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A coherence vector formalism is used to describe quantum computing with Quantum-dot 
Cellular Automata, and the realizations of basic quantum gates are also discussed. 

1. Introduction 

A nanoelectronics technology that would enable device scal- 
ing down to molecular levels will almost certainly entail a 
cellular architecture with near-neighbor connectivity. One 
scheme that has been developed for physically realizing such 
a concept is termed Quantum-dot Cellular Automata (QCA) 
[l-81 The basic cell is comprised of four or five dots which 
can hold two extra electrons. Information is encoded in the 
geometrical charge configuration within the cell. The Cou- 
lomb interaction between cells provides the inter-cellular 
coupling. This interaction produces a sufficiently rich system 
that it has been shown that could be implemented in such a 
scheme. 

The two basis states of the QCA cell with polarization 
P=+l and P=-1, respectively, are shown in Fig. 1. 

P=+ 1 P=- 1 

FIGURE 1. Schematic representation of the QCA cells. Two 
electrons tunnel between the four dots in the cell. The two 
arrangements of charge shown are used to encode information 
in the cell. 

The empty circles denote a quantum dot, the lines show the 
possibility of interdot tunneling, and the solid circles indi- 
cate extra electron. Logical circuits (AND, OR, NOT gates) 
and Cellular Nonlinear Network [7,9-111 architectures can 
be both realized by this paradigm. 

In this paper the so-called coherence vector formalism 
[ 121 will be applied to the QCA. Its main advantages are the 
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mathematical simplicity and the ability of this description to 
include dissipation. 

In Section 2 the physical background will be summa- 
rized, while Section 3 and 4 are about the realization of the 
Quantum Computing with QCA. Three basic operations will 
be implemented: the NOT, the controlled NOT and a 
three-bit quantum gate, that will be called modified con- 
trolled controlled NOT (MCCNOT) in this paper. 

2. Application of the coherence vector 
formalism for QCA 

The Hamiltonian of a single QCA cell of a 1D array is [7]: 
r 1 

where y is the interdot tunneling energy and Ek is the electro- 
static cost of two adjacent fully polarized cells having oppo- 
site polarization. The cell is coupled to its left and right 
neighbors through P which is the sum of the adjacent cell 
polarizations. 

The state vector of one cell can be given as the linear 
combination of the fully polarized P=+l and P=-1 basis 
states. 

r i  

M lY) = all)+PI-l) = 

Thus the state of a cell is described by two complex num- 
bers, a and p. 
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An alternative quantum mechanical description to the 
state vector is the k coherence vector. For a two-state system 
its three real coordinates are the expectation values of the 
p, 6 and 6, Pauli spin matrices. The fully polarized 
P=+l state corresponds to %=(O,O,-l) and the P=-1 state cor- 
responds to k=(O,O,+l). The third coordinate of equals -P. 
The coherence vector description is used in this paper 
because it is more straightforward to design and interpret 
quantum computer operations and may make inclusion of 
dissipation effects possible. 

For a non-dissipative system the dynamical equation of 
the coherence vector is[ 121: 

Y 

A 

where the cross denotes vector product and r = Tr( SH) for 
the QCA cell is: 

This equatioz describes the precession of the coherence vec- 
tor around r .  If there is no dissipation the length of the 
coherence vectors remains unity. 

In the case of dissipation additional terms are required 
[13]: 

Here z is energy relaxat Ion time, A is the temperature ratio: 

* I f 1  A = - 2kgT 

and 
A 

* I -  r = T  
Irl 

In (2) the first new term denotes the dissipation to the envi- 
ronment, the second onle corresponds to the thermal fluctua- 
tion caused by the environment. 

The steady state enlsrgy of a cell can be shown to be: 

The coherence vector o f  a cell in steady state is: 

ksLr = -flanhA 

As temperature increases tanh A decreases and the cell keeps 
loosing its polarization due to the effect of the fluctuation of 
the heat bath. 

3. Quantum computing with QCA 

In this section it is shown how to use a 1D array of QCA 
cells for quantum computing [14-26; for review see 14-15]. 
The NOT, controlled NOT and the MCCNOT operations 
will be realized by applying the coherence vector formalism 
and treating the intercellular interactions in a Hartree-Fock 
model. Wz omit dissipation effects in the present work. 

The r vector will be used to manipulate the coherence 
vector. The r, can be set externally by changing the interdot 
barrier height. The two extreme cases are: p=- (or from an 
implementation perspeztive y >>Ek) and y =O. 

In the first case AT=(-2y,O,O) which causes h to precess 
around the -x axis. This can be used to go from the 

=(O,O,+l) state to the (O,O,-1) state and vica versa, realizing 
the NOTAoperation. We need 180' rotation thus the duration 
is T=dlTI=nfi/2y. The operation of the NOT is shown in 
Fig. 2. 

Z 

t 

FIGURE 2. NOT operation. (a) The initid state is k =(o,o,+I) 
or P=-I. (b) The final state obtained after 180" rotation around 
the x axis in the negative direction is k =(O,O,-1) or P=+l. 

A 

In the second case fir=(o,o,Ek'i), that corresponds to a 
"conditional precession" around the z axis. The direction and 
speed of the rotation depends on the neighbors. If both 
neighbors are fully polarized at P=+l (P=-1) the circular fre- 
quency of the rotation is o=+2Ek/fi (o=-2Ek/E) while in 
case of oppositely polarized neighbors P=O and there is no 
rotation. 

