A TASTE OF TWO-DIMENSIONAL COMPLEX ALGEBRAIC GEOMETRY

LIVIU I. NICOLAESCU

ABSTRACT. These are notes for a talk at a topology seminar at ND.

1. GENERAL FACTS

In the sequel, for simplicity we denote the complex projective space \mathbb{CP}^N by \mathbb{P}^N , and we denote the projective coordinates by $[\vec{z}] = [z_0, \ldots, z_N]$. A smooth projective variety is a connected compact complex submanifold of some projective space \mathbb{P}^N . All the smooth projective varieties are Kähler manifolds, but the converse is not true. An *algebraic surface* is a smooth projective variety of complex dimension 2.

A celebrated theorem of Chow [2, Chap. 1, Sec. 3] states that if $X \hookrightarrow \mathbb{P}^N$ is a smooth projective variety, then there exist homogeneous *polynomials* $P_1, \ldots, P_\nu \in \mathbb{C}[z_0, \ldots, z_N]$ such that

$$X = \{ [\vec{z}] \in \mathbb{P}^N; \ P_1(\vec{z}) = \dots = P_\nu(\vec{z}) = 0 \}.$$

In other words, all projective varieties are described by a finite collection of homogeneous polynomial equations.

If X is a smooth projective variety of (complex) dimension n then the tanget bundle TX has a complex structure and thus we can speak of Chern classes

$$c_k(X) := c_k(TX), \ k = 1, \dots, n.$$

We also have an isomorphism of holomorphic vector bundles

$$\Lambda^m T^* X \otimes \mathbb{C} \cong \bigoplus_{p+q=m} \Lambda^{p,q} T^* X.$$
(1.1)

If (u_1, \ldots, u_n) are local holomorphic coordinates on X then the smooth sections of $\Lambda^{p,q}T^*X$ are locally described by sums of forms of the type

$$f(u)du_{i_1}\wedge\cdots\wedge du_{i_p}\wedge d\bar{u}_{j_1}\wedge\cdots\wedge d\bar{u}_{j_q}.$$

For every smooth differential form α of degree m with complex coefficients we denote by $\alpha^{p,q}$ its $\Lambda^{p,q}$ -component in the *Hodge decomposition* (1.1).

The holomorphic line bundle $\Lambda^{n,0}T^*X$ is called the *canonical line bundle* of X and it is denoted by K_X . Let us point out that

$$c_1(X) = -c_1(K_X).$$

From the above equality we deduce that

The algebraic variety X is spinnable if and only if $c_1(K_X) = 0 \mod 2$. (1.2)

We denote by $H^m(X)$ the space of complex differential forms of degree m on X that are harmonic with respect to the Kähler metric, and for any closed form α we denote by $[\alpha]$ its harmonic part in the Hodge decomposition. Then Hodge theory implies that

$$\dim_{\mathbb{C}} \boldsymbol{H}^m(X) = b_m(X),$$

Last modified on March 3, 2009.

and

$$[\alpha]^{p,q} = [\alpha^{p,q}], \ \forall \alpha \in \Omega^m(X) \otimes \mathbb{C}, \ d\alpha = 0, \ \forall p+q = m.$$

We denote by $H^{p,q}(X)$ the space of harmonic forms of type (p,q), and we set $h^{p,q}(X) := \dim_{\mathbb{C}} H^{p,q}(X)$.

$$H^{m}(X) = \bigoplus_{p+q=m} H^{p,q}(X) \text{ and } b_{m}(X) = \sum_{p+q=m} h^{p,q}(X).$$
 (1.3)

Moreover, Hodge theory also implies that

$$h^{p,q}(X) = h^{q,p}(X) = h^{n-p,n-q}(X), \quad \forall p,q.$$
 (1.4)

If we denote by Ω_X^p the sheaf of holomorphic sections of the holomorphic bundle $\Lambda^{p,0}T^*X$ then Dolbeault theorem implies that the space $H^{p,q}(X)$ is naturally isomorphic to the q-th Čech cohomology of the sheaf Ω_X^p ,

$$\boldsymbol{H}^{p,q}(X) \cong H^q(X, \boldsymbol{\Omega}^p_X).$$

Observe that Ω_X^n coincides with the sheaf of holomorphic sections of the canonical line bundle so that the Hodge number $h^{n,0}(X)$ is equal to the dimension of the space of global holomorphic sections of K_X . This integer is known as the *geometric genus* of X and it is denoted by $p_g(X)$. We define the Euler characteristics

$$\chi_p(X) == \sum_q (-1)^q h^{p,q}(X).$$

When X is an algebraic surface, then the Hodge numbers can be organized in a *Hodge diamond*

$$\begin{array}{ccc} & h^{0,0}(X) & & \\ & h^{1,0}(X) & & h^{0,1}(X) & & \\ & h^{2,0}(X) & & h^{1,1}(X) & & h^{0,2}(X) & \\ & & h^{1,2}(X) & & h^{2,1}(X) & & \\ & & h^{2,2}(X) & & \end{array}$$

where the entries symmetric with respect to one of the two axes are equal. From this symmetry we deduce that $b_1(X) = 2h^{1,0}(X)$ so that the first Betti number of an algebraic surface must be even. Note that in this case

$$\chi_0(X) = 1 - h^{0,1}(X) + p_g(X) = 1 - \frac{1}{2}b_1(X) + p_g(X).$$

This holomorphic Euler characteristic is given by the Noether formula

$$\chi_0(X) = \frac{1}{12} \left(\langle c_1(X)^2, [X] \rangle + \langle c_2(X), [X] \rangle \right) = \frac{1}{12} \langle c_1(X)^2, [X] \rangle + \frac{1}{12} \chi(X), \quad (1.5)$$

where $\chi(M)$ is the topological Euler characteristic.

