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Abstract 
We discuss the fundamental limits of computing using a 
new paradigm for quantum computation, cellular 
automata composed of arrays of Coulombically coupled 
quantum dot molecules, which we term quantum cellular 
automata (QCA). Any logical or arithmetic operation can 
be performed in this scheme. QCA’s provide a valuable 
concrete example of quantum computation in which a 
number of fundamental issues come to light. We examine 
the physics of the computing process in this paradigm. We 
show to what extent thermodynamic considerations impose 
limits on the ultimate size of individual QCA arrays. 
Adiabatic operation of the QCA is examined and the 
implications for dissipationless computing are explored. 

1. Introduction 

The ability to fabricate so-called zero-dimensional 
structures in which a few electrons can be artificially 
confined offers new possibilities for conceiving quantum 
computation at the nanometer scale. Such quantum dots 
have been fabricated with a variety of techniques: lateral 
surface gates producing fringing fields which further 
confine carriers in a two-dimensional electron gas, self- 
assembled semiconductor dots, chemically synthesized 
organic molecular structures, and many others [l]. In 
many cases, the occupancy of the “quantum dot atoms” 
can be well controlled so that quantum dot hydrogen, 
helium, lithium, and so forth can be created [2]. Recent 
experiments have shown that quantum dot atoms can be 
placed in close enough proximity to form quantum dot 
molecules [3]. 

We have considered whether, in the long run, a 
technology based on interacting quantum dot molecules 
might be feasible [4-81. Considering not just individual 
devices, but an appropriate circuit architecture for 

interconnecting such ultra-small structures has led us to 
focus on locally interconnected systems and in, particular, 
on cellular automata. Since at this size scale, coding 
information with currents or classical voltages is very 
problematic, we are led to a scheme in which the quantum 
dot molecular states themselves contain the information. A 
robust design is possible in which the Coulomb interaction 
between the molecular cells provides the intercellular 
interaction. Quantum coherence is only necessary across 
one cell. 

In Section 2 we briefly review the quantum cellular 
automata (QCA) approach and emphasize its robustness. 
The approach does not require exquisitely tuned or finely 
balanced parameters. The physics of the intercellular 
interaction provides a non-linear response that plays the 
role of gain, resetting logic levels after each stage. In 
section 3 we mention the varieties of logic circuits that can 
be implemented using these ideas. Section 4 discusses in 
more depth the physics of how the computation is 
accomplished. In Section 5 we examine the role of entropy 
and how thermodynamic considerations limit the size of 
possible QCA arrays. In Section 6 we examine adiabatic 
QCA computation and attempt to use this concrete 
example of a quantum computer to illuminate the issues 
surrounding dissipation and reversibility. 

Figure 1. A schematic of the quantum dot molecule which 
forms the basic cell for the QCA scheme. Tunneling is 
possible between any neighboring quantum dots. Simpler, 
four-dot cells are also possible. 
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Figure 2. Cell occupancy stabilization. Because the 
various charge-states of the cell are well separated 
energetically, it is possible to stabilize the occupancy by 
using top and back gates to position the Fermi level so that 
all cells contain two electrons. 

2. Quantum dot molecular cells 

We consider the quantum dot molecular cell shown 
schematically in Figure 1 as the basic building block for 
the QCA architecture. Five quantum dots are close enough 
to enable electrons to tunnel between the dots. The barriers 
between cells are assumed sufficient to completely 
suppress intercellular tunneling. Each cell is occupied by 
two electrons. The occupancy can be stabilized because of 
the large energy splitting between different charge states of 
the cell. In most implementations, the cell occupancy is 
controlled by a top metal gate which covers all the cells 
and biases the cell such that the Fermi energy is between 
the doubly and triply occupied cell charge-states [2], as 
shown in Figure 2. 

