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Abstract. We formulate a new paradigm for computing with cellular automata 
(CAS) composed of arrays of quantum devices-quantum cellular automata. 
Computing in such a paradigm is edge driven. Input, output, and power are 
delivered at the edge of the cnarray only; no direct flow of information or energy 
to internal cells is required. Computing in this paradigm is also computing with 
the ground state. The architecture is so designed that the ground-state 
configuration of the array, subject to boundary conditions determined by the 
input, yields the computational result. We propose a specific realization of these 
ideas using two-electron cells composed of quantum dots, which is within the 
reach of current fabrication technology. The charge density in the cell is very 
highly polarized (aligned) along one of the two cell axes, suggestive of a two- 
state CA. The polarization of one cell induces a polarization in a neighboring cell 
through the  Coulomb interaction i n  a very non-linear fashion. Quantum cellular 
automata can perform useful computing. We show that AND gates, OR gates, 
and inverters can be constructed and interconnected. 

1. Introduction 

The continual down-scaling of device dimensions in 
microelectronics technology has led to faster devices and 
denser circuit arrays with obvious benefits to chip perfor- 
mance. Dramatic as they have been, these changes have 
been evolutionary in nature in that even the most 
advanced chips use the same paradigms for computing as 
their more primitive ancestors. There is now much 
expectation that the availability of very dense device 
arrays might lead to new paradigms for information 
processing based on locally-interconnected architectures 
such as cellular automata (CA) and cellular neural net- 
works [l]. 

There has also been considerable interest in quantum 
mesoscopic structures for their possible application as 
devices [2]. Much has been learned about the behavior of 
electrons flowing through very small structures in semi- 
conductors. Various investigators have pointed out the 
natural link between mesoscopic quantum systems and 
cellular automata architectures [3-51. Because quantum 
structures are necessarily so small, it is difficult to 
conceive of a regime in which a single quantum device 
could drive many other devices in subsequent stages [SI. 
Furthermore, the capacitance of ultra-small wires fom- 
ing the connections to each device would tend to 
dominate the behavior of an assembly of quantum 
devices. For these reasons locally interconnected 
structures such as cellular neural networks and CAS may 
provide the natural architecture for quantum devices. 

We focus here on the idea of employing CA archi- 
tectures which are compatible with nanometer-scale 

quantum devices-thus. quantum cellular automata 
(QCA). A QCA would consist of an array of quantum 
device cells in a locally-interconnected architecture. The 
cell state becomes identified with the quantum state of 
the mesoscopic device. Two-state CAS are attractive 
because they naturally admit to encoding binary in- 
formation. For a two-state QCA, each cell should have 
two stable quantum states. The state of a given cell 
should inEuence the state of the neighboring cells. Two 
ingredients axe essential then: ( 1 )  the bistability of the cell, 
and (2) coupling to neighboring cells. 

We propose a cell which is composed of coupled 
quantum dots occupied by two electrons [7]. The re- 
quisite bistability is accomplished through the inter- 
action of quantum confinement effects, the Coulomb 
interaction between the two electrons, and the quantiza- 
tion of charge [SI. The intercellular interaction is pro- 
vided by the Coulomb repulsion between electrons in 
different cells. We analyze this cell and the interactions 
between neighboring cells in section 2. 

In section 3 we propose a new paradigm for how 
computation could be performed with an array of 
quantum devices. Because no direct connections can be 
made to interior cells, information or energy can enter the 
array only from the edges. Edge-driven computation 
imposes further constraints on the nature of the comput- 
ing process [SI. The lack of direct connections to the 
interior cells also means that no mechanism exists for 
keeping the array away from its equilibrium ground-state 
configuration. We are therefore led to use the ground 
state of the array to do the computation. Computing with 
the ground state means that the physics of the array must 
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perform the computation by dissipating energy as it 
relaxes to the ground state. This has the distinct ad- 
vantage that the computing process is independent of 
the details of the energy relaxation mechanisms and that 
the unavoidable energy dissipation is useful to the com- 
puting process. 

Section 4 demonstrates that QCA~ can perform useful 
functions. We show how logical gates and inverters can 
be constructed with arrays of the two-electron bistable 
quantum cell we propose. Section 5 discusses some key 
issues in realizing QCAS as a viable technology and section 
6 identifies technological advantages that a successful 
QCA implementation would enjoy. 

2. Few-electron quantum cells 

The specik cell we consider here is shown in figure 1. 
Four quantum dots are coupled to a central dot by 
tunnel barriers. The two electrons tend to occupy anti- 
podal sites in one of two configurations, shown in the 
figure as the P = + 1 and P = - 1 configurations. Our 
analysis below will show that the cell is indeed in one of 
these two stable states, and that an electrostatic per- 
turbation, perhaps caused by neighboring cells, switches 
the cell between these two states in a very abrupt and 
non-linear way. This permits the encoding of bit in- 
formation in the cell. 

