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Notation and convention

• We will denote by |S| of #S the cardinality of a finite set S.

• We denote by N the set of natural numbers, N = {1, 2, . . . } and we
set N0 := N ∪ {0}.

• Ffor any set X we denote by 2
X the collection of all the subsets of

X

• For any set S, contained in some ambient space X, we denote by
IS the indicator function of S

IS : X → {0, 1}, IS(x) =

{
1, x ∈ S,
0, x 6∈ S.

• We will use the symbol E when referring to expectation and the
symbol P when referring to probability.

• We set i :=
√
−1

Introduction

Mix cocoa powder into a dough. Walk along a circle with steps of equal
sizes. These are all examples of ergodic transformations, and they describe
systems that evolve in time. All the possible states of that particular system
are collected in a space of states denoted by Ω. If, at the present, the
system is in a state ω, then during one unit of time it will transition to a
new state Tω. The transitions are thus mathematically described by a map
T : Ω→ Ω. Over n units of time, the transitions are described by the map
Tn := T ◦ · · · ◦ T︸ ︷︷ ︸

n

.

In many instances, one has a concept of measure associated to Ω, i.e., one
can speak of the measure (think volume) of (certain) subsets of Ω. Formally,
we have a collection S of subsets of Ω, the so-called measurable subsets,
and a measure, i.e., a function P : S → [0,∞). We will be interested
exclusively in the case when Ω has finite measure or “volume”. By choosing
units appropriately, we can assume that Ω has measure 1. In this case, we
say that P is a probability measure. Given a random point ω ∈ Ω, the
probability that ω will land in a measurable subset S ⊂ Ω is P[S].

Ergodic theory is interested in the dynamics of measure preserving maps
T : Ω→ Ω. Roughly speaking, the map T is measure preserving if T maps
measurable sets to other measurable sets, but of equal measure. Physicists
say that the evolution described by T is incompressible. For example, a
C1 diffeomeorphism such that the absolute value of the determinant of its
Jacobian is equal to 1 is measure preserving.



EXPLORING ERGODIC THEORY 5

Another important example of measure-preserving maps are the so-called
shifts. We use Kolmogorov’s Existence Theorem to construct an underlying,
shift-invariant probability measure.

Rotations of the circle are other examples of measure preserving transfor-
mations.

The states of a system have measurable numerical characteristics, such as
temperature and pressure. Mathematically, they are described by functions
f : Ω → R. Suppose we fix a certain measurable characteristic f . If the
system starts in the state ω with characteristic f(ω), then after n epochs
the characteristic is f(Tnω). Thus the average value of this characteristic
during the first n epochs of the evolution is

An[f ](ω) =
1

n+ 1

(
f(ω) + f(Tω) + · · ·+ f(Tnω)

)
.

This averaging procedure yields new functions An[f ] : Ω → R called the
temporal averages.

One central question of ergodic theory concerns the long term behavior of
the temporal averages, i.e., what happens to An[f ] as n→∞. The various
ergodic theorems discussed in this thesis describe f̄ = A∞[f ], the limit of
An[f ] as n→∞.

This description involves the so called invariant sets. More precisely, a
subset S ⊂ Ω is called T -invariant if T−1(S) = S. Explicitly, this means
two things.

• If ω ∈ S, then T (ω) ∈ S and, conversely

• If T (ω) ∈ S, then ω ∈ S.

We denote by IT the collection of T -invariant subsets of Ω. This collection is
a sigma-algebra. In probabilistic language, f̄ is the conditional expectation
of f given the sigma-algebra IT . Loosely speaking, this is the best approx-
imation of f given the information contained in the collection IT .

The description of f̄ simplifies considerably under the ergodic hypothesis.
More precisely, we say that the map T is ergodic if any T -invariant subset
has either measure 0, or measure 1, the same measure as the state space Ω.
In other words, under the ergodic hypothesis, an invariant subset is either
almost nothing, or almost everything, with nothing in between. In this case,
the ergodic theorem states that

lim
n→∞

An[f ] =

∫
Ω
f(ω)P[dω].. (E)

The term in the right-hand-side of (E) is the space average of f .

Let us explain why physicists appreciate the equality (E). From a physi-
cist’s point of view, the temporal averages are essentially non-computable



6 ALEX CLAY

experimentally since it involves the behavior of a system in perpetuity, and
we do not have an infinite amount of time at our disposal. On the other
hand, the left-hand-side, the space average, is something that can be deter-
mined experimentally or by direct computation. Thus, whenever (E) holds,
we can say something about the distant future by performing experiments
and computations in the present.

Ludwig Boltzmann was the first physicist to single out the ergodic hypothesis
and give a heuristic explanantion of why it would imply (E). The rigorous
proof appeared much later.

In this thesis, we discuss two landmark results from ergodic theory: the
Mean Ergodic Theorem, proved by John Von Neumann in 1932, and the
Birkhoff Ergodic Theorem, proved by George David Birkhoff in 1931. In
fact, with the wisdom of hindsight, we first prove the Mean Ergodic theorem
and, based on it, we prove Birkhoff’s theorem using some simplifications
that were discovered by various mathematicians in the decades that followed
Birkhoff’s proof.

Proving that a given preserving map satisfies the ergodic hypothesis is
not a trivial matter, and each concrete example requires some ingenuity.
We conclude this thesis by describing a few classical examples of ergodic
maps.

1. Measure-Preserving Transformations

Let us recall a few measure-theoretic facts. For more details and proof we
refer to [3]. Let (Ω,S ) be a measurable space, i.e., S is a fixed sigma
algebra of subsets of Ω. We denote by Meas(Ω,S ) the space of sigma-finite
measures on S and by Prob(Ω,S ) the set of probability measures on S .
Any measurable map

T : (Ω,S )→ (Ω,S )

induces a pushforward transformation

T# : Meas(Ω,S )→ Meas(Ω,S ), Meas(Ω,S ) 3 µ 7→ T#µ ∈ Meas(Ω,S ),

T#µ[S] = µ
[
T−1(S)

]
, ∀S ∈ S , µ ∈ Prob(Ω,S ).

Definition 1.1. Suppose that (Ω,S , µ) is a finite measured space and T :
Ω→ Ω is a map.

(i) The map T is said to be measure preserving if it is measurable and
µ = T#µ. This means that

µ
[
T−1(S)

]
= µ[S], ∀S ∈ S . (1.1)

(ii) The map T is called and automorphism of the measured space
(Ω,S , µ) if it is bijective and both T and T−1 are measure pre-
serving.
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ut

Note that if T is an automorphism, then for any S ∈ S the sets

S, T (S), T−1(S)

are measurable and have the same measure. As explained in [3], for the
equality (1.1) to hold, it suffices to check that

µ
[
T−1(S)

]
= µ[S], ∀S ∈P, (1.2)

where P is a π-system generating1 S .

Definition 1.2 (Invariance). Let T : (Ω,S , µ) → (Ω,S , µ) be a measure
preserving map.

(i) A measurable function f : (Ω,S )→ R is said to be (T -)invariant
if f ◦ T = f . A measurable set A to be invariant if its indicator
function IA is invariant.

(ii) A measurable function f : (Ω,S ) → R is said to be (T -)quasi-
invariant if f ◦T = f µ almost everywhere. A measurable set A to
be quasi-invariant if its indicator function IA is quasi-invariant.