The Coulomb interaction between electrons in a cell 
acts to produce two distinct cell states with different 
charge configurations. If the barriers to tunneling are 
sufficiently high the two-electron ground-state 
wavefunction in the cell will localize the two electrons on 
antipodal sites. This localization is due to Coulomb 
exclusion [9], a phenomenon closely related to the well- 
known Coulomb blockade of current, and results in nearly 
exact quantization of charge in each dot. There are two 
possible configuration with the electrons on opposite 
corners of the dot as shown in Figure 3. We define the 
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Figure 4. The cell-cell response function. The 
polarization of the right cell is fixed and the induced 
polarization in the left cell is calculated by solving the two- 
electron Schrodinger equation. The nonlinear nature of 
this response curve plays the role of gain in restoring 
signal levels from stage to stage. (After Ref. 7) 

polarization of these two states to be +1 and -1  as shown in 
the figure. “Polarization” here simply indicates the 
alignment of charge along one of the cell symmetry axes, 
and does not refer to the appearance of a dipole moment. A 
polarization can be defined for a cell in an arbitrary (not 
necessarily completely polarized) state from the 
expectation values of the charge on each dot [4-81. Here 
we will assume that the inter-dot tunnel barriers are 
sufficiently high that the we need only consider the 
completely polarized P = +1 or P = -1 states. In the 
absence of any potential from the environment the two 
polarization states of the cell are energetically degenerate. 
The presence of other charges in neighboring cells breaks 
the degeneracy and one polarization state becomes the cell 
ground state. Binary information can be encoded using the 
cell polarization. A cell polarization of +1 corresponds to a 
bit value of 1; a cell polarization of -1 corresponds to a bit 
value of 0. 

The Coulomb interaction between cells causes the state 
of one cell to affect the state of a neighboring cell. Figure 4 
show the polarization induced in one cell due to the 
presence of an adjoining cell. This cell-cell response curve 
is computed by solving the two particle Schrodinger 
equation for the cell in the presence of the potential 
asymmetry caused by the adjacent cell. The Hamiltonian is 
discussed in detail elsewhere [7]; we need mention here 
only that it includes the Coulomb interaction between 
electrons, the confining energy cost, and the tunneling 
between dots. The non-linear saturation of the cell-cell 
response function allows the physics to play the role that 
gain plays in conventional digital electronics. Even a slight - - -  
polarization in a neighboring cell induces essentially 
complete polarization in the target cell. This means that at 
every stage (here every cell) the signal level is restored. 

Figure 3m The two bistable states Of the molecular 
cell. Interaction between the electrons causes them to 
always be close to one of these two states. 
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Figure 5. The robustness of the QCA binary wire. a) A line 
of cells is driven by the fixed polarization of the first cell. 
The nonlinear response is sufficient to completely polarize 
the line. It thus acts as a binary wire, transmitting 
information from one end to the other. b) The physical 
parameters of the cells are varied randomly down the wire. 
The inter-dot distance is a and the tunneling energy is t. 
Two of the cells have an extra electron in them. The 
nonlinear response between cells is sufficient to assure 
that the wire nevertheless functions properly. Note that the 
figures are not simply schematic, the dot size is 
proportional to the charge on the dot as calculated from a 
solution of the many-electron Schrodinger equation. 

Figure 5 illustrates how this non-linearity enables a line 
of QCA cells to act as a robust binary wire. The first cell in 
the array is assumed to be kept in a fixed polarization state 
(for example by metallic electrodes that electrostatically 
lock in the cell state). The state of the other cells in the 
array is determined by self-consistent solution of the 
Schrodinger equation for the line. In Figure 5(a) the cells 
are all identical. The polarized state of the driver (first) cell 
induces the same polarization in all the cells in the line. In 
this way, the D i t  information is transmitted down the line 
which acts as a binary wire. In Figure 5(b), we have varied 
the barrier heights, cell sizes and occupancy (between 2 
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Figure 6. The QCA majority logic gate. Signals A, B, and C 
arrive through QCA wires and are fixed as the result of 
previous calculation. The device cell state is determined by 
the state of the majority of the three inputs. The output 
proceeds out to the right down a QCA wire. 

electrons and 3 electrons) of the cells. The non-linear 
response between cells means that any degradation of the 
signal encoded in the cell polarization is quickly restored. 
The physics of the cell-cell interaction thus acts to make 
the transmission of information “forgiving” of 
imperfections in processing and irregularities in cell 
geometry; the QCA scheme does not require exquisite 
precision in balancing tunneling rates or other physical 
parameters. 

