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Several practical issues in the development and operation of quantum-dot cellular automata
(QCA) cells and systems are discussed. The need for adiabatic clocking of QCA systems
and modeling of electrostatic confinement of quantum dots are presented. Experimental data
on dot coupling and applications to QCA detectors in a 2-dimensional electron gas (2DEG)
are presented. We report a charge detection scheme where we observe strong modulation
in the detector signal, in addition to the detector exhibiting minimal effect on the dot being
measured. With this investigation, we demonstrate these two key components required for
QCA in AlGaAs/GaAs materials, namely dot coupling and charge-state detection.
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1. Introduction

Quantum cellular automata (QCA) has been proposed [1, 2] as a new technique for performing computation
through the use of quantum dots. The basic principle is shown schematically in Fig. 1A. A QCA cell consists
of quantum dots arranged such that, e.g. four sites may be occupied by two electrons with semitransparent
barriers connecting the dots in some configuration so that, through tunneling, electrons may arrange themselves
in their energetically lowest positions. As shown in the figure, the lowest energy state of the electrons places
them at corners of the cells aligned along either diagonal, the polarization of which can correspond to either
a logic ‘1’ or ‘0’.

Two cells may be placed adjacent to each other such that they interact only Coulombically, with no
tunneling between cells allowed, as shown in the inset of Fig. 1B. The polarization of a cell due to that
of its neighbors is very high, such that slight polarization of one cell strongly forces the polarization of
its neighbors. Systems designed by Lentet al. [3] and Fountain [4] demonstrate that extremely complex
digital logic systems can be built up from basic building blocks consisting of ‘wires’ (chains of cells),
invertors, AND gates, OR gates, and majority logic cells. For example, a full adder circuit with a dot size
of 10 nm would fit inside an area of about 1 square micron [3]. It is important to note that the design of
‘crossover’ configurations allows the entire system to exist in a plane, with no out-of-plane interconnects
required.

2. Switching behavior of QCA systems

QCA arrays may be switched abruptly, in which case the system is placed in an excited state by the rapid
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Fig. 1. Quantum-dot cellular automata. A, Schematic of the basic four-site cell. Coulombic repulsion causes the electrons to occupy
antipodal sites within the cell. Each configuration can be assigned a digital logic value. B, The cell–cell response. The polarization of
cell 2 is fixed and its Coulombic effect on that of cell 1 is measured. The nonlinearity and bistable saturation of this response serves the
same role as gain in a conventional digital circuit.

change of a driver cell, and decays through inelastic processes to its ground state. The resulting configuration
of the cells is the outcome of a single calculation. It is also possible to switch QCA devices in such a way that
the array remains in its instantaneous ground state at all times. The adiabatic theorem guarantees that this is
possible if the switching time is slow compared to the time associated with transitions to the first excited state
of the array. As shown in Fig. 2, the first step in adiabatic switching is to lower the intra-dot barriers within
each cell, reducing the electron localization imposed by high barriers. Barriers between cells remain high.
The driver cell polarization is then switched adiabatically, followed by adiabatically re-asserting the barriers,
which returns the localization of the electrons and the polarization of the cell.

A study of the allowable speed of such switching has shown that the non-adiabatic error, which is due to
switching the devices too quickly to be strictly adiabatic, decreases exponentially with the time during which
the devices are switched. This exponential decrease is shown in Fig. 3 for a simple one-cell majority logic gate
and a larger five-cell extended majority logic gate. In spite of the fact that the five-cell device requires more
time than the single-cell device to switch with the same level of accuracy, both errors decrease exponentially
with switching time. Preliminary results on the scaling of switching time with the number of cells in an array
have shown switching time increases, at worst, in an approximately linear relationship with the number of
cells in an array. Adiabatic switching has the significant advantage that it provides a means of maintaining
clocked control over the calculation and eliminates dependence on inelastic processes in accomplishing device
switching.

3. Basic elements of QCA systems

The notion that controlled use of single electrons has progressed beyond basic physics is evident from
proposals of, for example, circuits and systems based on single electron tunneling [5–7]. Interest in these
systems is focusing less on the study of basic physical phenomena, and increasingly on how to assemble
building blocks in the design of more complex systems for the attainment of truly revolutionary applications.
It is relevant, then, to discuss what are the important building blocks for the creation of QCAs.

