
Memory in Motion: A Study of Storage Structures in QCA

Sarah Elizabeth Frost
University of Notre Dame

Dept. of Comp. Sci. and Eng.
Notre Dame, IN 46556, USA

sfrost@nd.edu

Arun Francis Rodrigues
University of Notre Dame

Dept. of Comp. Sci. and Eng.
Notre Dame, IN 46556, USA

arodrig6@nd.edu

Andrew Walter Janiszewski
University of Notre Dame

Dept. of Comp. Sci. and Eng.
Notre Dame, IN 46556, USA

ajanisze@nd.edu

Randal Thomas Rausch
University of Notre Dame

Dept. of Comp. Sci. and Eng.
Notre Dame, IN 46556, USA

rrausch@nd.edu

Peter M. Kogge
University of Notre Dame

Dept. of Comp. Sci. and Eng.
Notre Dame, IN 46556, USA

kogge@wizard.cse.nd.edu

Abstract

Quantum Cellular Automata (QCA) is a new technol-
ogy that replaces current flow as an information carrier by
coulombic interactions of electrons within confined config-
urations. Prior work has investigated its potential as very
dense logic. This paper uses a defining characteristic of such
devices, namely pipelining that occurs even at the wire level,
as the mechanism for memory structures that are formed re-
cursively, rather than as conventional CMOS arrays, and
hold the potential for extremely dense storage with embed-
ded processing capabilities.

1. Introduction
As computing components continue to shrink according

to Moore’s law, serious barriers to transistor based comput-
ing loom ahead [6]. Already dissipating heat from high per-
formance high density CMOS components is a significant
challenge, and one which will only become more difficult.
The exponential increases in fabrication plant costs also en-
danger CMOS advancement. More threatening are the inher-
ent physical constraints which will be encountered as feature
size shrinks. Quantum mechanical effects, interconnect lim-
itations, and lithographic difficulties will halt the advance-
ment of transistor based fabrication, perhaps as soon as 2010.

Quantum Cellular Automata (QCA) offers a novel alter-
native to the transistor paradigm [9] [1]. A QCA cell (Fig-
ure 1(a)) is comprised of four sites, two of which can be in-
habited by electrons. Coulombic repulsion between the elec-
trons will drive them to opposite corners of the cell. The state
of a cell is represented by the configuration of the electrons
within. Similarly, Coulombic interaction between neighbor-
ing cells can be used to propagate configurations to neighbor-
ing cells (Figure 1(b)) by causing neighboring cells to tunnel

from one site to another. In this manner state can be prop-
agated along a line of adjacent QCA cells, forming a wire.
Other structures can be built to perform logical operations
[14]. Coulombic interaction causes electrons to move within
a cell, not between cells, so there is no current flow. This
avoids many of the heat dissipation and power consumption
problems of transistor computing. Unlike CMOS, in QCA
the transmission media and logical elements are both com-
prised of the same basic block - the cell. As such, QCA has
been called “processing-in-wire.”

To avoid the loss of coherence in QCA circuits, a four
phase clocking system has been developed [5]. In this sys-
tem, an electric field is applied to the cells. This field raises
or lowers the tunneling barriers between electron sites within
a QCA cell. This has the effect of preventing or allowing
electrons from changing positions or influencing neighboring
cells (see figure 2). Cells can be grouped into zones so that
the field influencing all the cells in a zone will be the same.
A zone cycles through 4 phases. In theSwitch phase, the
tunneling barriers in a zone are raised. While this occurs, the
electrons within the cell can be influenced by the Coulom-
bic charges of neighboring zones. Zones in theHold phase
have a high tunneling barrier and will not change state, but
can influence other adjacent zones. Lastly, theReleaseand
Relaxdecrease the tunneling barrier so that the zone will not
influence other zones. These zones can be of irregular shape,
but their size must be within certain limits imposed by fab-
rication and dissipation concerns. Proper placement of these
zones is critical to design efficiency.

