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Abstract
Much of molecular electronics involves trying to use molecules as (a) wires, (b) diodes or
(c) field-effect transistors. In each case the criterion for determining good performance is well
known: for wires it is conductance, for diodes it is conductance asymmetry, while for transistors
it is high transconductance. Candidate molecules can be screened in terms of these criteria by
calculating molecular conductivity in forward and reverse directions, and in the presence of a
gating field. Hence so much theoretical work has focused on understanding molecular
conductance. In contrast a molecule used as a quantum-dot cellular automata (QCA) cell
conducts no current at all. The keys to QCA functionality are (a) charge localization,
(b) bistable charge switching within the cell and (c) electric field coupling between one
molecular cell and its neighbor. The combination of these effects can be examined using the
cell–cell response function which relates the polarization of one cell to the induced polarization
of a neighboring cell. The response function can be obtained by calculating the molecular
electronic structure with ab initio quantum chemistry techniques. We present an analysis of
molecular QCA performance that can be applied to any candidate molecule. From the full
quantum chemistry, all-electron ab initio calculations we extract parameters for a reduced-state
model which reproduces the cell–cell response function very well. Techniques from electron
transfer theory are used to derive analytical models of the response function and can be
employed on molecules too large for full ab initio treatment. A metric is derived which
characterizes molecular QCA performance the way transconductance characterizes transistor
performance. This metric can be assessed from absorption measurements of the electron
transfer band or quantum chemistry calculations of appropriate sophistication.

1. Introduction

Quantum-dot cellular automata [1–4] (QCA) offer a new
paradigm for binary computing which may be better suited
to molecular nanoelectronics than conventional current-based
approaches. Molecular electronics typically focuses on
forming current-carrying molecular wires, diodes and field-
effect transistors. In the QCA scheme, in contrast, binary
information is represented by the charge configuration of
QCA cells. As figure 1 shows schematically, each QCA
cell contains four quantum dots, which are simply sites
electrons can occupy and on which charge is approximately
quantized. Two mobile charges repel and so occupy antipodal

sites of the cell, providing two stable charge configurations
which encode a binary ‘0’ or ‘1.’ The Coulomb interaction
between neighboring cells provides device–device coupling for
information transfer. This cell–cell interaction is the basis of
QCA device operation. No current flows from cell to cell.

QCA devices have been fabricated with dots formed by
small aluminum islands in the Coulomb-blockade regime.
Metal oxide tunnel junctions between dots provide the
tunneling pathways. QCA logic gates, shift registers, wires,
inverters and fan-outs have all been demonstrated in this
material system [4, 5]. Because the charging energies of
the metallic islands are still fairly small (compared with
comparable molecular energies) metal-dot QCA devices can

0957-4484/08/155703+11$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0957-4484/19/15/155703
mailto:lent@nd.edu
http://stacks.iop.org/Nano/19/155703


Nanotechnology 19 (2008) 155703 Y Lu and C S Lent

Figure 1. (a) Schematic of a QCA cell. The four dots are labeled 1,
2, 3 and 4. Binary information is encoded in the charge
configuration. (b) A QCA wire.

only operate at cryogenic temperatures. They can be viewed
as cryogenic prototypes of molecular devices. They provide
proof-of-principle demonstrations of coupled single-electron
operation of QCA circuits.

QCA devices can be shrunk to the molecular level [6, 7] so
that single molecules act as QCA cells. Redox centers within
the molecule serve as quantum dots, with tunneling paths
provided by bridging ligands. There are several advantages to
molecular QCA: first, molecules provide QCA cells of uniform
size, overcoming the challenge of mass producing uniformly
sized devices at the nanometer scale; second, the small size
of molecules allows high device density [8] in the range
of 1011–1014 devices cm−2; third, the Coulomb interaction
between neighboring molecules is strong enough for molecular
QCA to operate at room temperature [9]. There is also support
for the possibility of molecular QCA device operation with
ultra-low power dissipation [10] approaching the theoretical
limits imposed by fundamental considerations.

Several candidate QCA molecules have been synthe-
sized and experimentally characterized. Fehlner and cowork-
ers [11–14] have explored mixed-valence complexes as QCA
molecules. A measurement of the capacitance between
the two redox centers of a double-dot molecule trans-
Ru(dppm)2(C≡CFc)(NCCH2CH2NH2) dication [11] attached
to a Si substrate showed a switchable bistable charge configura-
tion, the fundamental requirement of QCA molecules. A more
complicated four-dot molecule has also been synthesized and
isolated [12, 14]. Theoretical studies [9] have confirmed the
bistable charge configuration in these molecules as well, and
show further that the Coulomb interactions between neighbor-
ing molecules are strong enough to support bit operations at
room temperature.

For conventional molecular electronics involving using
molecules as wires, diodes or transistors, the desirable criteria
for characterizing performance are well known: for wires it
is high conductance, for diodes it is asymmetric conductance,
while for transistors it is high transconductance. Candidate
molecules can be screened in terms of these criteria by
calculating molecular conductivity in forward and reverse
directions, and in the presence of a gating field.

Different criteria, however, must be developed for
assessing candidate QCA molecules, in which no current
flows at all. The keys to QCA functionality are (a) charge
localization, (b) bistable charge switching within the cell and
(c) electric field coupling between one molecular cell and its

Figure 2. The QCA cell–cell response function. Cell 2 is driven by
cell 1 via Coulomb interaction. P1 and P2 denote the polarization of
cell 1 and cell 2.

neighbor. The combination of these effects which produce
useful QCA behavior can be examined using the cell–cell
response function which relates the charge configuration of one
cell to the configuration induced in a neighboring cell.

