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ON THE CAPPELL–LEE–MILLER GLUING THEOREM

Liviu I. Nicolaescu

We prove a generalization of the Cappell-Lee-Miller theo-
rem which we formulate using a new language, of asymptotic
maps and asymptotic exact sequences. We also present appli-
cations to eigenvalue estimates, approximation of obstruction
bundles and gluing of determinant line bundles arising fre-
quently in gauge theory.

Introduction.

Many surgery problems arising in gauge theory require the understanding
of the kernels of selfadjoint, possibly Z2-graded, Dirac type operators on
manifolds with very long necks. As is well-known, the dimension of the
kernel is a very unstable quantity: Small perturbations can destroy it com-
pletely. Stated in this fashion, this problem has no chance of being solved.
A more reasonable approach is to replace the kernel with a more stable ob-
ject, such as the space spanned by eigenfunctions corresponding to “small”
eigenvalues.

The range of the “small” attribute is vague but a simple heuristic argu-
ment offers an idea about its size. More precisely, on a manifold of large
diameter r, a self-adjoint elliptic operator of order k is to be expected to
have eigenvalues of size ∼ r−k. If k = 1, the smallness attribute ought to
refer to sizes c(r) such that

c(r) = o(r−1) as r →∞.(∗)
Thus, if Mr is a compact, oriented Riemann manifold with a long neck
of length ∼ r (see Figure 1), c(r) is a function satisfying (∗) and Dr is a
selfadjoint Dirac operator, we would like to have a good approximation of
the space Kr spanned by eigenfunctions of Dr corresponding to eigenvalues
|λ| ≤ c(r). We should think of Dr as a family of operators, varying slowly
with r → ∞. The physicists would call such a situation, an adiabatic
deformation.

T. Yoshida solved this problem in [13] for a special class of operators
Dr arising in Floer theory, namely the so-called odd signature operators.
A bit later, Cappell-Lee-Miller have shown in [3] that all of Yoshida’s ideas
extend with no essential modifications to arbitrary Dirac type operators Dr,
assuming as Yoshida did that along the cylindrical neck ofMr the coefficients
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of Dr are independent of the longitudinal coordinate. (Such an operator is
called cylindrical.)

If an operator slightly deviates from being cylindrical, it is natural to be-
lieve that the results in [3] continue to hold. However, the ad-hoc arguments
of [3, 13] do not extend to this more general situation.

In this paper we propose a new, more transparent and considerably shorter
proof of the Cappell-Lee-Miller gluing theorem in this more general context.
More concretely, we show that the results of [3, 13] continue to hold if Dr

differs from a cylindrical type operator by an exponentially small quantity.
What we believe warrants publicity is the new extremely versatile point of
view we adopt.

As in [3] and [13], we want to approximate Kr by a space over which we
have some control. We propose a formulation which closely resembles the
well-known Mayer-Vietoris theorem. In that classical situation, the coho-
mology of a union of two spaces fits in a long exact sequence of vector spaces
and linear maps. In gauge theoretic applications, Kr has a cohomological
interpretation, in terms of deformation complexes. We sought to include Kr

in a long exact sequence of finite dimensional vector spaces and linear maps
and we were very pleasantly surprised to discover that such a formulation is
possible, provided we slightly adjust our requirements.

More precisely, we prove the existence of a sequence

0 → Kr

fr

−→a Xr

gr

−→a Yr → 0(∗∗)

which is “approximately” exact.
To explain the meaning of the above statement, let us first mention that

the symbol Kr−→aXr does not denote a linear map from Kr to Xr. It
denotes an asymptotic map, that is a linear map from Kr to the ambient
space of Xr whose range is “very close” to a subspace of Xr as r → ∞.
The sequence (∗∗) is not quite exact, it is asymptotically exact, meaning
that the range of fr is “very close” to the kernel of gr. This may not
sound satisfactory, but a simple argument shows that an asymptotically
exact sequence of asymptotic maps can be perturbed to a genuinely exact
sequence of genuine maps. The advantage of working with asymptotic maps
comes from the fact that fr and gr are the maps the intuition tells us they
ought to be.

More “precisely”, the first arrow in (∗∗) is called the (adiabatic) splitting
map. It says that, in the adiabatic limit r →∞, the sections in Kr split into
a pair of harmonic spinors on the manifolds with cylindrical ends Mi(∞),
i = 1, 2, depicted in Figure 1. Xr is precisely the space of pairs of asymp-
totically cylindrical harmonic spinors, i.e., harmonic spinors which have an
asymptotic limit as t → ∞ along the cylindrical end of Mi(∞). According
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to the Fredholm results of Lockhart and McOwen, Xr is a finite dimensional
space.

The second arrow in (∗∗) is telling us that not any pair of asymptotically
cylindrical spinors arises in such a splitting. Yr is the obstruction space
which indicates that a pair of asymptotically cylindrical harmonic spinors
arises in an adiabatic splitting if and only if they have matching asymptotics.
The second arrow is the analogue of the difference map in the usual Mayer-
Vietoris sequence.

From a technical point of view, the asymptotic maps and sequences are
as easy to use as their traditional counterparts. On the other hand, the
asymptotic language makes many of the gluing arguments in gauge theory
much more transparent.

The present paper is divided as follows. In Section 1 we describe the
geometric context of our gluing theorem. It consists of cylindrical objects:
Manifolds, bundles, sections etc. In Section 2 we introduce the asymptotic
language and formulate the main result. In Section 3 we list some basic ana-
lytical facts about elliptic equations on manifolds with cylindrical ends. We
mention in particular the Key Estimate which adds a bit of compactness to
the situation. Its completely elementary proof is deferred to the Appendix.
Section 4 contains the proof of the Main Theorem itself.

In Section 5 we present several applications. The first one is concerned
with small eigenvalues of selfadjoint elliptic operators on manifolds con-
taining long necks of the type considered by W. Chen in [4]. His result is
equivalent with the statement that if ker gr = 0 then the operators Dr are
invertible for r � 0 and the norms of their inverses are O(r). The sequence
(∗∗) makes this result nearly obvious.

We consider next super-symmetric operators, so that Dr can be repre-
sented as

Dr =
[

0 6D∗
r

6Dr 0

]
where 6Dr is a first order elliptic operator

C∞(E+) → C∞(E−)

and E± →M are Hermitian vector bundles over M . We study what happens
if the odd part of the kernel of gr is trivial, (ker gr)− = 0 . We show that
6Dr admits a L2-bounded right inverse of norm O(r) as r →∞. This result
is often needed in gauge theoretic gluing problems over even dimensional
manifolds; see [11].

