THE CO-AREA FORMULA

LIVIU I. NICOLAESCU

CONTENTS

1. Statement of the formula 1
2. The Hausdorff measure 6
3. Lipschitz maps 13
4. Rectifiable sets 14
References 16

1. Statement of the formula

We start with the simplest version.

Fubini theorem. Suppose \(\varphi \) is an integrable function on \(\mathbb{R}^{n+k} \). Then

\[
\int_{\mathbb{R}^{n+k}} \varphi(x^1, \ldots, x^{n+k}) |dx^1 \cdots dx^{n+k}|
= \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^n} \varphi(x^1, \ldots, x^k, x^{k+1}, \ldots, x^{n+k}) dx^{k+1} \cdots dx^{n+k} \right) |dx^1 \cdots dx^k|.
\]

We can reformulate this as follows. Set \(y = (x^1, \ldots, x^k) \), \(x = (x^{k+1}, \ldots, x^{n+k}) \)
and define \(A : \mathbb{R}^{n+k} \to \mathbb{R}^k \), \((y, x) \mapsto y \). Then

\[
\int_{\mathbb{R}^{n+k}} \varphi(x, y) dV_{n+k}(x, y) = \int_{\mathbb{R}^k} \left(\int_{A^{-1}(y)} \varphi(x, y) dV_n(x) \right) dV_k(y).
\] (1.1)

where \(dV_m \) denotes the \(m \)-dimensional Lebesgue measure.

Consider now a slightly more general case of a linear map

\[
A : \mathbb{R}^{n+k} \to \mathbb{R}^k, \ (x^1, \ldots, x^k, x^{k+1}, \ldots, x^{n+k}) \mapsto (y^1, \ldots, y^k) = (\mu_1 x^1, \ldots, \mu_k x^k),
\] (1.2)

where \(\mu_1, \ldots, \mu_k \) are positive numbers. Applying the Fubini theorem we deduce

\[
\int_{\mathbb{R}^{n+k}} \mu_1 \cdots \mu_k \varphi(x^1, \ldots, x^{n+k}) dV_{n+k}(x^1, \ldots, x^{n+k})
= \int_{\mathbb{R}^{n+k}} \varphi \left(\frac{y^1}{\mu_1}, \ldots, \frac{x^k}{\mu_k}, x^{k+1}, \ldots, x^{n+k} \right) \left| dy^1 \cdots dy^k dx^{k+1} \cdots dx^{n+k} \right|
= \int_{\mathbb{R}^k} \left(\int_{A^{-1}(y)} \varphi(x, y) dV_n(x) \right) dV_k(y).
\] (1.3)

Notes for the “Blue collar seminar on geometric integration theory”.
But for the factor $\mu_1 \cdots \mu_k$, the formulæ (1.1) and (1.3) look similar. To give an invariant meaning to this quantity we need to use the following elementary fact of linear algebra.

Lemma 1.1. Suppose that U and V are Euclidean space of dimensions $n+k$ and respectively k, $n \geq 0$, and $A : U \to V$ is a surjective linear map. Then there exist Euclidean coordinates x^1, \ldots, x^{n+k} on U, Euclidean coordinates y^1, \ldots, y^k on V and positive numbers μ_1, \ldots, μ_k such that, in these coordinates the operator A is described by

$$y_j^2 = \mu_j x_j^2, \quad 1 \leq j \leq k.$$

The numbers μ_1^2, \ldots, μ_k^2 are the eigenvalues of the positive symmetric operator $AA^* : V \to V$ so that

$$\mu_1 \cdots \mu_k = \sqrt{\det AA^*}.$$

Proof. Let W denote the orthogonal complement of $\ker A$ in U. Denote by A_0 the restriction of A to W so that $A_0 : W \to V$ is a linear isomorphism. Note that W coincides with the range of the adjoint operator $A^* : V \to U$ so that

$$A_0 A_0^* = AA^*.$$

We want to find a linear isometry $R : V \to W$ such that the operator

$$B = A_0 R : V \to V$$

is symmetric. Note that since R is an isometry we have $R^{-1} = R^*$. Moreover we have a commutative diagram

$$\begin{array}{ccc}
W & \xrightarrow{A_0} & V \\
\downarrow R & & \downarrow 1_V \\
V & \xrightarrow{B} & V
\end{array}$$

Note that $A_0 A^* : V \to V$ is positive and symmetric. We define

$$R := (A_0 A_0^*)^{-1/2} : V \to W.$$

Let us show that R is indeed an isometry. Indeed, for any $v \in V$ we have

$$(Rv, Rv) = (A_0 A_0^*)^{-1/2} v, (A_0 A_0^*)^{-1/2} v) = (A_0 A_0^*)^{-1/2} v, (A_0 A_0^*)^{-1/2} v) = (v, v).$$

Clearly $A_0 R = A_0 A_0^* (A_0 A_0^*)^{-1/2} = (A_0 A_0^*)^{1/2}$ is symmetric. Now choose an orthonormal basis that diagonalizes B. Transport it via R to an orthonormal basis of W. With respect to these bases of W and V the operator A is described by a diagonal matrix with entries consisting of the eigenvalues of $A_0 R = (A_0 A_0^*)^{1/2}$. \hfill \Box

Returning to (1.3) we see that

$$\mu_1 \cdots \mu_k = J_A := \sqrt{\det AA^*}.$$

The quantity J_A is called the Jacobian of A. Thus, we can rewrite (1.3) as

$$\int_{\mathbb{R}^{n+k}} J_A \varphi(x^1, \ldots, x^{n+k}) dV_{n+k}(x^1, \ldots, x^{n+k}) = \int_{\mathbb{R}^k} \left(\int_{A^{-1}(y)} \varphi(x, y) dV_n(x) \right) dV_k(y). \quad (1.4)$$
Lemma 1.1 shows that (1.4) holds for any surjective linear map $\mathbb{R}^{n+k} \to \mathbb{R}^k$.

It is convenient to give a more explicit description of J_A. This relies on the concept of Gramm determinant. More precisely, given a collection of vectors u_1, \ldots, u_k in an Euclidean space U we define their Gramm determinant (or Grammian) to be the quantity

$$G(u_1, \ldots, u_k) := \det\left((u_i, u_j)_U \right)_{1 \leq i, j \leq k},$$

where $(-,-)_U$ denotes the inner product in U. Geometrically, $\sqrt{G(u_1, \ldots, u_k)}$ is the k-dimensional volume of the parallelipiped spanned by the vectors u_1, \ldots, u_k,

$$P(w_1, \ldots, w_k) = \left\{ \sum_{j=1}^k t_j w_j; \ t_j \in [0,1] \right\}.$$

Note that $G(u_1, \ldots, u_k) = 0$ iff the vectors u_1, \ldots, u_k are linearly dependent and $G(u_1, \ldots, u_k) = 1$ if the vectors u_1, \ldots, u_k form an orthonormal system.