The charge configuration of a QCA cell can be
characterized by the cell polarization. For a four-dot QCA cell,
the polarization is defined by

P = (ρ1 + ρ3)− (ρ2 + ρ4)

ρ1 + ρ2 + ρ3 + ρ4

where ρi is the charge on each quantum dot i as labeled in
figure 1. To be used as a QCA cell, the polarization of one
molecule must be coupled to the polarization of neighboring
molecules. Consider the case of two nearby cells shown in the
inset of figure 2. For any given polarization of cell 1, labeled
P1, a certain polarization P2 will be induced in neighboring cell
2 via Coulomb interactions. The function P2(P1), the induced
polarization as a function of the neighboring polarization, is
the cell–cell response function, shown in figure 2.

The cell–cell response function shown has two important
features: (1) the polarization saturates near P ≈ ±1 due to
charge localization and bistability and (2) a small polarization
in one cell induces a large polarization in its neighbor, a
consequence of the Coulomb coupling between cells and the
designed cell structure. The first feature allows the connection
between cell polarization and a bit of information. For this
four-dot cell we associate a state with P ≈ +1 with a bit value
of ‘1’ and state with P ≈ −1 with a bit value of ‘0’. The
second feature gives the intrinsic signal restoration necessary
to preserve digital logic levels from stage to stage.

Our goal here is to illuminate the relationship between
molecular structure and QCA functionality in QCA-active
molecules, so that we have a useful metric for evaluating
candidate systems. The key features of molecular structure
turn out to be geometric (the distance between redox centers)
and electronic (the electron transfer matrix element). These we
relate to QCA functionality as characterized by the cell–cell
response function, and particularly the slope of the response
function at the origin.

We present a simple model for calculating the cell–
cell response function of a QCA candidate molecule by
extracting key aspects of the structure—in particular with the
electron transfer (ET) matrix element and the dot–dot distance
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between redox centers. Our model is based on the two-
state approximation (TSA) [15], in which the ET dynamics
are accounted for by the two-component space (denoted as
the donor–acceptor space) spanned by states in which the
transferring electron is primarily localized at the donor and
acceptor sites. A more detailed discussion of TSA can be found
in [15]. We compare our model with fuller quantum chemistry
calculations and deduce a simple metric for characterizing the
requisite QCA bistability. We show how this metric can be
evaluated from theory or experimental results.

It is important to note that many QCA candidate molecules
are mixed-valence complexes which include transition met-
als [11–14]. Calculating the electronic structures of these
molecules is challenging, particularly with regard to getting
charge localization correct. Among quantum chemistry tech-
niques, the Hartree–Fock (HF) method typically overestimates
charge localization of a mixed-valence compound while den-
sity function theory (DFT) underestimates it [16–19]. A mul-
tiple reference self-consistent field (MCSCF) method [20] is
needed to obtain an accurate electronic structure of a mixed-
valence complex, making the full calculation extremely diffi-
cult and making simpler models that can capture the relevant
physics attractive.

It is worth noting that, for QCA operation, the driving
force of ET is the Coulomb interaction among neighboring
molecules rather than the nuclear relaxation. Nuclear
relaxation does play a very important role in ET and we have
explored that effect in previous work [6]. Previous studies
have shown that the consequence of nuclear relaxation is
that charge localization is enhanced—the relaxation tends to
deepen the potential well the electron is in. Considering the
nuclear degrees of freedom fixed, is therefore a conservative
approach. If a molecule shows QCA action with nuclear
positions frozen, it will likely perform only better when nuclear
relaxation is included. The exception to this is, of course, if
the nuclear reorganization energy is larger than the Coulomb
driving energy. In that case the charge will be stuck on one
site.

It is also important to note that we do not aim here to
study the time-dependent dynamics of QCA switching, but
rather to develop tools for evaluating what makes a good QCA
molecule. A dynamical treatment would go beyond ground
state calculations and include thermal excitation effects and
scattering mechanisms. Again, some work in this direction has
been done [10].

The rest of this paper is organized as follows: in section 2
we present the theoretical background and derivation of our
model. In section 3, we compare the energy diagram and cell–
cell response functions calculated by our model for two simple
molecules, with those calculated using ab initio techniques.
We then use our model to predict response functions for
mixed-valence diferrocenylpolyenes, which may serve as QCA
candidate molecules. Finally, we present a brief conclusion in
section 4.

2. Theory

A double-dot QCA cell can be modeled by a double well as
shown in figure 3. Two quantum dots are represented by two

Figure 3. The scheme of the two-state model for a double-dot QCA
cell. Two localized states are used to encode binary information.

quantum wells. The mobile charge localizes in either one of
the two wells, encoding the cell’s binary information. Note
that the full four-dot cell shown in figure 1 can also be viewed
as a pair of half-cells (with two dots each) in which the sign of
the polarization alternates.