The essential ingredients that produce the bistable 
saturation behavior [lo] which is so desirable are (1) 
quantum confinement, (2) Coulomb interaction between 
electrons, (3) few-electron quantum mechanics, and (4) 
the discreteness of electronic charge. 

2.1. A model for the quantum cell 
We model the cell shown in figure 1 using a Hubbard- 
type Hamiltonian. For the isolated cell, the Hamiltonian 
can be written 

H?" = C & A . ~  + C th,,tao., + ao.otai,r) 
i.0 i.0 

Here ai,o is the annihilation operator which destroys a 
particle at site i (i = 0,1,2,3,4) with spin U. The number 
operator for site i and spin U is represented by ni,o. The 
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3 2 x x 
P = + l  P=-1 

Figure 1. The quantum cell consisting of five quantum 
dots which are occupied by two electrons. The mutual 
Coulombic repulsion between the electrons results in 
bistability between the P = +l and P = -1 states. 

50 

on-site energy for the ith dot is Eo,i; the coupling to the 
central dot is t; the charging energy for a single dot is En. 
The last term represents the Coulombic potential energy 
for two electrons located at sites i and j at positions RL 
and Rj. Unless otherwise noted, we will consider the case 
where all the on-site energies are equal, Eo,i = E,. 

For our standard model cell, on which the numerical 
results reported here are based, we obtain the values of 
the parameters in the Hamiltonian from a simple, experi- 
mentally reasonable model. We take each site to be a 
circular quantum dot with diameter D = 10 nm, and take 
E ,  to be the ground-state energy of such a dot holding an 
electron with effective mass m* = 0.067mW The near- 
neighbor distance between dot centers, a, is taken to be 
20 nm. The Coulomb coupling strength, V,, is calculated 
for a material with a dielectric constant of 10. We take 
E, = Vd(D/3) and t = 0.3 meV. 

It is useful to define a quantity which represents the 
degree to which the charge density for a given eigenstate 
of the system is aligned linearly. This alignment could be 
either along the line through sites 1 and 3 or along the 
l i e  through sites 2 and 4. For each site, we calculate the 
single particle density pi, which is simply the expectation 
value of the total number operator for the two-electron 
eigenstate. The polarization, P, is defined as 

(2) 
( P 1 +  P J  - (Pz + P4) 

Po + P 1 - l  Pz + P 3  + P4' 
P =  

For an isolated cell with all on-site energies equal, no 
polarization is preferred. We will see below that per- 
turbations due to charges in neighboring cells can result 
in a strongly polarized ground state. The polarization 
thus defined is not to be confused with the usual dipole 
polarization of a continuous medium. It simply repres- 
ents the degree to which the electrons in the cell are 
aligned and in which of the two possible directions the 
alignment occurs. For the states of interest here, the cell 
has no dipole moment. 

The interaction of the cell with the surrounding 
environment, including other neighboring cells, is con- 
tained in a second term in the Hamiltonian which we 
write as ii'F:&. We solve the time independent Schrodin- 
ger equation for the state of the cell, IY.), under the 
influence of the neighboring cells: 

(H?" + H;:t,)lY,) = EJf") .  (3) 
The spins of the two electrons can be either aligned or 
anti-aligned, with corresponding changes in the spatial 
part of the wavefunction due to the Pauli principle. We 
will restrict our attention to the case of anti-aligned spins 
here because that is the ground-state configuration; the 
spin-aligned case exhibits nearly identical behavior. The 
Hamiltonian is diagonalized directly in the basis of few- 
electron states. We calculate single-particle densities, p t ,  
from the two-particle ground-state wavefunction IY,), 

Pi = c 0 <~ol%,lu'o> (4) 

and from the densities calculate the resultant polariza- 
tion P, equation (2). To maintain charge neutrality, a 
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fixed positive charge, 5, with magnitude (2/5)e is assumed 
at each site. For the isolated cell, this has no effect and is 
included on the on-site energies. For several cells in close 
proximity, as will be considered below, the maintenance 
of overall cell charge neutrality means that the inter- 
cellular interaction is due to dipole, quadrupole, and 
higher moments of the cell charge distribution. If cells 
had a net total charge then electrons in cells at the 
periphery of a group of cells would tend to respond 
mostly to the net charge of the other cells. 

