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Memory Architecture for Quantom-dot Cellular Automata

Abstract

by

Sarah Elizabeth Frost

Quantum-dot Cellular Automata (QCA) is a novel nanotechnology with great

potential for very dense memory and low power logic. This work presents the H-

memory architecture, a memory architecture that exploits the characteristics of

QCA and results in order of magnitude density gains over end of the roadmap

SRAM and DRAM. Two enhancements to the basic architecture are also presented,

including a complete merging of processor and memory. Finally, a novel clocking

wire layout is presented and its effect on architecture discussed.
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CHAPTER 1

Introduction

1.1 The Problem

The goal of computer designers and manufacturers is to produce smaller, faster

computers. In 1965, Gordon Moore described the success of the industry in this

matter noting that between 1959 and 1965, the number of components on a die

grew exponentially [37]. This trend has continued with the number of transistors on

a die nearly doubling every 18-24 months. This success has been achieved primarily

by shrinking the size of the transistor, aided by the increasing size of the die. For

instance, Intel’s 4004 released in 1971 was made of 2300, 10 micron transistors on

a 12 mm2 die [57]. In contrast, today’s chips contain tens or hundreds of millions

of transistors near 0.07 microns on dies on the order of several hundred square

millimeters.

However, the current strategy of shrinking the transistors and maintaining the

same design paradigm will soon be insufficient to meet physical, economic, and ar-

chitectural barriers. The smallest transistors in production today operate despite

quantum effects. In the near future, the operation of transistors will be dominated

by the quantum world. The current device, the CMOS transistor, will need to be

replaced by one that embraces these quantum effects and takes advantage of the

physics that governs at the nano-scale. Fabrication costs, short lifetime of chip gen-

erations, rising capital costs, and demand for computing power from consumers all
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create economic challenges for the semiconductor industry [55]. Finally, as the gap

between processor and memory speeds continues to grow, the von Neumann bottle-

neck will create a greater and greater architectural barrier to continued performance

increases.

In addition to these general comments, memory architecture in particular needs

to be reexamined for two reasons. First, the gap between memory access times and

processor cycle times is large and growing faster (figure 1.1). Most recent archi-

tectural advancements in processor architecture are aimed at masking the memory

access latency. As the relative divide between memory access time and processor

cycle time grows, it will become more and more difficult for processor architectures

to mask this latency. Rather than attempting to mask this latency, it is time to

address memory architecture to reduce the latency itself.

Second, the transistor paradigm will have particular trouble in memory at the

nanoscale. As transistors are scaled down in size, the leakage current increases.

This is a particular problem for memory cells. Leakage current translates to heat

generation which limits the density of storage. If memory cells are too close together,

the heat generated could destabilize the cells (e.g. flip a stored zero to a one). This

constraint will negatively impact the memory density of CMOS memory at the

nanoscale.

Finally, the array architecture does not translate well to the nanoscale due to

an increase in both transient and permanent errors. Transient faults will be more

common because the energies at which bits are stored will be lower than current

memories and will therefore be more susceptible to fluctuations due to doping prob-

lems both at fabrication time and during use caused by electromigration of atoms

during memory operation. Bits will also be more susceptible to high energy parti-

cles which cause energy spikes that could flip stored bits. Permanent errors will also
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be more common because of the difficulty of fabrication at the nanoscale. While

massive redundancy could address the permanent errors as the extra rows in today’s

array memories, the array structure would be particularly susceptible to transient

errors that could make entire rows or columns unpredictably inaccessible. In addi-

tion, this sort of massive redundancy would have a significant impact on the density

of the memory.

There are several groups exploring nanotechnology answers to the memory prob-

lem. These nanotechnology devices and proposed array architectures will be dis-

cussed in chapter 2.
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Figure 1.1. (a) The gap between DRAM access time and processor cycle times is
wide and growing. (b) Moreover, the rate at which the gap is widening is increasing.

These barriers point to the need for a new kind of fundamental device and archi-

tecture, such as quantum-dot cellular automata (QCA). The device characteristics

of QCA, which will be introduced below, are quite different from CMOS character-

istics. This changes the cost landscape which in turn changes the look of efficient

designs. The design framework presented in this thesis takes advantage of the char-

acteristics of QCA as well as offering an option for alleviating or eliminating the
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von Neumann bottleneck.

1.2 An Architect’s Introduction to Quantum-dot Cellular Automata

Quantum-dot cellular automata (QCA) is a novel alternative to the transistors,

silicon, and CMOS paradigm. Rather than using charge movement, current, to

propagate signals and perform operations, QCA uses devices as charge holders,

using Coulombic repulsion of electrons as the primary computing force. A QCA

cell consists of four quantum dots arranged in a square with two excess electrons

that can occupy the dots. Because the electrons are repelled by each other, they

naturally reside in opposite corners. As a result, the cell has two stable states. The

first is an electron in the bottom left corner and the top right corner. A cell with this

configuration has a polarization of +1 and represents logical “1”. The second stable

state is an electron in the top left corner and the bottom right corner, a polarization

of -1 representing a logical 0 (figure 1.2). The electrons can tunnel between the

quantum dots allowing them to change configurations.

0 =

1 =

(a) (b)

Electrons

Electron Sites

Figure 1.2. QCA Cell (a) Polarization and corresponding logic values, (b) Signal
propagation in QCA. The cell on the left is polarized, the cell on the right is unpo-
larized. The cell on the right transitions to assume the polarization of the driving
left cell.

Computation is performed by controlling the tunneling with a four phase “clock”
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signal (figure 1.3). Unlike CMOS circuits, the QCA clock is a fundamentally different

phenomenon than the data. The clock raises and lowers the barriers between the

dots, alternately prohibiting and allowing the electrons to tunnel between dots. The

raising and lowering behavior of the clock signal is described by four phases called

switch, hold, release, and relax. In the switch phase, the barriers begin low, allowing

tunneling, and are raised to prohibit tunneling. In this phase, the cell transitions

from having no value to having a definite value. The hold phase follows switch

in which the barriers are maintained high, preserving the value assumed during

switch. In the release phase, the barriers are falling, allowing the cell to go from a

well-defined state to an undefined state in which the cell has no natural polarization.

Finally, the relax phase maintains low barriers and no polarization.

t = 0
Switch

t = 1
Hold

t = 2
Release

t = 3
Relax

Strength
Field 

Clocking

Phase
Clock Zone

Figure 1.3. Propagation of clock signal in a single cell through time.

If QCA cells are lined up side by side and clocked appropriately, they act as a

wire, propagating a signal down its length (figure 1.4a). Cells laid out in this side

by side manner are called 90 degree cells. The alternative is 45 degree cells which

are laid out corner to corner (figure 1.4b). In a 45 degree wire, the signal is inverted

at each cell. If the first cell holds a “1”, the second cell will hold a “0”, followed by

a “1” in the third cell, and so on.

QCA cells exist on a single plane. The two types of wires are able to crossover

each other in this single plane without effecting the values being transmitted (figure
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b)

a)

Figure 1.4. Shaded boxes indicate clocking zones. a) 90 degree cells forming a
“wire”. b) 45 degree cells forming a wire.

1.5). This makes complex circuits possible.

Figure 1.5. Wire crossover.

The basic logic gate in QCA is the three input majority gate (figure 1.6a). Three

input cells are arranged on the edges of a center “device cell.” The output of the

gate is on the fourth edge of the device cell. The input cells and the device cell share

the same clock zone. Because of this and simple coulombic repulsion, the device cell

assumes the value of the majority of the inputs. When this device cell is frozen in

the hold phase, it drives the output cell which then proceeds as a normal QCA wire.

It is notable that the majority gate is a natural, native device in QCA. It requires

nothing more than the QCA cells and clocking already introduced. This majority

gate can be converted to either an AND gate or an OR gate by fixing one of the

inputs to be permanently “0” (figure 1.6c) or “1” (figure 1.6d) respectively.
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Figure 1.6. a) Three-input Majority Gate, b) Inverter, c) AND gate d) OR gate

An inverter is needed for logical completeness, and is formed by taking advantage

of the 45 degree interaction (figure 1.6b).

In addition to these basic gates, the design landscape also includes three other

important features. The first is the inherent latching in wires. In essence, the wires

are shift registers. This adds a new dimension to designing QCA circuits rather

than CMOS circuits, allowing a designer to pipeline at a very fine level. Connected

to this inherent latching and pipelining, the second feature of QCA is the close

connection between layout and timing [47]. There is an upper and lower bound

on the size of clocking zones. Distances and time, then, are very tightly coupled.

Finally, bits in QCA designs are always in motion. The clock and the cells are made

of different technologies. Perhaps in the future it may be feasible to have the circuit

influence the operation of the clock, but for the designs presented in this thesis, it is

assumed that once the clock starts running, it continues to operate independently
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of the circuit. This, too, changes the design decisions made.

1.3 Prior QCA Architecture Work

Computer engineering QCA research first focused on device basic logical devices

and an adder as an example of a QCA circuit [58]. Niemier’s work was the first look

at the effect QCA has on architecture and system design. His initial work focused

on the hand designing of a simple but complete processor in QCA much as the

first Intel 8086 processor was designed [39][4]. In the course of this work, Niemier

identified several key elements of circuit design in QCA including the connection

between layout and timing [47], the potential of processing-in-wire and fine-grained

pipelining [46] [43] [42] [41], and initial floorplanning for logic [39]. In addition,

since the first molecular QCA circuits that will be fabricated will need to be regular

structures, the design of implementable FPGAs was explored [45] [44]. Another key

work explored the layout parameters and layout rules that will govern the layout of

QCA circuits [40].

Niemier’s work identified key issues in the design of QCA logic circuits and

systems. The principles he identified apply to memory as well as logic, but memory

has a different set of important requirements.

Research is also being pursued to build fault models for QCA circuits in order to

build fault tolerant circuits and to build CAD tools to facilitate testing and design of

circuits [16]. In addition, the first algorithm that addresses the circuit partitioning

problem in QCA has been developed [6].

1.4 Note on Circuit Figures

The circuit figures in this work require a brief comment. Most of the QCA figures

presented in this work are drawn using a tool called QCADesigner [60]. The shadings
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of the cells indicate their clocking zone. For instance, figure 1.7 illustrates two wires

with data propagating to the left. In this example, each clocking zone has three cells

per wire in it. The top wire is a 90◦ wire, while the bottom wire is a 45◦ wire. Each

wire passes through five clocking zones. The first four correspond to switch, hold,

release, and relax respectively. The last clocking zone begins to repeat the pattern

and is in switch. It is important to note, also, that unlike the figures presented

previously, the cells in these figures are merely place holders and do not represent

the polarization of each cell.

Figure 1.7. Example of 90◦ and 45◦ wires drawn with QCADesigner. The shading
indicates clock zone. The top wire is a 90◦ with data moving to the left. The bottom
wire is a 45◦ wire with data moving to the left.

1.5 The Real Device

QCA is very real. QCA cells have been fabricated and their operation experimen-

tally verified [8] [48]. These QCA cells were constructed with metal dots on a

micron scale and operate at 70 mK. As the size of the cell grows smaller, the oper-

ational temperature will rise [33]. A molecular implementation, then, would allow

room temperature operation as well as offering significant potential density gains

in circuits. Lieberman, et al have investigated several two dot-molecules such as

the Creutz-Taube ion and mixed-valence ruthenium dimers. In addition, they have
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explored options for attaching these molecules to etched self-assembled monolay-

ers [36]. Other groups at Notre Dame are investigating four-dot molecules[35] and

alternate fabrication strategies such as DNA tiling.

In addition to the QCA cells, a functioning QCA circuit requires a clock sig-

nal and input/output capabilities. Lent, et al have designed an implementable

clocking scheme in which buried metal wires are used to create the clocking field

[26]. Bernstein, et al are investigating mechanisms for detecting the output of QCA

circuits. The output of the metal-dot systems were detected using single electron

transistor electrometers [8] [36].

Current estimates place fabrication of simple molecular circuits being possible

within three to five years. More complex circuits and large scale fabrication will

require more time, but are expected to be possible before the end of the roadmap

is reached and nanoscale devices are required to meet density, speed, power and

performance demands.

1.6 Introduction to the H Memory

This thesis presents a memory framework for QCA and several enhancements on the

design. Some architectural work has been done designing memory [9] and processors

[4]. However, this is the first effort in designing “native” QCA storage structures.

Because of this, the proposed architecture is a departure from traditional SRAM

and DRAM designs. These designs can be implemented in QCA, but the resulting

designs are awkward and inefficient, providing only minimal gains over CMOS. The

goal, then, was to design a highly dense memory native to QCA - to take advantage

of properties of QCA in ways that today’s memory designs take advantage of the

properties of CMOS. The basic tool chest, as mentioned above, contains the majority

gate, the inverter, the inherent latching and pipelining in QCA wires, the connection
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between layout and timing, and finally the constant motion of data.

The design that these tools lent themselves to is a serially accessed structure

based on a binary tree arranged in a recursive H structure (figure 1.8). Memory

macros store a word of data and contain the logic necessary to satisfy read and write

requests. Router macros send memory requests toward the appropriate memory

macro. In essence, accessing data becomes a routing problem. Data is stored at
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Mem Mem

MemMem
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Rtr

Rtr

Rtr

Rtr Rtr

Rtr
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Rtr
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Memory Macro

Router Macro

Rtr
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Figure 1.8. Basic H-memory Layout showing the organization of memory macros
labeled “mem” and router macros labeled “rtr”. Accesses enter at the root on the
right and travel through the internal router macros to a memory macro leaf, then
back through the router macros to the root to exit the memory.

the leaves of the H-tree, and internal nodes are routers. In the basic framework, all

memory accesses originate at the root of the memory and consist of two parcels of

bits that travel on two parallel lines in lockstep with each other. One parcel contains

the address, write enable, and data word. The other is responsible for signaling the

presence of meaningful bits to the routers and leaves. This routing approach to

accesses is natural to QCA and offers interesting architectural opportunities. In

particular, it allows a simple way to incorporate logic into the memory structure
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itself. Performing simple ALU functions in the routers or leaves can alleviate the

von Neumann bottleneck, and fully incorporating the logic of the processing unit

into the memory eliminates the von Neumann bottleneck altogether by eliminating

the “central” of the central processing unit.

1.7 Original Contributions

My original contribution to this thesis includes the H-memory access method; the

design, implementation, and analysis of the data loops and H-memory; the leaf

enhancement design and analysis; the collision and execution time analyses for the

bouncing threads enhancement; the simulator that allowed the exploration of the

bouncing threads model in the presence of collisions; and finally, the discussion and

analysis of the diagonal clocking wire layout.

1.8 Thesis Map

This chapter introduced the problem addressed here and the basics of the QCA de-

vice. Chapter 2 will discuss current storage structures including the different types

of memories, silicon friendly architectures, and non-conventional memories. Chapter

3 will discuss the H-memory architecture. Chapter 4 will discuss a first cut imple-

mentation and its predicted performance. Chapter 5 will discuss two enhancements

to the basic memory structure. The first is storing multiple words in each memory

macro. The second is incorporating logic into the memory structure. Chapter 6

discusses an alternate clocking wire layout strategy and the corresponding effects

on architecture. Finally, chapter 7 concludes and discusses some future work.
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CHAPTER 2

Today’s Memories

Traditional computer architecture has split its focus between logic and memory.

Logic is responsible for computation, and memory is responsible for storing the

state necessary for the desired computation. This state includes data with a wide

range of persistence times, from short term data placed in buffers to permanent

configuration information stored at fabrication time. Today’s memories are based on

arrays of memory cells. There are two main characteristics on which to classify these

memories: volatility and access method. A third important classification subdivides

the access method into storage method, either static or dynamic (figure 2.1). The

latter half of this chapter discusses a few emerging nanotechnology proposals that

may challenge contemporary commercial memories in the future.

The first axis on which to classify is volatility. Memory can be either volatile or

non-volatile. Volatile memory is usually used for data that changes frequently such

as main memory contents and usually allows fast read and write times. However, it

needs to be connected to a power source and may need to be refreshed periodically.

Non-volatile memory retains its data even after being removed from its power source.

Hard drives and flash memory sticks are common examples of non-volatile memory.

The second axis on which to classify memories is the access method, consisting

of read-only memory, random access memory, and content-addressable memory.

Read-only memory (ROM) or read-mostly memory is generally non-volatile and
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Figure 2.1. Memory Type Classification

used for data that is expected not to change, or to change rarely in the case of read-

mostly memory. Random access memory (RAM) is a read/write memory, generally

volatile, and used for data that changes often. Content-addressable memory (CAM),

or associative memory, is a random access, read/write memory that allows access

by data rather than by address. RAMs are presented an address and return the

data associated with that address. CAMs are presented a data word and return

the address with which that data is associated. RAM can be further subdivided

into dynamic versus static storage. Dynamic RAM (DRAM) stores its data on a

capacitor and requires a periodic refresh. Static RAM (SRAM) stores its data in a

latch and avoids the need for a refresh.

The ideal memory would combine non-volatility, fast read times and fast write

times. However, these three goals are often directly conflicting. For instance, non-

volatility requires that data be hard to erase. Fast write times, on the other hand,

require easily erased materials. Often times, easily writable materials lead to dif-

ficult to read materials since the read process must be very gentle relative to the

write process. For the present, non-volatility is generally joined with read oriented
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applications, and volatility is tolerated by write oriented applications.

2.1 Array Memory

Each type of memory has a unique memory cell that does the actual bit storage, but

most of these memories share a basic array architecture. The magnetic, optical and

holographic disks are the exceptions. Memory cells are placed at the intersections of

vertical and horizontal wires, or columns and rows. They are also known as word-

lines and bit-lines, respectively. A bit is accessed when both its wordline and bitline

are activated. In figure 2.2, a standard dynamic random access memory architecture

is shown. The memory itself will be discussed below, but the architecture contains

all the pieces common between the array memories. A particular bit in the array

of bits, or cell matrix, is identified by an address. In the example, there are 10

address bits. Five bits identify the desired column (C1..C5), and five bits identify

the desired row (R1..R5). Decoders on the column and row inputs translate the

five bit partial addresses into one of 32 wires. When the address is presented to the

address input buffers, the one bit data word at the intersection of the active row

and column is selected to be operated upon (either read or written). This is a very

simple example of an array architecture. Modern array memories contain multiple

banks that allow larger data words to be used and to support faster data access.