Observe that A is T -invariant iff A = T−1(A), i.e.,

(i) A ⊂ T−1(A) ←→ ∀a ∈ A : T (a) ∈ A

(ii) T−1(A) ⊂ A ←→ ∀ω, T (ω) ∈ A =⇒ ω ∈ A.

Definition 1.3 (Orbit). The orbit of a map T : X → X through a point
x ∈ X is the set

Ox = OT,x =
{
x, Tx, T 2x, . . .

}
.

If T is bijective then we define the orbit of a point x ∈ X to be the set of{
Tnx, n ∈ Z

}
ut

The main property of an invariant set is that it contains any orbit that
intersects it.

Theorem 1.4 (Poincaré Recurrence Theorem). Suppose that T is an auto-
morphism of the probability space (Ω,S , µ). Let S ∈ S such that µ[S] > 0.
Then, there exists a negligible set N ⊂ S such that, for any ω ∈ S \N the
orbit of ω will go again through S infinitely many times in the future, i.e.,
the set Oω ∩ S is infinite for any ω ∈ S \N .

1Aπ-system is a collection of subsets closed under intersection.
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Proof. We follow the presentation in [6, Thm. 2.12]. For every n ∈ N we set

Sn :=

∞⋃
i=n

T−iS.

Clearly

S0 ⊃ S1 ⊃ ... (1.3)

Furthermore, we have T−nS0 = Sn. Because T is measure-preserving, we
have

∀n ≥ 0 µ[S0] = µ[T−nS0] = µ[Sn] = µ[S∞], S∞ =

∞⋂
n=0

Sn.

Since µ is finite and (1.3) holds, we have

µ[S0∆S∞] = 0

for all n. Note that S ⊂ S0 implies that µ[S ∩ S∞] = µ[A]. Any point
ω ∈ S ∩ S∞ has the claimed properties. ut

In the next example, we describe a stronger form of recurrence.

Example 1.5 (Irrational Rotations on a Circle). For any θ ∈ (0, 1) we
define Tθ : [0, 1)→ [0, 1),

Tθ(x) = x+ θ mod 1. (1.4)

Equivalently, if we identify x ∈ [0, 1) with the point z = e2πix on the unit
circle in C, {|z| = 1}, then we can think of T as acting on the unit circle
and

Tθ(z) = ze2πiθ.

Thus T is a rotation of angle 2πθ, implying that T preserves the arclength
measure on the circle. We have

T k(z) = ze2kπiθ.

We distinguish two cases. We want to investigate the orbits of this map.

1. The angle 2πθ is rational. We write θ as a
b with gcd(a, b) = 1. Then,

T bθ = 1. We say that T is periodic. All orbits consist of b points and we can
show that T is not ergodic.

2. The angle 2πθ is irrational. We want to show that any orbit of T is dense
on the circle of radius 1. More precisely, we will show that any orbit of T
intersects any arc on the circle.

Observe that Tnz = zTn(1). Thus, it is only necessary to show that the
orbit of 1 is dense. Fix an arc J of length ε > 0. Set zn = Tn(1) = e2nπi.
Then

m 6= n =⇒ zm 6= zn.
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Denote by I0 the arc of length ε/2 centered at z0. We set In = Tn(I0) and
we observe that In is the arc length ε/2 centered around xn. Obviously,
the arcs In are not pairwise disjoint, because the circle has finite length and
each interval has equal measure ε/2. Thus, there exist m,n, m < n such
that Im ∩ In 6= ∅. If k := n−m, we observe that

Im ∩ Im = Tm
(
I0 ∩ Ik

)
so that I0 ∩ Ik 6= ∅. Thus, the distance between the centers of z0 and zk is
< ε/2, i.e.

dist(z0, zk) < ε.

The rotation R = T k is also measure preserving and dist(z0, Rz0) < ε.
Hence

dist(zkj , zk(j+1)) = dist(Rjz0, R
j+1z0) < ε/2, ∀j ≥ 0.

Think of the points Rjz0 as describing the walk along the circle with step
sizes of equal lengths < ε/2. Such a walk cannot avoid a “ditch” J of width
ε > ε/2. ut

The next example is found in differentiable dynamics.

Example 1.6. Denote by λ the Lebesgue measure on Rn Suppose that
Ω ⊂ Rn is an open set and

F : Ω→ Ω

is a C1-diffeomorphism onto. Let JF be its Jacobian matrix. The change in
variables formula shows that for any open subset V ⊂ Ω we have∫

F−1(V )
λ[dx] =

∫
V
|det JF−1(y)|λ[dy].

This shows that F preserves the Lebesgue measure iff |det JF−1(x)| = 1,∀x ∈
U . ut

Example 1.7. [M. Kac] Consider the map T : [0, 1)→ [0, 1),

T (x) = 2x− b2xc = 2x mod 1.

We want to show that T preserves the Lebesgue measure λ. Note that the
collection of intervals [0, a], a ∈ [0, 1), is a π-system that generates the Borel
algebra of [0, 1) so, in view of (1.2), it suffices to show that

λ
[
T−1(Ia)

]
= λ[Ia] = a, ∀a ∈ [0, 1).

This is immediate since

T−1(Ia) = [0, a/2) ∪ [1/2, 1/2 + a/2)

and obviously λ
[
T−1(Ia)

]
= a.

As in Example 1.5, we identify x ∈ [0, 1) with the point z = e2πix on the
unit circle S1 = {|z| = 1}. The Lebesgue measure on [0, 1) corresponds to
the arc length on this circle normalized so that the total length is 1. We
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can view T as a map S1 → S1 and, as such, it has the simple description
T (z) = z2. ut

Example 1.8 (The tent map). Consider the tent map T : [0, 1] → [0, 1],
T (x) = min(2x, 2 − 2x). Equivalently, this is the unique continuous map
such that T (0) = T (1) = 0, T (1/2) = 1, and it is linear on each of the
intervals [0, 1/2] and [1/2, 1]. Its graph looks like a tent with vertices (0, 0),
(1/2, 1) and (1, 0).

This map preserves the Lebesgue measure. Indeed, if I ⊂ [0, 1] is a compact
interval, then T−1(I) consists of two intervals I±, symmetrically located
with respect to the midpoint 1/2 of [0, 1], and each having half the size of
I. ut

Example 1.9 (Shifts). Let A be a finite set(alphabet). Suppose that w :
A → (0, 1] is a function satisfying∑

a∈A

w(a) = 1.

It defines a probability Pw measure on 2
A ,

Pw[S] =
∑
s∈S

w(s), ∀S ⊂ A .

Let Ω = A Z. An element of Ω is a function ω : Z → A or, equivalently, a
doubly infinite sequence

ω = (. . . , a−1, a0, a1, . . . ).

For every S ⊂ A and any n ∈ Z we set

Cn,S =
{
ω ∈ Ω; ω(n) ∈ S

}
.

The finite intersections of sets of the type Cn,S are called cylinders. Note
that a cylinder is a set of the type

Cn1,...,nk|S1,...,Sk
=
{
ω ∈ Ω; ω(nj) ∈ Sj , ∀j = 1, . . . , k

}
, (1.5)

where n < · · · < nk are integers, and S1, . . . , Sk are subsets of A . We denote
by C the collection of cylinders. Note that C is π-system. We denote by S
the σ-algebra generated by C .