2.2. The cell-cell response functiou 

To be of use in a CA architecture, the polarization of one 
cell must be strongly coupled to the polarization of 
neighboring cells. Consider the case of two nearby cells 
shown in the inset to figure 2. Suppose we fj, the charge 
distribution in the right cell, labeled cell 2. We assume 
cell 2 has polarization P,, and that the charge density on 
site 0 is negligible (this means the charge density is 
completely determined by the polarization). For a given 
polarization of cell 2, we can compute the electrostatic 
potential at each site in cell 1. This additional potential 
energy is then included in the total cell Hamiltonian. 
Thus the perturbing Hamiltonian is 

where 

is the potential at site i in cell m due to the charges in all 
other cells k. We denote the position of site j in cell k as 
Rt,j. The total Hamiltonian for cell 1 is then 

H c e l l  = H“” + HCI” 

The two-electron Schrodinger equation is solved using 
this Hamiltonian for various values of P,. The ground- 
state polarization of cell 1, P, ,  is then computed as 
described in  the previous section. 

Figure 2(b) shows the lowest four eigen-energies of 
cell 1 as a function of P,. The perturbation rapidly 
separates states of opposite polarization. The excitation 
energy for a completely polarized cell to an excited state 
of opposite polarization is about OSmeV for our 
standard cell. This corresponds to a temperature of about 
9 K. Figure 2(a) shows P, as a function of P,-the cell- 
cell response function. A very small polarization in cell 2 
causes cell 1 to be very strongly polarized. This non- 
linear response is the basis of the QCAS we describe here. 
As the figure shows, the polarization saturates very 
quickly. This observation yields two important results: 

(i) The bipolar saturation means that we can encode bit 
information using the cell polarization. A cell is 
almost always in a highly polarized state with P U k 1. 
We define the P = +1 state as a bit value of 1 and the 
P = - 1 state as a bit value of 0. Only if the electrostatic 
environment due to other cells is nearly perfectly sym- 

(7) 0 1 ’  

0.5 I ’ O m  

& - 
“‘E , J, , , 

-1.0 
-0.10 -0.05 0.00 0.05 0.10 

-0.51 , J, , , 

-1.0 
-0.10 -0.05 0.00 0.05 0.10 

-0.10 -0.05 0.00 0.05 0.10 
p2 

Figure 2. The cell-cell response function. The 
polarization of the right cell is fixed and the induced 
polarization in the left cell is calculated. (a)  The calculated 
polarization of cell 1 as a function of the polarization of 
cell 2. Note that the range of P ,  shown is only from -0.1 
to +0.1. This is because the transition in the induced 
polarization is so abrupt. (6) The first four eigen-energies 
of cell 1. The polarization of the lowest two are shown 
in (a) .  

metric will there be no polarization. 
(ii) The polarization of one cell induces a polarization 

in its neighbor. Figure 2 shows that even a very slight 
polarization will induce nearly complete polarization of a 
neighboring cell. This cell-cell Coulomb coupling pro- 
vides the mechanism for CA-like behavior. The rapid 
saturation of the cell-cell response function is analogous 
to the gain necessary to preserve digital logic levels from 
stage to stage. 

The abruptness of the cell-cell response function de- 
pends on the ratio of the dot-to-dot coupling energy, t i n  
equation (I), to the Coulomb energy for electrons on 
different sites. The magnitude of the coupling depends 
exponentially on both the distance between the dots and 
the height of the potential barrier between them [ll], 
each of which can be adjusted as engineering parameters. 
Figure 3 shows how the cell-cell response function varies 
with t. 

2.3. Self-consistent analysis of several quantum cells 

In the analysis of the previous two subsections, the two- 
electron eigenstates were calculated for a single cell. It is 
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a- 

Figure 3. The cell-cell response function for,various 
values of the dot-to-dot coupling energy ( t i n  equation 
(I)). The induced cell polarization P, is plotted as a 
function of the  neighboring cell polarization P,. The 
results are shown for values of the coupling energy. 
t =  -0.2 (full curve), -0.3 (dotted curve), -0.5 (dashed 
curve). and -0.7 (dot-dashed curve) meV. Note that the 
response is shown only for P, in the range 1-0.1. i-0.11. 

important to note that for the Hamiltonian employed, 
these are exact two-particle eigenstates. Exchange and 
correlation effects have been included exactly. This was 
possible because we could explicitly enumerate all possi- 
ble two-electron states and diagonalize the Hamiltonian 
in this basis set. We want to analyze clusters and arrays 
of cells to investigate possible device architectures. To do 
so we need to calculate the ground-state wavefunction of 
a group of cells. Exact diagonalization methods are then 
no longer tractable because the number of possible 
many-electron states increases so rapidly as the number 
of electrons increases. We must therefore turn to an 
approximate technique. 

The potential at each site of a given cell depends on 
the charge density at each site of all other cells. We will 
treat the charge in all other cells as the generator of a 
Hartree-type potential and solve iteratively for the self- 
consistent solution in all cells. This approximation, 
which we call the intercellular Hartree approximation 
(ICHA), can be stated formally as follows. Let Y$ be the 
two-electron ground-state wavefunction for cell k, and p y  
he the single-particle density at site j in cell m. We begin 
with an initial guess for the densities. Then, for each cell 
we calculate the potential due to charges in all other cells. 