3. Logical devices 

The fundamental logical element in the QCA scheme is 
a 3-input majority logic gate. The gate, shown in Figure 6, 
is formed by the intersection of three wires whose logical 
states have been determined by the input. The output of the 
gate is not fixed. The state of the cell at the junction, which 
is the majority gate itself, will be identical to whichever 
logical state the majority of the three input lines are in. The 
output line simply transmits this state further. The three- 
input majority gate can be reduced to a two-input AND or 
OR gate by setting one of its inputs to 0 or 1. We have 
shown elsewhere that wire bends, inverters, XOR gates, 
and planar wire crossings can be constructed. In each case 
the Schrodinger equation has been solved for the entire 
many-electron system self-consistently to verify that the 
design actually works. Any logical or arithmetic function 
can be implemented using this scheme. A single-bit full 
adder is shown in Figure 7 and serves as a specific 
example of how relatively complex, high functional units 
could be constructed. 
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through emission of phonons in the substrate, emission of 
plasmons in surrounding metallic gates, or other 
mechanisms depending on the specific details of the 
physical implementation of the dot structure. Modeling 
this transient phase of the calculation is extremely difficult 
and by design we choose not to use the details of this 
temporal evolution to accomplish the calculation. When 
this transient is over, in a characteristic relaxation time T,., 
the system has dissipated the extra input energy and settles 
into its new ground state, appropriate to the new 
" b y d a r y  conditions" supplied by the input cells in state 
I N .  When the system reaches this state, the output cells 
are in the new state OUT which properly encodes the 
solution to the computational problem. The state of the 
output cells can then be read non-invasively to reveal the 
computed solution. 

In brief then, computation proceeds in three steps: 

i) Write the input bit by fixing the polarization state of 
cells along the input edge. 

ii) Allow the array to relax to its ground state while the 
new inputs are kept fixed. 

iii) Non-invasively read the results of the computation 
by sensing the polarization state of cells at the 

Figure 7. A single bit full adder implemented in the QCA 
paradigm. The output S is the sum of bits A and B. The 
carry bit is Ci and the previous carry bit is Ci.,. Note that 
the figures are not simply schematic, the dot Size is 

output edge. 

This process requires two types of interaction between 
the macroscopic semiclassical world and the cells at the 
edge of the arrav. First. a set or write mechanism must be 

interaction with near-by conductors. Secondly, a sense or 
read mechanism must be able to detect the polarization of 
cells at the output edge without altering that polarization. 
That this is quite possible has been demonstrated 

4. Computing in the QCA paradigm 

Computing in the QCA paradigm is accomplished by 
the one-to-one correspondence between the unique many- 
electron ground state and problem solution. The 
computing process is shown schematically in Figure 8. 
Input appears encoded in the cells along one edge of the 
QCA array; the output appears encoded in the cells at 
another edge. Initially, the system has the old values of 
input, in the figure labelled IN, at the input edge and the 
output corresponding to the solution of the previous 
problem, labelled OUT, at the output edge. The new 
computation begins by setting the input cells to their new 
values, labelled IN.  Setting the state of these cells is 
presumably done, electrostatically, and their state must be 
held to the IN values throughout the computation. 
Changing the state of the input cells requires work to be 
done on the array so immediately after, the array is in an 
excited state. The temporal evolution of the array from this 
point is quite complicated. Quantum oscillations and 
reflections occur, energy is dissipated to the environment 

experimentally in both metallic [ 101 and semiconductor 
quantum dot systems [ 113. 

The QCA paradigm is edge-driven - both energy and 
information flow in from the edges of the array only. No 
contacts to interior cells are made directly. This eliminates 
the well-known interconnection problem. Furthermore, 
because there are no power rails, interior cells cannot be 
maintained far away from their ground state. The 
paradigm thus also involves computing with the ground 
state. Computation is accomplished by the mapping of the 
many-body ground state to the state representing the 
problem solution. 

Conventional digital electronics features a high degree 
of input-output isolation which guarantees that 
information flows in one direction through a circuit and 
not in the reverse direction. What distinguishes input from 
output in the QCA paradigm? Examining the 
computational scheme described above for the specific 
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Figure 8. Schematic representation of computing cycle in QCA 
paradigm. 

example of the full adder shown in Figure 7 illuminates the 
answer. The input side is determined by the fact that the 
input cells are held in a fixed polarization while the output 
cells are allowed to switch to whatever polarization lowers 
the overall system energy. In the transient phase of the 
calculation, information sloshes backward and forward 
through the whole array. 