We conclude this section with some asymptotic lower estimates for the
first eigenvalue of the Hodge-DeRham Laplacian acting on forms of a given
degree. Most of the known lower estimates for eigenvalues have a geometric
origin. Our estimates have a topological origin. For degree one forms these
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estimates play an important role in gauge theory. These estimates on 0-
forms also follow from classical results of Li and Yau.

We believe the asymptotic language will find applications in other prob-
lems involving adiabatic deformations. It is not difficult to introduce the no-
tion of asymptotic (co)chain complexes and asymptotic cohomology. Many
of the basic results in homological algebra have an asymptotic counterpart.

1. Cylindrical objects.

A cylindrical (n + 1)-manifold is an oriented Riemannian (n + 1)-manifold
(N̂ , ĝ) with a cylindrical end modeled by R+×N , where (N, g) is an oriented
compact Riemannian n-manifold. In more precise terms, this means that the
complement of an open precompact subset of N̂ is isometric in an orientation
preserving fashion to the cylinder R+ × N . We will denote the canonical
projection R+ ×N → N by π while t will denote the outgoing longitudinal
coordinate along the neck. We will regularly denote the “slice” N by ∂∞N̂
and the metric g by ∂∞ĝ. For each t ≥ 0 we set N̂t := N̂ \ (t,∞)×N .

A cylindrical structure on a vector bundle Ê → N̂ consists of a vector
bundle E → N and a bundle isomorphism

ϑ̂ : Ê |R+×N→ π∗E.

We will use the notation E := ∂∞Ê.
A cylindrical vector bundle will be a vector bundle together with a cylin-

drical structure (ϑ̂, E). Observe that the cotangent bundle T ∗N̂ has a nat-
ural cylindrical structure such that

∂∞T
∗N̂ ∼= R〈dt〉 ⊕ T ∗N.

A section û of a cylindrical vector bundle (Ê, ϑ̂, E) is said to be cylindrical
if there exists a section u of ∂∞Ê such that along the neck

ϑ̂û = π∗u.

When there is no danger of confusion, we will write the above equality simply
as û = π∗u. We will use the notation u := ∂∞û.

Given any cylindrical vector bundle (Ê, ϑ̂, E) there exists a canonical
first order partial differential operator P , defined over the cylindrical end,
uniquely determined by the conditions

P (f̂ û) =
df̂

dt
û+ f̂P û, ∀f̂ ∈ C∞(R+ ×N), û ∈ Ê |R+×N ,

and P v̂ = 0 for any cylindrical section v̂ of Ê |R+×N . We will denote this
operator by ∂t.

It is now clear that we can organize the set of cylindrical bundles over a
given cylindrical manifold as a category. Moreover, we can perform all the
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standard tensorial operations in this category such as direct sums, tensor
products, duals, etc.

A cylindrical partial differential operator (p.d.o.) will be a first order p.d.o.
L̂ between two cylindrical bundles Ê, F̂ such that along the neck [T,∞)×N
(T � 0) it can be written as

L̂ = G∂t + L

where L : C∞(E) → C∞(E) is a first order p.d.o., E = Ê |N , F = F̂ |N and
G : E → F is a bundle morphism. We will use the notation

L := ∂∞L̂.

If σ̂ denotes the symbol of L̂ then we see that G = σ̂(dt) and1

∂∞L̂ = L̂−G∂t.

A connection on a cylindrical vector bundle Ê → N̂ is a special example of
first order p.d.o.

∇̂ : C∞(Ê) → C∞(T ∗N̂ ⊗ Ê)

between cylindrical bundles. The connection is called strongly cylindrical if
it is cylindrical as a p.d.o. and temporal i.e.,

∇̂tû = ∂tû, ∀û ∈ C∞(Ê).

Two cylindrical manifolds (N̂i, ĝi), i = 1, 2 are called compatible if there
exists an orientation reversing diffeomorphism

ϕ : N1 → N2

such that

g1 = ϕ∗g2.

Two cylindrical vector bundles (Êi, ϑ̂i, Ei = ∂∞Êi) → N̂i are said to be
compatible if there exists a vector bundle isomorphism

γ : E1 → E2

covering ϕ.
For simplicity, we set N := N1, we will fix some (ghost) reference, ori-

entation reversing diffeomorphism Φ0 : N → N2 so that we can identify ϕ
with an orientation preserving self-diffeomorphism of N . Also, in this case
it is very convenient to think of the end of N̂2 as the cylinder (−∞, 0)×N

so that the outgoing coordinate on N̂2 is −t. Note that the compatibility
conditions provide a way of identifying ∂∞Ê1 with ∂∞Ê2 so that we can
decide when a section of ∂∞Ê1 is equal to a section of ∂∞Ê2.

1The operator G is orientation sensitive because it depends on the choice of outgoing
coordinate t.
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The sections ûi of the compatible cylindrical bundle Êi are called com-
patible if ∂∞û1 = ∂∞û2. The cylindrical partial differential operators L̂i on
N̂i , i = 1, 2, are compatible if along their necks they have the form

L̂1 = G1∂t − L1, L̂2 = G2∂t − L2, G1 +G2 = L1 − L2 = 0.

Consider two compatible cylindrical manifolds N̂i, i = 1, 2. For every
orientation preserving diffeomorphism ϕ : N → N and every r � 0 we
denote by N̂(r) = N̂(r, ϕ) the manifold obtained by attaching N̂1(r) :=
N̂1 \ (r+ 1,∞)×N to N̂2(r) := N̂2 \ (−∞,−r− 1)×N (see Figure 1) using
the obvious orientation preserving identification

ır × Φ0 ◦ ϕ : [r + 1, r + 2]×N → [−r − 2,−r − 1]×N,(†)

(t, x) 7→
(
t− 2r − 3,Φ0 ◦ ϕ(x)

)
.

Two compatible cylindrical bundles Êi can be glued in an obvious way to
form a bundle Ê(r) = Ê1#rÊ2 for all r � 0. We want to emphasize that the
topological types of the resulting manifold N̂(r) and bundle Ê(r) depend on
the gluing isomorphisms ϕ and γ. In the sequel, to simplify the presentation,
we will not include ϕ and γ in our notations.

2. The main result.

Consider the following set-up:

• Two compatible cylindrical manifolds Mi(∞), i = 1, 2

∂∞M1(∞) = N, ∂∞M2(∞) = −N.

We assume the cylindrical end of M1(∞) is R+×N and the cylindrical end
of M2(∞) is R− ×N .

• Êi →Mi(∞) are compatible cylindrical bundles equipped with compatible
cylindrical Hermitian metrics and compatible strongly cylindrical connec-
tions ∇̂i. All the Sobolev norms will be defined in terms of these connections
and the Levi-Civita connection.