2.2 Volatile Random Access Memory

Random access memories are generally volatile. This is generally appropriate since

randomly accessed data tends to change often, requiring a quick and efficient write

process. For instance, main memory and caches in general purpose computers com-

monly use dynamic RAM (DRAM) and static RAM (SRAM). DRAM is used where

high density or low cost is important. SRAM is generally used where high speed is
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Figure 2.3. (a) 6 Transistor SRAM cell. (b) 4 Transistor SRAM cell

The static and dynamic options for memory cells generally trade off speed and

area (figure 2.5). Static RAM (SRAM) stores data on latches and maintains its value

as long as the power is on. Dynamic RAM (DRAM) stores the bit on a capacitor

and requires the value to be refreshed periodically (figure 2.4). DRAM cells have a
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typical retention rate of 64 ms [28].

SRAM cells consist of a standard cross-coupled inverter latch and two additional

transistors to control access to the data. The latch can be implemented either in

CMOS with six transistors or in pseudo-NMOS with four transistors (figure 2.3).

SRAM is between eight and sixteen times faster than DRAM since it does not lose

time for data refreshing and for recovering from destructive reads. However, the

SRAM cell requires four to eight times more area than the DRAM cell.

DRAM is generally used in applications such as main memory where latency

can be tolerated for higher capacity. SRAM is used for applications where speed is
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essential, such as first-level caches.

2.3 Volatile Content-Addressable Memory

VDD

MATCH

WORD WORD
BIT BIT

Figure 2.6. Content-addressable memory cell [50]
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Figure 2.7. CAM architecture for a fast cache [51]

As opposed to standard RAM in which the memory is presented an address and

the data is returned, CAMs are presented with partial data and either return the

rest of the data or the address associated with that data. CAM cells can be made

either with nine transistor cells (figure 2.6) or by adding a comparator to every
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address of a standard SRAM (figure 2.7). Modern manufacturers such as Motorola

advertise CAM cells using as few as 4 transistors. The relatively large cell size limits

the use of CAMs since they are relatively expensive per bit of storage. However, for

applications that are search intensive and require fast access, such as a first-level

cache, CAMs can be very effective. Stand alone CAMs are also used in tasks such

as network routing and Virtual Path Identifier/Virtual Circuit Identifier translation

in ATM switches.

2.4 Read-Only Memory

Read-only memories include memories such as EPROMs, EEPROMs, and CD-

ROMs. EPROMs and EEPROMs are more properly called read-mostly memories

since they can be reprogrammed a limited number of times, but these devices are

focused toward applications in which the data is unlikely to change. These tend to

be non-volatile devices since the data is stable over time and will be discussed in

detail below.

2.5 Non-Volatile Memories

Non-volatile memories maintain their data in the absence of a power supply and

can take many forms such as programmable read-only memories, modified RAM

technologies, and disk technologies. In addition, there are flash memories and fer-

roelectric RAMs (FeRAMs). Programmable read-only memories tend to have ex-

pensive manufacturing costs compared to the standard volatile memories but have

the advantage of non-volatility. Non-volatile memories made from modified RAM

include shadow RAMs focused towards applications with a small number of set-up

parameters and battery-backed SRAM (BRAM) when fast access and non-volatility

are both important.
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The programmable read-only memory family includes erasable programmable

read-only memory (EPROM) and electrically erasable programmable read-only mem-

ory (EEPROM) (figure 2.8). EPROMs are erasable, but the procedure requires the

memory to be removed from the system and erased and reprogrammed by special-

ized equipment. This is appropriate for applications where the re-writing procedure

is rarely needed. EEPROMs can be written a limited number of times, on the

order of ten thousand, but it also allows in-system reprogramming in addition to

non-volatility.

Magnetic disks are commonly used today. They are a type of writable, non-

volatile, random access memory. They are not array memories. Rather, they consist

of platters of magnetic material arranged in tracks and sectors. Tracks circle the

platter while sectors split the disk into pie-piece shaped pieces. The data is stored

by the magnetic polarization at a particular spot on the track. The platter rotates

under a read/write head that can detect the magnetic field of each bit. The head is

also responsible for writing a bit to be stored. Because magnetic disks use physically

moving parts, they are slower and more prone to failure than semiconductor memo-
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ries. However, they are cost effective for high capacity, latency tolerant applications.

They are commonly used as hard drives.

Optical disks, too, are not array memories. They store data as areas with high or

low reflectivity. Data is read and written using a low-power laser. Today’s compact

disks (CDs) and digital versatile discs (DVDs) are examples of optical disks. They

have the potential for much higher densities than magnetic disks mainly due to the

increased control over the read/write apparatus. The laser of an optical disk can

be controlled more finely than the read/write head of a magnetic disk. However,

today’s optical disks are either read-only or can be written only a handful of times.

Holographic storage devices, rather than as an array, store data as holograms

in photo-refractive crystals. This technology is not yet available commercially, but

it has the potential for storage much denser than magnetic disks and an order of

magnitude faster input and output. Several companies claim to be ready to release

holographic storage devices in the next year. By making use of the properties of

holographs, massively parallel reads and writes can be performed. In addition,

multiple holograms could be superimposed by altering the angle of the access or the

wavelength of light used.

Flash memory is a variation of EEPROM, an array memory. It is addressed at

a block level rather than a byte level. The coarser granularity allows writes to be

performed much more quickly than EEPROMs. Flash memory makes use of floating

gate transistors which, if controlled precisely, can store two bits on one transistor.

Standard flash memory stores a single bit per transistor, but the more sensitive

two bits per transistor memory has twice the density of the standard flash memory.

Flash memory is generally used for data that changes infrequently and for which

non-volatility is essential such as basic input/output systems (BIOS) in personal

computers, cell phones, digital cameras, and embedded controllers. Flash makes
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updating these systems simple and efficient. However, the tradeoff with the higher

write speed is the lack of bit-level addressing, making flash an uncomfortable fit for

RAM applications.
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Figure 2.9. Two Schematics for two transistor, two capacitor non-volatile ferroelec-
tric RAM cell, without and with sensing scheme. [52]
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Figure 2.10. One transistor, one capacitor non-volatile ferroelectric RAM cells,
without and with sensing scheme. [52]

Ferroelectric memories (FeRAMs) store data in a capacitor with a ferroelectric

dielectric. Rather than storing data as free charge in a capacitor, the data is stored

by the electrical polarization of crystals within the ferroelectric film [52]. The charge
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on the ferroelectric capacitor cannot be directly detected, only the change in polar-

ization can be detected. There are two common cell configurations, a 2T-2C cell

(figure 2.9) and a 1T-1C cell (figure 2.10). The 2T2C cell is more stable than the

1T1C cell, but it is not competitive with other memories in terms of area. The

1T1C FeRAM cell addresses this area difference, but there are several challenges

to be overcome before the 1T1C cell becomes practical. For instance, the dummy

reference cell used for reading will build up remnant potential on its capacitor after

reading a logical “1”, changing the reference point for the next read cycle. If the cost

and density of FeRAM become competitive with DRAM and flash, it will present a

powerful random access, non-volatile memory. The area of a 2T2C FeRAM cell is

comparable to that of SRAM, but it is far larger than DRAM or flash. The write

process of FeRAM is substantially faster than the write of flash memory, making the

development of more area efficient FeRAM cells very attractive for write oriented

non-volatile applications.

Battery backed SRAM (BRAM) is a standard volatile SRAM with additional

circuitry and packaging such that when external power is removed, the device senses

this and switches to battery power to maintain the stored data. While not truly

non-volatile since the battery has a finite life, BRAM combines the fast, random

access of SRAM with pseudo non-volatility.

2.6 Nanotechnology and Nanomemory

The main thrust of nearly all architecture research at the nanoscale has focused on

variations of the array architecture familiar on current RAM designs. The standard

approach involves inserting the nanoscale device at the intersections of a wire array.

The nanoscale devices generally proposed to be used in this way include either

two- and three-terminal devices that act much as today’s micro-scale diodes and
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transistors, or nano-mechanical devices such as rotaxanes and the buckyballs in the

shuttle memory proposals. Other proposals involve the physical presence or absence

of molecules and more complex reading/writing procedures as in the silicon atom

lattice.

2.6.1 Two and Three Terminal Device Memories

Figure 2.11. Schematic for a possible nanotube field effect transistor. [2]

Figure 2.12. Image of an implementable nanotube FET [3]

There are several proposals to make use of two and three terminal nano-scale de-

vices to implement standard RAM architectures at the nano-scale such as Goldstein

and Rosewater [23], Dehon [14], Yano, et.al. [63] and Nackashi and Franzon [38],

among others. Goldstein and DeHon use RAM structures to build programmable
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Figure 2.13. The chiral vector of nanotubes is defined by na1 + ma2, where n
and m are integers. Armchair nanotubes have n = m and chiral angle of 30◦.
Zigzag nanotubes have either n or m equal to zero and chiral angle of 0◦. All other
nanotubes are considered chiral. [15]

Figure 2.14. Three single-walled carbon nanotubes with different chiralities. Pic-
tured here is a (5,5) armchair nanotube (top), a (9,0) zigzag nanotube (middle) and
a (10,5) chiral nanotube. [15]

logic array (PLA) type general-purpose computing platforms. Yano and Nackashi

focus on using a standard RAM architecture to test their devices.

Several architectures are being proposed for a three terminal field effect tran-

sistor making use of semiconducting carbon nanotubes (figures 2.11,2.12). Carbon
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nanotubes can be thought of as narrow sheets of pure carbon rolled into a cylinder

(figure 2.14). They can be grown as either single-walled (SWNT) or multi-walled

(MWNT). MWNTs have multiple telescoped nanotubes. SWNTs consist of a single

nanotube. Because of the unique chemical composition of nanutubes (pure carbon),

they have many interesting characteristics. For instance, depending on how the

hexagonal carbon lattice is oriented, the tubes can be either metallic (conducting)

or semiconducting. Also, under certain circumstances, carbon nanotubes can be-

come ballistic conductors. This means that the electrons that pass through the tube

will not be scattered, significantly speeding up the passage of the electron.

The conducting behavior of the nanotube is determined by the “roll angle”,

called the chirality of the nanotube (figure 2.13). The chirality is defined by the

chiral vector. The chiral vector is calculated by na1 + ma2, where a1 and a2 are

defined as in figure 2.13, and n and m are integers. There are three chiralities:

armchair, zigzag, and chiral. An armchair type nanotube has n = m and a chiral

angle of 30◦. A zigzag nanotube has either n or m equal to 0 and a chiral angle

of 0◦. All other nanotububes are considered chiral. A nanotube will be metallic,

or conducting, when n − m = 3q, where q is an integer. All armchair nanotubes

and approximately 1/3 of possible zigzag nanotubes are metallic [15]. All chiral

nanotubes and the remaining zigzag nanotubes are semiconducting. All of these

types of nanotubes are being considered for use in different devices.

Lieber’s group proposed a non-volatile carbon nanotube switch that could be

used for a non-volatile random access memory. A non-volatile switch can be formed

by suspending a nanotube across either another nanotube or a nanowire. The upper

nanotube is in a stable state when it is undeformed, this corresponds to the “off”

position of the switch. The nanotube can be deformed by running the appropriate

attractive currents through the upper and lower levels. When the upper nanotube
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is brought close enough to the lower nanotube or wire, van der Waals forces create

a second stable state that maintains the deformation and corresponds to the “on”

position of the switch since there is very little resistance between the deformed

nanotube and the lower nanotube or wire (figure 2.15).

Figure 2.15. Nonvolatile nanotube switch in off and on positions [54]

Dehon has also taken a reconfigurable approach to architecture at the nanoscale

with “nanoarrays.” Several devices could be used as the functional devices in the

nanoarrays. The first possible device is the nanotube switch proposed by Lieber’s

group discussed above. The second possible device discussed is a nanowire FET

which can be constructed by appropriately doping semiconductor nanowires [27].

The third device proposed for use in the nanoarrays are the non-volatile rotaxane

and catenane switches proposed by Heath and Stoddard and discussed below. The

architecture proposed by Dehon makes use of crossed arrays of wires with the de-

vices at the intersections. The crossed arrays can then be used to create memory

cores, programmable logic arrays (PLA), and crossbars to create a reconfigurable

computing device. A simple architecture would consist of all programmable FET

arrays. More complex organizations could alternate non-programmable FET logic
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arrays and programmable diode arrays to create a programmed array logic (PAL)

like architecture. At the core of PLA and PAL architectures is a crossbar archticture.

At the microscale, fully populated crossbars are infeasible as the switches quickly

dominate the area. At the nanoscale, however, fully populated crossbars are feasible

since the switches no longer dominate the area. This greater population improves

the defect tolerance of the circuit, providing more rerouting and reprogramming

options. A final concern of the nanoarray architecture is to support connections to

the microscale world. The microscale wiring can be seen in figures 2.16 and 2.17.

The number of microscale wires needed scales logarithmically with the size of the

nanoarrays. For large nanoarrays, then, the microscale wires become a thin frame

around the large nanoarray core.

Figure 2.16. Overall assembly of Functional Nanoarrays [14]

Goldstein and Rosewater proposed a reconfigurable architecture based on chemi-

cally assembled electronic nanotechnology (CAEN) using molecular resonant tunnel-

ing diodes (RTDs), a two terminal device. RTDs are not restricted to the nanoscale,

and are used today in certain applications. However, at the nanoscale, they allow

architects to draw on previous work with resistor-diode logic. For instance, figure
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Figure 2.17. 8x8 nanoscale array bracketed by decoders and connection to microscale
wires. Note that the number of microscale wires grows logarithmically in array
width. For large nanoarrays, the microscale wiring becomes a thin frame around a
large nanoscale core. [14]

2.18 shows the schematic for an AND gate using four diodes out of a block of nine

diodes. At a very high level, the resulting architecture is similar to that presented

by Dehon, consisting of a reconfigurable crossbar array. The basic building block is

a “nanoBlock” (figure 2.19). A nanoBlock consists of a 2-D grid of reconfigurable

diodes. Inputs enter the block from the north and west. Outputs exit the block on

the south and east. The blocks can be abutted to build more complex structures.

This architecture also makes an explicit connection to the microscale world, relying

on a CMOS layer to provide power and ground connections.

The work by Yano, et al. [63] is not strictly nanoscale, but it demonstrates the

use of a nanoscale single-electron memory device wired into a microscale circuit.

The memory device is based on the “single-electron box” (figure 2.20). The single-

electron box uses the Coulomb blockade effect to precisely control the number of

electrons on the central dot. The number of electrons at the dot determines the

value of the bit stored there. These devices have been fabricated using thin (below

29



Figure 2.18. CAEN implementation of a Two-input AND gate. [23]

Figure 2.19. A schematic of a nanoBlock.[23]

5 nm) films of nanocrystalline silicon. The schematic of the device and a scanning

electron microscope (SEM) picture of the actual device can be seen in figure 2.21.

They extended the single device into a ladder-shaped memory cell array (figure

2.22). The 8x8 bit memory displayed in the figure is at the microscale rather than

nanoscale, but it demonstrates a possible path toward nanoscale memory.

These proposals all have potential for usable nanoscale devices, but they all are
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Figure 2.20. Schematic view of single-electron box. [63]

Figure 2.21. Memory device formed by sandwiched nanosilicon particles, SEM mi-
crograph and schematic. [63]

based on the transistor paradigm. This means they are able to leverage decades

of research and architecture work, but they also bring with them the weaknesses

of the paradigm that the nano-scale world is not able to tolerate as well as the

microscale world. The most significant of these weaknesses may be tolerance of

fabrication defects and transient faults. In the world of CMOS, a single faulty wire

or transistor generally renders the entire module non-functional. There are some

well known exceptions. For instance, RAM chips have extra rows designed into them
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Figure 2.22. Overall potential memory architecture, schematic and SEM of micro-
scale prototype.[63]

to allow chips to tolerate a few faults. More significantly, the world of reconfigurable

computing with PLAs and FPGAs allow faults to be routed around when they are

discovered. Perhaps the Teramac machine is the best example of this [25]. It is well

accepted that nanotechnology fabrication methods will be much more error-prone

than today’s microscale fabrication processes, and once fabricated, the devices will

be more susceptible to environmental hazards. The solution to these greater error

rates has been massive redundancy along the lines of the Teramac architecture.

However, it is unclear what level of reconfigurability and redundancy is necessary

to maintain a working nano-scale computing platform and how responsive these

reconfigurable architectures will need to be to tolerate transient faults.

2.6.2 Nano-mechanical Memory

The proposals discussed below have two key features in common. First, both of

these architectures are based on an array structure and suffer from a common pitch-

match problem. Since all the wires in the array need an interface to the micro-scale
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world, there is a danger that the micro-scale interface will negate the area savings

gained by the nanoscale devices. While there are many well known strategies for

minimizing the number of “pins” that lead off the nanoscale module such as mul-

tiplexing addresses and sharing pins by buffering inputs, this pitch-match problem

persists as a significant issue. The second feature is that both proposals are only

relatively non-volatile. How long the devices will maintain their value before spon-

taneously switching depends on the specific implementation, but it is not necessary

to maintain a connection to a supply voltage to maintain the stored values.

Shuttle-memory

Figure 2.23. Structural model for a bucky-shuttle memory element in the logical
“0” position. [32]

The buckyball-shuttle memory device was proposed by Kwon, et al in 1999 [32].