Kolmogorov’s existence theorem [3, Sec. 36] shows that there exists a prob-
ability measure P̄ on S uniquely determined by the condition

P̄[Cn1,...,nk|S1,...,Sk
] = Pw[S1] · · ·Pw[Sk], ∀Cn1,...,nk|S1,...,Sk

∈ C .

The shift is the map

T : Ω→ Ω, (Tω)(n) = ω(n+ 1).

Observe that

T#P̄[Cn1,...,nk|S1,...,Sk
] = P̄[Cn1+1,...,nk+1|S1,...,Sk

] = P̄[Cn1,...,nk|S1,...,Sk
].
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Invoking (1.1), we deduce that T#P̄ = P̄, so the shift is measure preserving.ut

2. The Ergodic Theorems

Throughout this section, (Ω,S ,P) will denote a probability space. Suppose
that T : (Ω,S ,P)→ (Ω,S ,P) is a measure preserving map.

Definition 2.1. A measurable function h : (Ω, S,P)→ R is called T -quasi-
invariant if there exists N ∈ S such that P[S] = 0 and

h(Tω) = h(ω), ∀ω ∈ Ω \N.
In other words, h ◦ T = h almost everywhere.

A measurable set A ∈ S is called quasi-invariant if its indicator IA is such,
i.e. IA = IA ◦ T almost everywhere. We denote by J = JT the collection
of quasi-invariant sets. ut

The idea of invariance can be conveniently expressed in terms of the Koop-
man operator. We denote by L0(Ω,S ,P) the vector space of S -measurable
functions f : Ω→ R modulo almost everywhere equality.

Definition 2.2 (Koopman Operator). Let (Ω,S ,P) be a probability space
and let T : Ω → Ω be a measure-preserving map. For any measurable
function f : (Ω,S ,P) → R, we denote by T̂ the pullback of f by T , i.e.,

T̂ f = f ◦ T . The induced linear map

T̂ : L0(Ω,S ,P)→ L0(Ω,S ,P)

is called the Koopman operator determined by T . ut

A measurable function h is quasi-invariant if and only if T̂ h = h. Thus,

h is quasi-invariant ←→ h ∈ ker
(

1− T̂
)
.

Proposition 2.3. The collection JT is a sigma-subalgebra of S . Moreover,
a measurable function h : (Ω,S ,P) → R is T -quasi-invariant if and only if
it is JT -measurable, i.e.,{

h ≤ r
}
∈JT , ∀r ∈ R.

Proof. Clearly, if f is quasi-invariant, then so are the sublevel sets {f ≤ x}
∀x ∈ R, and thus f is JT -measurable.

Conversely, if f is JT -measurable, then so are f±, and it suffices to show
that if f ≥ 0 is J -measurable, then f is quasi-invariant. Clearly any J -
measurable elementary function is quasi-invariant. Since f is an increasing
limit of J -measurable elementary functions, it is therefore an increasing
limit of quasi-invariant elementary functions and thus it is quasi-invariant.

ut
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Now that we have established what it means for a function to be measurable
on invariant sets, it is necessary to use this definition to formulate a notion
of ergodicity. In chapter 1, we noted that a measure preserving map T is
ergodic if and only if every T -invariant set has measure 0 or 1. Here, we
will reformulate the definition in terms of the sigma-subalgebra JT . Then,

we will regard the image of functions under (T̂ ) as a vector space and give
a definition of ergodicity in terms of vector spaces.

Definition 2.4. A measure preserving map T : (Ω,S ,P) → (Ω,S ,P) is
called ergodic if

∀A ∈JT : P
[
A
]
∈ {0, 1},

i.e., any quasi-invariant set has measure zero or one. ut

Note that for any measure preserving map T the vector subspace ker
(

1−T̂
)

has dimension ≥ 1 since the indicator function IΩ is obviously T -quasi-
invariant.

Proposition 2.5. Let p ∈ [1,∞]. The measure preserving map T is ergodic

if and only if dim ker
(

1 − T̂
)
∩ Lp(Ω,S ,P) = 1 so that ker

(
1 − T̂

)
∩

Lp(Ω,S ,P) consists only of the constant functions.

Proof. Suppose that T is ergodic and h ∈ ker
(

1− T̂
)
∩Lp. We deduce from

Proposition 2.3 that the sets {h ≤ r} are quasi-invariant so that

P
[
{h ≤ r}

]
∈ {0, 1}, ∀r ∈ R.

Since h is a.s. finite, and the function r 7→ P
[
{h ≤ r}

]
is right continuous,

we deduce that there exists r0 ∈ R such that

P
[
{h ≤ r}

]
=

{
0, r < r0,

1, r ≥ r0.

Hence, h is a.s. constant.

Conversely, assume that ker
(

1 − T̂
)
∩ Lp consists only of the constant

functions. If S is a quasi-invariant set, then IS ∈ ker
(

1 − T̂
)
∩ Lp so

P
[
S
]
∈ {0, 1}. Therefore, T is ergodic. ut

The Koopman operator associated to a measure preserving map T also has
some nice analytic properties which will be helpful in proving the Mean Er-
godic Theorem. First, we notice that the Koopman operator is an isometry
of Lp(Ω,S ,P).

Proposition 2.6. Let T : (Ω,S ,P) → (Ω,S ,P) be a measure preserving
map and p ∈ [1,∞). Then

‖T̂ f‖p = ‖f‖p, ∀f ∈ Lp(Ω,S ,P),

where ‖ − ‖p denotes the norm in Lp.
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Proof. The change in variables [3, Thm.16.11] implies that∫
Ω
|T̂ f |pdP =

∫
Ω
T̂ |f |pdP =

∫
Ω
|f |pdT#fP =

∫
Ω
|f |pdP,

where at the last step we used the fact that T is measure preserving, i.e.,
P = T#P. ut

A measure preserving map T : (Ω,S ,P) → (Ω,S ,P) can be viewed as
describing a discrete time evolution. If the system is at an initial state ω,
then after one unit of time it evolves to a new state Tω. This does not give
us data; rather, it gives us a sort of photograph of the system at a certain
time. Ideally, we would like to get some data out of this system, which is
where our function will come in. A measurable function f : (Ω,S ,P) → R
should be viewed as describing a numerical (physical) characteristic of a
state, e.g., it could be the heat released by an exothermic reaction or the
pH of a solution. A chemist might measure the pH of a system at several
time intervals during a titration. f(Tnω) would be the pH at the nth time
interval.

As the system evolves, this numerical characteristic of a state changes. Its
average value over the first (n− 1) time intervals is

Anf(ω) =
1

n

(
f(ω) + f(Tω) + · · · f(Tn−1ω)

)
.

The temporal average An thus defines a linear operator

An : L0(Ω,S ,P)→ L0(Ω,S ,P),

that can be compactly described in terms of the Koopman operator

An =
1

n

(
1 + T̂ + · · ·+ T̂n−1

)
.

We will now investigate these temporal averages and see what happens when
we hit functions with them. Let’s introduce and prove a few basic properties
as a warm-up to the bigger theorems.

Proposition 2.7. Let T : (Ω,S ,P) → (Ω,S ,P) be a measure preserving
map and p ∈ [1,∞). Then, for any n ∈ N and any f ∈ L0(Ω,S ,P),

f ≥ 0 almost everywhere =⇒ Anf ≥ 0 almost everywhere, (2.1a)

|Anf | ≤ An|f | almost everywhere, (2.1b)

‖Anf‖p ≤ ‖f‖p, (2.1c)

Proof. We have

Anf =
1

n

(
f + T̂ f + · · ·+ T̂n−1f

)
.

