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We examine the possible implementation of logic devices using coupled quantum dot cells. Each
quantum cell contains two electrons which interact Coulombically with neighboring cells. The
charge distribution in each cell tends to align along one of two perpendicular axes, which allows
the encoding of binary information using the state of the cell. The state of each cell is affected
in a very nonlinear way by the states of its neighbors. A line of these cells can be used to transmit
binary information. We use these cells to design inverters, programmable logic gates, dedicated
AND and OR gates, and non-interfering wire crossings. Complex arrays are simulated which
implement the exclusive-OR function and a single-bit full adder.

{. INTRODUCTION

Devices based on quantum-mechanical principles hold
the promise of faster speeds and greatly reduced sizes.
Most quantum device designs examined have been similar
to classical device implementations in that they use cur-
rents and voltages to encode information. Thus although
the device operations proposed have been based on quan-
tum physics, the architectures have been conventional.

Employing quantum structures in conventional archi-
tectures has proven problematic for reasons directly related
to the inherently small size of quantum-effect devices. The
output signal of such ultrasmall devices, which is typically
nanoamperes of current, must be able to drive several other
similar devices, which may require a change of many mil-
livolts in their input voltages. Another significant problem
is that the capacitance of interconnecting wires tends to
dominate the device behavior.! The wiring problem is ag-
gravated by the fact that energy must be supplied to each
computational element through power connections.

We have recently proposed a scheme in which
Coulomb-coupled quantum devices are connected in a cel-
lular automata architecture.2 We call such architectures
quantum cellular automata (QCA).>% A QCA consists of
an array of quantum-dot cells connected locally by the
interactions of the electrons contained in each cell. The
scheme is non-conventional in that the quantum state of
each cell is used to encode binary information. The Cou-
lomb interaction connects the state of one cell to the state
of its neighbors. Thus the problems associated with small
output currents and parasitic capacitances of connecting
wires do not occur. “Binary wires” composed of linear
arrays of cells are effective in transmitting information,
coded in the cell states, from one place to another.’

In this paper we present simulations of QCA arrays,
some of which are quite large, performing complex com-
putational tasks. We review the basic cell operation and the
use of linear arrays as a binary wire. Novel programmable
logical gates and inverters are simulated and provide the
basis for computing in this scheme. We demonstrate that it
is possible to cross two QCA binary wires in the plane,
with no interference. Building up more complicated oper-
ations from the basic gates, we simulate QCA implemen-
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tations of an exclusive-OR function and a full adder. This
serves to demonstrate that the interactions between cells
are sufficiently local that hierarchical design is possible.

The calculations presented here are for zero tempera-
ture and assume the several-electron system has relaxed to
its ground state before a valid output is read. Unlike con-
ventional digital devices, the QCA operates on the princi-
ple that inelastic processes will always tend to drive the
system back to its ground state.” The time evolution of the
many-electron state of the system will in general be very
complicated, but only the final ground-state properties are
used for computing. Applying a new set of inputs places
the system in an excited state. While the system is relaxing
(presumably through a complicated process of exchanging
energy with its environment), the outputs are not valid.
Once the system has settled into its new ground state, the
results of the calculation appear encoded in the states of
the output cells located at an edge of the array. This idea of
“computing with the ground state” is discussed at length in
Ref. 4. :

In the next section, we will give a review of QCA
theory and the operation of the “standard cell.” The stan-
dard cell is the most thoroughly studied cell design because
it combines physically reasonable design parameters with
excellent bistable saturation. A detailed treatment of the
cell, various related cell designs, and our self-consistent
calculations for arrays of coupled cells can be found in
Refs. 3-6. Section II D discussed how lines of cells can be
used fo transmit information using a QCA binary wire.
Section ITI shows a design for an inverter, and Sec. IV
deals with the influence of several neighboring cells on the
cell states. This leads to the idea of the majority voting
logic gate and we demonstrate how its behavior can be
used to implement a programmable AND/OR gate. Sec-
tion V demonstrates a noninterfering planar crossing of
two QCA wires. Section VI shows how these various ideas
can be combined to form an exclusive-OR and a full adder.

