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Signal Processing with Near-Neighbor-Coupled
Time-Varying Quantum-Dot Arrays

Árpád I. Csurgay, Fellow, IEEE, Wolfgang Porod, Senior Member, IEEE, and Craig S. Lent

Abstract—The Nano-Devices Group at the University of Notre
Dame proposed a new device that encodes information in the
geometrical charge distribution of artificial (or natural) molecules.
Functional units are composed by electrostatic coupling. In these
units, processing takes place by reshaping the electron density of
the molecules, and not by switching currents [1]. Signal processing
potential of next-neighbor-coupled cellular nonlinear networks
(CNN’s) has been recently explored with the conclusion that
local-activity of the cells is necessary to exhibit complexity [2].
It will be shown that Coulomb-coupled time-invariant artificial
molecules behave like nonlinear locally passive devices, thus
signal-power-gain or multiple equilibria cannot be achieved by
integrating them. However, the signal input–output relation of
strongly nonlinear molecules can be varied in time by adiabatic
pumping, called clock control. It will be shown that strongly
nonlinear time-varying molecules can transform the necessary
amount of clock energy into the signal flow, thereby enabling the
network of molecules to perform signal processing.

I. INTRODUCTION

NANOELECTRONICS faces three major challenges:

1) the emergence of new and macroscopically visible
quantum phenomena;

2) integration via equipotential wires deteriorates device
performance, thus system integration needs new ap-
proaches;

3) as device size shrinks the increasing power dissipation
becomes intolerable.

The physics and fabrication technologies of nanostructures
are reasonably well understood. Chemists and both experi-
mental and theoretical physicists have been recently and are
continuously exploring the meso-scale. A large variety of
discrete nanodevices have been proposed and built, but still a
large gap exists between device physics and nanoelectronic
systems integration. In order to create a viable integrated
nanosystem, the three major challenges mentioned above must
be coherently addressed.

The Nano-Devices group of the Electrical Engineering De-
partment at the University of Notre Dame has been studying
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the potential engineering applications of meso-scale physics for
more than a decade. According to the Notre Dame proposal:

1) quantum phenomena (tunneling, discrete molecular
spectra) should and could be used for nanoscale signal
processing;

2) near-neighbor-coupled cellular networks are promising
as architectures for nanoelectronic processors;

3) dissipation could be radically decreased by encoding in-
formation into the ground state geometrical charge distri-
bution of artificial (or natural) molecules, and composing
functional units by electrostatic coupling. In these units,
processing takes place by reshaping the electron density
of the molecules, and not by switching electron currents.

In order to design large-scale integrated nanosystems a hi-
erarchy of models has to be established from device dynamics
to system functions. In case of large-scale systems composed
of strongly coupled quantum devices, the accurate modeling
is a formidable task. In this paper, we restrict ourselves to a
molecular array which can be described by a restricted class
of models. We assume that the array is composed of quantum
devices, called “molecules,” whose internal dynamics can be
approximated by a finite-state model, but the molecules are far
enough from each other; thus, a classical model of the inter-
molecular forces is accurate enough. This assumption results in
a semiclassical approach.

However, the density matrix or equivalently the coherence
vector description of the internal dynamics of this restricted
class results in a set of coupled nonlinear differential equations.
The state equations of a coupled molecular array show strong
similarities to nonlinear circuit equations. An analogy between
the voltage–current relationship of-ports and the coherence
vector-Hamiltonian relationship of two-state molecules will be
recognized. This analogy helped us to identify locally passive
and locally active molecular arrays, which give an important in-
sight into the realizability of integrated nanosystems.

II. QUANTUM-DOT CELLULAR ARRAY: QCA

A scheme for computing with networks of coupled quantum
dots has been proposed [1]. The physical mechanisms for in-
teractions between the dots are the Coulomb interaction and
quantum-mechanical tunneling.