The Hodge decomposition (1.3) is compatible with the intersection form. This is the content of the *Hodge index theorem*. For simplicity, we state it only for algebraic surfaces.

Theorem 1.1 (Hodge index theorem). If X is an algebraic surface, then it is a smooth oriented real 4-manifold. The second Betti number decomposes as $b_2(X) = b_2^+(X) + b_2^-(X)$, where $b_2^{\pm}(X)$ is the number of positive/negative eigenvalues of the intersection form of X. Then

$$b_2^+(X) = h^{2,0}(X) + h^{0,2}(X) + 1 = 2p_g(X) + 1,$$
 (1.6)

and the signature $\tau(X)$ of X is

$$\tau(X) = b_2^+(X) - b_2^-(X) = 2p_g(X) + 2 - h^{1,1}(X).$$

One consequence of The Hodge index theorem implies that $p_g(X)$ and $h^{1,1}(X)$ are topological invariants of X.

From the identity $p_1(X) = c_1(X)^2 - 2c_2(X)$ and the Hirzebruch signature formula we deduce

$$\tau(X) = \frac{1}{3} \langle c_1(X)^2 - 2c_2(X), [X] \rangle,$$

so that

$$\langle c_1(X)^2, [X] \rangle = 2\chi(X) + 3\tau(X).$$

Using a bit of Morse theory one can produce some information about the homotopy type of a smooth algebraic variety. The following is a special case of Lefschetz' hyperplane theorem.

Theorem 1.2. If X is a compact, complex 2-dimensional submanifold of \mathbb{P}^3 or $\mathbb{P}^1 \times \mathbb{P}^2$ then X is connected and simply connected.

2. DIVISORS

A hypersurface on a smooth projective variety X is a closed set Y locally described as the zero set of a (nontrivial) holomorphic function.

A point $p \in Y$ is called a smooth point if there exists an open neighborhood U of p in X such that $U \cap Y$ is a smooth submanifold of U. We denote by Y^* the set of smooth points. Then Y^* is an open and dense subset of Y. The hypersurface Y is called *irreducible* if Y^* is connected. For a general hypersurface Y we define its components to be the closures of the connected components of Y^* .

The hypersurfaces on an algebraic surface are called *curves*.

We denote by Div(X) the free Abelian group generated by the irreducible hypersurfaces in X. The elements in X are called *divisors* on X. Clearly, every irreducible hypersurface defines a divisor that we denote by [Y]. Then any divisor D on X can be written as a formal sum

$$D = \sum_{i=1}^{\nu} m_i[Y_i],$$

where Y_i are irreducible hypersurfaces on X called the components of D. The integer m_i is called the multiplicity of D along Y_i . The hypersurface $Y_1 \cup \cdots \cup Y_{\nu}$ is called the *support* of D and it is denoted by $\operatorname{supp}(D)$.

A divisor D on X is called *effective* if the multiplicities along its components are all nonnegative.

We will find convenient use Cartier's descriptions of divisors. Suppose we are given an open cover $\mathcal{U} = (U_{\alpha})_{\alpha \in A}$, nontrivial holomorphic functions $p_{\alpha}, q_{\alpha} \in \mathcal{O}(U_{\alpha})$, and nowhere vanishing holomorphic functions $g_{\alpha\beta} \in \mathcal{O}(U_{\alpha\beta})^*$ such that, if we set

$$h_{\alpha} = \frac{p_{\alpha}}{q_{\alpha}}$$

then

$$g_{\alpha\beta} = \frac{h_{\alpha}}{h_{\beta}} \text{ on } U_{\alpha\beta} \setminus \{f_{\beta} = 0\}.$$
 (2.1)

This defines a divisor $D = D(\mathcal{U}, \{p_{\alpha}, q_{\alpha}\})$ whose support is the hypersurface

$$Z = Z_0 \cup Z_\infty, \ Z_0 = \bigcup_{\alpha} \{p_\alpha = 0\}, \ Z_\infty = \bigcup_{\alpha} \{q_\alpha = 0\}$$

If $Z_{0,i}$ is a component of Z_0 . Then we define $m_{0,i}$ as follows. Choose $x \in Z_{0,i}^*$, U_α containing x and then define $m_{0,i}$ to be the order of vanishing p_α along $Z_{0,i}^* \cap U_\alpha$. The equality (2.1) guarantees that the integer is independent of the various choices. We define the integer $m_{j,\infty}$ similarly and then we set

$$D(\mathfrak{U}, \{p_{\alpha}, q_{\alpha}\}) = \sum_{i} m_{0,i}[Z_{0,i}] - \sum_{j} m_{\infty,j}[Z_{\infty,j}]$$

This divisor is called the *Cartier divisor* defined by the open cover \mathcal{U} and the meromorphic functions h_{α} on U_{α} .

