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We examine the possible implementation of logic devices using coupled quantum dot cells. Each 
quantum cell contains two electrons which interact Coulombically with neighboring cells. The 
charge distribution in each cell tends to align along one of two perpendicular axes, which allows 
the encoding of binary information using the state of the cell. The state of each cell is affected 
in a very nonlinear way by the states of its neighbors. A line of these cells can be used to transmit 
binary information. We use these cells to design inverters, programmable logic gates, dedicated 
AND and OR gates, and non-interfering wire crossings. Complex arrays are simulated which 
implement the exclusive-OR function and a single-bit full adder. 

1. INTRODUCTION 

Devices based on quantum-mechanical principles hold 
the promise of faster speeds and greatly reduced sizes. 
Most quantum device designs examined have been similar 
to classical device implementations in that they use cur- 
rents and voltages to encode information. Thus although 
the device operations proposed have been based on quan- 
tum physics, the architectures have been conventional. 

Employing quantum structures in conventional archi- 
tectures has proven problematic for reasons directly related 
to the inherently small size of quantum-effect devices. The 
output signal of such ultrasmall devices, which is typically 
nanoamperes of current, must be able to drive several other 
similar devices, which may require a change of many mil- 
livolts in their input voltages. Another significant problem 
is that the capacitance of interconnecting wires tends to 
dominate the device behavior.’ The wiring problem is ag- 
gravated by the fact that energy must be supplied to each 
computational element through power connections. 

We have recently proposed a scheme in which 
Coulomb-coupled quantum devices are connected in a cel- 
lular automata architecture.’ We call such architectures 
quantum cellular automata (QCA).34 A QCA consists of 
an array of quantum-dot cells connected locally by the 
interactions of the electrons contained in each cell. The 
scheme is non-conventional in that the quantum state of 
each cell is used to encode binary information. The Cou- 
lomb interaction connects the state of one cell to the state 
of its neighbors. Thus the problems associated with small 
output currents and parasitic capacitances of connecting 
wires do not occur. “Binary wires” composed of linear 
arrays of cells are effective in transmitting information, 
coded in the cell states, from one place to another.5 

In this paper we present simulations of QCA arrays, 
some of which are quite large, performing complex com- 
putational tasks. We review the basic cell operation and the 
use of linear arrays as a binary wire. Novel programmable 
logical gates and inverters are simulated and provide the 
basis for computing in this scheme. We demonstrate that it 
is possible to cross two QCA binary wires in the plane, 
with no interference. Building up more complicated oper- 
ations from the basic gates, we simulate QCA implemen- 

tations of an exclusive-OR function and a full adder. This 
serves to demonstrate that the interactions between cells 
are sufficiently local that hierarchical design is possible. 

The calculations presented here are for zero tempera- 
ture and assume the several-electron system has relaxed to 
its ground state before a valid output is read. Unlike con- 
ventional digital devices, the QCA operates on the princi- 
ple that inelastic processes will always tend to drive the 
system back to its ground state.’ The time evolution of the 
many-electron state of the system will in general be very 
complicated, but only the final ground-state properties are 
used for computing. Applying a new set of inputs places 
the system in an excited state. While the system is relaxing 
(presumably through a complicated process of exchanging 
energy with its environment), the outputs are not valid. 
Once the system has settled into its new ground state, the 
results of the calculation appear encoded in the states of 
the output cells located at an edge of the array. This idea of 
“computing with the ground state” is discussed at length in 
Ref. 4. 

In the next section, we will give a review of QCA 
theory and the operation of the “standard cell.” The stan- 
dard cell is the most thoroughly studied cell design because 
it combines physically reasonable design parameters with 
excellent bistable saturation. A detailed treatment of the 
cell, various related cell designs, and our self-consistent 
calculations for arrays of coupled cells can be found in 
Refs. 3-6. Section II D discussed how lines of cells can be 
used to transmit information using a QCA binary wire. 
Section III shows a design for an inverter, and Sec. IV 
deals with the influence of several neighboring cells on the 
cell states. This leads to the idea of the majority voting 
logic gate and we demonstrate how its behavior can be 
used to implement a programmable AND/OR gate. Sec- 
tion V demonstrates a noninterfering planar crossing of 
two QCA wires. Section VI shows how these various ideas 
can be combined to form an exclusive-OR and a full adder. 