To illustrate the proposal let us consider an artificial “mole-
cule” encoding information in its geometrical charge configura-
tion containing four quantum dots (electron sites) as schemat-
ically shown in Fig. 1. The dots are shown as the open circles
which represent the confining electronic potential. Let us as-
sume that the “molecule” is occupied by two electrons, which
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Fig. 1. Four quantum dot two-state artificial molecule.

are schematically shown as the solid dots. The electrons are al-
lowed to “jump” between the individual quantum dots in a mole-
cule by the mechanism of quantum mechanical tunneling. Tun-
neling is possible on the nanometer scale when the electronic
wave-function sufficiently “leaks” out of the confining potential
of each dot, and the rate of these jumps may be controlled during
fabrication by the physical separation between neighboring dots
or by a confining potential. The two electrons experience their
mutual Coulombic repulsion, yet they are constrained to occupy
the quantum dots. If left alone, they will seek, by hopping be-
tween the dots, the configuration corresponding to the physical
ground state of the cell. It is clear that the two electrons will tend
to occupy different dots because of the Coulomb energy cost as-
sociated with bringing them together in close proximity on the
same dot. It is easy to see that the ground state of the system will
be an equal superposition of the two basic configurations with
electrons at opposite corners, as shown in the figure.

We may associate a “polarization” with a specific arrange-
ment of the two electrons in each molecule. Let us label the four
dots in the following fashion: starting from the upper right-hand
corner, we label the dots in the four corners from 1 to 4. We also
denote the electron density in dotby , with the constraint
that in each cell, the sum of all the dot occupancieshas to
add up to a total of two electrons. With that, we can define a
molecule’s polarization as

(1)

Note that this polarization is not a dipole moment, but a mea-
sure for the alignment of the charge along the two diagonals.
A polarization of results if cells 1 and 3 are occupied,
while electrons on sites 2 and 4 yield . Any polarization
between these two extreme values is possible, corresponding to
configurations where the electrons are more evenly “smeared
out” over all dots. The ground state of an isolated molecule is a
superposition with equal weight of the two basic configurations,
and therefore has a net polarization of zero.

This configuration has been studied by solving the
Schrödinger equation using a quantum mechanical model
Hamiltonian [5]. For the relevant literature see also [9] and
[15]. A Hamiltonian of the extended Hubbard type was used
to describe the QCA cell, or “molecule” as we call it. Each
quantum dot was treated as an electron site. About the details,
we refer to the literature, but suffice it to say that the equation

of motion depends on the quantized energy levels of each dot,
the coupling between the dots by tunneling, the Coulombic
charge cost for a doubly occupied dot, and on the Coulomb
interaction between electrons in the same molecule, and also
with those in neighboring molecules.

The solution of the Schrödinger equation, using molecule ge-
ometry with experimentally reasonable parameters, confirmed
the intuitive understanding that the ground state is a superposi-
tion of the and states. In addition to the ground
state the Hamiltonian model yields excited states and molecule
dynamics.

Weakly coupled molecules have also been studied. The
two polarization states of a molecule will not be energetically
equivalent if the molecule is in a nonuniform electric field,
if, e.g., other molecules are nearby. It has been assumed that
the molecules are far enough apart that the overlap between
their wavefunctions can be ignored, i.e., only intramolecular
tunneling takes place, and there is no electron exchange
between molecules [23]. With these assumptions the extended
Hubbard-type model has been studied for two molecules, and
also for one and two-dimensional (2–D) arrays of molecules.

Extensive studies have been performed to understand the dy-
namics of weakly coupled arrays composed of cells built on spe-
cific material systems. The studies have indicated that a two-
state model describing the dynamics of individual molecules,
together with an intermolecular force model at the level of the
Hartree–Fock approximation are leading to promising models.
These approximate models can be used to simulate integrated
networks of weakly coupled two-state molecules.

III. T HE TWO-STATE APPROXIMATION

We assume that the molecular array will perform ground-state
signal processing. This proceeds in three steps:

1) first, the initial data is set by fixing the polarization of
those cells at the edge, which represent the input infor-
mation (“edge-driven” computation);

2) next, the whole array is allowed to relax (or it is adiabati-
cally driven) to the new ground state, compatible with the
input cells kept fixed (computing with the ground state);

3) finally, the results of the computation are read by sensing
the polarization of those cells at the periphery which rep-
resent the output data.