Although the neighboring cells will normally dominate 
this sum, we do not examine only near-neighbors but 
include the effect of all other cells. For each cell k, this 
results in a perturbation of the basic cell Hamiltonian of 
equation (1): 

(9) 

The Schrodinger equation for each cell is now solved for 
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the two-electron ground-state eigenfunction: 

(Hr" + HTLL)lY$) = EgI'f'E). (10) 
From the ground-state eigenfunctions we calculate the 
improved single-particle densities. 

The improved densities are then used in equation (8) and 
the system is iterated until convergence is achieved. Once 
the system converges, the many-electron energy, E,, , ,  is 
computed from the sum of the cell eigenenergies using the 
usual Hartree correction term to account for over- 
counting of the Coulomb interaction energy between 
cells: 

It should be stressed that the ICHA still treats Coulombic, 
exchange, and correlation effects between electrons in the 
s u m  cell exactly. The Hartree mean field approach is 
used to treat self-consistently the interaction between 
electrons in different cells. Since electrons in different cells 
are physically distinguishable (there being no wave- 
function overlap), the exchange coupling between them is 
zero. The Hartree and Hartree-Fock approximations 
are therefore equivalent in this case. 

The converged ICHA solution will be an (approximate) 
eigenstate of the entire system. In general, however, it 
need not be the ground state. As with the usual Hartree 
approximation, which of the eigenstates the scheme 
converges to is determined by the choice of the initial 
guess. To find the ground state we must try many initial 
state guesses and determine which converged solution 
has the lowest energy. Typically, this does not present a 
serious problem for the type of cellular arrays considered 
here because the set of likely ground states is easily 
discerned. In general, a systematic search may be 
required. 

The procedure described above uses, at each stage of 
the iteration, only the ground-state wavefunction of each 
cell. If all the excited states of the entire system were 
desired, we would have to include states composed of 
excited cell states as well. Since our interest is in the 
ground state, this is not necessary. It is relevant to point 
out however, that because each cell is in a 'local' ground 
state, we do not require coherence of the many-electron 
wavefunction across tbe whole array of cells. All that is 
required to support this analysis is that the wavefunction 
is coherent across a single cell. No information about the 
phase of the wavefunction in other cells is relevant to the 
wavefunction in a given cell-only the charge densities in 
other cells need be known. 

3. Computing with quantum cellular automata 

We present a new paradigm for computing with QCAS. 

This represents a complete picture of how quantum 
devices could be coupled in a CA architecture to perform 
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useful functions. The paradigm we propose is shown 
schematically in figure 4. We will focus on the zero- 
temperature case; temperature effects will be considered 
below. As shown in the figure, the inputs are along an 
edge of the array. Specifying the inputs consists of 
electrostatically fixing the polarization of the input cells. 
This could be accomplished by simply applying voltages 
to conducting ‘set’ lines which come in close proximity to 
the cells, but any method that fixes the cell polarization 
state would do. The output cells are not fixed; their 
polarization state is sensed, perhaps by electrostatic 
coupling to ‘sense’lines. There could also be several input 
and output edges. Computation proceeds in the follow- 
ing steps: 

(i) Write the input bits by fixing the polarization state 
of cells along the input edge (edge-driven computation). 

(ii) Allow the array to relax to its ground state with 
these inputs (computing with the ground state). 

(E) Read the results of the computation by sensing 
the polarization state of cells at the output edge. 

The essential elements that define this computing para- 
digm are computing with the ground state and edge-driven 
computation, which we discuss below. 

3.1. Computing with the ground state 

The advantage of computing with the ground state is that 
it leaves the computing process insensitive to the details 
of the dissipative processes which couple the electrons in 
the array to the environment. Consider a QCA at zero 
temperature for which all the input cells have been held 
in a fixed state. Dissipative processes have brought the 
array to its ground-state conliguration for these bound- 
ary conditions. Suppose at time t = 0 the input cell states 
are set to their new input values completely abruptly. 
Just after the inputs are applied at the edge of the QCA, the 

Inputs outputs 

a)  - 
Sense 

Set - -x - 
b) 

Figure 4. The new paradigm for computing with 
quantum cellular automata (acAs). The input to the QCA is 
provided at  an edge by setting the polarization state of the 
edge cells (edge-driven computation). The OCA is allowed 
to dissipatively move to its new ground-state 
configuration and the output is sensed at the other edge 
(computing with the ground state). The ‘set’ and ’sense’ 
lines are shown schematically. 

array is no longer in the ground state but is now in an 
excited non-stationary state for the new boundary con- 
ditions. In the time between 0 and t, a characteristic 
relaxation time, various dissipative processes will bring 
the array to its new ground-state configuration. After 
that, the array will be stable until the boundary con- 
ditions are changed again. During the relaxation time the 
temporal evolution of the system is very complicated. 
Even without dissipation, the system will undergo 
quantum oscillations due to interference between the 
various eigenstates which compose the t = 0’ state. The 
dissipative processes, like phonon emission, introduce 
extraordinary complication in the temporal evolution. 
The exact state of the system at a particular time t < t ,  
depends not just on phonon emission rates, but on the 
particular phonons emitted by these particular electrons. 
In short, the temporal evolution before t = tr depends on 
the precise microscopic details of the dissipative 
dynamics. By contrast, the ground state configuration to 
which the system relaxes is completely independent of the 
dissipntion mechanisms. Hence we choose to use the 
ground state only for computing. 