Equivalently

$$G(u_1, \ldots, u_k) = (u_1 \wedge \cdots \wedge u_k, u_1 \wedge \cdots \wedge u_k)_{\Lambda^k U}$$

where $(-,-)_{\Lambda^k U}$ denotes the inner product on $\Lambda^k U$ induced by the inner product in U.

Lemma 1.2. Let $A : U \to V$ be as in Lemma 1.1. Fix a basis f_{k+1}, \ldots, f_{n+k} of $U_0 := \ker A$ and vectors u_1, \ldots, u_k such that Au_1, \ldots, Au_k span V. Then

$$J_A^2 = \frac{G(Au_1, \ldots, Au_k)G(f_{k+1}, \ldots, f_{n+k})}{G(u_1, \ldots, u_k, f_{k+1}, \ldots, f_{n+k})}. \tag{1.5}$$

Proof. We first prove the result when $\dim U = \dim V$. In this case the collection u_1, \ldots, u_k is a basis of U. Fix an orthonormal basis e_1, \ldots, e_k of U denote by $T : U \to U$ the linear operator

$$e_j \mapsto u_j.$$

Then

$$G(u_1, \ldots, u_k) = \det T^* T,$$

$$G(Au_1, \ldots, Au_k) = \det((AT)^*(AT)) = |\det T^*| |\det AA^*| |\det T| = J_A^2 \det TT^*.$$

To deal with the general case, we denote by P_0 the orthogonal projection onto U_0. Now define

$$\hat{\Lambda} : U \to \hat{V} := V \oplus U_0, \quad u \mapsto Au \oplus P_0 u.$$

we equip \hat{V} with the product Euclidean structure.

Let us observe that

$$J_A = J_{\hat{\Lambda}}.$$

Indeed, with respect to the direct sum decomposition $\hat{V} = V \oplus U_0$ the operator $\hat{\Lambda} \hat{\Lambda}^*$ has the block decomposition

$$\hat{\Lambda} \hat{\Lambda}^* = \begin{bmatrix} AA^* & 0 \\ 0 & 1_{U_0} \end{bmatrix}$$

so that

$$\det \hat{\Lambda} \hat{\Lambda}^* = \det AA^*.$$

Observe that in $\Lambda^{k+n}(V \oplus U_0)$ we have the equality

$$\hat{\Lambda} u_1 \wedge \cdots \hat{\Lambda} u_k \wedge f_{k+1} \wedge \cdots \wedge f_{k+n} = Au_1 \wedge \cdots Au_k \wedge f_{k+1} \wedge \cdots \wedge f_{k+n}.$$
Proof. We consider first the case when g_X is surjective. We denote by J densities induced by the Riemann metric on X and respectively g_N.

Suppose now that X and Y are C^1 manifolds of dimensions $n + k$ and respectively k, $n \geq 0$ equipped with Riemann metrics g_X and g_Y. We denote by $|dV_X|$ and $|dV_Y|$ the volume densities induced by g_M and respectively g_N.

Suppose that $F : X \to Y$ is a C^1-map such that for any $p \in M$ the differential $D_pF : T_pX \to T_{F(p)}Y$ is surjective. We denote by $J_F(p)$ the Jacobian of this map.

Theorem 1.3 (The co-area formula: version 1). For any nonnegative function $\varphi : X \to \mathbb{R}$ which is measurable with respect to the measure defined by $|dV_X|$ we have

$$\int_X J_F(p)\varphi(p)|dV_X(p)| = \int_Y \left(\int_{F^{-1}(q)} \varphi(p)|dV_{F^{-1}(q)}(p)| \right) |dV_Y(q)|,$$

where $|dV_{F^{-1}(q)}|$ denotes the volume density on the fiber $F^{-1}(q)$ induced by the restriction of g_X to $F^{-1}(q)$.

Proof. We consider first the case when X is an open subset of \mathbb{R}^{n+k} with coordinates (x^1, \ldots, x^{n+k}) equipped with a C^1-metric g_X, Y is an open subset of \mathbb{R}^k with coordinates (y^1, \ldots, y^k) equipped with a metric g_Y and the map F is given by

$$y^j = x^j, \ j = 1, \ldots, k.$$

We have

$$|dV_X| = \sqrt{G(\partial_{x^1}, \ldots, \partial_{x^{n+k}})}|dx^1 \cdots dx^{n+k}|$$

$$= \sqrt{G(\partial_{x^1}, \ldots, \partial_{x^{n+k}})}|dy^1 \cdots dy^k dx^k+1 \cdots dx^{n+k}|,$$

$$= : \rho_X$$

$$|dV_{F^{-1}(q)}| = \sqrt{G(\partial_{x^1}, \ldots, \partial_{x^{n+k}})}|dx^1 \cdots dx^{n+k}|,$$

$$= : \rho_{F^{-1}(q)}$$

where the subscript X indicates that the inner product in the definition of the above Gramm determinants is the one determined by the Riemann metric on X. Similarly

$$|dV_Y| = \sqrt{G_Y(\partial_{y^1}, \ldots, \partial_{y^k})}|dy^1 \cdots dy^k| = \sqrt{G_Y(DF\partial_{x^1}, \ldots, DF\partial_{x^k})}|dy^1 \cdots dy^k|.$$

$$= : \rho_Y$$
Using the Fubini theorem we deduce that for any nonnegative, measurable function \(\phi : X \to \mathbb{R} \) we have

\[
\int_X \rho_Y \phi_X |dy^1 \cdots dy^k dx^{k+1} \cdots dx^{n+k}| = \int_Y \left(\int_{F^{-1}(y)} \rho_X \phi |dx^{k+1} \cdots dx^{n+k}| \right) \rho_Y |dy^1 \cdots dy^k|
\]

\[
= \int_Y \left(\int_{F^{-1}(y)} \rho_X \phi_F |dx^{k+1} \cdots dx^{n+k}| \right) |dV_Y(y)| = \int_Y \left(\int_{F^{-1}(y)} \rho_X \phi |dV_{F^{-1}(y)}| \right) |dV_Y(y)|.
\]

Suppose that above \(\rho_Y \phi = J_F \varphi \), i.e., \(\phi = \frac{J_F}{\rho_Y} \varphi \). Then the above equality can be rewritten

\[
\int_X J_F(x) \varphi(x) |dV_X(x)| = \int_Y \left(\int_{F^{-1}(y)} \rho_X J_F |dV_{F^{-1}(y)}| \right) |dV_Y(y)|.
\]

The co-area formula is proved once we show that

\[
\frac{\rho_X J_F}{\rho_F \rho_Y} = 1, \quad \text{i.e.,} \quad J_F = \frac{\rho_Y \rho_F}{\rho_X}.
\]

The last equality follows from (1.5).