The memory device consists of a C60 buckyball “shuttle” contained in a C240 carbon

nanotube “capsule” (figure 2.23). Once the buckyball is on one side of the nanotube,

van der Waals forces will keep it at that end (figure 2.24). A bit is represented by

which side of the capsule the shuttle is physically on. By attaching wires to the ends

of the nanotube, the device can be written, and a destructive read can be performed

similar to traditional DRAM read operations. A third wire attached to the center

of the nanotube would allow a non-destructive read to be performed, but this third
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Figure 2.24. Potential energy of a particular potential implementation of the bucky-
shuttle memory as a function of the shuttle’s position compared to the capsule. [32]

Figure 2.25. Schematic of high density memory board. [32]

Figure 2.26. Transmission microscope image of multi-walled carbon nanotube that
could be used as shuttle memory element.[32]
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wire is not conducive to the scaled implementation mentioned below, presents a

significant fabrication challenge to the nanoscale implementation, and will mitigate

the area improvements gained by moving to the nanoscale.

One of the architectural goals in organizing this shuttle device was to present a

realizable memory in the near term that could be scaled down to take advantage

of fabrication advances [11]. The architecture consists of an array of vertical and

horizontal wires with one or more shuttle devices at each intersection (figure 2.25).

In the near term, for instance, 70 nm wide wires could be used in the array with ap-

proximately one thousand devices residing at each intersection. In this architecture,

each intersection represents one bit. Ultimately, one can imagine the array being

constructed from nanowires that require only a single device per intersection, and

so per bit.

Using the C60 shuttle and the C240 capsule, each device is approximately 1.4

nm in diameter, and 2.0 nm in length (for instance, figure 2.26). Since a write

involves physically moving the shuttle from one end of the capsule to the other, the

device requires time to settle into its new state. The authors estimate this will be

approximately 20 picoseconds, and an ideal memory switching and access rate of 10

GHz.

In addition to the pitch-match problem faced to interface to the micro-scale

world, the density of the memory will be limited by the wire pitch of the array and

potentially by the devices themselves as the heat generated by the collisions between

shuttle and capsule becomes significant.

Rotaxanes and Catenanes

Another nano-mechanical storage strategy makes use of rotaxanes and catenanes.

Rotaxanes are molecules consisting of a dumbbell shaped component and a ring
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Figure 2.27. Sample nanomechanical memory devices. a) Interlocking ring catenane
molecule. b) Dumbbell shaped rotaxane molecule. [1]

trapped on the dumbbell (figure 2.27b). Catenanes are molecules consisting of two

separate rings looped through each other (figure 2.27a)[49]. The molecule naturally

stores a binary value in much the same way as the shuttle-device discussed above.

The physical position of the ring at either end of the dumbbell represents the two

distinct values. The architecture used in exploring the fabrication of these devices

is a crossed wire array with devices placed at the intersections of the wires [13].

The study described here uses 40 nm wide wires and 1100 molecules at each in-

tersection. When the ring switches from one end of the dumbbell to the other, the

electrical properties of the molecule change substantially, with the on/off resistance

ratios ranging from 2 to 104 for different devices. It is important to note that the

individual devices were being tested, as opposed a complete memory. However, this

is a very promising result, demonstrating the potential of this technology. There are

significant challenges to be overcome, though. For instance, the apparently short

lifetime of the molecules as useful devices could cause problems. The on/off resis-

tance ratio decreased after 40 cycles, approaching 1 after at most several hundred

cycles.

Architectures for this type of molecule are being explored using them both as two

terminal and three terminal devices (figure 2.28). The intersection of the hexagonal
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Figure 2.28. Possible tilable device architecures. (a) Three terminal device in a
hexagonal lattice, where G signifies the gate, S the source, and D the drain. M
represents a molecule. (b) A two terminal device used in a cross-bar architecture.
[49]

Figure 2.29. Fabrication of two-terminal molecular (catenane) switch. (a) Smooth
silicon substrate. (b) Parallel etched polysilicon wires. (c) Deposition of catenane
monolayer. (d) Second layer of wires perpendicular to the original wires, formed by
condensing titanium vapor through a shadow mask. [49]

lattice creates a three-terminal FET device while the square lattice, or cross-bar

architecture, leads to a two-terminal device architecture as discussed above. The

hexagonal lattice presents a challenge in addressing the individual transistors, but

there are several possibilities for overcoming this challenge. The hexagonal lattice
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lends itself more to logic devices than memory. The two-terminal device has been

manufactured by Heath’s group at Caltech (figure 2.29). Beginning with a specially

prepared, extremely smooth silicon substrate, a series of parallel polysilicon wires

are etched onto the substrate photolithographically. Next, the catenane monolayer is

deposited, followed by the deposition of wires perpendicular to the polysilicon wires

are formed by condensing titanium vapor through a shadow mask. The molecules

at the intersection of the two wires are trapped, forming the two terminal devices.

Because the position of the ring alters the conductivity of the molecule, a molecular

switch can be demonstrated.

2.6.3 Silicon Atom Lattice

Figure 2.30. Silicon atomic lattice. Horizontal lines are gold tracks exactly five
atoms wide (1.7 nm). White circles are a single silicon atom representing a bit.
Along the tracks, the silicon atoms are seperated by 4 atom-widths. [7]

The proposal by Bennewitz, et al [7] departs from the wire arrays discussed

above and pursues very high density at the cost of expensive read/write methods.

Specifically, bits are represented as the presence or absence of a single silicon atom

in a unit cell of 5x4 atoms (figure 2.30). Rather than the RAM-like architectures

discussed above, this is more like a read-only or read-mostly memory. The memory
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Figure 2.31. Writing a “zero” involves physically removing the cluster of silicon
atoms using a scanning tunneling microscope. [7]

consists of lattice with self-assembled gold tracks and a pitch between tracks of

exactly 5 silicon-atom-widths (1.7 nm). Within the track, bits are separated by 4

silicon-atom-widths. This is necessary to keep the stored bits from interacting with

each other. An extra silicon atom is then deposited in each cell, effectively writing a

logical “one” to each memory cell. Using a scanning tunneling microscope (STM),

these excess silicon atoms can be selectively removed, writing a logical “zero” to

these cells. It is also possible to return a silicon atom to a cell and rewrite a one,

but this is an error-prone process using the STM.

This proposal is clearly neither convenient nor easily interfaced to conventional

logic, but it demonstrates just how densely data can be stored. This proposal leads

to densities on the order of 250 Tbit/in2. The writing process is very slow and error

prone, but the read-out rate estimated matches that of today’s magnetic hard disks

for “low” densities (1-100 Gbit/in2), and drops to 100 bits/s for high densities near

105 Gbit/in2.
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2.6.4 Other Non-Silicon Computing Proposals

To round out the picture of the nano or non-silicon world, there are two additional

approaches that need to be discussed. They are true quantum computing and in

vivo computing. Neither of these approaches has density as its primary goal, but

they represent the other major members of the community.

Quantum Computing

The advantage of true quantum computing is a speed up in execution time rather

than in area. Today’s computers operate on bits that can be in one state at a time.

n bits can represent one of 2n states. Quantum computation is performed on qubits

which represent superpositions of all possible states. n qubits represent 2n states

simultaneously. However, while qubits can represent multiple states simultaneously,

only one state can be read out at the end of computation.

Regardless, quantum computation has the potential for exponential speedups

over classical computation. Designing algorithms to exploit the power of quantum

computers is a very active research area. Several algorithms have already been

identified, the best known of which are Shor’s factoring algorithm [56] and Grover’s

sorting algorithm [24].

There are several strategies being explored for implementing quantum comput-

ers. The primary approaches include ion traps, nuclear magnetic resonance (NMR),

quantum dots, and optics. The ion trap approach uses electric and magentic fields to

trap individual ions in small spaces. The ions themselves can then be used as qubits

and manipulated by lasers. NMR quantum computers use the magnetic moment of

nuclei as the qubits. The largest quantum computation executed to date used the

NMR approach to factor the number 15 using seven qubits [59]. Quantum dots can

also be used as qubits by creating a dot in which an electron can be confined at

40



discrete energy levels. The electron can then be manipulated by focused lasers that

control the electron’s energy level. There are two general classes of optical quantum

computation approaches both of which use photons as qubits. The nonlinear optical

approach forces photons to interact with eachother in nonlinear materials. Linear

optical approaches use linear optical devices such as mirrors and beam splitters to

move photons and then use selective measurements to manipulate the value of the

qubits.

Quantum architectures have not had an impact on this work because the bits

being considered here are classical. In addition, memory and storage is very difficult

for quantum computers. Maintaining a state without letting it interact with the

environment is one of the major challenges faced by quantum computing researchers.

In vivo

In vivo computation involves designing a plasmid to be incorporated into a bacterial

cell. Plasmids are genetic material held outside the cell nucleus. During cell division,

plasmids are replicated and copies are given to both cells. It is easy to imagine two

types of memory in these systems. The first is a nonvolatile instruction memory

in the form of the DNA of the plasmid. This is a potentially highly dense form of

static storage, using only 32 atoms per bit [7]. The I/O for such storage is difficult,

though. Once the plasmid is made and inserted into the cell, it is difficult to alter

it. One can imagine using this memory as a ROM, or pursuing more exotic write

techniques such as designing a virus that would cut out pieces of the plasmid and

replace it with the new DNA data.

A second technique is to use the building blocks demonstrated by Elowitz’s

genetic regulatory network oscillator [17] and Weiss’s genetic building blocks [62] in

which signals are transmitted via gene expression to construct a dynamic memory.
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Figure 2.32. Simplified genetic inverter. On the left, the input is a logical “0”,
allowing the gene to be expressed, producing mRNA output (a logical “1”). On
the right, a mRNA is presented to the system (logical “1”) which represses the
production of the output mRNA (logical “0”). [62]

For instance, figure 2.32 shows how a simple inverter would operate. This is a

simplified view of the operation, but the idea is that when the gene which is the

input mRNA is not present, the output mRNA will be produced, expressing the

gene. This corresponds to a logical “0” input and an output of logical “1”. On

the other hand, when the input mRNA is present, it will block the transcription,

preventing the expression of the gene. This second case corresponds to an input of

a logical “1” and an output of a logical “0”. One can imagine this approach being

used to implement a volatile, dynamic biological memory with a simpler read/write

process than is needed in the case of physically altering plasmids. However, the

number of bits that could be stored in the system is potentially limited due to the

number of protein combinations that could be used concurrently without interacting

with either each other or other proteins needed to maintain the life of the cell.
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2.7 Summary

The characteristics of the ideal memory have been identified as being “low cost, high

performance, high density, with low power dissipation, random access, non-volatile,

easy to test, highly reliable, and standardized throughout the industry” [50]. Each

of the memories and technologies discussed above addresses at least one of the

criteria set forth by Prince, but no nanotechnology has conquered them all. Active

research continues to develop the technology and architecture to meet the challenge.

If chemical self-assembly techniques can be harnessed, the world of nanotechnology

should be able to present very low-cost, high-density memories. Low power will be

essential for these nanoscale proposals since they will be unable to sustain reliable

storage in the face of the high temperatures common in today’s commodity devices.

Several of the proposals mentioned make use of non-volatile molecular or crystalline

switches, addressing the sixth characteristic mentioned. Random access, testability,

and reliability will all be issues to be solved at the architectural level. Reliability will

be a particular challenge since the devices themselves will most likely be error prone

and susceptible to environmental interference. While there is not a clear proposal

at the nanolevel that will exhibit all of the characteristics in the ideal memory, the

nanoscale proposals suggest the opportunity for great strides toward such an ideal

memory. The nanomemorries discussed and end of the roadmap CMOS DRAM are

compared and summarized in Table 2.1.
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Table 2.1

Potential Memory Density of Proposed Technologies

Technology Density Comments

CNT switch 567bits/µm2† nonvolatile

Nano FET 567bits/µm2† leakage current

Catenanes, rotaxanes 567bits/µm2† nonvolatile, molecule short lived, af-
ter 40 cycles, on/off resistance ratio
begins to decrease

Shuttle 567bits/µm2† nonvolatile, heat from shuttle move-
ment potentially limits density

CAEN 567bits/µm2† crossbar arch with pitch match prob-
lem. Leverages past work on resistor
diode logic

Nanoarrays 567bits/µm2† crossbar PLA/PAL, pitch match prob-
lem, unknown redundancy require-
ments

Nanosilicon Particles 567bits/µm2† implemented at microscale, but shows
promise for nano implementation.
pitch match problem.

Silicon Atom Lattice 4 ∗ 105bits/µm2 dense, nonvolatile, slow and error
prone write process, read time on par
with hard disks, requires STM

Quantum Computing N/A includes ion trap, NMR, optical imple-
mentations, strength is execution time
rather than density

In Vivo Computing 32 atoms/bit, or
2.7 ∗ 105bits/µm2

use either plasmid, nuclear DNA, or
gene expression levels, uses live cells,
complicated and limited protein inter-
actions

CMOS DRAM [29] 625bits/µm2 Using the red brick end of the
roadmap DRAM cell size only. Does
not include any limiting factors such
as wire pitch or addressing require-
ments.

† Limited by wire pitch, assumes end of the roadmap (2018) metal 1 pitch of 42 nm [28].
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CHAPTER 3

H-Memory Architecture

The H-memory architecture is an alternative to the standard 2D array memory

organization. The 2D array structure can be translated into QCA, but it does not

match the device strengths. The H-memory is a highly dense memory design native

to QCA that takes advantage of the device. As discussed in chapter 1, the basic tool

chest for QCA includes the majority gate, the inverter, the inherent latching and

pipelining in QCA wires, the connection between layout and timing, and finally the

constant motion of data. The memory design that these tools lend themselves to is a

serially accessed structure based on a binary tree arranged in a recursive H structure

(figure 3.1). Data is stored at the leaves of the H-tree, and internal nodes are routers.

Memory macros store a word of data and contain the logic necessary to satisfy read

and write requests. Router macros send memory requests toward the appropriate

memory macro. In essence, accessing data becomes a routing problem. The final

piece of the architecture is a simple return path that continues the pipelining on the

outward path of the memory.

The memory attains its greatest improvement over standard CMOS RAM when

memory accesses are entering the memory as fast as possible, i.e. as soon as one

access fully enters the memory, another access is ready to be issued. This is a

common occurrence in today’s von Neumann type architectures since processors are

much faster than memories and generate requests faster faster than they can be
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satisfied by the memory.

Figure 3.1. Basic H-memory Layout showing the organization of memory macros
labeled “mem” and router macros labeled “rtr”.

3.1 Access Method

Access to the H-memory is parcelized, meaning each access is a self-contained series

of bits with all data and control necessary for the request to be filled. Each access

includes the address, an opcode signaling whether this access is a read or write,

and, if appropriate, the data to be written. The companion to this address parcel

is the select parcel which travels on a parallel wire in lockstep with the address

parcel. This parcel is the same length as the write parcel and signals the presence

of meaningful bits on the address line (figure 3.2). This parcelized access scheme is

vital to the architecture because it allows accesses to take advantage of fine-grained

pipelining throughout the memory since all data and state required for the access

is, in a sense, local to the access and contained within the parcel [19].
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The H-memory is organized as a binary tree with router macros at the inner

nodes and memory macros at the leaves. Based on the first bit of the address

encountered with the start of the select parcel, the select parcel is selectively routed

to one of the current router macro’s children. The address parcel is transmitted in

both directions to all routers and all leaves below it in the tree. This is appropriate

since only the presence of the select parcel activates the router and memory macros.

After the select parcel passes through a router, its leading bit is stripped off.

The first bit of the new select parcel will correspond to the next bit in the address

which will then act as the control for the next router encountered (figure 3.2).

Initial Select Parcel

Function

Address Parcel

Select Parcel at jth router

Controls jth router

Leading edge

Trailing edge

AddressData

First bit to enter memory macro
Last bit to

enter memory macro

Controls 1st router

Figure 3.2. Change in parcels for an H-memory (12 bits/word, 256 word) as the
parcels travel toward memory macro. At each router, the leading bit of the select
parcel is stripped away.

Accesses enter and exit the memory from the root. The size of the access parcels

are well defined. The address parcel consists of the address, the function (read/write

enable), and a data word on a write. The layout of the memory insures that the

time to access any word in memory is constant. These characteristics make the fine

grained pipelining of this memory very natural and possible throughout the entire
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memory. It also makes interfacing to a finely pipelined microprocessor such as the

Simple 12 explored by Niemier [4] easier since the access time is very predictable.

3.2 Router Macro

Router macros are located at the internal nodes of the H-tree and direct the incoming

accesses down the path either to its right or left child based on the address bit that

enters with the leading edge of the select parcel. The router macro is a serial device

that continues the fine-grained pipelining through the memory. The full router

macro is built from two “switch” circuits as discussed below and acts much as a

railroad switch that sends a train down one of two diverging tracks. In addition, the

router macro includes logic to strip off the leading bit of the select parcel in keeping

with the access method discussed above (figure 3.3).

Address Parcel

Select Parcel

Stripper Stripper

logic "1"
transmit on 

Serial Switch

logic "0"
transmit on 

Serial Switch

Figure 3.3. Components of a router macro. The serial switch modules selectively
transmit the select parcel. The “stripper” module strips the leading bit from the
select parcel after transmission.
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3.2.1 The “Switch”

The device characteristics of QCA leads to different basic circuit design techniques

and approaches. The “switch” discussed here is a direct outgrowth of these different

characteristics and forms the basis for the H-memory.

The switch takes two wires as input, an address line and a select line. These

names foreshadow their role in the memory structure that will be discussed. The

values on the address line are transmitted regardless of the activity of the switch.

The values on the select line are being “switched.” If the switch is “off”, the select

line output is logic zero. If the switch is “on”, the output will be logic one as long

as the select line input is one.

The select line can be thought of as an activation signal. The presence of a logic

one on the select line signals that a switch decision is to be made. The decision is

made based on the bit on the address line corresponding to the leading one on the

select line. If this address bit is a logic “0”, the switch is left off. If the address bit

is a logic “1”, the switch transmits the select bits.

On the select line, any number of logic ones can directly follow the leading one.

