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1 Introduction

There are two main approaches to the problem of comparing DNA sequences: alignment
methods and alignment-free methods. In alignment methods, the classical multiple se-
quence alignment (MSA) method is widely used. Although it has the highest accuracy
among DNA similarity analysis methods, time complexity becomes too large for a large
dataset of long DNA sequences.In alignment-free methods, several methods have been
proposed to reduce time complexity while maintaining a high accuracy in comparing
DNA sequences. In general, an alignment-free method based on geometry consists of
two step, the first of which embed each DNA sequence into an Euclidean space, and the
second of which is to compute the similarity matrix based on certain distance-based meth-
ods such as Euclidean distances or correlation angles to realize differences or similarities
among DNA sequences. In a recent work, Nguyen, Le, Xing, and Lin [1] proposed a differ-
ent alignment-free approach which combines geometry with topology of DNA sequences.
In [1], a new 4D representation of DNA sequences was introduced using a chaos in the
four-dimensional Euclidean space R4. Instead of computing similarities/dissimilarities
between DNA sequences based on Euclidean distances or correlation angles as in other
work, Nguyen, Le, Xing, and Lin [1] proposed to explore topological properties of the
sets of 4-dimensional vectors that represent DNA sequences in order to obtain intrinsic
geometrical and topological structures of DNA sequences for similarity analysis. The
main mathematical tools used in [1] are chaos in high dimensions, and persistent homol-
ogy which has recently gained an important role in topological data analysis and related
areas. In this paper, we follow a similar strategy of using persistent homology as in [1] for
DNA similarity analysis, but we use a different geometric 5-dimensional representation
that is based on that of Liao, Li, and Zhu [2]. In [1], Nguyen, Le, Xing, and Lin used
chaos representation in the 4-dimensional space R4 under which persistence diagrams
of DNA sequences will contain nontrivial higher-dimensional homology groups, which in
turn requires more powerful computation power for performing similarity analysis be-
tween DNA sequences, based on Wasserstein distances of order at least one. The main
difference of our present method from [1] is that under our geometric 5D representa-
tion of DNA sequences, persistent homology only contains the zeroth homology group,
which in turn greatly simplifies time complexity for analyzing similarities between DNA
sequences, based on the Wasserstein distance of order zero. Furthermore the zeroth per-
sistence diagrams of DNA sequences based on the 5D representation of DNA sequences
provide a possibly simplest topological visualization of DNA sequences which in many
cases provides a quick assessment of similarities/dissimilarities between DNA sequences.

2 Method

Our method consists of two steps. In the first step, we transform each DNA sequence
into the 5-dimensional Euclidean space R5 so that each DNA sequence of length n can
be represented by a collection of n vectors in R5. In the second step, we compute persis-
tent homology for each such collection of vectors to obtain the persistence diagrams of
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DNA sequences which contain intrinsic topological information of each DNA sequence.
The 5D representation that we use only leads to the nontrivial zeroth persistence dia-
grams of DNA sequences which provide a greatly simple topological visualization of DNA
sequences. It is known that the collection of zeroth persistence diagrams is a metric un-
der the Wasserstein distance of order zero. In order to compare similarities between
DNA sequences, we compute the similarity/dissimilarity matrix using the Wasserstein
distance.

2.1 5-dimensional representation of DNA sequences

In this subsection, we introduce a map that transforms each DNA sequence of length n
into a collection of n vectors in R5. Our construction is based on that in Liao, Li, and
Zhu [2] with slight modification. Let α = a1a2 · · · an be a DNA sequence of length n,
where the ai denotes one of 4 nucleotide bases A, C, G, T. For each 1 ≤ i ≤ n, set

Γ(ai) =


(1, 0, 0, 0, i) if ai = A,

(0, 1, 0, 0, i) if ai = C,

(0, 0, 1, 0, i) if ai = G,

(0, 0, 0, 1, i) if ai = T .