Proposition 2.1. On a smooth algebraic variety any divisor can be described as a Cartier divisor.

To any Cartier divisor D defined by an open cover \mathcal{U} and meromorphic function h_{α} satisfying (2.1) we can associate a *holomorphic line bundle* L_D defined by the open cover and gluing cocycle $g_{\alpha\beta} = \frac{h_{\alpha}}{h_{\beta}}$. The functions h_{α} can be interpreted as defining a *meromorphic* section of L_D .

Proposition 2.2. On a smooth algebraic variety the above coprrespondence

$$\left\{ Cartier \ divisors \right\} \longrightarrow \left\{ pairs \ (holomorphic \ line \ bundle, \ meromorphic \ section) \right\}$$

is a bijection.

Because of the above proposition, the words divisors and holomorphic line bundles are used interchangeably in algebraic geometry. In particular, the canonical line bundle is often called the canonical divisor.

A principal (Cartier) divisor is a divisor D such that the associated line bundle is holomorphically trivializable. We denote by PDiv(X) the subgroup of principal divisors. The quotient Div(X)/PDiv(X) can be identified with the space of holomorphic isomorphism classes of holomorphic line bundles on X. This group is also known as the *Picard group* of X and it is denoted by Pic(X).

Any hypersurface Y on a complex n-dimensional algebraic variety is defines a homology class $[Y] \in H_{2n-2}(X, \mathbb{Z})$. This extends by linearity to a morphism of groups

$$\operatorname{Div}(X) \ni D \mapsto [D] \in H_{2n-2}(X, \mathbb{Z}).$$

For every divisor $D \in \text{Div}(X)$ we let $[D]^{\dagger} \in H^2(X, \mathbb{Z})$ denote the Poincaré dual of the homology class [D]. Let us observe that the Gauss-Bonnet Chern theorem implies that

$$[D]^{\dagger} = c_1(L_D), \quad \forall D \in \operatorname{Div}(X).$$

Proposition 2.3. The Poincaré dual of the homology class defined by a divisor is a cohomology class of degree 2 and Hodge type (1, 1).

If X is an algebraic surface then any divisor on X defines a (non-torsion) 2-dimensional homology class. The intersection pairing

$$H_2(X,\mathbb{Z})/\mathrm{Tors} \times H_2(X,\mathbb{Z})/\mathrm{Tors} \to \mathbb{Z}$$

defines an intersection pairing on Div(X).

Suppose $C \hookrightarrow X$ is a smooth, connected algebraic curve in an algebraic surface X. Then as a topological space C is homeomorphic to a Riemann surface. We denote by g(C) its genus. The normal bundle of $C \hookrightarrow X$ is a holomorphic line bundle and we have the following *topological* isomorphism complex vector bundles

$$TX|_C \cong TC \oplus T_CX.$$

Dualizing we deduce

$$TX_C^* = T^*C \oplus T_C^*X$$

Taking the second exterior power in the above equality, and observing that $T^*C = K_C$ we deduce the *adjunction formula*

$$K_X|_C \cong K_C \otimes T_C^* X. \tag{2.2}$$

Hence

$$c_1(K_X) = c_1(K_C) + c_1(T_C^*X) = c_1(K_X) - c_1(T_CX).$$

Integrating over C we deduce

$$\langle c_1(K_X), [C] \rangle = \langle c_1(K_C), [C] \rangle - \langle c_1(T_C X), [C] \rangle = 2g(C) - 2 - [C] \bullet [C]$$

We obtain in this fashion the genus formula

$$g(C) = 1 + \frac{1}{2} \Big([C] \bullet [C] + \langle c_1(K_X), [C] \rangle \Big) = 1 + \frac{1}{2} [C] \bullet \big([C] + [K_X] \big).$$

3. EXAMPLES

Before we discuss in detail several examples of algebraic surfaces we need to discuss an important construction in algebraic geometry.

Example 3.1 (The blowup construction). We start with the simples case, the blowup of the affine plane \mathbb{C}^2 at the origin. Consider the incidence variety

$$\mathbb{J} = \{ (\ell, p) \in \mathbb{P}^1 \times \mathbb{C}^2; \text{ the point } p \text{ belongs to the complex line } \ell \subset \mathbb{C}^2 \}.$$

The variety \mathfrak{I} is a complex manifold of dimension 2. The fiber of the natural projection $\pi: \mathfrak{I} \to \mathbb{P}^1$ over the line $\ell \in \mathbb{P}^1$ consists of the collection of points in ℓ . Thus, the projection $\pi: \mathfrak{I} \to \mathbb{P}^1$ is none other than the tautological line bundle over \mathbb{P}^1 . We denote by E the submanifold $\mathbb{P}^1 \times \{0\} \subset E$. Observe that E is exactly the zero section of the tautological line bundle.