II. COUPLED QUANTUM CELLS 

The standard cell design, shown schematically in Fig. 
1 (a), consists of five quantum dots located at the corners 
and the center of a square. The cell is occupied by a total 
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B. Standard cell parameters 

We employ a simple model of the standard quantum 
cell, representing the quantum dots as sites and ignoring 
any degrees of freedom internal to the dot. We use a 
second-quantized Hubbard-type Hamiltonian in the basis 
of two-particle site kets for this model. The Hamiltonian 
includes terms for the on-site energy (the cost to confine a 
single electron to a site), tunneling between all pairs of the 
five sites, Coulombic interaction between the charge den- 
sities on each pair of sites, and the on-site charging energy 
of each site (the purely Coulombic cost for two electrons of 
opposite spin to occupy the same dot). The Hamiltonian 
for a single isolated cell can be written as 

FIG. 1. Schematic of the basic five-site cell. (a) The geometry of the cell. 
The tunneling energy between the middle site and an outer site is desig- 
nated by t, while t’ is the tunneling energy between two outer sites. (b) 
Coulombic repulsion causes the electrons to occupy antipodal sites within 
the cell. These two bistable states result in cell polarizations of P= + 1 
and P=-1 [see Eq. (l)]. 

of two electrons hopping among the five sites. Tunneling 
occurs between the central site and all four of the outer 
sites (near-neighbor tunneling) and to a lesser degree be- 
tween neighboring outer sites (next-near-neighbor tunnel- 
ing). It is assumed that the potential barriers between cells 
are high enough to completely suppress intercellular tun- 
neling. 

The electrons tend to occupy antipodal outer sites 
within the cell due to their mutual electrostatic repulsion 
as shown in Fig. 1 (b). The two stable states shown are 
degenerate in an isolated cell, but an electrostatic pertur- 
bation in the cell’s environment (such as that caused by 
neighboring cells) splits the degeneracy and causes one of 
these configurations to become the cell ground state. Al- 
tering the perturbation causes the cell to switch between 
the two states in an abrupt and nonlinear manner. This 
very desirable bistable saturation behavior is due to a com- 
bination of quantum confinement, Coulombic repulsion, 
and the discreteness of electronic charge. 

A. Cell polarization 

Since Coulomb repulsion causes the electrons to oc- 
cupy antipodal sites, the ground state charge distribution 
may have the electrons aligned along either of the two 
diagonal axes shown in Fig. 1 (b). We therefore define the 
cell polarization, a quantity which measures the extent to 
which the charge distribution is aligned along one of these 
axes. The polarization is defined as 

(1) 
where pi denotes the electronic charge at site i. As shown 
in Fig. 1 (b), electrons completely localized on sites 1 and 
3 will result in P- 1, while electrons on sites 2 and 4 yield 
P- - 1. An isolated cell would have a ground state which 
is an equal combination of these two states and would 
therefore have a net polarization of zero.8 
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Here ai,, is the second-quantized annihilation operator 
which destroys a particle at site i (i=O,1,2,3,4) with spin 
a, and ati,a is the creation operator for a similar particle. 
The number operator for site i and spin u is represented by 
n6c. The values of the physical parameters used are based 
on a simple, experimentally reasonable model. We take E. 
(the on-site energy) to be the ground state energy of a 
circular quantum dot of diameter 10 nm holding an elec- 
tron with effective mass m* =0.067 mo. The near-neighbor 
distance between dot centers a is taken to be 20 nm. The 
Coulomb coupling strength VQ is calculated for a material 
with a dielectric constant of 10, and E, the on-site charg- 
ing cost, is taken to be V$( D/3).9 The tunneling energy 
between an outer dot and the central dot is r=O.3 meV, 
and the next-near neighbor coupling connecting the outer 
dots, t’, is taken to be NO.” To maintain charge neutrality 
in the cell, a fixed positive charge p= (2/5)e is placed on 
each site.” 

The spins of the two electrons in the cell can be either 
parallel (the triplet spin state) or antiparallel (the singlet 
spin state). We consider here the case of electrons with 
antiparallel spins, since that is the ground state of the cell. 
Calculations with electrons having parallel spins yield 
qualitatively very similar results. 