Thus, we have assumed that the dynamics of our array is al-
ways close to the ground state, and we can rely on the two-state
approximation. We describe the quantum state of a molecule
using two basis states which are completely polar-
ized

(2)

Here and form a complete set of probability amplitudes.
The probability of finding the molecule in state as an out-
come of a measurement is , and finding it in state is

. Assuming that the two basis states are the only admissible
eigenstates, we get

(3)
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Using and , the polarization defined above is given by

(4)

If there are a set of molecules arranged on a two-dimen-
sional (2-D) array, and tunneling is restricted to the interior of
the molecules, then the Coulomb interaction between adjacent
molecules increases the energy of the configuration if the polar-
izations differ. This can be accounted for by including an energy
shift corresponding to the weighted sum of the neighboring po-
larization. We define this weighted sum for moleculeas fol-
lows

(5)

where the sum is over an appropriate neighborhoodaround
the molecule . The weights can be calculated directly from the
Coulomb interaction between the molecules. In the presence of
other molecules, the energy of the two basis states becomes dif-
ferent. The Hamiltonian for each molecule can then be written
as

(6)

where is the interdot tunneling energy and is the elec-
trostatic energy cost of two adjacent fully polarized molecules
having opposite polarization. If we assume that there are no
quantum entanglements between molecules and no dissipative
contact with the environment, then the dynamics of the array is
simply given by a set of coupled Schrödinger equations for each
molecule:

(7)

This approach treats the exchange and correlation effects ex-
actly within each molecule and treats intermolecular interac-
tions at the level of the Hartree–Fock approximation.

Without loss of generality, can be considered real because
the spinors

and

represent the same state for any real. Thus, the state is repre-
sented by two real variables, , and the phase of

However, we can expressand as a function of

and (8)

thus the polarization and the phase anglecan be introduced
as new state variables [6], and (7) can be transformed to

(9)

(10)

where are the polarization and phase of theth
molecule, and represents the effect of the neighboring
molecules on the th one according to (5). State equations (7)
and (9) and (10) are inherently lossless and the phenomena of
relaxation to ground-states are not taken into account.

IV. DENSITY MATRIX DESCRIPTION OFMOLECULAR ARRAYS

An alternative description of the state of a molecule is to char-
acterize it by the density operator (or density matrix)

(11)

Note that is Hermitian and the sum of its diagonal elements
is one

(12)

Every 2 2 matrix can be expanded as

(13)

where is the 2 2 unit matrix, and , and are the Pauli
matrices

(14)

If is Hermitian are real numbers, and if
is 1, then . From (11) and (13), we get

(15)

Let us introduce a three-dimensional (3-D) vectorwhose
components are , respectively. Note that the polariza-
tion introduced above is , and

, thus

(16)

and

(17)

Let us chose , called coherence vector [7], as the state-
variable of molecule . Thus, the state is represented by a 3-D
vector of unit length, and the dynamics of a lossless molecule
is described by the time-varying direction of thevector. Note
that the number of independent state variables is again two.

We have seen that the dynamics of the probability amplitudes
is determined by the time-dependent Schrödinger equation (7)

(18)

We also know that
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Substituting (13) into this equation and solving it for the time
derivatives of , and by comparing the four matrix ele-
ments of the left and right side, we get

The time derivative of the coherence vectorcan be ex-
pressed as the vector product of a 3-D vector

(19)

called Hamiltonian vector, and itself

(20)

Note that (17) follows immediately from (20), because

The fully polarized state corresponds to , ,
and the state to .

The Hamiltonian for molecule is now represented by a
Hamiltonian vector in three dimensions

(21)

V. MODELING THE DISSIPATION OF THEARRAY

In order to simulate the dissipation we introduce models
based on the SU(2) damped Bloch equations describing the
quantum dynamics of open two-state systems [7].

In the coherence vector formalism, the effect of two types of
small losses, which ensures the relaxation to the ground states,
and also the phase-randomizing which results in a depolarizing
process associated with the contact to the environment can be
built into the model [8], [9]

(22)

where is the quantum mechanical depolarizing time associ-
ated with the contact to the environment andis the inelastic
(dissipative) relaxation time. The environment here includes ev-
erything but the other molecules in the array, whose interactions
are included explicitly. The polarization of the molecule is
given by . If we neglect the interaction with the
environment then the length of equals
to unity and is a constant of motion.

If is constant in time and there are no losses, pre-
cesses about with a constant angular velocity

(23)

The thermal fluctuations of the environment causes phase-
randomizing, which destroys polarization and drives to-
ward . The dissipation to the environment adsorbs ex-
cess energy and drives toward , i.e., toward
the ground state.