• D̂i : C∞(Êi) → C∞(Êi) are compatible self-adjoint cylindrical, Dirac-type
operators, in the sense of [9]. Recall that the Dirac-type condition means
that the squares D̂2

i have the same principal symbols as a Laplacian. The
principal symbols ofDi define Clifford multiplications on Êi which we denote
by ĉi. Set

ĉ := ĉ1, J := ĉ(dt)
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where t denotes the outgoing longitudinal coordinate on the end of M1(∞).
Observe that J = −J∗ = J−1. Along the neck D̂1 has the form

D̂1 = J(∂t −D)

where D := J∂∞D̂1. We assume that D is a selfadjoint Dirac-type operator2

on the bundle E := Ê1 |N∼= Ê2 |N . The compatibility condition implies

∂∞D̂1 = ∂∞D̂2.

Thus, along the neck D̂2 has the form

D̂2 = J(∂t −D)

where we recall that −t is the outgoing coordinate on the cylindrical end of
M2(∞). We want to emphasize that D is independent of the longitudinal
coordinate t along the necks.

• Two smooth self-adjoint endomorphisms B̂i. Set

Bi(t) := B̂i |t×N , Ai(t) := JBi(t).

We assume the following additional facts about Ai(t).

◦ Ai(t) anti-commutes with J

{J,Ai(t)} = JAi(t) +Ai(t)J = 0.

◦ There exist C, λ > 0 such that3

sup
{
|Âi(x)|; x ∈ [t, t+ 1]×N

}
≤ C exp(−λ|t|).(2.1)

Consider a smooth, decreasing, cut-off function η : R → [0, 1] such that

η(t) ≡ 1, t ≤ 1/4

η(t) ≡ 0, t ≥ 3/4

and ∣∣∣∣dηdt
∣∣∣∣ ≤ 4, ∀t ≥ 0.

For each r > 0 and t > 0 set ηr(t) := η(t−r). Now extend ηr by symmetry to
a function on R still denoted by ηr. We can regard ηr(t), t ≥ 0, as a smooth
function on M1(∞) and ηr(t), t ≤ 0 as a smooth function on M2(∞) so we
can form the perturbations

D̂i,r := D̂i + ηrB̂i

2This is a very mild restriction. As explained in [8], this happens for all Dirac type
operators which appear in geometric problems.

3This pointwise condition on the zeroth order perturbation Âi can be relaxed to a
condition involving a weighted Sobolev norm. However the exponential type control on
the size is essential. It is needed to invoke the Fredholm results of [6].
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and

D̂i,∞ := D̂i + B̂i.

Note that via the diffeomorphism (†) we have the identification

D1,r |C(r+1)= D2,r |C(−r−2), C(t) := [t, t+ 1]×N.

Denote by M1(r) the manifold obtained from M1(∞) by chopping off the
cylinder (r + 2,∞) × N , by M2(r) the manifold M2(∞) \ (−∞,−r − 2) ×
N and by M(r) the manifold M1(∞)#rM2(∞) described in the previous
subsection; see Figure 1.

We can regard M1(r) and M2(r) in a natural way as submanifolds of M(r)
which intersect over a cylinder C(r + 1). Hence the operators D̂i,r can be
glued together to produce a Dirac type operator Dr on the glued bundle
Ê(r) := Ê1#rÊ2 →M(r).

M

M

M(r)

1
(r)

2(r)

ιr

r+1 r+2

-r-2 -r-1

Figure 1. Gluing two manifolds with cylindrical ends.

The operators D̂i may have additional symmetries. We will be particu-
larly interested in super-symmetric operators. This means the bundles Êi

are equipped with orthogonal (unitary) decompositions

Êi = Ê+
i ⊕ Ê−i(2.2)
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which determine the chiral operators Ĉi := P̂+
i − P̂−i where P̂±i denotes

the orthogonal projection Êi → Ê±i . The Dirac operator D̂i is said to be
super-symmetric if {

Ĉi, D̂i

}
= 0.(2.3)

Equivalently, in terms of the splitting (2.2) it has the block decomposition

D̂i =
[

0 D̂∗
i

D̂i 0

]
where D̂i is a first order elliptic operator C∞(Ê+

i ) → C∞(Ê−i ). Condition
(2.3) implies that for any 1-form α on M̂i(∞) the Clifford multiplication by
α anti-commutes with Ĉi

{ĉ(α̂), Ĉi} = 0.(2.4)

Note that along the neck the operator D̂i has the form

D̂i = G(∇t −D)

where G : E+ → E− is the bundle isomorphism given by the Clifford mul-
tiplication by dt and D : C∞(E+

i ) → C∞(E+
i ) is a self-adjoint, Dirac-type

operator.
We will further assume that the two super-symmetries are compatible

along the “boundary” N i.e.,

Ĉ1 |N= Ĉ2 |N=: C.

Thus the bundle E is super-symmetric with chiral operator C. Conditions
(2.3) and (2.4) imply that

[C,D] = CD −DC = 0.(2.5)

In this case we assume the perturbations B̂i are compatible with the chiral
operators in an obvious sense. Clearly the super-symmetry is transmitted
to the glued bundle Er and the glued operator Dr. The space ker Dr is
naturally a finite dimensional Z2-graded space.

In this paper we will address the following question.

Main Problem. Understand the behavior of ker Dr as r →∞.

The kernel of an operator is a notoriously unstable object so it is unreal-
istic to be able to solve the Main Problem as stated. We need to “stabilize”
ker Dr if we expect to say something of significance.

To formulate the main result we need to introduce some additional no-
tions. We begin with the notions of asymptotic map and asymptotic ex-
actness. An asymptotic map is a sequence (Ur, Vr, fr)r>0 with the following
properties:
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(a) There exist Hilbert spaces H0 and H1 such that Ur is a closed subspace
of H0 and Vr is a closed subspace of H1, ∀r > 0.

(b) fr is a densely defined linear map fr : Ur → H1 with closed graph and
range R(fr), ∀r > 0.

(c) limr→∞ δ̂(R(fr), Vr) = 0 where, following [5], we set

δ̂(U, V ) = sup
{

dist (u, V ); u ∈ U, |u| = 1
}
.

We will denote asymptotic maps by Ur

fr

−→a Vr. There is a super-version
of this notion when Ur and Vr are Z2-graded and are closed subspaces in
Z2-graded Hilbert spaces such that the natural inclusions are even.

The next result, proved in [5, IV.§2], explains the motivation behind the
above definition.

Lemma 2.1. If

δ̂(U, V ) < 1

then the orthogonal projection PV onto V induces a one-to one map U → V .
If additionally

δ̂(V,U) < 1

then PV : U → V is a linear isomorphism.

Define the gap between two closed subspaces U, V in a Hilbert space H
by

δ(U, V ) = max
{
δ̂(U, V ), δ̂(V,U)

}
.

