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ABSTRACT

We examine the impact of the intrinsic molecular reorganization energy on switching in two-state quantum-dot cellular automata cells.
Switching a bit involves an electron transferring between charge centers within the molecule. This, in turn, causes the other atoms in the mole-
cule to rearrange their positions in response. We capture this in a model that treats the electron motion quantum-mechanically but the motion
of nuclei semiclassically. This results in a non-linear Hamiltonian for the electron system. Interaction with a thermal environment is included
by solving the Lindblad equation for the time-dependent density matrix. The calculated response of a molecule to the local electric field shows
hysteresis during switching when the sweep direction is reversed. The relaxation of neighboring nuclei increases the localization of the electron,
which provides an intrinsic source of enhanced bistability and single-molecule memory. This comes at the cost of increased power dissipation.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0075144

I. INTRODUCTION

Quantum-dot cellular automata (QCA) is a potential alterna-
tive to traditional complementary metal–oxide semiconductor
(CMOS) transistor logic for nanoelectronics. QCA uses the config-
uration of localized charge to represent binary information.1–9 A
single mobile electron can be localized in a quantum dot, which is
simply a region of space with a surrounding potential barrier that
quantizes the charge enclosed. The arrangement of charge among
multiple dots in a QCA cell encodes information and electron
transfer (ET) between dots through quantum mechanical tunneling
enables switching. The electric field from one cell influences neigh-
boring cells enabling device operation. A two-dot cell captures the
most basic elements of QCA operation. Three-dot or six-dot cells
can support clocked control of the flow of information and allow
power gain by replacing energy lost to dissipative processes through
work done by the clock.

The QCA approach has been implemented in small metallic
dots.10 Logic gates including majority gates,11 digital latches,12 and
shift registers13,14 have been demonstrated. Power gain15 and signal
restoration have also been demonstrated in these systems.

Semiconductor QCA cells have been demonstrated in GaAs16

and silicon17 using dots formed by surface depletion gates. Another
means of forming QCA cells in silicon is using a few implanted

donor atoms to form the dots.18 Molecular-scale QCA operation at
room temperature has been achieved using dots formed by STM
patterning of single dangling bonds on a hydrogen-passivated
silicon surface.19

Achieving QCA operation using single molecules20–22 has
focused attention on the richly-studied field of mixed-valence
chemistry. In these molecules, the role of dots is played by charge
centers, frequently formed by metal atoms surrounded by coordi-
nating ligands. The central metal atom can exist in more than one
charge state and can be reversibly oxidized or reduced without
breaking any chemical bonds. A second charge center within the
molecule is connected through a bridging ligand so an electron can
tunnel between dots. Of interest for QCA operation is the case
when the charge centers are identical. If the bridging ligand pre-
sents a sufficient barrier to tunneling, the mobile charge will local-
ize on one of the dots. The localization can be enhanced by the
relaxation of the other atoms in a molecule in response to the pres-
ence or absence of the charge on one or the other dot.

A simple example of such a mixed-valence molecule is the
diferrocenylacetylene (DFA)23 molecule is shown in Fig. 1. In DFA,
a pair of ferrocenyl groups is connected through a bridging ligand.
The two iron centers act as the two dots where an electron can be
localized.
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The potential advantages of single-molecule devices of this
type are several. The functional density could be enormous because
the footprint of each molecule on the surface is of the order of a
square nanometer. In reality, it would not be practical to separately
address and control each molecule separately, so clocking schemes
and appropriate computational architectures, such as a Kogge
network,24 would be necessary. Another advantage is that the
intrinsic speed of such devices could be very high. Electron transfer
in mixed-valence molecules can occur at picosecond timescales.25

Finally, very low power dissipation may be possible because switch-
ing a bit requires only the motion of a single electron within the
molecule. In contrast to molecular diodes or transistors, no current
flow through the molecule is necessary.

Several candidate molecules for QCA have been synthesized
and characterized. Fehlner et al. have synthesized QCA double-dots
that were then covalently bonded to a semiconductor substrate.26,27

They demonstrated controlled switching of the molecular charge
between dots using external electrodes. The localization of charge
in mixed-valence molecules has been imaged using STM.28–31

Most mixed-valence species are ions. This may present com-
plications due to the presence of neutralizing counterions that
could bias the charge configuration of the QCA molecule. One
strategy is to include an electron donor (or acceptor) at a symmet-
ric position within the molecule. This creates a neutral mixed-
valence zwitterion.32–34 Christie et al. have synthesized such a
molecule, which could form the basis of a clockable three-dot
QCA cell.35

Molecular QCA operation depends fundamentally on electric
field driven ET between two dots within the molecule. We focus
here on a simple model system that captures the essential features
of this operation. Electron transfer in these systems is driven by an
electric field, either produced by neighboring QCA molecules, or
by clocking electrodes, or by input electrodes at the edges of a

circuit array. This is in contrast to the usual situation in mixed-
valence chemistry, where ET is produced by either the random
motion of solvent molecules in solution or by incident light.

Full ab initio quantum chemistry calculations of molecular
states are possible for the static problem in an electric field,7,36–39

but the calculation of time-dependent switching dynamics are too
costly and one must use reduced-state models that capture the rele-
vant physics. The parameters of the simplified system can be taken
from either quantum chemistry calculations or from experiments.

The key parameters for such a mixed-valence double dot
system model are the inter-dot Hamiltonian tunneling matrix
element, here called γ and often called Hab in the chemical litera-
ture; the on-site energy difference due to the applied field, here
called Δ; the Marcus reorganization energy λ that captures the
effect of the nuclear relaxation due to charge occupancy of one or
the other dot; the energy relaxation time Td , which characterizes
the energetic coupling between the molecule and the surrounding
environment; and the environmental thermal energy kBT.

The inter-dot tunneling energy γ determines the intrinsic time
scale for the system and can be varied over 12 orders of magnitude
by adjusting the bridging ligand.25,40 Reference 31 shows the dra-
matic effect on the localization of simply altering the geometry of
the connection between the dots and the bridging cyclopentadiene
ring from the meta to para configuration.