The general case of the co-area formula can be reduced to the special case via partition of unity and the implicit function theorem. \(\square \)

Corollary 1.4. Let \(X, Y \) and \(F : X \to Y \) be as in Theorem 1.3. Then for any measurable function \(\phi : X \to \mathbb{R} \) we have

\[
\int_X \phi(p) |dV_X(p)| = \int_Y \left(\int_{F^{-1}(q)} \frac{\phi(p)}{J_F(p)} |dV_{F^{-1}(q)}(p)| \right) |dV_Y(q), \quad (1.7)
\]

Proof. Apply (1.6) to \(\varphi = \frac{\phi}{J_F} \). \(\square \)

Corollary 1.5. Suppose \(X \) is a \(C^1 \) manifold equipped with a \(C^1 \)-metric \(g_X \), and \(f : X \to \mathbb{R} \) is a \(C^1 \) function with no critical points. Then for any measurable function \(\phi : X \to \mathbb{R} \) we have

\[
\int_X \phi(p) |dV_X(p)| = \int_\mathbb{R} \left(\int_{\{f=t\}} \frac{\phi(p)}{|\nabla f(p)|} |dV_{f^{-1}(t)}(p)| \right) dt. \quad (1.8)
\]

In particular, by setting \(\phi = 1 \) we deduce

\[
\text{vol}(X) = \int_\mathbb{R} \left(\int_{\{f=t\}} \frac{1}{|\nabla f(p)|} |dV_{f^{-1}(t)}(p)| \right) dt. \quad (1.9)
\]

Example 1.6. We want to show how to use (1.9) to compute \(\sigma_n \), the “area” of the unit sphere

\[
S^n = \left\{ (x_0, x_1, \ldots, x_n) \in \mathbb{R}^n : \sum_{j=0}^n x_j^2 = 1 \right\}.
\]

Let \(S^n_\ast \) denote the unit sphere with the poles \(x_0 = \pm 1 \) removed. Then \(\sigma_n = \text{vol}(S^n_\ast) \).
Consider \(f : S^n_\ast \to \mathbb{R}, f(x_0, \ldots, x_n) = x_0 \). This function has no critical points on \(S^n_\ast \). Let \(p \in S^n_\ast \) such that \(f(p) = x_0(p) = t \). Denote by \(\varphi \) the angle between the radius \(Op \) and the \(x_0 \)-axis. Note that

\[
\cos \varphi = x_0 = t.
\]

The gradient of \(f \) is the projection of \(\partial x_0 \) on the tangent plane \(T_pS^n \). We deduce that

\[
|\nabla f(p)| = |\partial x_0| \sin \varphi = (1 - t^2)^{1/2}.
\]

The level set \(\{ f = t \} \) is an \((n-1)\)-dimensional sphere of radius \((1 - t^2)^{1/2}\) and we deduce

\[
\int_{\{ f = t \}} \frac{1}{|\nabla f(p)|} |dV_{f^{-1}(t)}(p)| = (1 - t^2)^{-1/2} \text{vol} (f = t) = \sigma_{n-1}(1 - t^2)^{\frac{n-2}{2}}.
\]

Hence

\[
\sigma_n = \sigma_{n-1} \int_{-1}^{1} (1 - t^2)^{\frac{n-2}{2}} dt = 2\sigma_{n-1} \int_{0}^{1} (1 - t^2)^{\frac{n-2}{2}} dt
\]

\((t = \sqrt{s})\)

\[= \sigma_{n-1} \int_{0}^{1} (1 - s)^{\frac{n}{2}-1} s^{\frac{1}{2}-1} ds =: B\left(\frac{n}{2}, \frac{1}{2}\right).\]

The integral \(B(p, q) \) was computed by Euler who showed that

\[
B(p, q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.
\]

Hence

\[
\frac{\sigma_n}{\sigma_{n-1}} = \frac{\Gamma\left(\frac{n}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)}.
\]

Using the equalities \(\sigma_0 = 2 \) and \(\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \) we deduce

\[
\sigma_n = \frac{2\pi^{\frac{n+1}{2}}}{\Gamma\left(\frac{n+1}{2}\right)}.
\]

We can obtain easily \(\omega_n \), the volume of the unit \(n \)-dimensional ball,

\[
\omega_n = \frac{1}{n} \sigma_{n-1} = \frac{\pi^{\frac{n}{2}}}{\frac{n}{2} \Gamma\left(\frac{n}{2}\right)} = \frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2} + 1\right)}.
\]

(1.10)

\[\square\]

2. The Hausdorff Measure

Suppose \((X,d)\) is a separable metric space. Fix a nonnegative real number \(r \). For any positive number \(\delta \) and any set \(S \subset X \) we set

\[
H^r_\delta(S) := \frac{\omega^r}{2r} \inf \left\{ \sum_{j \geq 1} (\text{diam } B_j)^r ; \ S \subset \bigcup_{j \geq 1} B_j, \ \text{diam } B_j < \delta \right\}.
\]

Note that if

\[0 < \delta_0 < \delta_1 \Rightarrow H^r_{\delta_0}(S) \geq H^r_{\delta_1}(S)\]

Thus the limit

\[
\lim_{\delta \to 0} H^r_\delta(S)
\]
exists and we denote it by H^r. The correspondence $S \mapsto H^r(S)$ is an outer measure satisfying the Caratheodory condition, [6, Chap.12]
\[
\text{dist } (S_1, S_2) > 0 \Rightarrow H^r(S_1 \cup S_2) = H^r(S_1) + H^r(S_2).
\]
This implies, [6, Chap. 5], that any Borel set B is measurable with respect to H^r_+, i.e.,
\[
H^r_+(Y) = H^r_+(Y \cap B) + H^r_+(Y \setminus B), \forall Y \subset X.
\]
We denote $\sigma^r_+(X)$ the set of H^r_+-measurable subset of X and by H^r_- the restriction of H^r_+ to $\sigma^r_+(X)$. The measure H^r_- is called the r-the Hausdorff measure.