The switch decision is made solely by the address bit corresponding to the leading

one of the select parcel. The end of the select parcel is signaled by a logic zero on

the select line. This resets the switch for a new switching event.

3.2.2 Full Router

The router macro is constructed from two serial switches plus circuitry to strip off

the leading bit from the select parcel after it has been transmitted (figure 3.3).

The router macro takes advantage of the serial access parcels, and acts similar

to a railroad switch that directs a train down one of two diverging paths. Based

on the bit of the address parcel that arrives with the first bit of the select parcel,
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the access is shunted down one of the two paths. Since the address line is ignored

in the absence of the select parcel, it is the select parcel that must be selectively

routed to the right or left to route the access. By stripping off the leading bit of

the select packet, the address bit is effectively stripped off as well. The next router

encountered, then, will route the packet based on the next bit in the address. When

the access reaches the memory macro, the select parcel accompanies only the opcode

(read/write) and data to be written enter the memory macro (figure 3.2).

At the level of the tree closest to the leaves, a router macro connects two memory

macros together (figure 3.4). The size of the memory can be built up by connecting

two such half-H structures with another router macro (figure 3.5).

The necessary area penalty for the additional overhead is only the area of a

single router macro. The additional time overhead depends on the size of the two

subtrees being connected by the new router macro. This is due to the connection

between layout and timing. As the size of the two subtrees to be connected grows,

the distance to be traveled by the wires connecting them increases. The final delay

will depend on implementation details.

Macro
Router

Memory Macro

Memory Macro

Figure 3.4. A single H at the lowest level of the tree shows a router macro connecting
two memory macros. This figure shows the down-tree wires.
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Router

Macro
Router

Macro
Router

Memory Macro Memory Macro

Memory Macro Memory Macro

Macro

Figure 3.5. New router macro connecting two smaller Hs.

3.3 Return Path

The return routers in this basic memory are simply OR gates that join the two wires

entering it into a single output (figure 3.6). Since the accesses are pipelined, all

accesses require the same amount of time, and the output of all non-active memory

macros is a logical zero, there will never be a collision between accesses that return

data. In addition, the bitwise OR operation is trivially easy to implement serially

requiring a single majority gate with one input locked to logic zero, allowing the

fine-grained pipelining to continue on the outbound route of the memory.

3.4 Memory Macro

Each memory macro is a complete, serially-accessed memory unto itself, storing a

single word of data. The memory macro consists of read and write enable logic that

determines the function to be performed by an access, control logic to implement

that function, and a data loop in which data is stored serially (figure 3.7).

The memory macro is accessed by a pair of serial parcels which travel on parallel

wires. The first parcel contains the one bit operation code signaling whether the

51



To Root

From Mem Macro

From Mem Macro

From Mem Macro

From Mem Macro

From Mem Macro

From Mem Macro

From Mem Macro

From Mem Macro

Figure 3.6. The return routers are OR gates whose inputs combine to return the
data to the root of the memory.

Data Out

Address Parcel

Select Parcel

Data Loop Write Enable

logic "1"
transmits on

Serial Switch

Logic
Control

Read Enable

logic "0"
transmits on

Serial Switch

Figure 3.7. Components of a memory macro: two serial switches, the data loop,
and minimal additional control logic that executes the read and write operations.

access is a read or a write followed by the word to be written if appropriate. The

second parcel is the “select” parcel. These are, of course, the same parcels discussed

with the router macros. By the time the address parcel reaches the memory macro,

the leading edge of the accompanying select parcel corresponds to the start of the

one bit opcode that signals whether the access is a read or write.
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3.4.1 Read and Write Enable

The read enable and write enable logic is based on two of the serial switches discussed

with the router macro. Because the memory macro has two functions, only one of

which will be active at a time, the switches are a natural and efficient way to continue

the fine grained pipelining into the memory macro itself. The one bit opcode that

arrives with the leading edge of the select parcel, allowing the read and write enable

logic to operate the same as the router macros.

3.4.2 Control

The control logic includes the data loop control and the data out control. The data

loop control is responsible for either recycling the stored word back into the memory

or replacing the stored bits with a new word to be written. The data out control

outputs logic zeros unless the access is performing a read in which case the stored

word is read out a bit at a time and sent serially up the output path to the root

of the memory. By explicitly outputting logic zero on non-read cycles, the memory

is guaranteed not to have any collisions on the outbound path, allowing the simple

return routers discussed above.

Since the data is stored serially in the data loop, a serial write is very natural.

As the data cycles around the storage loop, each bit is replaced in turn by a bit in

the new word. After the entire word has been written, the new word is then allowed

to cycle around the data loop refreshing itself. Similarly, a serial read is also very

natural, copying each bit onto the output line as it passes through the head of the

data loop.

3.4.3 Data Loop

There are several possible memory cells in QCA. For instance, there are straight-

forward analogues of DRAM, SRAM, and ROM cells (figure 3.8).
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The ROM cell is based on the majority gate. If the east input is the stored bit,

and if the north and west inputs are different, then the value of the stored bit will

be output to the south. If the north and west inputs are the same, then that value

rather than the stored value will be output (figure 3.8c).

The DRAM cell is a transitory latch and is implemented naturally by a QCA

wire spanning several clocking zones. Data is inserted in one end of the wire and

exits at the other end of the wire after a time delay of one fourth of the number of

the clock zones the wire passes through (figure 3.8a).

A single bit SRAM-type cell that would be traditionally embedded into a 2D

array can be implemented by looping a wire with four clock zones over onto itself

with a majority gate joining the start and finish of the wire. The output of the

majority gate, and the start of the wire, is on the east. The south input to the

majority gate is the output end of the wire. The north and west inputs are the row

and column selects. If the row and column bits are different, the value that was

stored in the wire will be written back into the wire again. If the row and column

select signals are the same, that value will be written into storage. The data is read

out via a wire fanout where a cell in the hold phase drives more than one of its

nearest neighbors to send the value down two to three paths (figure 3.8b).

The memory macros used in the H-memory store data by combining the SRAM

and DRAM cells by expanding the wire loop of the SRAM cell to store multiple bits.

By making the wire longer and passing through more clocking zones, the capacity

of the memory cell can be expanded to hold an entire word, or multiple words. The

simple majority gate control logic is replaced by a 2:1 multiplexor that allows the

loop to either refresh its old data or write new data to the loop as each bit passes

through the multiplexor and into the memory loop. Storing multiple bits per loop

substantially reduces the control overhead required per bit stored.
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Readout

B

A

"Fixed" Cell

B

A

(b) (c)(a)

Figure 3.8. Three basic QCA memory cells. a) Translation of DRAM, b) Translation
of SRAM. When A=B, a new value is written to the cell. A6=B, the previously stored
value remains. c) ROM cell. If A=B, that value is output. If A6=B, the stored value
is read out. [31]

The question then becomes how best to fold the wire, ultimately a consequence

of the relationship between layout and timing. The answer depends on which of

several possible factors is to be optimized. The most straightforward characteristic

to optimize is area per bit stored. However, there are also other possible factors that

may become important as the fabrication process becomes better defined and the

constraints and challenges become clear. For instance, it may become important to

minimize the number of clock zones, the number of 45 degree wires, or the number

of wire crossings. Each of these would impact the final design.

An example of such a design is the spiral (figure 3.9). In this example, the wire

is wound in a spiral. Since all data is moving in the same direction, clocking zones

can be shared between layers of the spiral. To determine the number of bits stored

in this spiral, one can count the number of clocking zones the wire passes through.

In all, the spiral in 3.9 passes through 55 clock zones, and stores 14 bits. In this

case, the number of clock zones is not evenly divisible by 4 because the first and

last clock zones of the wire share a zone. An arbitrary number of bits can be stored
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in a single loop by adding another turn to the spiral. There is, however, an upper

bound on the number of turns that can be made. This is due to the upper bound on

the length of a QCA wire in a single clock zone. The outer turns have wider corners

to turn than the inner turns, placing more cells in the “corner zones.” These outer

turns will eventually limit the size of a single simple spiral. What this limit actually

is will depend on the device implementation. This is by no means a fundamental

limit on the number of bits that can be stored in a single wire, though, only on a

single continuous spiral. To store more bits in a spiral configuration, the wire could

be folded into multiple, small, cascaded spirals before bringing the ends of the wire

back together (figure 3.10).

Figure 3.9. Spiral data loop storing 14 bits that circulate in a clockwise direction.
Here, the ends of the loop are shown to join together directly without intermediate
control logic. The turns of the spiral are made of 90 degree wires. The segment of
wire closing the loop is a 45 degree wire, allowing the signals to cross over eachother
without interference. Cell shading indicates the clocking zones.

3.5 Conclusion

This basic H-memory is a departure from traditional 2D array architectures. The

important features of the architecture are serial access, uniform access time, oppor-
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Figure 3.10. Cascaded data loops allowing arbitrary numbers of bits to be stored in
a single wire.

tunity for fine-grained pipelining within the memory itself, scalability, and finally

the potential high density of the memory.

Serial access is a key aspect of the architecture. Serial access avoids timing prob-

lems associated with parallel access, increases the percentage of area available for

data storage, and utilizes the inherent latching of QCA wires. The timing problem

stems from the parallel access requiring turning corners with several wires. The

outside wires would travel significantly farther than the inside wires, leading to an

explicit delay in the outer wires. Accessing the memory serially avoids this corner-

ing problem by reducing the number of wires bundled together. In addition, serial

access reduces the amount of space in the design required for wiring which increases

the area available for data storage. Finally, serial access is simple in QCA wires

since the wires act inherently as latches, requiring no additional circuitry to sup-

port the serial movement of data, and finally serial access complements the basic
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storage mechanism of the memory macro – the data loop. Rather than forcing an

awkward parallel access on the structure, the serial access exploits the simplicity of

the required serial logic.

Uniform access time is a necessary part of an efficient memory in QCA. There

are two levels at which to consider this. First, once a request enters the memory, it

should take the same amount of time to access any word in the memory in order to

facilitate the finegrained pipelining of memory accesses and exploit the full poten-

tial of QCA wires. In other words, by guaranteeing uniform access time, the lack of

collisions on the return path is guaranteed. The second level is that in interfacing

with a QCA-based microprocessor such as the Simple 12 [4], it is essential to have

predictable memory access times because of the very fine-level of pipelining within

the processor. Finally, the opportunity for fine-grained pipelining within the mem-

ory itself is an advantage over traditional 2D array designs in which accesses are

pipelined up to the memory but not into the memory itself. The full impact of this

potential will be best felt when memory requests can be overlapped in the memory.

This potential is available, though, because the H-architecture allows the benefits

of pipelining to be fully exploited by carrying the pipelining into and throughout

the memory.
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CHAPTER 4

H-Memory Implementation

The overall H-memory architecture was discussed in the previous chapter. This

chapter uses a particular circuit design to compare the potential performance of

the H-memory to projected RAM performance. This circuit design is by no means

optimized. It is a proof of concept design that illustrates the potential of the archi-

tecture and the utility of designing to take advantage of the new characteristics of

QCA. To consider where future designs should focus, consider the components of

the memory latency (figure 4.1). The access time will be discussed in more detail

later in the chapter, but it can be seen where the focus of future designs should

be. For very small memories, the router delay dominates the access time. As the

memory capacity grows, though, the wire latency quickly becomes the dominant

factor in the memory latency. For more space efficient layouts, the distance needed

to be traversed by wires will decrease, improving the performance of the memory.

4.1 Assumptions

Circuit densities depend on the implementation details such as cell size, clocking

wire pitch, and QCA wire pitch (minimum separation of QCA devices carrying

unrelated signals). The final appropriate assumptions are yet to be determined and

will depend on the precise implementation of the QCA cell and clock wiring. For

instance, the cell to cell spacing, the number of cells per clock zone, the pitch of
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Figure 4.1. Components of latency as the memory capacity grows for a 32 bit word
and a varying number of memory macros.

QCA wires, and the organization of clocking zones are all subject to fabrication

details and decisions.

Several molecules are being explored for use as molecular QCA cells. Room

temperature device operation is estimated for QCA molecules between 1-10 nm in

size. The most promising molecules are two-dot cells with inter-cell distances ranging

from 1 nm for the Creutz-Taube ion to 2.5 nm for a silicon phthalocynanine dimer

[61]. Two of these two-dot molecules are required to build the four-dot QCA cells on

which this work is based. In this four-dot cell context, then, the inter-cell distances

range from 2.0 nm to 5.0 nm. A cell size of 2.0 nm will be assumed here.

Another parameter that the molecule choice effects is the longest wire that can

successfully switch in a single clock zone. A conservative estimate of a maximum

of 1000 cells per wire in a single clock zone were used. Estimates for the molecules

discussed above suggest that at room temperature the maximum is approximately
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1013 − 1014 cells per cm2 [34]. The maximum clock rate is determined by the time

it takes for a single electron to move across a molecule. In the molecules being

examined, this results in an upper limit on the order of 1016Hz [5]. This implies

operation in the terahertz may be possible. The final density and clock rate will

be tempered somewhat by thermal considerations that require further study before

they can be fully quantified.

The clocking wire implementation also effects the possible density that can be

achieved. For these designs, the clocking wire size limitation was taken into account

by the clocking zone size. The memory and router macro designs discussed here

were designed assuming a minimum clocking zone of 8x8 cells. The 8x8 clocking

zone size was chosen to somewhat reflect today’s fabrication technology as well as

the technology expected in the near future. Clocking wires with a width of 10 nm

can be fabricated today. If a QCA molecule of width 2.0 nm is used, a width of

8 cells translates to 16 nm. Although this estimate ignores clocking wire pitch

and connections to sources that drive the clocking signals, the 8x8 choice roughly

corresponds to potential sizing constraints.

Finally, the pitch of QCA wires will also effect the density of circuits. For this

work, a separation of 1 cell’s width is assumed.

4.2 Data Loop

The delay in the data loop is vital to the operation of the memory since the delay

directly corresponds to the number of bits stored in the loop. As a result, speed

is not a factor to be optimized. Area remains as a key factor to optimize, and the

potential ease of implementation is also a factor to be considered.
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4.2.1 Parallel Wires Form an Upper Bound

A single bit is required to traverse four clocking zones in order to store a value.

Obviously, this is the minimum required for a self-refreshing loop. It can also be

thought of as the minimum for a transitory latch in a wire. Since the storage is

accomplished by the value in a segment of wire in a “hold” state, any communication

of that data or the transfer of that data to the next “latch” requires the complete

four clock zones to be traversed.

An upper bound on the density of a storage loop can thus be estimated as the

number of bits that could be stored by densely packed parallel wires in a given

area (figure 4.2). This assumes all storage is done by transitory latches and with

no regard to access or organization, but it is a useful measure of the maximum

bits stored in a given area. This is because this setup maximizes the sharing of

clocking zones between bits, and minimizes the number of cells per wire since each

wire takes the most direct path to the next clock zone, which is a straight line.

This calculation depends on the minimum clocking zone size and the minimum wire

separation. More precisely,

bits

area
=

1

4 ∗ pQCA ∗ czw

(4.1)

where “czw” is the minimum clocking zone width, and “pQCA” is the minimum

center to center separation between adjacent QCA wires.

This heuristic shows the potential storage density resulting from allowing mul-

tiple stored bits to share clocking zones. To compare this to a storage strategy that

does not take advantage of shared clocking zones, consider the area required to store

a bit without sharing,

bits

area
=

1

4 ∗ cz2
w

(4.2)
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For instance, in figure 4.2, the minimum clocking zone size is 3 cells wide, and the

minimum wire spacing is one cell between wires. These numbers are chosen solely

for illustration purposes. Assuming a QCA cell with a 2.0 nm cell-to-cell distance,

the clocking zone width is 6.0 nm, and the QCA pitch is 4.0 nm. The upper bound

for this clock zone width, allowing clocking zone sharing, is 96 nm2/bit as opposed

to 144 nm2/bit required for a single latch (no sharing). The improvement in area

per bit is achieved by sharing clocking zones for multiple bits.

Figure 4.2. Given an area and a minimum clock zone size, an upper bound on the
capacity of a storage loop can be identified.

4.2.2 Loop Configurations

There are several potential loop configurations. The most useful in this discussion

are the flattened spiral (figure 4.3) and the standard spiral (figure 4.4). The flattened

spiral has two sides that each have at least one bit stored per side per turn. The

other two sides are caps that consist of a two clock zones in the same phase. The

caps allow the inner turns of the spiral to be as close as the QCA pitch allows.

However, the number of turns is limited by the length of the longest wire in the
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caps (i.e. the outside turn). The standard spiral has one bit stored per side per

turn. The outside turn again limits the number of turns in the spiral. However,

the distance traveled around a corner by the outside wire is only half that traveled

through a cap in the flattened spiral. Because of the one bit per side property, the

center of the standard spiral is left open, but the number of turns per spiral can be

greater than that of the flattened spiral.

There are two sets of equations to consider in calculating the area required by the

loop configurations. The first is the area required by the looped wires themselves.

The second is the area required by the the wires and the clocking zones. The

QCA wires only measurement speaks to the density of the loop itself. Including the

clocking zones speaks to how closely different loops may be packed or how closely

the storage loop can be placed to other circuitry without having the clocking zones

interfere with eachother.

For the QCA wire only calculation, the height and width of the flattened spiral

are calculated as follows:

height = p ∗ (2n − 1) + x ∗ (4z − 1) (4.3)

width = 2p ∗ (n − 1

4
) (4.4)

With clocking zones, the equations change slightly:

height = 2c ∗ dp ∗ (n − 1
2
)

c
e + c ∗ (4z − 1) (4.5)

width = 2c ∗ dp ∗ (n − 1
4
)

c
e (4.6)

Finally, the number of bits stored in the flattened spiral is:

bits = 2 ∗ z ∗ n (4.7)
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For the regular spiral, the height and width are the same since it is a square.