Since f ≥ 0 a.e., we have that the right hand side is a sum of positive terms
a.e., so Anf ≥ 0.
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Note that

|Anf | =
1

n
|f + T̂ f + · · ·+ T̂n−1f |.

Using the triangle inequality, we obtain

1

n
|f + T̂ f + · · ·+ T̂n−1f | ≤ 1

n
|f |+ T̂ |f |+ · · ·+ T̂n−1|f | = An|f |.

For the third inequality, observe that

‖Anf‖p ≤
1

n

(
‖f‖p + ‖T̂ f‖p + · · ·+ ‖T̂n−1f‖p

)
= ‖f‖p

since T̂ is an isometry. ut

Now that we have proven these facts about An, we have enough machinery
to get to some more subtle results. The Mean Ergodic Theorem, proved in
the L2 case by John Von Neumann in 1931, describes the behavior of the
temporal averages An as n→∞.

For any p ∈ [1,∞) we set

QpT := ker
(

1− T̂
)
∩ Lp(Ω,S ,P) = Lp(Ω,JT ,P).

For simplicity we will write QT := Q2
T . Observe that QT = L2(Ω,JT ,P) is

a closed subspace of the Hilbert space L2(Ω,S ,P). We denote by PT the
orthogonal projection onto QT . Later, we will provide a concrete description
of PT in L2 and find something analogous to it in L1.

Theorem 2.8 (Mean Ergodic Theorem). Suppose that (Ω,S ,P) is a prob-
ability space and T : Ω → Ω be measure-preserving. Then, for all f ∈
L2(Ω,S ,P), the temporal averages Anf converge in L2 to the orthogonal
projection of f onto QT , i.e.

1

n
(1 + T̂ + T̂ 2 + T̂ 3 + ...+ T̂n−1)f → PT f.

In particular, if T is ergodic, then Anf converges to the expected value of
f over Ω.

Proof. Let X2 be the set of functions f ∈ L2(Ω,S ,P) such that Anf con-
verges in L2 to some function A∞f . Note that X2 is a vector space. We
want to show two things:

i.) X2 = L2(Ω,S ,P), and

ii.) A∞ = PT .

1. We have QT ⊂ X2 and A∞f = f for all f ∈ QT .

This is obvious since T̂ f = f for invariant f .

2. For all f ∈ X2, T̂ f is in X2 and A∞f ∈ QT .
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Observe that T̂ and An are commutative since An is a linear combination
of T̂ i. T̂ is also continuous, so we can take limits and obtain A∞T̂ = T̂A∞.
This shows T̂ f ∈ X2. We also have

nAnT̂ f = (n+ 1)An+1f − f.

Dividing by n, we get

AnT̂ f =
n+ 1

n
An+1f −

1

n
f.

Using the assumption that f ∈ X2, we can let n→∞, and get

A∞T̂ f = A∞f.

Commutativity yields T̂A∞f = A∞T̂ f = A∞f , which means A∞f is quasi-
invariant under T .

3. T̂ f − f ∈ X2 for all f ∈ L2(Ω,S ,P).

We observe that

An(T̂ f − f) =
1

n
(T̂nf − f).

We have

‖An(T̂ f − f)‖2 = ‖ 1

n
(T̂nf − f)‖2 ≤

1

n
(‖T̂ f‖2 + ‖f‖2)

using substitution and the triangle inequality. Furthermore, T̂ is unitary
because it is surjective, bounded, and preserves the integral of f over Ω.
(We showed this in the properties of T̂ ). This means ‖T̂‖ = 1. Thus,

1

n
(‖T̂ f‖2 + ‖f‖2) =

2

n
‖f‖2 → 0.

Since An(T̂ f − f) converges, we conclude that T̂ f − f ∈ X2.

4. T̂ kf − f ∈ Q⊥T for all k ∈ N and all f ∈ L2(Ω,S ,P).

It suffices to show that, for any g ∈ Q⊥T , the inner product of T̂ kf − f and

g is 0. We will start with the case where k = 1. For any g ∈ Q⊥T , we have

(T̂ f − f, g) = (T̂ f, g)− (f, g) = (T̂ f, T̂ g)− (f, g) = 0,

using the fact that since T̂ is unitary, (T̂ f, T̂ g) = (f, g). This completes the

k = 1 case. To extend to the general case, we use more properties of T̂ . We
have

T̂ kf − f =

k∑
j=1

(T̂ jf − f) =

k∑
j=1

(T̂ (T̂ j−1f)− T̂ j−1f).

Since f was arbitrary, let fj = T̂ j−1f . Using the truth of the k = 1 case, we

conclude that T̂ fj − fj ∈ Q⊥T .

5. For all f ∈ X2, A∞f = PT f .
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We deduce that

f −Anf =
1

n

n−1∑
k=1

(f − T̂ kf) ∈ Q⊥T .

Using the result from step 4 and letting n→∞, we have that f−A∞f ∈ Q⊥T
and thus, using the definition of an orthogonal projection, A∞f = PT f .

6. X2 is a closed subset of L2.

To show this, we need to show that any convergent sequence in X2 converges
to a function in X2. Let (fk)k∈N be a sequence in X2 that converges to f
in L2. We will show that (Anf) is Cauchy, which will therefore show that
f ∈ X2 because its temporal averages converge to a function in L2. Let
ε > 0 be arbitrary.

Note that

‖Anf −Amf‖2 = ‖Anf −Anfk +Anfk −Amfk +Amfk −Amf‖2.
Applying the triangle inequality, we have

‖Anf−Amf‖2 ≤ ‖Anf−Anfk‖2+‖Anfk−Amfk‖2+‖Amfk−Amf‖2. (2.2)

Since T̂ is unitary, the opreators An are contractions, i.e.,

‖Ang‖2 ≤ ‖g‖2, ∀g ∈ L2.

Hence we can eliminate the An and the Am from the first and last norms on
the right-had-side of (2.2). We get

‖Anf −Anfk‖2 + ‖Anfk −Amfk‖2 + ‖Amfk −Amf‖2 ≤ ‖f − fk‖2
+‖Anfk −Amfk‖2 + ‖f − fk‖2.

We have control over the quantity ‖f−fk‖2 by assumption. Set ‖f−fk‖2 <
ε
3 . Since fk ∈ X2, (Anfk) is convergent. Hence, (Anfk) is Cauchy, so we can
set ‖Anfk −Amfk‖2 < ε

3 as well. Putting it all together, we get

‖Anf −Amf‖2 <
ε

3
+
ε

3
+
ε

3
= ε.

7. X2 = L2(Ω,S ,P).

This is the most difficult step. We need to use some facts about Hilbert
spaces since L2 is a Hilbert space.

From step 1, we know that QT ⊂ X2. Also, Range(T̂ − 1) ⊂ Q⊥T ∩ X2. We
use the following result from functional analysis.

If S : H → H is a bounded linear operator on a Hilbert space, then
closure(Range(S)) = (kerS∗)⊥.

T̂ is bounded and unitary. This means T̂ ∗ = T̂−1. Let S = T̂ − 1 as in the
result. We have

S∗ = T̂ ∗ − 1 = T̂−1 − 1,
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again using the fact that T̂ is unitary. Plugging into our result, we get

closure(Range(T̂ − 1)) = (ker(T̂−1 − 1))⊥ = Q⊥T .