This two basic rotations can be used to implement the 
MCCNOT operation. It has three inputs: the initial state of 
the QCA cell and its two neighbors in the 1D cell line. The 
MCCNOT inverts the polarization of the cell if its left and 
right neighbors are equally and fully polarized (F=+2 or -2), 
and does not have any effect if the polarization of the neigh- 
bors are opposite (P=O).The operation as shown in Fig. 2 is 
done in three steps: (1) -90" rotation around the x axis with 
'y=m for time interval Tl=nfi/4y. (2) 0 or 180" rotation 
around the z axis depending on P with 'y=O for time 
'rz=nfi/&. (3) -270'(=+90") rotation around the x axis with 

for time T3=3nfi/4y. 
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FIGURE 3. The modified controlled controlled NOT 
(MCCNOT) operation. The two neighbors are supposed to 
have the same polarization in this example thus the polarization 
of the cell is inverted. (a) The initial state: $,=(O,O,-1). It is 
rotated -90" around the x axis. (b) +180" rotation around the z 
axis, because the left and right neighbors have the same polar- 
ization. If they were different then this rotation would not take 
place. (c) -270" rotation around the x axis. (d) The final state: 
$, =(0,0,+1), and the polarization of the cell is inverted. 

The controlled NOT operation can be also realized with 
QCA cells. It is more complicated than the MCCNOT and 
explained here only briefly. This operation has two inputs 
and inverts the first input if the second, so-called control 
input is P=+l. If the control input is P=-I, the first input 
remains unchanged. Now the QCA cells are biased by 
another type of external electrodes. By these electrodes P 
can be much greater than one. Let us consider a two cell 
group. One cell has ~0 while the other goes through the fol- 
lowing four steps: (1) -90" rotation around the x axis with 
F- for time interval Tl=nf2/4y. (2) +90" or -90' rotation 
around the z axis depending on P with ~0 for time 
T2=7cA/2Ek. (3) +90° unconditional rotation around the z 
axis with ~0 and P=w for time T3=7cA/2EkP. (4) 
-270"(=+90") rotation around the x axis with '/=" for time 

It is worthwhile to compare the QCA quantum computer 
realization with the nuclear spin quantum computers 
[23-261. The role of the nuclear spin is now played by the 
coherence vector. The spin of the nucleus is manipulated by 
a strong constant magnetic field and a weaker alternating one 

T4=37ctil4y. 

while a QCA implementation uses external electrodes to 
control the interdot tunneling barrier and determine the time 
dependence of the Hamiltonian. (However, the same effect 
could be achieved by electromagnetic pulses, as in the case 
of any optically driven two-level system.) In case of the spin 
quantum computer there is a spin-spin coupling while the 
QCA cells are coupled Coulombically. The classical analogy 
of a spin-1/2 system is a magnetic dipole. The classical anal- 
ogy of a QCA cell is an electric quadrupole. The QCA cells 
are accessible individually. 

4. Basic operations with the S-matrix 
description 

In this section the two basic rotations (around the -x and z 
axes, respectively) and two of the basic operations (NOT and 
MCCNOT) will be described by the S-matrix description. 
This description is widely used in the literature [18,21] and 
fully characterizes the new quantum gates. 

The dynamics of the state function is given by the time 
dependent Schrodinger equation. By integrating the 
Schrodinger equation and supposing that the Hamiltonian is 
time independent for O<t<T, the state at time T can be given 
as 

where the unitary S-matrix describes the change in state due 
to the Hamiltonian. It has two variables: y, the interdot tun- 
neling, and cp, the angle of rotatioz. The duration can be 
given with the rotation angle: T=cp/lT I. 

For the ~m case and for cp rotation, the S-matrix is 
given as: 

r 1 

(For simplicity, Eo=O was taken.) For the NOT operation 
g=n and 

SNOT = iox 

Using the above operator as a logical gate we find the fol- 
lowing state transitions: 

11) 3 il-1); 1-1) =+ ill) 
The quantum gate operation of the NOT can be demon- 
strated using a superposition state as input: 

44 



For the y=O case the S-matrix will be given in the three 
QCA cell product basis with the basis vectors: 

1-1, -1, -l), 1-1, --1, l), 1-1, 1, -l), ...) 11, 1, 1) 

In the new basis the S-matrices are 8x8. The following 
S-matrix is computed from the Hamiltonian of three coupled 
QCA cells (for shortnl-ss, this computation is not written 
here): 

The S-matrix of the MlCCNOT is given as a series of three 
rotations: 

The result is the following: 

where abc and a'b'c' rnean the three bit combination deter- 
mining the column and row of the 8x8 matrix. The 6 is one if 
the value of its two indices are equal, otherwise it is zero. It 
can be seen that in case of 010 or 101 inputs there is a 180" 
phase shift, indicated b y  the -1 term. 

5. Conclusions 

In this paper a quantum computer architecture was proposed 
consisting of an 1D array of QCA cells. We have demon- 
strated how to realize the NOT, the controlled NOT and a 
three-bit quantum gate, the modified controlled controlled 
NOT operation. Furthermore, the formulas employed allow 
us to extend into the dissipation regime. 
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