The energy of a molecule changes in time according to

(24)

In ground state , and the role of thermal
fluctuations can be characterized by a temperature ratio

(25)

where is the Boltzmann constant andis the temperature.
It has been shown [10] that the dynamics of a molecule can

be given by the state equation

(26)

The coherence vector in the ground steady state

(27)

Note that is an equlibrium state because .
If molecule is coupled to all molecules in a specified neigh-

borhood, then in

(28)

the sum of the product of exchange energies and polar-
ization should be extended to all neighbors in the specified
neighborhood.

VI. QCA LOGIC GATES

The two-state models are in good agreement with the quan-
titative studies of the extended Hubbard type models, but being
much simpler, there is a hope that they can be used successfully
in the network design of integrated systems.

First, let us study the interactions between two molecules,
each consisting of four dots and each occupied by two electrons.
The electrons are allowed to tunnel between the dots in the same
molecule, but not between different molecules. Since the tun-
neling probabilities decay exponentially with distance, this can
be achieved by having a larger dot–dot distance between cells,
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Fig. 2. Molecule–molecule coupling.

than within the same cell. Coupling between the two cells is
provided by the Coulomb interaction between the electrons in
different cells.

Fig. 2 shows how one molecule is influenced by the state of
its neighbor. The inset shows two molecules where the polariza-
tion of molecule 1 is determined by the polarization of its
neighbor . The polarization of molecule 2 is presumed to be
fixed at a given value, corresponding to a certain arrangement
of charges in molecule 2, and this charge distribution exerts its
influence on molecule 1, thus determining its polarization.
The important finding here is the strongly nonlinear nature of
the molecule–molecule coupling. As shown in the figure, mol-
ecule 1 is almost completely polarized even though molecule 2
might only be partially polarized. For example, a polarization of

induces almost perfect polarization in molecule 1, i.e.,
. In other words, even a small asymmetry of charge in

molecule 2 is sufficient to break the degeneracy of the two basic
states in molecule 1 by energetically favoring one configuration
over the other.

The abruptness of the molecule–molecule response function
depends upon the ratio of the strength of the tunneling energy
to the Coulomb energy for electrons on neighboring sites. This
reflects a competition between the kinetic and potential energy
of the electron. For a large tunneling energy, an electron has a
tendency to spread out more evenly over the available dots, and
the nonlinearity becomes less pronounced. Stronger Coulomb
coupling tends to keep electrons apart, and the nonlinearity be-
comes more pronounced. Properly designed molecules will pos-
sess strongly nonlinear coupling characteristics.

Next, we will show that the physical interactions between
molecules may be used to realize elementary Boolean logic
functions [11]–[13].

Fig. 3 shows examples of simple molecular arrays. In each
case, the polarization of the molecule at the edge of the array is
kept fixed; this is the so-called driver molecule and it is plotted
with a thick border. We call it the driver since it determines
the state of the whole array. Without a polarized driver, the
molecules in a given array would be unpolarized in the absence
of a symmetry-breaking influence that would favor one of the
basis states over the other. Each figure shows the molecular po-
larization corresponding to the physical ground state configura-
tion of the whole array.

Fig. 3(a) shows that a line of molecules allows the propaga-
tion of information, thus realizing a binary wire. Note that only
polarization (charge configuration encoding information), but

Fig. 3. Molecular arrays realizing elementary logic functions: (a) wire,
(b) corner, (c) fan-out, and (d) inverter.

Fig. 4. Majority logic gate.

no electric current flows down the line. Information can also
flow around corners, as shown in Fig. 3(b), and fan-out is pos-
sible, compare Fig. 3(c). A specific arrangement of cells, such
as the one shown in Fig. 3(d), may be used to realize an inverter.

These quantum-dot networks, or “artificial molecular ar-
rays” are examples of quantum-functional devices. Utilizing
quantum-mechanical effects for device operation may give rise
to new functionality. Fig. 4 shows a majority logic gate, which
simply consists of an intersection of lines and the “device
molecule” is just the one in the center. If we view three of the
neighbors as inputs (kept fixed), then the polarization of the
output cell is the one which “computes” the majority votes of
the inputs. The figure also shows the majority logic truth table
which was computed as the physical ground state polarization
for a given combination of inputs.
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Fig. 5. Quantum wire and quantum dot confined by electrostatic split gates.