From step 6, we have that X2 is closed and thus Q⊥T ⊂ X2. Q⊥T ∪ QT =

L2(Ω,S ,P). Since both Q⊥T ⊂ X2 and QT ⊂ X2, we conclude that X2 =
L2(Ω,S ,P). ut

Before we state and prove our next result, we need to digress and present a
more convenient description of the projection PT .

Let f ∈ L2(Ω,S ,P) and set f̄ = PT f ∈ QT := L2(Ω,JT ,P). This means
that for any g ∈ L2(Ω,JT ,P) we have∫

Ω
fgdP =

∫
Ω
f̄gdP.

In particular, if we choose g to be of the form g = IS we deduce∫
Ω
fISdP =

∫
Ω
f̄ISdP, ∀S ∈JT . (2.3)

The orthogonal projection onto L2(Ω,JT ,P) is well defined only for func-
tions in L2. We want to show that we can make sense of such a projection
even when we work in L1. More precisely, we have the following result.

Proposition 2.9. For any function f ∈ L1(Ω,S ,P), there exists a function

f̂ ∈ L1(Ω,JT ,P) satisfying∫
Ω
fISdP =

∫
Ω
f̂ISdP, ∀S ∈JT . (2.4)

Moreover, if f̃ is another function in L1(Ω,JT ,P) satisfying (2.4), then

f̃ = f̂ almost everywhere.

Proof. Define

µf : JT → [0,∞), µf
[
S
]

=

∫
S
fdP.

Note that if P[S] = 0, then µf
[
S
]

= 0, i.e., µf is absolutely continuous
relative to the restriction of P to the sigma-subalgebra JT . The Radon-
Nicodym theorem implies that there exists an integrable JT -measurable

function f̂ such that

µf
[
S
]

=

∫
S
f̂dP, ∀S ∈JT .

The last equality is exactly (2.4). The uniqueness of f̂ up to almost ev-
erywhere equality is also a consequence of the Radon-Nicodym theorem.

ut
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Definition 2.10. For any f ∈ L1(Ω,S ,P) we will denote by E
[
f |JT

]
a

function in L1(Ω,JT ,P) satisfying (2.4). We will refer to E
[
f |JT

]
as the

conditional expectation of f given JT .

Corollary 2.11. Suppose that (Ω,S ,P) is a probability space and T :
Ω→ Ω is a measure preserving map. Then, ∀f ∈ L1(Ω,S ,P) the temporal
averages Anf converge in L1 to E

[
f |JT

]
.

Proof. Let X1 and X2 be collections of functions f ∈ L1(Ω,S ,P) and g ∈
L2(Ω,S ,P), respectively, such that Anf converges in L1 to some function
A∞f and Ang converges in L2 to some function A∞g. Since L2(Ω) ⊂ L1(Ω),
we deduce that the tempral averateges that converge in L2 also converge in
L1, i.e., X2 ⊂ X1.

We want to prove that X1 is closed in L1. Let (fk)k∈N be a sequence in X1

that converges to f in L1. We want to show that Anf converges in L1. Fix
ε > 0. Using the triangle inequality and the fact that An : L1 → L1 is a
contraction, we get

‖Anfk −Amf‖ ≤ |‖Anf −Anfk‖1 + ‖Anfk −Amfk‖1 + ‖Amfk −Amf‖1

≤ ‖f − fk‖1 + ‖Anfk −Amfk‖1 + ‖f − fk‖1.
Since fk → f in L1, there exists k such that ‖f − fk‖1 < ε

3 . Since fk ∈ X1,

(Anfk) is convergent in L1, which means that (Anfk) is Cauchy, so we also
have power over ‖Anfk − Amfk‖1. Choose N = N(ε, k) > 0 such that Set
this norm < ε

3 as well. We obtain

‖Anf −Amf‖1 < ε, ∀m,n ≥ N.

This proves that (Anf) is Cauchy, so X1 is closed in L1.

Since X2 = L2 ⊂ X1 by Theorem 2.7, and L2 is dense in L1, we conclude
that X1 = L1.

Next, we need to describe the limits of these averages. By Proposition 2.5,
we have that for any f ∈ L1(Ω,S ,P) and any J ∈JT ,∫

Ω
fIJdP =

∫
Ω

(Anf)IJdP.

We have∣∣∣∣∫
Ω

(Anf)IJdP−
∫

Ω
(A∞f)IJdP

∣∣∣∣ =

∣∣∣∣∫
Ω

(
(Anf)−A∞f

)
IJdP

∣∣∣∣
≤
∫

Ω

∣∣∣ (Anf)−A∞f
∣∣∣IJdP ≤ ∫

Ω

∣∣∣ (Anf)−A∞f
∣∣∣dP

We let n→∞, and we obtain∫
Ω
fIJdP =

∫
Ω

(A∞f)IJdP.
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By the definition of conditional expectation, A∞f = E
[
f |JT

]
.

ut

The Birkhoff Ergodic Theorem to be discussed next states that the temporal
averages converge almost everywhere case. This is a more difficult result that
does not follow from the L2 and L1 convergence cases presented in Theorem
2.8 and Corollary 2.11, respectively.

Theorem 2.12 (Birkhoff Ergodic Theorem). Suppose that (Ω,S ,P) is a
probability space and T : Ω → Ω is measure-preserving. Then, for all
f ∈ L1(Ω,S ,P), the temporal averages Anf converge almost surely to
E
[
f |J

]
.

Proof. In a similar way as in the L2 proof, let X0 be the collection of func-
tions f ∈ L1(Ω,S ,P) such that Anf converges almost surely to a function
A∞f . We already know that Anf converges L1 to E

[
f |J

]
, so the a.e.

limit of Anf must be the the same because a subsequence of the L1 conver-
gent sequence Anf converges a.e. to this limit.

Hence, we need to show that X0 = L1(Ω,S ,P). Our proof will involve three
steps.

1. Assuming that X0 is closed in L1(Ω,S ,P), we will show that X0 =
L1(Ω,S ,P).

2. We will state and prove the Maximal Ergodic Lemma.

3. Using the Maximal Ergodic Lemma, we will show that X0 is, in fact,
closed in L1(Ω,S ,P). Then, step 1 will imply that X0 = L1(Ω,S ,P).

Step 1. We first prove that for any f ∈ L1, we have T̂ f − f ∈ X0. For any
f ∈ L1, we have

An(T̂ f − f) =
1

n
(T̂nf − f).

Using similar reasoning as in the L∞ case, we have

‖An(T̂ f − f)‖∞ ≤
2

n
‖f‖∞.

Thus, An(T̂ f − f) → 0 in L∞. We conclude that T̂ f − f ∈ X0 if f ∈ L∞.
But that is not our goal. We need to show that this happens when f ∈ L1.

Let f ∈ L1. Write f = f+ − f− and note that f± ∈ L1. We have

(T̂ f)± = (T̂ f)+ − (T̂ f)− = T̂ f+ − T̂ f− = T̂ f±.