The basic elements of QCA require (1) that the appropriate number of (extra) electrons be induced in each
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Fig. 2. A schematic representation of the adiabatic switching of an array of QCA cells. The intra-dot barriers are adiabatically lowered,
decreasing the localization of the electrons within each cell. The old input is removed, and a new input is applied, followed by a
re-application of the intra-dot barriers. This causes the cells to exhibit the ground state corresponding to the new input.
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Fig. 3. The non-adiabatic error introduced by switching a QCA array can be measured by the total projection of the cell state on all
non-ground state basis vectors after switching is complete. This non-adiabatic error decreases exponentially with the amount of time
allowed for switching the device. This figure shows the exponential decrease for two systems—a simple one-cell majority logic gate and
a more complicated five-cell extended majority logic gate.

cell, (2) that dots be sufficiently close to allow inter-dot tunneling, (3) that adjacent cells be close enough
to permit Coulomb coupling, and (4) that the cell polarization state be detected. Although one can envisage
QCA behavior in such varied systems as metal tunnel junctions [8, 9], Si inversion layers, self-assembled
quantum dots [10], nanomagnet arrays, vertical quantum dots, or even arrays of individual molecules, we
have chosen to do our initial studies in the well-characterized AlGaAs/GaAs system, which currently offers
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a large array of useful building blocks. Demonstrations of Coulomb blockade and single electron tunneling
through quantum dots for charge entrapment, single electron transistors for control of dot occupancy, and
single-electron electrometers [11–13] for charge detection are all available to the design engineers of future
single-electronic applications.

4. Modeling for QCAs

For the calculations discussed so far, modeling behavior of arrays of quantum-dot cells, it is appropriate to
use an extended Hubbard-type Hamiltonian and describe the individual dots simply as sites. We now turn to
the issue of designing the optimal gate patterns to realize these cells in semiconductor systems. For that, one
must employ realistic models of the detailed semiconductor-gate geometry.

In order to design optimal cells, it is important that potential profiles and electron density be calculated
through the accurate solution of Poisson’s equation. To this end, we have performed numerical simulations
for the design of quantum dot structures in the few-electron regime, both in the GaAs/AlGaAs and Si/SiO2

material systems. The confining potential is obtained from the Poisson equation within a Thomas–Fermi
charge model. The electronic states in the quantum dot are then obtained from solutions of the axisym-
metric Schr¨odinger equation. Our model takes into account the effect of surface states by viewing the
exposed surface as the interface between the semiconductor and air (or vacuum). This is particularly im-
portant for modeling the III-V material system, where surface states have to be taken into account. We
explore various gate configurations and biasing modes. Our simulations show that the number of elec-
trons can be effectively controlled in the few-electron regime with combined enhancement and depletion
gates.

The goal of this modeling is to numerically investigate the feasibility of realizing gate-controlled quantum
dots in the few-electron regime for QCA applications. In order to achieve a crisp confining potential, mini-
mization of the effects of fringing fields will be focused on, by bringing the electrons as close as possible to
the top surface. This design strategy of ‘trading mobility versus gate control’ by utilizing near-surface 2DEGs
has been pioneered by Snider, Hu and co-workers [14, 15]. However, the resultant proximity of the quantum
dot to the surface raises the question of the effect of the exposed surface on the quantum confinement. In
our modeling, we explicitly include the influence of surface states which are occupied, in a self-consistent
fashion, according to the local electrostatic potential [16]. Our modeling has shown that the simple geometry
of a conventional metal electrode used for electrostatic confinement does not provide sufficient gate control
for QCA applications, even for extremely shallow 2DEGs. We have therefore explored the use of dual gates
which allows one to achieve superior control of the confining potential [17].

We will now demonstrate that a combination of enhancement and depletion gates, as shown in the inset of
Fig. 4A, provides effective control of the threshold voltage. The main idea is to negatively bias the outer gates
(gate 2) such that the electron density is depleted or near depletion; a positive bias on the inner gate (gate 1)
is then utilized to induce the dot and to control its occupation.

Figure 4A shows an example of the size and occupation of quantum dots for combined enhance-
ment/depletion mode biasing on an AlGaAs/GaAs 2DEG. Then-type sheet doping concentration for the
delta-doped AlGaAs layer is assumed to be 3× 1012 cm−2. In this example, we have chosen a radius of
r = 6 nm for the center enhancement gate, and a radius ofrG2 = 50 nm for the surrounding depletion gate.
The radius of quantum dots,rdot, induced by three different voltages on the depletion gate,VG2, is plotted
as a function of the enhancement gate bias voltage,VG1. Figure 4B shows the corresponding number of
electrons in each dot (note that fractional dot occupancies are possible because of the semi-classical model
used).

We see that variations of the depletion-gate bias of 10 mV will result in threshold-voltage variations of as
much as 80 mV. This biasing mode appears to be an effective way of controlling the quantum-dot threshold
voltage in the few-electron regime.
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Fig. 4. Size and occupation of quantum dots for combined enhancement/depletion mode biasing. The gate dimensions are indicated
in the insets. A, Radius of quantum dots,rdot, induced by three different voltages on the depletion gate,VG2, as a function of the
enhancement gate bias voltage,VG1. B, Corresponding number of electrons in each dot.
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Fig. 5. Quantum dot potential profile along the Si/SiO2 interface for various oxide thicknesses.