Under the two-state approximation, ET dynamics are
described in a two-dimensional Hilbert space spanned by the
two localized states shown in figure 3. Let ψa and ψb denote
the wavefunctions of the ‘0’ and ‘1’ states. When the overlap
integral Sab = 〈ψaψb〉 is neglected and the mixing coefficients
are normalized (c2

a + c2
b = 1), the wavefunctions for the

lower (ground state ψ1, energy E1) and upper (excited state
ψ2, energy E2) adiabatic states are given by

ψ1 = ca1ψa + cb1ψb (1a)

ψ2 = ca2ψa + cb2ψb. (1b)

The energies of the adiabatic states are obtained by solving
the secular equation for the two-state Hamiltonian:

∣
∣
∣
∣

Haa − E γ

γ Hbb − E

∣
∣
∣
∣
= 0 (2)

where Haa and Hbb are the energies of the localized (diabatic)
‘0’ and ‘1’ states and given by

Haa = 〈ψa|H |ψa〉 Hbb = 〈ψb|H |ψb〉 (3)

and γ is the ET matrix element coupling the diabatic states:

γ = 〈ψa |H |ψb〉. (4a)

The ET matrix element can also be related to the adiabatic
energies:

γ = E2 − E1

2
. (4b)

Under the two-state approximation equations (4a) and (4b)
are equivalent. Once the eigenenergies E1 and E2 of the
adiabatic states are determined, the coefficients ca and cb can
be obtained for the ground state and the excited state by solving
the equation

[

Haa γ

γ Hbb

] [

ca

cb

]

= E

[

ca

cb

]

. (5)

The electron transfer in a QCA cell is driven by the
interaction with a neighboring molecule. Figure 4 illustrates

3



Nanotechnology 19 (2008) 155703 Y Lu and C S Lent

L

q1

1 - q1

driver

L

L2

molecule

b

a

.

Figure 4. Coulomb interaction between neighboring molecules. The
mobile charge can move from one dot to the other within the
molecule, but cannot move outside the molecule. The charge
population of each dot varies from 0 to 1. The upper dot and the
bottom dot of the target molecule are denoted as a and b,
respectively.

the Coulomb interaction between two neighboring molecules.
The molecule on the left we take to be the driver, and describe
it using two point charges. The molecule on the right will
be described with the two-state approximation. The distance
between the two redox centers (dots) of the molecule is L.
For simplicity we take the distance between two neighboring
molecules to be L also, such that the four dots of two of the
neighboring molecules form a square. We can describe the
intermolecular interaction by a simple electrostatic calculation.
A fuller description of cell–cell interactions would employ a
chain of molecular cells driven by a single driver, thereby
including molecule–molecule interactions in a self-consistent
way. For simple molecules, this has been done [6]. For
characterizing the intrinsic bistability of larger molecules, a
simple electrostatic model of the driver is sufficient.

We now derive the relation between the polarizations of
two neighboring molecules.

Suppose each molecule has one mobile charge. We define
the polarization P of a double-dot molecule as shown in
figure 4:

P = qa − qb

qa + qb
(6)

where qa and qb represent the charge population of the upper
dot and the bottom dot. For a double-dot QCA molecule which
contains one mobile charge, qa + qb = 1. Thus we have

P = qa − qb. (7)

We denote the driver’s charge configuration as q1

distributed in dot 1 and 1 − q1 in dot 2, while q1 varies from
0 to 1. According to the above definition of polarization, the
polarization of the driver is P1 = q1 − (1 − q1) = 2q1 − 1. We
wish to calculate the ground state polarization P2 of the target
molecule produced by interaction with the driver molecule.

We can represent the target molecule’s diabatic energies as

Haa = 1

4πε0

q1e

L
− 1

4πε0

(1 − q1)e√
2L

Hbb = 1

4πε0

q1e√
2L

− 1

4πε0

(1 − q1)e

L

(8)

where e is the unit charge and ε0 is the permittivity of the
vacuum. (The molecule–molecule interaction is through the
vacuum.) By solving the secular determinant equation (2) we
obtain

E = (Haa + Hbb)±
√

(Haa − Hbb)2 + 4γ 2

2
(9)

and

c2
a = γ 2

γ 2 + (E − Haa)2

c2
b = (E − Haa)

2

γ 2 + (E − Haa)2
.

(10)

With the coefficient ca and cb we can represent the
polarization of the target double-dot molecule according to (7)

P2 = c2
a(+1)+ c2

b(−1) = 2c2
a − 1 ( since c2

a + c2
b = 1).

(11)
Inserting (10) into (11) we have

P2 = 2γ 2

γ 2 + (E − Haa)2
− 1. (12)

From (9) we obtain

P2 = 2γ 2

γ 2 +
[

(Haa+Hbb)±
√
(Haa−Hbb)

2+4γ 2

2 − Haa

]2
− 1 (13)

and finally we insert (8) into (13) and represent the driver’s
polarization as P1 = 2q1 − 1, yielding

P2 = {2γ 2L2}

×

⎧

⎪⎨

⎪⎩

γ 2 L2 +

⎧

⎪⎨

⎪⎩

e2

4πε0

(

2 − √
2

4

)

P1

+
√
√
√
√

(
e2

4πε0

)2
(

2 − √
2

4

)2

P2
1 + γ 2 L2

⎫

⎪⎬

⎪⎭

2⎫
⎪⎬

⎪⎭

−1

− 1.(14)

We can rewrite this in terms of a dimensionless quantity
which characterizes the nonlinearity:

P2 = 2

1 +
{

βP1 +
√

β2 P2
1 + 1

}2 − 1 (15)

where

β ≡ e2

4πε0

(

2 − √
2

4

)

(γ L)−1 ≈ 0.2109 (eV nm)

γ L
. (16)

Differentiating to find the slope of the cell–cell response
function at the origin results in the simple relation

dP2

dP1

∣
∣
∣
∣ P1=0 = −β. (17)
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Figure 5. The cell–cell response functions obtained from
equation (15) for different values of β.

