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ABSTRACT. These are notes for a talk at a topology seminar at ND.

1. GENERAL FACTS

In the sequel, for simplicity we denote the complex projective space CPN by PN , and we denote
the projective coordinates by [~z] = [z0, . . . , zN ]. A smooth projective variety is a connected compact
complex submanifold of some projective space PN . All the smooth projective varieties are Kähler
manifolds, but the converse is not true. An algebraic surface is a smooth projective variety of complex
dimension 2.

A celebrated theorem of Chow [2, Chap. 1, Sec. 3] states that if X ↪→ PN is a smooth projective
variety, then there exist homogeneous polynomials P1, . . . , Pν ∈ C[z0, . . . , zN ] such that

X =
{

[~z] ∈ PN ; P1(~z) = · · · = Pν(~z) = 0
}
.

In other words, all projective varieties are described by a finite collection of homogeneous polynomial
equations.

If X is a smooth projective variety of (complex) dimension n then the tanget bundle TX has a
complex structure and thus we can speak of Chern classes

ck(X) := ck(TX), k = 1, . . . , n.

We also have an isomorphism of holomorphic vector bundles

ΛmT ∗X ⊗ C ∼=
⊕

p+q=m

Λp,qT ∗X. (1.1)

If (u1, . . . , un) are local holomorphic coordinates on X then the smooth sections of Λp,qT ∗X are
locally described by sums of forms of the type

f(u)dui1 ∧ · · · ∧ duip ∧ dūj1 ∧ · · · ∧ dūjq .
For every smooth differential form α of degree m with complex coefficients we denote by αp,q its
Λp,q-component in the Hodge decomposition (1.1).

The holomorphic line bundle Λn,0T ∗X is called the canonical line bundle of X and it is denoted
by KX . Let us point out that

c1(X) = −c1(KX).
From the above equality we deduce that

The algebraic variety X is spinnable if and only if c1(KX) = 0 mod 2. (1.2)

We denote by Hm(X) the space of complex differential forms of degree m on X that are harmonic
with respect to the Kähler metric, and for any closed form α we denote by [α] its harmonic part in the
Hodge decomposition. Then Hodge theory implies that

dimC Hm(X) = bm(X),
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and
[α]p,q = [αp,q], ∀α ∈ Ωm(X)⊗ C, dα = 0, ∀p+ q = m.

We denote by Hp,q(X) the space of harmonic forms of type (p, q), and we set hp,q(X) := dimC Hp,q(X).

Hm(X) =
⊕

p+q=m

Hp,q(X) and bm(X) =
∑

p+q=m

hp,q(X). (1.3)

Moreover, Hodge theory also implies that

hp,q(X) = hq,p(X) = hn−p,n−q(X), ∀p, q. (1.4)

If we denote by Ωp
X the sheaf of holomorphic sections of the holomorphic bundle Λp,0T ∗X then Dol-

beault theorem implies that the space Hp,q(X) is naturally isomorphic to the q-th Čech cohomology
of the sheaf Ωp

X ,
Hp,q(X) ∼= Hq(X,Ωp

X).

Observe that Ωn
X coincides with the sheaf of holomorphic sections of the canonical line bundle so

that the Hodge number hn,0(X) is equal to the dimension of the space of global holomorphic sections
of KX . This integer is known as the geometric genus of X and it is denoted by pg(X). We define the
Euler characteristics

χp(X) ==
∑
q

(−1)qhp,q(X).

When X is an algebraic surface, then the Hodge numbers can be organized in a Hodge diamond

h0,0(X)

h1,0(X) h0,1(X)

h2,0(X) h1,1(X) h0,2(X)

h1,2(X) h2,1(X)

h2,2(X)

where the entries symmetric with respect to one of the two axes are equal. From this symmetry we
deduce that b1(X) = 2h1,0(X) so that the first Betti number of an algebraic surface must be even.
Note that in this case

χ0(X) = 1− h0,1(X) + pg(X) = 1− 1
2
b1(X) + pg(X).