On the other hand, we have another natural projection

$$\sigma: \mathfrak{I} \to \mathbb{C}^2 \to \mathbb{C}^2, \ (\ell, p) \mapsto p.$$

This map restrict to a biholomorphic map

$$\sigma: \mathfrak{I} \setminus E \to \mathbb{C}^2 \setminus \{0\}.$$

The manifold \mathcal{I} is called the blowup of \mathbb{C}^2 at the origin. Equivalently, we say that \mathcal{I} is obtained via the σ -process at $0 \in \mathbb{C}^2$.

For any open set $U \subset \mathbb{C}^2$ we set $\mathfrak{I}(U) = \sigma^{-1}(U) \subset U$. The map σ defines a surjection $\mathfrak{I}(U) \to U$. Moreover, if U does not contain the origin, then $\sigma : \mathfrak{I}(U) \to U$ is a biholomorphism.

Suppose $X \subset \mathbb{P}^N$ is an algebraic surface and $p_0 \in X$. We want to give two descriptions of the blowup of X at p_0 .

The first construction uses the intuition from the special case discussed above. We choose local holomorphic coordinates (z_0, z_1) on a neighborhood U of p_0 so that U can be identified with a neighborhood of 0 in \mathbb{C}^2 . Set $U^* := U \setminus \{p_0\}$.

Then the blowup of X at p_0 is obtained by removing the point p_0 , and then attaching the manifold $\mathfrak{I}(U)$ to $X \setminus \{p_0\}$ using the biholomorphism $\sigma : \mathfrak{I}(U^*) \to U^*$. We denote by \widehat{X}_{p_0} the complex surface

obtained in this fashion. Its biholomorphism type could depend on U but its diffeomorphism type is independent of U. Note that we have a natural holomorphic map

$$\sigma: \widehat{X}_{p_0} \to X.$$

Its fiber over p_0 is the zero section $E \hookrightarrow \mathcal{I}$. It is a smooth curve in \widehat{X}_{p_0} called the *exceptional divisor*. It is a *rational curve*, i.e., it is biholomorphic to the projective line \mathbb{P}^1 , and in fact, it can be identified with the projectivization of the complex tangent plane $T_{p_0}X$. The points in E can thus be identified with the one-dimensional complex subspaces of $T_{p_0}X$.

The self-intersection number of E coincides with the Euler number the tautological line bundle so that

$$[E] \bullet [E] = -1.$$

To see that it is \hat{X}_{p_0} is algebraic we need to give a more algebraic description of the blowup construction. We follow the approach in [1, IV.2].

Recall that X is embedded in a projective space \mathbb{P}^N . Assume the point p_0 has homogeneous coordinates $[0, 0, \ldots, 1]$. We obtain a map

$$X^* := X \setminus \{p_0\} \xrightarrow{\varphi} \mathbb{P}^{N-1}, \ X^* \ni p \mapsto [z_0(p), \dots, z_{N-1}(p)] \in \mathbb{P}^{N-1}.$$

The graph of φ is a submanifold

$$\Gamma_{\varphi} \subset X^* \times \mathbb{P}^{N-1} \subset X \times \mathbb{P}^{N-1}.$$

Then the blowup \widehat{X}_{p_0} of X at p_0 can be identified with the closure of Γ_{φ} in \mathbb{P}^{N-1} . The blowdown map $\sigma: \widehat{X}_{p_0} \to X$ is induced by the natural projection $X \times \mathbb{P}^{n-1} \to X$.

Suppose that C is a curve on X then the *total transform* of C is the curve $\sigma^{-1}(C)$ on \hat{X} . The *proper transform* of C is the closure in \hat{X}_{p_0} of $\sigma^{-1}(C \setminus \{p_0\})$. We denote it by $\sigma'(C)$. If p_0 happens to be a smooth point of C then

$$\sigma'(C) = \sigma^{-1}(C \setminus \{p_0\}) \cup [\widehat{p}_0],$$

where $[\hat{p}_0]$ denotes the point in E corresponding to the one dimensional complex subspace $T_{p_0}C \subset T_{p_0}X$. In this case

$$\sigma^{-1}(C) = E \cup \sigma'(C).$$

The point \hat{p}_0 is a smooth point on both $\sigma'(C)$ and E, and the components E and $\sigma'(C)$ intersect transversally at \hat{p}_0 .

More generally, the operation of proper and strict transforms extend by linearity to maps

$$\sigma^{-1}, \sigma' : \operatorname{Div}(X) \to \operatorname{Div}(\widehat{X})$$

The proper transform sends principal divisors to principal divisors and thus induces a morphism of groups

$$\sigma^{-1}$$
: $\operatorname{Pic}(X) \to \operatorname{Pic}(\widehat{X}).$

This morphism coincides with the pullback operation on holomorphic line bundles.