Example 2.1. (a) If M is a C^1-manifold of dimension m equipped with a C^0-Riemann metric g that induces a metric space structure on M, then for any Borel set $B \subset M$ we have
\[
H^m_M(B) = \text{vol}_g(B).
\]
In particular, H^m_M coincides with the measure induced by the volume density determined by g.
(b) If M is a C^1-submanifold of dimension k of C^1 Riemann manifold X of dimension n, then
\[
H^k_X(M) = \text{vol}_M(M),
\]
where $\text{vol}_M(M)$ denotes the volume of M with respect to the Riemann metric induced by the Riemann metric on X.
(c) If X, Y are locally compact metric spaces, $F : X \to Y$ is a Lipschitz map with Lipschitz constant $\leq L$, and $B \subset X$ is a Borel set, then $F(B)$ is H^r_Y-measurable and
\[
H^r_Y(F(B)) \leq L^r H^r_X(B).
\]
For proofs of the above statements (a), (b), (c) we refer to [6, Chap 12].

We have the following density result concerning Hausdorff measurable functions. For a proof we refer to [3, §4.3] or [5, §3].

Theorem 2.2. Suppose that X a separable metric space $S \subset X$ is a H^m-measurable set such that $H^m(S) < \infty$. Then for for H^m-almost any $x \in X \setminus S$ we have
\[
\limsup_{r \downarrow 0} \frac{H^m(B_r(x) \cap S)}{\omega_m r^m} = 0.
\]

Corollary 2.3. Suppose X is an n-dimensional Riemann manifold and $S \subset X$ is a C^1 submanifold of dimension m. There exists a subset $S^* \subset S$ such that the following hold.

- $H^m(S \setminus S^*) = 0$.
- For any $x \in S^*$ we have
\[
\lim_{r \downarrow 0} \frac{H^m(S \cap B_r(x))}{H^m(X \cap B_r(x))} = 1.
\]

Proof. We have
\[
H^m(S \cap B_r(x)) = H^m(X \cap B_r(x)) - H^m(S^c \cap B_r(x)).
\]
From Theorem 2.2 we deduce that there exits a subset \(S^* \subset S \) such that \(\mathcal{H}^m(S \setminus S^*) = 0 \) and for any \(x \in S^* \) we have
\[
\Theta^m(S^*, x) = 0, \quad \text{i.e.} \quad \limsup_{r \searrow 0} \frac{\mathcal{H}^m(S^* \cap B_r(x))}{\omega_m r^m} = 0.
\]
We deduce
\[
\liminf_{r \searrow 0} \frac{\mathcal{H}^m(S \cap B_r(x))}{\omega_m r^m} = \liminf_{r \searrow 0} \frac{\mathcal{H}^m(X \cap B_r(x))}{\omega_m r^m} - \limsup_{r \searrow 0} \frac{\mathcal{H}^m(S^* \cap B_r(x))}{\omega_m r^m} = \liminf_{r \searrow 0} \frac{\mathcal{H}^m(X \cap B_r(x))}{\omega_m r^m}.
\]
The desired conclusion follows by observing that
\[
\lim_{r \searrow 0} \frac{\omega_m r^m}{\mathcal{H}^m(X \cap B_r(x))} = 1 \geq \liminf_{r \searrow 0} \frac{\mathcal{H}^m(S \cap B_r(x))}{\omega_m r^m}.
\]
The result is now obvious.

Theorem 2.4 (Eilenberg inequality). Suppose \((X, d_X)\) is a separable metric space and \(Y \) is a \(C^1 \)-manifold of dimension \(k \) equipped with a \(C^0 \)-Riemann metric \(g \). Denote by \(d_Y : Y \times Y \to \mathbb{R} \) the metric on \(Y \) induced by \(g \). Let \(F : X \to Y \) be a map satisfying the Lipschitz condition
\[
d_Y(F(x_1), F(x_2)) \leq Ld_X(x_1, x_2), \quad \forall x_1, x_2 \in X.
\]
Then for any \(m \geq k \) there exists a constant\(^1\) \(C(m, k) > 0 \) such that for any Borel set \(A \subset X \) we have
\[
\int_Y \mathcal{H}^{m-k}_X(A \cap F^{-1}(y)) d\mathcal{H}^k_Y(y) \leq C(m, k)L^k \mathcal{H}^m(A),
\]
where \(\int^* \) denotes the upper Lebesgue integral.

For a proof of this inequality we refer to [1, §13.3] or [3, §5.2.1]. The strategy behind the proof is identical to the strategy behind the proof of Lemma 2.7 described a bit later. As explained in [3, §5.2.1], this inequality implies that the following technical result.

Corollary 2.5. Let \(F : X \to Y \) be as in Theorem 2.4. Then for any \(m \geq k \) and any Borel subset \(A \subset X \) the map
\[
Y \ni y \mapsto \mathcal{H}^{m-k}_X(A \cap F^{-1}(y)) \in [0, \infty]
\]
is \(\mathcal{H}^k_Y \)-measurable.

Theorem 2.6 (The co-area formula: version 2). Suppose \(X \) and \(Y \) are connected, Riemann \(C^1 \)-manifolds of dimensions \(n + k \) and respectively \(k, n \geq 0 \). If \(F : X \to Y \) is a \(C^1 \)-map satisfying the Lipschitz condition
\[
d_Y(F(x_1), F(x_2)) \leq Ld_X(x_1, x_2), \quad \forall x_1, x_2 \in X,
\]
then, for any \(\mathcal{H}^{n+k}_X \)-measurable subset \(A \subset X \) we have
\[
\int_A J_F(x)d\mathcal{H}^{n+k}_X(x) = \int_Y \mathcal{H}^n_M(A \cap F^{-1}(y)) d\mathcal{H}^k_Y(y) \tag{2.1}
\]
\[^1\]We can choose \(C(m, k) = \frac{\omega_{m-k} \omega_k}{\omega_m} \)
Proof. We follow closely the strategy in [1, §13.4]. We prove (2.1) in several several gradually more general cases.

Step 1. We prove that $I(A) = J(A)$ if A is compact and F has no critical points on A. Choose a small open neighborhood O of A in M such that F has no critical points in O. The equality $I(A) = J(A)$ follows from Theorem 1.3 applied to the map $F: O \to Y$ and the function $\varphi = 1_A$, the indicator function of A.