The interaction of a nonisolated cell with its electro- 
static environment (including neighboring cells) is in- 
cluded by altering the on-site energies to account for the 
potential due to charge on each site of all the neighboring 
cells. We then solve the time-independent Schrijdinger 
equation in the basis of two-particle site kets to find the 
eigenstates of the system. The charge on each site can be 
calculated by finding the expectation value of the number 
operator in the ground state pi= -c( n^i). These site 
charges can be used to calculate the cell polarization P 
using Eq. (1). 

For a system composed of many cells, the ground state 
of the entire system is found by iteratively solving for the 
ground state of each cell. We treat the physics within the 
cell as before, including exchange and correlation effects 
exactly. The intercellular interaction is treated self- 
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FIG. 2. Cell-cell response function for the basic five-site cells shown in 
the insets. This shows the polarization P, induced in cell 1 by the fixed 
polarization of its neighbor Pz. The solid line corresponds to the triplet 
state, and the dotted line to the singlet state. The two are nearly degen- 
erate except for very small values of Pz. 

consistently using a Hartree approximation. This method, 
called the intercellular Hartree approximation (ICHA) is 
discussed in Refs. 4 and 5. 

C. Calculating the cell-cell response function 

To be useful in cellular automata-type architectures, 
the state of a cell must be strongly influenced by the states 
of neighboring cells. To demonstrate how one of these 
model cells is influenced by the state of its neighbor, con- 
sider the two cells shown in the insets to Fig. 2. These are 
two of the standard cells described above, and their centers 
are separated by a distance of 3a=60 nm. We assume cell 
2 has a given polarization Pz and that the electron proba- 
bility density on the central site is negligible. This means 
that the charge distribution is completely determined by 
the cell polarization. We calculate the electrostatic poten- 
tial at each site of cell 1. This additional environmental 
potential energy is then included in the Hamiltonian of cell 
1. The two-electron time-independent Schriidinger equa- 
tion is solved for a series of values of P2 in the range 
[- 1, + 11. The ground state polarization of cell 1, PI, is 
then computed for each value of Pz. Thus, we can plot the 
induced polarization of cell 1 as a function of the polariza- 
tion of cell 2. This function, P1( P2), which we call the 
cell-cell response function, is one measure of how well a 
cell will operate in a quantum cellular automata architec- 
ture. 

Figure 2 shows the cell-cell response function for the 
standard cell. The highly nonlinear nature of the response 
indicates that a small polarization in cell 2 causes a very 
strong polarization in its neighbor, cell 1. Figure 2 also 
shows that the polarization of cell 1 saturates very quickly 
to a value of + 1 or - 1. This bistable saturation is the basis 
of the quantum cellular automata since it means that one 
can encode bit information using the cell polarization. We 
assign the bit value of 1 to the P= + 1 state and the bit 
value 0 to the P= - 1 state. Since the cell is almost always 
in a highly polarized state ( 1 PI B 1 ), the state of the cell 
will be indeterminate only if the electrostatic environment 
due to other cells is perfectly symmetric. Reference 6 ex- 
amines the cell-cell response for various cell designs. 

a) I;flir’lc”11.LJC ‘lr;7.‘II. 
PzO.4 

j7K-qJnnnnm1.1. 
P-O.8 

2 4 6 8 10 
Cell Number 

FIG. 3. A QCA wire. (a) Three binary wires being driven from the left. 
In each case, a weakly polarized driver induces full polarization in the rest 
of the wire. This allows the transmission of information down the length 
of the wire. The diagram is not simply schematic. The diameter of each 
dot shown is proportional to the charge on the corresponding site, ob- 
tained from a self-consistent solution for the ground state charge distri- 
bution in this system. (b) Polarization of the wire cells for various values 
of the driver cell polarization. The wires rapidly recover from a weak 
driver and maintain full polarization through their entire length. 

D. The binary wire 

Since the polarization of each cell tends to align with 
that of its neighbors, a linear arrangement of standard cells 
can be used to transmit binary information from one point 
to another. Figure 3(a) shows three such lines of cells in 
which the polarization of the left-most cell is fixed and the 
other cells are free. In each case, all of the free cells align 
in the same direction as the driving cell, so the information 
contained in the state of the driver is transmitted down the 
wire. 