Already QCA cells have been implemented [12] using
metal island dots under low temperatures, but an interesting
possibility is the implementation of QCA cells on the molec-
ular level [8]. By using single molecules as the cells and



Electron Sites

Electrons0 =

1 =

(a) (b) (c)

Figure 1. (a) QCA cells represent state by electron configuration. (b) Coulombic Interaction between
neighboring cells propagates state. (c) A QCA majority gate

Hold Release Relax SwitchSwitch Hold Release Relax

Clocking

Strength
Field 

Phase
Clock Zone

Figure 2. Data moves from a zone which is in Hold to a zone in the Switch phase

regions within the molecule as sites for electrons, molecular
QCA holds the promise of densities upwards of1013 devices
per cm2. Clock speeds for these cells could be in the 1 to
10 Terahertz range at room temperature. Power consumption
should be far less than end-of-line high performance transis-
tors.

Design and demonstration of a variety of basic logic struc-
tures in QCA [14], combined with the lure of higher densities
and speeds, has prompted research into larger scale QCA ar-
chitectures [10] [4]. Research has shown that logic elements
can be built from QCA. However for a full computer, we
must also store data. Previous QCA memory designs have
focused on functionality, not optimization, and have resulted
in bulky and slow designs.

QCA is so fundamentally different than CMOS that
simply scaling and translating CMOS designs for memory
and logic has proven inefficient. To achieve high densi-
ties and performance, QCA systems must adopt new de-
sign paradigms which embrace and take advantage of the
“processing-in-wire” [11] nature of this technology. In sec-
tion 3.1, we explore several of these issues and how they
apply to the design of efficient memory structures. The ex-
ploration of these issues lead to the construction of the H-
memory structure. A comparison of this structure (in sec-
tion 4) shows that it surpasses other QCA memories and
promises significant improvements over end-of-the-line tran-
sistor memory technology. Additionally, the nature of the
H-memory design takes full advantage of the processing-in-
wire aspect of QCA, allowing exciting possibilities for opti-
mization, use as a cache, and integration with logic elements.
We explore these possibilities in section 5.

2. Present Memory Structures

In current CMOS memory, one bit memory cells are ar-
ranged in a two dimensional grid structure. Incoming ad-
dresses are decoded to generate a two dimensional select sig-
nal, one dimension of which selects a row of the memory
grid and one which selects a column or set of columns. The
memory cells which are at the intersection of these two select
signals is activated. In the case of a read, the cell will send
the value of its state to the memory output; in the case of a
write, the cell will change its stored value to that determined
by a input to the memory. The internal structure of a mem-
ory cell is either two interlocking invertors or a capacitor.
Several memory grids can be combined to to create words of
arbitrary length.

Several problems present themselves if we try to “trans-
late” this structure into QCA. The first problem is that of
density. The single bit cell inefficiently consumes 4 clock-
ing zones. Additionally, control becomes an issue. A CMOS
memory relies upon setting the the row and column select
signals in a negligible amount of time. In QCA, generating
and propagating these signals is complex and in the multiple
clock cycle range.

Clearly, QCA memory designs must circumvent the lim-
itations of a grid design and single bit cell. The density
of QCA memory can be increased by storing multiple bits
within each memory cell. A spiral pattern allows multiple
clock zones to be “shared” by QCA cells. A pure spiral is
appropriate for small words, larger words could utilize differ-
ent configuratoins, such as a series of smaller spirals. Control
signals generated at the “edge” of a memory structure are not
able to propagate to the memory cell in time. To take advan-



tage of QCA, control must be embedded within the memory
structure, adjacent to the memory cells themselves.

It was with this intent that alternative memory storage
schema were explored. This search resulted in the design
of a new, uniform access memory structure. In the following
section we develop the rationale for such a design, the major
macros, and the overall charecteristics.

3. The H-Memory Structure

The basic structure of the memory is a recursive H struc-
ture (see Figure 3), similar to those used to achieve zero-skew
clock routing in systolic arrays [13].

(c)

C
ontrol

Spiral

Memory Macro

Macro

Memory

Macro

Memory

Macro

Memory

Macro

Memory

Router

Macro

Memory

Macro

Memory

(d)

(a)

(b)

Figure 3. (a) A memory macro contains a sin-
gle word. (b) Router macros connect memory
macros. (c,d) A recursive H-structure is built
with routers forming interior nodes and mem-
ory macros forming leaves.