Step 2. We prove that $I(A) = J(A)$ if F has no critical points on A. We choose a family of compact sets $C_\varepsilon \subset A$, $\varepsilon > 0$ such that

$$\mathfrak{H}_{X}^{n+k}(A \setminus C_\varepsilon) \leq \varepsilon, \quad C_\varepsilon \subset C_\varepsilon', \quad \forall \varepsilon \geq \varepsilon' > 0.$$

From the monotone convergence theorem we deduce that

$$\lim_{\varepsilon \to 0} I(C_\varepsilon) = I(A). \quad (2.2)$$

From Step 1 we deduce

$$J(A) = J(C_\varepsilon) + J(A \setminus C_\varepsilon) = I(C_\varepsilon) + J(A \setminus C_\varepsilon). \quad (2.3)$$

From the Eilenberg inequality we deduce

$$J(A \setminus C_\varepsilon) \leq C(m,k)L^k\varepsilon;$$

so that

$$\lim_{\varepsilon \to 0} J(A \setminus C_\varepsilon) = 0. \quad (2.4)$$

We obtain (2.1) by letting $\varepsilon \to 0$ in (2.3) and then invoking (2.2) and (2.4).

Step 3. We prove that $I(A) = J(A)$ for any A. Choose a compact set $C_\varepsilon \subset A$ such that

$$\mathfrak{H}_{X}^{n+k}(A \setminus C_\varepsilon) < \varepsilon.$$

Define

$$C^0_\varepsilon := \{ x \in C_\varepsilon; \quad J_F(x) = 0 \}.$$

Then

$$J(A) - I(A) = J(A \setminus C_\varepsilon) - I(A \setminus C_\varepsilon) + J(C_\varepsilon \setminus C^0_\varepsilon) - I(C_\varepsilon \setminus C^0_\varepsilon) + J(C^0_\varepsilon) - I(C^0_\varepsilon)$$

$$= J(A \setminus C_\varepsilon) - I(A \setminus C_\varepsilon) + J(C_\varepsilon \setminus C^0_\varepsilon) - I(C_\varepsilon \setminus C^0_\varepsilon) + J(C^0_\varepsilon).$$

From Step 2 we know that $J(C_\varepsilon \setminus C^0_\varepsilon) - I(C_\varepsilon \setminus C^0_\varepsilon) = 0$ and the proof of Step 2 shows that

$$\lim_{\varepsilon \to 0} \left(J(A \setminus C_\varepsilon) - I(A \setminus C_\varepsilon) \right) = 0.$$

Hence

$$J(A) - I(A) = \lim_{\varepsilon \to 0} J(C^0_\varepsilon).$$

The equality (2.1) now follows from the following Sard-like result.

Lemma 2.7. If C is a compact subset of X such that $J_F(x) = 0$, for any $x \in C$ then

$$\int_Y \mathfrak{H}_X^n(C \cap F^{-1}(y)) \, d\mathfrak{H}_Y^n(y) = 0.$$

\qed
Proof of Lemma 2.7. Let us first observe that for any $p \in C$ and any $\varepsilon > 0$ there exists $r_\varepsilon = r_\varepsilon(p)$ such that for any $0 < r < r_\varepsilon(x)$ we have

$$\mathcal{H}^k(F(B(p, r))) \leq \varepsilon L^{k-1} r^k.$$ \hfill (2.5)

Indeed, we have $\text{rank} \, D_p F \leq k - 1$. The definition of the differential of F at x implies that, given a choice of coordinates x near p such that $x(p) = 0$ we have

$$F(x) = F(0) + A_p x + o(|x|), \quad A_p := D_p F.$$

Hence, for any $\varepsilon > 0$, the set $F(B(p, r))$ is contained in a k-dimensional polydisk of the form $\mathbb{D}^{k-1}(F(p), L r) \times [-\varepsilon r, \varepsilon r]$ if r is sufficiently small, $r < r_\varepsilon(p)$. Above, $\mathbb{D}^{k-1}(y, R)$ indicates a $(k - 1)$-disk of center y and radius R. Since C is compact we can assume that

$$r_\varepsilon := \inf_{p \in C} r_\varepsilon(p) > 0.$$

We deduce that

$$\mathcal{H}^k(F(S \cap C)) \leq \varepsilon L^{k-1} \text{diam}(S)^k, \quad \forall S \subset X, \quad \text{diam} \, S < \frac{1}{2} r_\varepsilon.$$ \hfill (2.6)

For any $s > 0$ we can find a countable cover of C in X by measurable sets $(X^s_i)_{i \geq 1}$ such that

$$\text{diam}(X^s_i) < \frac{1}{s} \quad \text{and} \quad \mathcal{H}^{n+k}(C) \geq \frac{\omega_{n+k}}{2^{n+k}} \sum_{i \geq 1} (\text{diam} \, X^s_i)^{n+k} - \frac{1}{s}.$$ \hfill (2.7)

By definition

$$\mathcal{H}^n(C \cap f^{-1}(y)) \leq \frac{\omega_{n+k}}{2^{n+k}} \liminf_{s \to \infty} \sum_{i \geq 1} (\text{diam} \, X^s_i \cap f^{-1}(y))^n.$$

For any set $E \subset X$ we denote by φ_E the characteristic function of the closure of $F(E)$. We can then rewrite the above equality as

$$\mathcal{H}^n(C \cap f^{-1}(y)) \leq \frac{\omega_{n+k}}{2^{n+k}} \liminf_{s \to \infty} \sum_{i \geq 1} (\text{diam} \, X^s_i)^n \varphi_{X^s_i}(y).$$

The Fatou lemma then implies

$$\int_Y \mathcal{H}^n(C \cap f^{-1}(y)) \, d\mathcal{H}^k_Y \leq \frac{\omega_{n+k}}{2^{n+k}} \liminf_{s \to \infty} \sum_{i \geq 1} (\text{diam} \, X^s_i)^n \int_Y \varphi_{X^s_i}(y) d\mathcal{H}^k_Y.$$

Fix $\varepsilon > 0$. We deduce from (2.6) that for s sufficiently large, $s > s_\varepsilon$ we have

$$\int_Y \varphi_{X^s_i}(y) d\mathcal{H}^k_Y \leq \varepsilon L^{k-1} (\text{diam} \, X^s_i)^k.$$