The saturation value of P2 (P1 = −1) can also be
determined from just β:

Psat = 2

1 +
(√

β2 + 1 − β
)2

− 1. (18)

Equation (15) is an important result. It relates the
polarization of the target molecule with that of the driver
molecule, so that, given the polarization of the driver
molecule, the polarization of the target molecule is determined
by the molecular structure parameters γ and L (through
the value of β). The matrix element γ is an electronic
structure parameter which describes the ease with which the
mobile charge may tunnel from one redox center to the
other—a larger value of γ means tunneling is easier. It
can be measured via spectroscopic experiments including
absorption [21, 22], EPR [23], and ultraviolet photoelectron
spectroscopy (UPS) [24], or calculated using various quantum
chemistry techniques [25]. The molecular structure parameter
L is simply the geometric distance between the two redox
centers which form the dots, and can also be obtained either
experimentally or from a theoretical calculation.

Equation (15) relates key features of molecular structure
(the distance L and ET matrix element γ ) to QCA functionality
as expressed in the cell–cell response function P2 (P1). This
response function could in principle be calculated from a
complete ab initio quantum chemistry model, as we do below,
but that is often prohibitively complex. Equation (15) allows
us to obtain a good approximation to the response function,
provided we can obtain, either experimentally or theoretically,
good values for L and γ .

More importantly, equation (15) provides a tool to guide
molecular design. The length L results from the choice of the
redox center which forms the dot and the length of the bridge
which connects them. The ET matrix element γ is determined
by the electronic structure of the redox center, the nature of the
bridge (e.g. saturated versus unsaturated) and the interaction
between them [26]. Both parameters provide many degrees of
freedom with which we can design molecules that satisfy the
fundamental requirements of QCA cells.

The nonlinearity of the cell–cell response function key to
QCA operation is determined in this simple model entirely by
the value of β , the slope at the origin. Good QCA switching
is obtained for β > 1. To meet this requirement, we need
a molecule which satisfies γ L < 0.21 eV nm. For example, a
molecule with a distance of 1 nm between its two redox centers
must have a matrix element γ less than 0.21 eV. Figure 5
demonstrates the dependence of the cell–cell response function
on the values of β .

In designing molecular QCA we want β to be larger than
one, which means we want the ET matrix element γ as small
as possible and L as small as possible. In fact, the design space
for L is limited to the region between 0.1 and 2 nm. The lower
limit is the size of a single atom; the upper limit is because we
need the interaction energy between cells to be large compared
to kBT . Therefore most of the design goes into choosing γ ,
which can be varied over many orders of magnitude (reflected
in the large variation in ET rates). Ultimately, the desirability
of rapid QCA switching rates will impose a practical lower
limit on γ , but this will not be addressed here.

3. Application

3.1. Hydrogen molecular cation H +
2

In this section and the following sections we calculate the
molecule’s energy levels and charge distribution under the
influence of a charge driver with the unrestricted Hartree–Fock
(UHF) method and the state average complete active space self-
consistent field (CASSCF) method. The hydrogen molecular
cation H+

2 provides the simplest, though unrealistic, model of
molecular QCA switching. We use H+

2 because it has a simple
electronic structure which can be easily solved by various
methods. For the state average CASSCF calculation, the active
space includes the four lowest orbitals and only one electron,
specified as CASSCF(1, 4). The charge driver, which mimics
a nearby molecule, is constructed from two point charges with
varying strengths as shown in figure 4.

Since H+
2 has only one electron, electron exchange and

correlation effects are absent and the single-determinant HF
model reduces to a one-electron calculation which accurately
describes the ET process of the molecule. We then compare the
ab initio results with equation (15) derived in section 2. This
simple molecule serves as the first computational test of our
theoretical model. All ab initio calculations of the H+

2 system
were performed in Gaussian03 [27] with an aug-cc-p VTZ
basis set. For HF calculations we use Koopmans’ theorem and
approximate the energy levels of the ground and excited states
of H+

2 by the energies of the HOMO and HOMO-1 orbitals of
the neutral H2 triplet state. Since the charge configuration is a
ground state property, the response function can be calculated
for the cation directly.

To investigate the effect of molecular structure on the
switching behavior of QCA cells, we examine H+

2 with various
distances between the two hydrogen atoms. Hereafter we
denote H+

2 as the H2 cation with an H–H distance of 1.058 Å—
the equilibrium geometry—and we denote as H+∗

2 , H+∗∗
2 and

H+∗∗∗
2 the H–H+ pairs with nuclear distances of 2.5 Å, 4 Å
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Figure 6. Switching of H+
2 in its equilibrium structure. (a) Energy

diagram. (b) Cell–cell response function. It is worth noting that HF
and CASSCF calculations give identical results for H+

2 . Since there
is only one electron in the system, a multiple-determinant
wavefunction does not improve the computational result. Therefore,
we present only the CASSCF result and label it as ‘ab initio.’.

and 10 Å, respectively. We do this for two reasons. First,
by varying the inter-well distance of the same ‘double-well’
system we can gain information on how a molecular QCA
cell’s electronic structure relates to its geometric structure.
Second, the comparison of cell-switching behavior obtained
from ab initio calculations and the two-state model enables us
to check the validity of equation (15).

The H+
2 molecule does not perform well as a QCA cell.

At the equilibrium geometry (H–H bond length of 1.058 Å),
H+

2 has a very stable ground state because the bonding orbital
lies between two hydrogen atoms, and the first excited state
is far above the ground state (the excitation energy is above
10 eV). Thus for the equilibrium structure of H+

2 there are
no well-defined bistable states capable of encoding binary
information. Figure 6 shows the energy diagram and the cell–
cell response function of H+

2 as a function of the neighboring
driver’s polarization. The figure shows results from both
the CASSCF method and the two-state model (equations (9)
and (15)). The ET matrix element γ for the two-state model is
determined by the energy splitting at P1 =0 from the CASSCF
calculation. Because H+

2 has a large ET matrix element γ
(>5 eV), evidenced by the large energy gap between the
ground state and the excited state in figure 6(a), the interaction
between the ground state and the first excited state is rather
weak. The local electric field is not strong enough to induce
charge localization, which can be seen from figure 6(b). Even
with the driver fully polarized, H+

2 has a weak polarization of
less than 0.1.