3.1. Design Rules

In QCA, conventional design wisdom must be rethought.
Whereas transistor and current based designs have transis-
tors, wires, and capacitors to construct memory out of, QCA
memories must be constructed only of QCA cells and clock-
ing zones. The ramifications of this directed the working
design rules for our design.

Unlike transistor and current based designs, signals do not
propagate down a wire in negligible time. Instead, a signal
moves down a string of QCA cells, traveling one clock zone
every phase of the four phase clock (see figure 2). This lead
to the driving design rule, that first and foremost,latency is
directly related to design size.

Additionally, unlike current based systems, QCA has no
direct equivalent of a capacitor to hold state in. To store state
it must be kept in a ring of QCA cells arrayed through a
’loop’ of clocking zones.Memory must be kept in motion.

QCA technology will be comprised of the QCA cells and
the clocking zones which are generated by traditional CMOS
circuitry underneath the QCA molecules. Because the clock-
ing zones will be generated by a different technology from
the molecular cells, it is preferred to have regular clock zones
of a minimum size. An additional concern is raised by dis-
sipation effects. The longer a QCA “wire” is, the greater the

chance that a signal will become incoherent. The exact max-
imum size will depend on the molecule used.Clock zones
should be regular in shape and bounded in size.

These rules lead to the employment of serial logic rather
than parallel. Because latency is directly related to wire
length, parallel transmission runs into the problem that “turn-
ing corners” becomes difficult. (The “inside” bit wire is sig-
nificantly shorter than the “outside”.) A price is paid for
streaming serial data, but this is quickly compensated for by
simpler and smaller control logic.

3.2. Early Designs

Early designs demonstrated the hazards of non-uniform
access times. As layout is the direct source of timing issues,
it became evident that a uniform path length was preferable
if possible, if only as a worthwhile first effort in designing a
complete memory substructure. It has since been seen that
this is a very efficient approach to QCA memory design.

3.3. General Structures and Protocol

The H-Memory presented here is a QCA realization of
a complete binary tree, where each leaf contains a memory
cell and each node houses a routing circuit. It recursively
defines a highly compact and scalable memory system with
the desired uniformity in access times.

To access a memory cell, a data packet is constructed that
will be serially sent down the address/data line. At the head
of the packet is the address of the memory cell, most signif-
icant bit first. Following the address is a one bit operation
code signaling a read or a write operation. If the operation is
a write, the data packet ends with the word to be written. For
instance, in a 256 word H-Memory with 12 bit words, the
data packet for a write operation would consist of 21 bits: an
8 bit address, a 1 bit op code, and a 12 bit word to be written.
These numbers were chosen to match a particular trial CPU
design we were investigating. For the read operation in this
memory, the data packet would consist of just 9 meaningful
bits.

In parallel with the data packet is the select packet. The
select packet is a serial one that will signal the appropriate
memory cell that the operation described by the data packet
is to be done at the particular cell (see figure 4. This select
packet serves a similar purpose to that of row and column
select signals in traditional CMOS memories but is “loga-
rithmic.” The size of the select packet is not dependent on
the operation to be performed. This is because a read oper-
ation needs the same amount of time as the write operation.
Instead of waiting for the bits of data to enter the memory,
the wait is for the bits to cycle out of memory. The details of
these operations are discussed in section 3.4.

The full data packet enters the memory at the central node
and is sent to every leaf in the memory. The select packet
arrives only at the memory cell to be operated upon. Each bit
of the address is responsible for making one of the decisions



DataAddress 12 bits8 bits

21 bitsSelect Line

Op Code 1 bit

Figure 4. Data packet components and com-
panion select packet.

to turn to the right or left child router. At each turn, a bit at the
head of the select packet is consumed. Address bits which
have been used arrive before the shortened select stream and
thus are ignored.