A molecular double-dot can be simply modeled as a double
potential well along the spatial axis connecting the two metal
centers. (Note that this is not the Marcus double well as a function
of the reaction coordinate). The reorganization energy λ lowers the
energy of the occupied well compared to the unoccupied well due
to the relaxation of other atoms, either those in the molecule itself
or in the surrounding environment, as shown schematically in
Fig. 2. The value of λ in solution can be affected by changing the
solvent or by altering the chemical structure of the dot ligands. The
reorganization energy can also be strongly affected by the attach-
ment of the molecule to a surface. If the effective stiffness of the
dot ligands is increased because of the constraint of the surface, the
reorganization energy becomes smaller. (For a given force, a spring
with a larger spring constant will store less energy than one with
a smaller spring constant). A recent examination of the reorganiza-
tion energy of a molecule with two ferrocene redox centers

FIG. 1. Chemical structure of the mixed-valence diferrocenylacetylene (DFA)
molecule. The iron centers in the two ferrocenyl groups act as dots for charge
localization, forming a molecular double-dot. An extra electron present on one
or the other dot encodes binary information. The energy associated with the
relaxation of each ferrocenyl group in response to the presence or absence of
the electron is the reorganization energy.

FIG. 2. Schematic representation of the effect of reorganization energy λ. A
molecular double-dot can be viewed as a double potential well holding one
mobile electron. If the electron is on the left (right) dot, the polarization is +1
(�1). Electron occupation of a dot induces a relaxation of the positions of the
surrounding atoms in response. This relaxation lowers the energy of the occu-
pied dot compared to the unoccupied dot by the reorganization energy λ.
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connected by a naphthalene linker and deposited on a NaCl sub-
strate showed reorganization energy in the few meV range, rather
than the few hundred meV range for ferrocene in solution.41,42 In a
similar way, the strength of the coupling to the thermal environ-
ment, which determines Td is dependent on the details of the
surface attachment.

The reorganization energy λ can be obtained theoretically by
high quality quantum chemistry calculations. The nuclear motion
of all the atoms in the molecule that are coupled to the electron
transfer can be expressed in terms of the normal modes of vibra-
tion. These can then be treated quantum mechanically, though
again this is computationally costly because of the need to account
for the harmonic oscillator degrees of freedom.43,44

We employ a parameterized Hamiltonian to describe the elec-
tron moving between the two charge centers under a driving field.
The electron motion is linearly coupled to the nuclear reorgan-
ization via a single vibrational mode (the antisymmetric breathing
mode). The energy transferred to the nuclear degrees of freedom is
accounted for semiclassically so energy is conserved in the elec-
tron–vibron system. This leads to a nonlinear Hamiltonian for the
electron degrees of freedom. Finally, the interaction with the
thermal environment is included through Lindblad operators. Our
focus is on accounting for the “self-trapping” aspect of the relaxa-
tion of nuclear coordinates associated with ET, the associated hys-
teresis in switching behavior, and the effect on power dissipation.

Low power dissipation for device switching is a key require-
ment for any nanoelectronics. For classical systems, the dissipated
energy exhibits an inverse linear dependence on switching time
(1=Ts). To calculate the energy dissipated for a quantum system, a
first-order approach is to consider an isolated system and calculate
the residual energy that remains in the system at the end of a
switching event. This is the energy that will need to be eventually
dissipated. For quantum switching, there is a remarkable exponen-
tial reduction45 in the residual energy with switching time:
E/ e�aTs . For a rigid molecule, this has been extended to calculate
dynamically the flow of energy between the molecule and the envi-
ronment. For rapid switching, the power dissipation shows the
characteristic quantum exponential decrease as the switching time
is increased. For intermediate switching speeds, there is an inverted
region in which power dissipation actually increases with a slower

switching speed because of excitation from the thermal environ-
ment. At large switching times, the power dissipation follows the
classical 1=Ts dependence.

46

Here, we extend the model to include the effect of atomic
reorganization. Section II describes the mathematical model for the
system and interaction with the environment. Section III shows the
impact of reorganization energy on polarization and switching
dynamics. We solve the switching dynamically using the Lindblad
equation and observe hysteresis in cell polarization when the bias
sweep direction changes. Thus, we demonstrate that a single mixed-
valence molecule can function as a memory element. In Sec. IV, we
calculate the power dissipated by switching a bit. Higher reorgan-
ization energy causes an increase in dissipated power.

II. TWO-STATE MODEL

A two-state quantum-dot system is illustrated schematically in
Fig. 3. It is the simplest QCA element consisting of two dots and a
mobile charge. Charge transport between dots is through quantum-
mechanical tunneling. We use jLi and jRi as the basis states, and
the binary digital data in the two-state QCA is encoded in the
polarization P. When the charge is fully localized on the left dot,
the system is in state jLi and P ¼ 1 representing a binary 0. When
the charge is fully localized on the right dot, the system is in state
jRi and P ¼ �1 representing a binary 1.

Charge is transferred by changing the relative bias between the
two dots. A simple switching operation is shown in Fig. 4. At
t ¼ 0, the charge is localized on the left dot. A time varying bias
Δ(t) is applied to the left dot, and the right dot is held at 0. Δ(t) is
linearly increased from Δinitial to Δ final over switching time Ts.
Midway through the switching event at crossover t ¼ Ts=2, the
energies of the two dots are matched. At the end of the switching
event t ¼ Ts, if the bias Δ is large enough, the charge is almost
entirely localized on the right dot and the electron transfer is com-
plete. Polarization changes continuously from polarization P ¼ 1 at
t ¼ 0 to polarization of P ¼ �1 at t ¼ Ts in this example. We
interpret polarization near 1 as a binary 0 and polarization near �1
as a binary 1.

FIG. 3. Schematic of a two-state quantum-dot system. The black circles repre-
sent the quantum dots, the lines connecting the dots represent the inter-dot tun-
neling paths, and the red circles denote the localized charge. When charge is
localized on the left dot (L), the system is in quantum state jLi and the polariza-
tion P ¼ 1 represents a binary 0. When the charge is localized on the right dot
(R), the system is in quantum state jRi and the polarization P ¼ �1 represents
a binary 1.