We have also performed numerical simulations for the design of gated few-electron quantum dot structures
in the Si/SiO2 material system. The motivation for this work is to investigate the feasibility of transferring the
emerging technology of quantum dot fabrication from the III-V material system, where it was pioneered over
the past few years, to the technologically more important Si/SiO2 structures. Silicon appears to be a promising
candidate due to the excellent insulating behavior of thin Si/SiO2 films which yields the required crisp gate-
control of the potential in the plane of the 2DEG at the Si/SiO2 interface. Another advantage of silicon for
quantum dot applications appears to be the higher effective mass, as compared to the III-V materials, which
reduces the sensitivity of the energy levels to size fluctuations.

Quantum dots may be realized by applying a positive bias to a metallic gate on the surface, as schematically
shown in the inset to Fig. 5. The positive voltage induces an inversion layer underneath the biased gate, which
may lead to the formation of an ‘electron droplet’ at the silicon/oxide interface, i.e. a quantum dot. Figure 5
shows, for an applied gate bias of 1.7 V, the corresponding potential variations along the Si/SiO2 interface;
the Fermi energy is taken as the zero of energy and indicated by the thin horizontal line. An electronic system
is induced when the silicon conduction band edge at the oxide interface, indicated by the solid line, dips
below the Fermi level. We see that the formation of a quantum dot critically depends upon the thickness of
the oxide layer. Our modeling shows that for a 10 nm gate radius, an oxide thickness around (or below) 10 nm
is required.

Figure 6A shows, for various oxide thicknesses, the radius of a bias-induced quantum dot, as schematically
shown in the inset. The positive bias is applied to a circular gate with 10 nm radius. Figure 6B presents
the corresponding number of electrons in the quantum dot, which is obtained by integrating the electron
density over the inversion region. The data shows that it should be feasible to create electronic systems with



      

Superlattices and Microstructures, Vol. 20, No. 4, 1996 453
R

ad
iu

s 
of

 q
ua

nt
um

 d
ot

 r
do

t(
nm

)

5.0

4.0

3.0

2.0

1.0

0.0
1.5 2.05 2.5

Gate bais VG (V)

Gate bais VG (V)

N
um

be
r 

of
 e

le
ct

ro
ns

3.0 3.5

rdot

rdot

VG

VG

10 nm

SiO2

p-Si

tox

tox

4.0

tox = 14 (nm)

tox = 12 (nm)

tox = 10 (nm)
A

B

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0
1.5 2.0 2.5 3.0 3.5

10 nm

SiO2

p-Si

4.0

tox = 14 (nm)

tox = 12 (nm)

tox = 10 (nm)

Fig. 6. Gate-induced quantum dot for various oxide thicknesses; shown are, as a function of gate bias, (A) the dot radius, and (B) the
number of electrons occupying the dot.



             

454 Superlattices and Microstructures, Vol. 20, No. 4, 1996

�
�

�
�y
y

y
y

�
�

�
�y
y

y
y

�
�

�
�y
y

y
y

�
�

�
�y
y

y
y

FD

Source Drain

Source Drain

GB

Gconst

G1 G2

Gplunger G3 Gbg

LD

Fig. 7. Schematic diagram of gates and dots used in charge coupling and electrometer experiments.

dimensions on the order of 10 nanometers, and that it should be possible to control the electron occupancy in
the few-electron regime.

5. Coupled dot experiments

Dot coupling is the most critical phenomenon required of QCAs, affecting intracellular and intercellular
responses to inputs, and providing for an efficient method of charge detection, as we will demonstrate below.
Our coupled dot experiments were performed on 2DEG material consisting of a 15 nm undoped AlGaAs spacer
layer, a 30 nmn+-AlGaAs Si-doped donor layer, and a 20 nmn+-GaAs cap layer, resulting in 2DEG depth
of 65 nm. The 2DEG carrier concentration and mobility at 4.2 K were 3×1011 cm−2 and 4.5×105 cm2 V−1 s−1,
respectively. Ohmic contacts were formed from AuGeNi, and gates were defined by electron beam lithography
(EBL). The cap layer was etched to minimize leakage current. The AuPd gate pattern was produced by EBL,
thermal evaporation, and lift-off.

The gate pattern shown in Fig. 7 forms a 1D constriction adjacent to a lithographically defined dot. The
lithographic dot (LD) has a total area of 490× 360 nm2 when negative gate voltages are applied to cor-
responding gatesGB, G1, G2, G3, Gplunger. The constrictions betweenGb–G1 andGb–G2 form tunneling
barriers through which the dot is weakly coupled to the source and drain. A back-gate contact was fabricated
for further control of carrier concentration. All experiments were performed in a3He system with base tem-
perature of 300 mK. Conductance was measured using standard lock-in techniques with a 10µV excitation
voltage at 10–20 Hz. The constriction and dot circuits were measured with separate lock-in amplifiers at
different frequencies.