The full adder also illustrates an important point about 
the uniqueness of the many-electron ground state. Suppose 
the roles of input and output were reversed in the adder, 
that is, the cells corresponding to the sum and carry bit on 
the right in the figure were kept fixed and the cells at the 
left edge were unconstrained. Clearly, since several inputs 
could yield the same sum and carry, the resulting ground 
state is not unique. The uniqueness of the many-electron 
ground state is not a general property of an array of cells. It 
is a property of a QCA circuit that has been deliberately 
designed to yield a unique answer. The layout of the full 
adder illustrates the important fact that such a design is 
straightforward given the logical primitives available. The 
local nature of the cell-cell interaction means that 
hierarchical design rules are possible and one can 
understand the operation of a complex QCA design by 
analyzing the local components and how they are 
connected. Components can be pieced together - one 
need not worry about solving the entire system as whole 
(although to verify this, we have in fact solved the entire 
many -electron problem). 

The adder affords an example of the roles of physical 
and logical reversibility in this paradigm. As discussed 
above the QCA scheme uses dissipation to relax the 
excited system to the new ground state. It is thus 
fundamentally physically irreversible. This physical 

irreversibility permits the construction of logically 
irreversible circuits like the adder which have fewer 
outputs than inputs and so lose information in going from 
input to output. This contrasts with billiard-ball computers 
for which the physically reversible nature of the dynamics 
requires that only logically reversible circuits can be 
constructed. Running a billiard ball computer backward is 
equivalent to reversing the direction of a movie of the 
computation and allows unique recovery of the input states 
from the output states. 

The QCA paradigm lacks time-reversal symmetry for a 
second more subtle reason which has nothing to do with 
energy dissipation. Suppose one knew the outputs of a 
particular QCA calculation and wanted to determine what 
the inputs were which produced them. One would hold the 
output cells in the desired polarization states and wait to 
see into which state the input cells settled. Physically, this 
does not correspond to time-reversing the original 
calculation since one has also changed the boundary 
conditions at the array edges. In the billiard ball computer 
input and output are distinguished only by the direction of 
time. In the QCA scheme input and output are 
distinguished by having different spatial boundary 
conditions. Running the calculation "backward" to 
determine inputs from outputs, thus does not correspond to 
playing a movie of the original calculation backward. 

5. Thermodynamic considerations 

The QCA paradigm relies on the physical array 
relaxing to its ground state to accomplish the computing. 
At nonzero temperatures, thermal fluctuations into excited 

9 



a" 

-1.0 -0.5 0.0 0.5 1.0 
p, 

0.5 ; 

a" 0.0; 

-0.5 ; 

1 .o 

-1 .o 
-1.0 -0.5 0.0 0.5 1.0 

Figure 9. The cell response function for a cell driven on 
both sides at various temperatures. a) The response of 
the standard cell with inter-dot distance 20nm and relative 
dielectric constant 10. b) The response of a macro- 
molecular cell with inter-dot distance 2nm and relative 
dielectric constant 1. 

states of the system may degrade the output into a thermal 
average of correct and incorrect results. Because there are 
no power rails to keep interior cells away from their 
thermodynamic equilibrium state, thermal effects will 
always be fatal to the scheme at high enough temperatures. 
In this section we examine these thermal effects, first for a 
single QCA cell, then for a linear array of cells. 

5.1  Thermodynamics of a single QCA cell 

We consider first a "standard" QCA cell with the 
dimensions and parameters discussed in detail in Ref. 7. 
The centers of the quantum dots in the cell are 20nm apart 
and the materials parameters are those of GaAs with a 
relative dielectric constant of 10. We compute a slightly 
different cell response curve than that in Figure 4 - the 
cell polarization PI induced when the cell is driven by two 
neighboring cells with polarization Pz. This response 
function P](P2) is useful because it can be shown that a 
line of cells will polarize with a value of the polarization 

given by the fixed point of repeated iterations of this 
response curve. We calculate this response curve at 
nonzero temperatures by calculating the thermal 
expectation value of the charge on each cell, averaging 
over all the excited states of the cell. The result is shown in 
Figure 9(a) for several values of the temperature. For 
temperatures up to about 7K, the curve is sufficiently non- 
linear to enable interesting device performance. If we 
consider shrinking the cell size down to a macro-molecular 
level, possible operating temperatures increase. Consider 
the standard cell shrunk so that the inter-dot distance is 2 
nm. Additionally, the relative dielectric constant we will 
now take to be unity since at the molecular level we no 
longer have screening by the semiconductor The 
corresponding results for the doubly-driven response 
function are shown in Figure 9(b). Acceptable non- 
linearity now persists up to temperatures of about 700K. 