Figure 6 also shows obvious discrepancies between the
ab initio calculation and equation (15). This is unsurprising
since equation (15) is based on the TSA which assumes two
well-defined and localized ‘0’ and ‘1’ states. When two
H atoms approach each other and form an H+

2 cation at its
equilibrium bond length, two localized atomic orbitals form
a pair of bonding and anti-bonding orbitals which delocalize
between the two atoms. This is essentially the meaning of a
chemical bond pointed out by Heitler and London 80 years
ago [28]. This suggests that very strong interaction between
two quantum dots in a QCA molecule will result in the loss of
bistability and thus the ability to encode binary information. If
the two dots merge to form one dot, then QCA cannot work.

Figure 7. Switching of H+
2 with an H–H distance of 4 Å. (a) Energy

diagram. (b) Cell–cell response function.

A modified H+
2 molecule with a larger inter-atomic

distance starts to show the bistability required for QCA
functionality. It is well known that the electronic matrix
element decreases exponentially as the distance between the
redox centers increases [15]. Since H+

2 serves only as a model
molecule in this work, we can set the bond length at any value
convenient for investigating the structure–property relation of
QCA cells. Figure 7 shows the results for H+

2 with a bond
length of 4 Å. Figure 7(a) plots the energy levels of the ground
and first excited states. With a large distance between atoms,
the energy gap is greatly decreased. As the driver polarization
increases, the energy of the two lowest-lying states becomes
linearly dependent on driver polarization, suggesting that the
charge configuration of the driver strongly favors one state over
the other. The response function in figure 7(b) is consistent
with this, showing that the binary state of the molecule can be
switched by its neighbor.

Figure 7 also demonstrates close agreement between the
ab initio calculation (dots) and the two-state model (solid line)
given by equation (15) with β determined by the chosen L
and the calculated energy gap at P1 = 0 using equation (4b).
This agreement shows there is no strong interaction between
two well-separated H atoms, so that the two atomic orbitals
provide two well-defined localized states. Thus for this system
the two-state approximation does an excellent job of describing
the driver-induced electron transfer, which is critical for QCA
operation. Although the H+

2 system has only one electron,
making the ab initio calculations rather simple, the good
agreement in figure 7 demonstrates that the interaction between
QCA cells is essentially electrostatic and can be captured by
the two structural parameters of our model.

The effect of different structural parameters can be seen
by comparing figures 6 and 7. The cell–cell response function
in figure 6(b) differs from that in figure 7(b) due to the
differing energy gaps between the two low-lying states seen
in figures 6(a) and 7(a). Since the electronic matrix element
γ decreases exponentially with the distance, the product γ L
is much smaller for a larger L, so that the molecule becomes
more polarized under a local field perturbation. As can be seen
in figure 7(b), the polarization of the target molecule nearly
reaches unity when the driver is fully polarized. It is this fully
polarized character that provides a well-defined binary bit.

Further increase of the H–H distance confirms this trend
in the structure–property relation. Figure 8 shows the energy

6
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Figure 8. Switching of H+
2 with an H–H distance of 10 Å. (a) Energy

diagram. (b) Cell–cell response function.

Chart 1. Alkyl-diene molecule cation.

Table 1. Parameters of H+
2 at different H–H distances.

H+
2 H+∗

2 H+∗∗
2 H+∗∗∗

2

LHH (nm) 0.1058 0.25 0.4 1
γ (eV) 6.5 0.84 0.083 0.0001
γ LHH (eV nm) 0.6877 0.21 0.0332 0.0001
β 0.31 1 6.4 2109

diagram (figure 8(a)) and the cell–cell response function
(figure 8(b)) for an H–H distance of 10 Å. At this large H–
H distance, there is essentially no interaction between the two
atomic orbitals, corresponding to an ET matrix element γ of
almost zero (figure 8(a)). The response function demonstrates
abrupt cell-switching upon driver polarization. Even a small
driver signal can induce a large polarization in the target
molecule.

Table 1 lists the values of structural parameters γ and L
for different H–H distances. As the H–H distance increases,
the ET matrix element γ decays exponentially, and as a result
the slope of the response function at the origin, β , increases
significantly. For the H+

2 molecule in the equilibrium structure,
the slope is less than 1, resulting in a sub-linear response with
no ‘signal gain’ (figure 6). At an H–H distance of 2.5 Å, the β
parameter has a value of 1, yielding output polarization equal to
that of the input driver. Further increases of the H–H distance
gives larger values of β , yielding the ‘signal gain’ mentioned
above.

3.2. Alkyl-diene cation

The second model system we investigate is the alkyl-diene
cation, shown in chart 1, which consists of two ethylene groups
connected by an alkyl bridge. In chart 1 n is the number of
methylene groups, and in this work we study the system for
n = 3, 5, 7 and 9. In the molecular cation one ethylene group
is neutral and the other is cationic. The unpaired electron can
occupy the π bond of either ethylene group with little change
to the molecular geometry. The possibility of using π systems
for a QCA model has been explored in previous work [6].

Figure 9. The cell–cell response function of 1, 10-undecadiene
cation calculated at the UHF and DFT levels when driven by the
charge driver shown in figure 4.

Figure 10. Switching of the 1,10-undecadiene cation. (a) Energy
diagram. (b) Cell–cell response function. The results shown are
obtained from the state average CASSCF method (dots) and the
two-state model (solid line), as well as from the single-determinant
UHF (dotted line) and DFT (dashed line) methods.