If C_0, C_1 are two curves on X such that p_0 is a smooth point on both, then

$$[\sigma'(C_0)] \bullet [\sigma(C_1)] = [C_0] \bullet [C_1] - 1.$$

In particular,

$$[\sigma'(C_0)]^2 = [C_0]^2 - 1. \tag{3.1}$$

For any complex curve $C \subset X$ we have the equality

$$\sigma^*([C]^{\dagger}) = [\sigma^{-1}(C)]^{\dagger}.$$

The canonical line bundle of the blowup \widehat{X} is related to the canonical line bundle of X via the equality

$$K_{\widehat{X}} = \sigma^*(K_X) \otimes L_E.$$

If we think of line bundles as divisors, the last equality can be rewritten as

$$K_{\widehat{X}} = \sigma^{-1}(K_X) + E \in \operatorname{Pic}(\widehat{X}).$$

There is a very simple way of recognizing when an algebraic surface is the blowup of another. More precisely, we have the following remarkable result, [2, Chap 4., Sec 1].

Theorem 3.2 (Castelnuovo-Enriques). Suppose Y is an algebraic surface containing an exceptional curve, i.e., a rational curve C with self-intersection $[C]^2 = -1$. Then there exists an algebraic surface, a point $p_0 \in X$ and a biholomorphic map

$$\phi: Y \to \widehat{X}_{p_0}$$

such that $\phi(C)$ is the exceptional divisor of the blowdown map $\sigma : \widehat{X}_{p_0} \to X$. The manifold X is called the blow down of Y along the exceptional curve C.

In simpler terms, the Castelnuovo-Enriques theorem states that exceptional curves can be blown down.

Definition 3.3. (a) Two algebraic surfaces are said to be *birationally equivalent* if we can obtain one from the other by a sequence of blowups and blowdowns. A surface is called *rational* if it is birationally equivalent to the projective plane \mathbb{P}^2 .

(b) A geometric invariant of an algebraic surface is called a *birational invariant* if it does not change under blowups. Thus, birationally equivalent surfaces have identical birational invariants. \Box

Example 3.4. The Hodge numbers $h^{1,0}$ and $h^{2,0}$ are birational invariants of an algebraic surface. More generally, if X is an algebraic surface, then we define $P_n(X)$ to be the dimension of the space of holomorphic sections of the line bundle $K_X^{\otimes n}$. The numbers $P_n(X)$ are called the *plurigenera* of X. All of them are birational invariants of X.

Example 3.5 (The projective plane). Consider the projective plane $X = \mathbb{P}^2$, the point $p_0 = [1, 0, 0]$, and the line at infinity H given by the equation $z_0 = 0$.

The homology group $H_2(\mathbb{P}^2, \mathbb{Z})$ is generated by the homology class determined by H, and $H^2 = 1$. 1. The line bundle determined by the divisor -H is the tautological line bundle $\mathbb{U} \to \mathbb{P}^2$. Using Proposition 2.3 we deduce.

$$h^{1,1}(\mathbb{P}^2) = 1 = b_2(X)$$

so that $p_g(\mathbb{P}^2) = h^{2,0}(\mathbb{P}^2) = 0$. The canonical line bundle $K_{\mathbb{P}^2}$ coincides with the line bundle associated to the divisor -3H,

$$K_X = -3H \iff K_X \cong \mathbb{U}^{\otimes 3}.$$

In particular, this shows that \mathbb{P}^2 is not spinnable.

The Hodge diamond of \mathbb{P}^2 is

$$egin{array}{cccc} & 1 & & & \\ 0 & 0 & & & & \\ 0 & 0 & & & & \\ & & 1 & & & \end{array}$$

 \Box

Any projective line ℓ through p_0 is uniquely determined by its intersection with H. For any $p \in H$ we denote by ℓ_p the line going through p_0 and p. The blowup of \mathbb{P}^2 at p_0 contains two distinguished

FIGURE 1. Blowing up the projective plane.

rational curves: the exceptional divisor E and the proper transform of H which we continue to denote by H. We denote by L_p the proper transform of ℓ_p . Then (see Figure 1)

$$E^2 = -1, \ H^2 = 1, \ L_p^2 = 0, \ \forall p \in H.$$

We obtain a holomorphic map $\widehat{\mathbb{P}}^2 \to H$ whose fiber above $p \in H$ is the rational curve L_p ; see Figure 1. This is an example of ruled surface.

Example 3.6 (Quadrics). Consider the ruled surface $Q = \mathbb{P}^1 \times \mathbb{P}^1$. If we consider the Segre embedding

$$\boldsymbol{S}: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3, \ ([s_0, s_1], [t_0, t_1]) \mapsto [z_0, z_1, z_2, z_3] = [s_0 t_0, s_0 t_1, s_1 t_0, s_1 t_1]$$

we observe that the image $S(\mathbb{P}^1 \times \mathbb{P}^1)$ coincides with the quadratic hypersurface

$$\{ [z_0, z_1, z_2, z_3] \in \mathbb{P}^2; \ z_0 z_3 - z_1 z_2 = 0 \}.$$

In fact, any smooth quadratic hypersurface in \mathbb{P}^3 is biholomorphic to Q

The surface Q is swept by two family of projective lines

$$X(t) = \mathbb{P}^1 \times \{t\} \in \mathbb{P}^1 \times \mathbb{P}^1, \ Y(s) = \{s\} \times \mathbb{P}^1 \subset \mathbb{P}^1 \times \mathbb{P}^1,$$

forming the pattern in Figure 2.

