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Abstract The topological structures of the generic smooth functions on a
smooth manifold belong to the small quantity of the most fundamental objects
of study both in pure and applied mathematics. The problem of their study has
been formulated by A. Cayley in 1868, who required the classification of the
possible configurations of the horizontal lines on the topographical maps of
mountain regions, and created the first elements of what is called today ‘Morse
Theory’ and ‘Catastrophes Theory’. In the paper we describe this problem, and
in particular describe the classification of Morse functions on the 2 sphere and
on the torus.
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The topological structures of the generic smooth functions on a smooth
manifold belong to the small quantity of the most fundamental objects of study
both in pure and applied mathematics. The problem of their study has been
formulated by A. Cayley in 1868, who required the classification of the possible
configurations of the horizontal lines on the topographical maps of mountain
regions, and created the first elements of what is called today ‘Morse Theory’
and ‘Catastrophes Theory’.
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M. Morse has told me, in 1965, that the problem of the description of the
possible combinations of several critical points of a smooth function on a
manifold looks hopeless to him. L.S. Pontrjagin and H. Whitney were of the
same opinion.

I formulate below some recent results in this domain. Thus the classification
of the Morse functions on a circle S1 leads to the Taylor coefficients of the
tangent function. On the two-dimensional sphere the number of topologically
different Morse functions with T saddle points (that is, having 2T + 2 critical
points) grows with T as T2T . The tangent function is replaced in this study by
some elliptic integral (discovered by L. Nicolaescu, while he was continuing
Arnold’s calculation of the number of topologically different Morse functions
having 4 saddle points on the sphere S2—that number is equal to 17 746).

Replacing the 2-sphere by the two-dimensional torus, one obtains an infinite
number of topologically different Morse functions with a fixed number of
critical points, provided that the topological equivalence is defined by the
action of the identity connected component of the group of diffeomorphisms
(or homeomorphisms), that is, if the corresponding mappings of the torus are
supposed to be homotopic to the identity map.

However, if one accepts mappings permuting the parallels and the meridians
of the torus, the classification becomes finite and similar to that of the Morse
functions on the 2-sphere.

The topological classification of the functions on the 2-sphere is related to
one of the questions of the 16-th Hilbert’s problems (on the arrangements
of the planar algebraic curves of fixed degree, defined on the real plane R

2).
A real polynomial of fixed degree, defined on the real plane R

2, generates a
smooth function on S2 (with one more critical point at infinity), and the topo-
logical structure of these functions on the 2-sphere influences the topological
properties of the arrangements of the real algebraic curves where the initial
polynomials vanish.

It seems that only a small part of the topological equivalence classes
of the Morse functions having T saddle points on S2, contains polynomial
representatives of corresponding degree. For instance, in the case of 4 saddles
(T = 4) the polynomials are of degree 4 in two real variables, and provide less
that 1000 topological types, from the total number of different topologic types,
which is 17 746: the majority of the classes of smooth Morse functions with 4
saddle points have no polynomial representatives.

The classification of the Morse functions on the torus is related similarly
to the topological investigation of the trigonometric polynomials. The degree
of a polynomial is replaced in the case of the functions on T2 by the Newton
polygon of a trigonometric polynomial (which is the convex hull of the set of
the wave-vectors of the harmonics forming the trigonometric polynomial).

When such a convex polygon is fixed, its trigonometric polynomials (formed
by the harmonics whose wave-vectors belong to the Newton polygon) realize
only a finite subset of the infinite set of the topologically different classes
of functions, classified up to those transformations of the torus which are
homotopic to the identity map. This finite subset depends on the Newton
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polygon, and is small when the polygon is small. It is finite for the following
reason:

In the torus transformations needed to reduce the initial trigonometric
polynomial to the finite set of classes, discussed above, parallels and meridians
are sent only to linear combinations of the parallel and meridian classes whose
coefficients are not large. The number of the homotopy classes of such trans-
formations of the torus is finite, making finite the resulting set of topological
equivalence classes of trigonometric polynomials with fixed Newton polygon
(classified up to the torus transformations homotopic to the identity map).

Definition 1 The graph of a Morse function f : M → R on a manifold M is the
space whose points are the connected components of the level hypersurfaces
f −1(c) ⊂ M. This space is a finite complex (at least when M is compact).

Example 1 The twin peak mountain Elbrouz (whose height function f is con-
sidered continued to the sphere S2 with a minimum D at the antipodal point)
generates, as the graph of the height function f , the character ‘Y’ (Fig. 1).

The topographical ‘bergshtrechs’ at the horizontals map show the antigradi-
ent vector directions (followed by the grass of the mountain after the rain).