Note that conventional AND and OR gates are hidden in the
majority logic gate. Inspection of the majority-logic truth table
reveals that if input is kept fixed at 0, the remaining two in-
puts and realize an AND gate. Conversely, if is held at
1, inputs and realize a binary OR gate. In other words, ma-
jority logic gates may be viewed as programmable AND and
OR gates.

Figs. 5 and 6 illustrates some of the possible realizations of
QCA molecules. In Fig. 5, the electrostatic split gates are shown
resulting in “wire”-like and “dot”-like quantum confinement
[14], [15].

Fig. 6 illustrates the three possibilities of the realization of a
QCA molecule:

1) the semiconductor quantum dot cell;
2) the metal-island QCA;
3) molecular QCA.
The fabrication of QCA cell by split-gate technology is a

challenging problem, yet appears to be within reach of current
lithographic capability. Fig. 5 shows a possible physical realiza-
tion which is based on electrostatic confinement provided by a
top metallic electrode.

In addition to the semiconductor systems single-electron tun-
neling phenomena may also be observed in metallic tunnel junc-
tions. Consider a ring of metallic tunnel junctions, shematically
shown in Fig. 6(b). The tunnel junctions are represented by the
crossed capacitor symbols, indicating that these junctions are
characterized by capacitance and tunnel resistance. The metallic
droplets themselves are the “wires” between these tunnel junc-
tions. Consider now that two extra electrons are added to such
cell, as shematically shown in the figure. It has been shown
that this cell exhibits precisely the same two distinct ground
state configurations as the semiconductor cell. In addition, the
cell–cell coupling also shows the same strongly nonlinear satu-
rating characteristic. The first experimental implementation of
a QCA-type majority gate has been demonstrated by rings of
metallic tunnel junctions [21].

QCA room temperature operation would require molecular-
scale implementations of the basic cell. Molecular chemistry
promises to offer the versatility for the desired miniaturization.
A candidate for such a prototypical molecular cell has been syn-
thetized and christallographically characterized [25]. As she-
matically illustrated in Fig. 6(c), these molecular substances
with the formula M {(CO) Co CC) } , where M Mo, Mn,
Fe, Co, Cu, consist of square arrays of transition metal clus-
ters: each containing three cobalt atoms. It is remarkable that
the four clusters are arranged in a (flat) square, as opposed to
a (3-D) tetrahedron. Each cell has an edge-to-edge distance of

about 2 nm, which is precisely the desired dimension for QCA
room temperature operation.

VII. T HE ROLE OFDEVICE-ACTIVITY IN SIGNAL PROCESSING

The signal processing potential of nonlinear networks has
been recently explored with the fundamental conclusion that
local-activity of the cells is necessary to exhibit complexity [2].
To write, store, transform, transmit and to read information, i.e.,
to process signals in a broad sense can not be performed without
exhibiting complexity, thus local activity is a necessary condi-
tion of signal processing as well.

Thesine qua nonof information processing is 1) the ability
to achievesignal-power-gainand 2) to have units withmultiple
equilibria. Until now, both have been based onactive devices
with the ability to transform power from anenergy sourceinto
thesignal-flow.

The role of the energy source is played bydirect-current
power suppliesin case of vacuum-tube and transistor amplifiers,
by time-varying pumpsin case of masers, lasers, and also in case
of low noise varactor amplifiers of radio astronomy. The clock
signals in computing are fulfilling this role as well. The molec-
ular signal processors in plants performing photosynthesis are
pumped by solar energy, and the molecular processors in ani-
mals are fueled by the energy of metabolism.

The 50 glorious years of the solid-state transistor demon-
strates how a three-terminal tiny device on a silicon chip can
efficiently transform the chemical energy stored in a battery
into signal-energy, and by achieving this to become a universal
active device of the information technology. In the transistor
the chemical energy of a battery is transformed into kinetic en-
ergy of the majority and minority carriers, then the signal per-
turbing the flow of the minority carriers controls the flow of
the majority carriers and this results in significant power-gain,
because quantum-statistics insures that the product of majority
and minority carrier concentrations is constant. The transistor is
aactive device par excellence, and the workhorse of microelec-
tronics.

Why is device activity necessary for signal processing?In
case of the amplifiers with signal-power gain the answer is self-
evident. But is device activity a necessary property of computing
as well? Is it not possible to build a computer from passive de-
vices, e.g., just from switches?