3.2. Edgedriven computation 

In the QCA computing paradigm we are proposing, the 
input data is represented by edge cells whose polarization 
is fixed. Computing then proceeds by allowing the 
physics interior to the QCA to ‘solve’ the dissipative many- 
electron problem for this new set of boundary conditions. 
The array is designed so the part of the ground-state 
‘solution’ of the many-body problem which appears at 
the output edge corresponds to the solution of the 
computing problem posed by the input data. 

The advantage of writing input and reading output 
only at the edges of the array is that no separate 
connections to the array interior need be made. Because 
quantum devices are of necessity extremely small, the 
problem of making contacts to each element or device 
becomes severe. If a single array contains thousands of 
individual cells, the ‘wiring’ problem is overwhelming. 

Edge-driven computation is, in fact, the practical 
requirement which makes computing with the ground 
state necessary. If no connections can be made to the 
interior of the array, there is no controlled mechanism for 
keeping the system away from the ground state. Neither 
clocking nor refresh mechanisms are available. With a 
change in input, the system will dissipate energy and find 
a new equilibrium ground state. The only choice is 
whether to try to perform computation with the system’s 
transient response, or with its ground state. For the 
reasons discussed above, the ground-state approach is 
preferable. 

Conventional computing, by contrast, is done using 
very highly-excited, non-equilibrium states. Because each 
element (device) can be separately contacted, energy can 
be fed into the system at each point. The entire system 
can thereby be maintained in non-equilibrium states. The 
advantage of this is that the energy dxerence between the 
states used for computing can be very much larger than 
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ksT. The requirement that each element be driven far 
from equilibrium ultimately contributes to the difficulty 
of reducing the scale of conventional technology to the 
nanometer level. The breakdown of the operating device 
physics at small scales also plays a crucial role in the 
scale-down problem. 

Ultimately, temperature effects are the principal pro- 
blem to be overcome in physically realizing the QCA 
computing paradigm. The critical energy is the energy 
difference between the ground state and the first excited 
state of the array. If this is sufficiently large compared 
with kET, the system will be reliably in the ground state 
after time t,. Fortunately, this energy difference increases 
quadratically as the cell dimensions shrink. If the cell size 
could be made a few Angstroms, the energy Merences 
would be comparable to atomic energy levels-several 
electron Volts! This is, of course, not feasible with 
semiconductor implementations, but may ultimately be 
attainable in molecular electronics. It may, however, be 
possible to fabricate cells in semiconductors small 
enough to work reliably at reasonable cryogenic 
temperatures. 

3.3. Relation to synchronous CA rules 

The relationship between the QCAS described here and 
traditional rule-base CAS is not direct. CAS are usually 
described by a set of CA rules which govern the temporal 
evolution of the array [lZ]. Time proceeds in discrete 
increments called generations. The rules determine the 
state of the array based on its configuration in the 
previous generation. Clearly, for the QCA described here, 
the temporal evolution proceeds not through discrete 
generations but through continuous physical time. 
Moreover, as argued above, we are not particularly 
interested in the temporal evolution of the QCA in order 
to perform computations. We are only concerned with 
the final ground-state configuration associated with a 
particular input state. Like the rule-based synchronous 
CA, the QCA is an array of interacting multi-state cells and 
the behavior is dominated by near-neighbor interactions 
between cells. Thus, the QCA is chiefly related to tradi- 
tional CAS by analogy. 

Nevertheless, it i s  possible to construct a rulebased 
CA from the QCA interacting cell Hamiltonian (10). The CA 
so constructed may be useful, perhaps not in describing 
the transient state of the QCA, but rather in calculating the 
ground-state configuration, which is our primary con- 
cern anyway. 

3.4. CA rules from the Schrodinger equation 

The CA rule set is constructed as follows. For each cell, 
consider all possible polarization states ( P  = i l )  of the 
neighbors (neighbors out to any distance useful can be 
considered). For each configuration of the neighboring 
polarization, solve the Schrodinger equation (10) and 
determine the target-cell ground state and its polari- 
zarion. The map of neighbor polarizations to target-cell 
polarization constitutes the CA rule set for that particular 

target ceU. In general, a different rule set may apply to 
each cell. Typically, many cells will have similar environ- 
ments and use the same rules. 

