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Quantum computing with quantum-dot cellular automata
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Quantum-dot cellular automata~QCA!, arrays of coupled quantum-dot devices, are proposed for quantum
computing. The notion of coherent QCA~CQCA! is introduced in order to distinguish QCA applied to
quantum computing from classical digital QCA. Information is encoded in the spatial state of the electrons in
the multidot system. A line of CQCA cells can work as a quantum register. The basic single- and multi-qubit
operations can be realized by pulses given to the cell electrodes.
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I. INTRODUCTION

Quantum computing@1–40# has attracted attention in th
past two decades because it was found that computers
ploiting quantum mechanics are able to outperform class
digital computers in certain areas~factoring integers@33#,
searching@7,36#, etc.!. Beside designing and analyzing ne
quantum computing algorithms, significant effort has be
made to find a suitable realization for a quantum compu
With the application of nuclear magnetic resonance~NMR!,
several groups have created quantum computers@10–19# up
to seven qubits in size. Other implementations employ
traps @34#, cavity QED @35#, Josephson junctions@37–40#,
and semiconductor quantum dots@20,25–32#.

We propose a multiple-quantum-dot structure, quantu
dot cellular automata~QCA! @41–49#, and investigate the
basic quantum gates suitable for this implementation. In
mation is encoded in the position of the electrons inside
QCA cell. The basic single- and multi-qubit operations c
be realized by lowering and raising the interdot tunnel
barriers. Several other realizations have been proposed u
semiconductor quantum dots. The information can be
coded in the electron spin@26,32#, in the position of the
electron in the double dot@25,31#, or the ground state an
excited state of the electron can be used for logical ‘‘0’’ a
‘‘1’’ @28,30#. The quantum computing algorithms are pe
formed by manipulating the interdot coupling with magne
field @26#, optically by laser pulses@25,26,30# or by using
external electrodes to raise and lower the interdot barr
@26,31,32#.

The QCA concept@41–49# was originally proposed as
transistorless alternative for digital circuit technology
nanoscale. A QCA cell consists of four quantum dots
shown in Fig. 1~a!. The lines in the diagram indicate th
possibility of interdot tunneling. The cell has two allowe
charge polarizations,P511 and 21, since the two extra
electrons occupy antipodal sites@Fig. 1~b!#. When placed in
close proximity along a line, QCA cells align with the sam
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polarization. In addition to the cell line, logical gates@44#
and memory@50# can also be realized. Recently, experime
were done that implemented QCA cells with metal islan
@51,52# as a single-electron tunneling circuit@53#. A semi-
conductor realization is also being developed@56–59#. QCA
cells used for classical computing applications are mo
fully polarized during the operation. Dissipation plays a po
tive role helping the system to stay near the ground state

Our aim here is to explore the possibilities of using sem
conductor QCA for quantum computing@60#. In the case of
quantum computing, the cells are not fully polarized: th
can be in a superposition of theP511 and21 basis states
Similarly, a cell line can be in a superposition of the mul
qubit product states. Unlike classical digital application
quantum computing ideally needs coherence for correct
eration.~In real systems, decoherence is always present,
its effects must be circumvented by error correction.! In or-
der to distinguish QCA applied for quantum computing fro
the classical digital QCA, the notion of coherent QC
~CQCA! will be used.

1
:

d-

FIG. 1. Schematic of the basic four-site semiconductor Q
cell. ~a! The geometry of the cell. The lines indicate the possibil
of interdot tunneling. The tunneling energy between two si
~quantum dots! is determined by the heights of the potential barr
between them.~b! Coulombic repulsion causes the two electrons
occupy antipodal sites within the cell. These two bistable sta
result in cell polarization ofP511 and21.
©2001 The American Physical Society15-1
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In Sec. II, the CQCA cell line is used as a quantum re
ister. In Secs. III and IV, the single- and multi-qubit oper
tions are presented. In Sec. V, the decoherence and o
issues pertaining to the physical realization are discusse

II. THE CQCA CELL LINE AS A QUANTUM REGISTER

An N-qubit register can be realized with a line ofN
CQCA cells as shown in Fig. 2. Theg j tunneling energy is
set by external electrodes that lower or raise the inter
barriers of thej th cell. A cell can be turned off by lowering
the barriers.~When a cell’s barriers are extremely low,
does not have a definite polarization and it does not affec
neighbors.! Each cell is Coulombically coupled to its left an
right neighbors and to the bias electrodes. The biases,Pbias,j ,
are set externally, thus these and theg j ’s are the inputs of the
quantum register@54#.