This means that it suffices to prove only that if f ∈ L1 and f ≥ 0, then
T̂ f − f ∈ X0. Working with positive functions in L1 is nice because we can
always find a sequence of functions that converges increasingly to a positive
function. This will allow us to apply the Monotone Convergence Theorem.
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Construct a sequence of elementary functions fn that converges increasingly
to f . Then, Tfn are also elementary and Tfn ↗ Tf . The Monotone
Convergence theorem implies

T̂ fn − fn → T̂ f − f.

in L1. The functions fn are bounded because they are elementary, so T̂ fn−
fn ∈ X0. Assuming that X0 is closed in L1 we deduce that T̂ f − f ∈ X0.

We have thus proved the range of T̂−1 : L1 → L1 is contained in X0. Hence,
its L2-closure, which is contained in its L1-closure, is also contained in X0.
We have already shown in the L2 proof that Q2

T ⊂ X0 and the equality

L2 = X2 = Q2
T + (Q2

T )⊥ = Q2
T + clL2(range(T̂ − 1)) ⊂ X0.

The space L2 is dense in L1, and X0 is closed in L1, so X0 = L1. This
completes the part of the proof that assumes that X0 is closed and uses this
to show that X0 = L1.

Now, we must prove that X0 is closed in L1. In order to do this, we will
need the following lemma, which is step 2 of the proof.

Proposition 2.13 (Maximal Ergodic Lemma). Given f ∈ L1(Ω,S ,P), set

M(f)(ω) := sup
n≥1

Anf(ω).

For all λ > 0 and all f ∈ L1(Ω,S ,P), we have

λP[{M(|f |) > λ}] ≤ ‖f‖1.

Proof. It suffices to show that

∫
{M(f)>0}

fdP ≥ 0

for all f ∈ L1(Ω,S ,P). This is enough because, if we let f = g − λ with
λ > 0, then we can integrate over the set {M(f) > λ} and get

‖g‖1 ≥
∫
{M(f)>λ}

gdP ≥ λP
[
{M(g) > λ}

]
,

as desired.

Set

Q := {M(f) > 0} ⊂ Ω,

Sn(f) :=
n−1∑
j=0

T̂ jf,
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Mn(f) := max1≤k≤n Sk(f), Fn := Mn(f), F+
n := max(Fn, 0), and Qn =

{Fn ≥ 0}. Since Fn ↗ M(f) as n → ∞, we get that Qn ↗ Q. Thus, we
want to show that ∫

Qn

M(f) ≥ 0

for all n. Observe that the map f → T̂ f is monotone, so f0 ≤ f1 ⇒ T̂ f0 ≤
T̂ f1. For 1 ≤ k ≤ m, we have

Sk−1(f) ≤ Fm−1 ≤ F+
m−1

and

Sk(f) = f + T̂ Sk−1(f) ≤ f + T̂Fm−1 ≤ f + T̂F+
m−1.

Thus, ∀m ∈ N,

Fm−1 ≤ Fm ≤ f + T̂F+
m−1.

Rewriting, we obtain, ∀n ∈ N,

f ≥ Fn − T̂F+
n .

Integrating over Qn, we get∫
Qn

f ≥
∫
Qn

Fn −
∫
Qn

T̂F+
n .

Note that T̂F+
n ≥ 0 on Ω, and Fn = F+

n on Qn with F+
n = 0 on Ω\Qn. Also

note that
∫

Ω T̂F
+
n =

∫
Ω F

+
n because T is measure-preserving. Hence,∫

Qn

Fn −
∫
Qn

T̂F+
n ≥

∫
Qn

F+
n −

∫
Ω
T̂F+

n =

∫
Ω
F+
n −

∫
Ω
F+
n = 0.

Let f = g − λ with λ > 0. We have

‖g‖1 ≥
∫
{M(f)>λ}

gdP ≥ λP
[
{M(g) > λ}

]
,

as desired. ut

Now, we may return to the proof of the Birkhoff Ergodic Theorem. We will
show that X0 is closed in L1 using the Maximal Ergodic Lemma. This is
step 3.

We have to prove that if (fk) is a sequence in X0 that converges in L1 to a
function f ∈ L1, then f ∈ X0, i.e., Anf converges a.e.. We will show that
the sequence (Anf) is a.e. Cauchy. Recall the measure-theoretic definition
of a Cauchy sequence. We want to show that, for any ε > 0,

P
[⋃
N

⋂
m,n>N

{|An(f)−Am| < ε}
]

= 1.

Set

XN (f, ε) =
⋂

m,n>N

{|An(f)−Am| < ε},
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and observe that XN (f, ε) ⊂ XN ′(f, ε) if N < N ′. Passing this to the
definition of limits, we get that

P
[⋃
N

⋂
m,n>N

{|An(f)−Am| < ε}
]

= 1⇐⇒ lim
N→∞

P
[
XN (f, ε)

]
= 1.

Fix ε > 0. Using similar logic as in the L2 proof and repeatedly applying
the triangle inequality, we deduce that

|An(f)−Am(f)| ≤ |An(f)−An(fk)|+ |An(fk)−Am(fk)|+ |Am(fk)−Am(f)|
≤ |An(|f − fk|)|+ |An(fk)−Am(fk)|+ |Am(|f − fk|)|

≤ 2M(|fk − f |) + |An(fk)−Am(fk)|.
Thus, (

{2M(|fk − f |) <
ε

2
} ∩XN (fk,

ε

2
)
)
⊂ XN (f, ε)

for all N, k. Let N →∞ and take the measure of both sides. We have

lim
N→∞

P
[
XN (f, ε)

]
≥ lim

N→∞
P
[
{2M(|fk − f |) <

ε

2
} ∩XN (fk,

ε

2
)
]
.

The inclusion-exclusion principle implies that

P
[
{2M(|fk−f |) <

ε

2
}∩XN (fk,

ε

2
)
]

= P
[
{2M(|fk−f |) <

ε

2
}
]
+P
[
XN (fk,

ε

2
)
]

−P
[
{2M(|fk − f |) <

ε

2
} ∪XN (fk,

ε

2
)
]
.

Since fk ∈ X0,
(
An(fk)

)
n≥1

is almost surely a Cauchy sequence for any k.

Thus,

lim
N→∞

P
[
{2M(|fk − f |) <

ε

2
} ∪XN (fk,

ε

2
)
]

= lim
N→∞

P
[
XN (fk,

ε

2
)
]

= 1.

Eliminating these terms, we find that

lim
N→∞

P
[
{2M(|fk − f |) <

ε

2
} ∩XN (fk,

ε

2
)
]

= lim
N→∞

P
[
{2M(|fk − f |)}

]
.

Finally, we invoke the maximal ergodic lemma. Let λ = ε
4 .

P[{2M(|fk − f |) ≥
ε

2
}] ≤ 4

ε
‖f − fk‖1.

so that

P
[
{2M(|fk − f |) <

ε

2
}
]

= 1− P
[
{2M(|fk − f |) ≥

ε

2
}
]

≥ 1− ≤ 4

ε
‖f − fk‖1, ∀k

Let k →∞. Since fk → f , we conclude that

lim
N→∞

P
[
XN (f, ε)

]
= 1.

Hence (Anf) is a.e. Cauchy and thus converges a.e. to A∞f so f ∈ X0.
Thus, X0 is closed in L1.