iI. COUPLED QUANTUM CELLS

The standard cell design, shown schematically in Fig.
1(a), consists of five quantum dots located at the corners
and the center of a square. The cell is occupied by a total
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FIG. 1. Schematic of the basic five-site cell. (a) The geometry of the cell.
The tunneling energy between the middle site and an outer site is desig-
nated by ¢ while # is the tunneling energy between two outer sites. (b)
Coulombic repulsion causes the electrons to occupy antipodal sites within
the cell. These two bistable states result in cell polarizations of P=+1
and P=—1 [see Eq. (1)].

of two electrons hopping among the five sites. Tunneling
occurs between the central site and all four of the outer
sites (near-neighbor tunneling) and to a lesser degree be-
tween neighboring outer sites (next-near-neighbor tunnel-
ing). It is assumed that the potential barriers between cells
are high enough to completely suppress intercellular tun-
neling.

The electrons tend to occupy antipodal outer sites
within the cell due to their mutual electrostatic repulsion
as shown in Fig. 1(b). The two stable states shown are
degenerate in an isolated cell, but an electrostatic pertur-
bation in the cell’s environment (such as that caused by
neighboring cells) splits the degeneracy and causes one of
these configurations to become the cell ground state. Al-
tering the perturbation causes the cell to switch between
the two states in an abrupt and nonlinear manner. This
very desirable bistable saturation behavior is due to a com-
bination of quantum confinement, Coulombic repulsion,
and the discreteness of electronic charge.

A. Cell polarization

Since Coulomb repulsion causes the electrons to oc-
cupy antipodal sites, the ground state charge distribution
may have the electrons aligned along either of the two
diagonal axes shown in Fig. 1(b). We therefore define the
cell polarization, a quantity which measures the extent to
which the charge distribution is aligned along one of these
axes. The polarization is defined as

_C(p1t+p3)—(pat+pa)
"~ potpitprtpstps’

(1)

where p; denotes the electronic charge at site i As shown
in Fig. 1(b), electrons completely localized on sites 1 and
3 will result in P=1, while electrons on sites 2 and 4 yield
P=—1. An isolated cell would have a ground state which
is an equal combination of these two states and would
therefore have a net polarization of zero.®
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B. Standard celti parameters

We employ a simple model of the standard quantum
cell, representing the quantum dots as sites and ignoring
any degrees of freedom internal to the dot. We use a
second-quantized Hubbard-type Hamiltonian in the basis
of two-particle site kets for this model. The Hamiltonian
includes terms for the on-site energy (the cost to confine a
single electron to a site), tunneling between all pairs of the
five sites, Coulombic interaction between the charge den-
sities on each pair of sites, and the on-site charging energy
of each site (the purely Coulombic cost for two electrons of
opposite spin to occupy the same dot). The Hamiltonian
for a single isolated cell can be written as

Hcell:_ EEOnf,U+ E ti'j(azaaj’a+a},dai,0)
io > j,o

n ’
Syl (g

+ 2 Egnyyny + :
7 S i i>jeo CIR—Ry]

Here a;, is the second-quantized annihilation operator
which destroys a particle at site / (i=0,1,2,3,4) with spin
o, and af,;a is the creation operator for a similar particle.
The number operator for site / and spin o is represented by
n;,. The values of the physical parameters used are based
on a simple, experimentally reasonable model. We take E,
(the on-site energy) to be the ground state energy of a
circular quantum dot of diameter 10 nm holding an elec-
tron with effective mass m*=0.067 m,. The near-neighbor
distance between dot centers a is taken to be 20 nm. The
Coulomb coupling strength ¥ is calculated for a material
with a dielectric constant of 10, and Ej, the on-site charg-
ing cost, is taken to be V/(D/ 3).° The tunneling energy
between an outer dot and the central dot is £=0.3 meV,
and the next-near neighbor coupling connecting the outer
dots, #’, is taken to be #/10.!° To maintain charge neutrality
in the cell, a fixed positive charge p=(2/5)e is placed on
each site.!!