The sequence of asymptotic maps

Ur

fr

−→a Vr

gr

−→a Wr, r →∞
is said to be asymptotically exact if

lim
r→∞

δ(R(fr), ker gr) = 0.

We have the following consequence of Lemma 2.1.

Lemma 2.2. If the sequence

Ur

fr

−→a Vr

gr

−→a Wr, r →∞
is asymptotically exact, Pr denotes the orthogonal projection onto ker gr and
Qr the orthogonal projection onto Wr then there exists r0 > 0 such that the
sequence

Ur
Pr◦fr−→ Vr

Qr◦gr−→ Wr

is exact for all r > r0.
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If the spaces Hj are Z2-graded Hj = H+
j ⊕ H−

j we say the sequence is
super-symmetric if the maps fr and gr are even, i.e., are compatible with
the splitting. In this case we get two asymptotically exact sequences

U±r → V ±r →W±
r .

Next we need to introduce suitable functional spaces. For brevity we discuss
only distributions on M1(∞). Define the extended L2-space L2

ex(Ê1) as the
space of sections û ∈ L2

loc(Ê1) such that there exists u∞ ∈ L2(E) such that

û− û∞ ∈ L2(Ê1).

Above, û∞ denotes the section in L2
loc(Ê1) which is identically zero on M1(0)

and coincides with the translation invariant section u∞ on the infinite cylin-
der R+ ×N . u∞ is uniquely determined by û and thus we get well-defined
map

∂∞ : L2
ex(Ê1) 3 û 7→ u∞ ∈ L2(E)

called asymptotic limit (trace) map. For simplicity, denote by ‖ • ‖ the
L2-norm of distributions on N . L2

ex(Ê1) is naturally equipped with a norm

‖û‖2
ex := ‖û− û∞‖2

L2(Ê1)
+ ‖u∞‖2.

Clearly L2
ex(Ê1) with the above norm is a Hilbert space and we have a short

exact sequence

0 ↪→ L2(Ê1) ↪→ L2
ex(Ê1)

∂∞−→ L2(E) → 0.

The map

L2(E) 3 u∞ 7→ û∞ ∈ L2
ex(Ê1)

defines a splitting of this sequence.
Define the space of extended L2-solutions of D̂i,∞ as

Ki := ker D̂i,∞ ∩ L2
ex(Êi).

The results of [1] and [6] show that these are finite dimensional spaces and
the spaces of asymptotic traces Li := ∂∞(Ki) are subspaces in H := kerD ⊂
L2(E). We have a difference map

∆ : K1 ⊕K2 → H, û1 ⊕ û2 7→ ∂∞û1 − ∂∞û2.

We denote its kernel by K∞. It is a finite dimensional subspace of L2
ex(Ê1)⊕

L2
ex(Ê2).
Finally we define the splitting map

Sr : C∞(Er) → L2
ex(Ê1)⊕ L2

ex(Ê2)

by ψ 7→ S1
rψ ⊕ S2

rψ where

S1
rψ = ψ on M1(r) ⊂M1(∞)
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and

(S1
rψ)(t, x) = ψ(r, x), ∀t ≥ r, x ∈ N.

S2
r is defined similarly. We can now formulate the main result of this paper.

When B̂i ≡ 0, i.e., the operators D̂i,∞ are translation invariant along the
neck, this result was proved by Cappell-Lee-Miller in [3] and is implicitly
contained in [13]. The super-symmetric situation was discussed in [7] in
the special case of the anti-selfduality operators, and in a different analytic
setup.

Main Theorem. Fix a positive real number δ such that

0 < δ < min(γ, λ)

where we recall that λ controls the sizes4 of the perturbations Âi and we
denoted by γ the spectral gap of D, i.e.,

γ := dist
(
0, spec (D) \ {0}

)
.

For every function c : R+ → R+ such that

c(r) = o(1/r), c(r) ≥ Ce−δr as r →∞

denote by Kr = Kr(c) the subspace L2(Er) of spanned by the eigenvectors of
Dr corresponding to eigenvalues |λ| ≤ c(r). Then the following hold:

(a) The splitting map Sr induces an asymptotic map

Kr(c)−→aK1 ⊕K2.

(b) The sequence

0 → Kr(c)
Sr

−→a K1 ⊕K2
∆→ H→ H/(L1 + L2) → 0

is asymptotically exact. Furthermore, if all the operators involved are
super-symmetric, the above sequence is super-symmetric as well.

In the course of the proof we will construct an asymptotic inverse Ψr to
the splitting map which we call the gluing map. This is an asymptotic map
K∞ → Kr such that if Pr denotes the orthogonal projection onto Kr and
P∞ the orthogonal projection onto K∞ then

‖(P∞Sr) ◦ (PrΨr)− idK∞‖L2(M(r))

+ ‖(PrΨr) ◦ (P∞Sr)− ideKr
‖L2(M(r)) = o(1)

as r →∞.

4Large λ⇐⇒ small perturbation.
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3. First order elliptic equations on manifolds with cylindrical
ends.

In this section we will survey a few analytical facts which are needed in the
proof of the Main Theorem. The adequate functional background will be
that of the Sobolev spaces Lk,p consisting of distributions k-times differen-
tiable with derivatives in Lp.

For any L2
loc distribution û : t 7→ u(t) on a cylinder [0, L) ×N (where L

can be ∞) we denote by ρt(û) the function [0, L) → R+ defined by

t 7→ ρt(û) :=

(∫
C(t)

|u|2d vol

)1/2

, C(t) = [t, t+ 1]×N.

Additionally, define

q : [0, L) → [0,∞], t 7→ qt,L(û) = sup
t<s<L

ρs(û).

Note that if finite, qt,L is a decreasing function and thus belongs to L∞loc(0, L).
When L = ∞ we set

qt := qt,∞.

Now let us observe that the operator J induces a symplectic structure on
L2(E) defined by

ω(u, v) :=
∫

N
(Ju, v)d vol.

The spectrum of D is real and consists only of discrete eigenvalues with
finite multiplicities. Set

Hµ := ker(µ−D),

and denote by Pµ the orthogonal projection onto Hµ. Since {J,D} = 0 we
deduce JHµ = H−µ. The spectral gap of D is the positive real number
γ = γ(D) defined as the smallest positive eigenvalue of D. Note that due
to the spectral symmetry, −γ(D) is also an eigenvalue of D. In particular,
H = H0 is J invariant and thus has an induced symplectic structure. We
have the following result (see [1, 3, 4, 8]).

Lemma 3.1. The spaces Li = ∂∞(Ki) of asymptotic traces of extended L2

solutions are Lagrangian subspaces of H i.e., L⊥i = JLi.