FIG. 4. Schematic representation of charge transfer during switching. At t ¼ 0,
the system is in the ground state and charge is localized on left dot L. Bias Δ(t)
is applied to the left dot and is linearly increased from Δinitial to Δ final over the
switching time Ts. Midway through the switching event at crossover t ¼ Ts=2,
the energies of the two dots are matched. At the end of the switching event
t ¼ Ts, charge is localized on the right dot and the electron transfer is
complete.
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The density operator ρ̂ can be written in terms of Pauli opera-
tors as

ρ̂ ¼ 1
2
(̂I þ hσ̂xiσ̂x þ hσ̂yiσ̂y þ hσ̂ziσ̂z), (1)

where

hσ̂ ii ¼ Tr(ρ̂σ̂ i): (2)

The density operator is Hermitian with unit trace and the vector
hσ̂xi, hσ̂yi, hσ̂zi
� �

will lie on or within a unit sphere (commonly
called the Bloch sphere),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhσ̂xij2 þ jhσ̂yij2 þ jhσ̂zij2

q
⩽ 1: (3)

The Hamiltonian operator for the simplified electronic two-state
subsystem is written as

ĤE(t) ¼ �γσ̂x þ Δ(t)
2

(σ̂z þ Î): (4)

The characteristic time scale for dynamics is

Tγ ¼ π�h
γ
: (5)

The natural scales for the problem are to measure energy in
units of γ and time in units of Tγ .

The polarization P is the expectation value of σ̂z ,

P ¼ hσ̂zi ¼ Tr(ρ̂σ̂z): (6)

When the electronic charge occupies a dot, the atoms around
the dot shift their positions in response. This lowers the total energy
for the electron being on that dot. The energy associated with this
relaxation of nuclear positions is the reorganization energy of the
Marcus theory λ.47,48 The relaxation is modeled as the lowering of
the energy of the dot when occupied by the electron (as in Fig. 2).

The Hamiltonian for linear coupling49 between the electron and
the motion of the surrounding ligands can be written in terms of λ:

ĤEL ¼ � λ

2
σ̂zhσ̂zi: (7)

We treat the anti-symmetric oscillating motion of the left and right
dot ligands as a classical harmonic driven by the imbalance between
the electron occupancy between the left and right dots. The
Hamiltonian operator representing this energy stored in the displaced
ligand positions (classically 1

2 kx
2) is written as

ĤL ¼ 1
2
(
λ

2
)hσ̂zi2 Î: (8)

Accounting in this way for energy as it moves back and forth
between the electronic and vibrational degrees of freedom guarantees
conservation of total energy.

The Hamiltonian is the sum of the Hamiltonians of the elec-
tronic subsystem ĤE , the electron-ligand interaction ĤEL, and the
ligand subsystem ĤL:

Ĥ ¼ ĤE þ ĤEL þ ĤL: (9)

Ĥ ¼ �γσ̂x þ Δ

2
(σ̂z þ Î)� λ

2
σ̂zhσ̂zi þ 1

2
(
λ

2
)hσ̂zi2 Î: (10)

The Hamiltonian depends on the electron state through the expec-
tation value hσ̂zi. This non-linearity is fundamentally due to the
fact that the effect of the ligand distortion on the electron system
has been treated semiclassically.

When a system is in equilibrium with an environment at tem-
perature T the steady-state density operator ρ̂ss can be written as

ρ̂ss ¼
e
�Ĥ(ρ̂ss)
kBT

Tr(e
�Ĥ(ρ̂ss )
kBT )

: (11)

The steady-state Hamiltonian Ĥss ¼ Ĥ(ρ̂ss) depends on the steady-
state density operator ρ̂ss through Eq. (10). For given values of γ, Δ
(which may vary in time), λ, and T , Eq. (11) must be solved self-
consistently. We will see that in some circumstances, multiple solu-
tions are possible for the same parameters.

For an isolated system, the time evolution of the density oper-
ator ρ̂ is unitary and can be solved using the quantum Liouville
equation

@ρ̂

@t
¼ 1

i�h
[Ĥ(t), ρ̂]: (12)

An open system interacts with the environment and the time evolu-
tion of the density operator is non-unitary. For Markovian systems,
under reasonable assumptions, the density operator can be solved
using a Lindblad equation50–52

@ρ̂

@t
¼ 1

i�h
[Ĥ(t), ρ̂]þ

X
k

(L̂kρ̂L̂
y
k �

1
2
{L̂ykL̂k, ρ̂})|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D

, (13)

where {Â, B̂} is the anti-commutator of operators Â and B̂. The first
term in Eq. (13) governs the unitary evolution of the density opera-
tor and is identical to Eq. (12). The Lindblad dissipator D models
the system–environment interaction including dissipation and deco-
herence. The L̂k are the Lindblad operators. We model the coupling
of the system to the thermal environment for our two-state system as

L̂1(t) ¼
ffiffiffiffiffi
1
Td

r
[ju1(t)ihu2(t)j] (14)

L̂2(t) ¼
ffiffiffiffiffi
1
Td

r
, [e�

E2(t)�E1(t)
2kBT ju2(t)ihu1(t)j]: (15)

Here, Ĥ(t)juk(t)i ¼ Ek(t)juk(t)i, kB is the Boltzmann constant, and
T is the temperature of the environment (bath). Td is a relaxation

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 131, 044502 (2022); doi: 10.1063/5.0075144 131, 044502-4

© Author(s) 2022

https://aip.scitation.org/journal/jap


time or dissipation time and is a measure of the coupling strength
between the system and the environment. Td is small for a system
coupled strongly with the thermal bath. For an isolated system with
no interaction with the environment, Td ¼ 1 and both L̂1 and L̂2
are zero.

The Lindblad operator L̂1 in Eq. (14) models the decay of
the system from the instantaneous excited state to the instan-
taneous ground state by dissipating energy to the environment.
The Lindblad operator L̂2 in Eq. (15) models the thermal exci-
tation of the system from the ground state to the excited state
by absorbing thermal energy from the environment. The oper-
ators are constructed such that when the potential driver stops
at t ¼ Ts, the density operator will relax with characteristic
time Td to the thermal equilibrium density operator in Eq.
(11).

III. POLARIZATION OF AN OPEN TWO-STATE SYSTEM
DURING SWITCHING

A. Hysteresis in polarization during dynamic switching

We calculate the polarization during a switching operation of
an open two-state system with a Hamiltonian defined in Eq. (10).
We solve the Lindblad equation in Eq. (13) for the density opera-
tor ρ̂(t) as a function of time, and the polarization P is calculated
directly from the density operator using Eq. (6). The system is in
contact with the environment at temperature T , and the coupling
between the system and environment is characterized by the dissi-
pation time Td . Initially at t ¼ 0, the bias is Δmin ¼ �25γ, and the
system is in equilibrium with the environment. The initial dot
occupancy probabilities are determined by the steady-state
density operator from Eq. (11). The bias is linearly increased from
Δmin ¼ �25γ at t ¼ 0 to Δmax ¼ þ25γ over switching time t ¼ Ts,
which we define as a positive sweep. After the positive sweep, the
bias is held at Δmax for a time sufficiently long such that the
system can come to equilibrium with the environment. Then,
the bias is linearly decreased from Δmax back down to Δmin over
the same switching time Ts, which we define as a negative sweep.
We explore the effect of changing the reorganization energy λ,
switching time Ts, dissipation time Td , and environmental tem-
perature T .