The spins of the two electrons in the cell can be either
parallel (the triplet spin state) or antiparallel (the singlet
spin state). We consider here the case of electrons with
antiparallel spins, since that is the ground state of the cell.
Calculations with electrons having parallel spins yield
qualitatively very similar results.

The interaction of a nonisolated cell with its electro-
static environment (including neighboring cells) is in-
cluded by altering the on-site energies to account for the
potential due to charge on each site of all the neighboring
cells. We then solve the time-independent Schrédinger
equation in the basis of two-particle site kets to find the
eigenstates of the system. The charge on each site can be
calculated by finding the expectation value of the number
operator in the ground state p;=—e{#;). These site
charges can be used to calculate the cell polarization P
using Eq. (1).

For a system composed of many cells, the ground state
of the entire system is found by iteratively solving for the
ground state of each cell. We treat the physics within the
cell as before, including exchange and correlation effects
exactly. The intercellular interaction is treated self-
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FIG. 2. Cell—cell response function for the basic five-site cells shown in
the insets. This shows the polarization P; induced in cell 1 by the fixed
polarization of its neighbor P,. The solid line corresponds to the triplet
state, and the dotted line to the singlet state. The two are nearly degen-
erate except for very small values of P;.

consistently using a Hartree approximation. This method,
called the intercellular Hartree approximation (ICHA) is
discussed in Refs. 4 and 5. '

C. Calculating the cell-cell response function

To be useful in cellular automata-type architectures,
the state of a cell must be strongly influenced by the states
of neighboring cells. To demonstrate how one of these
model cells is influenced by the state of its neighbor, con-
sider the two cells shown in the insets to Fig. 2. These are
two of the standard cells described above, and their centers
are separated by a distance of 3a=60 nm. We assume cell
2 has a given polarization P, and that the electron proba-
bility density on the central site is negligible. This means
that the charge distribution is completely determined by
the cell polarization. We calculate the electrostatic poten-
tial at each site of cell 1. This additional environmental
potential energy is then included in the Hamiltonian of cell
1. The two-electron time-independent Schrédinger equa-
tion is solved for a series of values of P, in the range
[—1,+1]. The ground state polarization of cell 1, P, is
then computed for each value of P,. Thus, we can plot the
induced polarization of cell 1 as a function of the polariza-
tion of cell 2. This function, P;(P,), which we call the
cell—cell response function, is one measure of how well a
cell will operate in a quantum cellular automata architec-
ture.

Figure 2 shows the cell—<ell response function for the
standard cell. The highly nonlinear nature of the response
indicates that a small polarization in cell 2 causes a very
strong polarization in its neighbor, cell 1. Figure 2 also
shows that the polarization of cell 1 saturates very quickly
to a value of +1 or — 1. This bistable saturation is the basis
of the quantum cellular automata since it means that one
can encode bit information using the cell polarization. We
assign the bit value of 1 to the P=+1 state and the bit
value O to the P=—1 state. Since the cell is almost always
in a highly polarized state (|P|=x1), the state of the cell
will be indeterminate only if the electrostatic environment
due to other cells is perfectly symmetric. Reference 6 ex-
amines the cell-cell response for various cell designs.
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FIG. 3. A QCA wire. (a) Three binary wires being driven from the left.
In each case, a weakly polarized driver induces full polarization in the rest
of the wire. This allows the transmission of information down the length
of the wire. The diagram is not simply schematic. The diameter of each
dot shown is proportional to the charge on the corresponding site, ob-
tained from a self-consistent solution for the ground state charge distri-
bution in this system. (b) Polarization of the wire cells for various values
of the driver cell polarization. The wires rapidly recover from a weak
driver and maintain full polarization through their entire length.

D. The binary wire

Since the polarization of each cell tends to align with
that of its neighbors, a linear arrangement of standard cells
can be used to transmit binary information from one point
to another. Figure 3(a) shows three such lines of cells in
which the polarization of the left-most cell is fixed and the
other cells are free. In each case, all of the free cells align
in the same direction as the driving cell, so the information
contained in the state of the driver is transmitted down the
wire. .