The population of the lithographic dot can be changed by varying any of the top or back gate potentials. At
low temperatures (< 0.6 K) Coulomb blockade oscillations (CBO) with a distinct frequency were observed
as a function of the plunger gate voltage,Vplunger (Fig. 8A).

For certain settings ofVconstr iction, we also observed conductance resonances as a function ofVplunger in
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Fig. 8. Single electron tunneling conductance oscillations as a function of plunger gate voltage for (A) lithographic dot in the absence
of fluctuation dot charging, (B) fluctuation dot, and (C) lithographic dot in the presence of fluctuation dot charging.

the narrow constriction adjacent to LD, shown in Fig. 8B. We believe these conductance oscillations were
due to the depopulation of charge trapped by a random fluctuation potential in the narrow constriction. Such
‘fluctuation dots’ (FD) have been studied previously in several different systems [18–21], and conductance
oscillations were interpreted in terms of Coulomb blockade transport through a quantum dot formed by
fluctuation potentials. A post-measurement examination by field emission scanning electron microscopy
revealed small (∼ 20 nm) islands ofn+ GaAs on the surface, which may be the source of the fluctuation
potential seen by electrons at the AlGaAs/GaAs interface.
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(B) fluctuation dot charging.

The resistance of the barrier between the 1D constriction and the dot was determined to be greater than
100 G�, guaranteeing that the dot in the 1D constriction and the lithographic dot were not directly coupled.
With proper bias settings, LD CBOs changed dramatically when FD CBOs were measured, as shown in
Fig. 8C, with the Fourier transform (FFT) spectrum shown in Fig. 9A. The presence ofωL +ωF andωL −ωF

components are clearly seen. Almost no trace of the LD signal is seen in the FD FFT spectrum (Fig. 9B). In
addition, sweeping the back-gate contact resulted in similar behavior of the two dots. The current through
LD exhibited periodic oscillations as a function of external charge when no other charge was present. The
periodicity of the LD oscillations was modified by the charging of the FD.

Our system is comparable to the metal tunnel junction system discussed by Lafargeet al. [22], with an
equivalent circuit shown in Fig. 10. The plunger affects the population of both LD and FD. As the population
of FD changes, it in turn modulates the population of LD. Assuming FD is smaller than LD, as expected from
lithographic constraints, the behavior can be explained in terms of the relative charging energies of the dots.
Since FD possesses less total capacitance, its charging energy is larger than that of LD, and its conductance
oscillations occur with a larger period inVplunger. Although the coupling capacitorCc connects the dots, a
change in the occupancy of FD by one electron results in a larger potential shift than for a similar change
in occupancy of LD. Therefore, feedback of LD, acting now as an electrometer sensing the charge of FD, is
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minimized since FD requires a larger contribution to its potential by LD in order to change its charge state.
However, because LD is relatively large, its charging energy is small and changes in the potential of FD create
a noticeable effect on its charge state.

Figure 11 shows the results of our model using the equivalent circuit of Fig. 10, and our experimentally-
derived capacitance values. Parts (A) and (B) show LD junction charge and dot population as functions of
Vplunger, with and without the presence of FD. Figure 11(C) and (D) show the same information for FD. It
is clear that the additional potential from FD causes the positions of the population transitions of LD to shift
relative to their positions without FD. Since the conductance peaks occur at population transitions, these shifts
produce a clear modulation in the period of the conductance oscillations.

6. Summary and conclusions

We have discussed several practical issues in the study of theoretical and experimental QCA behavior.
We have shown that adiabatic switching of QCAs is preferable to abrupt switching, and that double-gated
structures are preferable to single-gated ones, resulting in very good control of dot size and occupancy. We have
also demonstrated charge coupling between two quantum dots, and their behavior as a sensitive electrometer
for the detection of single electron charging. The data was easily interpreted in terms of an equivalent circuit
with a coupling capacitor between the two dots. These data indicate that a useful way of detecting the charge
state of a QCA cell will be through the use of larger quantum dots as detectors of smaller dots. We have
demonstrated repeatable lithographic dots of various sizes, and designed and fabricated six-dot cells guided
by the results discussed here. The six-dot design incorporates four dots connected by tunnel junctions, forming
the QCA cell, and two adjacent dots to be used as detectors, according to the results described in this paper.
When an electron shifts between dots it is expected that the behavior of the non-invasive probe dots will be
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noticeably affected, thus providing us with information about the internal operation of the cell. The behavior
of these cells is currently under investigation.
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