Example 2 The volcanic Vesuvius mountain has a maximum height point A,
a height local minimum point B (crater), and a saddle point C, defining the
graph of Fig. 2.

The vertices of the graphs (the end-points A, B, D and the triple point C)
represent the critical points of the function f . They form a finite set for a Morse
function on a compact manifold M.

We see that the graphs of the two preceding examples are topologically
equivalent, while the two corresponding functions are not. Taking this into
account, we will distinguish the graphs, ordering the vertices by the critical
values of the height.

D D D

Fig. 1 The twin peak mountain Elbrouz
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Fig. 2 The volcanic Vesuvius mountain

For instance, for a Morse function with n critical points, we may fix the
n critical values to be 1 < 2 < · · · < n. Then the first (Elbrouz) graph would
obtain the numbering of its vertices

{ f (D) = 1, f (C) = 2, f (B) = 3, f (A) = 4}
and the second (Vesuvius) graph’s vertex numbering is

{ f (D) = 1, f (B) = 2, f (C) = 3, f (A) = 4}
Therefore we will consider the graphs of the Morse functions to be labeled by the
above ‘height’ numbering (1, 2, . . . , n) of the vertices (ordering then maxima,
minima, and saddle points).

Examples 1 and 2 show that the heights of the neighbours of a triple vertex
can’t be all three higher or all three lower than the triple vertex itself (Fig. 3).

The ordering of the vertices verifying this restriction, will be called regular.
The regularly ordered graph is a topological invariant of a Morse function.

For Morse functions f on the spheres (M = Sm, m > 1, f : M → R) the graphs
are trees. For Morse functions on a surface of genus g, the graph has g
independent cycles (1 for the torus surface T

2, two for the sphere with two
handles, three for the bretzel surface and so on).

In the case of the sphere of dimension 2 this regularly ordered graph is
the only topological invariant of a Morse function f : S2 → R (up to diffeo-
morphisms or up to homeomorphisms of S2, if we fix the critical values to be
{1, 2, . . . , n}). All regular orderings (of any tree) with n vertices are realized as
the graphs of such Morse functions.

Counting (in 2005) the number ϕ(T) of such regularly ordered trees with
T triple points (and of diffeomorphism classes of Morse functions having

Fig. 3 Possible, impossible
cases

Possible cases Impossible cases
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values {1, 2, . . . , n} at their 2T + 2 critical points, including the T saddle points)
Arnold proved the following:

Theorem 1 There exists positive constants a and b such that for any T the
inequalities aTT < ϕ(T) < b T2T hold.

The article [1] claims that the upper bound of Theorem 1 is closer to the
genuine asymptotics of the function ϕ, mentioning some arguments for this
conjecture, based on (unproved) ergodic properties of random graph ordering.

This conjecture was then proved by L. Nicolaescu [6] who replaced the
recurrent inequality used by Arnold to prove his upper bound theorem by an
exact nonlinear recurrent relation (similar to the Givental’s mirror symmetry
proof in quantum field theory).

Nicolaescu’s recurrent relation involves 43 terms of which Arnold had
used only the first leading term to prove his inequality. Using the computer,
Nicolaescu solved this nonlinear recurrence explicitly, representing ϕ in terms
of the coefficients of the power series expansion of some elliptic integral.

Studying the behaviour in the complex domain of these integrals, Nicolaescu
succeeded to prove the Arnold conjecture on the growth of ϕ (leaving un-
proved however, the conjecture on the ergodic theory of random graphs which
had led Arnold to his conjecture on the asymptotics of ϕ).

The first values of the function ϕ (calculated in Arnold [1]) are

T 1 2 3 4

ϕ(T) 2 19 428 17 746

Already the easy computation of ϕ(2) = 19 provides some of the ideas of
the general structure theory.

According to Nicolaescu’s computer ϕ(5) = 1178792. Arnold was unable to
draw all the shapes of functions with T = 5 saddles, drawing only those with
T = 4.

In the case T = 5 the upper bound T2T = 10
2

10 ≈ 1010−3 is only 10 times
higher than the exact value provided by Nicolaescu.

A Morse polynomial f of degree m in two variables has at most (m − 1)2

critical points. Let m = 2k be even. Suppose that the leading form at infinity
(of degree m) is positive. In this case the polynomial provides a Morse function
˜f : S2 → R having exactly 4k2 − 4k + 2 critical points (taking that at infinity
into account).

The relation 2T + 2 = 4k2 − 4k + 2 provides the value T = 2k(k − 1) for
the number T of the saddles. For the polynomials of degree m=4 we find k=2
and T = 4. Therefore, the topological types of these 4-th degree polynomials
(with 9 critical points in R

2) are included in the set of 17 746 classes of
topologically equivalent smooth Morse functions on the sphere S2, with T = 4
saddles.