In the super-symmetric case we have E = E+ ⊕ E− and G∗G = 1E+ ,
GG∗ = 1E−

J =
[

0 −G∗
G 0

]
.
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Then J(E±) = JE∓ and

D =
[

D 0
0 JDJ−1

]
.

The space H is Z2-graded

H = H+ ⊕H−,

and GH+ = H−. The asymptotic limit spaces Li now have decompositions

Li = L+
i ⊕ L−i , L±i ⊂ H±,

and the Lagrangian condition translates into

(L+
i )⊥ = G∗L−i , (L−i )⊥ = GL+

i ,(3.1)

where ⊥ denotes the orthogonal complement in H±.
Consider a cylinder [0, L) × N . Denote by Ê the pullback of E → N to

this cylinder and by D̂ the partial differential operator on C∞(Ê)

D̂ = ∂t −D.

For any eigenvalue µ of D and any smooth section û of Ê define a new
section ûµ by the condition

ûµ |t×N= Pµu(t) u(t) := û |t×N.

Clearly ûµ is a smooth section which we will regard as a smooth map

ûµ = uµ(t) : [0, L) → Hµ.

Set

u⊥(t) = u(t)− u0(t).

The following result is an elementary consequence of the method of separa-
tion of variables. To keep the flow of the arguments uninterrupted we defer
the proof of this result to the Appendix.

Proposition 3.2 (Key Estimate). Fix λ > 0. There exists a constant C >
0 depending (continuously) only on the geometry of N ,λ and the coefficients
of D with the following property: For any smooth sections û, f̂ of Ê such
that

D̂û = f̂

and

‖f(t)‖ = O(e−λt), as t→∞,(3.2)

the following inequalities hold:

‖u0(t)− u0(t+ n)‖ ≤ Ce−λt ∀n ∈ Z ∩ [0, L− t),(3.3)

ρt+n(û⊥) ≤ C
(
e−γnρt(û⊥) + e−γnρt+2n(û⊥) + e−λt

)
,(3.4)
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∀n ∈ Z ∩ [0, (L− t)/2). Above, γ denotes the spectral gap of D, i.e.,

γ := dist
(
0, spec (D) \ {0}

)
.

We have the following immediate consequence whose proof is left to the
reader.

Corollary 3.3. Let L = ∞ in the Key Estimate and fix λ > 0. There exists
a constant C > 0 which depends only on λ, the geometry of N and D with
the following property. If

D̂û = f̂ ,

where both û and f̂ are smooth and satisfy

ρt(û) ∈ L∞(R+), ‖f(t)‖ = O(e−λt),(3.5)

then

û ∈ L2
ex(Ê)

and

‖∂∞û− u0(t)‖ ≤ C
(
e−λt + e−γtqt(û⊥)

)
.

Suppose Â is a smooth selfadjoint endomorphism of Ê → R+ × N such
that for some λ > 0 we have

sup{|A(t, x)| ; x ∈ N} = O(e−λt).(3.6)

Set Âr := ηr(t)Â. The next result explains the role of the condition

c(r) = o(1/r)

in the statement of the Main Theorem.

Proposition 3.4. Suppose that we have a sequence of smooth sections ûr

satisfying the following conditions:
(a) There exists C > 0 such that ρt(ûr) < C for all t, r > 0.
(b) The sections ûr and their derivatives are uniformly bounded on C(0).
(c) There exists a sequence of smooth endomorphisms Br of E such that

m(r) := sup{|Br(x)| ; x ∈ N} = o(1/r) as r →∞
and D̂ − Ârûr −Brûr = 0 on the cylinder [0, r]×N .

(d) ur(t) = ur(r), ∀t ≥ r ≥ 0.
Then a subsequence of ûr converges in the norm of L2

ex to a section û

satisfying D̂ − Âû = 0 on R+ ×N . Moreover, on a subsequence

ur(r) → ∂∞û in the norm of L2(E).(3.7)
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Proof. In the sequel we will use the same symbol C to denote positive con-
stants independent of t, r > 0. Set f̂r = Ârûr +Brûr. Then

D̂ûr = f̂r on [0, r]×N.(3.8)

Conditions (3.6), (a) and (b) coupled with a standard bootstrap argument
imply that there exists a constant C > 0 such that

sup{|ûr(t, x)| ; (t, x) ∈ [0, r − 1]×N} ≤ C, ∀r > 0.(3.9)

This implies that a subsequence of ûr |[0,r]×N converges weakly in L2
loc to a

section û defined over the entire cylinder. Clearly Brûr → 0 in L2
loc so that

û is a weak solution of

D̂û− Âû = 0 on R+ ×N.

We can now conclude via elliptic estimates that we can extract a subsequence
which converges is strongly in Lk,2

loc . Moreover, according to (3.9) we deduce
û ∈ L∞. If we now set f̂ = Âû we deduce

ρt(f) ≤ ‖û‖∞ρt(Â) = O(e−λt).

Corollary 3.3 implies û ∈ L2
ex and

‖u(t)− ∂∞û‖ ≤ C(e−γt + e−λt).(3.10)

The Key Estimate for (3.8), where

qt,r(f̂r) ≤ C(rm(r) + qt(Ar)) ≤ C(rm(r) + e−λt), r ≥ t ≥ 0

implies that for all 0 ≤ t ≤ r we have

‖ur(t)− ur(r)‖ ≤ C(rm(r) + e−λt).(3.11)

This proves (3.7) since rm(r) = o(1). To show that the convergence ûr → û
also takes place in the norm of L2

ex we only need to establish that on a
subsequence

lim
r→∞

∫ ∞

0
dt

∫
N
|(ur(t)− u(t))− (ur(r)− ∂∞û)|2d vol → 0.

We extract the subsequence using the following argument. For every n > 0
pick r = rn > n such that the following inequalities hold:∫ n

0
dt

∫
N
|urn(t)− u(t)|2d vol ≤ 1

n2
(3.12)

∫
N
|urn(n)− urn(rn)|2d vol <

1
n2

(3.13)

∫ ∞

n
dt

∫
N
|u(t)− ∂∞û|2d vol ≤ 1

n2
.(3.14)
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The choice (3.12) is possible because the sequence ûr converges to û in the
norm L2([0, n] × N). The choice (3.13) is possible because rm(r) = o(1)
and (3.11). Finally, the choice (3.14) is possible because of (3.10). The
subsequence ûrn chosen as above converges to û in the norm of L2

ex. �

4. Proof of the Main Theorem.

To show that limr→∞ δ(Sr(Kr),K∞) = 0 we will use the following elemen-
tary result which follows immediately from Lemma 2.1.