Unlike H+
2 , the diene cation is a multi-electron system,

which a single-determinant wavefunction cannot fully describe
because the electron correlation effects need to be taken into
account. Among these single-determinant ab initio techniques,
it is well known that the UHF method overestimates charge
localization and density functional theory (DFT) methods
underestimates it [16–19]. The UHF method overestimates
charge localization due to its neglect of electron correlation
effects, while the overestimation of the DFT method is
attributed to the exchange potential defined in hybrid
functionals [17]. In figure 9 we present the UHF- and DFT-
calculated response functions for a 1,10-undecadiene (n = 7)
cation driven by the charge driver shown in figure 4. The UHF
calculation is performed with a 6-31G* basis set and the DFT
calculation with the B3LYP algorithm and 6-31G* basis set.
From figure 9 one can see that the UHF result demonstrates
very strong nonlinearity in the response curve. Even a small
driver polarization induces essentially complete polarization in
the target molecule. In contrast, the DFT result is nearly linear.
The discrepancy between these two methods suggests that a
higher-level treatment—beyond that of a single-determinant
wavefunction—is needed to accurately describe multi-electron
systems like the alkyl-diene cation.

We here employ a multi-determinant method, CASSCF,
to describe this model QCA system. It is believed that

7
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Table 2. Ethylene–ethylene distance and coupling in the diene cation series.

E–(CH2)3–E E–(CH2)5–E E–(CH2)7–E E–(CH2)9–E

LAA (nm) 0.5474 0.8225 1.095 1.357
γ (eV) 0.52 0.1276 0.0351 0.0119
γ LMM (eV nm) 0.285 0.105 0.0384 0.0161
β 0.74 2.01 5.49 13.10

Figure 11. Switching of the 1,8-nonadiene cation. (a) Energy
diagram. (b) Cell–cell response function. The results shown are
obtained from the state average CASSCF method (dots) and the
two-state model (solid line), as well as from the single-determinant
UHF (dotted line) and DFT (dashed line) methods.

the CASSCF method is the most reliable for describing the
charge distribution of a mixed-valence complex [29]. The
alkyl-diene cation is a small enough system that use of the
CASSCF method is practical. Figure 10 shows the calculated
energy diagram and cell–cell response function for the 1,10-
undecadiene cation obtained with a state average CASSCF
method [29]. The active space is composed of all three π
electrons in four π orbitals, referred to as CAS(3, 4). The
advantage of CASSCF is that it calculates both the ground
state and the excited states, and the state average technique
allows mixing those states in solving the secular equation to
determine the adiabatic eigenstates. Since the state average
CASSCF takes into account both ground and excited states,
its results are closer to the exact eigenstates than those of
UHF. Figure 10(b) shows the cell–cell response function. As
the driver’s polarization changes, the target molecule switches
smoothly, although it saturates quickly.

Figure 10 also shows the results calculated from the two-
state model, using equation (9) to obtain the energy diagram
shown in figure 10(a) , and equation (15) to obtain the cell–
cell response function shown in figure 10(b). The ET matrix
element γ for the two-state model is determined by the
energy splitting at P1 = 0 from the CASSCF calculation.
For the alkyl-diene cation, this simple two-state model is in
remarkably good agreement with the high level state average
CASSCF calculation. It must be pointed out that, for this multi-
electron system, the single-determinant UHF method fails to
give the correct response function. The multi-configuration
CASSCF plus state average technique is needed to obtain the
correct switching behavior from an ab initio approach.

For realistic QCA candidate molecules, which may well
include transition metals and other ligands, multi-configuration
calculations become very expensive. The simple two-state
approximation of equations (9) and (15) does a remarkable
job of generating both the energy diagram and response

Figure 12. Switching of the 1,6-heptadiene cation. (a) Energy
diagram. (b) Cell–cell response function. The results shown are
obtained from the state average CASSCF method (dots) and the
two-state model (solid line), as well as from the single-determinant
UHF (dotted line) and DFT (dashed line) methods.

function. The two-state model ignores the details of the
molecular electronic structure but captures (a) the electrostatics
that provide the driving force in QCA switching and (b) the
essential feature of electron transfer through knowledge of
one number—the ET matrix element γ . (The model must
rely on another source for the value of γ , either experimental
or theoretical.) Its success suggests that for these purposes
we can adequately describe electron transfer in mixed-valence
complexes as an electrostatically driven one-electron problem
in which other electrons can be considered frozen in their
orbitals.

As with the previously described molecular hydrogen
cation, as the distance between redox centers in the diene
system diminishes, clear separation of ‘dots’ deteriorates and
QCA switching degrades. We compute the energy diagram
and response function for 1,8-nonadiene (n = 5) cations
and 1,6-heptadiene (n = 3) cations, shown in figures 11
and 12. The properties of these two diene cations with shorter
bridges are similar to those of the 1,10-undecadiene cation
shown in figure 10. As the bridge becomes shorter, the
energy gap increases and molecules gradually lose bistability
and switchability. For each of these diene cations, the
molecular energies and polarization response given by the
simple model equations (9) and (15) are in good agreement
with state average CASSCF calculations, while the UHF
and DFT computations overestimate or underestimate charge
localization, respectively. The ET matrix element γ for the
two-state model is again determined by the energy splitting at
P1 = 0 from the CASSCF calculation.

Structural parameters γ and L for the diene cation series
are computed and listed in table 2. The dot–dot distance L
is taken to be the distance between the centers of the double
bonds. A trend similar to that of the H–H+ system can be
seen as the dot–dot distance increases: the ET matrix element
decays exponentially, resulting in an increase in the slope of

8
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Table 3. Metal–metal distances and ET matrix elements in the Fc–n–Fc series.