The three different systems in Fig. 3(a) each show a 
different polarization of the driving cell. In each case the 
free cells are nearly completely polarized. Figure 3 (b) 
shows plots of the polarization of a line of cells for various 
values of polarization in the driver cell. As in Fig. 3 (a), we 
see that the polarizations of the free cells rapidly recover 
from a weakly polarized driver and maintain full polariza- 
tion throughout the line. The wire is robust in the sense 
that it transmits a binary value (corresponding to a polar- 
ization of roughly + 1 or - 1) even if the driver, or any 
intermediate cells, are weakly polarized. The nonlinear re- 
sponse of the cell to the polarization of its neighbors plays 
the role of gain in a conventional digital circuit. It restores 
the signal to the “signal rails.” The wire is also therefore 
robust against cell-to-cell variations in the cell parameters. 
Precise control of cellular geometry or tunneling rates is 
not required. Further discussion of such lines of cells can 
be found in Ref. 5. 

It is important to note that unless stated otherwise, 
these figures are not simply schematic, but plots of the 
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PIG. 4. A “rotated” QCA cell. (a) The rotated cell is identical in all ways 
to the standard cell except it is rotated by 45’. This causes the dots within 
the cell to have a vertical and horizontal placement relative to each other. 
(b) The polarizations of neighboring rotated cells tend to align opposite 
each other as shown here schematically. 

self-consistently calculated electron charge on each site. 
The radius of each dot is proportional to the charge at that 
site. 

While a line of standard cells can be used to transmit 
information from one point to another, it is not the only 
way to carry out such transmission. Figure 4(a) shows a 
schematic diagram of a standard cell which has been ro- 
tated by 45”. In all other ways, this “rotated” cell is iden- 
tical to a standard cell. Figure 4(b) shows a schematic 
representation of two of these rotated cells. This figure 
shows that the polarizations of two such neighboring cells 
tend to align opposite each other. This anti-alignment is in 
contrast to the behavior of standard cells in which near 
neighbors tend to align with each other. 

Figure 5(a) shows a line of such rotated cells. The 
polarizations alternate along the length of the line. For this 
reason, we refer to a line of rotated cells as an Ynverter 
chain.” If the length of the wire is known, it,is simple to 
determine the signal that is being sent. Thus, an inverter 
chain is another way quantum cells can be used to transmit 
information down a wire. Figure 5(b) shows a polarization 
plot corresponding to the inverter chain in Fig. 5 (a). This 
figure shows that, although the polarization alternates di- 
rection between each pair of cells, its magnitude remains 
constant. Inverter chains like this prove useful in more 
complicated QCA designs. 

III. A QCA INVERTER 

Two standard cells in a diagonal orientation are geo- 
metrically similar to two rotated cells in a horizontal ori- 
entation. For this reason, standard cells in a diagonal ori- 
entation tend to align in opposite polarization directions as 
in the inverter chain. This antialigning behavior can be 
used in designing a QCA inverter. 

Figure 6 shows an arrangement of cells that acts as an 
inverter. The “signal” comes in from the left on a binary 

2 4 6 8 10 
Cell Number 

FIG. 5. An inverter chain. (a) A self-consistent solution of the ground 
state of a line of rotated cells. The polarization alternates direction be- 
tween each pair of cells, but each cell is nearly fully polarized. (b) A 
polarization plot for the same system verifies nearly full polarization of 
every call. 

wire and splits into two parallel wires which are of&et from 
the original. Because the incoming wire extends one cell 
beyond the beginning of the offset wires, aligning effects 
dominate at the branch point. Since the horizontal and 
vertical interactions are dominant, the signal in the two 
offset wires always matches that of the incoming wire. At 
the right end of the inverter, the offset wires rejoin into 
one. However, there are no horizontal or vertical interac- 
tions at this end, so the diagonal (antialigning) interac- 
tions cause the signal to be inverted. Although Fig. 6 only 
shows a 1 being inverted to a 0, the design will invert a 0 
also. The design shown has the added advantage that the 
outgoing wire is not offset from the incoming wire. 

IV. PROGRAMMABLE LOGIC GATES 

Figure 7(a) shows an arrangement of five standard 
cells. The states of the cells on the top, left, and bottom are 
flxed, while the center and right cells are free to react to the 
fixed charge. In an actual implementation, the three neigh- 
bors would not be fixed; they would be driven by results of 
previous calculations or by inputs at the edge of the QCA. 

Itlpt s-‘]I.~ 
‘-hm~, 

(J Output 

.,( pTf 
. . . 