The height for the QCA wire only calculation is calculated by:

height = p ∗ (2n − 1) + c ∗ (4z − 1) (4.8)

Including the clocking zone area, the height equation is calculated by:

height = 2c ∗ dp ∗ (n − 1
2
)

c
e + c ∗ (4z − 1) (4.9)

The total number of bits stored is calculated by:

bits = 4 ∗ z ∗ n (4.10)

In all of these equations, c is the clocking zone width, n is the number of loops

in the spiral, p is the center-to-center distance between QCA wires, and z is the

number of bits stored in one loop of the straight section of wire connecting the two

caps. For instance, in the flattened spiral in figure 4.3 and the standard spiral in

figure 4.4 z is equal to one.

In the figures shown, the minimum clocking zone size is five cells by five cells

with a minimum wire separation distance of one cell. Using the simple parallel wire

heuristic, a bit requires 160 nm2 using these parameters, as opposed to 400 nm2/bit

without sharing zones. As the minimum clocking zone size grows, then, the benefit

of sharing clocking zones increases (figure 4.5). The flattened spiral here stores one

bit in 166 nm2. The spiral stores one bit in 208.3 nm2. While the flattened spiral

has a higher density, the standard spiral has a few advantages. Most significantly,

our collaborators working on the devices believed the standard spiral to be more

easily implemented. The standard spiral is used for the area calculations that follow

since it is believed to be more realistic. However, as the fabrication process matures,

higher densities approaching the bound determined by this simple heuristic may be

achieved.
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Figure 4.3. The flattened spiral configuration for a data loop drawn with a 5x5 cell
minimum clocking zone, and a 1 cell minimum wire separation. There is at least
one bit stored on each not cap side per turn. The cap zones consist of one zone, the
size of which is constrained by the longest wire passing through it (i.e. the outside
turn of the spiral).

Figure 4.4. The standard spiral configuration for a data loop drawn with a 5x5 cell
minimum clocking zone, and a 1 cell minimum wire separation. There is one bit
stored on each side per turn.

4.2.3 Closing the Loop

To form a self-refreshing loop, the ends of the spiral must be connected. Because

wires can cross on the plane, this is done by moving one end to a 45 degree wire
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clocking zone grows, the benefit of sharing clocking zones for multiple bits increases.

that can cross over the 90 degree wires of the spiral turns. When the data loop is

incorporated into the memory macro, the ends of the spiral are connected through

a control logic circuit that allows the memory macro to either refresh the loop with

the old data or replace it with a new word.

4.3 Macro Implementations

As discussed in the previous chapter, the H-memory is built of memory macros and

router macros. The memory macro is a self-sufficient memory with read and write

logic incorporated into it. Router macros with strippers on the select line outputs

are used to build larger memories.
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4.3.1 Memory Macro

The memory macro consists of the data loop, read enable, write enable, and control

logic. The control logic includes a 2:1 multiplexor that controls whether data in

the data loop is circulated back into the loop or is replaced by a new word. This

decision is controlled by the write enable signal. The other piece of the control

logic is simply an AND gate that controls whether the data circulating through the

data loop is written to the output or if the default “0” is output. This decision is

controlled by the read enable signal. The read and write enable are implemented

by a router. The bit that enters the memory with the start of the select parcel is

the operation code bit that determines whether the operation to be performed is a

read or a write. A logical “1” signals a write. A logical “0” signals a read.

Remember that the select parcel that accompanies the data parcel is generated

when the request enters the memory. When the request enters the memory macro,

the select parcel is the size of one word. Trailing the select parcel is a logical “0” bit

that signals the end of the request. This allows the memory macro to know when

the end of the request has entered the macro and when it should stop operating on

its word.

Figure 4.6 shows the layout and schematic of the first cut memory macro im-

plementation. The memory macro in the figure stores 12 bits. The size of a single

simple spiral is limited by the length of the wire in a single clocking zone. The max-

imum such wire is the outside turn of the spiral. To bring the designs somewhat

in line with some of the predicted constraints that will be placed on fabricate-able

systems, the number of bits stored in a single loop is limited to 32 bits. To store

larger words, multiple spirals are cascaded (figure 4.8).
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Figure 4.6. Memory macro layout. See figure 4.7 for schematic and boolean equa-
tions describing memory macro operation.

4.3.2 Router Macro

Router macros consist of two serial switches each with a stripper module on the

output that replaces the leading “1” of the select parcel with a “0”. The imple-

mentation used for the comparisons can be seen in figures 4.9 and 4.10. Each bit

requires two clock cycles to traverse the switch and a single clock cycle to traverse

the stripper module. Because the stripper module can be implemented in wire along

the path the parcel must already necessarily travel, its delay is counted as part of

the wire delay (figures 4.11, 4.12).

Similarly to the function of the select parcel in the memory macro, when the

trailing zero that follows the select parcel enters the router macro, the router macro

is signaled to reset its state and be prepared to route a new request. The state in

this case is transitory, consisting of a single latch.

4.4 Comparisons

There are three aspects of memory against which to compare the H-architecture:

area, access time, and bandwidth. The H-memory is focused on the area aspect.
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Figure 4.7. Memory macro schematic. Shaded areas indicate clocking zone. Once a
wire crosses a clocking zone boundary, its data is effectively latched.

However, it is important to evaluate it on the other aspects as well. As far as access

time is concerned, the H-memory is relatively slow. The inherent latching in the

wires that allows the fine-grained pipelining adds a high latency in number of clock

cycles compared to CMOS wires, although in terms of nanoseconds, the latency may

be lower. For bandwidth, due to that same fine grained pipelining, the bandwidth

will be shown to be competitive with the next several DRAM generations.

In all of the discussions that follow, unless specifically noted otherwise, the pa-

rameters in table 4.1 are used.

70



Table 4.1

Parameters Used For H-memory Comparisons

Parameter Value Description

lx 58 + 54 ∗ d
√

wl

32
e x dimension of memory macro, con-

trol logic + max bits per loop *
number of loops cascaded in x di-
rection

ly 33 + 54 ∗ b
√

wl

32
c y dimension of memory macro, con-

trol logic + max bits per loop *
number of loops cascaded in y di-
rection

rm 72 cells-width maximum dimension of router
macro

czw 5 QCA cells-width minimum clocking zone width
pQCA 4.0nm Center-to-center distance between

adjacent QCA wires
QCA cell size 2.0nm x 2.0nm
max cells/wire 1000 Maximum number of QCA cells in

a continuous wire
wd 1-6942 cycles Delay incurred traveling through

down-tree wires during a memory
request

wl 64 bits Data word length
nr log(n) total number of routers encountered

by a parcel during a single memory
request, n is the number of memory
macros in the memory.

rlat 2 cycles Delay in cycles to travel through a
router macro

synclat wl Maximum delay required to insure
request arrives with the start of the
stored word

llat 2 cycles Delay in cycles to travel through
memory macro control logic

wu wd Delay incurred travel through up-
tree wires and return routers during
a memory request
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Figure 4.8. Data loop containing more than 32 bits.

4.4.1 Area Comparison

The area of the H-memory is calculated as follows:

area = [2b
log2(n)+1

2
c ∗ (lx + rm) − rm] ∗ [2b

log2(n)
2

c ∗ (ly + rm) − rm] (4.11)

where “n” is the number of memory macros in the memory, “lx” is the length of

the x dimension of the memory macro, “ly” is the length of the y dimension of the

memory macro, and “rm” is the length of the router macro’s maximum dimension.

For the designs in this work, lx = 14 ∗ czw, ly = 7 ∗ czw, and rm = 6 ∗ czw. The

equation calculates the length of the x dimension of the memory and multiplies it

by the length of the y dimension of the memory. The total area calculated, then,

includes the wasted white space cost incurred due to the size and shape of the

macros and the way they fit together in the layout (4.13). In the b log2(n+1)
2

c , the

+1 is because the H structure doubles in the horizontal direction before doubling

vertically. If the log2 of the number of memory macros is odd, the memory will have
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Figure 4.9. Router macro layout.See figure 4.10 for schematic.

an oblong shape rather than a more square shape.

The densities of the molecular implementation of the H-memory has the potential

to far exceed that of the end of the road map projections for DRAM and SRAM

densities (figure 4.14). By 2018, the end of the road map, DRAM has a projected

density of 58.21 Gbits/cm2.

The density of the H-memory circuit implementations depend first on the im-

plementation details discussed in the assumptions previously. In short, the density

equals

density(
bits

area
) =

nm ∗ w

area
(4.12)

where the numerator is the number of memory macros times the length of a word

(i.e. the number of bits stored in the entire memory), and the denominator is

calculated as described above.
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Figure 4.10. Router macro schematic. The shaded areas represent clocking zones.
Once a wire crosses a clocking zone boundary, its data is effectively latched.

Figure 4.11. Stripper macro layout for removing the leading edge of the select parcel.
See figure 4.12 for schematic.
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1 C
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= Once cycle delay
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Clocking zone order to propagate data on a wire
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Figure 4.12. Stripper macro schematic. Shaded areas indicate clocking zone. If a
wire crosses a clocking zone boundary, it’s data is effectively latched.

Architecturally, the H-memory density depends on the ratio of storage to over-

head, where the overhead includes the router macros and wires connecting the com-

ponents. The density, then, translates to word size compared to the number of

memory macros in the memory. For a 32 bit word, and 1 billion memory macros,

the H-memory has a density of just 8.03 Gbits/cm2. However, for larger words and

the same number of leaves, the density improves, the density for a much larger word

of 1024 bits, the density increases to 136.72 Gbits/cm2. For the assumptions given

at the start of the chapter, the maximum possible density, ignoring all overhead, is

363.2 Gbits/cm2. This maximum is approached when the area used for data storage

is large compared to the overhead of routers and control logic.
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Figure 4.13. Memory macros and router macros shown in correct relative size for
three data loop capacities. As the number of bits stored per memory macro grows,
the size of the memory macro grows while the size of the router macro stays constant.

4.4.2 Effect of Brute Force Density Improvements on Latency

However, increasing the word length incurs a latency penalty as the worst case delay

for the beginning of a word in the memory macro to cycle around to the head of the

loop is the capacity of the loop.

synclat = wl (4.13)

In this equation, synclat is the worst case latency in clock cycles that could be paid

waiting for the beginning of the word stored in the memory macro to cycle around

to the head of the loop. In the worst case, this is wl, or the length of a data word. In

addition, for relatively small memories, the larger word size can have a significant

effect on the effectiveness of pipelining the accesses. For instance, if the path to

the memory is much shorter than the length of the word in terms of clock cycles,

there can be little effective pipelining. However, this is a minor consideration for
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reasonably sized memories.
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Figure 4.14. Density comparison between basic H-memory and ITRS projections for
SRAM and DRAM. A range of H-memory densities for 1G of memory macros with
between 32 and 1024 bits per word is shown. The maximum estimated H-memory
density uses an 8x8 cell clock zone and the 2.0 nm cell. The ITRS “red brick wall”
for DRAM is also shown.

4.4.3 Access Time Comparison

The other key parameter on which to judge the H-memory is the access time. The

access time of the H-memory can be calculated as follows:

latency = wd + nr ∗ rlat + synclat + llat + wu (4.14)

“wd” is the latency incurred by the traversing of the wires down the tree from the

root to the memory macro. This is a function both of the size of the memory and

of the number of cells allowed per clock zone. “nr” is the total number of routers

encountered by a single access. This is the log2 of the number of memory macros

in the memory. “rlat” is the latency cost incurred by traversing one router macro.
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The actual value of rlat depends on the circuit design. In the design laid out in this

chapter, rlat is a delay of 2 cycles. “synclat” is the maximum penalty incurred for

waiting for the start of the word stored in the memory macro to cycle around to the

start of the stored word to cycle to the start of the data loop to synchronize with

the start of the incoming access. This value is determined by the time required for

the access to travel from the root to the memory macro modulo the size of the data

stored at the memory macro. This synchronization delay requires no additional

circuitry to handle it since the parameters involved, the size of the memory and

the length of a word, are known and remain constant. All memory macros are

synchronized together, and the time to travel to any memory macro is the same.

“llat is the latency involved in accessing the memory macro itself, in other words,

it is the latency required to traverse the control logic at the memory macro, and in

this design is 2 cycles. Finally “wu” is the latency traversing the wires back up the

tree from the memory macro to the root. Because the return router is a simple OR

gate, its latency can be included in the wire latency and incurs no additional timing

penalties. Both wire latencies are determined by the maximum wire length allowed

in a single clock zone and the distance that needs to be traveled.

There is no synchronization circuit at the leaves in the basic H-memory. Because

all accesses require the same amount of time to travel from the root to the start of

the memory macro, the synchronization can be done at issue time just above the

root or by the processor. All that is required is a simple counter that is the word

length and a buffer to store the thread until the counter reaches the appropriate

value. Since all words are synchronized together (i.e. the start of each stored word

reaches the start of the data loop at the same time), this simple scheme is all that

is required.

It is interesting to note the contribution of each element to the overall latency.
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The down-tree and up-tree wire delays are combined in this figure because reducing

the latency of one direction reduces the latency of the other. For very small mem-

ories, the sync delay and the router delay are the largest components of the access

time. As the capacity grows, though, the wire latency quickly begins to dominate

the latency (figure 4.15).
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Figure 4.15. Components of latency as the memory capacity grows.

4.4.4 Bandwidth Comparison

The bandwidth (bits accessed per second) of the H-memory depends on the size of

the word, the capacity of the memory, the clock rate, and the number of requests

being made. The following calculation is for the maximum possible bandwidth,

assuming there is always a new access waiting to enter the memory as soon as the

previous thread passes completely through the root router macro. The capacity

is important since the limiting factor in the bandwidth is how fast requests can

be sent, and the address bits can dominate the size of the request parcel for large
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memories. Specifically, the bandwidth of the basic H-memory can be calculated as

follows, where the denominator is just the size of the request parcel:

H bandwidth = (
n ∗ wl

plat + n ∗ (parcel size + synclat)
) ∗ clock rate (4.15)

The numerator is how much data is handled over n successive accesses. The

denominator is the time required in cycles to access the data in the memory macros.

This fraction multiplied by the clock rate gives the number of bits accessed per

second. The size of the parcel is calculated by the word size plus the address size

plus the one bit opcode and the required one bit space between successive accesses.

The one bit space between successive accesses is the signal to the router macros that

the access has passed all the way through the router (as discussed in section 4.3.1).

The parcel size only includes the word on a store. However, assuming all accesses

are stores gives the worst case of this best case bandwidth calculation. Because

of the serial nature of the access and the in-wire latching, the number of bits in

the parcel directly corresponds to the number of clock cycles an access occupies

the entrance of the memory. The “plat” is the priming latency incurred by filling

the “pipeline,” or the time required for the first access to reach its memory macro

and return. This delay need be counted only once since this delay is masked for

all successive accesses. The sync delay is the delay required to insure the access

arrives at the memory macro at the same time the beginning of the stored word is

at the control logic of the memory macro. This is calculated by the down-tree access

latency modulo the size of the stored word. This equation is a best-case bandwidth

description that assumes n accesses can be released into the memory successively

with no delays between them.

The tradeoff concerning the bandwidth is word size and capacity. The larger the

word and the smaller the capacity, the greater the percentage of the request parcel is

actual data, and the larger the resulting bandwidth is. An additional consideration
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is the synchronization delay required to guarantee that accesses arrive in sync with

the data circulating in the memory macros. This synchronization delay is the source

of the sawtooth pattern seen in figure 4.16. When the memory is designed such that

the delay for an access to travel from the root to the memory macro is a multiple

of the size of the stored word, no additional synchronization is necessary, resulting

in a higher bandwidth.
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Figure 4.16. Bandwidth of the basic H-memory configuration for varying capacities
and two estimates for DRAM bandwidth. The DRAM estimates assume 1/3 open
row hit probability, a 1 ns open row access time, and a 10 ns random access time.

The DRAM bandwidth can be calculated in a similar fashion. Considering the

raw bandwidth available within each memory macro, the bandwidth can be calcu-

lated as follows:

DRAM bandwidth =
bits per access

(tra) ∗ (1 − p) + (tor) ∗ p
(4.16)

where “tra” is the random access time, “tor” is the open-row hit time, and “p” is

the probability of an access hitting an open row. Once a row of the memory has
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been accessed once, it’s data is at the sense amplifiers ready to be read again. This

just-accessed row is considered an open-row. If the next access uses data from this

same row, the access time is much faster.

If one assumes 2048 bits are available in the memory macro, a 10 ns random

access time, 1 ns open-row hit time, and a probability of 1/3 of hitting an open

row, the DRAM bandwidth is approximately 292 Gbits/sec. The actual number

of bits available after each access is much lower at 256 bits. However, presumably

researchers will find ways to make use of more and more of the bandwidth available

in the memory macros. Future generations of DRAM will also find the access time

decreasing, increasing the bandwidth. Figure 4.16 shows a range of bandwidths for

DRAM, spanning from 10 ns access time to 2 ns random access time, assuming

all 2048 bits are available in each access, independent of the capacity. Very high

capacity, fast access time memories will be beyond the end of the road map, while

lower capacity, slower access time memories potentially lie within the roadmap. The

bandwidth for a contemporary memory making 256 bits available per access, and

requiring 10 ns per random access is shown for comparison.

4.5 Conclusion

The implementation discussed in this chapter is a first cut implementation. Final

device details will affect the circuit layout and precise area numbers. However, this

implementation does demonstrate the great potential of the QCA H-memory. In

terms of area, the H-structure exceeds end of the roadmap projections for DRAM

density by a minimum of an order of magnitude. In terms of bandwidth, the H-

memory far outperforms current DRAM bandwidth. Even assuming the most gener-

ous future for DRAM, the H-memory still has the potential for superior bandwidth.