The topological equivalence is defined here by the actions of the homeo-
morphisms (or diffeomorphisms) both of the sphere, where the functions are
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defined, and the orientation preserving homeomorphisms of the axis of values.
One also needs the mappings of the axis of values, if the critical values are not
fixed e.g. as {1, 2, . . . , 9}, but may move.

According to my calculations, among the 17 746 topologically different
classes of the Morse functions on S2 with 4 saddles at most, one thousand of
classes have a polynomial representative of degree 4.

I have no conjecture on the growth rate of the number of classes realizable
by polynomials of the corresponding degree, for a growing value of the number
T of saddles.

A trigonometric Morse polynomial of degree n has at most 2n critical points
on the circle S1. For the case where all the 2n critical values are different,
the table (from ‘serpent’ theory [4]) provides the following numbers ϕ of the
topologically different functions f : S1 → R with 2n critical points (considered
up to the orientation preserving homeomorphisms or diffeomorphisms of S1

and of R)

2n 2 4 6 8 10

ϕ 1 2 16 272 7 936

Every such class of smooth functions includes some trigonometric polyno-
mial of degree n.

Theorem 2 The numbers ϕ(n) of classes of the oriented topological equivalence
of Morse functions with 2n critical points and 2n critical values on the circle,
provide the Taylor series of the tangent function (as of the exponential generating
function):

tan t = 1

1! t + 2

3! t3 + 16

5! t5 + 272

7! t7 + 7936

9! t9 + . . .

We consider next the trigonometric polynomials of two variables as some
smooth functions on the 2-torus, f : T

2 → R.

Example 3 The ˜A2 affine Coxeter group of trigonometric polynomials of
degree 1 form the following 6-parameter vector space of trigonometric poly-
nomials in two variables x and y:

(∗) f = a cos x + bsin x + c cos y + d sin y + p cos(x + y) + q sin(x + y).

This family of trigonometric polynomials has been studied in the articles by
Arnold [2, 3]. The number of critical points of such Morse polynomials (∗)

on T
2 does not exceed 6. In the general case of the arbitrary trigonometric

polynomials the upper bound of the number of critical points on T
2 is provided

by the doubled area of the Newton polygon (n! the volume of the Newton
polyhedron for the n-torus case T

n) (Fig. 4).
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Fig. 4 Newton polygon

Newton polygon

T∗T2
area = 3

saddles number, T = 3

Definition 2 The Diff-equivalence of smooth functions on T
2 is the belonging

to the same orbit of the natural action on functions on the torus of the group
Diff (T2) of the diffeomorphisms of the torus, accompanied by the orientation
preserving diffeomorphisms of the axis of the values.

The Diff0-equivalence is defined similarly, replacing, however, the group
Diff(T2) by its connected subgroup Diff0(T

2), formed by the diffeomorphisms
homotopic to the identity, which is the connected component of the identity in
Diff(T2) (whose elements may interchange the meridian and parallel classes).

The articles by Arnold [2, 3] contain the proof of

Theorem 3 The number of equivalence classes of the C∞ Morse functions
with 6 critical points on the two-dimensional torus T

2 and of the trigonometric
polynomials (∗) of the affine Coxeter group ˜A2 have the following values:

Diff Diff0

C ∞ 16 ∞
˜A2 2 6

The 16 topologically different types of the smooth Morse functions with 6
critical points and values on the torus are described in Arnold [3] by the 16
regularly ordered graphs having 3 triple points (�), three end points (©) and
one cycle (for each graph). These 16 graphs, ordered by the natural height
function, are shown in Fig. 5.

Among all these topological equivalence classes only two classes (marked
by the sign (∗)) contain some of the trigonometric polynomials.

All the other 14 cases are eliminated by the algebraic geometry of the elliptic
level curves of functions (∗), as is explained in articles by Arnold [2, 3].

This finite set of the 16 Diff -equivalence classes provides an infinity of
different Diff0-classes for the following reason.

A generic point P on the cycle of the graph does not separate the graph.
Hence the level line component, represented by P, does not separate the torus
T

2 into two parts, and therefore this closed curve is not homologous to zero on
the torus.

Its homology class does not depend on the choice of the point P on the
cycle, since any pair of such points {P, P}′ separates the graph into two parts,
and hence the cycle P − P′ is the boundary of a domain on the torus.