This holomorphic Euler characteristic is given by the Noether formula

χ0(X) =
1
12
(
〈c1(X)2, [X]〉+ 〈c2(X), [X]〉

)
=

1
12
〈c1(X)2, [X]〉+

1
12
χ(X), (1.5)

where χ(M) is the topological Euler characteristic.
The Hodge decomposition (1.3) is compatible with the intersection form. This is the content of the

Hodge index theorem. For simplicity, we state it only for algebraic surfaces.

Theorem 1.1 (Hodge index theorem). If X is an algebraic surface, then it is a smooth oriented real
4-manifold. The second Betti number decomposes as b2(X) = b+2 (X) + b−2 (X), where b±2 (X) is the
number of positive/negative eigenvalues of the intersection form of X . Then

b+2 (X) = h2,0(X) + h0,2(X) + 1 = 2pg(X) + 1, (1.6)
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and the signature τ(X) of X is

τ(X) = b+2 (X)− b−2 (X) = 2pg(X) + 2− h1,1(X).

ut

One consequence of The Hodge index theorem implies that pg(X) and h1,1(X) are topological
invariants of X .

From the identity p1(X) = c1(X)2 − 2c2(X) and the Hirzebruch signature formula we deduce

τ(X) =
1
3
〈c1(X)2 − 2c2(X), [X]〉,

so that
〈c1(X)2, [X]〉 = 2χ(X) + 3τ(X).

Using a bit of Morse theory one can produce some information about the homotopy type of a smooth
algebraic variety. The following is a special case of Lefschetz’ hyperplane theorem.

Theorem 1.2. If X is a compact, complex 2-dimensional submanifold of P3 or P1 × P2 then X is
connected and simply connected. ut

2. DIVISORS

A hypersurface on a smooth projective variety X is a closed set Y locally described as the zero set
of a (nontrivial) holomorphic function.

A point p ∈ Y is called a smooth point if there exists an open neighborhood U of p in X such that
U ∩Y is a smooth submanifold of U . We denote by Y ∗ the set of smooth points. Then Y ∗ is an open
and dense subset of Y . The hypersurface Y is called irreducible if Y ∗ is connected. For a general
hypersurface Y we define its components to be the closures of the connected components of Y ∗.

The hypersurfaces on an algebraic surface are called curves.
We denote by Div(X) the free Abelian group generated by the irreducible hypersurfaces in X .

The elements in X are called divisors on X . Clearly, every irreducible hypersurface defines a divisor
that we denote by [Y ]. Then any divisor D on X can be written as a formal sum

D =
ν∑
i=1

mi[Yi],

where Yi are irreducible hypersurfaces on X called the components of D. The integer mi is called
the multiplicity of D along Yi. The hypersurface Y1 ∪ · · · ∪ Yν is called the support of D and it is
denoted by supp(D).

A divisor D on X is called effective if the multiplicities along its components are all nonnegative.
We will find convenient use Cartier’s descriptions of divisors. Suppose we are given an open

cover U = (Uα)α∈A, nontrivial holomorphic functions pα, qα ∈ O(Uα), and nowhere vanishing
holomorphic functions gαβ ∈ O(Uαβ)∗ such that, if we set

hα =
pα
qα

then

gαβ =
hα
hβ

on Uαβ \ {fβ = 0}. (2.1)
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This defines a divisor D = D(U, {pα, qα}) whose support is the hypersurface

Z = Z0 ∪ Z∞, Z0 =
⋃
α

{pα = 0}, Z∞ =
⋃
α

{qα = 0}.

If Z0,i is a component of Z0. Then we define m0,i as follows. Choose x ∈ Z∗0,i, Uα containing x and
then define m0,i to be the order of vanishing pα along Z∗0,i ∩ Uα. The equality (2.1) guarantees that
the integer is independent of the various choices. We define the integer mj,∞ similarly and then we
set

D(U, {pα, qα}) =
∑
i

m0,i[Z0,i]−
∑
j

m∞,j [Z∞,j ]

This divisor is called the Cartier divisor defined by the open cover U and the meromorphic functions
hα on Uα.