Only in terms of clock cycles per access does the H-memory lose to DRAM. How-
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ever, after taking into account projected clock rates in the tens of terahertz, the

H-memory is once again wins out over projected DRAM access times. There are,

though, drawbacks to this straightforward implementation. Chapter 5 discusses a

few enhancements to address these drawbacks.
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CHAPTER 5

Enhancements

The main drawback of the H-memory is the long latencies incurred for larger mem-

ories. Due to the close connection between layout and timing, one solution to this

is to move the stored data physically closer to the logic that will act upon it. There

are two approaches to accomplish this. The first is to redesign the memory macro

to store multiple words. This will make the tree shallower, reducing the distance

traveled by an access to its data. The second approach is to incorporate the logic

into the memory itself. This extreme processing in memory approach reduces the

travel time of the accesses from memory to processor by placing the processing logic

in the memory itself.

5.1 Multi-word leaves

The main source of latency in the “conventional” H-memory is the delay through

the wires leading from root to leaf. As the memory grows larger, this problem is

exacerbated (figure 5.1). The latency contributed by the wires can be calculated as

follows:

wirelat(clockcycles) =
wl

maxcz

/4 (5.1)

where wirelat is the latency in clock cycles, wl is the total length of wire traversed,

and maxcz is the maximum number of cells per clocking zone. The fraction is divided
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by 4 to give the result in terms of clock cycles. The contribution of the routers is a

function of the number of routers an access passes through and the delay per router:

rtot = log(nl) ∗ rlat (5.2)

where rtot is the total latency incurred by routers, nl is the number of memory

macros, and rlat is the latency in each router that is determined by the design. In

the design used in this work, rlat = 2. The final contributor to the latency is the

control logic at the memory macro. This is constant regardless of the size of the

memory since each access encounters only one memory macro. This latency is set

by the design, and in this discussion, the memory macro latency is 2 clock cycles.

The main use of area is addressing logic (routers) and control logic within the

memory macros. One way to minimize the delay through the wire is to shorten the

wire. This can be done only by lessening the overhead circuitry it needs to weave

around. The obvious solution is to store more than one word at each memory macro

(figure 5.1). For instance, storing two words per memory macro reduces the area

of the memory by half. Roughly, the area of the memory grows linearly with the

number of memory macros. Remember from chapter 4 that the area is calculated

by

area = [2blog2( n+1
2

)c ∗ (lx + rm) − rm] ∗ [2blog2( n
2
)c ∗ (ly + rm) − rm] (5.3)

where “n” is the number of memory macros in the memory, “lx” is the length of the x

dimension of the memory macro, “ly” is the length of the y dimension of the memory

macro, and “rm” is the length of the router macro’s maximum dimension. For the

first-cut design used for these comparisons, lx = xcon + xloop. The x-dimension of

the memory macro control logic is 58 cells-width, and the basic storage spiral that

holds 32 bits has an x-dimension of 54 cells. ly = ycon + yloop. In this case, ycon is 33

cells, and yloop is 54 cells. If more than 32 bits is stored per memory macro, multiple
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copies of the basic storage loop are cascaded together, as discussed in chapter 4

(figure 4.8). These parameters are summarized in table 5.1.

Basic Control Logic

A1An

B1B2
C1

C2

Cn

D1

D2

Dn

Storage Spiral

Bn

A2

Four n−bit words stored in memory: A1 A2 ... An
B1 B2 ... Bn
C1 C2 ... Cn
D1 D2 ... Dn

Figure 5.1. Alternative memory macro configuration to store multiple words in a
single memory macro spiral. Maximum synchronization delay is the total number
of bits in the spiral (nw ∗ wl).

Provided the size of the memory macro does not grow faster than the number of

bits stored per macro, reducing the number of memory macros reduces the distance

to be traveled because it reduces the number of levels in the memory tree. Finally,

due to the close connection between layout and timing, reducing the distance that

needs to be covered by an access reduces the latency incurred due to wires.

However, this simple method significantly increases the worst case access time

by increasing the worst case synchronization delay to access the correct word in the

memory leaf to the total number of bits stored in the memory macro (figure 5.3).

syncwc = wl ∗ nw (5.4)
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Figure 5.2. Components of latency as the memory capacity grows, 32 bits per
memory macro.

where wl is the length of a word, and nw is the number of words stored per memory

macro.

A more time efficient method is to borrow from the design of bubble memories.

By storing each position in the word in a separate data loop, and storing several

words at each leaf, the synchronization delay is limited to the number of words stored

in each leaf rather than the total number of bits stored (figure 5.4). The tradeoff

is that it requires more space than the straightforward method. However, the area

required is still significantly less for large memories than the basic H-memory that

stores only one word per leaf (figure 5.5) by trading increased control logic at each

leaf for reduced numbers of routers.

5.2 Bouncing Threads Extension

Another approach to reducing the delay between a memory request leaving the

logic and the requested data being returned is to incorporate the logic into the
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Figure 5.3. Worst case latency incurred for three memory macro configurations.

memory structure itself. One can envision incorporating simple ALUs into the

memory structure to support simple operations to memory that take advantage of

the memory access delay. This notion can be extended to moving the entire CPU

functionality into the memory structure itself. This is an extreme extension of the

processing-in-memory paradigm [12]. There are two options for incorporating the

CPU functionality into the H-memory. The first is to place a simple but complete

serial processor at each memory macro. The second is to distribute the pipeline

stages (e.g. Fetch, Decode, Execute, WriteBack) throughout the router macros.

These will be discussed in more detail below.

The extension from the basic H-memory is clear (figure 5.6). Each memory

access parcel consists of an address, an opcode, and a word of data if the access

is a write. As discussed earlier in this work, each memory access is self-sufficient,

carrying with it all its necessary state. To support ALU operations in memory,
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Table 5.1

Dimensions Used for Memory Configurations

Configuration x dimension y dimension

Spiral 58 + 54 ∗ d
√

wl

32
e 33 + 54 ∗ b

√

wl

32
c

Multi-word spiral 58 + 54 ∗ d
√

wl∗nw

32
e 33 + 54 ∗ b

√

wl∗nw

32
c

Bit-wise 122 + 54 ∗ nw

32
64 ∗ wl

wl is the word length, nw is the number of words stored per memory macro.

Additional Control

Logic

Basic Control LogicA1

A2

An

Storage Spiral

B1

B2

Bn

C1

C2

Cn

D1

D2

Dn

Four n−bit words stored in memory:

A1 A2 ... An
B1 B2 ... Bn
C1 C2 ... Cn
D1 D2 ... Dn

Figure 5.4. Alternative memory macro configuration based on bubble memory de-
sign to efficiently access one of multiple words stored in a single memory macro.
Maximum synchronization delay is the number of words stored in the memory
macro.

the data field for the write accesses could be replaced by an accumulator. One can

imagine a mobile thread adding a program counter field and one or more registers

to carry the necessary state with it.
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Address Opcode

Address Opcode Mobile Thread

Accum.

Accum. PC

Op to Memory

Register

Address Data

WE

Memory Only

Figure 5.6. Fields for memory access, operations to memory, and independent thread
[53].

5.2.1 Execution Model

The execution model has been explored by Giefer, et. al. [18] [22] [21] as well as

initial ISA exploration [20]. In the bouncing threads execution model, instructions

and data are stored at in the memory macros and processing logic is incorporated

in the router macros. The research explored how to incorporate the logic in the

router macros. The pipeline stages chosen to accomplish the processing is a matter
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for future research. For the preliminary exploration, the pipeline stages in the

routers included: decode, execute, and pcinc (increment the program counter). The

instruction fetch stage is implemented in the memory macros. These pipeline stages

can be scattered and replicated throughout the memory (figure 5.7). The placement

of each type of router in the H-tree has a significant impact on the execution time

of the processes.
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Figure 5.7. Sample processing router pipeline placement for bouncing threads exe-
cution model. Pipeline stages include iFetch (occurs at memory macros), program
counter increment, decode, and execute. In this example, the lowest level routers
are non-processing router macros. [21]

To execute programs, threads travel to a memory macro to pick up an instruction

and then proceed to routers with the appropriate pipeline stage to execute, traveling

to pick up data when necessary and then back to the necessary processing routers.

An alternative implementation of the bouncing threads execution model is to

place complete processing logic at each memory macro. This is a potentially less

efficient version that does not take full advantage of the processing-in-wire [46]
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potential of the structure, but it allows the exploration of other aspects of the

memory/processor structure such as collision frequency and handling without the

complications of the pipeline stage placement question. By placing the data and

instructions far enough apart in memory to force the traversal of multiple routers,

the delay of passing through several processing-routers can be simulated.

In both of these schemes, routing is different than in the basic memory. In

the basic memory, access parcels always move from the root of the memory to the

leaf and directly back to the root. In the bouncing threads execution model, the

thread initiating the process enters from the root but then travels within the memory

structure from leaves to routers and back to leaves without necessarily going back to

the root. Routers in this scheme are more complex and multiple accesses (threads)

may have paths that cross or even the same destination memory macro (figure 5.8).

3

1 2

Figure 5.8. Threads travel between memory macros without returning to the root
in the bouncing threads model. In this example, threads travel first to the memory
macro marked “1”, then to “2” and finally to “3” without returning to the root.
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Absolute addresses within the parcel are replaced by directions to match the

routing method of memory accesses. Instruction addresses are replaced at iFetch,

and data addresses are replaced at operand access time. In memory macros, then,

addresses are stored as absolute addresses and are then converted to directions for

the thread to travel to that destination. In effect, the directions scheme treats the

latest origination point as the new root in the binary tree. As a result when using

the processing in memory macro strategy, the routers still need to maintain no state

about where they are in the H-structure, and they continue to operate in essentially

the same was as described in the basic H-memory architecture relying on the leading

edge of the thread. However, now either the memory macros need to know their

address, or the thread must carry the address of the current memory macro (the

destination it just arrived at) with it as additional state.

5.2.2 Simulator Description

The simulator is a cycle-accurate architecture that models the transitory latches in

the simulated system. In a QCA design, the transitory latches in wires are the major

source of delay and need to be explicitly modeled. The simulator acts on compo-

nents of the microarchitecture as represented by modules. Each module can be as

specific as a complete microarchitectural description or as general as a behavioral

description with an appropriate wire delay included in the module. For instance,

in the simulated system described below, the communication between modules is

modeled by a wire module with every transitory latch explicitly represented (a com-

plete description). The processor in the memory macro module, though, models the

behavior of the processor and factors in the associated delay as a wire of appropriate

length. In other words, the thread moves along a simple wire in the memory macro

until it reaches the end of the module and the appropriate processor action is made
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in a single cycle update (i.e. an ALU operation). The length of the wire in the

memory macro is used to model the delay that would be incurred by the thread if

the entire processor circuitry were explicitly modeled.

The simulator can be either execution driven, trace driven, or pattern driven.

This simulator is focused on exploration of the travel patterns and interaction of

threads in the H-tree. For an execution driven system, an ISA can be defined in

a module (in the memory macro module for the system simulated for this work).

In trace mode, an input trace of addresses visited can be used. A pattern driven

simulation could model thread travel given memory locality statistics. These three

modes are interchangeable and allow different facets of the bouncing threads execu-

tion model to be explored.

5.2.3 Collision Detection and Avoidance

The frequency of collisions can have a substantial effect on the throughput and

bandwidth of the system. The tradeoff is between having enough active threads to

take advantage of the resources and having few enough threads so collisions are rare.

A collision occurs when more than one thread is trying to use the same router

path. In the simulated system below, routing decisions are made by the router

module and then passed to the collision handling module to determine if there is an

impending collision and determine the appropriate action to avoid a collision. Each

router has three directions of input: from the parent, from the right child, and from

the left child. Each router also has three directions of output: to the parent, to the

right child, and to the left child. A collision arises when more than one input path

is trying to use the same output path. For instance, the thread coming from the left

child and the thread from the right child are both trying to go to the parent (figure

5.9).
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Figure 5.9. Collisions occur when two or more threads are trying to use the same
output path at the same time.

5.2.4 Simulated System

In order to evaluate collision frequency and avoidance strategies, a simulator was

written to allow execution of benchmarks. The simulator uses the processing in

the memory macros strategy. The instruction set architecture is “Simple12”, an

accumulator based ISA with a 4 bit opcode, 8 bit operand, and 12 bit word (table

5.2).

I/O Module

The I/O module controls the input to and the output from the H-structure. Ini-

tial commands are routed from here to begin simulations, and completed jobs are

assumed to exit through the I/O module as well. If a command is waiting to be

issued and the entrance to the H-structure is clear, the command is removed from

the wait queue and inserted serially into the H (figure 5.12).
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Table 5.2

Simple12 Instruction Set Architecture [4]

Opcode Mnemonic RTL
0000 JMP X PC ⇐ X
0001 JN X if A<0, PC ⇐ X else PC++
0010 JZ X if A=0, PC ⇐ X else PC++
0100 LOAD X A ⇐ M(X), PC++
0101 STORE X M(X) ⇐ A, PC++
0110 LDI X A ⇐ M(M(X)), PC++
0111 STI X M(M(X)) ⇐ A, PC++
1000 AND X A ⇐ A AND M(X), PC++
1001 OR X A ⇐ A OR M(X), PC++
1010 ADD X A ⇐ A + M(X), PC++
1011 SUB X A ⇐ A - M(X), PC++
1111 END

Se
l

A
ddSe

l

A
dd

Collision

Macro

MacroMacro

Router 

Router Router 

I/O

Se
l

A
ddSe
l

A
dd

Handler

Handler Handler
CollisionCollision

Figure 5.10. Simulator module interaction at I/O module and internal nodes.. Solid
lines signify wire modules that represent down-tree connections. Dashed lines are
wire modules that represent up-tree connections.

The output of the I/O module is two wires, address and select lines. The input

depends on the collision strategy and is two or three wires: address and select lines

and perhaps a collision handler line through which detoured threads previously
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Figure 5.11. Simulator module interaction at memory macros. Solid lines signify
wire modules that represent down-tree connections. Dashed lines are wire modules
that represent up-tree connections.
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Figure 5.12. I/O module handles the initial issue of a thread into the H-tree and
the final notification of a process’s completion.

involved in a collision are re-issued.

Collision Handler Module

The collision handler module is responsible for the detection of, avoidance of, and

recovery from collisions which result from more multiple threads trying to use the

same path. There are several potential implementation strategies. The common
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theme among them is the idea of a detour path for one of the colliding threads to

take while the other thread uses the desired path. This detour can be a local route

which is a wire that loops back to the same collision handler, or it can be a global

path which takes the detoured thread to a collision handler at a different level in the

tree (e.g. send the detoured thread up the tree to the parent of the current collision

handler). The different collision handling strategies are a mix of the number and

length of local detour routes and the number, length, and destination of global

detour routes. The global routes can send threads horizontally up the tree, laterally

to another subtree, or back to the root of the memory to be reinserted by the I/O

module.

Global detour routes are more complicated than local routes because the direc-

tions of the parcel must be updated to reflect how to reach the desired memory

macro from the new position.

Using detour routes increases the number of threads that can be involved in each

collision (figure 5.13). In the basic set up, there can be two threads attempting to

use the same path. With detour routes, though, there can be the initial two threads

vying for the path as well as threads entering the collision handler from a detour

path. For instance, if there is one local detour path, there could be as many as three

threads involved in each collision.

In designing a collision handler, it is important to maintain a parity between the

number of inputs to the collision handler and the number of outputs so that every

thread that enters the collision handler has a path to follow if it cannot take its

desired path immediately. It is not acceptable to “lose” a thread because it has no

where to go.
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Global Detour Route up tree

Collision Handler
Level i at level i+1

OUT to Router

Local Detour Route

Local Detour Route

IN 1

IN 2

IN 1

IN 2

Global Detour Route

Level i − 1
(closer to root)

Collision Handler

Figure 5.13. Creating detour routes in collision handlers increases the number of
threads that can be involved in a single collision and increases the types of collisions
that can occur. a) local detour route, b) global detour route

Wire Module

The wire module controls the downward wires (toward the memory macros) and the

return wires (back up the tree toward the root). Wires are treated as shift registers.

Each clock cycle, all input shifts forward by one position (figure 5.14).

Router Module

The router module directs threads to the next appropriate destination. Options

are toward the nodes parent, left child, or right child. For the processing-in-router

scheme, a fourth option is to the logic. The input consists of the address and select

lines. Output is two wires to each possible destination (figure 5.15).
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Input Thread: abc

t = 0

t = 1

t = 2

t = 3

a

b a

c b a

c b a

Figure 5.14. The wire module explicitly represents each transitory latch in the wire.
Each update cycle, contents of the wire are shifted forward by one position. This
wire spans a distance that requires four clock cycles to traverse.

child

From
right
child

To Collision Handlers
OUTPUT

Router 
Macroleft

child

right
child

To To

Processing
Logic

INPUT
From Collision Handlers

To parent

left
Router 
Macro

Processing
Logic

From parent

From

Figure 5.15. Router module is responsible for sending the thread toward the appro-
priate memory macro. It may or may not include processing logic.

Sync Module

A sync module sits in front of each memory macro to guarantee that incoming

memory accesses interact with the stored data correctly (i.e. so the access begins

with the start of the stored word’s cycle). The sync module must also handle

collisions in the case of a thread waiting to enter a memory macro and another
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thread entering the sync module to try to use the same memory location (figure

5.16).

Output To Memory MacroSync Module

Local Detour Route

Counter

Input From Wire

Figure 5.16. The sync module guarantees the thread enters the memory macro to
correspond to the start of the word stored in the memory macro. The sync module
also handles collisions that arise from multiple threads trying to access the same
memory macro.

Memory Module

The memory module consists of the memory macro and for some implementations

a simple processor. The input consists of the address and select wires coming from

a sync module (figure 5.17).

5.2.5 Benchmark: Bubble Sort

In order to evaluate the architecture, bubble sort was executed as a benchmark.