The data out line of each memory cell is again serial, and
is combined back along the H-structure. If a memory cell
is not being read, its data out line sends out zeros. At each
node, the left and right data-out lines are combined by an OR
gate. This guarantees a uniform length and time for data to
return to the center of the H-structure and exit the memory.

3.4. Memory Macro

At each leaf of the H-structure is a memory macro (see
figure 5) which can read, write, and maintain the currently
stored data. The memory macro can be divided into two
logical parts, the memory macro control and the memory
loop. The memory macro control determines the action of
the memory macro based on the signals it receives. The
memory loop does the actual storage of data and is simple
a tightly wrapped spiral.

Each memory macro has two input lines – a select line
and a data line. If a memory macro is to be read from or
written to, the select line delivers a string of ones that arrive
concurrently with the control signals and data, otherwise the
select line will deliver a string of zeros.

3.4.1 Memory Loop
The data loop is a spiral that feeds back into the loop control
MUX. The memory macro in figure 5 stores one twelve bit
word to allow an easy interface with other QCA based pro-
cessors being designed [10]. Since the data in the memory
loop is always moving, a bit is being written to the data loop
every clock cycle. If the memory macro is not selected or if
the memory macro is doing a read operation, the data cur-
rently in the data loop is recycled by the loop control MUX
and is rewritten to the data loop. For a write operation, each
bit is replaced by a new bit of data.

In a write, when the write enable bit and the word to be
written arrive at the memory macro the operation code bit is
consumed, activating the write path. This first bit of the new
data and the stored data reach the MUX inouts at the same
time. Since the write path is activated, the first bit written
into the data loop is the first bit of the new data.

This design exploits the features unique to QCAs. The
design of the memory macro control takes good advantage

of the majority gate. Keeping the memory in motion makes
reading and writing simple while countering dissipation and
keeping the memory coherent.

3.5. Router Macro

Each router (see figure 6) has been made into a determin-
istic finite automaton which sends the select bit stream in
only one direction based on one bit from the address stream.
See figure 6. By embedding routers along the memory path,
control logic (and therefore size and latency) for individual
memory cells diminished greatly.

The critical bit in the address stream’s arrival is timed to
coincide with the first bit of the select stream. However, the
machine must be able to access its previous select input and
output. Luckily, QCA is capable of latching previous val-
ues by simply employing a four clock zone loop which feeds
back into the input state.

This deceptively simply feature is quite useful in many
designs. By routing a path through extra clocking zones, the
values being transmitted are necessarily delayed, allowing
feedback. Turning that path back into a majority gate pro-
vides a delayed signal. As will be described, this process
was instrumental to router design.

There are three majority gates for each memory access
path per router. The primary gate has as its output the new
select stream, and takes as input the select stream and two
other gate outputs. These gates are slightly more compli-
cated. The lower is a majority gate where one input is frozen
to binary ’0’ creating an AND gate. Its other inputs are the
select stream and the previous output of the main select gate;
the purpose behind this gate is to continue to transmit the
stream once it has started (if select out is high and select in is
high, return high) and stop when the select stream input goes
low.

The top gate controls the transmission of the first bit (as
the lower gate can never return a binary ’1’ until one has
already been returned by the machine). It does this by sim-
ply checking if the previous value of select entered into the
machine was low, and the current bit in the address stream
is correct for the direction to be taken in the tree. The out-
put will actually be high constantly in all left branches while
nothing is being transmitted; this is not a problem, as the
other two inputs to the main majority gate must necessarily
be low in all such cases.

3.6. Density and Latency

Another benefit of the recursive H structure is its scala-
bility. A general H-tree layout is highly packed and con-
sumes areaO(n), where n is the number of words stored and
the maximum wire length is bounded byO(

√
n)[15]. We

have completed and simulated a detailed H-memory com-
prised of 256 12 bit words. This design exhibits a density
of 218 cell/bit. With a 12-bit word, only 8.5% of the total
memory area is comprised of memory loop area. The bulk



Data Out

Read Enable

Write Enable

Select

Address/

Data Control

Data

Address/ Data

Select

(a)

(b)

Data Loop

Data Out Line

MUX

Delayed Signal

Data Control MUX

Read Enable

Data Loop

Write Enable

Figure 5. (a) The H memory macro in QCA. (b) The logic level equivalent.

of the design is unused space or devoted to the routing and
control mechanisms. As larger memory words are used, the
area required per bit drops quickly (figure 7).