Proposition 2.1. On a smooth algebraic variety any divisor can be described as a Cartier divisor. ut

To any Cartier divisor D defined by an open cover U and meromorphic function hα satisfying
(2.1) we can associate a holomorphic line bundle LD defined by the open cover and gluing cocycle
gαβ = hα

hβ
. The functions hα can be interpreted as defining a meromorphic section of LD.

Proposition 2.2. On a smooth algebraic variety the above coprrespondence{
Cartier divisors

}
−→

{
pairs (holomorphic line bundle, meromorphic section)

}
is a bijection. ut

Because of the above proposition, the words divisors and holomorphic line bundles are used inter-
changeably in algebraic geometry. In particular, the canonical line bundle is often called the canonical
divisor.

A principal (Cartier) divisor is a divisor D such that the associated line bundle is holomor-
phically trivializable. We denote by PDiv(X) the subgroup of principal divisors. The quotient
Div(X)/PDiv(X) can be identified with the space of holomorphic isomorphism classes of holo-
morphic line bundles on X . This group is also known as the Picard group of X and it is denoted by
Pic(X).

Any hypersurface Y on a complex n-dimensional algebraic variety is defines a homology class
[Y ] ∈ H2n−2(X,Z). This extends by linearity to a morphism of groups

Div(X) 3 D 7→ [D] ∈ H2n−2(X,Z).

For every divisor D ∈ Div(X) we let [D]† ∈ H2(X,Z) denote the Poincaré dual of the homology
class [D]. Let us observe that the Gauss-Bonnet Chern theorem implies that

[D]† = c1(LD), ∀D ∈ Div(X).

Proposition 2.3. The Poincaré dual of the homology class defined by a divisor is a cohomology class
of degree 2 and Hodge type (1, 1). ut

IfX is an algebraic surface then any divisor onX defines a (non-torsion) 2-dimensional homology
class. The intersection pairing

H2(X,Z)/Tors×H2(X,Z)/Tors→ Z

defines an intersection pairing on Div(X).
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Suppose C ↪→ X is a smooth, connected algebraic curve in an algebraic surface X . Then as a
topological space C is homeomorphic to a Riemann surface. We denote by g(C) its genus. The
normal bundle of C ↪→ X is a holomorphic line bundle and we have the following topological
isomorphism complex vector bundles

TX|C ∼= TC ⊕ TCX.
Dualizing we deduce

TX∗C = T ∗C ⊕ T ∗CX
Taking the second exterior power in the above equality, and observing that T ∗C = KC we deduce
the adjunction formula

KX |C ∼= KC ⊗ T ∗CX. (2.2)
Hence

c1(KX) = c1(KC) + c1(T ∗CX) = c1(KX)− c1(TCX).
Integrating over C we deduce

〈c1(KX), [C]〉 = 〈c1(KC), [C]〉 − 〈c1(TCX), [C]〉 = 2g(C)− 2− [C] • [C].

We obtain in this fashion the genus formula

g(C) = 1 +
1
2

(
[C] • [C] + 〈c1(KX), [C]〉

)
= 1 +

1
2

[C] •
(

[C] + [KX ]
)
.

3. EXAMPLES

Before we discuss in detail several examples of algebraic surfaces we need to discuss an important
construction in algebraic geometry.

Example 3.1 (The blowup construction). We start with the simples case, the blowup of the affine
plane C2 at the origin. Consider the incidence variety

I =
{

(`, p) ∈ P1 × C2; the point p belongs to the complex line ` ⊂ C2
}
.