Bubble sort was chosen because it is complicated enough to include aspects of real

programs such as loops and feedback but simple enough to be coded in the S12 ISA

and executed in a reasonable amount of time. The instruction mix for a single thread

executing the program is shown in table 5.3. The purpose of the simulation was to

examine how the number of threads executing in the memory structure affects the
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Data Loop

Output

Logic
Control 

Select Parcel Generator

Logic

Sync Module

Input from Output to

Figure 5.17. The memory module models the memory macros. Each memory macro
has a word of storage and may include a serial processor.

threads and how the number of threads in the structure affects the use and role of

collision handlers. To this end, four copies of the bubble sort program were placed

in different address spaces. Threads are issued such that the first thread operates

on the first copy of bubble sort. The second thread operates on the second copy

in memory, and so on for the third and fourth threads issued. The fifth thread

starts the pattern over and operates on the first copy in memory. In this way, the

interaction between threads operating on shared memory addresses are modeled as

well as threads operating on non-shared memory addresses.

For each copy of bubble sort in memory, the process was explicitly simulated

assuming a serial processor at each memory macro. To generate the collision handler

usage data for multiple threads, the trace mode of the simulator was used. In this

way, every thread is acting as if it is executing the complete program (rather than

sorting and resorting an actual list of integers in the memory).

5.2.6 Results

The goal of these simulations was to examine where collisions occur, how many

threads are involved in each collision, and how the delay due to collisions effects the
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Table 5.3

Bubble Sort Instruction Mix

Instruction Count Percent
jmp 27 6.9%
jn taken 12 3.1%
jn not taken 43 11.0%
jz taken 0 0%
jz not taken 0 0%
load 83 21.2%
store 54 13.8%
ldi 58 14.8%
sti 32 8.2%
and 0 0%
or 0 0%
add 27 6.9%
sub 55 14.1%
Total: 391 100%
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execution time of the processes.

Where Collisions Occur

When considered by level in the memory structure, most collisions occur at the level

closest to the memory macros (figures 5.18, 5.19, 5.20, 5.21). When normalized by

the number of routers at each level, there are more collisions per collision handler

at the top levels of the memory structure closest to the root (figure 5.22, 5.23,

5.24, 5.25). These figures are for 16 processes running concurrently in the memory

structure, but the shape of the graphs is consistent regardless of the number of

threads being executed. This suggests a fat tree structure may be useful to relieve

contention close to the root of the memory structure.
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Figure 5.18. Total number of collisions at each level for 4 processes in the mem-
ory structure. Level 1 is closest to the memory macros and includes 128 collision
handlers. Level 8 is at the root with one collision handler.

Number and Size of Collisions

As the number of threads in the memory structure increases, the number of collisions

first increases, and then drops dramatically (figure 5.26). However, the maximum
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Figure 5.19. Total number of collisions at each level for 8 processes in the mem-
ory structure. Level 1 is closest to the memory macros and includes 128 collision
handlers. Level 8 is at the root with one collision handler.
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Figure 5.20. Total number of collisions at each level for 16 processes in the mem-
ory structure. Level 1 is closest to the memory macros and includes 128 collision
handlers. Level 8 is at the root with one collision handler.

number of threads involved is the number of threads executing. As the threads first

collide at bottlenecks and are delayed, they are separated such that fewer collisions
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Figure 5.21. Total number of collisions at each level for 32 processes in the mem-
ory structure. Level 1 is closest to the memory macros and includes 128 collision
handlers. Level 8 is at the root with one collision handler.
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Figure 5.22. Number of collisions at each level for 4 processes in the memory struc-
ture normalized by the number of collision handlers at each level. Level 1 is closest
to the memory macros and includes 128 collision handlers. Level 8 is at the root
and has one collision handler.
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Figure 5.23. Number of collisions at each level for 8 processes in the memory struc-
ture normalized by the number of collision handlers at each level. Level 1 is closest
to the memory macros and includes 128 collision handlers. Level 8 is at the root
and has one collision handler.
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Figure 5.24. Number of collisions at each level for 16 processes in the memory
structure normalized by the number of collision handlers at each level. Level 1 is
closest to the memory macros and includes 128 collision handlers. Level 8 is at the
root and has one collision handler.
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Figure 5.25. Number of collisions at each level for 32 processes in the memory
structure normalized by the number of collision handlers at each level. Level 1 is
closest to the memory macros and includes 128 collision handlers. Level 8 is at the
root and has one collision handler.

occur overall. In other words, the necessary delay at the collision handlers acts

as a built-in scheduling adjustment to better distribute the threads to incur fewer

collisions in the future.

Execution Time

In a traditional processor, the argument for pipelining is that although an individual

instruction may take longer than in a non-pipelined processor, the overall execution

time for a process will be lower since the work of many instructions can be over-

lapped. The same holds true for this massively pipelined system. Although the

total execution time for each thread is increased (figure 5.27), the average time over

all processes executed is dramatically lowered (figure 5.28). The maximum number

of cycles a thread is delayed increases with the number of threads being executed.

The execution time for a single thread executing alone is 123,881 cycles. For

four threads executing at the same time, the final thread is delayed by 252 cycles.
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Figure 5.26. Frequency of collisions of each size depending on the number of pro-
cesses in the memory structure. Regardless of the number of threads executing,
most threads involve 3 threads or less. However, with n threads executing, there
are a few collisions with as many as n threads involved.

However, for 32 threads executing concurrently, the last thread is delayed by 71,098

cycles. Despite this delay, the average execution time per process for 32 threads

is 6093 cycles, as opposed to 31,033 cycles for four concurrent threads. This data

affirms the value of pipelining and that its benefits are reaped in this massively

pipelined system.
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Figure 5.27. Execution time for all processes depending on how many processes are
executing simultaneously.
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CHAPTER 6

Clocking Wire Layout Strategy

6.1 Introduction

The layout of the clocking wires will significantly impact the QCA circuit layout and

resulting circuit density. The work discussed in earlier chapters assumed a minimum

square clocking zone. While this is a useful tool until further implementation details

are known because it allows one to capture some of the density limitations placed

on the QCA circuits by the clocking wires, it is not a realistic model of clocking

zones. More realistic clocking schemes will most likely not be based on static sized

clocking zones, but on the computational wave scheme [10] in which the clocking

wave travels across a QCA circuit and the switching occurs on the leading edge of

the wave. In addition, previous work has assumed that the clocking wires will be a

limiting factor on the density of QCA circuits. Leveraging others work on carbon

nanotubes may allow the clocking wires to be eliminated as an impediment to QCA

circuit density.

6.2 Clocking Wire Density

Carbon nanotubes (CNTs) were introduced in chapter 2 in the context of other

non-silicon or nanotechnology memories. In addition to their use as non-volatile

switches, metallic carbon nanotubes are also excellent conductors. Experimental

and theoretical work with metallic single-walled carbon nanotubes (SWNTs) and

111



multi-walled carbon nanotubes (MWNTs) suggest that the conductance of electrons

is nearly ballistic. As a result, metallic CNTs should be excellent wires with low

resistance and low heat dissipation.

In previous work, it was assumed that the clocking wires would be the limiting

factor on the density of QCA circuits. However, the diameter of SWNTs is on

par with the size of QCA molecules. A (10,10) SWNT is a conducting nanotube

with a diameter of approximately 1.4 nm and lengths up to several hundreds of

microns. This is the same size scale as the candidate QCA molecules being explored.

Furthermore, there is no fundamental limit on how closely SWNTs can be placed.

Even today, SWNTs can be placed precisely by nudging them with atomic force

microscopes (AFMs). This is a very slow, laborious, error-prone process, but it

indicates that the precise positioning of nanotubes is an engineering problem to be

overcome rather than a fundamental limit of science.

The size of SWNTs and their potential pitches mean that the clocking wires do

not have to limit the density of QCA circuits (figure 6.1). The linear clocking wire

density (wires/µm) can be calculated by:

CDens =
1

max(p, CCdist)
(6.1)

where p is the clocking wire pitch and CCdist is the minimum distance between

adjacent 4 dot QCA cells. The end of the roadmap, 2018, metal 1 pitch is 42

nm [28]. This implies a linear density of 23.8 wires/µm for the end of the roadmap

clocking wires. Using the (10,10) SWNTs, the limiting factor is the cell-cell distance

of 2.8nm. The resulting linear density is 357.1 wires/µm. The linear density of the

SWNT layout is 15 times greater than the end of the roadmap. This implies the

SWNTs provide a potential overall density gain of 225 times over end of the roadmap

metal wires.
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Figure 6.1. The size of SWNTs is on the same size scale as molecular QCA cells.
Clocking wires made of SWNTs may not limit the density of QCA circuits. The
diameter of the (10,10) SWNT is 1.4nm. The center to center distance between
QCA molecules is 2.8nm.

1.4 nm

1.2 nm

cell
two−dot

cell
four−dot

2.8 nm

Figure 6.2. Cell to cell distance of a four dot QCA cell built from two 2-dot
molecules.

6.3 Clocking Wire Layout

In the computational wave scheme, the clocking signal is generated by wires under

the plane of the QCA molecules (figures 6.3, 6.4)[26]. The clocking wires generate

a clocking field that supports QCA signal movement perpendicular to the clocking

wires. Straight wires are very easy in this scheme, requiring only parallel clocking

wires (figure 6.5a). Turning corners in this scheme is more difficult, requiring a range

of clocking wire orientations to create the required clocking field (figure 6.5b). The

result is that straight wires tend to be very area efficient while turns are inefficient.

An alternative to the perpendicular clocking wire layout scheme is to run the

overlying QCA signals at a 45 degree angle to the clocking wires. This diagonal

113



clocking wire layout strategy allows the QCA signal to travel along two directions

on the same set of clocking wires (figure 6.5c).

Figure 6.3. Schematic of clocking wires below the plane of a QCA circuit. Clocking
wires run perpendicularly out of the viewing surface. QCA cells are placed on the
plane sandwiched between the clocking wires and an upper conducting plate. [26]

Figure 6.4. Electric field generated by CMOS wires placed under the plane of the
QCA molecules. Block dots are the CMOS wires which run perpendicular to the
viewing plane. The layer where QCA molecules reside is located at the horizontal 0
line. The highest black line is the conductor as seen in figure 6.3. [26]
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(a)

Phase 4: Release

Phase 2: Switch

Phase 1: Hold

Phase 3: Relax

(b)

(c)

Figure 6.5. Three clocking wire layouts: (a) Straight QCA signal traveling perpen-
dicular to the clocking wires. (b) QCA turn with perpendicular wires. (c) QCA
signal traveling at 45 degree angle to clocking wires.

6.4 Diagonal Clocking Scheme

The diagonal clocking scheme requires two wire orientations (positive slope and

negative slope) and two orderings (dictates direction of travel) to allow travel to

the north, south, east, and west. The two orientations required are perpendicular

to each other. In one orientation the clocking wires have a positive slope, and in

the other orientation clocking wires have a negative slope. The two wire orderings

determine which direction the clocking signal travels (i.e. the relative phases between

neighboring wires). The result of this is four different combinations of orientation

and ordering, or four “meta-zones.” Each meta-zone is a clocking wire layout that

allows travel in two directions. The meta-zones and their supported directions of

travel are shown in figure 6.6.

Each meta-zone, then, supports two directions of movement and four possible

types of movement. For instance, meta-zone I allows straight movement to the east,
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straight movement to the south, a turn from east to south, and a turn from south

to east.

A spiral requires four meta-zones to loop back onto itself. Using the labels in

figure 6.6, a spiral with data moving clockwise, starting in the upper left corner,

requires a meta-zone that supports motion north and east (IId), east and south (Ic),

south and west (IVd), and west and north (IIIc).

QCA signals must be able to cross from one meta-zone to another. This can be

done only at locations where the clocking zone on each side of the meta-zone border

is the same (figure 6.7). These locations are referred to as “channels.” In figure 6.7,

meta-zones II and I are shown abutted. When laid out in this manner, channels

occur every other clocking wire. The location of these channels is determined by

the layout of the clocking wires and their relative phase. The location of channels

is static assuming the relative phases of the clocking wires does not change, as is

assumed throughout this work.

6.5 Evaluating Clocking Strategies

In evaluating clocking strategies, there are two areas to consider. The first is the

resulting density of the QCA circuits. The second is the level of difficulty to man-

ufacture the given layout. For all nanoelectronics, making connections between

wires and manufacturing arbitrary shapes will most likely be very difficult. As

one considers clocking strategies then, it is important to keep in mind the eventual

manufacturing challenges that can be anticipated.

The memory loop used in the H-memory is a good circuit on which to evaluate

the clocking strategies. First, since it is a regular structure with feedback, the circuit

lends itself to comparison across clocking strategies. Second, the data loop is a major

component of the H-memory and analyzing the effect of the clocking strategies on
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Figure 6.6. I-IV Diagonal wire layout metazones. a-d) Supported direction of move-
ment of overlying QCA signals.

Channels

III

Figure 6.7. Channels between two meta-zones. For the four phase clock scheme,
channels occur every other clocking wire along the border between two meta-zones.

the data loop provides important insight into how the clocking strategies would

impact the overall density of the H-memory.

The density of the circuit can be captured by calculating the number of bits
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stored in each data loop and the area required. Insight into the manufacturability

of the data loops can be gained by calculating the number of clocking wires required

to implement the data loop.

There are a number of ways to layout the data loop. Three are considered here to

give an idea how the two clocking layout strategies perform across a range of layouts.

The first configuration is the standard spiral used in the implementation of the H-

memory. The second configuration is the flattened spiral that takes advantage of

efficient straight stretches of QCA wires. The third is the snake that is inefficient in

terms of use of clocking wires but can lead to high densities in some circumstances.

The snake configuration consists of a “leg” of straight wire then a turn and a

returning leg of straight wire parallel to the first leg but traveling in the opposite

direction. Neighboring legs are traveling in opposite directions. This requires dis-

tinct sets of clocking wires for each leg. So, while with the legs of the spirals move

in the same and allow a single set of clocking wires to be shared among all legs, the

snake configuration requires a distinct set of clocking wires for each leg (as seen in

the perpendicular layout in figure 6.8).

An example of the clocking wire layout needed to implement each of these in the

perpendicular scheme can be seen in figure 6.8 and in the diagonal scheme in figure

6.9.

The perpendicular scheme is very efficient for long stretches of straight QCA

signal. However, when the QCA signal needs to turn, it is less space efficient because

the clocking wires cannot be placed as closely as they can in the straight QCA

signal. Since the clocking wire needs to maintain its orientation perpendicular to

the direction of travel of the QCA signal, a broad range of wire orientations is

needed. On the inside of the turn, the distance between the clocking wires is the

clocking wire pitch. On the outside of the turn, the distance between the clocking
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Figure 6.8. Three loop configurations with the perpendicular clocking wire layout
strategy. The configurations are the standard spiral, the flattened spiral, and the
snake configuration. The bold line shows the direction of the overlying QCA signal.
The patterned lines indicate the relative phase of each wire.

Figure 6.9. Three loop configurations with the diagonal clocking wire layout strat-
egy. The configurations are the standard spiral, the flattened spiral, and the snake
configuration. The bold line shows the direction of the overlying QCA signal. The
patterned lines indicate the relative phase of each wire.

wires depends on the radius of the turn and the number of clocking wires used to

make the turn. These parameters and others will be further discussed below (figure
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6.10). Because clocking wires on the turn cannot be packed as closely as the clocking

wires along the straight stretch, the turns are the limiting factor on the potential

density of the QCA circuits designed for the perpendicular clocking scheme.

The parameters that determine the density of the QCA circuit designed for the

perpendicular clocking scheme on the turn include the clocking wire pitch (p), the

maximum separation between clocking wires that will still properly transmit the

QCA signal (m), the half angle between clocking wires (α), and the length of the

clocking wires (w) (figure 6.10). From these, the active radius of the turn, or where

QCA circuits can be expected to function properly (x), and the overall turn radius

(r) can be calculated. Finally, in order to calculate the overall densities the QCA

wire pitch (Q), the number of turns in the spiral or snake (n), and the length of the

extension (l) for the flattened spiral and snake configurations are needed.

The parameters needed to calculate the circuit density for the diagonal clocking

scheme include the clocking wire pitch (p), the channel distance (c), the number

of turns in the spiral or snake (n), and the length of the extended side (l) for the

flattened spiral and snake configurations.

The equations to calculate the number of bits stored in a given data loop and

the area it requires can be found in table 6.1. The equations for the number of wires

required for each configuration can be found in table 6.2.

The resulting density for a sample set of loops can be seen in figure 6.11. For the

perpendicular data loops, the number of wires in a complete circle was held steady

at 16. The maximum separation between the ends of the clocking wires around

turns was ignored. However, one can see that as the number of turns increases for

these data loops, the density decreases rapidly. For data loops with many loops in

the spiral, using more clocking wires to make a smoother turn is more efficient. For

few loops in the spiral, a turn made with fewer clocking wires is more efficient. This
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Table 6.1

Number of Bits, Area Equations for two clocking schemes

Layout type Bits Stored Area
Diag spiral 2n(n − 1) 32p2(n − 1)2

Diag flat n(n − 1)(n
2
)( l

2
√

2p(n−1)
+ 4) 8p2(n − 1)2( l

2
√

2p(n−1)
+ 4)

Diag snake n(2 + l
c
) 2nc2(2 + l

c
)

Perp spiral πn
4α

πr2

Perp flat n
2
( π

2α
+ l

p
) πr2 + 2lr

Perp snake n( π
4α

+ l
2p

) n(πr1
2 + 2lr1)

Table 6.2

Number of Wires Used for two clocking schemes

Layout type Number Wires
Diag spiral 16(n − 1)

Diag flat 4(n − 1)( l

2
√

2p(n−1)
+ 4)

Diag snake 2n(2 + l
c
)

Perp spiral π
α

Perp flat π
α

+ 2l
p

Perp snake n(π
α

+ 2l
p
)
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Table 6.3

Data Loop Density Parameters

Parameter Value Comment

c-c dist 2.0nm cell-cell distance

QCA pitch 4.0nm 2 ∗ cell-cell distance

α π
16 Angle between perpendicular

scheme clocking wires on the
turn (figure 6.10)

p 2.8nm SWNT pitch

m 10nm maximum clocking wire sepa-
ration to continue to transmit
QCA signal

b variable calculated as in table 6.1

r Perp Flat ( p
2 +

b∗numloops

π
/sinα) radius of perpendicular turns

c 4 ∗
√

2 channel distance, 2*SWNT
pitch *

√
2

l perp 44.8nm 16 wires * p, used for flattened
spiral and snake configurations

l diag 31.7nm 4 metazones * length of meta-
zone side
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r = clock circle radius
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a = 1/2 angle between wires in turn

p = wire pitch

Figure 6.10. Parameters used to calculate clocking wire density on a turn for the
perpendicular clocking wire layout.
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Figure 6.11. Density of data loops using the perpendicular clocking wire layout
scheme and the diagonal clocking wire layout scheme for different QCA wire widths.
The clocking wire pitch is limited by the size of the QCA pitch. Uses parameters in
table 3.

is because fewer loops in the spiral require less active area from the clocking wires

(a smaller x in figure 6.10) allowing the angle of the clocking wires to be larger than

if a bigger active area was required.
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Figure 6.12. Clocking wire usage by data loops using the perpendicular clocking
wire layout scheme and the diagonal clocking wire layout scheme for different QCA
wire widths.