The model of the simplest binary processor consists of two
parts; a tape (memory) and a finite-state machine, which moves
over the tape, reads its content and writes on it. Indeed, no pro-
cessor exists without devices capable of storing bits, which can
be written-in, held, read, and rewritten again.

The simplest model of a single-bit memory cell is a device
having two well distinguishable physical states, one of them
assigned to logic value “1,” the other to logic value “0.” We
want the device to hold its state until we decide to reset it.
Thus, the simplest memory cell should have two inputs. If
both inputs stay in state “0,” the device should hold its value,
thus it can be in “0” or in “1.” Thus, in this device, for the
same boundary values two different equilibrium states should
hold: “0” and “1,” thus it is necessary to have devices with two
distinguishable equilibria.
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Fig. 6. QCA molecule realized by (a) semiconductor quantum dot cell, (b) metal islands, and (c) carboxylates molecule.

The existence and uniqueness of equilibrium states of
networks composed of linear and nonlinear devices have been
studied [16]. It has been shown that-port networks with
state , port currents , and port voltages , which are
described by nonlinear dynamic equations (Fig. 7)

(29)

the local dynamics around existing equilibrium points provide
information about the global behavior of the network as a whole.
The equilibrium points are defined by

(30)

Note that in microelectronics this equilibrium is built up
by a direct current (dc) power supply. If no signal dynamics
takes place, the network is assumed to stay in its equilibrium
state. When a small signal is switched on, the direction of the
dynamics depends on the perturbation of the state equations
around the equilibrium point, in which the network stayed
before the signal input.

If we introduce infinitesimal perturbations and neglect the
higher order terms of perturbing voltages and
currents, we obtain a set of linearized state equations, the so
calledlocal state equation at an equilibrium point. The relation
between these-port currents and voltages is linear.

The signal power flow corresponding to the given perturbing
signals (boundary conditions) around the equilibrium state, sub-
ject to zero initial states, can be given as

(31)

Fig. 7. Nonlinear dynamicn-port.

The local power flow at time at the equilibrium point is
the instantaneous signal power flowing into the network. If
is negative then power flows from the network into the signal
sources. The sign of the local power flow can change in time, but
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for passive devices and passive networks, the integrated local
power flow is positive

(32)

for any , i.e., the network cannot deliver more energy
than the amount it had absorbed before. A device or a network
of devices is calledlocally passiveif at every equilibrium point
(32) holds, and it is calledlocally activeif there is at least one
equilibrium point at whichit is not passive. Note that diodes or
switches are examples of locally passive nonlinear resistors.

It has been shown that networks composed of locally pas-
sive devices are locally passive, i.e., local passivity is a closure
property, and the network of Fig. 7 has aunique and asymptoti-
cally stable equilibrium pointif all devices (nonlinear resistors,
capacitors, and inductors) arelocally passive, and there is no
loop formed exclusively by capacitors, or no cut-set exclusively
formed by inductors. Thus, a network composed of locally pas-
sive devices can not have multiple equilibria.

Without the ability to transform power from anenergy source
into thesignal flow, i.e., by applying exclusively locally passive
devices and time-invariant energy sources (dc power supplies),
we cannot achieve 1)signal-power gainand/or 2)controllable
multiple equilibria. Thus local activity is anecessary condition
of the realizability of 1)amplifiers and/or 2)read, hold,and
write memory cells.

We have seen that local activity is a property of a linear
system, namely, of a linear-port. There exist many equivalent
passivity criteria in the literature for testing the passivity of
linear -ports. The criteria are given as necessary and sufficient
conditions on the impedance, admittance or scattering operators
of the linear -port. These operators relate the Laplace-trans-
form of the port voltages and currents, or the incident and
reflected waves, thus they are represented by matrices whose
elements are functions of a complex variable.

(33)

(34)

A matrix as a function of the complex variable is the
impedance (or admittance) matrix of a linear passive-port
if and only if it is positive real(PR), or equivalently it is the
scattering matrix of the -port if and only if the matrix is
bounded real(BR) [17]. A matrix is positive real (PR) if and
only if the following four conditions are met:

1) on the open right half plane ofthe matrix has no poles;
2) along the imaginary axes ofthe matrix plus its conjugate

transpose is positive semidefinite;
3) the matrix does not have multiple poles on the imaginary

axes;
4) at simple poles on the imaginary axes the associated

residue matrix is a positive semidefinite Hermitian matrix.
If any one of the four criteria of positive reality is not met,
the -port islocally active.