The variety I is a complex manifold of dimension 2. The fiber of the natural projection π : I → P1

over the line ` ∈ P1 consists of the collection of points in `. Thus, the projection π : I→ P1 is none
other than the tautological line bundle over P1. We denote by E the submanifold P1 × {0} ⊂ E .
Observe that E is exactly the zero section of the tautological line bundle.

On the other hand, we have another natural projection

σ : I→ C2 → C2, (`, p) 7→ p.

This map restrict to a biholomorphic map

σ : I \ E → C2 \ {0}.
The manifold I is called the blowup of C2 at the origin. Equivalently, we say that I is obtained via
the σ-process at 0 ∈∈ C2.

For any open set U ⊂ C2 we set I(U) = σ−1(U) ⊂ U . The map σ defines a surjection I(U)→ U .
Moreover, if U does not contain the origin, then σ : I(U)→ U is a biholomorphism.

Suppose X ⊂ PN is an algebraic surface and p0 ∈ X . We want to give two descriptions of the
blowup of X at p0.

The first construction uses the intuition from the special case discussed above. We choose lo-
cal holomorphic coordinates (z0, z1) on a neighborhood U of p0 so that U can be identified with a
neighborhood of 0 in C2. Set U∗ := U \ {p0}.

Then the blowup of X at p0 is obtained by removing the point p0, and then attaching the manifold
I(U) toX \{p0} using the biholomorphism σ : I(U∗)→ U∗. We denote by X̂p0 the complex surface
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obtained in this fashion. Its biholomorphism type could depend on U but its diffeomorphism type is
independent of U . Note that we have a natural holomorphic map

σ : X̂p0 → X.

Its fiber over p0 is the zero section E ↪→ I. It is a smooth curve in X̂p0 called the exceptional divisor.
It is a rational curve, i.e., it is biholomorphic to the projective line P1, and in fact, it can be identified
with the projectivization of the complex tangent plane Tp0X . The points in E can thus be identified
with the one-dimensional complex subspaces of Tp0X .

The self-intersection number of E coincides with the Euler number the tautological line bundle so
that

[E] • [E] = −1.

To see that it is X̂p0 is algebraic we need to give a more algebraic description of the blowup construc-
tion. We follow the approach in [1, IV.2].

Recall that X is embedded in a projective space PN . Assume the point p0 has homogeneous
coordinates [0, 0, . . . , 1]. We obtain a map

X∗ := X \ {p0}
ϕ−→ PN−1, X∗ 3 p 7→ [z0(p), . . . , zN−1(p)] ∈ PN−1.

The graph of ϕ is a submanifold

Γϕ ⊂ X∗ × PN−1 ⊂ X × PN−1.

Then the blowup X̂p0 of X at p0 can be identified with the closure of Γϕ in PN−1. The blowdown
map σ : X̂p0 → X is induced by the natural projection X × Pn−1 → X .

Suppose that C is a curve on X then the total transform of C is the curve σ−1(C) on X̂ . The
proper transform of C is the closure in X̂p0 of σ−1(C \ {p0}). We denote it by σ′(C). If p0 happens
to be a smooth point of C then

σ′(C) = σ−1(C \ {p0}) ∪ [p̂0],

where [p̂0] denotes the point in E corresponding to the one dimensional complex subspace Tp0C ⊂
Tp0X . In this case

σ−1(C) = E ∪ σ′(C).
The point p̂0 is a smooth point on both σ′(C) and E, and the components E and σ′(C) intersect
transversally at p̂0.

More generally, the operation of proper and strict transforms extend by linearity to maps

σ−1, σ′ : Div(X)→ Div(X̂)

The proper transform sends principal divisors to principal divisors and thus induces a morphism of
groups

σ−1 : Pic(X)→ Pic(X̂).
This morphism coincides with the pullback operation on holomorphic line bundles.

If C0, C1 are two curves on X such that p0 is a smooth point on both, then

[σ′(C0)] • [σ(C1)] = [C0] • [C1]− 1.