Hence

$$\int_Y \mathcal{H}^n(C \cap f^{-1}(y)) \, d\mathcal{H}^k_Y \leq \varepsilon L^{k-1} \frac{\omega_{n+k}}{2^{n+k}} \liminf_{s \to \infty} \sum_{i \geq 1} (\text{diam} \, X^s_i)^{n+k}$$

$$\leq \varepsilon L^{k-1} \left(\mathcal{H}^{n+k}(C) + \frac{1}{s_\varepsilon} \right).$$ \hfill (2.7)

Now let $\varepsilon \to 0.$ \hfill \(\square\)
Remark 2.8. The proof of the Eilenberg inequality follows an identical strategy with the inequality (2.5) replaced by the inequality
\[\mathcal{H}^k(F(S)) \leq C(m,k)(\dim S)^k \]
for any Borel set \(S \subseteq X \) with sufficiently small diameter. □

Corollary 2.9. Let \(F : X \to Y \) be as in Theorem 2.6. Then for any nonnegative measurable function \(\varphi : X \to \mathbb{R} \) we have
\[
\int_X \varphi(x) J_F(x) d\mathcal{H}^{n+k}_X(x) = \int_Y \left(\int_{F^{-1}(y)} \varphi(x) d\mathcal{H}^n_X(x) \right) d\mathcal{H}^k_Y(y).
\] (2.8)

Proof. By Theorem 2.6 the equality (2.8) is true when \(\varphi \) is the characteristic function of a measurable subset of \(X \). By linearity, (2.8) is true for linear combinations of such functions. We now observe that for any measurable nonnegative function \(\varphi \) we can find a sequence of simple functions \((\varphi_\nu)_{\nu \geq 1} \) that converges increasingly and almost everywhere to \(\varphi \). □

Corollary 2.10. Let \(F : X \to Y \) be as in Theorem 2.6. Then for any compactly supported continuous function \(\varphi : X \to \mathbb{R} \) we have
\[
\int_X \varphi(x) J_F(x) d\mathcal{H}^{n+k}_X(x) = \int_Y \left(\int_{F^{-1}(y)} \varphi(x) d\mathcal{H}^n_X(x) \right) d\mathcal{H}^k_Y(y),
\] (2.9)
and both sides are finite. □

Corollary 2.11. Suppose that \(F : X \to Y \) is as in Theorem 2.6 and additionally, \(X \) and \(Y \) are oriented. Denote by \(Y^* \) the set of regular values of \(Y \). When \(y \in Y^* \) we orient the fiber \(F^{-1}(y) \) using the fiber first convention

orientation \((X) = \text{orientation} \ F^{-1}(y) \land \text{orientation} \ (Y)\).

Then for any compactly supported \(C^1 \)-form \(\eta \in \Omega^n(X) \) the map
\[
Y^* \ni y \mapsto \int_{F^{-1}(y)} \eta \in \mathbb{R}
\]
is measurable and
\[
\int_Y \left(\int_{F^{-1}(y)} \eta \right) dV_Y(y) = \int_X (\eta \land F^* dV_Y)(x).
\] (2.10)

More generally, if \(\alpha \in \Omega^{k+n}(X) \) is a compactly supported \(C^1 \)-form then
\[
\int_X \alpha = \int_Y \left(\int_{F^{-1}(y)} \frac{\alpha}{F^* dV_Y} \right) dV_Y(y),
\] (2.11)
where, along a regular fiber \(F^{-1}(y) \), the Gelfand-Leray residue \(\frac{\alpha}{F^* dV_Y} \) is defined by the equality
\[
\frac{\alpha}{F^* dV_Y} = \eta|_{F^{-1}(y)}, \ \forall \eta \text{ such that } \eta \land F^* dV_Y = \alpha.
\]
Proof. We prove (2.10) first. Observe that there exists a unique, compactly supported continuous function $\varphi : X \to \mathbb{R}$ such that

$$\eta \wedge F^*dV_Y = \varphi dV_X.$$

Corollary 2.10 implies that

$$\int_X \eta \wedge F^*dV_Y = \int_X \varphi dV_X = \int_Y \left(\int_{F^{-1}(y)} \frac{\varphi}{J_F} dV_{F^{-1}(y)} \right) dV_Y.$$

To complete the proof we need to show that if y_0 is a regular value of F, then

$$\frac{\varphi}{J_F} \mid_{F^{-1}(y_0)} dV_{F^{-1}(y_0)} = \eta \mid_{F^{-1}(y_0)}.$$

We rely on the same arguments used in the proof of Theorem 1.3. Fix $x_0 \in F^{-1}(y_0)$. Fe can find local coordinates y^1, \ldots, y^k near y_0 in Y and coordinates $(x^1, \ldots, x^k, x^{k+1}, \ldots, x^{k+n})$ near x_0 in X such that in these coordinates F is the linear projection $y^j = x^j, \ j = 1, \ldots, k$.

We write

$$dx' = dx^{k+1} \wedge \cdots \wedge dx^{k+n}, \ dx'' = dx^1 \wedge \cdots \wedge dx^k, \ dy = dy^1 \wedge \cdots \wedge dy^k.$$

We assume that the coordinates are ordered so that

$$dV_X = \rho_X dx' \wedge dx'', \ dV_Y = \rho_Y dy, \ dV_{F^{-1}(y_0)} = \rho_F dx'.$$

As in the proof of Theorem 1.3 we have

$$J_F = \frac{\rho_Y}{\rho_F} \rho_X.$$

In the coordinates (x', x'') we can write

$$\eta = \eta' dx' + \text{other terms}$$

where $\eta' = \eta'(x', x'')$ is a locally defined C^1-function. Note that

$$\eta \mid_{F^{-1}(y_0)} = \eta' dx'.$$

We deduce that

$$\eta \wedge F^*dV_Y = \eta \wedge (\rho_Y dx'') = \eta' \rho_Y dx' \wedge dx'' = \frac{\eta' \rho_Y}{\rho_X} dV_X.$$

Hence, in the coordinates (x', x'') we have

$$\varphi = \frac{\eta' \rho_Y}{\rho_X}.$$

We conclude that

$$\frac{\varphi}{J_F} dV_{F^{-1}(y_0)} = \frac{\varphi}{J_F} \rho_F dx' = \frac{\eta' \rho_Y \rho_F}{\rho_X J_F} dx' = \eta' dx' = \eta \mid_{F^{-1}(y_0)}.$$

Observe that (2.11) follows from (2.10). With y_0 a regular value of F as before and $x_0 \in F^{-1}(y_0)$, we write α locally near x_0 as a product

$$\alpha = \eta \wedge F^*dV_Y.$$

The form η is not unique, but its restriction to $F^{-1}(y_0)$ is. Then, by definition,

$$\eta \mid_{F^{-1}(y_0)} = \frac{\alpha}{F^*dV_Y}.$$
3. Lipschitz maps

To formulate our last and most general version of the co-area formula we need to recall a few facts about Lipschitz maps between locally Euclidean sets.