5.2  Thermodynamics of a QCA array 

For a line of cells and for a cellular array, the 
thermodynamic analysis must include consideration of 
both the spectrum of excited states of the array and the 
corresponding entropy. 

Consider a line of N QCA cells, the binary wire, driven 
from one end by a cell fixed to a polarization of +l. The 
ground state consists of all cells with +1 polarization and it 
is non-degenerate. The ground state and the first two 
excited states are shown in Figure 10. In the first excited 
state, several cells line up properly with the driver but then 
a "kink" occurs and the subsequent cells all have the 
opposite polarization. The kink is energetically costly 
because neighboring cells have opposite polarization. The 
energy of a kink is, to a good approximation, independent 
of kink position and denoted Ekink. The kink can be in any 
position along the line resulting in a degeneracy of the first 
excited state of N-1 = N. The second excited state is a two- 
kink state with energy 2 Eknk and has a degeneracy of 
roughly N2. Generalizing to higher excited states is 
straightforward [ 121. 

For a a non-linear array of cells, like the full adder, the 
situation is slightly different: the degeneracy is not exactly 
N (but of the same order), there may be some places where 
kinks cost somewhat less energy, and some kinks do not 
result in incorrect output states. Nevertheless we will make 
only small errors if we apply the results of the line analysis 
to the more general case. 

As the number of cells increases the ground state 
remains unique and the separation between ground state 
and first excited state remain Ekink. However, the 
increasing degeneracy of the excited state means it is more 
and more likely that the system at nonzero temperature 
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will be found in an excited state - yielding a mistake. 
This can be quantified by considering the Helmholtz free 
energy of the system F = E-TS. The entropy of the n* 
excited state is 

S, = kB n In(N). (1) 

The difference in free energy between the zero-kink and n- 
kink state is then 

r k,T 1 

When this value ceases to be positive, the state with 
mistakes in the output cells becomes the thermodynamic 
equilibrium state. As long as this value is positive, the 
correct results appear at the output [13]. 

The result shows that for sufficiently large arrays the 
entropy term dominates and the QCA paradigm fails to 
produce a thermodynamic ground state corresponding to 
the correct calculational result. This consideration limits 
the size of arrays, but the logarithmic dependence on 
system size means that fairly large systems are still 
possible. Equation (2) shows the important parameter is 
the ratio (k*T/Ek,*k), which can be reduced by either 
lowering the temperature or shrinking the cell size so that 
Ekink increases. If this ratio is 1/10, then N can be as large 
as 22,000; if this ratio is only 1/4, then N must be smaller 
than about 50. 

In any case, it is clearly unrealistic to expect 
functioning arrays with as many elements as there are 
transistors in a modern microprocessor. The promise of the 
QCA paradigm lies in large high-function arrays which are 
surrounded with classical interface layers. This not only 
moderates the thermodynamic limits of a single super- 
large array, but enables a classical latch to hold and store 
information reliably between QCA stages. This integration 
concept is illustrated schematically in Figure 1 1. 

Figure 10. Ground state and first two excited states of a 
line of cells. The left-most cell is assumed fixed. 

Figure 11. Schematic of several QCA arrays with 
classical interface layers. 

6. Can QCA's compute without dissipation? 

The QCA paradigm for computing with cellular arrays 
of quantum dots discussed above and illustrated in Figure 
8 is clearly a dissipative one. It is possible to consider an 
alternative procedure of computing with a QCA array in 
which dissipation can be minimized [14]. We do not 
consider this scheme, which we call adiabatic QCA 
computation, to necessarily be a practical alternative, but 
examine it as a useful concrete example of quantum 
computing. 

In adiabatic computation with QCA arrays we suppose 
that the barriers between quantum dots in the same cell can 
be lowered electrostatically and very slowly. The barriers 
between cells will remain high and fixed throughout. 
Consider for concreteness, that the inter-dot barriers are 
formed by the fringing fields of top-gate electrodes which 
are defining the quantum dots in a semiconductor two- 
dimensional electron gas as shown schematically in Figure 
12. Suppose the metal gates which control the intracell dot 
coupling are all connected together and held at a voltage 
V,. When V, is large and negative, the electrons in the 
cells are well-localized and the QCA cells function as 
described in section 2. If V, is zero, the barriers between 
the dots vanish and the two cell polarization states will be 
energetically degenerate. The charge density in each cell 
then smears out into a large roughly circular distribution. 
Each cell has become a single quantum dot; the QCA array 
will no longer function. 