Fc–1–Fc Fc–2–Fc Fc–3–Fc Fc–4–Fc Fc–5–Fc

LMM (nm) 0.703 0.921 1.154 1.387 1.629
γ exp(eV)a 0.061 0.053 0.048 0.035 0.028
γ cal (eV) 0.100 0.070 0.050 0.0345 0.024
γ LMM (eV nm)exp 0.0429 0.0488 0.0554 0.0485 0.0456
γ LMM(eV nm)cal 0.0703 0.0645 0.0577 0.0479 0.0391
βexp 4.9 4.3 3.8 4.3 4.6
βcal 3.0 3.3 3.7 4.4 5.4

a Experimental values from [30].

the response function at the origin, β . The rate of decay with
dot–dot distance will be discussed in the following section.

The above analysis of the H–H+ and diene cation
systems of various lengths suggest that the two-state model
may provide a reliable means for correlating the molecular
structure–property relation in complicated mixed-valence
complexes for which more accurate ab initio techniques are
intractable.

3.3. Mixed-valence diferrocenylpolyenes

One class of QCA candidate molecules which has been
explored experimentally is comprised of mixed-valence
diferrocenyl compounds [30], which contain two ferrocenyl
groups (Fc) acting as quantum dots. It is known that Fc
is usually stable when the iron is in the formal oxidation
states of 2+ and 3+, enabling the mobile charge to move
between the two Fc groups, thus providing two stable charge
configurations [31, 32]. Furthermore, it has been possible to
examine the mixed-valence behavior of such compounds as a
function of distance between two interacting Fc groups, as a
function of the nature of the bridge between them, and as a
function of their relative orientations.

Here we investigate the switching behavior of mixed-
valence diferrocenylpolyene compounds when used as a QCA
cell. We are interested in this series of compounds for two
reasons. First, there exists a large body of experimental
data for diferrocenylpolyenes and their derivatives. The
ET matrix elements have been explored with spectroscopic
methods [30, 33, 34]; the metal–metal distance has been
measured with x-ray crystallography [35, 36] and estimated
using a PC model [30]; and the effect of bridge substitution has
been investigated [37]. Second, because of the complexity of
the electronic structure of transition metal complexes, reliable
quantum chemical modeling is difficult. Single-determinant
UHF and DFT methods fail to treat the multi-electron system
as discussed in section 3.2, making it difficult to obtain reliable
results for the more complicated diferrocenylpolyene. The
more reliable, multiple-determinant state average CASSCF
calculation is extremely difficult for this type of compound. In
this situation, the molecular QCA structure–property relation
derived from equation (15) is useful for investigating the
switching behavior of the molecules, and in evaluating the
feasibility of using these molecules as QCA cells.

To understand the structure–property relation of molecules
with the two-state model described above, we need to know
two important structure parameters: the ET matrix element

Chart 2. Mixed-valence diferrocenylpolyenes.

γ and the dot–dot distance L. In the preceding sections we
were able to obtain γ from the energy splitting at zero driver
using a CASSCF calculation. Because for a system of this
size such a calculation is unavailable, we here use Koopmans’
theorem [38] to calculate the matrix element γ . For
intramolecular ET between the Fc cation and the neutral Fc, γ
can be approximated by one-half of the difference in molecular
orbital (MO) energy between the highest occupied molecular
orbital (HOMO) and the second highest occupied molecular
orbital (HOMO-1) of the neutral system. According to the
one-electron Koopmans’ theorem, the ionization potential of
HOMO and HOMO-1 can be expressed as the SCF energies,
i.e.

IHOMO = −εHOMO

IHOMO−1 = −εHOMO−1.
(19)

Therefore, the transition energy from HOMO-1 to HOMO
can be expressed as the MO energy splitting factor, �:

� = 2γ = IHOMO−1 − IHOMO = εHOMO − εHOMO−1. (20)

The above calculation has been performed employing a
DFT B3LYP method and the 6-31G basis set. In the above
discussion we have shown that DFT usually underestimates
charge localization for mixed-valence complexes and thus is
unsuitable for computing the charge distribution of this type of
molecule. However, we are here computing the MO energy,
for which DFT methods have proven reliable, as can been
seen from table 3. This is a single point calculation for the
symmetric nuclear geometry, at which the mobile charge is
intrinsically delocalized between the two redox centers. In
the following discussion, these compounds of general form
Fc(CH=CH)nFc containing two ferrocene units linked by n
conjugated double bonds, as shown in chart 2, will be denoted
Fc–n–Fc.

Table 3 lists the calculated ET matrix element γ

together with experimentally obtained values [30]. Although
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Figure 13. Decay of the ET matrix element (log scale) with distance.

Koopmans’ theorem is a simplified approximation, the
calculated values qualitatively agree with experimental results.
For n = 3, 4, 5, they agree very closely, suggesting that
Koopmans’ theorem could be used to evaluate the ET matrix
element of complicated mixed-valence complexes including
transitional metals, for which direct calculation of molecular
charge configuration is difficult. Table 3 also lists the metal–
metal distance obtained from PC model simulation [30]. With
these two structural factors, we can estimate the molecule’s
switching behavior when used as a QCA cell.

It is well known that the ET matrix element γ decays
exponentially with dot–dot distance [15]. The plot of log(γ )
versus L for H–H+, ethylene–ethylene+ and Fc–Fc+ are given
in figure 13. For all three systems, the plot confirms the
exponential decay of the ET matrix element with distance. The
H–H+ system has the fastest decay, with a slope of 1.6 Å

−1
.