The nile set obtained by this procedure can be recast 
in terms of a weighted-voting procedure. In deciding the 
state of a particular cell, the neighboring cells vote 
according to their own state. The votes are weighted 
dzerently depending on the geometrical relationship 
between each neighbor and the target cell. The votes of 
closer cells are weighted more heavily than those of more 
distant cells. In addition, the weights can be negative, 
indicating that the energetics of the interaction between 
the neighbor and the target cell favor them having 
opposite polarizations. The CA rules generated by the 
solution of the Schrodinger equation for the target cell 
can then recast in the form of voting weights for the 
neighbors. Any set of voting weights which reproduces 
the CA rule set is equivalent. 

3.5. Extended CA rules 

This procedure so far has one problem which can be 
remedied by expanding the rules slightly. It is possible for 
the votes of the neighbors to result in a ‘tie’. That is, the 
neighboring polarizations may be arranged so symmetri- , 

cally that the ground-state polarization of the target cell 
is zero. It is desirable to break this tie by consulting the 
immediate history of the neighbors. The neighbors which 
flipped their polarization in the preceding generation are 
simply weighted more heavily than those which have not 
Ripped. This introduces a notion of momentum which i s  
otherwise absent in a two-state CA. With these momentum 
rules, ties are still possible but are now exceedingly rare 
events that can be handled by tie-breaking with a 
random number. 

The CA rules corresponding to a particular QCA are 
thus derived from the Schrodinger equation and aug- 
mented by the momentum rule discussed above. The 
evolution of the synchronous CA is still not directly 
related to the temporal evolution of the physical Q c h  
The CA rules know nothing of the details of the dis- 
sipative dynaniics, ’ for example. However, in our 
experience, the synchronous CA with the momentum 
rules can be useful in determining the ground state of the 
QCA. If we start with a stable QCA state, and then flip the 
input ceUs to correspond to the new input condition, the 
synchronous CA will evolve to a stationary state which 
corresponds to the ground state of the physical QCA. That 
the final state is really the ground state can be checked by 
using the more rigorous self-consistent calculations de- 
scribed in the previous section. 

4. Device applications 

Two types of QCA structure for computing can be 
envisioned. One type is a very large regular array of cells. 
We have work in progress exploring this type of array. It 
is widely appreciated that computing with large regular 
CAS is a significant challenge, particularly with a simple 
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rule set. The solution to this difficult problem may have 
the greatest long-term potential, however, for exploiting 
the massive parallelism inherent in the QCA paradigm. 

A second type of QCA structure involves a highly 
irregular array of cells. We show below that using simple 
irregular arrays one can produce structures analogous to 
wires, inverters, AND gates and OR gates. Since these 
can be connected together, more complex devices such as 
adders and multipliers can be constructed. Because the 
individual devices are so small, this represents a potent- 
ially enormous increase in functional density in an 
architecture free of the usual interconnect problems. We 
examine below how these basic logical gates can be 
constructed from quantum cells. 

The device codgurations shown are the results of 
self-consistent calculations of the ground state using the 
ICHA described above. Figure 5 shows the calculated 
ground-state charge density on each site of the cellular 
array. In these figures the dot diameters reflect the 
relative electron density at each site (dot) in the cell. 

4.1. Wires 

A linear chain of cells oriented as shown in figure 5(u) 
functions as a wire, transmitting a 0 or 1 (P = + 1 or 
P = - 1) from one end of the wire to the other. This is 
demonstrated by fixing the polarization of one end (the 
left in the figure), while letting the other end be uncon- 
strained, and calculating the self-consistent ground state 
of the chain using the ICHA method. Figure (54 shows the 
results of this calculation. Not surprisingly, the ground 
state consists of all cells aligned with the same polariza- 
tion as the end cell. The first excited state of the chain has 
a 'kink' in it at the chain center, i.e., half the cells 
polarized one way and half polarized the other. For our 
example, the energy of the first excited state is about 
1 meV (AE/k,T = 10K) above the ground-state energy. 
Wire bends and fan-out are also possible, as shown in 
figure 5(b) and (c), respectively. Again, the left-hand cell is 
fixed and the ground-state configuration calculated. This 

Figure 5. QCA wires: (a) the basic wire; (b) a corner in a 
wire; (c) fan-out of one signal into two channels. In each 
case the darker (left-hand) cell has a fixed polarization 
which constitutes the input. Note that these figures are 
not simply schematic, but are a plot of the results of a 
self-consistent many-body calculation of the ground state 
for the cellular array. The diameter of each circle is 
proportional to the calculated charge density at each site. 
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Figure 6. An inverter constructed from a quantum cell 
automaton. 

sort of fan-out is appropriate for the edge-driven para- 
digm discussed above. 