Theorem 3.1 (Rademacher). Suppose $U_k \subset \mathbb{R}^{n_k}, k = 0, 1$ are open sets and $F : U_0 \to U_1$ is a Lipschitz map. Then the map F is almost everywhere differentiable and the differential is a measurable map $U_0 \to \text{Hom}(\mathbb{R}^{n_0}, \mathbb{R}^{n_1})$. Moreover, for any $\varepsilon > 0$ there exists a C^1 map $F_\varepsilon : U_0 \to \mathbb{R}^{n_1}$ such that

$$\text{vol}\left(\{x \in U_0; \ F(x) \neq F_\varepsilon(x)\}\right) + \text{vol}\left(\{x \in U_0; \ DF(x) \neq DF_\varepsilon(x)\}\right) < \varepsilon$$

For a proof we refer to [3, §5.1].

Theorem 3.2 (Extension theorem). Suppose that $S \subset \mathbb{R}^n$ is a closed subset and $F : S \to \mathbb{R}$ is a Lipschitz function. Then f admits an extension to a Lipschitz function $\tilde{f} : \mathbb{R}^n \to \mathbb{R}$ that has the same Lipschitz constant as f. □

For a proof we refer to [3, Thm. 5.1.12].

Theorem 3.3 (The co-area formula: version 3). Suppose X and Y are C^1 Riemann manifolds of dimensions $n+k$ and respectively $k, n \geq 0$. If $F : M \to N$ is a map satisfying the Lipschitz condition

$$d_Y(F(x_1), F(x_2)) \leq Ld_X(x_1, x_2), \ \forall x_1, x_2 \in X,$$

then, for any \mathcal{H}^{n+k}_X-measurable subset $A \subset X$ we have

$$\int_A J_F(x) d\mathcal{H}^{n+k}_X(x) = \int_Y \mathcal{H}^n_M(\ A \cap F^{-1}(y)) d\mathcal{H}^k_Y(y). \ \ (3.1)$$

Proof. Clearly, it suffices to prove the theorem for sets A with the following property: A is contained in a coordinate neighborhood $U_0 \subset X$ and $F(U_0)$ is contained in a coordinate neighborhood $U_1 \subset Y$ such that U_0 is bi-Lipschitz homeomorphic to a bounded open subset in \mathbb{R}^{n+k} and U_1 is bi-Lipschitz homeomorphic to a bounded open set in \mathbb{R}^k. For any $\varepsilon > 0$ we can find a compact subset $C_\varepsilon \subset U_0$ and a C^1-map $F_\varepsilon : U_0 \to \mathbb{R}^k$ such that

$$\mathcal{H}^{n+k}_X(U_0 \setminus C_\varepsilon) < \varepsilon, \ F|_{C_\varepsilon} = F_\varepsilon|_{C_\varepsilon}, \ J_F|_{C_\varepsilon} = J_{F_\varepsilon}|_{C_\varepsilon}.$$

Then

$$I(A) - J(A) = I(A \cap C_\varepsilon) - J(A \cap C_\varepsilon) + I(A \setminus C_\varepsilon) - J(A \setminus C_\varepsilon).$$

The monotone convergence theorem implies that

$$\lim_{\varepsilon \searrow 0} I(A \setminus C_\varepsilon) = 0$$

while the Eilenberg inequality implies that

$$\lim_{\varepsilon \searrow 0} J(A \setminus C_\varepsilon) = 0.$$
On the other hand, there exists an open neighborhood \(V_0 \) of \(C_\varepsilon \) in \(U_0 \) such that \(F_\varepsilon(V_0) \subset U_1 \). Applying Theorem 2.6 to the \(C^1 \)-map \(F_\varepsilon : V_0 \to U_1 \) we deduce that

\[
I(C_\varepsilon) = \int_{C_\varepsilon} J_F(x) d\mathcal{H}_{X}^{n+k}(x) = \int_{C_\varepsilon} J_{F_\varepsilon}(x) d\mathcal{H}_{X}^{n+k}(x)
\]

\[
= \int_{Y} \mathcal{H}_M^n(C_\varepsilon \cap F_{\varepsilon}^{-1}(y)) d\mathcal{H}_{Y}^{k}(y) = \int_{Y} \mathcal{H}_M^n(C_\varepsilon \cap F^{-1}(y)) d\mathcal{H}_{Y}^{k}(y) = J(C_\varepsilon).
\]

\(\square \)

Corollary 3.4 (Area formula). Let \(X, Y \) be two \(n \)-dimensional \(C^1 \)-manifolds equipped with \(C^0 \)-Riemann metrics and \(F : X \to Y \) a Lipschitz map. Then

\[
\int_{Y} \#F^{-1}(y) d\mathcal{H}^n(y) = \int_{X} J_F(x) d\mathcal{H}^n(x).
\]

\(\square \)

4. Rectifiable sets

A set \(S \subset \mathbb{R}^n \) is said to be *countably \(m \)-rectifiable* if it is \(\mathcal{H}^m \)-measurable and

\[
S \subset S_0 \cup \left(\bigcup_{j \geq 1} F_j(\mathbb{R}^m) \right),
\]

where

- \(\mathcal{H}^m(S_0) = 0 \);
- the functions \(F_j : \mathbb{R}^m \to \mathbb{R}^n \) are Lipshitz, \(\forall j \geq 1 \).

We have the following result, [3, §5.4].

Proposition 4.1. Suppose that \(S \subset \mathbb{R}^n \) is \(\mathcal{H}^m \)-measurable and countably \(m \)-rectifiable. Then

\[
S = \bigcup_{j=0}^{\infty} S_j,
\]

where

- \(\mathcal{H}^m(X_0) = 0 \);
- \(S_i \cap S_j = \emptyset \) if \(i \neq j \);
- for \(j \geq 1 \) there exists an \(m \)-dimensional \(C^1 \)-submanifold \(X_j \subset \mathbb{R}^n \) such that \(S_j \subset X_j \).