There are three main steps when executing a program
the quantum register: writing in the initial state, running t
algorithm, and reading out the final state. The initial state
be loaded into the register by setting the biases touPbias,j u
@1 and waiting for a time sufficient to settle in the grou
state. If Pbias,j@1 (Pbias,j!21), then the cell is forced to
the P511 (P521) state. The execution of the algorith
is realized with a series of pulses applied to the electrode
the cell. The final state can be read out by electrometers
are sensitive enough to detect the presence or the absen
an electron~e.g., single electron transistor@52,53#!.

In @48#, a simple Hamiltonian of an extended Hubba
type was used to describe the cell. The relatively weak s
spin interaction between electrons in different dots is
nored. Each quantum dot is considered as a site, inte
degrees of freedom being thus ignored. The Hamiltonian
ployed is given by

Ĥ5(
i ,s

~Eon-site1Vi !n̂i ,s1 (
i . j ,s

t i , j
† ~ âi ,sâ j ,s1â j ,s

† âi ,s!

1(
i

EQn̂i ,↑n̂i ,↓1 (
i . j ,s,s8

VQ

n̂i ,sn̂i ,s8
uRi j u

. ~1!

Here we use the usual second quantized notation w
âi ,s(ai ,s

† ) annihilates~creates! an electron on sitei with spin
s. The number operator for electrons of spins on site i is
n̂i ,s5âi ,s

† âi ,s . In Eq.~1!, the first term represents the on-si
energy of each dot. The potential energy of an electron at

FIG. 2. TheN-qubit register realized with a line ofN CQCA
cells. Each cell has two inputs: theg j interdot tunneling energy and
the Pbias,j bias polarization.
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i due to charges outside the cell, including effects of char
in other cells and the bias electrodes, isVi . The second term
accounts for the electron tunneling between sites, witht i , j

5t for vertical neighbors andt i j 50 for horizontal neighbors
and antipodal sites. The third term is the on-site charg
cost to put two electrons of opposite spin on the same
The last term corresponds to the Coulombic interaction
tween electrons on different sites within a cell.

Assuming that both double dots have one electron,
the electrons stay in the ground state of the dot, the cell s
is a superposition of four basis states:uTB&, uBT&, uTT&, and
uBB&. Here T ~B! indicates that the electron is in the to
~bottom! dot. If the EDD electrostatic coupling energy be
tween the double dots inside the cell is much larger than b
the energy of the coupling to the neighboring cells and tht
tunneling energy, then the diagonal elements in the Ham
tonian corresponding to theuTT& anduBB& states are relatively
large. Consequently, these states have a very small ampl
during the dynamics. The system can be considered a
two-state system with the basis statesuTB& and uBT& @55#.
Note that state transition happens only throughuTT& and
uBB&. Standard second-order perturbation theory leads to
effective tunneling energyg'2t2/EDD between the two ba-
sis states, whereEDD is the energy cost of having bot
electrons of the cell either on the top or on the botto

dots ~EDD5^TTuĤuTT&2^BTuĤuBT&, t5^TTuĤuTB&.
A double-dot cell clearly fits the two-state descriptio

however for double-dot cells~dipoles! the electrostatic cou-
pling decreases with the third power of the distance, th
next-to-nearest-neighbor coupling cannot be ignored.@For
four-dot cells~quadrupoles!, the strength of the coupling de
creases with the fifth power of the distance, thus next-
nearest-neighbor coupling can be neglected.# The following
deduction would be otherwise the same for double-dot ce
with the tunneling energyg equal to the physical interdo
tunneling energyt.