VIII. G ROUND-STATE MOLECULESARE LOCALLY PASSIVE

A. A “Driver” and a Driven Molecule

In order to build an analogy between the voltage–current
relationship of -ports and the coherence-vectors of two-state
molecules, let us first have a look at a pair of two coupled
molecules. Let us assume that both are in equilibrium states

and . Thus, the polarizations and are also
fixed, i.e., and at equilibrium.

In equilibrium state . In case of small losses,
(26) in equlibrium reads for

(35)

To solve (35) in a matrix form let us simplify the notations
for the constants, such as

(36)

Equation (35) in matrix form

(37)

Equation (37) has a unique solution, because the matrix to be
inverted is not singular. Solving (37), we get

(38)

The energy content of molecule (2) according to (24)

(39)

At equilibrium the energy of the molecule

(40)

or in our single-driver case

(41)

Let us assign to molecule (2) formal “charge” and “voltage”
vectors

(42)
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where As is the value of the electrons’
charge, and VAs is the Planck’s constant
per . The energy of molecule (2) can be expressed by
and : .

We have two coupled molecules. Molecule (1) is the “driver,”
molecule (2) is “driven.” This means that we force as a
function of time about its equilibrium state

(43)

i.e., is given. This means that through (42) molecule
(1) determines the voltage vector of molecule (2). Note that mol-
ecule (2) is driven only through its “”-port, thus looking at mol-
ecule (2) from molecule (1), it is a one-port, driven by .

In this single-driver and single-driven molecule case, mol-
ecule (2) is a nonlinear one-port, with three state-variables,

, and driven by a voltage source.
Let us follow Chua’s procedure in checking the local proper-

ties of the one-port in the neighborhood of the equlibrium point.
We linearize the state equation (26) in the neighborhood of.
We have to take into account the perturbation of as well, be-
cause depends on the neighbor’s polarization. Thus,

, and .
Substituting the perturbed vectors into (26) we get

(44)

Note that we recognized , and
is negligible. In (44)

(45)

because is an equilibrium coherence vector

(46)

(47)

and

(48)

is the difference between two unit vectors. Note that both of
them lie in the – plane, thus both vectors can be characterized
by an angle

(49)

and

(50)

For small phase difference

(51)

The equilibrium can be expressed by , because
, thus .

Substituting (45)–(51) into (44), we get a set of linear differ-
ential equations describing the perturbed dynamics at equilib-
rium. This set of local state equations can be solved for the state
variables , and by applying Laplace-trans-
form. This way we can relate the port-variables.

(52)

Equation (52) can be solved by Laplace-trasform technique.
The initial conditions for can be set to zero, because the
perturbed dynamics starts from an equilibrium. The one-port
admittance

(53)

where and are positive constants. When losses decrease
and .
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The admittance given by (53) is positive real (PR). (It is the
admittance of two passive circuits.) The four criteria of
positive reality are clearly met.

From the positive reality of impedance (53) it follows
that time-invariant two-state molecules described by state
equation (26) are locally passive, thus the arrays composed
of them cannot possess multiple equilibria or cannot realize
signal-power-gain.

IX. SIGNAL PROCESSING WITH“TIME-VARYING” DEVICES

We have seen that systems composed of time-invariant and
locally passive devices cannot process signals, because neither
signal-power-gain nor multiple equilibria are achievable. How-
ever, a locally active device can transform the power of a dc
supply into a time-varying power supply, which can generate
sinusoidal or time-varying clock-signal like voltage.

If a strongly nonlinear locally passive device is integrated
with a time-varying power generator, e.g., with a clock signal
source, then for the small signals to be processed this combined
circuit will behave like a device with “time-varying” parame-
ters.

We have seen that the QCA molecule is a strongly nonlinear
device. The off-diagonal Hamiltonian matrix elementcan be
controlled by the voltage of a metal gate. If the value ofis
small compared to , then the polarization will saturate near

and , and the response will be close to a step function. As
is increased, both the slope and the saturation values decrease.

For high enough , the polarization can be fixed near zero. This
control can be used for adiabatic switching.