The curves in the family X(t) define the same homology class $x \in H^2(X, \mathbb{Z})$, while the curves in the family Y(s) define the same homology class $y \in H^2(X, \mathbb{Z})$. The classes x and y form an integral basis of the homology group $H^2(Q, \mathbb{Z})$. The intersection form is determined by the relations (see Figure 2)

$$x \bullet x = y \bullet y = 0, \ x \bullet y = 1.$$

From Proposition 2.3 we deduce that

$$2 = b_2(X) \ge h^{1,1}(X) \ge 2.$$

FIGURE 2. The intersection pattern of the x and y classes on a ruled surface.

Hence This shows that $h^{1,1} = 2$ and $p_g = 0$ so that the Hodge diamond of Q is

$$egin{array}{cccc} & 1 & & & \\ 0 & 0 & 0 & & & \\ 0 & 0 & 0 & & \\ & 1 & & & \end{array}$$

If let $\ell,r:\mathbb{P}^1\times\mathbb{P}^1\to\mathbb{P}^1$ denote the natural projections

$$\ell(s,t) = s, \ r(s,t) = r$$

then we deduce that the canonical line bundle of Q satisfies

$$K_Q = \ell^* K_{\mathbb{P}^1} \otimes r^* K_{\mathbb{P}}^1, \ c_1(K_Q) = \ell^* c_1(K_{\mathbb{P}^1}) + r^* c_1(K_{\mathbb{P}^1}) = -2(x^{\dagger} + y^{\dagger}).$$

From (1.2) we deduce that Q is spinnable.

Consider again the projective plane \mathbb{P}^2 and two points $p_0, p_1 \in \mathbb{P}^3$. Fix a projective line $L \subset \mathbb{P}^2$ that does not contain p_0 and p_1 . For any $s \in L$ we denote by $\ell_x(s)$ the projective line $[p_0s]$ and by $\ell_y(s)$ the projective line $[p_1s]$. If q denotes the intersection of the line $L_0 = [p_0p_1]$ with L we deduce that

$$L_0 = \ell_x(q) = \ell_y(q)$$

Note that for any $p \in \mathbb{P}^2 \setminus \{p_0, p_1\}$ there exists a unique pair $(s, t) = (s(p), t(p)) \in L \times L$ such that p is the intersection of the line $\ell_x(t)$ with the line $\ell_y(s)$. We obtain in this fashion a (rational) map

$$\pi: \mathbb{P}^2 \setminus \{p_0, p_1\} \to L \times L, \ p \mapsto (s(p), t(p)).$$

FIGURE 3. Blowing up the projective plane.

Let X be the blowup \mathbb{P}^2 at the points points p_0, p_1 . We denote by $\ell'_x(s)$ the strict transform of $\ell_x(s)$, by $\ell'_y(s)$ the strict transform of of $\ell_y(s)$, and by L'_0 the strict transform of the line $L_0 = [p_0p_1]$. Then

$$[\ell'_x(s)]^2 = [\ell'_y(s)]^2 = [\ell_x(s)]^2 - 1 = 0, \ [L'_0]^2 = [L_0]^2 - 2 = -1.$$

his shows that L'_0 is an exceptional curve.

After the blowups the points p_0 and p_1 are replaced by exceptional divisors E_0, E_1 . Observe that the points in E_0 can be identified with the lines ℓ_x so that we have a natural biholomorphic map $\pi_0: E_0 \to L$ such that the point $q_0 \in E$ corresponds to the line $\ell_x(\pi_0(q_0))$ we define in a similar way a biholomorphic map $\pi_1: E_1 \to L$ We can now define

$$\widehat{\pi}: X \to L \times L$$

as follows.

- On the region $X \setminus (E_0 \cup E_1) = \mathbb{P}^2 \setminus \{p_0, p_1\}$ we set $\widehat{\pi} = \pi$.
- If $q_0 \in E_0$ then we set

$$\widehat{\pi}(q_0) = (\pi_0(x), q), \ q = L \cap L_0$$

• If $q_1 \in E_1$ then we set

$$\widehat{\pi}(q_1) = (q, \pi_1(q_1)).$$

The resulting map $\widehat{\pi}: \widehat{\mathbb{P}}^2_{p_0,p_1} \to L \times L$ is holomorphic, the fiber over (q,q) is the exceptional curve L'_0 , and the induced map

$$\widehat{\mathbb{P}}^2_{p_0,p_1} \setminus L'_0 \to (L \times L) \setminus \{(q,q)\}$$

is a biholomorphism. This proves that the ruled surface $L \times L$ is obtained by blowing down the exceptional curve L'_0 . Thus the quadric Q can be obtained from the projective plane \mathbb{P}^2 by performing two blowups followed by a blowdown. Thus any quadric is a rational surface.