Output 

‘=----b J 
PIG. 6. A QCA inverter. The signal comes in from the left, splits into two 
parallel wires, and is inverted at the point of convergence. The design is 
geometrically symmetric, so inversion of a 1 or a 0 occurs with the same 
reliability. The diagram is not simply schematic. The diameter of each dot 
shown is proportional to the charge on the corresponding site, obtained 
from self-consistent solution for the ground state charge distribution. Also 
shown is the logic symbol for the inverter. 
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FIG. 7. Majority voting logic. (a) Th.e states of the center and right cells 
are always the same as the state of the majority of the three fixed neigh- 
bors. The cells with heavy borders have lixd charge distributions. The 
figure represents the self-consistent solution of the ground-state charge on 
each site. (b) The schematic symbol for the majority voting logic element. 
(c) The truth table of the majority voting logic element. 

In the particular case shown, two of the inputs are in 
the “one” state, and the other is in the “zero” state. When 
we solve for the ground state of the free cells, we find that 
they both match the state of the majority of the fixed neigh- 
bors. We refer to this result, which is true for all combi- 
nations of the three inputs, as major@ voting logic. 

To represent this new logical function, we will use the 
symbol shown in Fig. 7(b). As this symbol demonstrates, 
there are three inputs and one output for such a logic gate. 
Figure 7(c) shows the truth table for a majority voting 
logic gate. This is a summary of our simulation of all eight 
combinations of the three inputs. The majority voting logic 
function can be expressed in terms of fundamental Boolean 
operators as 

M(A,B,C) =AB+ BC+AC. 

While it may appear that it requires five cells to implement 
this majority voting gate, only the center cell is actually 
“performing the calculation.” All the other cells are part of 
the binary wires leading to and away from this gate. For 
this reason, we refer to the center cell as the “device cell.” 

While majority voting logic is a valuable result by it- 
self, it is especially useful when we interpret the three in- 
puts in a particular way. In Fig. 8 (a), we have singled out 
one of the three inputs and called it the “program line.” 
Because of the symmetry of the system, any of the three 
could serve as the program line. The one case shown (with 
the program line coming in from the left) is suliicient for 
illustration purposes. The four systems shown in Fig. 8 (a) 
include all combinations of signals on the two nonprogram 
lines. Since the program line is in the one state in all four 
systems, it takes a zero vote from each of the other two 
lines to put the majority voting cell in the zero state. Thus, 

Program Line 

a.) 

M )+----+put 

FIG. 8. The programmable AND/OR gate. (a) The program line is set 
to one in each system, so the gate is displaying OR logic. All four com- 
binations of the nonprogram line inputs are shown. The cells with heavy 
borders have fixed charge distributions. Any one of the three inputs could 
be the program line; the left cell is not special. The diameter of each dot 
shown is proportional to the charge on the corresponding site, obtained 
from a self-consistent solution for the ground state charge distribution. 
(b) The schematic symbol for the programmable AND/OR gate. 

the system performs the OR operation on the two non- 
program lines. Likewise, if the program signal is zero, the 
result is also zero unless both of the other inputs are one. 
Such a system implements the AND operation. 

By interpreting one of the inputs as a program line, we 
have implemented a programmable AND/OR gate. The 
nature of the logic performed by this gate (AND vs OR) 
is determined by the state of the program line, and the 
other two inputs are applied to the gate thus defined. As 
shown in Fig. g(b), the difference between a majority vot- 
ing gate and a programmable AND/OR gate is just a re- 
labeling of one of the three inputs. The nature of the gate 
and the truth table it represents are identical, so we use the 
same device symbol to represent it. 

Since the cell on the right always matches the center 
cell, the result of this calculation can be propagated away 
from the gate down a QCA wire, where it will eventually 
serve as an input to subsequent gates. It may at tirst seem 
that the state of the cell on the right should be counted in 
the majority voting logic, but this is not the case. Since it is 
completely free to react to the cells around it, we say that 
it is a “driven” neighbor for this gate. By contrast, the 
other three neighbors are not free to change because they 
are fixed by previous results or inputs directly from the 
edge of the QCA (we here assume that the input is fixed at 
the left edge of the array). We call these “driving” neigh- 
bors for this calculation. Of course, once the result of this 
calculation propagates away to the right, it can serve as a 
driving neighbor for subsequent gates. 