Because latency is directly related to design size, the num-
ber of clock cycles required for a word to be accessed is a
function of the size of the word and the number of words
stored in the memory. The rate of increase in access time can
be seen in figure 8.

4. Comparisons

Previous work in designing QCA memory structures has
focused on translating a conventional silicon SRAM archi-
tecture directly into QCA.

The memory designed by the SQUARES architecture [2]
was one such attempt to mimic a CMOS grid. The compo-
nent based architecture made inefficient use of space (con-
suming at least 2200cells/bit) with resulting high latency.

Because the SQUARES cell did not focus on optimiza-
tion, it made a poor candidate for comparison against the
H-memory. Hence it was decided to design a new memory
architecture, the QCA-GRID, which emphasized high den-
sity and low latency but still followed a conventional SRAM

grid architecture. To achieve these goals several optimiza-
tions were used. The QCA-GRID was not a direct transla-
tion of the SRAM logic, but retained the conventional grid
layout, including row and column selects. Proper layout of
clockzones allowed memory loops to “share” zones, increas-
ing density and provided channels for select and data sig-
nals. These optimizations allowed densities to approach 324
cells/bit.

4.1. Density Comparisons

It should be possible to space molecular QCA cells 4.2 to
10 nm apart, allowing incredible densities compared to end-
of-line CMOS technology. Assuming this cell spacing, the
present 12-bit designs would exhibit densities of 218cell/bit
and 324cell/bit, or between 24.12 and 4.26GBit/cm2, a
density which should be equaled by CMOS sometime in the
next decade [6]. However, if one samples the density of just
the memory loop of the H-memory, the spiral architecture
allows a density of only 18.75cell/bit or between 281.58
and 49.67GBit/cm2, placing potential QCA densities well
above those of CMOS (see figure 9).

The performance of of the 12-bit H-memory structure is
due in large part to the relatively small word size. By placing



Select
Out

Select
Out

Select
Out

A
dd

re
ss

/D
at

a

Se
le

ct

Select

Delayed
Signal

Delayed
Signal

Out

Address/Data Out Address/Data Out

Address/Data Out Address/Data Out

Se
le

ct

A
dd

re
ss

/D
at

a

Figure 6. (a) The H memory router in QCA. (b) The logic level equivalent.

0 50 100 150 200 250 300
50

100

150

200

250

300

350

400

450

Word Size

Ar
ea

 (c
ell

s2 ) p
er 

bit

H−memory Density: 512−bit Capacity at Different Word Sizes

Figure 7. The area required per bit falls signif-
icantly as the word size increases.

multiple words at each leaf and optimizing the basic structure
(see section 5.1), H-memory density will grow towards the
maximum QCA density.

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

800

Bits Stored in Memory

Nu
mb

er 
Cl

oc
k C

yc
les

Round trip time for 1 bit through the H−mem

12 bit word
32 bit word
64 bit word
128 bit word
256 bit word

Figure 8. Access time several word sizes ver-
sus the number of words in the memory.

4.2. Latency Comparisons

A comparison against CMOS is difficult at this point be-
cause so much will depend upon fabrication mechanisms.
However, an analysis of the optimized QCA memories, the
H-memory and the QCA-GRID, is possible.



2002 2004 2006 2008 2010 2012 2014

10
0

10
1

10
2

Memory Densities

Year (CMOS projections only)

Gb
it/c

m
2

ITRS CMOS DRAM
CMOS SRAM
Maximum QCA Range
12−bit Word H−Memory Range
128−bit Word H−Memory Range

Figure 9. Projected QCA and CMOS memory
density.

Because the QCA-GRID memory utilizes a grid-like stor-
age memory access incurs overhead to generate control sig-
nals and reassemble data from the grid. In contrast, the H-
memory structure embeds the router macros (see section 3.5)
on route to the memory elements, taking advantage of the
“processor-in-wire” paradigm. As a result, the H-memory
structure is able to provide roughly 50% lower latencies than
the optimized QCA-GRID.