The snake configuration designed for the perpendicular clocking wire scheme has

a steady density because since it requires only a single QCA signal to be supported

through turns, the turning radius can be very small and nearly as efficient as the

clocking scheme is for straight signals.

The density of the diagonal configurations changes very little. This is because

the meta-zones are equally dense for turns as for straight signals. The density of the

diagonal layouts is competitive with the best density of the perpendicular layouts

and configurations and far exceeds the average density of the perpendicular layouts.

The number of bits compared to the number of wires used is an interesting

number. The higher the bits/wire measure, the more clocking wires are reused, in-

dicating a more efficient use of clocking wires. It also indicates that fewer individual

clocking wires need to be fabricated. Since fabrication at the nanoscale is expected

to be more error prone than fabrication at the microscale, requiring fewer individ-
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ual features is an important feature. This bits/wire measure, then, gives a rough

indication of the relative manufacturability of the clocking wire layout compared to

the density of the QCA circuit (figure 6.12).

The perpendicular spiral and flattened spiral give the best wire usage figures

for large numbers of bits stored. However, these configurations and layouts also

have the worst storage density. The wire usage of the diagonal spiral and flattened

spiral are the next best. They achieve a good balance between circuit density and

wire usage. In addition, the diagonal layout requires clocking wires in only two

orientations that are at right angles to each other. These features along with the

versatility of the clocking wire scheme indicate its utility and importance.

6.6 Conclusion

The use of SWNTs for clocking wires removes the clocking wires from the QCA

circuit density equation. In addition, the diagonal clocking wire layout scheme

allows higher density layouts and more easily manufactured clocking wire circuitry,

as well as more versatile clocking wire layouts. The diagonal clocking layout strategy

also opens up new possibilities for clocking floor planning work. With robust and

versatile clocking floor plans that are manufacturable, QCA circuits can be designed

to these floor plans, speeding the potential fabrication of QCA circuits.
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CHAPTER 7

Conclusions and Future Work

Quantum-dot cellular automata is a novel device with characteristics that differ

substantially from CMOS. This work presented a new memory architecture native

to QCA that takes advantage of the characteristics of the device to achieve memory

densities that exceed those of end of the roadmap CMOS.

The transistor paradigm has been very successful at the microscale. However,

as devices continue to shrink, the short comings of the transistor paradigm become

exacerbated. The barriers to extending transistors into the nanoscale are physical,

economic, and architectural in nature. QCA offers solutions to all of these concerns.

Transistors today operate in spite of quantum effects that dominate at the nanoscale.

QCA makes explicit use of these effects. As transistors continue to shrink, the leak-

age current begins to dominate the circuit which leads to increased heat dissipation.

The heat problem is intensified because of the desire to take advantage of the small

device size and make circuits as dense as possible. This leads to unworkable heat

densities. QCA offers an avenue toward very high density with low power require-

ments and minimal heat dissipation. The economic barriers of chip fabrication costs

can be addressed by taking advantage of the self-assembling nature of the molecular

world. Finally, the architectural challenges of using nanoscale transistors that are

more susceptible to permanent and transient faults has been addressed in this thesis

and by the prior QCA logic design work discussed in chapter 1. In short, QCA is
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poised to breach the red brick wall of the ITRS roadmap.

This work is the first memory architecture designed in QCA that looks beyond

the array memory paradigm that has worked so well in CMOS but which is not suit-

able for QCA. By designing with an eye explicitly on the device characteristics, these

devices can be exploited to create efficient designs. The H-memory implementation

discussed in this work is by no means the most efficient design possible, and yet it is

still able to obtain orders of magnitude gains in density over the end of the roadmap

projections for DRAM and SRAM densities. The first cut design discussed in chap-

ter 4 achieves projected densities of hundreds of gigabits per square centimeter as

opposed to end of the roadmap DRAM density of 58.21 Gbits/cm2. The weakness

of the H-memory is the long latencies required due to the shift-register nature of

wires. Access times are measured in the thousands of clock cycles. However, despite

the long latencies, the maximum bandwidth of the H-memory still far exceeds that

of end of the roadmap DRAM because of the H-memory’s fine grained pipelining

and a clock rate in the tens of terahertz.

Future circuit designs of the H-memory should address the white space in the

current design within the memory and routing macros as well as between macros.

By eliminating or making use of this space, the major component of latency, wire

delay, can be improved.

In addition to a basic memory architecture, the novel bouncing threads execution

model was further explored. This execution model eliminates the von Neumann

bottleneck and addresses the long latencies of memory access time by moving the

processing into the memory structure itself. Rather than moving data from the

memory to the processor and back again, the process state is moved to the data. This

allows massive multi-threading and takes advantage of the fine-grained pipelining in

the memory structure. The bouncing threads execution model is a fertile area for
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future research. ISA functionality, pipeline stage placement within the memory

structure, the utility vs cost of instruction caches with the threads, the design

of collision handlers that are guaranteed to handle all incoming threads, and the

expansion of the H-tree into a fat tree at congested levels are all topics to be explored.

Finally, a clocking wire layout strategy was proposed that eliminates the clocking

wires as a limit to circuit density by proposing the use of single-walled carbon

nanotubes for clocking wires. In addition, the diagonal clocking wire layout scheme

was proposed that allows floorplans which are more flexible and space efficient than

those explored via the perpendicular clocking scheme.

128



BIBLIOGRAPHY

[1] http : //www.chem.ucla.edu/dept/faculty/stoddart/new/graphics/bluetimeline.gif .

[2] http : //www.ipt.arc.nasa.gov/carbonnano.html.

[3] http : //www.mb.tn.tudelft.nl/nanotubes.html.

[4] Introduction to simple12 assembly and rtl. Dept. of Computer Science and
Engineering, University of Notre Dame (2004), Introduces S12 ISA and RTL
in undergraduate computer architectour course(CSE 321).

[5] Quantum-dot Cellular Automata: beyond transistors to extreme supercomputing
(October 2004).

[6] D. Antonelli, T. Dysart, D. Chen, X. Hu, A. Kahng, P. M. Kogge, R. C. Murphy
and M. Niemier, Quantum dot cellular automata (qca) circuit partitioning:
Problem modeling and solutions. In 41st Design Automation Conference (DAC)
(June 2004).

[7] R. Bennewitz, J. Crain, A. Kirakosian, J.-L. Lin, J. McChesney, D. Petrovykh
and F. Himpsel, Atomic scale memory at a silicon surface. Nanotechnology , 13:
499–502 (2002).

[8] G. H. Bernstein, I. Amlani, A. Orlov, C. Lent and G. Snider, Observation of
sitching in quantum-dot cellular automata cell. Nanotechnology , (10): 166–173
(1999).

[9] D. Berzon and T. Fountain, Computer memory structures using qca. Technical
report, University College London (1998).

[10] E. P. Blair, Tools for the Design and Simulation of Clocked Molecular Quantum-
Dot Cellular Automata Circuits. Master’s thesis, University of Notre Dame
(2003).

[11] M. Brehob, R. Enbody, Y.-K. Kwon and D. Tomanek, The potential of carbon-
based memory systems. IEEE , pages 110–114 (1999).

[12] J. B. Brockman and P. M. Kogge, The case for processing-in-memory. Technical
report, University of Notre Dame (1997).

[13] Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart and R. S. Williams, Nanoscale
molecular-switch devices fabricated by imprint lithography. Applied Physics
Letters, 82(10): 1610–1612 (March 2003).

129



[14] A. DeHon, Array-based architecture for molecular electronics. In First Work-
shop on Non-silicon Computation (February 2002).

[15] M. Dresselhaus, G. Dresselhaus, P. Eklund and R. Saito, Carbon nanotubes.
Physicsweb, http : //physicsweb.org/box/world/11/1/9/world−11−1−9−1.

[16] T. Dysart and P. M. Kogge, Strategy and prototype tool for doing fault mod-
eling in a nano-technology. In IEEE Nano Conference (August 2003).

[17] M. B. Elowitz and S. Leibler, A synthetic oscillatory network of transcriptional
regulators. Nature, 403: 335–338 (January 2000).

[18] S. E. Frost, A. F. Rodrigues, C. A. Giefer and P. M. Kogge, Bouncing threads:
Merging a new execution model into a nanotechnology memory. In A. Smailagic
and N. Ranganathan, editors, IEEE Computer Society Annual Symposium on
VLSI: New Trends and Technologies for VLSI Systems Design, pages 19–25,
IEEE Computer Society (February 2003).

[19] S. E. Frost, A. F. Rodrigues, A. W. Janiszewski, R. T. Rausch and P. M. Kogge,
Memory in motion: A study of storage structures in qca. In 1st Workshop on
Non-Silicon Computation (NSC-1), held in conjunction with 8th Int. Symp.
on High Performance Computer Architecture (HPCA-8), Boston, MS (Feb 3
2002).

[20] C. Giefer, S24 datasheet. Research directed by Arun Rodrigues and P.M. Kogge
at the Univ. of Notre Dame.

[21] C. Giefer, Simulation data. Research directed by Arun Rodrigues and P.M.
Kogge at the Univ. of Notre Dame.

[22] C. Giefer, Simulation results. Research directed by Arun Rodrigues and P.M.
Kogge at the Univ. of Notre Dame.

[23] S. C. Goldstein and D. Rosewater, Digital logic using molecular electronics. In
ISSCC (February 2002).

[24] L. K. Grover, A fast quantum mechanical algorithm for database search. In
28th Annual ACM Symp. on the Theory of Computing , pages 212–219 (1996).

[25] J. R. Heath, P. J. Kuekes, G. S. Snider and R. S. Williams, A defect-tolerant
computer architecture: Opportunities for nanotechnology. Science, 280: 1716–
1721 (June 1998).

[26] K. Hennessy and C. S. Lent, Clocking of molecular quantum-dot cellular au-
tomata. J. Vac. Sci. Technol. B , 19(5): 1752–1755 (Sep/Oct 2001).

[27] Y. Huang, X. Duan, Y. cui, L. J. Lauhon, K.-H. Kim and C. M. Lieber, Logic
gates and computation from assembled nanowire building blocks. Science, 294:
1313–1317 (9 November 2001).

[28] ITRS, International technology roadmap for semiconductors 2000 update. Tech-
nical report, ITRS (2000).

130



[29] ITRS, International technology roadmap for semiconductors 2003 update. Tech-
nical report, ITRS (2003).

[30] B. Keeth and R. J. Baker, DRAM Cricuit Design: A Tutorial . Series on Mi-
croelectronic Systems, IEEE Press (2001).

[31] P. M. Kogge, Qca memory presentations.

[32] Y.-K. Kwon, D. Tomanek and S. Iijima, ”bucky shuttle” memory device: Syn-
thetic approach and molecular dynamics simulations. Physical Review Letters,
82(7): 1470–1473 (February 1999).

[33] C. Lent, P. D. Tougaw and W. Porod, Quantum cellular automata: The physics
of computing with arrays of quantum dot molecules. Proceedings Workshop on
Physics and Computation, pages 5–13 (1994).

[34] C. S. Lent and B. Isaksen, Clocked molecular quantum-dot cellular automata.
IEEE Trans. on Electron Devices, 50(9): 1890–1896 (September 2003).

[35] Z. Li and T. P. Fehlner, Molecular qca cells. 2. characterization of an unsym-
metrical dinuclear mixed-valence complex bound to a au surface by an organic
linker. Inorganic Chemistry , 42(18): 5715–5721 (2003).

[36] M. Lieberman, S. Chellamma, B. Varughese, Y. Wang, C. Lent, G. Bernstein,
G. Snider and F. Peiris, Quantum-dot cellular automata at a molecular scale.
Ann. N.Y. Acad. Sci., (960): 225–239 (2002).

[37] G. Moore, Cramming more components onto integrated circuits. Electronics,
38(8) (April 19 1965).

[38] D. P. Nackashi and P. D. Franzon, Molectronics: A circuit design perspective. In
International Conference on SPIE Smart Electronics and MEMS, Melbourne,
Australia, volume 4263, pages 80–88 (2000).

[39] M. Niemier, Designing Digital Systems in Quantum Cellular Automata. Mas-
ter’s thesis, University of Notre Dame (April 2000).

[40] M. Niemier, The Effects of a New Technology on the Design, Organization, and
Architectures on Computing Systems. Ph.D. thesis, University of Notre Dame
(September 2003).

[41] M. Niemier and P. M. Kogge, Designing complex logic systems with qca devices.
In Great Lakes Symposium of VLSI (March 1999).

[42] M. Niemier and P. M. Kogge, Logic-in-wire: Using quantum dots to implement
really dense processing logic. In Proceedings of the Third Petaflops Workshop,
with Frontiers of Massively Parallel Processing (February 1999).

[43] M. Niemier and P. M. Kogge, Logic-inwire: Using quantum dots to implement
a microprocessor. In International Conference on Electronics, Circuits, and
Systems (ICECS ’99) (September 1999).

131



[44] M. Niemier and P. M. Kogge, The 4-diamond circuit: A minimally com-
plex nanoscale computational building block in qca. In IEEE Symp. on VLSI
(ISVLSI), pages 3–10 (February 2004).

[45] M. Niemier, A. Rodrigues and P. M. Kogge, A potentially implementable fpga
for quantum dot cellular automata. In 1st Workshop on Non-Silicon Com-
putation (NSC-1), with 8th Intl. Symposium on High Performance Computer
Architecture (HPCA-8) (February 2002).

[46] M. T. Niemier and P. M. Kogge, Exploring and exploiting wire-level pipelining
in emerging technologies. In International Symposium of Computer Architec-
ture, pages 166–177, ISCA 2001, Sweden (July 2001).

[47] M. T. Niemier and P. M. Kogge, Problems in designing with qcas: Layout =
timing. Int. J. of Circuit Theory and Applications, 29: 49–62 (4 January 2001).

[48] A. O. Orlov, I. Amlani, G. Toth, C. S. Lent, G. H. Bernstein and G. L.
Snider, Experimental demonstration of a binary wire for quantum-dot cellu-
lar automata. Applied Physics Letters, 74(19): 2875–2877 (May 1999).

[49] A. R. Pease, J. O. Jeppesen, J. F. Stoddart, Y. Luo, C. P. Collier and J. R.
Heath, Switching devices based on interlocked molecules. Acc. Chem. Res.,
34(6): 433–444 (2001).

[50] B. Prince, Semiconductor Memories: A Handbook of Design, Manufacture, and
Application. John Wiley & Sons, second edition edition (1991).

[51] B. Prince, High Performance Memories: New Architecture DRAMs and SRAMs
- evolution and function. John Wiley & Sons (1996).

[52] B. Prince, Emerging Memories: Technologies and Trends. Kluwer Academic
Publishers (2002).

[53] A. Rodrigues, Bouncing threads execution model back-up slides.

[54] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung and C. M.
Lieber, Carbon nanotube-based nonvolatile random access memory for molec-
ular computing. Science, 289: 94–97 (7 July 2000).

[55] P. Rutten, M. Tauman, H. Bar-Lev and A. Sonnino, Is moore’s law infinite?
the economics of moore’s law. In Kellog TechVenture 2001 Anthology .

[56] P. W. Shor, Algorithms for quantum computation: Discrete logarithms and
factoring. In IEEE Symposium on Foundations of Computer Science, pages
124–134 (1994).

[57] S. Thompson, M. Alavi, M. Hussein, P. Jacob, C. Kenyon, P. Moon, M. Prince,
S. Sivakumar, S. Tyagi and M. Bohr, 130 nm logic technology featuring 60nm
transistors, low-k dielectrics, and cu interconnects. Intel Technology Journal ,
6(2): 5–13 (May 16 2002).

[58] P. Tougaw and C. Lent, Logical devices implemented using quantum cellular
automata. Journal of Applied Physics, 75 (1994).

132



[59] L. M. Vandersypen et al., Experimental realization of shor’s quantum factoring
algorithm using nuclear magnetic resonance. Nature, (414): 883–887 (December
2001).

[60] K. Wallus, G. Schulhof, T. Dysart, A. Vetteth, G. A. Jullien, V. S. Dimitrov
and J. Eskritt, http : //www.atips.ca/projects/qcadesigner.

[61] Y. Wang and M. Lieberman, Thermodynamic behavior of molecular-scale
quantum-dot cellular automata (qca) wires and logic device. IEEE Transac-
tions on Nanotechnology , 3(3): 368–376 (September 2004).

[62] R. Weiss, S. Basu, S. Hooshangi, A. Kalmbach, D. Karig, R. Mehreja and
I. Netravali, Genetic circuit building blocks for cellular computation, commu-
nications, and signal processing. Natural Computing, an International Journal
(2003).

[63] K. Yano, T. Ishii, T. Sano, T. Mine, F. Murai, T. Hashimoto, T. Kobayashi,
T. Kure and K. Seki, Single-electron memory for gitga-to-tera bit storage. Pro-
ceedings of the IEEE , 87(4): 633–651 (April 1999).

133