Figure 5 shows the effect of the reorganization energy λ for
quasi-adiabatic switching (Ts=Tγ � 1). When there is no reorgan-
ization energy (λ ¼ 0), the polarization of the positive sweep and
the negative sweep overlap. At zero bias (Δ ¼ 0), the polarization is
zero, and, therefore, no binary information is stored in the
two-state system.

When the reorganization energy is introduced, the system
exhibits hysteresis. The polarization is different depending on
the sweep direction. The hysteresis widens with increasing reor-
ganization energy. At t ¼ Ts=2 when the bias is zero (Δ ¼ 0),
the polarization P � 1 or P � �1 depending on the sweep
direction. This means the binary information (“0” bit or “1”
bit) is stored even when the bias is removed. The polarization is
closer to 1 or �1 when the reorganization energy increases
indicating bit storage is easier at higher reorganization energies.
We will discuss this more in Subsection III B. The slope of the
polarization becomes more abrupt due to the effect of the

reorganization energy. The onsite energies of the left dot EL
and right dot ER are defined as.

EL(t) ¼ hLjĤ(t)jLi (16)

ER(t) ¼ hRjĤ(t)jRi: (17)

In Fig. 6, we plot the difference of the onsite energies of the
left and right dots (EL � ER) for the quasi-adiabatic switching cal-
culations shown in Fig. 5. When λ ¼ 0, EL � ER simply matches
the applied bias. The difference linearly increases from Δmin to
Δmax during the positive sweep and linearly decreases from Δmax to
Δmin during the negative sweep.

Now, consider the system with a nonzero reorganization
energy. Initially, when charge is localized on the left dot (P ¼ 1)
the minimum value of EL � ER is Δmin � λ. During the positive
sweep as the bias increases, EL � ER increases at the same rate.
When EL comes closer to ER, the charge transfer begins. Increasing
charge occupation causes relaxation of the nuclei in the right dot
and lowers the energy of right dot. The lowering of energy acceler-
ates the charge transfer, which further lowers the energy of the
right dot. This phenomenon causes switching to be less adiabatic
and more abrupt. This is evident from the steeper slope of EL � ER
in a system with reorganization energy compared to a system with
λ ¼ 0. The polarization curves in Fig. 5 become abrupt with
increasing reorganization energy. At the end of the positive sweep,
the charge is localized on the right dot (P ¼ �1), and EL � ER is

FIG. 5. Hysteresis in polarization and the impact of reorganization energy on an
open system. Increasing reorganization energy λ increases the hysteresis in
polarization and causes switching to be less gradual. With sufficient λ, polariza-
tion is approximately equal to +1 or �1 at zero bias (t ¼ Ts=2) depending on
the bias sweep direction. In this calculation, the bias Δ linearly increases from
�25γ to þ25γ over switching time Ts during the positive sweep and decreases
from þ25γ to �25γ over the same switching time Ts during the negative
sweep. Here, λ=γ ¼ [0, 5, 10], Ts ¼ 1000Tγ , Td ¼ 10Tγ , and kBT ¼ 1γ.
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Δmax þ λ. The same behavior is observed during the negative sweep
but in the opposite direction.

Figure 7 shows the impact of switching time Ts. When the
switching is slow (Ts=Tγ ¼ 1000), and, therefore, quasi-adiabatic
switching, the system follows the instantaneous ground state in
accordance with the adiabatic theorem. The charge switching is
complete and the polarization changes from �1 to 1 and vice
versa. When the switching is rapid (Ts=Tγ is small), the charge
transfer is not complete at end of the sweep (t ¼ Ts), and we
observe charge quantum oscillations between the two dots post-
crossover. The system will return to the ground state a sufficiently
long time after the switching event.

Figure 8 shows the impact of coupling strength between the
system and the environment. When the system is strongly coupled
with the environment (Td is small), any excess energy is immedi-
ately dissipated and the switching is more abrupt. For systems that
are weakly coupled to the environment (Td is large), the system
takes longer to reach the ground state and the complete switching
of the charge takes longer.

Figure 9 shows the impact of environmental temperature.
At higher environmental temperature, the hysteresis decreases
and the switching becomes less abrupt. The system takes longer to
reach the ground state due to thermal excitation from the
environment.

From Figs. 5 and 9, we observe that the width of the hysteresis
is set by the reorganization energy λ and environmental tempera-
ture T . Changing either the switching time Ts or the dissipation
time Td (in Figs. 7 and 8), does not change the hysteresis but only
changes the time taken to reach the steady state.

B. Memory operations on a two-state system with
reorganization energy

The hysteresis observed in Fig. 5 shows that a system with
nonzero reorganization energy can store a bit (“1” or “0”) when the
bias is zero during switching. We now perform a memory opera-
tion where we write and hold a “1” bit and then write and hold a
“0” bit. The waveform of the applied bias is shown in Fig. 10(a),
and the polarization response is shown in Fig. 10(b). We split this
operation into four regions (I–IV) for the ease of explanation.
Consider the polarization response when λ ¼ 5γ.

In the region labeled I, the “1” bit is written. Initially at t ¼ 0,
the applied bias Δ ¼ 0 and the system is in equilibrium. The bias
linearly increases and charge starts transferring. The bias is
increased to Δ ¼ þ25γ by which point the charge is completely
localized on the right dot with polarization P ¼ �1. The system
now represents a binary “1.” The bias is then held constant for
some time so the system can settle to a equilibrium. The bias is
now linearly decreased from Δ ¼ þ25γ to Δ ¼ 0. In the system
with significant reorganization energy (λ ¼ 5γ), the charge does
not transfer back and the polarization continues to be approxi-
mately �1. The binary information written into the system is
locked. The bit is stored even when the bias is removed because the
nuclear relaxation has localized the charge on the right dot.

In region labeled II, the bias is removed for a time duration of
10Td . The polarization for λ ¼ 5γ does not change significantly,
and the binary information is not lost. The polarization continues
to be approximately �1.