In particular,
[σ′(C0)]2 = [C0]2 − 1. (3.1)

For any complex curve C ⊂ X we have the equality

σ∗([C]†) = [σ−1(C)]†.
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The canonical line bundle of the blowup X̂ is related to the canonical line bundle ofX via the equality

K bX = σ∗(KX)⊗ LE .
If we think of line bundles as divisors, the last equality can be rewritten as

K bX = σ−1(KX) + E ∈ Pic(X̂).

ut

There is a very simple way of recognizing when an algebraic surface is the blowup of another.
More precisely, we have the following remarkable result, [2, Chap 4., Sec 1].

Theorem 3.2 (Castelnuovo-Enriques). Suppose Y is an algebraic surface containing an exceptional
curve, i.e., a rational curve C with self-intersection [C]2 = −1. Then there exists an algebraic
surface, a point p0 ∈ X and a biholomorphic map

φ : Y → X̂p0

such that φ(C) is the exceptional divisor of the blowdown map σ : X̂p0 → X . The manifold X is
called the blow down of Y along the exceptional curve C. ut

In simpler terms, the Castelnuovo-Enriques theorem states that exceptional curves can be blown
down.

Definition 3.3. (a) Two algebraic surfaces are said to be birationally equivalent if we can obtain
one from the other by a sequence of blowups and blowdowns. A surface is called rational if it is
birationally equivalent to the projective plane P2.

(b) A geometric invariant of an algebraic surface is called a birational invariant if it does not
change under blowups. Thus, birationally equivalent surfaces have identical birational invariants. ut

Example 3.4. The Hodge numbers h1,0 and h2,0 are birational invariants of an algebraic surface.
More generally, if X is an algebraic surface, then we define Pn(X) to be the dimension of the space
of holomorphic sections of the line bundle K⊗nX . The numbers Pn(X) are called the plurigenera of
X . All of them are birational invariants of X . ut

Example 3.5 (The projective plane). Consider the projective plane X = P2, the point p0 = [1, 0, 0],
and the line at infinity H given by the equation z0 = 0.

The homology group H2(P2,Z) is generated by the homology class determined by H , and H2 =
1. The line bundle determined by the divisor −H is the tautological line bundle U → P2. Using
Proposition 2.3 we deduce.

h1,1(P2) = 1 = b2(X)
so thatpg(P2) = h2,0(P2) = 0. The canonical line bundle KP2 coincides with the line bundle associ-
ated to the divisor −3H ,

KX = −3H ⇐⇒ KX
∼= U⊗3.

In particular, this shows that P2 is not spinnable.
The Hodge diamond of P2 is

1
0 0

0 1 0
0 0

1
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Any projective line ` through p0 is uniquely determined by its intersection with H . For any p ∈ H
we denote by `p the line going through p0 and p. The blowup of P2 at p0 contains two distinguished

E

H

-1

0

p

q
L

Lp

q

1

FIGURE 1. Blowing up the projective plane.

rational curves: the exceptional divisorE and the proper transform ofH which we continue to denote
by H . We denote by Lp the proper transform of `p. Then (see Figure 1)

E2 = −1, H2 = 1, L2
p = 0, ∀p ∈ H.

We obtain a holomorphic map P̂2 → H whose fiber above p ∈ H is the rational curve Lp; see Figure
1. This is an example of ruled surface.

ut

Example 3.6 (Quadrics). Consider the ruled surface Q = P1 × P1. If we consider the Segre embed-
ding

S : P1 × P1 → P3, ([s0, s1], [t0, t1]) 7→ [z0, z1, z2, z3] = [s0t0, s0t1, s1t0, s1t1]

we observe that the image S(P1 × P1) coincides with the quadratic hypersurface{
[z0, z1, z2, z3] ∈ P2; z0z3 − z1z2 = 0

}
.