This 1-dimensional homology class is an invariant of the Diff0-equivalence
(at least up to the choice of its sign).
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Fig. 5 The 16 graphes

For suitable choices of Morse functions with 6 critical points and val-
ues on the torus, it can take an infinity of different values. All these 1-
homology classes are Diff -equivalent, each of them being represented by a
non-bounding, non-self-intersecting closed curve on the torus.

Thus we obtain an infinite set of the Diff 0-equivalence classes of the Morse
functions having 6 critical points and 6 critical values on the 2-torus T

2.
However the trigonometric polynomials (∗) provide only a finite part of this

infinite set of the Diff0-equivalence classes. Namely, in Arnold [2] it is proved
that the algebraic geometry of real elliptic curves restricts the homology class
of the level line component P on the torus: it may attain only 3 values (or 6 if
we take the orientation into account).

These 6 realizable classes form in the one-dimensional homology group of
the torus the Dynkin diagram of the Coxeter group A2 (whence the name ˜A2

of the class (∗) of trigonometric polynomials) (Fig. 6).
For the other classes (say defined by arbitrary Newton polygons) the

number of Diff -equivalence and Diff0-equivalence classes are unknown. I do
not know how fast the number of Diff -equivalence classes grows when the
number T of saddle points is large (neither for the smooth Morse functions,
nor for the trigonometric polynomials having a fixed Newton polygon). Even
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Fig. 6 H1(T
2, Z)

the finiteness proof for the number of Diff -equivalence classes (for each value
of T) is not published.

This abundance of unsolved problems was the reason to choose these
questions of real algebraic geometry and of Morse functions statistics for this
paper: I hope that the readers will go further than me in this rapidly evolving
domain at the intersection of all the branches of mathematics.

It is rather strange that the computer contribution to real algebraic geometry
is still almost negligible while theoretical mathematicians have made a lot.

The only real contribution that I know, is the recent result of a former
student of the Université Paris-Jussieu, Adriana Ortiz-Rodriguez, working at
Mexico (and having started these works in Paris). This result describes the
topology of the parabolic curves on algebraic surfaces of the projective space,
and belongs to the intersection of real algebraic geometry and symplectic
geometry.

The graph {z = f (x, y)} of a polynomial f in two real variables x and y is a
smooth surface in R

3. The parabolic lines of this surface are projected to the
{(x, y)}-plane as algebraic curves of degree 2n − 4.

The question studied by A. Ortiz-Rodriguez is to evaluate the possible
numbers of closed parabolic curves for polynomials of a given degree: how
large may this number of parabolic curves be? And how large may be the
number of connected components of the corresponding algebraic curve of
degree 2n − 4 in the real projective plane?

The classical Harnack theorem of real algebraic geometry implies that for
the polynomial f of degree n = 4 the number M of closed parabolic curves
cannot exceed 4.

It is not too difficult to construct examples of polynomials f of degree 4, for
which the number of closed parabolic curves attains the value M = 3. But the
problem of wether the case of 4 closed parabolic curves is realizable by some
polynomial of degree 4 resisted to all the attempts of mathematicians, and only
the computer helped to solve it.

Namely, in a year of uninterrupted calculations, the Mexico computer of
A. Ortiz-Rodriguez has studied 50 millions of polynomials of degree 4.

Among all these polynomials, just 3 polynomials have, each of them, 4
closed parabolic curves on their graphs.
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For the polynomials f of degree n, A. Ortiz-Rodriguez has proved (in her
thesis, preceding the experiment described above) the inequalities

an2 � M � bn2

for the maximal number M(n) of closed parabolic curves on the graph of a
polynomial of degree n: for any such polynomial, the number of parabolic
curves is at most bn2, and there exist polynomials of degree n for which the
parabolic curve number is at least an2.

Unfortunately, b is higher than a, and thus the question of the genuine
asymptotics of M(n) is waiting for the courageous researchers (and computer
experiments).

The situation is even more difficult with another similar problem (also
studied by A. Ortiz-Rodriguez). Consider in the 3-dimensional projective
space RP3 a smooth algebraic surface of degree n. How large may be the
number of its closed parabolic curves?

Here the Ortiz-Rodriguez boundaries are

An3 � M � Bn3,

but the coefficient B is a dozen of times higher than A and the genuine asymp-
totic behaviour of the maximal number M(n) of the connected components
of the parabolic curves on smooth real projective hypersurfaces of degree n
remains unknown.

These real algebraic geometry versions of the higher dimensional Plücker
formulae remain a challenge for modern algebraic geometry, which seems,
however, to be unable to study the real things. Of course the celebrated
Tarski-Seidenberg theorem implies the existence of an algorithm providing the
needed answers, but the required time for the real application is usually much
larger than the whole life span of the universe.
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