In [2], Liao, Li, and Zhu maps ai = G to (0, 1, 0, 0, i), and ai = C to (0, 0, 1, 0, i)
which is a permutation of the above construction.

Figure 1: 5D representation of part of the DNA sequence of HRV 35-25 from nucleotides
4246 to 4250

2.2 Persistent homology and persistent diagrams

We briefly recall the notion of persistent homology and persistence diagrams that will
apply for analyzing DNA sequences. The reader is referred to [3] for a detailed reference
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about persistent homology and persistence diagrams. For a given nonnegative integer
k ≥ 0 and a collection of k+ 1 points u0, . . . , uk in Rk+1. One can create a convex hull
of this collection in Rk+1 by including all convex combinations of these points of the form∑k

i=0 αiui, where the αi are between 0 and 1 such that
∑k

i=0 αi = 1. We call such convex
hull the k-simplex generated by the points u0, . . . , uk, and denote it by [u0, . . . , uk]. For
a collection of simplexes in Rk+1, say ∆. We call ∆ a simplicial complex if whenever
σ is a simplex in ∆, all d-simplexes contained in σ are also contained in ∆. For such a
geometric object ∆ in Rn, based on algebraic topology, there exists, for each j ≥ 0, an
algebraic structure called the j-th homology group of ∆, denoted by Hj(∆) which
behaves in a similar way as a vector space over R. There is an analogue of dimensions
of vector spaces over R in the setting of homology groups {Hj(∆)}j≥0 that we call the
rank of Hj(∆), a positive integer, which signifies important geometric properties of ∆.
For example, the rank of H0(∆) equals the number of connected components of ∆ in Rn,
and the rank of H1(∆) denotes the number of 1-dimensional holes of ∆.

Let X be a finite set of points, say a1, . . . , am in Rn, and let d denote the standard
Euclidean distance in Rn. For each ε ≥ 0, set

VR(X; ε) = {σ ⊆ X | d(a, b) ≤ ε for any a, b ∈ σ}.

One can verify that VR(X; ε) is a simplicial complex called the ε-Vietoris-Rips com-
plex of X. Let ε0 = −∞ < 0 ≤ ε1 ≤ · · · ≤ εh ≤ · · · be an increasing sequence of nonneg-
ative real numbers. One can form a sequence of simplicial complexes (VR(X; εk))k∈Z≥0

,

and one obtains a filtration of the form

∅ = VR(X; ε0) ⊆ VR(X; ε1) ⊆ · · · ⊆ VR(X; εs) = VR(X; εs+1) = · · ·

which will stabilize at some point εs. For each 0 ≤ p ≤ q ≤ s, the embedding
VR(X; εp) ⊂ VR(X; εq) induces a sequence of natural maps ∂p,qj : Hj(VR(X; εp)) →
Hj(VR(X; εq)). For each j ≥ 0, the j-th persistent homology groups Hp,q

j (X) of X
are the images of ∂p,qj which are ∂p,qj (Hj(VR(X; εp))).

Each element γ in Hp,p
j (X) is called a j-topological feature of X. The j-th

persistence diagram of X is a set of points {(b, d) | 0 ≤ b < d} ⊂ R2, where each
point (b, d) signifies the birth and death times of a j-topological feature γ of
X, i.e., b is the radius in which γ first appears in VR(X; εb) and d is the radius in
which γ gets filled in with a lower dimensional simplex. We denote by PDj(X) the
j-th persistence diagram of X. In our methods, it suffices to consider only the 0-th
persistence diagrams, which correspond to topological features of connectedness of X.

Let X, Y be two finite sets of points in Rn. In order to compare topological features
of X, Y in our methods, we consider the Wasserstein distance of degree 0 between
PD0(X) and PD0(Y ), i.e.,

W0(X, Y ) = inf
δ:PD0(X)→PD0(Y )

∑
(b,d)∈PD0(X)

||(b, d)− δ(b, d)||∞,

where || · ||∞ denotes the L∞-distance between two points in R2.
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2.3 Proposed Method

Our proposed method for reconstructing a phylogenetic tree of DNA sequences is de-
scribed in the following algorithm:

(0) (Input) A collection of n DNA sequences α1, . . . , αn.