Step 1 implies that X0 = L1(Ω,S ,P). This completes the proof. ut
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Corollary 2.14. Suppose that T is an ergodic map on the probability space
(Ω,S ,P). Then for every measurable set S ∈ S , there exists a negligible
subset N ⊂ Ω such that for any ω ∈ Ω \ S we have

lim
n→∞

1

n
#
{
k; T k(ω) ∈ S, 0 ≤ k < n

}
= P

[
S
]
. (2.5)

Proof. Let f = IS . Observe that for any ω ∈ Ω, we have

An−1[f ](ω)
1

n
#
{
k; T k(ω) ∈ S, 0 ≤ k < n

}
and ∫

Ω
fdP = P

[
S
]
.

Hence, the equality (2.5) is a special case of Theorem 2.12. ut

Think of Tnω as the location at time n of a particle initially located at ω,
and regard S as a small hole in Ω and N as an infinitesimally tiny part of
Ω. The quantity

1

n
#
{
k; T k(ω) ∈ S, 0 ≤ k < n

}
is the fraction of the first n epochs the particle spends in the hole. It is
usually referred to as the frequency. The Birkhoff Ergodic Theorem tells as
that in the long run and for most starting points, the fraction of the time
the particle spends in the hole approaches the fraction of the volume of Ω
occupied by S.

To put it differently, almost any orbit of T spends equal time in regions of
equal size, i.e., it is uniformly distributed, or equidistributed.

Let us observe that, conversely, if a measure preserving map T satisfies the
above equidistribution property, then it has to be ergodic. Indeed, suppose
that S is a T -invariant set. Let N be a negligible set as in (2.5). Then for
any ω ∈ (Ω\S)\N the orbit OT,ω does not intersect S since S is invariant.
In this case the left-hand-side of (2.5) is equal to zero so P

[
S
]

= 0. Thus
if S is invariant and its complement Ω \ S is not negligible, then S must be
so. Hence T is ergodic.

3. Examples of ergodic maps

The strength or range of a theory is measured by the amount of situations
it applies to. To give an idea about the range of applicability of ergodic
theory, we discuss a few examples of ergodic maps.

Example 3.1 (Ergodic rotations). Fix φ ∈ (0, 2π) and let Rφ be the coun-
terclockwise rotation in the plane of angle φ about the origin. This will
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induce a transformation of the unit circle S1 := {z ∈ C; |z| = 1} which is
measure-preserving with respect to the canonical probability measure on S1,

µ[dθ] =
1

2π
dθ,

where dθ is the change in angle for a given rotation. We want to show that
if 2πφ is irrational, then Rφ is ergodic.

The associated Koopman operator is

R̂φ : L2(S1, µ)→ L2(S1, µ), R̂φf(θ) = f(θ + φ).

Above L2(S1) denotes the space of complex valued functions

f : [0, 2π]→ C such that

∫ 2π

0
|f(θ)|2dθ <∞.

For n ∈ Z, we define en ∈ L2(S1), en(θ) = eniθ.

The collection
{
en
}
n∈Z is a complete orthonormal system of the Hilbert

space L2(S1). Note that

R̂φen(θ) = ein(θ+φ) = einφen(θ).

Hence en is an eigenfunction of R̂φ corresponding to the eigenvalue einφ.

Thus, the eigenspace corresponding to the eigenvalue 1 of R̂φ is

ker
(

1− R̂φ
)

= span
{
en,

nφ

2π
∈ Z

}
.

Hence, if φ
2π ∈ R \Q, the space ker(1− R̂φ) is one-dimensional, and thus Rφ

is ergodic according to Proposition 2.5 . ut

From Corollary 2.14, we deduce the following celebrated result of H. Weyl
[7].

Theorem 3.2 (Weyl’s Equidistribution Theorem). The transformation R̂φ
is ergodic if and only if φ

2π is irrational. Moreover, for any open arc A ⊂ S1

from angles θ0 to θ1 ∈ S1 and almost every θ ∈ S1, we have

1

n

n−1∑
k=0

IA(θ + kφ)→ θ1 − θ0

2π

almost surely, where IA is the indicator function over A. ut

Mixing is closely related to ergodicity.

Definition 3.3. Let T : (Ω,S ,P)→ (Ω,S ,P) be a measure preserving self-
map of a probability space. We say that T is mixing if, for any A,B ∈ S

lim
n→∞

P
[

(T−nA) ∩B
]

= P
[
A
]
P
[
B
]
. (3.1)

ut
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Let us observe that (3.1) can be rewritten as

lim
n→∞

∫
Ω

(T̂nIA)IBdP =

(∫
Ω
IAdP

)(∫
Ω
IBdP

)
. (3.2)

Proposition 3.4. A mixing map T : (Ω,S ,P)→ (Ω,S ,P) is ergodic.

Proof. Suppose that A is a quasi-invariant set. Then B := Ac = Ω \ A is

also quasi-invariant. Hence T̂nIA = IA, ∀n ∈ N so that∫
Ω

(T̂nIA)IAcdP =

∫
Ω
IAIAcdP = 0, ∀n ∈ N.

We deduce from (3.2) that P
[
A
]
P
[
Ac
]

= 0, i.e.,

P
[
A
](

1− P
[
A
] )

= 0

so that A
[
A
]

= 0 or P
[
A
]

= 1. This proves that T is ergodic.

ut

Let us investigate the condition (3.2). We say that the pair

(f, g) ∈ L2(Ω,S ,P)× L2(Ω,S ,P)

satisfies the mixing condition if

lim
n→∞

∫
Ω

(T̂nf)gdP =

(∫
Ω
f dP

)(∫
Ω
g dP

)
. (3.3)

Thus, T is mixing if and only if, for any A,B ∈ S , the pair (IA, IB) satisfies
the mixing condition.

For f ∈ L2(Ω,S ,P) we denote by Rf the collection of functions g ∈
L2(Ω,S ,P) such that (f, g) satisfies the mixing condition. Similarly, for
g ∈ L2(Ω,S ,P) we denote by Lg the collection of functions f ∈ L2(Ω,S ,P)
such that (f, g) satisfies the mixing condition.

Lemma 3.5. For any f, g ∈ L2(Ω,S ,P) the collections Lg and Rf are
closed vector subspaces of L2(Ω,S ,P).

Proof. First, we will show that Lg and Rf are vector subspaces of L2(Ω,S ,P).
For any f1, f2 ∈ Lg, we have∫

Ω

(
T̂n(f1 + f2)

)
g dP =

∫
Ω

(
T̂n(f1)

)
g dP +

∫
Ω

(
T̂n(f2)

)
g dP.

so that

lim
n→∞

∫
Ω

(
T̂n(f1 + f2)

)
g dP = lim

n→∞

∫
Ω

(
T̂n(f1)

)
g dP+ lim

n→∞

∫
Ω

(
T̂n(f2)

)
g dP,

because
(
f1, g

)
and

(
f2, g

)
satisfy the mixing condition. Therefore, Lg is

a vector subspace. A similar argument proves that Rf is a vector subspace.
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Let (fk) be a converging sequence of functions in Lg. Set

f∞ = lim
k→∞

fk.

For any k ∈ N, we have

lim
n→∞

∫
Ω

(
T̂nfk

)
g dP =

∫
Ω
fkdP

∫
Ω
g dP.

Note that∣∣∣∣∫
Ω

(
T̂nfk

)
g dP−

∫
Ω

(
T̂nf∞

)
g dP

∣∣∣∣ =

∣∣∣∣∫
Ω

(
T̂n(fk − f∞)

)
g dP

∣∣∣∣
≤ ‖T̂n(fk − f∞)‖L2‖g‖L2 = ‖fk − f∞‖L2‖g‖L2 ,

(3.4)

since T̂ is an isometry.