The Hamiltonian for a line ofN CQCA cells, modeled as
coupled two-state systems, is

Ĥ52(
j 51

N

g j ŝx~ j !2 (
j 51

N21

Ej ŝz~ j !ŝz~ j 11!

1(
j 51

N

E0Pbias,j ŝz~ j !. ~2!

The first term describes the tunneling between theP511
and21 states. The second term describes the intercell e
trostatic coupling. The third one couples the cells to exter
bias electrodes.Ej is the strength of Coulombic couplin
between thej th and the (j 11)st cell. It is positive since
QCA cells tend to align.@For double-dot cells,Ej is negative
since the cells tend to antialign, and an extra term appea
Eq. ~2! describing the next-to-nearest-neighbor couplin
@62#.# For reasons explained later,Ej is alternating between
E0 and 2E0 :
5-2
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Ej5S E0 if j is odd

2E0 if j is even.
~3!

Hamiltonian~2! is isomorphic to that of an Ising spin cha
in a transverse magnetic field. TheEj andg j terms play the
role of the interaction energy and the transverse magne
field strength, respectively. Theg j and Pbias,j are setable,
however theEj intercell coupling is constant.

The polarization of thej th cell can be obtained as th
expectation value of theŝz operator:

Pj52^ŝz~ j !&. ~4!

With the minus sign, we follow the convention of Ref.@61#
in defining the Pauli spin matrices:

ŝx5F0 1

1 0G , ŝy5F 0 i

2 i 0G , ŝz5F21 0

0 1G . ~5!

It is possible to construct an effective Schro¨dinger equa-
tion for a single cell using the mean-field approximation~see
Ref. @47#; these equations can be obtained from the Hartr
Fock approximation applied to the CQCA line as a man
electron system!:

Ĥ52gŝx1ESŝz , ~6!

where

ES5EleftPleft1ErightPright1E0Pbias, ~7!

The cell is coupled to its left and right neighbors throu
EleftPleft and ErightPright . ~One of Eleft and Eright is E0 , the
other is 2E0 .) The edge cells do not have left or right neig
bors, thus for them the corresponding polarizations are ta
to be zero.

The state vector of a cell can be given as the linear co
bination of the fully polarizedP511 and21 basis states
@see Fig. 1~b!#:

uC&5au1&1bu21&5Fab G . ~8!

Thus the state of a cell is described by two complex nu
bers,a andb.

The density matrix can also be used to describe the s
of a single cell. The main advantage of the density matrix
that it can be used to describe energy dissipation, altho
such dissipation will not be considered now. The dynam
of the density matrix are given by the Liouville equation,

i\
]

]t
r̂5@Ĥ,r̂ #. ~9!

The density matrix can be expressed as the linear com
nation of the SU~2! generators, which are the Pauli spin m
trices and the unit matrix:

r̂5 1
2 ~ 1̂1lxŝx1lyŝy1lzŝz!. ~10!
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wherela5^ŝa& for a5x,y,z. It can be seen from Eq.~10!
that the three realla values contain the same informatio
about the quantum-mechanical state as the 232 density ma-
trix does. In other words, although the density matrix h
four complex~eight real! elements, it has only three~real!
degrees of freedom, due to the constraints of Hermiticity a
unit trace. ThelY vector constructed from the threela values
is called thecoherence vector~or the Bloch vector!. The
fully polarized P511 state corresponds tolY 5@0,0,21#T

and theP521 state corresponds tolY 5@0,0,11#T. In gen-
eral, the third coordinate oflY equals2P.

The dynamical equation of the coherence vector is giv
as @61#

dlY

dt
5GY 3lY , ~11!

where the cross denotes a vector product andG i5Tr(ŝ i Ĥ)
for i 5x,y,z. @Ĥ is given in Eq.~6!.# For the CQCA cell,GY
is

\GY 5F22g
0

2ES

G . ~12!