The adiabatic QCA computation cycle proceeds as 
follows: 

i) Slowly (adiabatically) lower the magnitude of V, 
and thus the inter-dot barriers so that each cell is 
completely unpolarized. 

ii) Slowly change the input voltages on the electrodes 
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that set the input cells. This takes no work because 
the input cells have both cell polarizations states 
degenerate. 

iii) Slowly raise the magnitude of V, so that the cells 
repolarize into the new ground state appropriate for 
the new input state. 

iv) Read the results of the computation by non- 
invasively sensing the polarization of the cells at 
the output edge. 

In step (i) the array does work on the circuit which controls 
the voltage source V,. The same amount of energy is re- 
delivered to the array from that circuit in step (iii). The 
only dissipation occurs as the charge which flows on and 
off the gate electrodes passes through the circuit resistance 
R of the voltage control circuit as shown in Figure 12. This 
resistance can be made arbitrarily small, so at least on an 
energy scale large compared to kBT, the process can 
dissipate arbitrarily small amounts of energy. We can thus 
term it a macroscopically dissipationless process, meaning 
that the dissipation can be made as small as desired, down 

we can assume that the gate voltage V, can be slowly and 
smoothly lowered until the energy separation between the 
ground state and excited state of each cell is actually zero, 
then this is indeed microscopically dissipationless. But is 
this physically reasonable? The focus of the argument then 
becomes the process of smoothly charging and discharging 
the gate electrodes, which are capacitively coupled to their 
surroundings with capacitance C, through the circuit 
resistance R. When gates are discharged to the point where 
CV; = kBT, can the process continue adiabatically? We 
suggest that perhaps it cannot. At that point thermal 
fluctuations in the current through resistor R will be 
sufficient to suddenly (non-adiabatically) change the 
voltage on the gates. The two-electron system in the cells 
must now dissipate kBT to the environment and not simply 
transfer energy reversibly to the circuit. We believe that 
this examination focuses attention where it is due: at the 
interaction between circuit system, and thermal 
environment when energy scales become comparable to 
thermal fluctuations. A further detailed analysis of this 
problem is needed. 

to an energy scale at which kBT becomes significant. (Note This analysis, which shows that adiabatic QCA 
that the energy separation between the correct ground state computation is macroscopically dissipa~ionless is 
and the excited state can be much larger than kBT when the particularly interesting in light of the issue of logical 

operation being successful in a thermal environment.) could be operated in this adiabatic regime. Thus it 
Output is read in (iv); there is no problem in the read reversibility. Notice, for example, that the full adder circuit 

- 
Is it possible to operate the QCA adiabatically all the 

way down to energy scales of order kBT? That is, is the 
adiabatic QCA microscopically dissipationless? Clearly, if 

provides an example of an implementation of a logical 
irreversible function in a macroscopically dissipationless 
system. 

- 1  QCAArray I 7. Conclusion 
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Figure 12. Schematic of adiabatic switching of QCA array. 
The metallic gates which confine electrons to the dots are 
biased with voltage V,. Barriers between cells are 
assumed to remain high. The input i is set by setting the 
voltage Vi. If V, is adiabatically lowered before the input 
switching occurs, the only dissipation is through resistor R, 
which can be arbitrarily small, at least until energies 
become of the order of kBT. 

Quantum cellular automata present an interesting case 
of potentially useful quantum computing exploiting the 
emerging technology of quantum dot fabrication. The 
physics of inter-dot coupling provides bistability so that 
the scheme is robust and tolerant of fabrication variations. 
Because QCA computing uses the ground-state of the 
many-electron system to map onto the encoded problem 
solution, it has limits imposes by thermodynamics. In 
particular, for a given characteristic "mistake energy", we 
have called Ekink, there exists a maximum array size 
beyond which entropy will cause mistakes to be 
thermodynamically favorable. QCA arrays can be 
implemented in an adiabatic computation mode which is 
certainly macroscopically dissipationless. It is an open 
question as to whether the limit of zero dissipation can 
actually be achieved in a thermal environment. 

Finally, we note that the QCA paradigm presented here 
contains no provision for memory storage. It therefore 
does not represent a universal computer, but rather a 
universal arithmetic or logical function evaluator. 
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