spreading out the wave function does 
not overcome the Coulombic advantage of keeping the 
electrons in antipodal sites. As the results of Sec. IV B 
made clear, however, the relevant range of physical param- 
eters is not a small, carefully balanced set. 

Fabrication of such coupled dot structures surely rep- 
resents a significant challenge, but the dimensions involved 
make it possible to conceive of semiconductor realizations 
using nanolithographic techniques presently being devel- 
oped. Setting and reading the individual cell states at input 
and output ends involves the challenging task of sensing 
the presence of a single electron. 

The theoretical analysis in this article is a zero- 
temperature treatment. At a nonzero temperature, entropy 
will become important. The excited states of a line have a 
much greater degeneracy (hence entropy) than the ground 
state. For long enough lines this means that the thermo- 
dynamic expectation value of the polarization will decay as 
the distance from the end driver cell increases. These ef- 
fects will ultimately limit the size of usable binary wires 
and the operating temperatures feasible. Nevertheless, if 
the size scale can be sufficiently reduced (our standard cell 
is relatively large), more practical operating temperatures 
could be obtained. 

In conclusion we have examined the behavior of lines 
of interacting quantum-dot cells. The bistable saturation in 
the cell-cell interaction results in “binary wire” behavior in 
which information, encoded in the cell polarization, can be 
robustly transmitted from one end of a line to another. 
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