In fact, any smooth quadratic hypersurface in P3 is biholomorphic to Q
The surface Q is swept by two family of projective lines

X(t) = P1 × {t} ∈ P1 × P1, Y (s) = {s} × P1 ⊂ P1 × P1,

forming the pattern in Figure 2.
The curves in the family X(t) define the same homology class x ∈ H2(X,Z), while the curves in

the family Y (s) define the same homology class y ∈ H2(X,Z). The classes x and y form an integral
basis of the homology group H2(Q,Z). The intersection form is determined by the relations (see
Figure 2)

x • x = y • y = 0, x • y = 1.

From Proposition 2.3 we deduce that

2 = b2(X) ≥ h1,1(X) ≥ 2.



A TASTE OF TWO-DIMENSIONAL COMPLEX ALGEBRAIC GEOMETRY 9

x

x

yy

p
0

FIGURE 2. The intersection pattern of the x and y classes on a ruled surface.

Hence This shows that h1,1 = 2 and pg = 0 so that the Hodge diamond of Q is

1
0 0

0 2 0
0 0

1

If let `, r : P1 × P1 → P1 denote the natural projections

`(s, t) = s, r(s, t) = r

then we deduce that the canonical line bundle of Q satisfies

KQ = `∗KP1 ⊗ r∗K1
P, c1(KQ) = `∗c1(KP1) + r∗c1(KP1) = −2(x† + y†).

From (1.2) we deduce that Q is spinnable.
Consider again the projective plane P2 and two points p0, p1 ∈ P3. Fix a projective line L ⊂ P2

that does not contain p0 and p1. For any s ∈ L we denote by `x(s) the projective line [p0s] and by
`y(s) the projective line [p1s]. If q denotes the intersection of the line L0 = [p0p1] with L we deduce
that

L0 = `x(q) = `y(q).

Note that for any p ∈ P2 \ {p0, p1} there exists a unique pair (s, t) = (s(p), t(p)) ∈ L× L such that
p is the intersection of the line `x(t) with the line `y(s). We obtain in this fashion a (rational) map

π : P2 \ {p0, p1} → L× L, p 7→
(
s(p), t(p)

)
.

L

L

q

p

p

s

l (s)y

x0

0
1

t

p

l (t)

FIGURE 3. Blowing up the projective plane.
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Let X be the blowup P2 at the points points p0, p1. We denote by `′x(s) the strict transform of
`x(s), by `′y(s) the strict transform of of `y(s), and by L′0 the strict transform of the line L0 = [p0p1].
Then

[`′x(s)]2 = [`′y(s)]
2 = [`x(s)]2 − 1 = 0, [L′0]2 = [L0]2 − 2 = −1.

his shows that L′0 is an exceptional curve.
After the blowups the points p0 and p1 are replaced by exceptional divisors E0, E1. Observe that

the points in E0 can be identified with the lines `x so that we have a natural biholomorphic map
π0 : E0 → L such that the point q0 ∈ E corresponds to the line `x

(
π0(q0)

)
we define in a similar

way a biholomorphic map π1 : E1 → L We can now define

π̂ : X → L× L

as follows.

• On the region X \ (E0 ∪ E1) = P2 \ {p0, p1} we set π̂ = π.
• If q0 ∈ E0 then we set

π̂(q0) = (π0(x), q), q = L ∩ L0

• If q1 ∈ E1 then we set

π̂(q1) = (q, π1(q1)).

The resulting map π̂ : P̂2
p0,p1 → L×L is holomorphic, the fiber over (q, q) is the exceptional curve

L′0, and the induced map

P̂2
p0,p1 \ L

′
0 → (L× L) \ {(q, q)}

is a biholomorphism. This proves that the ruled surface L × L is obtained by blowing down the
exceptional curve L′0. Thus the quadricQ can be obtained from the projective plane P2 by performing
two blowups followed by a blowdown. Thus any quadric is a rational surface. ut

Example 3.7 (Hirzebruch surfaces). For every n ≥ 0 we consider holomorphic line bundle Ln → P1

of degree n, i.e.,

〈c1(P1), [P1]〉 = n.