Equation~11! describes the precession of the coherence v
tor aroundGY . If there is no dissipation or decoherence, t
length of the coherence vectors remains unity. In the cas
dissipation, further terms are added to the right-hand sid
Eq. ~11!. The coherence vector describes the state of the
while GY represents the influence of the environment.GY x de-
pends on the barrier height.GY z represents the coupling t
the bias cell and to the neighbors.

If there is no entanglement during the operation~the reg-
ister remains in a quantum-mechanical product state!, then
the mean-field description gives the same dynamics for
coherence vector as the model with the many-body Ham
tonian does@63#.

Besides the coherence vector description, the quan
gates presented here will also be given by the unitary t
evolution matrices computed from the many-cell Ham
tonian of the gates. They fully describe the functionality
the gate; the coherence vector description is useful for m
ing the design of quantum gates clearer.

III. SINGLE-QUBIT ROTATIONS

We consider the elementary single-qubit rotations inl
space. Ifg@E0 ~the barriers are low! and Pbias50, then
\GY >@22g,0,0#T, which causeslY to precess around the2x
axis as shown in Fig. 3.~It is assumed thatg50 for all the
other cells.! The duration of the precession corresponding
a rotation by an anglew is

Dt5
w

uGY u
5

\

2g
w. ~13!
5-3
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The unitary time evolution operator for this single-qubit r
tation is

U2x,w5ei ŝx~w/2!5F cos
w

2
i sin

w

2

i sin
w

2
cos

w

2

G . ~14!

If w5p, then the polarization of the cell is inverted, that
the cell goes from thelY 5@0,0,11#T state to the@0,0,21#T

state and vice versa, realizing theNOT operation, as shown in
Fig. 4.

Another type of single-qubit rotation can be realized
g50 ~the barriers are high! and Pbias@1. In this case,\GY

>@0,0,2E0Pbias#
T, which causesGY to precess around thez

axis as shown in Fig. 5. The duration of precession co
sponding to a rotation by an anglew is

Dt5
w

uGY u
5

\

2E0Pbias

w. ~15!

The unitary time evolution operator for rotations around
z axis is

Uz,w5e2 i ŝz~w/2!5Fei ~w/2! 0

0 e2~w/2!G . ~16!

FIG. 3. Rotation around the2x axis. ~a! The rotation in thel

space. g@Ek ~the barriers are low! and Pbias50, thus \GY

5@22g,0,0#T. ~b! The pulses applied to theg and thePbias cell
inputs.

FIG. 4. NOT operation.~a! The initial state islY 5@0,0,11#T, that
is, P521. ~b! The final state obtained after 180° rotation arou

the x axis in the negative direction islY 5@0,0,21#T, that is, P
511.
05231
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The Hamiltonian~2! does not containŝy , however the
rotation around they axis can still be realized by a series
rotations around thez andx axes:

Uy,w5Uz,p/2U2x,wUz,3p/2

52F cos
w

2
2sin

w

2

sin
w

2
cos

w

2

G
52ei ŝy~w/2!. ~17!

The gates presented above were operating on a single
bit. It is reasonable to require that the state of the other qu
in the register do not change. This requirement can be
filled in the case of two-state systems by turning off theEj
intercell coupling for the rest of the cell line, however for th
QCA register the coupling is constant. The unused part of
register will undergo time evolution, thus the effect of th
time evolution must be examined. The time that would
necessary for the intercell coupling to affect the dynam
considerably isTcoupling5\/E0 . In the case of single-qubi
rotations, the duration of the operation is much shorter th
that @compareTcoupling to Eq. ~13! with the condition g
@E0 , and to Eq.~15! with the conditionPbias@1], thus the
change of the state in the rest of the line is negligible
single-qubit operations.