(1) Construct the 5-dimensional geometric representation of each DNA sequence αi
from Subsection 2.1 to obtain a finite set of points Xαi

in R5.

(2) Compute the 1st persistence diagrams of the Xαi
to obtain the sets of 0-th persis-

tence diagrams PD0(Xαi
) in R2, using the notions in Section 2.2. We use Python

packages from https://pypi.org/project/persim/ to compute persistence dia-
grams and Wasserstein distances. Note that using the 5-dimensional representation
in Subsection 2.1, all j-th persistence diagrams with j ≥ 1 are empty, which leads
to a very simple way to compare DNA sequences based on the 0-th persistence
diagrams.

(3) Compute the distance matrix of dimensions n×n whose (i, j)-entry is the Wasser-
stein distance W0(PD0(Xαi

),PD0(Xαj
)).

(4) (Ouput) Construct the phylogenetic tree of the DNA sequences from the distance
matrix in Step 3, using UPGMA algorithm (see [4]).

3 Results

In this section, we apply our method described in Section 2 to analyzing three datasets:
Human rhinovirus, Influenza A virus, and Human Papillomavirus (HPV).

3.1 Human rhinovirus (HRV)

HRV is the most common viral infectious agent in humans, and is the main cause of
the common cold. In [5], using multiple sequence alignment, Palmenberg et al. [5]
correctly classified the complete HRV genomes into three genetically distinct groups
within the genus Enterovirus (HEV) and the family Picornaviridae. The dataset used
in [5] consists of three groups HRV-A, HRV-B, HRV-C including 113 genomes, and three
outgroup sequences HEV-C. The time complexity was very high because of the use of
multiple sequence alignment. In this paper, we use the same dataset to test our method.

From the phylogenetic tree of HPV genomes based on our method in Figure 2, we
find that except some genomes of type HRV-C inaccurately grouped together with type
HRV-A, and some genomes of type HRV-A being away from the main branch of type
HRV-A, all other genomes are correctly classified into their corresponding types.
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Figure 2: Phylogenetic tree of 116 HRV genomes of 4 genotypes

3.2 Influenza

Influenza A viruses are very dangerous because they have a wide range of hosts includ-
ing birds, horses, swine, and humans. These viruses have been a serious health threat
to humans and animals (see [6]), and are known to have high degree of genetic and
antigenic variability (see [7, 8]). Some subtypes of Influenza A viruses are very danger-
ous, and lethal including H1N1, H2N2, H5N1, H7N3, and H7N9. We apply our method
on the dataset consisting of 38 Influenza A virus genomes whose accession numbers in
GenBank can be found in the Appendix A (Supplementary data) of [9]. From Figure
4, we find that except A/American black duck/NB/2538/2007-H7N3, A/chicken/British
Columbia/GSC human B/04-H7N3, A/turkey/Minnesota/1/1988-H7N9 inaccurately mis-
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placed in H2N2 group, all other Influenza A genomes are clustered correctly into their
types.

In addition, our proposed method allows one to visually inspect differences between
Influenza A virus genomes in the simplest possible way of persistent homology. For exam-
ple, Figure 3 illustrates identical 0-th persistence diagrams of A/mallard/Maryland/352/2002-
H1N1 and A/mallard/Maryland/26/2003-H1N1 whose highly identical visualization shows
that they should belong in the same branch as indicated by Figure 4. Furthermore the 0-
th persistence diagram A/mallard/Maryland/352/2002-H1N1 shows that the geometric
shape of its DNA sequence has exactly two connected components.

Figure 3: 0-th persistence diagrams of Influenza A virus genomes
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