Lemma 4.1. Suppose U is a finite dimensional subspace in a Hilbert space
and Ur is a sequence of finite dimensional subspaces such that

lim
r→∞

δ̂(Ur, U) = 0(4.1)

and

liminf dimUr ≥ dimU.(4.2)

Then

lim
r→∞

δ(Ur, U) = 0.

We will show that the two assumptions in the lemma are satisfied if Ur =
SrKr and U = K∞. The proof of the Main Theorem is thus divided in two
steps.

Step 1.

lim
r→∞

δ̂(Sr(Kr),K∞) = 0.

We argue by contradiction. Thus we assume there exists a sequence ψr ∈ Kr

such that

‖Srψr‖ex = O(1) as r →∞(4.3)

and there exists d0 > 0 such that

dist (Srψr,K∞) > d0, ∀r > 0.(4.4)

Set ψi
r := Si

rψr, i = 1, 2. We study only the behavior of ψ1
r . The sequence

ψ2
r behaves similarly. Condition (4.4) shows there exists a constant c > 0

such that

‖ψ1
r‖ex ≥ c ∀r > 0.

Thus we can normalize ψ1
r so that ‖ψ1

r‖ex = 1 and (4.4) continues to hold
(with an eventually smaller d0 > 0).

Note first that using standard elliptic estimates and (4.3) we deduce that
ψ1

r and its derivatives are uniformly bounded on M1(0). Thus a subsequence
of ψ1

r converges to a solution of D̂1,∞û = 0 on M1(0). Using Proposition 3.4
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we deduce that a further subsequence of the restriction of ψ1
r to R+ × N

converges in the norm of L2
ex to a solution of D̂1,∞ψ̂ = 0 on this semi-infinite

cylinder. Clearly we have produced a section ψ1
∞ ∈ ker D̂1,∞ ∩ L2

ex of norm
1. We proceed similarly with ψ2

r . We now have a pair

Ψ := ψ1
∞ ⊕ ψ2

∞ ∈ K1 ⊕K2

of norm 2 which according to (3.7) in Proposition 3.4 have the same as-
ymptotic limit. Thus Ψ ∈ K∞. However, this contradicts (4.4). Step 1 is
completed.

Step 2. We will prove that

dimK∞ ≤ dimSr(Kr) ∀r � 0.

We will rely on the following auxiliary result.

Lemma 4.2. Suppose û ∈ L1,2(Er) is such that

‖Drû‖L2(M(r)) < (1− ε)c(r)‖u‖L2(M(r)).

Then dist (u,Kr(c)) < (1− ε)‖u‖L2(M(r)).

Proof. Using the orthogonal decomposition

L2(Er) = Kr(c)⊕Kr(c)⊥

we can write û = v + v⊥. Then dist (u,Kr) = ‖v⊥‖L2(M(r)). On the other
hand

(1− ε)2c(r)2‖û‖2
L2(M(r)) > ‖Drû‖2

L2(M(r))

≥ ‖Drv
⊥‖2

L2(M(r))

≥ Λ2‖v⊥‖2
L2(M(r))

where Λ2 > c(r)2. The lemma is proved. �

To conclude the proof of Step 2 we will construct for r � 0 a space
Vr ⊂ L2(Er) isomorphic to K∞ such that

δ̂(Vr,Kr) < 1.(4.5)

According to Lemma 2.3, Chap. IV, §2 in [5] this means that the orthogonal
projection onto Kr induces an injection Vr → Kr so that

dimK∞ = dimVr ≤ dimKr, ∀r � 0.

Condition (4.5) is satisfied provided dist (v,Kr) < v, for all v ∈ Vr \ {0}.
According to Lemma 4.2 is suffices to construct a subspace Vr ⊂ L1,2(Er)
isomorphic to K∞ such that

sup
v∈Vr\{0}

‖Drv‖2
L2(M(r))

‖v‖2
L2(M(r))

< c(r).(4.6)
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Such a subspace is obtained via a simple gluing construction.
We construct a gluing map

Ψr : K∞ → L1,2(Er), û1 ⊕ û2 7→ Ψr

uniquely determined by the following conditions. Let u∞ denote the com-
mon asymptotic limit of ûi. Now set

v̂1 = ηr(t)û1 +
(
1− ηr(t)

)
u∞.

Define v̂2 similarly. Clearly on the overlap

ır : [r + 1, r + 2]×N → [−r − 2,−r − 1]×N

we have

v̂1 = v̂2 = u∞

so we can glue these two sections on the overlap to produce a smooth section
Ψr ∈ C∞(Er). Clearly the map Ψr is linear. Set Vr := Ψr(Kr).

Note that Ψr is injective because if Ψr(û1, û2) ≡ 0 then both ûi must
vanish on Mi(0) and by unique continuation they must vanish everywhere.
We claim Vr satisfies (4.6).

Clearly DrΨr ≡ 0 on M1(r − 1),M2(−r + 1) ⊂M(r) so we only need an
estimate of D̂1,rv̂1 on the cylinder [r − 1, r + 2] × N and a similar one for
D̂2,rv̂2. On this cylinder we have D̂1,r = J(∂t −D − ηrÂ1) so that we have

−JD̂1,rv̂1 =
(
D̂ − ηrÂ1

)(
ηrû1 + (1− ηr)u∞

)
=
(
D̂ − Â1

)(
ηrû1 + (1− ηr)u∞

)
+ (1− ηr)Â1

(
ηrû1 + (1− ηr)u∞

)
.

The first term can be rewritten as(
D̂ − Â1

)(
ηrû1 + (1− ηr)u∞

)
=
[
D̂ − Â1, ηr

]
û1 +

[
D̂ − Â1, (1− ηr)

]
u∞

+ ηr(D̂ − Â1)û1 + (1− ηr)
(
D̂ − Â1

)
u∞

(ĉ=Clifford multiplication on R+ ×N)

= ĉ(dηr)
(
û1(t)− u∞

)
− (1− ηr)Â1u∞.

Thus

−JD̂1,rv̂1 = ĉ(dηr)
(
û1(t)− u∞

)
+ ηr(1− ηr)Â1

(
û1(t)− u∞

)
.

We can now use Corollary 3.3 for the equation

D̂û1 = f̂ := ĉ(dηr)
(
û1(t)− u∞

)
+ ηr(1− ηr)Â1

(
û1(t)− u∞

)
on R+ ×N.
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The decay rate of A1(t) shows that ρt(f̂) = O
(
e−λtρt(û1)

)
. Hence

‖Drv̂1‖2,[r−1,r+2]×N ≤ C(e−λr + e−γr)qt(v̂1).

We obtain a similar estimate involving v̂2. Since obviously qt(vi) ≤
C‖Ψr‖L2(M(r)) (for r � 0) we deduce

‖DrΨr‖2,[r−1,r+2]×N ≤ C(e−λr + e−γr)‖Ψr‖L2(M(r)).(4.7)

The last estimate implies (4.6) since

c(r) > C(e−λr + e−γr), ∀r � 0.