On the other hand, we know that fk → f∞ in L2. Therefore, for any ε > 0,
there exists M1 ∈ N such that ∀k > M1, we have

∀k > M1, ‖fk − f∞‖L2‖g‖L2 <
ε

3
. (3.5)

Hence ∣∣∣∣∫
Ω

(
T̂nfk

)
g dP−

∫
Ω

(
T̂nf∞

)
g dP

∣∣∣∣ < ε

3
. (3.6)

Observe that for k > M1∣∣∣∣∫
Ω
fk dP

∫
Ω
g dP−

∫
Ω
f∞g dP

∣∣∣∣ =

∣∣∣∣∫
Ω

(
f∞ − fk

)
dP
∫

Ω
g dP

∣∣∣∣
≤ ‖f∞ − fk‖L2‖g‖L2

(3.5)
<

ε

3
.

(3.7)

Fix k0 > M1 . Since (fk0 , g) satisfies the mixing condition, we have that
there exists N ∈ N, depending on k0 and ε, such that ∀n > N ,∣∣∣∣∫

Ω

(
T̂nfk0

)
g dP−

∫
Ω
fk0 dP

∫
Ω
g dP

∣∣∣∣ < ε

3
. (3.8)

We have, using the triangle inequality,∣∣∣∣∫
Ω

(
T̂nf∞

)
g dP−

∫
Ω
f∞ dP

∫
Ω
g dP

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

(
T̂nf∞

)
g dP−

∫
Ω

(
T̂nfk0

)
g dP

∣∣∣∣
+

∣∣∣∣∫
Ω

(
T̂nfk0

)
g dP−

∫
Ω
fk0dP

∫
Ω
g dP

∣∣∣∣
+

∣∣∣∣∫
Ω
fk0dP

∫
Ω
g dP−

∫
Ω
f∞g dP

∣∣∣∣ .
(3.9)

By equations (3.6), (3.7), and (3.8), ∀n > N ,∣∣∣∣∫
Ω

(
T̂nf∞

)
g dP−

∫
Ω
f∞ dP

∫
Ω
gdP

∣∣∣∣ < ε

3
+
ε

3
+
ε

3
= ε,
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and thus,

lim
n→∞

∫
Ω

(T̂nf∞)g dP =

(∫
Ω
f∞ dP

)(∫
Ω
g dP

)
showing that f∞ ∈ Lg. Since limn→∞(fk) ∈ Lg, Lg is a closed vector sub-
space of L2. A similar argument shows that Rf is a closed vector subspace.

ut

Proposition 3.6. Let T : (Ω,S ,P) → (Ω,S ,P) be a measure preserving
self-map of the probability space (Ω,S ,P). Then the following are equiva-
lent.

(i) The map T is mixing (Definition 3.3).

(ii) For any f, g ∈ L2(Ω,S ,P), the pair (f, g) satisfies the mixing con-
dition (3.3).

(iii) There exists a collection C ⊂ L2(Ω,S ,P) with the following prop-
erties.

(a) Any pair (f, g) ∈ C × C satisfies (3.3).

(b) The vector space spanned by C is dense in L2(Ω,S ,P).

Proof. (i) ⇒(ii) The mixing condition in (3.3) states that the pair (IA, IB)
satisfies the mixing condition for any A,B ∈ S . We deduce from Lemma
3.5 that for any f, g in the L2-closure of Elem(Ω,S ),

lim
n→∞

∫
Ω

(
fTn

)
g dP =

∫
Ω
f dP

∫
Ω
g dP.

Since Elem(Ω,S ) is dense in L2(Ω,S ,P), the above equality holds for all
f ∈ L2(Ω,S ,P).

(ii) ⇒(i) The indicator function of a measurable set is L2. By (ii), ∀A,B ∈
S , the pair (IA, IB) satisfies the mixing condition, so T is mixing.

(ii) ⇒ (iii) Given (ii), we take C = L2(Ω,S ,P).

(iii) ⇒ (ii) Let f ∈ C . From part (a) of (iii), we have that g ∈ Rf ,∀g ∈ C .
Lemma 3.5 implies that closure(spanC ) ⊂ Rf since Rf is a closed subspace.
We also have that closure(spanC ) = L2 because span(C ) is dense in L2.
Hence Rf = L2.

Hence, for any f ∈ C and any g ∈ L2, the pair (f, g) satisfies the mix-
ing condition, i.e. ∀g ∈ L2, C ⊂ Lg. Lg is a closed subspace of L2, so
closure(spanC ) ⊂ Lg. We deduce that Lg = L2, ∀g ∈ L2. ut
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Example 3.7. Let us revisit the system described in Example 1.7. We
previously showed that the map T : [0, 1)→ [0, 1),

T (x) = 2x− b2xc = 2x mod 1.

is measure-preserving with respect to the Lebesgue measure λ. In fact, T is
mixing. Let S1 = {|z| = 1}. Note that we can view T as a map S1 → S1,
with T (z) = z2, and z = eiθ, θ = 2πx. In this case, the Lebesgue measure
λ corresponds to the canonical probability measure on S1,

µ[dθ] =
1

2π
dθ.

For n ∈ Z, let en ∈ L2(S2, u), en(θ) = eniθ. Set

C :=
{
en; n ∈ Z

}
⊂ L2(S1).

The Weierstrass approximation theorem implies that C spans a dense sub-
space of L2(S1). We want to show that C also satisfies condition (iii.a) in
Proposition 3.6.

If we write z = eiθ, then ej(z) = zj , T̂ ej(z) = z2j = e2j(z), and

T̂nej = e2nj , ∀j ∈ Z.

Observe that ejek = ej+k, ∀j, k ∈ Z. We set

Im :=

∫
S1

em(θ)µ
[
dθ
]
, m ∈ Z.

Thus, the pair (ej , ek) satisfies the mixing condition iff∫
S1

(T̂ ej
)
ekdµ = Ij · Ik ⇐⇒ lim

n→∞
I2nj+k = Ij · Ik. (3.10)

Note that

I0 =

∫
S1

1dµ = 1

since µ is a probability measure. For m 6= 0 we have

Im =
1

2π

∫
S1

emiθdθ =
1

2π

(
emiθ

mi

∣∣∣θ=2π

θ=0

)
= 0.

This proves that the collection C also satisfies the condition (iii.a), and we
deduce from the implication (iii)⇒ (i) in Proposition 3.6 that T is mixing.ut

Remark 3.8. The irrational rotation in Example 3.1 is ergodic but not
mixing. A simple computation shows that the pair (e1, e−1) does not satisfy
the mixing condition. ut
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4. Further Reading

The Ergodic Theorem marked the birth of a new area of mathematics. In
the nearly one hundred years from its discovery, ergodic theory has matured
into a field that has found applications in diverse areas, such as dynami-
cal systems, geometry, probability, information theory, and number theory.
During the last two decades, research in ergodic theory earned some of
the most prestigious mathematical awards, including the Fields Medal (E.
Lindenstrauss 2010, P. Avila 2014) and the Abel Prize (Y. Sinai 2014, G.
Margulis 2020).

To the reader curious about advances in theory after the discovery of the
Ergodic Theorem, we recommend the classical monographs [1, 4] as good
entry points to further study.
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