A nonprogrammable implementation of an AND gate 
is shown in Fig. 9(a). In this case, the signal on the pro- 
gram line (which again is on the left for illustration pur- 

1822 J. Appl. Phys., Vol. 75, No. 3, 1 February 1994 P. D. Tougaw and C. S. Lent 

Downloaded 28 Mar 2007 to 129.74.250.197. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



a.1 
01’ 

II. 
OIZI q nnfi L l 01’ 

b.1 
A 
B +,*D 

FIG. 10. A coplanar crossing of two QCA wires. The diameter of each 
dot shown is proportional to the charge on the corresponding site, ob- 
tamed from a self-consistent solution for the ground state charge distri- 
bution. A schematic representation of a noninterfering wire crossing is 
also shown. 

LlG. 9. (a) The dedicated AND gate. A programmable AND/OR gate 
can be reduced to implement a dedicated AND gate by permanently 
setting the program cell to 0. Likewise, a dedicated OR gate could be 
implemented by permanently setting it to 1. (b) A schematic diagram of 
how programmable gates can be “reduced” by permanently fixing the 
program line. 

poses) is permanently fixed in the zero state. This would be 
done by destroying sites 1 and 3 once the cell had been 
fabricated. Since the gate is no longer programmable, we 
lose some of the flexibility originally present, but there are 
many situations that require such a dedicated logic ele- 
ment. We  say that the gate has been reduced since it can 
now perform only one of the two functions of a  program- 
mable gate. A dedicated OR gate can be implemented in a 
similar way by destroying sites 2 and 4 of the program cell. 
Figure 9(b) shows schematically how a programmable 
logic gate can be converted to a dedicated two-input gate 
by permanently setting the value of the program line. 

the state of a  normal (or “ x -shaped”) cell has no switch- 
ing effect on a rotated (or “+-shaped”) cell directly in line 
with it, such conversion requires that the standard cell be 
above and on a line directly between two of the rotated 
cells. Such placement has the desired transmission effect, 
and a similar arrangement can also serve to convert the 
signal back to standard cells (a “+-to-X converter”). As 
shown in Sec. IV, the polarization of the cells in the in- 
verter chain alternate direction beginning immediately af- 
ter the X-to- + converter. There must therefore be an even 
number of cells between the X-to-+ converter and the 
+-to- X converter. 

V. COPLANAR W IRE CROSSING 

In a traditional integrated circuit, the crossing of two 
wires is achieved by physically passing one wire over the 
other with an insulator placed between them. Such a non- 
planar crossing would also work for two QCA wires, but 
the cellular nature of such wires allows us to cross them 
using an entirely coplanar arrangement of cells. Such a 
coplanar crossing is impossible in conventional circuits 
which code information using currents and voltages. 

The reason for going through this conversion to and 
from rotated cells has already been mentioned: the state of 
a  normal cell has no switching effect on a rotated cell 
directly in line with it. Similarly, the state of a  rotated cell 
has no effect on the state of a normal cell in line with it. We  
can therefore directly cross the horizontal inverter chain of 
temporarily rotated cells and the vertical line of normal 
cells without interference. This crossing relies on the cou- 
pling between cells labeled “A” and “B” in the figure. This 
coupling is somewhat weaker than the usual coupling be- 
tween cells in a wire chain because these cells are further 
apart. We  have verified by direct calculation of the many- 
electron ground state that the system correctly transmits 
all possible combinations of the two signals without inter- 
ference. 

Figure 10 shows one way to cross two binary wires 
composed of QCA cells. In this example, the horizontal 
line is transmitting a zero and the vertical line is transmit- 
ting a one. In order to cross the lines, the horizontal wire 
must be converted from standard cells to rotated cells. 
These rotated cells are identical to those composing the 
inverter chain shown in Sec. IV. The signal on the hori- 
zontal line is transmitted to the rotated cells by a special 
arrangement of three cells, an “X-to-+ converter.” Since 

Vi. XOR AND FULL ADDER 

Figure 11 (a) shows a schematic of an exclusive-OR 
function implemented using dedicated AND and OR gates. 
Figure 11 (b) shows one implementation of this schematic 
using reduced gates (acting as two AND gates and one OR 
gate). The noninterfering wire crossing is employed in con- 
necting the individual gates together. Figure 11 shows the 
ground-state charge on each site of each cell in the array 
for one set of inputs. We  have verified by directly calculat- 
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FIG. 11. The exclusive OR gate. (a) A schematic diagram of the exclu- 
sive OR function implemented using dedicated AND and OR gates. (b) 
An implementation of the schematic using reduced QCA logic gates. A 
wire crossing and an inverter are also used. 

ing the ground state for each of the four possible sets of 
inputs that the array shown yields the truth table of an 
exclusive-OR function. 