FIG. 6. Difference in onsite energy of dots EL � ER for the switching operation
shown in Fig. 5. With no reorganization energy λ ¼ 0, EL � ER matches the
applied bias Δ. With a non-zero reorganization energy, the change in EL � ER
is faster (steeper slope) compared to the change in the applied bias. This
causes the switching to be more abrupt and therefore less adiabatic.

FIG. 7. Hysteresis in polarization and the impact of switching time for an open
system. For quasi-adiabatic switching (large Ts=Tγ ), charge transfer is smooth
and complete. Switching too rapidly causes quantum oscillations and incomplete
charge transfer. The system may be left in the excited state at the end of the
switching event. In this calculation, the bias Δ linearly increases from �25γ to
þ25γ over switching time Ts during the positive sweep and decreases from
þ25γ to �25γ over the same switching time Ts during the negative sweep.
Here, Ts=Tγ ¼ [10, 100, 1000], λ ¼ 10γ, Td ¼ 10Tγ , and kBT ¼ 1γ.
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In the region labeled III, we write and hold a “0” bit, and,
therefore, the applied bias is of opposite sign of the waveform in
region I. The bias is decreased from Δ ¼ 0 to Δ ¼ �25γ, which
causes the charge to localize on the left dot (P ¼ 1), and the system
now represents a binary “0.” When the bias is increased from �25γ
to back to 0, the polarization does not change significantly for
λ ¼ 5γ. The polarization continues to be approximately equal to 1.

In the region labeled IV, the bias is held at 0 for a time dura-
tion of 10Td similar to region II. When λ ¼ 5γ, the polarization
continues to be approximately equal to 1 and the 0 bit is stored.

Figure 10 also shows the impact of reorganization energy.
When λ ¼ 0, there is no nuclear relaxation and the polarization is
zero (bit not stored) in the absence of any applied bias. It is easier
to hold binary information when the system has higher reorganiza-
tion energy.

C. Multiple steady-state configurations

In Sec. III A, we calculated the polarization of a switching
system dynamically using the Lindblad equation. We observed dif-
ferent values of polarization for the same value of applied bias.
This means the system can be in more than one stable states. We
now calculate the steady-state solutions of the system using Eq. (11)
to determine under what circumstances the system will support a
single or multiple equilibrium solutions.

We calculate the steady-state density operator ρ̂ss at a given
bias by self-consistently solving Eq. (11) using the constraint in
Eq. (3). Without the loss of generality, we can set hσ̂yi ¼ 0. To solve

FIG. 8. Hysteresis in the polarization and the impact of coupling strength to the
environment for an open system. Systems coupled strongly to the environment
(small Td ) reach the steady state quickly. Weakly coupled systems (large Td )
take longer to reach the steady state. In this calculation, the bias Δ linearly
increases from �25γ to þ25γ over switching time Ts during the positive sweep
and decreases from þ25γ to �25γ over the same switching time Ts during the
negative sweep. Here, Td=Tγ ¼ [0:1, 10, 100], Ts ¼ 1000Tγ , λ ¼ 10γ and
kBT ¼ 1γ.

FIG. 9. Hysteresis in polarization and the impact of environmental temperature
for an open system. Increasing temperature causes switching to be smoother
and decreases hysteresis. In this calculation, the bias Δ linearly increases from
�25γ to þ25γ over switching time Ts during the positive sweep and decreases
from þ25γ to �25γ over the same switching time Ts during the negative
sweep. Here, kBT=γ ¼ [1, 2, 5], Ts ¼ 1000Tγ , Td=Tγ ¼ 10, and λ ¼ 10γ.

FIG. 10. Writing and holding 1 and 0 bits for different reorganization energy λ.
In a system with sufficient reorganization energy, the polarization does not
change significantly when the bias is removed. The system continues to store
the bit (1 or 0) that is written. When λ ¼ 0, the polarization becomes zero
when the bias is removed and the bit is not stored. Here, λ=γ ¼ [0, 5, 10],
Ts ¼ 1000Tγ , Td ¼ 10Tγ , and kBT ¼ 1γ.
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Eq. (11) iteratively, we start with an initial guess for the density oper-
ator and evaluate the RHS of Eq. (11) to obtain a value for ρ̂ss. This
value is then substituted back into (11) and another iteration is
obtained. These iterations continue until we obtain a converged solu-
tion for the density operator that satisfies Eq. (11). We then calculate
the polarization from the steady-state density operator using Eq. (6).

We calculate the steady-state density operators for different
values of bias Δ. Figures 11(a)–11(c) shows the results for bias
Δ ¼ 10γ, 2γ, 0, respectively. Here, we take reorganization energy
λ ¼ 5γ and environmental temperature kBT ¼ 0:25γ. The initial
guess for the density operator is randomly chosen to lie on or within
the unit circle defined by hσ̂xi and hσ̂zi. We then solve Eq. (11) iter-
atively to obtain a converged steady-state solution for density

operator and hσ̂xi and hσ̂zi. We perform this calculation for 100
random initial guesses for each bias condition by solving Eq. (11) for
each of the initial guesses. In Figs. 11(a)–11(c), the random initial
guesses are shown using open circles and the converged solutions for
each of these initial guesses are shown using filled circles.

Figure 11(a) shows the results when the applied bias is large
(Δ ¼ 10γ). After solving Eq. (11), all the initial random states yield
a single solution for ρ̂ss with a polarization σ̂z ¼ �0:99 and the
charge is localized on the right dot.

Figure 11(b) shows the results when the bias is lowered to
Δ ¼ 2γ. All the initial random states converge to two possible solu-
tions with polarization σ̂z ¼ �0:96 and 0:73. The two polarization
solutions are of opposite signs but not symmetric across zero. At a

FIG. 11. Multiple equilibrium solutions of the density matrix for different applied biases. Solutions for the steady-state density operator ρ̂ss are obtained by randomly choos-
ing an initial state and solving Eq. (11) self-consistently for λ ¼ 5γ and kBT ¼ 0:25γ. In (a)–(c), the initial guesses are shown using open circle markers and steady-state
solutions are show using filled circles. Steady-state solutions are calculated for three different bias values: (a) Δ ¼ 10γ. All initial guesses converge to a single steady-state
solution. (b) Δ ¼ 2γ. There are two steady-state solutions, and the system is bistable. (c) Δ ¼ 0. There are three steady-state solutions which are labeled A, B, and C. (d)
Steady-state polarization as a function of the applied bias. For small bias values, there are multiple steady-state solutions. (e) Expectation value of energy hEi for the
three solutions A, B, and C at Δ ¼ 0 shown in (c) and (d). hEi for solutions A and B is lower than hEi for solution C. The result is that solution C is not visited during
dynamic switching.
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low applied bias, the system is bistable. For these steady-state solu-
tions, the majority of the charge can be localized on either dot.