Definition 4.2. If \(S \) is a \(\mathcal{H}^m \)-measurable subset of \(\mathbb{R}^n \), then we say that an \(m \)-dimensional vector subspace \(W \subset \mathbb{R}^n \) is the approximate tangent space for \(S \) at \(x \in \mathbb{R}^n \) if

\[
\lim_{r \to 0} \frac{1}{r} \int_{r^{-1}(S-x)} f(y) d\mathcal{H}^m(y) = \int_{W} f(y) d\mathcal{H}^m(y), \quad \forall f \in C^0_{\text{cpt}}(\mathbb{R}^n).
\]

Proposition 4.3. Suppose that \(S \subset \mathbb{R}^n \) is a countably \(m \)-rectifiable set such that \(\mathcal{H}^m(S \cap K) < \infty \) for any compact subset \(K \subset \mathbb{R}^m \). Then there exists a subset \(S_{\text{sing}} \subset S \) such that

- \(\mathcal{H}^m(S_{\text{sing}}) = 0 \) and
- for any \(x \in S \setminus S_{\text{sing}} \) there exist an approximate tangent space to \(S \) at \(x \).
Proof. We write \(S \) as in Proposition 4.1

\[
S = \bigcup_{j=0}^{\infty} S_j
\]

where \(S_j \) is contained in a \(C^1, m \)-dimensional submanifold \(X_j \subset \mathbb{R}^n, S_i \cap S_j = \emptyset, \forall i \neq j \), \(\mathcal{H}^m(S_0) = 0 \). For \(j > 0 \) we denote by \(S_j^* \) the set of points \(x \in S_j \) such that

\[
\lim_{r \to 0} \frac{\mathcal{H}^m((S - S_j) \cap B_r(x))}{r^m} = \lim_{r \to 0} \frac{\mathcal{H}^m((X_j - S_j) \cap B_r(x))}{r^m} = 0.
\]

By Theorem 2.2 we have \(\mathcal{H}^m(S_j \setminus S_j^*) = 0 \). We will show that \(S \) admits an approximate tangent space at any point \(x \in S_j^* \). Indeed, suppose \(f \in C_0^0(\mathbb{R}^n) \). For simplicity assume that \(\text{supp} \, f \subset B_1(0) \), and \(f \geq 0 \). Then using the change in variables \(y = \frac{1}{r}(z - x) \)

\[
\int_{\frac{1}{r}(S-x)} f(y) d\mathcal{H}^m(y) = \frac{1}{r^m} \int_S f \left(\frac{1}{r}(z - x) \right) d\mathcal{H}^m(z)
\]

Now observe that

\[
\frac{1}{r^m} \left| \int_{B_r(x) \cap S} f \left(\frac{1}{r}(z - x) \right) d\mathcal{H}^m(z) - \int_{B_r(x) \cap S_j} f \left(\frac{1}{r}(z - x) \right) d\mathcal{H}^m(z) \right|
\leq \sup_f \frac{\mathcal{H}^m(B_r(x) \cap (S_j \setminus S))}{r^m} \to 0,
\]

and

\[
\frac{1}{r^m} \left| \int_{B_r(x) \cap S_j} f \left(\frac{1}{r}(z - x) \right) d\mathcal{H}^m(z) - \int_{B_r(x) \cap X_j} f \left(\frac{1}{r}(z - x) \right) d\mathcal{H}^m(z) \right|
\leq \sup_f \frac{\mathcal{H}^m(B_r(x) \cap (X_j \setminus S_j))}{r^m} \to 0.
\]

Hence

\[
\lim_{r \to 0} \left(\int_{\frac{1}{r}(S-x)} f(y) d\mathcal{H}^m(y) - \int_{\frac{1}{r}(X_j-x)} f(y) d\mathcal{H}^m(y) \right) = 0.
\]

Suppose \(X \subset \mathbb{R}^n \) is a \(C^1 \) \(m \)-dimensional manifold of finite (induced) volume and \(S \subset X \) is a \(\mathcal{H}^m \)-measurable subset. We set \(S^c := X \setminus S \).

Suppose that \(S \subset \mathbb{R}^N \) is a countably \((n+k)\)-rectifiable subset of \(\mathbb{R}^N \). We can then express \(S \) as a disjoint union

\[
S = \bigcup_{j=0}^{\infty} S_j
\]

where \(\mathcal{H}^{n+k}(S_0) = 0 \), and \(S_j \) is contained in a \(C^1 \)-submanifold \(X_j \subset \mathbb{R}^N, \dim X_j = n + k, \forall j \geq 1 \).

A Lipschitz map on \(f : S \to \mathbb{R}^M \) admits a Lipschitz extension to the closure of \(S \) and thus a Lipschitz extension to a map \(F : \mathbb{R}^N \to \mathbb{R}^M \). The restriction of \(F \) to each \(X_j \) is \(\mathcal{H}^{n+k} \) a.e. differentiable and for \(\mathcal{H}^{n+k} \) a.e. point \(p \in S_j \) we have a differential
\[D_p F : T_p S \rightarrow \mathbb{R}^n. \]

One can show that if \(F(S) \) is contained in a countably \(k \)-rectifiable subset \(Z \subset \mathbb{R}^n \), then for \(\mathcal{H}^{n+k} \)-a.e. point \(p \in S \) the set \(Z \) admits a tangent space at \(q = F(p) \) and moreover

\[D_p F(T_p S) \subset T_q Z. \]

We denote by \(J_F(p) \) the Jacobian of this map. We can now state the final version of the coarea formula.

Theorem 4.4 (The co-area formula: final version). Suppose that \(S \subset \mathbb{R}^N \) is \((n+k)\)-rectifiable, \(Z \subset \mathbb{R}^M \) is \(k \)-rectifiable and \(F : S \rightarrow Z \) is a Lipschitz map. Then, for any \(\mathcal{H}^{n+k} \)-measurable subset \(A \subset S \) we have\(^2\)

\[
\int_A J_F(p) \, d\mathcal{H}^{n+k}(p) = \int_Z \mathcal{H}^n \left(F^{-1}(z) \right) \cap A \, d\mathcal{H}^k(z). \tag{4.1}
\]

The proof is obtained by putting together all the facts we have gathered so far. For details we refer to [2, Thm. 3.2.22] or [5, §12]

References

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-4618.

E-mail address: nicolaescu.1@nd.edu

URL: http://www.nd.edu/~lnicolae/

\(^2\)Implicit in the statement of (4.1) is the fact that the various integrands are measurable with respect to the appropriate measures.