The three different systems in Fig. 3(a) each show a
different polarization of the driving cell. In each case the
free cells are nearly completely polarized. Figure 3(b)
shows plots of the polarization of a line of cells for various
values of polarization in the driver cell. As in Fig. 3(a), we
see that the polarizations of the free cells rapidly recover
from a weakly polarized driver and maintain full polariza-
tion throughout the line. The wire is robust in the sense
that it transmits a binary value (corresponding to a polar-
ization of roughly 4-1 or —1) even if the driver, or any
intermediate cells, are weakly polarized. The nonlinear re-
sponse of the cell to the polarization of its neighbors plays
the role of gain in a conventional digital circuit. It restores
the signal to the “signal rails.” The wire is also therefore
robust against cell-to-cell variations in the cell parameters.
Precise control of cellular geometry or tunneling rates is
not required. Further discussion of such lines of cells can
be found in Ref. 5.

It is important to note that unless stated otherwise,
these figures are not simply schematic, but plots of the
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FIG. 4. A “rotated” QCA cell. (a) The rotated cell is identical in all ways
to the standard cell except it is rotated by 45°. This causes the dots within
the cell to have a vertical and horizontal placement relative to each other.
(b) The polarizations of neighboring rotated cells tend to align opposite
each other as shown here schematically.

self-consistently calculated electron charge on each site.
The radius of each dot is proportional to the charge at that
site. °

While a line of standard cells can be used to transmit
information from one point to another, it is not the only
way to carry out such transmission. Figure 4(a) shows a
schematic diagram of a standard cell which has been ro-
tated by 45°. In all other ways, this “rotated” cell is iden-
tical to a standard cell. Figure 4(b) shows a schematic
representation of two of these rotated cells. This figure
shows that the polarizations of two such neighboring cells
tend to align opposite each other. This anti-alignment is in
contrast to the behavior of standard cells in which near
neighbors tend to align with each other.

Figure 5(a) shows a line of such rotated cells. The
polarizations alternate along the length of the line. For this
reason, we refer to a line of rotated cells as an ‘““‘inverter
chain.” If the length of the wire is known, it-is simple to
determine the signal that is being sent. Thus, an inverter
chain is another way quantum cells can be used to transmit
information down a wire. Figure 5(b) shows a polarization
plot corresponding to the inverter chain in Fig. 5(a). This
figure shows that, although the polarization alternates di-
rection between each pair of cells, its magnitude remains
constant. Inverter chains like this prove useful in more
complicated QCA. designs.

Ill. A QCA INVERTER

Two standard cells in a diagonal orientation are geo-
metrically similar to two rotatéd cells in a horizontal ori-
entation. For this reason, standard cells in a diagonal ori-
entation tend to align in opposite polarization directions as
in the inverter chain. This antialigning behavior can be
used in designing a QCA inverter.

Figure 6 shows an arrangement of cells that acts as an
inverter. The. “signal” comes in from the left on a binary

J. Appl. Phys., Vol. 75, No. 3, 1 February 1994

o CIe e AR AT 4T

b)

Polarization

4 6 8 10
Cell Number

S+

FIG. 5. An inverter chain. (a) A self-consistent solution of the ground
state of a line of rotated cells. The polarization alternates direction be-
tween each pair of cells, but each cell is nearly fully polarized. (b) A
polarization plot for the same system verifies nearly full polarization of
every cell.

wire and splits into two parallel wires which are offset from
the original. Because the incoming wire extends one cell
beyond the beginning of the offset wires, aligning effects
dominate at the branch point. Since the horizontal and
vertical interactions are dominant, the signal in the two
offset wires always matches that of the incoming wire. At
the right end of the inverter, the offset wires rejoin into
one. However, there are no horizontal or vertical interac-
tions at this end, so the diagonal (antialigning) interac-
tions cause the signal to be inverted. Although Fig. 6 only
shows a 1 being inverted to a 0, the design will invert a 0
also. The design shown has the added advantage that the
outgoing wire is not offset from the incoming wire.