Figure 11(c) shows the results when Δ ¼ 0. There are three
possible steady-state solutions (labeled A, B, and C). Solutions A
and B with hσ̂zi ¼ �0:92 and hσ̂zi ¼ þ0:92 have the charge local-
ized on the right or left dot, respectively. Solution C with hσ̂zi ¼ 0
has the charge equally distributed between the dots. At a bias value
close to 0, there can be three steady-state solutions.

Figure 11(d) shows the steady-state polarization as a function
of bias Δ. Multi-state equilibrium solutions are observed when the
bias is comparable to λþ kBT . The polarization curve exhibits hys-
teresis. There are solutions near the origin (example solution C)
that are not observed in the hysteresis behavior during dynamic
switching calculations in Fig. 5. To understand why, we calculate
the expectation value of energy for solutions A, B, and C.

In Fig. 11(e), we calculate the expectation value of energy hEi
for the three solutions A, B, C at Δ ¼ 0. hEi for the two symmetric
solutions A and B are equal and hEi ¼ �1:45γ. For solution C,
hσ̂zi ¼ 0 and the expected value of energy hEi ¼ �0:99γ. Solution
C is not a stable state due to higher hEi compared to solutions A
and B. Solution C will not be visited during dynamic switching.
The system will select either solution A or B depending on the
sweep direction.

IV. ENERGY DISSIPATION DUE TO SWITCHING

A. Isolated system

We can first calculate the energy dissipated by considering an
isolated system, uncoupled from the environment, and then calcu-
late the excess energy Eexcess left in the system at the end of the
switching event (t ¼ Ts). We know that for an open system this is
the energy that will be eventually dissipated. What this approach
ignores is dissipation, or thermal excitation, that occurs to the envi-
ronment during the switching process. For all calculations reported
in this section, Δ is linearly increased �25γ to þ25γ over switching
time Ts. This is sufficient to strongly localize the charge both
before and after switching.

Consider the switching event described in Fig. 4. We define
the excess energy of the system Eexcess as the difference between the
expectation value of the energy hEi and the ground state energy E1
when the potential driver has stopped changing at t ¼ Ts,

Eexcess ; hEi(Ts)� E1(Ts): (18)

The dimensionless adiabaticity parameter β captures the effect
of the parameters that impact the adiabaticity of the switching

β ;
2πγ2Ts

�hjΔ final � Δinitialj : (19)

For an isolated system with no reorganization energy λ ¼ 0, the
excess energy Eexcess decreases exponentially with β,

Eexcess � Δ finale
�β: (20)

There is no fundamental lower limit to Eexcess as it can be decreased
to any arbitrary low value by increasing the switching adiabaticity β.

The adiabaticity β can be made larger by switching more slowly
(larger Ts), or using a smaller potential driver (smaller Δ), or by
increasing γ.

The excess energy Eexcess left in the system at the end of the
switching event is calculated using Eq. (18) for different reorganiza-
tion energies λ and plotted as a function of switching time Ts in
Fig. 12. In the absence of reorganization energy λ ¼ 0, Eexcess
decreases exponentially with increasing Ts (and therefore β) as
shown in Eq. (20). This result has been discussed previously.45 The
excess energy increases with the introduction of a nonzero reorgan-
ization energy λ. The reorganization energy causes the switching to
be less adiabatic (see explanation for Fig. 6 in Sec. III A). For the
same switching speed, a system with higher reorganization energy
has higher excess energy.

B. System in contact with a thermal environment

We now calculate Ediss, the total energy dissipated for a system
in contact with a thermal environment due to a switching event.
We first calculate the energy dissipated Eswitch during switching
from t ¼ 0 to t ¼ Ts. We do this by calculating the power flow and
then integrating it over t ¼ 0 to t ¼ Ts.

The total power flow Ptotal into the system is the derivative of
expected energy of the system

Ptotal ¼ @hEi
@t

¼ @

@t
Tr(ρ̂Ĥ) ¼ Tr

@

@t
ρ̂Ĥ

� �
, (21)

Ptotal ¼ Tr
@ρ̂

@t
Ĥ þ ρ̂

@Ĥ
@t

� �
: (22)

FIG. 12. Excess energy Eexcess at the end of a switching event for an isolated
system as a function of the switching time Ts for different values of the reorgan-
ization energy λ. The inset is the same data with the horizontal axis plotted on
a linear scale. Eexcess decreases exponentially with Ts when λ ¼ 0. Increasing
λ causes switching to be somewhat less adiabatic and increases Eexcess.
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Using the Lindblad equation in Eq. (13), we can write

Ptotal ¼ Tr (
1
i�h
[Ĥ, ρ̂]þD)Ĥ þ ρ̂

@Ĥ
@t

� �
, (23)

Ptotal ¼ 1
i�h
Tr [Ĥ, ρ̂]Ĥ
� �þ Tr DĤ

� �þ Tr ρ̂
@Ĥ
@t

� �
: (24)

The first term vanishes because of the cyclic property of the trace,
and Eq. (24) reduces to

Ptotal ¼ Tr(DĤ)þ Tr ρ̂
@Ĥ
@t

� �
: (25)

By expanding the second term in the above equation using Eq. (9),
we obtain

Ptotal ¼ Tr(DĤ)|fflfflfflffl{zfflfflfflffl}
P1

þTr ρ̂
@ĤE

@t

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

P2

þTr ρ̂
@ĤEL

@t

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

P3

þTr ρ̂
@ĤL

@t

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

P4

:

(26)

By substituting Eq. (7) in the third term in Eq. (26), we get

P3 ¼ Tr ρ̂
@ĤEL

@t

� �
¼ � λ

2
Tr ρ̂σ̂z

@hσ̂zi
@t

� �
: (27)

So,

P3 ¼ � λ

2
@hσ̂zi
@t

hσ̂zi: (28)

Similarly, using Eq. (8), we obtain

P4 ¼ λ

2
hσ̂zi @hσ̂zi

@t
: (29)

The third term P3 and fourth term P4 in Eq. (26) cancel each
other and, therefore, the total power flow into the system reduces
to