42. Inverter 

By offsetting one chain of cells from another, as shown in 
figure 6, an inverter can be constructed. If the polariza- 
tion of the one end is fixed, the polarization of the other 
end will be opposite. 

4.3. AND and OR gates 

A N D  and OR gates can be made from the intersection of 
two wires. Figure 7 shows an OR gate. The darker boxes 
are around the input cells. Their polarization is set to 
correspond to the logical values shown. For the case 
when the inputs are 0 and 1 (figure 7(c)), the central cell 
state would normally be indeterminate since a 'tie vote' 
exists between the input cells. To resolve, this we bias the 
central cell by increasing the site energy on sites 2 and 4 
slightly. This could be accomplished by making the 
quantum dot diameter slightly smaller on these two sites. 
It is then slightly more energetically favorable for the cell 
to be in a 1 state, thus breaking the tie. The AND gate is 
constructed in exactly the same way except that the 
central ceU is biased toward the 0 state. The AND gate is 
shown in figure 8. Both these figures reflect the results of 
self-consistent solutions of the many-electron problem 
for the entire array shown. 

4.4. Memory cell 

A single quantum cell can act as a memory storage cell. 
Once prepared in an eigenstate with P = + 1, for 

U 

Figure 7.  An OR gate. The cells in darker squares are 
fixed to the input states. The cell in the dashed square is 
biased slightly toward the '1 state. 
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Figure 8. An AND gate. The cells in darker squares are 
fixed to the input states. The cell in the dashed square is 
biased slightly toward the '0' state. 

example, the cell will in principle remain in that con- 
figuration indefinitely. One problem is that slight variat- 
ions in the potential environment may make it slip into 
the other eigenstates. To avoid this it may be desirable to 
use small or medium-size arrays of quantum cells to store 
each bit. This is shown schematically in figure 9. One 
advantage of a regular rectangular array of cells is that it 
may he possible to use the interaction of many cells with 
the set and sense lines (the exact mechanism for setting 
and sensing is not critical here). The problem of making 
non-interfering address lines is certainly non-trivial. 

5. Issues for OCA as a technology 

Fabrication of QCAS in semiconductors appears to be 
within reach of current technology. The GaAs/AlGaAs 
system has proven fruitful as a means of fabricating 
quantum dot structures by imposing electrostatically a 
pattern on the two-dimensional electron gas formed at 
the heterojunction interface. Other materials systems, 
including molecular systems, are also candidates for 

Figure 9. Quantum cellular arrays as memory storage 
cells. A single bit can be stored in  (a)  a single cell, (6) a 
line of cells, or (c) an array of cells. Arrays of cells would 
make the storage more robust. 
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realizing a QCA structure. Any implementation must deal 
with several issues of key importance to the successful 
operation of the cell we have described. 

5.1. Uniformity of cell occupancy 

It is important for the operation of the QCA that each cell 
contain two electrons. The cell-cell response function 
degrades significantly of one or three electrons are in a 
cell. Fortunately, the physics of the cell acts to ensure that 
the occupancy will be very uniform. This is so because the 
Coulomb interaction causes significant energy-level 
splitting between the different cell charge states. The 
Coulomb energy cost to add the third electron is on the 
order of lOmeV for cells with a 30nm separation. 
Experiments by Meurer et al [13] have shown that 
uniformity in the number of electrons per dot can be 
maintained in arrays of lo8 dots. 

5.2. Dot size control 

The size of the fabricated quantum dots must be fairly 
well controlled. Variations in the size of the dots translate 
into variations in the confinement energies on each dot. 
The cell bistability occurs because the Coulomb inter- 
action is determinative in selecting a preferred polariza- 
tion state. If the magnitude of the variation among the 
dots in the confinement energies is greater than the 
Coulomb energies involved, the cell will be pinned at a 
fixed polarization. Note that dot size variations are 
critical only within a single cell; variations between 
different cells are easily tolerated. 

5.3. Temperature 

The temperature of operation is a major factor. Our QCA 
quantum cell is expected to work at liquid helium 
temperatures for dot dimensions which are within the 
capability of current semiconductor fabrication tech- 
nology. As technology advances to smaller and smaller 
dimensions on the few-nanometer scale, the temperature 
of operation will be allowed to increase. Perhaps our 
envisioned QCA will find its e s t  room temperature 
implementation in molecular electronics. 

6. Technological benefits 

If successful, QCAS would represent a revolutionary, 
rather than evolutionary, departure from conventional 
electronics. In this section we review some possible 
benefits a QCA technology might provide. 