Example 3.7 (Hirzebruch surfaces). For every $n \ge 0$ we consider holomorphic line bundle $L_n \to \mathbb{P}^1$ of degree n, i.e.,

$$\langle c_1(\mathbb{P}^1), [\mathbb{P}^1] \rangle = n.$$

We form the rank 2 complex vector bundle $E_n = \mathbb{C} \oplus L_n$, and denote by F_n its projectivization. In other words, the bundle $F_n \xrightarrow{\pi} \mathbb{P}^1$ is obtained by projectivizing the fibers of E_n , so that the fiber $F_n(p)$ of F_n over $p \in \mathbb{P}^1$ is the projectivization of the vector space $\mathbb{C} \oplus L_n(p)$, where $L_n(p)$ is the fiber of L_n over p. Equivalently, $F_n(p)$ can be viewed as the one point compactification of the line $L_n(p)$.

The zero section of L_n determines a section of F_n that associates to each $p \in \mathbb{P}^1$ the line $\mathbb{C} \oplus 0 \subset \mathbb{C} \oplus L_n(p)$. This determines a rational curve S_0 in F_n with selfintersection number

$$[S_0]^2 = n$$

because the self intersection number of the zero section of L_n equals the degree of this line bundle. We denote by x_0 the homology class determined by this curve and f the homology class determined by a fiber of F_n . They satisfy the intersection equalities

$$x_0^2 = n, \ f^2 = 0, \ x_0 \bullet f = 1.$$

Using these equalities and the Leray-Hirsch theorem we deduce that x_0 and f span $H_2(F_n, \mathbb{Z})$. The Hodge diamond of F_n is

The section at ∞ is the section of the bundle $F_n \to \mathbb{P}^1$ that associates to each $p \in \mathbb{P}^1$ b the line $L_n(p) \subset \mathbb{C} \oplus L_n(p)$. It defines a rational curve S_∞ which determines a homology class x_∞ .

We can write $x_{\infty} = ax_0 + bf$, $a, b \in \mathbb{Z}$. Using the equalities

$$x_{\infty} \bullet x_0 = 0, \ x_{\infty} \bullet f = 1$$

we deduce

$$x_{\infty} = x_0 - nf, \quad x_{\infty}^2 = -n.$$

Denote by $y \in H^2(F_n, \mathbb{Z})$ the homology class whose Poincaré dual is $c_1(K_{F_n})$. Again we can write $y = ax_0 + bf$, $a, b \in \mathbb{Z}$. Using the genus formula we deduce

$$0 = g(\text{zero section}) = 1 + \frac{1}{2}x_0 \bullet (x_0 + y) = 1 + \frac{1}{2}(n + na + b),$$

$$0 = g(\text{fiber}) = 1 + \frac{1}{2}f \bullet (f + y) = 1 + \frac{1}{2}a.$$

Hence a = -2, b = n - 2 so that

$$y = -2x_0 + (n-2)f, \ c_1(K_{F_n}) = -2x_0^{\dagger} + (n-2)f^{\dagger}.$$
 (3.2)

This shows that F_n is spinnable if n is even and non-spinnable if n is odd. Let us point out that F_1 is biholomorphic to the blowup of \mathbb{P}^2 at a point, while F_0 can be identified with the ruled surface $\mathbb{P}^1 \times \mathbb{P}^1$.

Using the genus formula coupled with (3.2) one can prove that if m, n > 1 and $m \neq n$, then the Hirzebruch surface F_n does not contain a smooth complex rational curve with self-intersection number m. This shows that F_n and F_m are not biholomorphic if $n \neq m$. On the other hand F_n is diffeomorphic to F_m if $n \equiv m \mod 2$. Moreover, any Hirzebruch surface is rational.

Example 3.8 (Hypersurfaces in \mathbb{P}^3). The zero locus X_d of of generic degree d homogeneous polynomial $P_d \in \mathbb{C}[z_0, z_1, z_2, z_3]$ is a smooth hypersurface in \mathbb{P}^3 . By Lefschetz theorem we deduce that X_d is simply connected. Using a higher dimensional version of the adjunction formula (2.2) coupled with Noether's formula and basic properties of the Chern classes we deduce that the Hodge diamond of X_d is (see [3])

$$\begin{pmatrix} 1 \\ 0 & 0 \\ \binom{d-1}{3} & h(d) & \binom{d-1}{3} \\ 0 & 0 \\ 1 & & \\ \end{pmatrix}$$

where

$$\binom{d-1}{3} = \frac{(d-1)(d-2)(d-3)}{6}, \ h(d) = d(d^2 - 4d + 6) - 2 - 2\binom{d-1}{3}.$$

The surface X_d is spinnable if and only if d is even. The signature of the intersection form is negative,

$$\tau(X_d) = -\frac{d(d-2)(d+2)}{3}$$

The hypersurfaces of degree $d \ge 5$ are said to have general type.