The Main Theorem is proved. �

Remark 4.3. We can rewrite the conclusion of the Main Theorem as a
short asymptotically exact sequence

0 → Kr

Sr

−→a K1 ⊕K2
∆→ L1 ⊕ L2 → 0.

The gluing map Ψr is an asymptotic splitting of this sequence, in the sense
described in the introduction.

Remark 4.4. The Main Theorem extends easily to families of operators.
Suppose X is a compact CW-complex and all the constructions in the intro-
duction depend continuously on the parameter x ∈ X such that the spectral
gaps of the boundary operators Dx are bounded from below

γ0 := inf
x∈X

γ(Dx) > 0.

Then h(x) := dimHx is independent of x. We denote this common dimen-
sion by h. Assume also that the functions

κi : X → Z, κi(x) := dimKi(x) (i = 1, 2)

` : X → Z, `(x) = dimL1(x) ∩ L2(x)

are constant, ki(x) ≡ κi, `(x) ≡ `. One then can show that Ki(x) and
L1(x) ∩ L2(x) depend continuously upon x in the gap topology. Thus they
can be viewed as continuous maps in grassmannians of finite dimensional
subspaces in Hilbert spaces and as such they define vector bundles over X.
The Main Theorem for families states that for r � 0 the spaces K̃r,x(c) form
a vector bundle over X and we have and exact sequence of vector bundles

0 → Kr
Γr→ K1 ⊕K2

∆→ H→ H/(L1 + L2) → 0.

Since L1, L2 are Lagrangian then

H/(L1 + L2) ∼= (L1 + L2)⊥ = L⊥1 ∩ L⊥2 = J(L1 ∩ L2).

A similar statement is true in the super-symmetric case. In [10] we describe
a general gluing formula for index of families when the functions h(x), `(x)
and κi(x) are not necessarily constant.
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5. Applications.

As promised, we will include some simple applications of the Main Theorem.
For more sophisticated applications in gauge theory we refer to [11].

A. Suppose first that K∞ = 0. This is possible if and only if

L1 ∩ L2 = 0

and ker(∂∞ : Ki → Li) = 0, i = 1, 2. These kernels consist of the L2-
solutions of D̂i,∞. This shows that the operators Dr cannot have eigenvalues
λr such that |λr| = o(1/r) as r →∞. We have thus established the following
result (proved for the first time in [4]).

Corollary 5.1. Suppose that

L1 ∩ L2 = {0} and ker D̂i,∞ ∩ L2(Êi) = {0}.
Then for r � 0 the operator Dr has a bounded inverse

D−1
r : L2(Er) → L2(Er)

and

‖D−1
r ‖L2,L2 = O(r) as r →∞.

B. Suppose now the entire situation is super-symmetric. Thus, we have
decompositions

Ki = K+
i ⊕K−

i , K∞ = K+
∞ ⊕K−∞.

We assume

K−
i = {0}, i = 1, 2.(5.1)

This implies L−i = {0} and K−∞ = {0}. The equality (3.1) shows that
L+

1 = L+
2 = H+. We deduce5

K−r = {0}, ∀r � 0,(5.2)

while the even part Kr fits in an exact sequence

0 → K̃t
Γ+

r→ K+
1 ⊕K+

2
∆+

→ H+ → 0.

The bundle Er has a decomposition

Er = E+
r ⊕ E−r

with respect to which Dr has the super-symmetric block decomposition

Dr =
[

0 6D∗
r

6Dr 0

]
5In [11] we have explained the relationship between K−r and the obstruction space of

[7].
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where 6Dr : C∞(E+
r ) → C∞(E−r ). The equality (5.2) implies that 6Dr is onto

since

K−r = ker 6D∗
r
∼= coker 6Dr.

Thus 6Dr 6D∗
r is one-to-one and onto and admits a bounded inverse L2(E−r ) →

L2(E−r ). We claim that

‖(6Dr 6D∗
r)
−1‖L2,L2 = O(r2).(5.3)

To prove this claim we argue by contradiction.
Because 6Dr 6D∗

r is self-adjoint, positive and has compact resolvent, the
norm of its inverse is m(r)−1 where

m(r) = inf
{
〈 6Dr 6D∗

ru , u 〉; ‖u‖L2(M(r)) = 1
}
.

Suppose that for every r � 0 we can find φr ∈ L2(E−r ) such that

‖φr‖L2(M(r)) = 1 and m(r) = ‖6D∗
rφr‖2

L2(M(r))

=
〈
6Dr 6D∗

rφr, φr

〉
L2(M(r))

= o(1/r2) as →∞.

Now pick c(r) > exp(−δ(r)) such that

c(r) = o(1/r), m(r) = o(c(r)2) as r →∞.

The above δ is the same exponent as in the Main Theorem.
Now apply Dr to the vector ur := 0⊕ φr ∈ L2(E+

r ⊕ E−r ). We deduce

‖ur‖L2(M(r)) = 1 and
‖Drur‖L2(M(r))

‖ur‖L2(M(r))
=
√
m(r).

Thus, according to Lemma 4.2 we can conclude

dist (ur,Kr(c)) ≤
√
m(r)
c(r)

= o(1).

On the other hand, ur is purely odd which implies K−r (c) 6= 0 for all r � 0.
This contradicts (5.2) and thus proves (5.3). This estimate also shows that
6Dr has a right inverse Rr : L2(E−r ) → L2(E+

r ) of norm O(r). We can now
state our next result.

Proposition 5.2. Suppose Condition (5.1) is satisfied. Then for r � 0
the operator 6Dr is onto and admits a bounded right inverse of norm O(r).
Moreover

ker 6Dr = K+
r for r � 0.(5.4)
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Proof. The only thing left to prove is the equality (5.4) which follows im-
mediately from the fact that the index of 6Dr is independent of r and

dimK+
r − dimK−r = ind 6D = dim ker 6Dr − dim ker 6D∗

r .

�

Suppose now that in Proposition 5.2 we have a family of operators, each
satisfying (5.1) and subject to the restrictions listed in Remark 4.4. We
deduce immediately the following consequence.

Corollary 5.3. Under the above assumptions, there exists an exact se-
quence of vector bundles

0 → ker 6Dr
Γr→ K1 ⊕K2

∆+

→ H+ → 0.

In particular, by passing to determinant line bundles we deduce an isomor-
phism of line bundles over X

det(ind ( 6Dr)) ∼= detK1 ⊗ detK2 ⊗ (detH+)∗

where the left hand side term ind (6Dr) is viewed as an element in an appro-
priate K-theory of the parameter space X.