Ptotal ¼ Tr DĤ
� �

|fflfflfflffl{zfflfflfflffl}
P1

þTr ρ̂
@ĤE

@t

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

P2

: (30)

We identify the second term P2 in Eq. (30) as the power
flowing into the system due to work done by the time-varying
control electrodes during switching,

Pwork ¼ Tr ρ̂
@ĤE

@t

� �
: (31)

We identify the first term P1 in Eq. (30) as the instantaneous
power flow into the system from the environment. The power
flowing from the system into the environment is obtained by

simply changing the sign

Pswitch ¼ �Tr DĤ
� �

: (32)

The total energy dissipated during the switching event Eswitch
is the integral of instantaneous power dissipated Pswitch during
entire switching event from t ¼ 0 to Ts,

Eswitch ¼
ðTs

0
Pswitch(t)dt ¼ �

ðTs

0
Tr(DĤ)dt: (33)

We now consider the residual excess energy Eexcess left in the
system when the potential driver stops at t ¼ Ts. This residual
excess energy will be dissipated after some time t . Ts. We define
Eexcess as the difference between the non-equilibrium expectation
value of the energy and the steady-state expectation value at the
end of the switching event,

Eexcess ¼ hEi(Ts)� hEssi(Ts), (34)

where

hEi(Ts) ¼ Tr(ρ̂(Ts)Ĥ(Ts)), (35)

hEssi(Ts) ¼ Tr(ρ̂ss(Ts)Ĥss(Ts)): (36)

The steady-state values of ρ̂ss and Ĥss are obtained by solving
Eq. (11) self-consistently. The total energy dissipated Ediss is the
sum of the energy dissipated during switching Eswitch and excess
energy Eexcess left at the end of switching event, which is eventually
dissipated to the environment,

Ediss ¼ Eswitch þ Eexcess: (37)

Substituting Eqs. (33), (34), (35), and (36) in the above equa-
tion, we obtain

Ediss ¼ �
ðTs

0
Tr(DĤ)dt

þ Tr(ρ̂(Ts)Ĥ(Ts)� ρ̂ss(Ts)Ĥss(Ts)):

(38)

For an open system, we solve for the density operator ρ̂ using
the Lindblad equation in Eq. (13). We then calculate the total dissi-
pated energy Ediss using Eq. (38). Ediss is calculated as a function of
switching time Ts for different reorganization energies λ. We first
focus on the λ ¼ 0 case shown in Fig. 13, which is our previously
reported result.46 The Ediss vs Ts behavior can be broken into three
regimes.

First, the exponentially adiabatic regime at rapid switching
(low Ts), which is labeled I. When the switching is rapid, there
is significant excess energy Eexcess left in the system at the end
of the switching event and the amount of energy dissipated
during switching Eswitch is negligible. The total dissipated energy
Ediss � Eexcess and decreases exponentially with switching time
as shown in Eq. (20).
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Second, the inverted regime at intermediate switching speeds is
labeled II. In this regime, we observe that the total dissipated Ediss
increases as the switching speed decreases. It is surprising that slower
switching produces higher dissipation. At these intermediate switch-
ing speeds, Eexcess is negligible due to its exponential dependence on
Ts. The total dissipated energy is approximately the energy dissipated
during switching Ediss � Eswitch. When the switching time is much
faster than the dissipation time constant Td , Ediss is small because the
switching is complete before any thermal excitation from the environ-
ment can occur. As the switching speed slows down, thermal fluctua-
tions from the environment cause excitations above the ground state.
In this regime, the system is moving slowly enough for the excitations
to occur but not slowly enough for them to immediately de-excite
and permit the system to closely track the equilibrium occupations.
The result is that slowing the switching speed counter-intuitively
causes Ediss to increase. We have shown that the inverted region does
not occur when environmental temperature is zero. The peak of the
inverted region occurs at a switching time Ts � 2Td . This inverted
dependence has been confirmed using a semiclassical treatment.46

Third, the classical regime is labeled III at slow switching
speeds (large Ts). Here, the total dissipated energy Ediss decreases
linearly with Ts matching a classical system. At slow switching, the
system is close to equilibrium with the environment and any
thermal excitation or de-excitation occurs rapidly. But, the system
is slightly excited and this energy decreases linearly with increasing
switching time. The dotted line in Fig. 13 showing the 1=Ts depen-
dence has been added as a visual guide.

The impact of reorganization energy is shown in Fig. 14.
When the reorganization energy is small (λ=γ & 1), we observe
exponential dependence at rapid switching (small Ts ). But, the rate
of Ediss decrease is slower. At rapid switching, the dissipated energy
is approximately equal to the excess energy left at the end of
switching event Ediss � Eexcess. This excess energy increases with
increasing reorganization energy as shown in Fig. 12. As switching
slows down, Ediss matches the system with no reorganization energy
(λ ¼ 0) and we observe the inverted region and the classical
dependence.

At intermediate reorganization energies (1 & λ=γ & 3), the
dissipated energy increases in the exponentially adiabatic region. At
slower switching, Ediss meets the inverted dependence at λ ¼ 0. The
inverted region gets less pronounced with increasing reorganization
energy.

At large reorganization energies (λ=γ * 3), the dissipated
energy is very high at rapid switching. At slower switching, the
inverted region completely vanishes and the dissipated energy
follows the classical 1=Ts dependence.

Figures 15 and 16 show the impact of environmental coupling
when reorganization energy λ ¼ 1γ and λ ¼ 6γ, respectively.
Td=Tγ is varied by four orders of magnitude from 10�1 to 103 at
environmental temperature kBT ¼ 3γ. The dotted line shows the
1=Ts dependence of a classical system. When the system is very
strongly coupled to the environment (Td is small), any excess
energy generated during switching is immediately dissipated and
the system acts classically. The system does not exhibit the

FIG. 13. Total dissipated energy Ediss of an open system as a function of
switching time Ts with no reorganization energy (λ ¼ 0). For rapid switching
(small Ts ) in the regime labeled I, Ediss exhibits exponential adiabaticity. For
intermediate values of Ts in the regime labeled II, we observe the inverted
region where Ediss actually increases as switching slows down. For large Ts in
regime labeled III, Ediss follows the classical 1=Ts dependence. Here, the bias Δ
is varied from �25γ to þ25γ over Ts, Td ¼ 100Tγ , and kT ¼ 3γ. The dotted
line simply indicates the slope of 1=Ts dependence on switching time that is
characteristic of a classical system.