IV. PROGRAMMABLE LOGIC GATES

Figure 7(a) shows an arrangement of five standard
cells. The states of the cells on the top, left, and bottom are
fixed, while the center and right cells are free to react to the
fixed charge. In an actual implementation, the three neigh-
bors would not be fixed; they would be driven by results of
previous calculations or by inputs at the edge of the QCA.

Input ET”:]B 0 Output
N I
LR
Input Qutput

-

FiG. 6. A QCA inverter. The signal comes in from the left, splits into two
parallel wires, and is inverted at the point of convergence. The design is
geometrically symmetric, so inversion of a 1 or a 0 occurs with the same
reliability. The diagram is not simply schematic. The diameter of each dot
shown is proportional to the charge on the corresponding site, obtained
from self-consistent solution for the ground state charge distribution. Also
shown is the logic symbol for the inverter.
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FIG. 7. Majority voting logic. (a) The states of the center and right cells
are always the same as the state of the majority of the three fixed neigh-
bors. The cells with heavy borders have fixed charge distributions. The
figure represents the self-consistent solution of the ground-state charge on
each site. (b) The schematic symbol for the majority voting logic element.
(¢) The truth table of the majority voting logic element.

In the particular case shown, two of the inputs are in
the “one” state, and the other is in the “zero” state. When
we solve for the ground state of the free cells, we find that
they both match the state of the majority of the fixed neigh-
bors. We refer to this result, which is true for ail combi-
nations of the three inputs, as majority voting logic.

To represent this new logical function, we will use the
symbol shown in Fig. 7(b). As this symbol demonstrates,
there are three inputs and one output for such a logic gate.
Figure 7(c) shows the truth table for a majority voting
logic gate. This is 2 summary of our simulation of all eight
combinations of the three inputs. The majority voting logic
function can be expressed in terms of fundamental Boolean
operators as

M(A4,B,C)=AB+BC+AC.

While it may appear that it requires five cells to implement
this majority voting gate, only the center cell is actually
“performing the calculation.” All the other cells are part of
the binary wires leading to and away from this gate. For
this reason, we refer to the center cell as the “device cell.”

While majority voting logic is a valuable result by it~
self, it is especially useful when we interpret the three in-
puts in a particular way. In Fig. 8(a), we have singled out
one of the three inputs and called it the “program line.”
Because of the symmetry of the system, any of the three
could serve as the program line. The one case shown (with
the program line coming in from the left) is sufficient for
illustration purposes. The four systems shown in Fig. 8(a)
include all combinations of signals on the two nonprogram
lines. Since the program line is in the one state in all four
systems, it takes a zero vote from each of the other two
lines to put the majority voting cell in the zero state. Thus,
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FIG. 8. The programmable AND/OR gate. (a) The program line is set
to one in each system, so the gate is displaying OR logic. All four com-
binations of the nonprogram line inputs are shown. The cells with heavy
borders have fixed charge distributions. Any one of the three inputs could
be the program line; the left cell is not special. The diameter of each dot
shown is proportional to the charge on the corresponding site, obtained
from a self-consistent solution for the ground state charge distribution.
(b) The schematic symbol for the programmable AND/OR gate.

the system performs the OR operation on the two non-
program lines. Likewise, if the program signal is zero, the
result is aiso zero unless both of the other inputs are one.
Such a system implements the AND operation.

By interpreting one of the inputs as a program line, we
have implemented a programmable AND/OR gate. The
nature of the logic performed by this gate (AND vs OR)
is determined by the state of the program line, and the
other two inputs are applied to the gate thus defined. As
shown in Fig. 8(b), the difference between a majority vot-
ing gate and a programmable AND/OR gate is just a re-
labeling of one of the three inputs. The nature of the gate
and the truth table it represents are identical, so we use the
same device symbol to represent it.

Since the cell on the right always matches the center
cell, the result of this calculation can be propagated away
from the gate down a QCA wire, where it will eventually
serve as an input to subsequent gates. It may at first seem
that the state of the cell on the right should be counted in
the majority voting logic, but this is not the case. Since it is
completely free to react to the cells around it, we say that
it is a “driven” neighbor for this gate. By contrast, the
other three neighbors are not free to change because they
are fixed by previous results or inputs directly from the
edge of the QCA (we here assume that the input is fixed at
the left edge of the array). We call these “driving” neigh-
bors for this calculation. Of course, once the result of this
calculation propagates away to the right, it can serve as a
driving neighbor for subsequent gates.