5. Future Work and Conclusions

The H-memory structure presented above presents many
benefits. In addition to significant improvements over
CMOS, it also compares favorably to other QCA memory
designs. As well as the benifits of latency, power dissipation,
and density, the H memory offers significant architectural ad-
vantages. The “Zero Skew” properties of the recursive H
pattern have already been utilized for clocking signals, we
utilize them to provide uniform memory access. This unifor-
mity, combined with the fact that multiple memory accesses
can be pipelined through the structure, could allow for easy
multithreading.

The flexibility of the H-structure opens the possibilities
for a number of optimizations.

5.1. Optimizations

The schematics presented thus far are the first cut designs
for the H-memory. There are several ways the design can
be optimized. The most basic of these areas are reducing
empty space and maximizing the sharing of clocking zones.
In the memory cell shown in figure 5, there are six regions
of empty space which together occupy approximately 28%
of the area of the memory macro. In addition, there is empty
space in the tree. For each subtree of four memory macros,
approximately a quarter of the space occupied by the sub-
tree is left empty. The wasted space can be minimized by
moving from a long rectangular memory macro shape to-
wards a more square shape. More involved optimizations
include enabling multiple read ports, storing multiple words
at each leaf, allowing non-uniform access times, supporting

elementary processing in memory, and providing support for
semaphores.

The density of the design can be substantially increased.
The space between the read and write enables and the loop
control MUX can be used. The center of the splitter macro
design also provides an opportunity for improving density.
The density can also be improved by combining multiple
wires into adjacent clocking zones, decreasing wasted space
and allowing more regular clock zones. Sharing clocking
zones will increase the density of the overall structure. Im-
proving the space efficiency will also improve the time effi-
ciency because of the close connection between layout and
timing in designing with QCAs.

5.2. Cache Functionality

Using H-Memory as a structural basis for a cache hierar-
chy shows excellent potential. Only a small number of mod-
ifications need to be made to the cell and the router devices.
While memory access times will continue to be a challenge
for future QCA designs, speculative size estimates show sig-
nificant promise. Further, due to the possibility for much
higher levels of associativity in every level of cache, hit rates
should be very impressive by comparison.

A fundamental paradigm shift in QCA will be required
by the disappearance of single cycle cache hits. These are
an impossibility in so finely pipelined an architecture. How-
ever, this very pipelining could be exploited to tolerate the in-
creased cache latency, by the use of threads (see section 5.3).

Cache cells would necessarily contain two loops rather
than just one for raw memory to accommodate some form of
tagging. Some control circuitry could potentially be shared,
so this could have a minimal impact on the memory cell size.
It would add a constant time constraint (on the order of the
size of the tag) for hit verification. An equivalence unit for
tag comparison can be constructed very easily in QCA for
serial data. The most striking change in this new medium,
however, is the ability to realize far greater levels of associa-
tivity than have been previously seen.

Router macros can be modified to pass select streams to
more than one cell. A negligible amount of logic is required
to implement a psuedo-least recently used algorithm. The
relative ease of implementing caches will help tolerate the
latencies of QCA memory.

5.3. Integrated Logic

In the traditional silicon world, the observation that the
memory access latency is a significant bottleneck on compu-
tation has lead to a number of attempts to merge processing
logic with memory storage [7] [3]. In QCA, distance is tied
even more closely to latency, so integrating logic into QCA
memory structure seems natural.

The H-memory structure is uniquely suited to this appli-
cation. Because it is based upon a binary tree, there is space
to add logic at interior nodes. One mechanism would be to



(b)

ALU

Memory

Register File

Dispatch/Control
WE

Address Data

Opcode Accum.OperandAddress

(a)

Opcode OperandAddress PCRegisters

Figure 10. (a) Integrating logic into the H-memory breaks the traditional pipeline stages and distributes
them through the structure. (b) The addressing format could be modified to contain an opcode and
operands to complete an instruction.

add control logic at the root node, and place computational
power (ALUs) at key interior nodes (see figure 10(a)). By
distributing computational logic with memory, it is possible
to take full advantage of the ’processing-in-wire’ nature of
QCA.