IV. MULTI-QUBIT OPERATIONS

In this section, we examine the multi-qubit operatio
possible with the Hamiltonian~2!. The scheme for three
qubit operations presented here can be seen in Fig. 6.
middle cell ~cell no. 2! is the target cell, its two neighbors
~cell no. 1 and cell no. 3! are the left and rightcontrol cells.
The polarizations of the control cells determine what ha
pens to the target cell during the operation. In regard to
multi-qubit operations,lY , GY , g, Pbias, andES without indi-
ces refer to the target cell. The bias of both control cells
zero and their barriers are high.

For the three-qubit operations 0,g!E0 . Depending on
ES , there are two possibilities for the time evolution of th
target cell.

FIG. 5. Rotation around thez axis. ~a! The rotation in thel

space. Pbias@1 and g50 ~the barriers are high!, thus \GY

5@0,0,2E0Pbias#
T. ~b! The pulses applied to theg and thePbias cell

inputs.
5-4
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~i! If ES50, then\GY 5@22g,0,0#T, which causeslY to
precess around the2x axis.

~ii ! If ESÞ0, then\GY >@0,0,2E0Pbias#
T, which causeslY

to precess around thez axis.
For simplicity, suppose thatEleft5E0 and Eright52E0 .

Substituting that into Eq.~7!, one obtains

ES5E0~Pleft12Pright1Pbias!. ~18!

Let us examine the behavior of the target cell for the fo
possible cases when its two neighbors are fully polarized.ES

can be zero only for one of the four possible combinations
Pleft andPright . For example, choosingPbias523, it is zero
only if both Pleft and Pright are 11. @The other three possi
bilities can be selected byPbias521, 1, and 3. Notice that if

FIG. 6. Schematic of the arrangement for three-qubit operatio
The polarizations of the control cells determine what happens to
target cell during the operation.
e

05231
r

f

the Ej coupling would not alternate according to Eq.~3!,
then the Pleft511/Pright521 case could not be distin
guished from Pleft521/Pright511 since ES5E0(Pleft

1Pright1Pbias) would be the same for both.#

Table I showsES and\GY for the four possible states o
the neighbors assumingPbias523. If both Pleft andPright are
11, then the coherence vector of the cell is rotated aro
the2x axis, otherwise it is rotated around the2z axis. This
will be calledconditional rotationin the following.

If the left or right neighbors are not fully polarized, the
the time evolution of the three cells leads to entanglem
and the mean-field-type description of Eqs.~11! and~12! can
no longer be used. In this general case, the three-qubit
corresponding toPbias523 can be characterized by a un
tary time evolution operator:

s.
e

TABLE I. The values of\GY for the four possible binary state
of the left and right neighbors ifPbias523. If both Pleft and Pright

are11, thenGY points in the2x direction. If either of them is21,

thenGY points in the2z direction.

Pleft Pright ES /E0 \GY

21 21 26 @22g,0,212E0#T'@0,0,212E0#T

21 11 22 @22g,0,24E0#T'@0,0,24E0#T

11 21 24 @22g,0,28E0#T'@0,0,28E0#T

11 11 0 @22g,0,0#T
Û5

000 001 010 011 100 101 110 111

3
ei ~3wz/2! 0 0 0

0 e2 i ~wz/2! 0 0

0 0 e2 i ~3wz/2! 0

0 0 0 ei ~wz/2!

ei ~wz/2! 0 0 0

0 cos~w2x/2! 0 i sin~w2x/2!

0 0 e2 i ~wz/2! 0

0 i sin~w2x/2! 0 cos~w2x/2!

4
000

001

010

011

100

101

110

111

. ~19!
he

he
al
er-

et
In Eq. ~19!, w2x andwz are the angles of rotation around th
2x andz axes, respectively. They both depend on thet du-
ration of the operation:

w2x,t5uGY ut5
2g

\
t ~20!

and

wz,t5uGY ut5
2E0

\
t. ~21!
The labels are showing the three-qubit states~the product
basis vectors! corresponding to the rows and columns of t
matrix. ‘‘1’’ and ‘‘0’’ refer to the u1& and u21& states. The
three digits correspond to the polarization of the left, t
middle, and the right cells, respectively. Blank off-diagon
blocks refer to blocks of zeros omitted here for easier und
standing.