We form the rank 2 complex vector bundle En = C ⊕ Ln, and denote by Fn its projectivization.
In other words, the bundle Fn

π→ P1 is obtained by projectivizing the fibers of En, so that the fiber
Fn(p) of Fn over p ∈ P1 is the projectivization of the vector space C ⊕ Ln(p), where Ln(p) is the
fiber of Ln over p. Equivalently, Fn(p) can be viewed as the one point compactification of the line
Ln(p).

The zero section of Ln determines a section of Fn that associates to each p ∈ P1 the the line
C⊕ 0 ⊂ C⊕ Ln(p). This determines a rational curve S0 in Fn with selfintersection number

[S0]2 = n

because the self intersection number of the zero section of Ln equals the degree of this line bundle.
We denote by x0 the homology class determined by this curve and f the homology class determined
by a fiber of Fn. They satisfy the intersection equalities

x2
0 = n, f2 = 0, x0 • f = 1.
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Using these equalities and the Leray-Hirsch theorem we deduce that x0 and f span H2(Fn,Z). The
Hodge diamond of Fn is

1
0 0

0 2 0
0 0

1

The section at ∞ is the section of the bundle Fn → P1 that associates to each p ∈ P1 b the line
Ln(p) ⊂ C⊕ Ln(p). It defines a rational curve S∞ which determines a homology class x∞.

We can write x∞ = ax0 + bf , a, b ∈ Z. Using the equalities

x∞ • x0 = 0, x∞ • f = 1

we deduce
x∞ = x0 − nf, x2

∞ = −n.
Denote by y ∈ H2(Fn,Z) the homology class whose Poincaré dual is c1(KFn). Again we can write
y = ax0 + bf , a, b ∈ Z. Using the genus formula we deduce

0 = g(zero section) = 1 +
1
2
x0 • (x0 + y) = 1 +

1
2

(n+ na+ b),

0 = g(fiber) = 1 +
1
2
f • (f + y) = 1 +

1
2
a.

Hence a = −2, b = n− 2 so that

y = −2x0 + (n− 2)f, c1(KFn) = −2x†0 + (n− 2)f †. (3.2)

This shows that Fn is spinnable if n is even and non-spinnable if n is odd. Let us point out that F1

is biholomorphic to the blowup of P2 at a point, while F0 can be identified with the ruled surface
P1 × P1.

Using the genus formula coupled with (3.2) one can prove that if m,n > 1 and m 6= n, then
the Hirzebruch surface Fn does not contain a smooth complex rational curve with self-intersection
number m. This shows that Fn and Fm are not biholomorphic if n 6= m. On the other hand Fn is
diffeomorphic to Fm if n ≡ m mod 2. Moreover, any Hirzebruch surface is rational. ut

Example 3.8 (Hypersurfaces in P3). The zero locus Xd of of generic degree d homogeneous poly-
nomial Pd ∈ C[z0, z1, z2, z3] is a smooth hypersurface in P3. By Lefschetz theorem we deduce that
Xd is simply connected. Using a higher dimensional version of the adjunction formula (2.2) coupled
with Noether’s formula and basic properties of the Chern classes we deduce that the Hodge diamond
of Xd is (see [3])

1
0 0(

d−1
3

)
h(d)

(
d−1
3

)
0 0

1

,

where (
d− 1

3

)
=

(d− 1)(d− 2)(d− 3)
6

, h(d) = d(d2 − 4d+ 6)− 2− 2
(
d− 1

3

)
.
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The surfaceXd is spinnable if and only if d is even. The signature of the intersection form is negative,

τ(Xd) = −d(d− 2)(d+ 2)
3

.