Quantum cellular automata solve the interconnection 
problem It is widely acknowledged that the main chal- 
lenge to further improvements in microelectronics is the 
interconnection and wifing problem. The QCAS we dis- 
cuss accommodate this challenge in a natural fashion. 
Interconnect lines are no longer necessary to provide the 
communication between cells; the Coulomb interaction 



Quantum cellular automata 

provides the coupling mechanism. Edge-driven com- 
putation requires neither energy nor information to be 
transmitted directly to interior cells. Computing with the 
ground state makes both clocking and refresh signals 
unnecessary. 

Quantum cellular automata make possible ulha-high- 
density computing elements. The chief technological ad- 
vantage of the proposed structures is the improved 
functional density of computing elements. With a 10 nm 
design rule, the cell dimensions would be about 
50nm x 5 0 ~  which translates into an extremely high 
packing density of about 10" ce l l s~m-~ .  Since, as shown 
above, a single cell can function as a logical gate, this 
represents an extremely high functional density. 

Quantum cellular automata are extremely low in power 
dissipation. High packing density is usually accom- 
panied by high power dissipation. However, in QCA 
structures, the information is stored in physical systems 
close to their ground state. The energy input to the array 

sense defined above) ground states. The response of this 
polarization to the electrostatic environment is highly 
non-linear and exhibits the bistable saturation necessary 
for a two-state CA. The concept of edge-driven com- 
putation solves the interconnection problem. The concept 
of computing with the ground state in the QCA approach 
permits ultra-fast operation, eliminates problems of in- 
terconnect delays, resistive and capacitive effects, power 
dissipation, and limited densities associated with con- 
ventional architectures. 
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is the energy required to set each input bit-about 1 meV 
per input bit. This energy is dissipated in the time it takes References 
for the QCA to relax to its new ground-state configuration, 
probably less than a few picoseconds (phonon scattering 
times). This represents a power dissipation of roughly 
10-"W per input bit, much less than conventional 
devices. 

Quantum cellular automata offer the possibility of 
ultra-jast computing. As estimated above, the computa- 
tion occurs in a QCA over the relaxation time for the 
electrons in the array, probably on the order of picosec- 
onds. It is clear that this relaxation time is a function of 
the electron-phonon coupling and represents a funda- 
mental speed limit for computation with electrons in a 
semiconductor. 

Quantum cellular automata may faeilitate fabrication 
of ultra-dense memory storage. The QCA cell encodes a bit 
of information. Writing and reading the bit involves very 
low power dissipation and is very fast. While problems of 
cell addressing and cell volatility appear challenging, the 
possibility of solid-state electronic storage of information 
at these densities invites further investigation. 

7. Summary 

We have presented a specific model for using nanoelec- 
tronic devices in a cellular automata architecture and 
proposed a new paradigm for computing in this frame- 
work. Each cell consists of a central quantum dot and 
four neighboring dots occupied by two electrons. The 
Coulomb repulsion between the two electrons, quantum 
confinement effects, and the discreteness of the electronic 
charge, combine to produce strongly polarized (in the 

Ferry D K, Akers L A and Greeneich E W 1988 Ultra 
Large Scale Interconnected Microelectronics 
(Englewood Cliffs, NI Prentice Hall) 

For a recent overview see Kirk W P and Reed M A 

c31 
r41 

(ed) 1992 Nunostructures and Mesoscopic Systems 
(Boston: Academic) 

Bate R T 1977 Bull. Am. Phvs. Soc. 22 407 
Randall J N, Reed M A and Frazier G A 1989 3. Vac. 

Sci. Technol. B7 1398 

Granular Nanoelecfronics (New York Plenum) 
[SI Ferry D K, Barker J R and Jacoboni C (ed) 1991 

r61 Landauer R 1989 Phvs. Todav 42 119 
27j A proposal for cells with single-electron occupancy has 

been made. but lacks the reauisite bistable 
character. See Bakshi P, Briido D A and Kempa K 
1991 3.  ADD^. Phvs. 70 5150 

[SI Lent C S, Tougaw P D and Porod W 1993 Appl. Phys. 

[9] The edge-driven paradigm proposed here is to be 
Lett. 62 714 

distinguished from conventional systolic 
architectures. In systolic arrays information is input 
only at the edges, but energy must be separately fed 
to each computational element, typically through 
power lines to each cell. In the paradigm discussed 
here, both energy and information are supplied only 
to the edge cells. 

Lett. 58 1792 
[lo] Obermayer K, Mahler G and Haken H 1987 Phys. Rev. 

[11] A onedimensional treatment is given at length in 
Morrison M, Estle T and Lane N 1976 Quantum 
States of Atoms. Molecules. and Solids (Endewood . -  
Cliffs, N I  Prentice-Hall) ch 13 

rl21 Toffoli T and Mar~olus N 1987 Cellular Automata - -  
Machines: A New Environment for Modeling 
(Cambridge, M A  MIT Press) 

Lett. 68 1371 
[13] Meurer B, Heitmann D and Ploog K 1992 Phys. Rev. 

57 