Next, the rotation around thez axis will be eliminated.
The rotation aroundz does not change the state of the targ
cell if wz is an integer multiple of 4p. The corresponding
constraint for the duration of the operation is
5-5
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t5
2p\

E0
m; m50,1,2, . . . . ~22!

With the choice of Eq.~22! for t, rotation occurs around th
x axis whenPleft5Pright , however the state of the cells d
not change, ifPleftÞPright . Thuswz can be omitted andw2x
will be replaced withw. Sincet is constant,w must be set by
controlling g. Combining Eqs.~20! and ~22! gives

g5
\

2t
w5

E0

4pm
w. ~23!

Applying condition~22! to Eq. ~19!, the following gate is
obtained:

Û2x,w;2353
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 cos
w

2
0 i sin

w

2

0 0 1 0

0 i sin
w

2
0 cos

w

2

4 .

~24!

The ‘‘23’’ refers to a rotation aroundx with the condition
given byPbias523. A variation of this quantum gate can b
found in the literature@5,8# as Ul or the Deutsch gate
@15,23#. The only difference between Eq.~24! and the Deut-
sch gate is that cell no. 2 and cell no. 3 are exchanged.
f5p, the Deutsch gate realizes the Toffoli gate, with
additionalp/2 phase shift if the target qubit is inverted. Th
Deutsch gate makes universal quantum computing poss

It follows from Eq. ~20! that the execution time of a
multi-qubit gate is

t;
\

2g
. ~25!

Sinceg!E0 , the execution time of Eq.~25! is much longer
than Tcoupling5\/E0 . The other drawback of implementin
the Û2x,w;23 gate this way is that it requires an extreme
accurate control@64# of the driver polarization and the inter
cell coupling in order to achieve a cancellation for Eq.~18!.
If implemented with two-dot cells, the coupling between t
control qubit causes further difficulties. Thus it seems to
reasonable to realize universal quantum computing@14,21–
23# instead of the Deutsch gate with the set of single-qu
gates presented in the preceding section and theÛzz,w

( j , j 11)

gate.@Ûzz,w
( j , j 11) denotes the time evolution of the register wi

zero bias polarization, high barriers, and all intercell co
plings switched off except for the coupling between thej th
and (j 11)th cell. Switching off the intercell couplings i
possible with sequences of 180° pulses rotating aroundx as
05231
or
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e
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is done for NMR@13#. When using two-dot cells, the puls
sequences become more complicated because of the
couplings to be eliminated.# The execution time of the multi-
qubit gates~two-qubit conditional rotation aroundx, con-
trolled NOT @14#! based on a sequence of single-qubit ga
and Ûzzw

( j , j 11) is aroundTcoupling and the requirements on th
accuracy of control parameters are less strict.

V. DISCUSSION

It is instructive to compare the CQCA quantum compu
to the nuclear spin quantum computers@10–19#. The role of
the nuclear spin is now played by the coherence vector.
spin of the nucleus is manipulated by a strong constant m
netic field and a weaker alternating one while the CQC
uses external electrodes to control the interdot tunneling
riers. In the case of a spin quantum computer, there i
spin-spin coupling while the CQCA cells are coupled Co
lombically. The classical analogy of the spin-1

2 system is a
magnetic dipole. The classical analogy of a CQCA cell is
electric quadrupole~or for two-dot cells, a dipole!. In nuclear
or electron spin quantum computing, manipulating individu
qubits is rather difficult. The NMR devices are running
ensemble of parallel quantum computers. A related appro
@26,27,32# uses the electron spin in a quantum dot for
qubit, but writing data in and reading data out seems to
technologically very difficult. The technology for writing
into and reading out of the individually accessible CQC
cells is already available@65#.