This is expected since the ET between two H atoms is a
through-space transfer. This decay rate is faster than those
of the through-bond transfer of the ethylene–ethylene and Fc–
Fc systems. Compared with alkyl-diene cation compounds,
diferrocenylpolyene has a conjugated double-bond bridge
as opposed to a saturated alkyl bridge. The conjugated
bridge gives the two Fc groups a stronger, less distance-
dependent interaction resulting in a smaller decay rate. For
the diferrocenylpolyene system, the decay slope is 0.15 Å

−1
,

corresponding to a decrease of a factor of 2 for each 4.6 Å.
Compared with the experimental value [30] of 0.113 Å

−1
, the

decay rate predicted from Koopmans’ theorem is satisfactory.
Finally, with the structural factors γ and L, we

calculate the predicted cell–cell response function of Fc–n–
Fc (figure 14). Experiments have not yet been able to probe
this response function directly, due to the challenge of making
nearby single-molecule measurements. Figure 14 shows
the diferrocenylpolyene molecule has a strongly nonlinear
response function when used as a QCA cell. The derivative
of P2 with respect to P1 at the origin, β , is about 4,
which supports signal gain in the information transfer. When
driven by a fully polarized neighboring molecule, the target
molecule demonstrates a maximum polarization above 0.9,

Figure 14. The cell–cell response function of Fc–n–Fc calculated
with equation (15).

(This figure is in colour only in the electronic version)

giving two well-defined localized states capable of encoding
binary information. From figure 14 we also see that, although
the ET matrix decays exponentially with dot–dot distance, the
diferrocenylpolyene series demonstrates very similar response
functions for various bridge lengths, which can also be seen
from table 3. This is due to the fact that the decay exponent α
is very small compared with the decay exponents of the H–H+
and ethylene–ethylene systems so β varies more slowly with
the distance between dots.

4. Conclusion

We have presented a theoretical model to correlate the
molecular QCA structure–property relationship. This
structure–property relationship provides a simple yet reliable
tool to examine the bistability of candidate molecules, which
is a fundamental requirement for QCA cells. Equation (15)
provides a connection between two structural parameters,
the dot–dot distance L and the ET matrix element γ .
Both parameters can be measured by well-established
experimental techniques, and can be obtained via first-principle
computation. In the case of the complicated mixed-valence
complexes, although the accurate state-of-the-art quantum
chemistry methods may be computationally intractable, a
single-point DFT calculation based on Koopmans’ theorem
still provides a reasonably accurate value for γ . Thus the
model developed in this work can be easily applied to various
molecular QCA candidates.

We test this theory on two model molecules. The hydrogen
molecular cation H–H+ is the simplest possible model, having
only one electron. The available quantum chemistry techniques
from the single-determinant UHF (which here is even simpler)
to the sophisticated multi-configuration state average CASSCF
present the exact solutions, and those solutions are in good
agreement with our model. Varying the distance between H
atoms varies the couplings between the two states. For both
weak and strong coupling, our model performs reliably, so long
as it makes sense to distinguish two localized states. For the
more complicated alkyl-diene cation, the single-determinant
UHF and DFT methods overestimate or underestimate the
charge localization, and thus fail to describe the switching
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behavior of the molecule. We compare our model with the
results obtained from the more reliable state average CASSCF
calculation. These studies suggest that our model still produces
reliable solutions for the charge configuration of a multi-
electron system in a field-induced ET process.

Finally, we apply our model to more realistic QCA
candidate molecules, exploring the switching behavior of
mixed-valence diferrocenylpolyenes. Without a reliable
first-principle technique, we estimate the electronic matrix
elements using Koopmans’ theorem and model the molecule’s
switching behaviors as a QCA cell. The mixed-valence
diferrocenylpolyenes show well-defined localization and
nonlinear bistable response. We suggest the approach
developed here can provide a simple and relatively accurate
way of determining the bistability of candidate molecules for
use in QCA.

We have limited our focus here in three respects that
merit highlighting: firstly, though ultimately four- and six-
dot QCA cells will be extremely useful, the basic elements
of QCA switching can be examined with a simple two-dot
cell [6, 11, 13]. The polarization of two-dot molecular
QCA cells can be related straightforwardly to a well-known
property—the molecule’s dipole moment. This can be
measured in bulk samples and computed using quantum
chemistry techniques. For four-dot cells the corresponding
quantity is the quadrupole moment. For complex circuits
and systems requiring power gain a three- or six-dot clocked
cell is important [39, 40]. Here we have focused on the
fundamental properties of bistability and switching that can be
well characterized in the simpler two-dot system.

Secondly, we have not addressed here the several other
requirements that a practical QCA system must exhibit.
These include such things as functionalization for surface
attachment and orientation, isolation of mixed-valence states,
control or elimination of counter-ion effects, input and output
of molecular signals, and implementation of field-driven
clocking. We have focused on the most basic aspects of
encoding and processing binary information in molecular
states—bistability and switching.

Thirdly, the relaxation of nuclear degrees of freedom asso-
ciated with electron transfer has not been considered here. It is
true that studying mixed-valence complexes in solution has led
to considerable attention to this ‘reorganization energy’ which
shifts the electronic states due to the nuclear relaxation. In this
context the Robin Day classification scheme is well known. As
discussed at length elsewhere [6], for QCA the key question is
electronic localization (and bistability) with frozen nuclear po-
sitions. Ligand relaxation complicates matters, to be sure, es-
pecially considering the different timescales involved. But for
anticipated high-speed operation of molecular QCA we need
bistability in the electronic degrees of freedom independent of
nuclear relaxation. The problem of ligand relaxation locking
in a bit will need to be considered in due course.
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