Figure 12 shows the schematic of our design of a 
single-bit full adder implemented with only inverters and 
majority voting logic gates. Note that no reduced gates 
(individual AND or OR gates) are required. The device 
has three inputs: the operands A,, and B, , and the previous 
carry result C,-,. The two outputs are the sum S, and the 
carry bit C,. Single-bit full adders like this one can be 
easily chained together to produce a multibit adder. Fig- 

B 

FIG. 12. The one-bit full-adder schematic diagram. This implementation 
uses three inverters and five majority-voting gates to perform a compli- 
cated logical calculation. Use of dedicated AND and OR gates would 
require a larger gate count. 

RIG. 13. The QCA full adder implementation. This figure corresponds to 
the schematic in Fig. 12 and uses 192 cells. The particular case shown has 
a zero on the carry-in line and ones on each of the addend lines. There- 
fore, the sum is zero and the carry-out is one. The diameter of each dot 
shown is proportional to the charge on the corresponclmg site, obtained 
from a self-consistent solution for the ground state charge distribution. 

ures 13 and 14 display the ground-state charge distribution 
for the simulation of this device with two of the eight 
possible input states. These figures are the results of self- 
consistent Hartree calculations for the 192-&l (384 elec- 
tron) system. As in previous figures, the diameter of each 
dot is proportional to the charge on that site. We have 
verified that the ground-state calculation for all eight input 
combinations produces output results appropriate for a full 
adder. 

The full adder is the most complex QCA array we have 
simulated to date. It illustrates that it is possible to con- 

FIG. 14. The QCA full adder with different inputs. The carry-m is one 
and the two addends are each zero. This makes the sum one and the 
carry-out zero. 

1824 J. Appl. Phys., Vol. 75, No: 3, 1 February 1994 P. D. Tougaw and C. S. Lent 

Downloaded 28 Mar 2007 to 129.74.250.197. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



struct complicated arrays of cells which perform useful 
computing. Furthermore, a design of this size shows that 
the local coupling between cells lend themselves to hierar- 
chical layout rules. The functioning of the whole array can 
be understood by examining the function of each part 
(gate, inverter, wire) independently. Although we have 
calculated the behavior of the system globally, by solving 
for the ground-state of the entire array, we can confidently 
predict the results by just considering each element as a 
separate computing component. 

VII. CONCLUSIONS 

Experimentally realizing cells of the type we discuss 
presents some challenges, but recent experiments indicate 
they are not insurmountable. Maintaining the double 
charging of each cell could be accomplished by using an 
insulated top gate, a conducting substrate to supply the 
electrons, and a thin tunnel barrier between the cells and 
the substrate to stabilize the charge at integer values. This 
method of controlling the charge state of ultrasmall struc- 
tures has been demonstrated by Meuer et al. l2 and Ashoori 
et aZ.,13 in semiconductor quantum dots. The problem of 
setting the polarization of a cell (writing the inputs) and 
sensing the polarization of a cell (reading the outputs) 
amounts to the problem of measuring the presence of in- 
dividual electronic charges on a metal electrode. That this 
is feasible has been experimentally demonstrated by Field 
et aL l4 

Semiconductor fabrication of QCA devices may be- 
come possible using new nanolithographic techniques. The 
possibility of implementing QCA cells in small metallic 
islands has also been proposed.‘5 Future realizations may 
be based on macromolecular implementations.16 As the 
size of the structure is reduced, the relevant energy scales 
will increase leading to higher temperature operation. This 
scalability down to atomic dimtinsions is a key feature. The 
scheme does not fair as the size is reduced, rather it be- 
comes more robust. 

In conclusion, our calculations show that coupled 
quantum dot cells could be used to implement all three of 
the basic Boolean operations (AND, OR, and NOT) as 
well as a new primitive operation, majority voting. We 
have shown how linear arrays of cells can be used as binary 
wires, and that coplanar wire crossings are possible. By 
simulating an exclusive OR gate and a full adder we have 
demonstrated that the operation of basic QCA logical gates 
can be composed to form more complex device structures 
and that hierarchical design is possible. 
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