Nuclear and electron spin seem to be ideal candidates
two-state systems. Most other implementations suffer fr
the problem of the possibility of exciting parasitic, noncom
putational energy levels~‘‘leakage’’ @66#!. In a CQCA reg-
ister, the intercell coupling and tunneling can be mu
smaller than the level spacing of the quantum dot. Thus
get to noncomputational parasitic states requires much m
energy than the energy difference between the computati
states, unlike in the case of proposals, where the informa
is stored in the ground state and the first excited state of
electron in the quantum dot.

The limiting factor in the CQCA approach is the short
decoherence time, which restricts the number of quan
operations. The issue of dephasing in open quantum dots
been addressed in the literature@67–70#. In Ref. @67#, the
dephasing time is measured in open ballistic GaAs quant
dots with areas between 0.4 and 4mm2 and single-mode
point contacts. Measurements betweenT50.34 and 4 K
show that the dephasing time is independent of the dot a
and it has both aT21 andT22 dependence, with a saturatio
at low temperatures. ForT53 K, the dephasing time is
around 2.4 ns.~A T22 dependence is expected for isolat
dots for intermediate temperatures@71–73#.!

It must be noted that the dot size proposed for QC
@41,56–59# is much smaller than in the experiments me
tioned above. Due to the small dot size, the mean level sp
ing of the quantum dot is much larger thankT. (D
52p\2/m* A572 meV5824 K for a GaAs dot with an area
A5100 nm2.) References@28# and @29# model a quantum-
dot structure of dots with 4-nm diam. Considering on
5-6
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acoustic-phonon–electron scattering, the dephasing tim
obtained as a couple of nanoseconds forT510 K. It is also
an important conclusion of the papers that by choosing
state and the physical parameters properly, the dephasing
be largely suppressed in a quantum-dot array.

Dephasing in double dots was also studied@74–77#. Ref-
erence@77# determines the relaxation time for two Coulom
bically coupled double dots~cell size 60 nm!, considering
also only electron–acoustic-phonon scattering. For damp
rate, 0.15 GHz51/6.7 ns is obtained@78#. For the particular
structure,E0 was 0.62 meV. This value forE0 is consistent
with other calculations@41#. In order to get substantially
larger intercell electrostatic coupling, one must enter the m
lecular regime. This limit is true for both the coupling b
tween double dots and between the two-double-dot cells
was stated before, a cell can be considered a two-state
tem only if both the tunneling energy and theE0 intercell
coupling are smaller than the coupling energy between
doubled dots. In order to have two-state four-dot cells, o
must decrease the strength of the intercell coupling m
below the achievable limit, which seems to be unreasona
Thus a two-dot cell is much more feasible for quantum co
puting.

The time that is necessary for the intercell coupling
affect the dynamics considerably isTcoupling5\/E0 . Assum-
ing E051 meV, Tcoupling5\/E0'1 ps. According to Eq.
~13!, the duration for theNOT operations isT5\p/2g. It is
smaller by several orders of magnitude thanTcoupling, be-
causeg@E0 . The same is true for all the single-qubit gate
A multi-qubit gate has an execution time nearTcoupling. Since
there is a three orders of magnitude difference between
low-temperature dephasing time in quantum dots and the
ev

g,

.
C.
S

D
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ecution time of a multi-qubit operation, we can at least s
that the relatively short decoherence time does not seem
prohibit the application of quantum-dot cellular automata
quantum computing@79#. We note that two crucial question
concerning the feasibility of CQCA quantum computin
must be distinguished. The first is whether a large quan
register can be realized with CQCA in the future. The seco
is whether a system with a few qubits can be realized w
the present or near-future technology. Even if large-sc
implementation proves to be difficult, CQCA technology c
still be used as a tool to test the concepts of quantum c
puting in solid-state devices.

VI. CONCLUSIONS

We have proposed a multiple-quantum-dot structure
Quantum cellular automata~QCA!—as a mode of realizing
quantum computing. Basic operations can be performed w
a line of QCA cells; a universal quantum computer can
constructed. QCA may offer an example of an integra
quantum computer with electrostatic data read-in/write-o
The main drawback of this implementation is the relative
short decoherence time compared to the implementations
ing nuclear or electron spins.
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