A nonprogrammable implementation of an AND gate
is shown in Fig. 9(a). In this case, the signal on the pro-
gram line (which again is on the left for illustration pur-
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FIG. 9. (2) The dedicated AND gate. A programmable AND/OR gate
can be reduced to implement a dedicated AND gate by permanently
setting the program cell to 0. Likewise, a dedicated OR gate could be
implemented by permanently setting it to 1. (b) A schematic diagram of
how programmable gates can be “reduced” by permanently fixing the
program line.

poses) is permanently fixed in the zero state. This would be
done by destroying sites 1 and 3 once the cell had been
fabricated. Since the gate is no longer programmable, we
lose some of the flexibility originally present, but there are
many situations that require such a dedicated logic ele-
ment. We say that the gate has been reduced since it can
now perform only one of the two functions of a program-
mable gate. A dedicated OR gate can be implemented in a
similar way by destroying sites 2 and 4 of the program cell.
Figure 9(b) shows schematically how a programmable
logic gate can be converted to a dedicated two-input gate
by permanently setting the value of the program line.

V. COPLANAR WIRE CROSSING

In a traditional integrated circuit, the crossing of two
wires is achieved by physically passing one wire over the
other with an insulator placed between them. Such a non-
planar crossing would also work for two QCA wires, but
the cellular nature of such wires allows us to cross them
using an entirely coplanar arrangement of cells. Such a
coplanar crossing is impossible in conventional circuits
which code information using currents and voltages.

Figure 10 shows one way to cross two binary wires
composed of QCA cells. In this example, the horizontal
line is transmitting a zero and the vertical line is transmit-
ting a one. In order to cross the lines, the horizontal wire
must be converted from standard cells to rotated cells.
These rotated cells are identical to those composing the
inverter chain shown in Sec. IV. The signal on the hori-
zontal line is transmitted to the rotated cells by a special
arrangement of three cells, an “X-to--4 converter.” Since
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FIG. 10. A coplanar crossing of two QCA wires. The diameter of each
dot shown is proportional to the charge on the corresponding site, ob-
tained from a self-consistent solution for the ground state charge distri-
bution. A schematic representation of a noninterfering wire crossing is
also shown.

the state of a normal (or “X-shaped”) cell has no switch-
ing effect on a rotated (or ““+-shaped”) cell directly in line
with it, such conversion requires that the standard cell be
above and on a line directly between two of the rotated
cells. Such placement has the desired transmission effect,
and a similar arrangement can also serve to convert the
signal back to standard cells (a “--to-X converter”). As
shown in Sec. IV, the polarization of the cells in the in-
verter chain alternate direction beginning immediately af-
ter the X -to-+ converter. There must therefore be an even
number of cells between the X-to-4 converter and the
+-to-X converter.

The reason for going through this conversion to and
from rotated cells has already been mentioned: the state of
a normal cell has no switching effect on a rotated cell
directly in line with it. Similarly, the state of a rotated cell
has no effect on the state of a normal cell in line with it. We
can therefore directly cross the horizontal inverter chain of

" temporarily rotated cells and the vertical line of normal

cells without interference. This crossing relies on the cou-
pling between cells labeled “A” and “B” in the figure. This
coupling is somewhat weaker than the usual coupling be-
tween cells in a wire chain because these cells are further
apart. We have verified by direct calculation of the many-
electron ground state that the system correctly transmits
all possible combinations of the two signals without inter-
ference.

Vi. XOR AND FULL ADDER

Figure 11(a) shows a schematic of an exclusive-OR
function implemented using dedicated AND and OR gates.
Figure 11(b) shows one implementation of this schematic
using reduced gates (acting as two AND gates and one OR
gate). The noninterfering wire crossing is employed in con-
necting the individual gates together. Figure 11 shows the
ground-state charge on each site of each cell in the array
for one set of inputs. We have verified by directly calculat-
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FIG. 11. The exclusive OR gate. (a) A schematic diagram of the exclu-
sive OR function implemented using dedicated AND and OR gates. (b)
An implementation of the schematic using reduced QCA logic gates. A
wire crossing and an inverter are also used.

ing the ground state for each of the four possible sets of
inputs that the array shown yields the truth table of an
exclusive-OR function.