Remark 5.4. (a) The terms detKi are also determinant line bundles asso-
ciated to the indices of the families of Atiyah-Patodi-Singer problems deter-
mined by D̂i, i = 1, 2.

(b) Corollary 5.3 is also useful in orientability issues involving various
moduli spaces arising in gauge theory.

The final application of the gluing theory we want to discuss has to do
with lower estimates of the eigenvalues of the Hodge-DeRham Laplacian.

Denote by λ1,k = λ1,k(r) the first nonzero eigenvalue of the Laplacian
acting on the k-forms on M(r). It is known (see [12, Chap. III, §4, Thm.
4]) that lower bounds on the Ricci curvature of M(r) produce lower bounds
µ0(r) on λ1,0(r). In our geometric context this lower bound has the asymp-
totic behavior

µ0(r) ∼ C0e
−νrr−2 as r →∞,

where C0 and ν are positive constants. The gluing theorem allows us to
prove similar asymptotic lower estimates for all λ1,k(r) and surprisingly,
the reason for these estimates is topological rather than geometric. Such
estimates for λ1,1(r) are particularly useful in gauge theory.

Proposition 5.5. Denote by δ the smallest nonnegative eigenvalue of the
Hodge-DeRham Laplacian on the hypersurface N . Fix a continuous function
c : R+ → R+ such that

c(r) = o(r−1), c(r) > e−δr/2 as r →∞.
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Then there exists R > 0 such that for all r > R we have

λ1,k(r) ≥ c(r)2, ∀k = 0, 1, . . . ,dimM(r).

Proof. Denote by Dr the Hodge-DeRham operator

d+ d∗ : Ω∗(M(r)) → Ω∗(M(r)).

The Hodge-DeRham Laplacian is the operator D2
r . The eigenvalues of D2

r

smaller than c(r)2 span the vector space Kr(c). Thus, to prove the above
estimate it suffices to show that

Kr = kerDr ∀r � 0.

In this case the spaces Ki have a topological description (see [1]) and Mayer-
Vietoris theorem allows us to identify

ker
(
∆ : K1 ⊕K2 → L1 + L2

)
with the DeRham cohomology of M(r) (see [11, §4.1.6]). This means

dimKr(c) = dimH∗(M(r)) = dim kerDr

so that Kr(c) = kerDr. �

Appendix A. Some technical proofs.

The Key Estimate is a consequence of the following elementary result.

Lemma A.1. Fix µ ∈ R. Suppose U is a finite dimensional Hilbert space
and u(t), f(t) : [0, L) → U are two smooth functions satisfying the ordinary
differential equation

u̇ = µu+ f.(A.1)

Then there exists a constant C > 0 independent of µ, u and f such that the
following hold:

(a) If µ = 0 then

|u(t)− u(t+ n)| ≤
∫ t+n

t
qs,L(f)ds, ∀t ∈ [0, L− n).(A.2)

(b) If µ > 0 then

(A.3) |u(t)| ≤ e−n|µ||u(t+ n)|+ C

µ(1− e−2µ)1/2

(∫ t+n

t
|f |2ds

)1/2

,

∀t ∈ [0, L− n).
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(c) If µ < 0 then

(A.4) |u(t+ n)| ≤ e−n|µ||u(t)|+ C

µ(1− e−2µ)1/2

(∫ t+n

t
|f |2ds

)1/2

,

∀t ∈ [0, L− n).

Proof. We prove only (a) and (b). (c) follows from (b) by time reversal.

Proof of (a). We have

|u(t+ 1)− u(t)| ≤
∫ t+1

t
|f(s)|ds ≤ ρt(f).

Thus

|u(t+ n)− u(t)| ≤
n∑

k=1

|u(t+ k)− u(t+ k − 1)|

≤
n∑

k=1

ρt+k−1(f) ≤
∫ t+n

t
qt,L(f).

Proof of (b). Denote by eµ the exponential function eµt. We have

u(t+ 1) = eµu(t) +
∫ 1

0
eµ(1− s)f(t+ s)ds

so that by Cauchy’s inequality

|u(t+ 1)− eµu(t)| ≤ ρ0(eµ)ρt(f).

Hence

|u(t)| ≤ e−µ|u(t+ 1)|+ e−µρ0(eµ)ρt(f).

Now observe that

e−µρ0(eµ) = e−µ e
µ − 1
µ

≤ 1
µ
.

Set xk := |u(t+ k)|. The sequence xk satisfies the difference inequality

xk ≤ e−µxk+1 +
1
µ
ρt+k(f).

Thus

x0 ≤ e−nµxn +
1
µ

n−1∑
k=0

ρt+k(f)e−(n−1−k)µ
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(use the Cauchy-Schwartz inequality)

≤ e−nµ +
1
µ

(
n−1∑
k=0

ρt(f)2
)1/2(n−1∑

k=0

e−2kµ

)1/2

≤ e−nµ +
1

µ(1− e−2µ)1/2

(∫ t+n

t
|f |2ds

)1/2

.

This proves (A.3) and the lemma. �

Proof of the Key Estimate. Set

ν(γ) := sup
µ≥γ

1
µ(1− e−2µ)1/2

.

Clearly ν(γ) ≤ ∞. Let û and f̂ as in the statement of Proposition 3.2. Form
the spectral decompositions

û =
∑

µ

ûµ, f̂ :=
∑

µ

f̂µ,

where ûµ(t) := Pµû(t) and f̂µ(t) := Pµf̂(t). Because the sections û and f̂ are
smooth the above series converges in any Sobolev norm. The components
ûµ and f̂µ satisfy the ordinary differential equation (A.1). The inequality
(3.3) is an immediate consequence of (A.2).

Using Lemma A.1 and the inequality |µ| ≥ γ for every nonzero eigenvalue
µ of D we deduce

‖ûµ(s+ n)‖2 ≤ 2
(
e−2nγ‖ûµ(s+ n+ εµn)‖2 + Cν(γ)2

∫ s+n

s
‖f̂µ(τ)‖2dτ

)
,

where εµ := sign (µ). Integrating with respect to s ∈ (t, t + 1), and using
the Pythagorean theorem

‖û⊥(t)‖2 =
∑
µ 6=0

‖ûµ(t)‖2, ‖f̂⊥(t)‖2 =
∑
µ 6=0

‖f̂µ(t)‖2

we deduce

ρt+n(û⊥)2 ≤ 2
(
e−2γnρt(û⊥)2 + e−2γnρt+2n(û⊥)2

)
+Cν(γ)2

∫ t+n+1

t
‖f̂⊥(s)‖2ds.

The estimate (3.4) now follows from the elementary inequality
√
x+ y ≤

√
x+

√
y.

�
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