FIG. 14. Total dissipated energy Ediss of an open system as a function of
switching time Ts for different reorganization energies λ. The λ ¼ 0 calculation
is the same as shown in Fig. 13. For small values of λ, Ediss is higher in the
exponential adiabatic regime. Ediss is similar to Ediss for λ ¼ 0 in the inverted
and classical regimes. For larger values of λ, Ediss is increased in the exponen-
tial adiabatic region compared with the λ ¼ 0 case and the inverted region van-
ishes. At higher Ts, Ediss shows a classical dependence on Ts. Here, the bias Δ
is varied from �25γ to þ25γ over Ts, Td ¼ 100Tγ , and kT ¼ 3γ . The dotted
line is the 1=Ts dependence of a classical system.
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characteristic quantum adiabatic exponential decrease even at fast
switching, which is evident in the Td=Tγ ¼ 0:1 case that shows
Ediss linearly decreasing with Ts. For small reorganization energy,
λ ¼ 1γ as the coupling becomes weaker, Ediss follows the

exponential decrease of the isolated system at lower Ts, but eventu-
ally, as Ts increases, the interaction moves dissipation into the clas-
sical viscous regime. The inverted region between the two regimes
is readily apparent. For larger reorganization energy λ ¼ 6γ, Ediss
decreases linearly with Ts and increases as environmental coupling
weakens.

Figure 17 shows the results for different environmental tem-
peratures with Td ¼ 100Tγ . We observe that when switching is
rapid, Ediss matches the excess the energy of an isolated system.
When the temperature is low there is no significant thermal excita-
tion from the environment and Ediss decreases monotonically with
Ts. As the temperature increases, Ediss starts exhibiting the inverted
regime at larger switching times.

V. DISCUSSION

Molecular relaxation and subsequent lowering of dot energy
upon charge occupation have been reported in candidate QCA
molecules. We have here examined the impact of this molecular
reorganization energy on the localization and energy dissipation of
a two-state QCA cell.

The Hamiltonian of a QCA cell with reorganization energy,
Eq. (10), is non-linear due to the effect of ligand distortion. The
steady-state Hamiltonian depends on the steady-state density oper-
ator, and small applied biases can have multiple solutions for the
same parameters, as seen in Fig. 11. We solved for the switching
dynamics using the Lindblad Eq. (13) to model the environmental
interaction at finite temperatures. Molecular QCA cells with
non-zero reorganization energy display hysteresis in the polariza-
tion response, as shown in Fig. 9.

FIG. 15. Total dissipated energy Ediss of an open system as a function of
switching time Ts for different values of the dissipation time constant Td when
the reorganization energy λ is small. Here, the bias Δ is varied from �25γ to
þ25γ over Ts, λ ¼ 1γ ., and kT ¼ 3γ. The dotted line is the 1=Ts dependence
of a classical system.

FIG. 16. Total dissipated energy Ediss of an open system as a function of
switching time Ts for different values of the dissipation time constant Td when
the reorganization energy λ is large. Here, the bias Δ is varied from �25γ to
þ25γ over Ts, λ ¼ 6γ ., and kT ¼ 3γ. The dotted line is the 1=Ts dependence
of a classical system.

FIG. 17. Total dissipated energy Ediss of an open system as a function of
switching time Ts for different values of the environmental temperature T . Ediss
increases as T is increased. The inverted region becomes more pronounced
with increasing T. Here, the bias Δ is varied from �25γ to þ25γ over Ts,
λ ¼ 2γ, and Td ¼ 100Tγ .
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A stored memory bit must necessarily be in a long-lived meta-
stable state that depends on the system’s past. Because molecules
cannot be addressed individually, the usual QCA approach is to
hold binary information not in a single cell but rather in moving
bit packets comprising several cells that are shepherded smoothly
around a circuit by the clocking fields.22,53 The device feature size
can be much smaller than the electrodes that provide the clocking
field which move information in computational waves around the
circuit architecture.24,54 The stability of the bit is then due to the
large kinetic barrier to flipping all the cells in a bit packet, a stabil-
ity which is enhanced by the quantum decoherence caused by the
environment.55

The reorganization energy λ stabilizes the localized charge
when the bias is removed, allowing a single molecular two-state
QCA cell to act as a memory cell for storing a single bit. The
molecular reorganization energy provides another source of bit
stability, namely, the kinetic barrier associated with rearranging the
atoms within the molecule in addition to moving the electron from
site to site. The reorganization energy can be larger or smaller than
kBT , depending on the details of the molecule and its connection
to the surrounding environment.

The enhanced bit stability due to the intrinsic molecular reor-
ganization energy comes at the expense of somewhat higher power
dissipation for a switching operation. As we have seen in Fig. 6, the
movement of the dot ligands in response to the electron transfer
accelerates the electron transfer process, in a way reminiscent of
feedback. The result is lower adiabaticity and more energy dissipa-
tion for the same switching speed. It is to be noted that this effect
is more pronounced at slower switching speeds than at higher
speeds. If the switching speed is faster than the speed at which the
ligands can respond, then the reorganization is irrelevant. For small
reorganization energies, we observe three distinct regimes in dissi-
pated energy dependence on switching time: an exponential adia-
batic (e�aTs ) regime, an inverted regime in which dissipation
increases with slower switching, and a classical 1=Ts dependence
for very slow switching. For large reorganization energy, the power
dissipation is primarily classical.

From a practical molecular QCA design perspective, one has
several key parameters to consider. The tunneling energy γ and,
therefore, Tγ is determined by the choice of the linker between the
charge centers. The coupling strength to the environment Td

depends on the precise way the molecule is bonded to substrate—
essentially, the amount of heat-sinking. The switching signal Ec
applied through electrodes and switching time Ts can be modified
through the external driver circuitry. A mixed-valence molecule in
a polar solvent typically has a large reorganization energy because
many surrounding molecules must move to respond to an electron
transfer event. For a surface-bound molecule not in solution, this
energy can be much less. We have explored a range of λ in our
calculations.

The results show a trade-off between enhanced QCA cell
bi-stability and energy dissipation. One might expect that strong
coupling to the environment, i.e., strong heat sinking (low Td),
would be optimal, but our results show otherwise. Systems with
modest coupling to the substrate can take advantage of exponential
adiabaticity at fast switching speeds (small Ts ) and, therefore, opti-
mize net power dissipation.
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