Figure 12 shows the schematic of our design of a
single-bit full adder implemented with only inverters and
majority voting logic gates. Note that no reduced gates
(individual AND or OR gates) are required. The device
has three inputs: the operands 4, and B,,, and the previous
carry result C,,_;. The two outputs are the sum S, and the
carry bit C,. Single-bit full adders like this one can be
easily chained together to produce a multibit adder. Fig-

Cia

FIG. 12. The one-bit full-adder schematic diagram. This implementation
uses three inverters and five majority-voting gates to perform a compli-
cated logical calculation. Use of dedicated AND and OR gates would
require a larger gate count.
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FIG. 13. The QCA full adder implementation. This figure corresponds to
the schematic in Fig. 12 and uses 192 cells. The particular case shown has
a zero on the carry-in line and ones on each of the addend lines. There-
fore, the sum is zero and the carry-out is one. The diameter of each dot
shown is proportional to the charge on the corresponding site, obtained
from a self-consistent solution for the ground state charge distribution.

ures 13 and 14 display the ground-state charge distribution
for the simulation of this device with two of the eight
possible input states. These figures are the results of self-
consistent Hartree calculations for the 192-cell (384 elec-
tron) system. As in previous figures, the diameter of each
dot is proportional to the charge on that site. We have
verified that the ground-state calculation for all eight input
combinations produces output results appropriate for a full
adder. :

The full adder is the most complex QCA array we have
simulated to date. It illustrates that it is possible to con-
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FIG. 14. The QCA full adder with different inputs. The carry-in is one
and the two addends are each zero. This makes the sum one and the
carry-out zero.
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struct complicated arrays of cells which perform useful
computing. Furthermore, a design of this size shows that
the local coupling between cells lend themselves to hierar-
chical layout rules. The functioning of the whole array can
be understood by examining the function of each part
(gate, inverter, wire) independently. Although we have
calculated the behavior of the system globally, by solving
for the ground-state of the entire array, we can confidently
predict the results by just considering each element as a
separate computing component.

Vil. CONCLUSIONS

Experimentally realizing cells of the type we discuss
presents some challenges, but recent experiments indicate
they are not insurmountable. Maintaining the double
charging of each cell could be accomplished by using an
insulated top gate, a conducting substrate to supply the
electrons, and a thin tunnel barrier between the cells and
the substrate to stabilize the charge at integer values. This
method of controlling the charge state of ultrasmall struc-
tures has been demonstrated by Meuer ez al.12 and Ashoori
et al,,"® in semiconductor quantum dots. The problem of
setting the polarization of a cell (writing the inputs) and
sensing the polarization of a cell (reading the outputs)
amounts to the problem of measuring the presence of in-
dividual electronic charges on a metal electrode. That this
is feasible has been experimentally demonstrated by Field
et al¥* :

Semiconductor fabrication of QCA devices may be-
come possible using new nanolithographic techniques. The
possibility of implementing QCA. cells in small metallic
islands has also been proposed.!® Future realizations may
be based on macromolecular implementations.!® As the
size of the structure is reduced, the relevant energy scales
will increase leading to higher temperature operation. This
scalability down to atomic diménsions is a key feature. The
scheme does not fail as the size is reduced, rather it be-
comes more robust.

In conclusion, our calculations show that coupled
quantum dot cells could be used to implement all three of
the basic Boolean operations (AND, OR, and NOT) as
well as a new primitive operation, majority voting. We
have shown how linear arrays of cells can be used as binary
wires, and that coplanar wire crossings are possible. By
simulating an exclusive OR gate and a full adder we have
demonstrated that the operation of basic QCA logical gates
can be composed to form more complex device structures
and that hierarchical design is possible.
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