Using M. Freedman's classification of simply connected topological 4-manifolds we deduce that the above data completely determine the homeomorphism type of X_d . In fact, they are all diffeomorphic.

Example 3.9 (K3 surfaces). These are simply connected surfaces X such that the canonical line bundle K_X is holomorphically trivial. For example smooth degree 4 hypersurface in \mathbb{P}^3 is a K3-surface.

In this case $p_g(X) = 1$ because the space of holomorphic sections of K_X is one dimensional. Since $b_1(X) = 0$ we deduce that $h^{0,1}(X) = 0$. Noether's formula then implies that

$$1 + p_g(X) = \chi_0(X) = \frac{1}{12}\chi(X).$$

Hence

$$24 = 2 + b_2(X) \Longrightarrow 22 = b_2(X) = 2p_g + h^{1,1}(X) \Longrightarrow h^{1,1}(X) = 20.$$

Hence, the Hodge diamond of a K3-surface is

Since $c_1(K_X) = 0$ we deduce that a K3 surface is spinnable. This implies that all K3-surfaces are homeomorphic. It is much harder to prove that in fact they are all diffeomorphic.

Example 3.10 (Elliptic surfaces). An algebraic surface X is called elliptic if there exists a holomorphic map

$$\pi: X \to \mathbb{P}^1$$

such that the generic fiber of π is a smooth algebraic curve of genus 1. The theory of elliptic surfaces is very rich so we limit ourselves to a special class of elliptic surfaces. Fix two degree 3 homogeneous polynomials $A_0, A_1 \in \mathbb{C}[z_0, z_1, z_2]$ and consider the hypersurface $E(n) \subset \mathbb{P}^1 \times \mathbb{P}^2$ described by the equation

$$([t_0, t_1], [z_0, z_1, z_2]) \in \mathbb{P}^1 \times \mathbb{P}^2, \ t_0^n A_0(z_0, z_1, z_2) = t_1^n A_1(z_0, z_1, z_2) = 0.$$

For generic choices of A_0 and A_1 this is a smooth hypersurface in $\mathbb{P}^1 \times \mathbb{P}^2$. We set

$$A_{t_0,t_1} = t_0^n A_0(z_0, z_1, z_2) = t_1^n A_1(z_0, z_1, z_2)$$

The natural projection $\mathbb{P}^1 \times \mathbb{P}^2 \to \mathbb{P}^1$ induces a holomorphic map $\pi : E(n) \to \mathbb{P}^1$ whose fiber over $[t_0, t_1]$ is the elliptic curve

$$\{A_{t_0,t_1}(z_0,z_1,z_2)=0\} \subset \mathbb{P}^2$$

The Hodge diamond of this surface is

The biholomorphism type of E(n) depends on the choice of polynomials A_0 and A_1 . The Euler characteristic of E(n) is 12n, and E(n) is spinnable if and only if n is even. The elliptic surface E(2) is a K3 surface, but not all K3-surfaces are elliptic.

Not all the fibers of the map $\pi : E(n) \to \mathbb{P}^1$ are smooth. For generic A_0 and A_1 there are 12n singular fibers.

4. THE KODAIRA CLASSIFICATION

The Kodaira classification has as starting point the plurigenera of $P_n(X)$ of an algebraic surface. The sequence $(P_n(X))_{n>1}$ displays one of the following types of behavior.

- $(-\infty)$ The sequence of plurigenera is identically zero, $P_n(X) = 0$, $\forall n \ge 1$. In this case we say that the Kodaira dimension of X is $-\infty$ and we write this $kod(X) = -\infty$.
 - (0) The sequence of plurigenera is bounded, but not identically zero. In this case, we say that the Kodaira dimension of X is 0, kod(X) = 0.
 - (1) The sequence of plurigenera grows linearly, i.e., there exists a constant C > 0 such that

$$\frac{1}{C}n \le P_n(X) \le Cn, \quad \forall n \ge 1.$$

In this case, we say that the Kodaira dimension of X is 1, kod(X) = 1.

(2) The sequence of plurigenera grows quadratically, i.e., there exists a constant C > 0 such that

$$\frac{1}{C}n^2 \le P_n(X) \le Cn^2, \quad \forall n \ge 1.$$

In this case, we say that the Kodaira dimension of X is 2, kod(X) = 2.

Example 4.1. The rational surfaces have Kodaira dimension $-\infty$, the K3 surfaces have Kodaira dimension 0 the elliptic surfaces E(n), $n \ge 3$, have Kodaira dimension 1 and the hypersurfaces X_d , $d \ge 5$ have Kodaira dimension 2.

REFERENCES

- [1] D. Eisenbud, J. Harris: The Geometry of Schemes, Grad. Texts in Math., vol. 197, Springer Verlag, 2000.
- [2] P. Griffiths, J. Harris: Principles of Algebraic Geometry, John Wiley, 1978.
- [3] L.I. Nicolaescu: Hodge numbers of projective hypersurfaces, Notre Dame, 2005.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, NOTRE DAME, IN 46556-4618. *E-mail address*: nicolaescu.l@nd.edu *URL*: http://www.nd.edu/~lnicolae/