The basic H structure sends an access packet to a memory
node with a single bit (the write-enable) telling the node to
either read or write the data. We can extend this by adding
more space to the write-enable, making it a full opcode, and
attaching a register to the packet (see figure 10(b)). After
fetching the memory from a leaf node, an ALU at an interior
node can perform the arithmetic portion of the instruction on
the return path. Once the now computed instruction reaches
the root node, control logic there can redirect the packet to
fetch its next instruction. This organization would lend itself
to a simple accumulator based ISA. The packet could be fur-
ther extended to contain multiple registers and more machine
state, thus representing an entire thread.

5.4. Conclusions

QCA circuits are naturally pipelined at very fine levels.
When used to store data, a particularly dense structure is a
simple spiral wire, where data circulates in an endless loop.
While arbitrarily large loops could be formed, access times
become large, and dependent on how long it takes for the de-
sired data to circulate to the readout point. As an alternative,
this paper proposed a memory made of many small spirals,
each containing a word, and arranged in a recursive structure.
Accesses are inserted into such a structure serially, and take a
constant time to reach any word, and either modify it or read
out the contents. If QCA is reducible to the molecular level,
densities in excess of 50 gigabits percm2 may be possible.
This is far denser than the best of projected CMOS.

In addition to these properties, the structure of this mem-
ory allows the embedding of simple operations at each word,
with little additional complexity, and thus permitting a rich
array of fetch and op functions. Of even more potential nov-
elty is the expansion of the access packet to contain the entire
machine state for a simple thread. Future work will investi-
gate a design where there is nothing but memory, and such

threads bounce from word to word as dictated by the pro-
gram.

References

[1] S. C. Benjamin and N. F. Johnson. A possible nanometer-
scale computing device based on an adding cellular automa-
ton. Applied Physics Letters, 1997.

[2] D. Berzon and T. Fountain. Computer memory structures us-
ing qca. Technical report, University College London, 1998.

[3] J. B. Brockman, P. M. Kogge, V. Freeh, and T. Sterling. Mi-
croservers: A new memory semantics for massively parallel
computing. InInternational Conference on Supercomputing.

[4] T. J. Fountain. The propagated instruction processor. InProc.
Work. on Innovative Circuits and Systems for Nanoelectron-
ics, Delft, 1997.

[5] K. Hennessy and C. Lent. Clocking molecular quantum-dot
cellular automata. To appear in the Journal of Vacuum Sci-
ence Tech.

[6] ITRS. International technology roadmap for semiconductors
2000 update. Technical report, ITRS, 2000.

[7] K. Keeton, R. Arpaci-Dusseay, and D. Patterson. Iram and
smartsimm: Overcoming the i/o bus bottleneck. InWorkshop
on Mixing Logic and DRAM, 1997.

[8] C. Lent. Molecular electronics: Bypassing the transistor
paradigm.Science, 2000.

[9] C. S. Lent and P. D. Tougaw. A device architecture for com-
puting with quantum dots.Proceedings of the IEEE, 1997.

[10] M. Niemier. Designing digital systems in quantum cellular
automata. Master’s thesis, University of Notre Dame, 2000.

[11] M. T. Niemier and P. M. Kogge. Exploring and exploiting
wire-level pipelining in emerging technologies. InInterna-
tional Symposium of Computer Architecture.

[12] A. O. Orlov, I. Amlani, G. Toth, C. S. Lent, G. H. Bernstein,
and G. L. Snider. Experimental demonstration of a binary
wire for quantum-dot cellular automata.Applied Physics Let-
ters, 1999.

[13] N. Sherwani.Algorithms for VLSI Physical Design Automa-
tion, chapter 11. Kluwner Academic Publishers, 1999.

[14] P. Tougaw and C. Lent. Logical devices implemented using
quantum cellular automata.Journal of Applied Physics, 1994.

[15] J. Ullman. Computational Aspects of VLSI, chapter 3. Com-
puter Science Press, 1984.