Adiabatic switching of two-state molecules described by
state-equations (7) or (26) has been introduced to control the
inelastic processes relaxing the molecule to its ground state
[9]. To avoid undesirable metastable traps during the desirable
relaxation to the true ground state a mode of switching was
introduced in which the QCA always remains in its instanta-
neous ground state. The quantum mechanical adiabatic theorem
states that if the Hamiltonian of a system undergoes a gradual
(sufficiently slow) change from an initial to a final form, and
if a particle starts in the th nondegenerate eigenstate of the
initial Hamiltonian, it will be carried under the time-dependent
Schrödinger equation into theth eigenstate of the final
Hamiltonian.

If the interdot barriers, i.e., the parameterin the state equa-
tion (26) can be controlled from outside, the molecules can be
switched adiabatically by lowering the interdot barriers within
the molecule and switching the input signal, followed by raising
the barriers. The theorem guarantees that the system, which
starts in the ground state of the initial Hamiltonian, will be car-
ried smoothly into the ground state of the new Hamiltonian.
Fig. 8 shows a schematic diagram of the adiabatic switching.
The system begins in the ground state appropriate to an old
input. Lowering the interdot barriers reduces the confinement
of the electrons on the individual quantum dots, while removal
of the old input removes the external boundary condition that
was driving the system into one of the polarization states. The
two-electron wavefunctions become delocalized across the mol-
ecule. Next, the new inputs are being applied and the interdot

Fig. 8. Adiabatic switching.

barriers are raised, thus the electrons become localized and the
molecules are driven into the polarization state corresponding
to the new input.

The very same adiabatic control mechanism of molecules can
be introduced to realize molecules with slowly (adiabatically)
time-varying interdot barriers, i.e., with time-varyingparam-
eters. The energy dissipated to the environment will be restored
by power flowing from the control electrodes into the molecules.

Using time-varying control of addressable memory units
can be constructed. Fig. 9 illustrates the molecular array which
realizes an SR flip-flop with the help of a four-phase clock-
control [18].

Let us assume that at the beginning of a clock period the
state of is either “0” or “1.” Clocks #4 and #3 are down,
i.e., all the molecules controlled by them are in the same state
as . If “0,” the output of majority gate (NOT

, “0,” ) results in , and ( , “1,” ) is also . Thus the
molecules controlled by clock #2 are also in state. We lower
clock signals #1 and #2 and then set or reset the flip-flop. If
we set “1,” then independently of the value, the output
of majority gate ( , “1,” ) becomes “1,” which through the
molecules controlled by clock #2, #3 and finally #4 set every
molecule, including into “1.” If instead of setting ,
we reset “1,” then the output of majority gate (NOT ,
“0,” ) will become “0,” which sets the output of the (, “1,”

) to “0,” thus will become “0.”
It is envisaged that a rich variety of time-varying molecular

networks can be realized by multiphase adiabatic clock sig-
nals. Subarrays of molecules could be connected to each clock
signal, and a multiphase adiabatic clocking scheme could con-
trol the signal flow. It can be shown that a four-phase clock can
provide a time-varying environment for addressable memory
and programmable logic arrays, thus for general purpose com-
puting.

The lack of local activity in artificial molecules and the geo-
metrical difficulties of the adiabatic clock control (high-density
wiring) call for a new approach which combines locally passive
quantum dot-arrays with locally active resonant-tunneling de-
vices and field-effect transistors. Clock signals cannot be gen-
erated but with the help of transistors. The interface between



1222 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 8, AUGUST 2000

Fig. 9. (a) Single-bit memory: SR flip-flop. (b) SR flip-flop realized by four-phase clocked QCA.

the molecular processing units and the environment could only
be realized by transistors as well. Thus, the first generation of
nanoelectronic chips will most probably be built as a combined
network of time-varying (i.e., clock controlled) quantum-dot
arrays, resonant tunneling devices, and field-effect transistors.

In principle, universal digital processors could be constructed
and built from adiabatically controlled two-state molecules
alone. However, the challenges of integration, the formidable
difficulties of wiring the adiabatic control on a chip of large
complexity calls for locally connected cellular architectures.
The paradigm of cellular-nonlinear-network universal machines
(CNN-UM) [19] provide a natural architectural concept for
nanoelectronic signal processing. It is envisaged that a robust
nanoelectronic CNN-UM cell itself could only be realized
by a circuit composed not only of adiabatically controlled
molecules, but transistors as well. The more functions are
solved by molecules, the smaller, the faster, and lower power
the chip could be.
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