The hypersufaces of degree d ≥ 5 are said to have general type.
Using M. Freedman’s classification of simply connected topological 4-manifolds we deduce that

the above data completely determine the homeomorphism type of Xd. In fact, they are all diffeomor-
phic. ut

Example 3.9 (K3 surfaces). These are simply connected surfaces X such that the canonical line
bundle KX is holomorphically trivial. For example smooth degree 4 hypersurface in P3 is a K3-
surface.

In this case pg(X) = 1 because the space of holomorphic sections of KX is one dimensional.
Since b1(X) = 0 we deduce that h0,1(X) = 0. Noether’s formula then implies that

1 + pg(X) = χ0(X) =
1
12
χ(X).

Hence

24 = 2 + b2(X) =⇒ 22 = b2(X) = 2pg + h1,1(X) =⇒ h1,1(X) = 20.

Hence, the Hodge diamond of a K3-surface is

1
0 0

1 20 1
0 0

1

Since c1(KX) = 0 we deduce that a K3 surface is spinnable. This implies that all K3-surfaces are
homeomorphic. It is much harder to prove that in fact they are all diffeomorphic. ut

Example 3.10 (Elliptic surfaces). An algebraic surface X is called elliptic if there exists a holomor-
phic map

π : X → P1

such that the generic fiber of π is a smooth algebraic curve of genus 1. The theory of elliptic surfaces
is very rich so we limit ourselves to a special class of elliptic surfaces. Fix two degree 3 homogeneous
polynomials A0, A1 ∈ C[z0, z1, z2] and consider the hypersurface E(n) ⊂ P1 × P2 described by the
equation

([t0, t1], [z0, z1, z2]) ∈ P1 × P2, tn0A0(z0, z1, z2) = tn1A1(z0, z1, z2) = 0.

For generic choices of A0 and A1 this is a smooth hypersurface in P1 × P2. We set

At0,t1 = tn0A0(z0, z1, z2) = tn1A1(z0, z1, z2)

The natural projection P1 × P2 → P1 induces a holomorphic map π : E(n) → P1 whose fiber over
[t0, t1] is the elliptic curve

{At0,t1(z0, z1, z2) = 0} ⊂ P2.
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The Hodge diamond of this surface is

1
0 0

(n− 1) 10n (n− 1)
0 0

1

The biholomorphism type of E(n) depends on the choice of polynomials A0 and A1. The Euler
characteristic of E(n) is 12n, and E(n) is spinnable if and only if n is even. The elliptic surface
E(2) is a K3 surface, but not all K3-surfaces are elliptic.

Not all the fibers of the map π : E(n) → P1 are smooth. For generic A0 and A1 there are 12n
singular fibers. ut

4. THE KODAIRA CLASSIFICATION

The Kodaira classification has as starting point the plurigenera of Pn(X) of an algebraic surface.
The sequence

(
Pn(X)

)
n≥1

displays one of the following types of behavior.

(−∞) The sequence of plurigenera is identically zero, Pn(X) = 0, ∀n ≥ 1. In this case we say that
the Kodaira dimension of X is −∞ and we write this kod(X) = −∞.

(0) The sequence of plurigenera is bounded, but not identically zero. In this case, we say that the
Kodaira dimension of X is 0, kod(X) = 0.

(1) The sequence of plurigenera grows linearly, i.e., there exists a constant C > 0 such that
1
C
n ≤ Pn(X) ≤ Cn, ∀n ≥ 1.

In this case, we say that the Kodaira dimension of X is 1, kod(X) = 1.
(2) The sequence of plurigenera grows quadratically, i.e., there exists a constant C > 0 such that

1
C
n2 ≤ Pn(X) ≤ Cn2, ∀n ≥ 1.

In this case, we say that the Kodaira dimension of X is 2, kod(X) = 2.

Example 4.1. The rational surfaces have Kodaira dimension −∞, the K3 surfaces have Kodaira
dimension 0 the elliptic surfaces E(n), n ≥ 3, have Kodaira dimension 1 and the hypersurfaces Xd,
d ≥ 5 have Kodaira dimension 2. ut
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