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Localization Formulae in odd K-theory

Abstract

by

Florentiu Daniel Cibotaru

We describe a class of real Banach manifolds, which classifyK−1. These manifolds

are Grassmannians of (hermitian) lagrangian subspaces in acomplex Hilbert space.

Certain finite codimensional real subvarieties described by incidence relations define

geometric representatives for the generators of the cohomology rings of these classify-

ing spaces. Any family of self-adjoint, Fredholm operatorsparametrized by a closed

manifold comes with a map to one of these spaces. We use these Schubert varieties to

describe the Poincare duals of the pull-backs to the parameter space of the cohomology

ring generators. The class corresponding to the first generator is the spectral flow.
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CHAPTER 1

INTRODUCTION

In this disertation we answer a question posed by Isadore Singer in the mid 80’s

concerning the complex odd K-theoretic functorK−1.

The classifying spaces forK−1 have various homotopically equivalent realizations.

There is the classical description as the unitary groupU(∞) and there is the Atiyah-

Singer realization as the spaceBFred∗(H), a certain component of the space ofbounded,

self-adjoint, Fredholm operators on a separable complex Hilbert spaceH.

The cohomology ringH∗(U(∞),Z) is an exterior algebra with canonical generators

(xk)k≥1, degxk = 2k − 1. The degree one generatorx1 has a very useful geometric

interpretation. IfA : S1 → BFred∗(H) is a continuous loop of Fredholm operators

then the Poincare dual of the classA∗x1 ∈ H1(S1,Z) can be represented by a cycle

supported on the degeneracy locus{θ ∈ S1 | KerAθ 6= 0}. The integer
∫

S1 A
∗x1 is

called the spectral flow of the family and, under generic conditions, can be described as

a count with sign of the zero eigenvalues of the family.

Singer asked for a similar description of the classesA∗xk, where

A : M → BFred∗(H) is a continuous map of self-adjoint Fredholm operators. More-

over it is desirable to design an approach that deals with families of unboundedFred-

holm operators directly without passing to the associated bounded operators via func-

tional calculus.
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Our approach to this problem is based on symplectic techniques and has the added

bonus that it provides an elegant way of dealing with unbounded operators as well. The

dissertation is roughly divided in three parts. In the first part we describe several smooth

models for the classifying space ofK−1 while in the second part we describe various

finite codimensional, cooriented stratified spaces that determine all the cohomology

classes corresponding to products of the canonical generatorsxi.

In order to describe the main results we introduce a bit of terminology.

On the direct sum of a complex Hilbert space with itselfĤ := H ⊕ H, there is a

natural extra complex structure:J =




0 1

−1 0


. A lagrangian subspaceL ⊂ Ĥ is a

subspace which is taken byJ isomorphically to its orthogonal complement,JL = L⊥.

For example the graph of every (closed) self-adjoint operator, bounded or unbounded

is a lagrangian.

The Grassmannian of such spaces, denotedLag(Ĥ), can be turned into areal Ba-

nach manifold. In fact the space of bounded, self-adjoint operators onH which we

denoted bySym(H) embedds as an open dense subset ofLag via the graph map:

Sym(H) ∋ A→ ΓA ∈ Lag(Ĥ), ΓA := {(x,Ax) | x ∈ H}

On the other handSym(H) embedds into the space of unitary operators,U(H) via

the Cayley transform. Our first result, which is the generalization to infinite dimensions

of a result by Arnold [3] says thatLag is diffeomorphic withU(H) and the diffeo-

morphism is constructed by extending the Cayley transform to the wholeLag. (see

Theorem 2.3.1 for details)

By a famous result of Kuiper,U(H) and henceLag is contractible. Nevertheless an

open subset of this spaceLag−, has the homotopy type of the inductive limit of unitary
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groups, thus classifyingK−1. By definition,Lag− is the set of all lagrangians which are

Fredholm pairs with a fixed one, namely the vertical space,H− := 0⊕H. It turns out

that, insideLag−, there is a whole zoo of classifying spaces,LagI which correspond

via the mentioned diffeomorphism to the Palais unitary groupsUI(H), modelled on

two-sided, symmetrically normed idealsI. Examples of such ideals are the Schatten

class operators. The reader can find an intrinsic characterization ofLagI in section 2.2.

The main technique used in proving thatLag− is a classifying space forK−1 is

(linear)symplectic reduction. More precisely, for every closed subspaceW ∈ H− let

HW be the orthogonal complement ofW ⊕ JW in Ĥ. The symplectic reduction is a

map:

R : Lag− → LagHW

which is continuous on a certain open subset denotedLagW of Lag−. It is, in fact,

diffeomorphic with a vector bundle overLagHW . To investigate the homotopy type of

Lag− we take a complete, decreasing flag ofH−

H− =: W0 ⊃W1 ⊃ W2 ⊃ . . .

and this flag determines a filtration ofLag− by open subsetsLagWi ⊂ LagWi+1. Each

LagWi is homotopy equivalent withLagHWi
, hence withU(i) by the finite version

of Arnold’s theorem. The limit wheni− > ∞ of LagWi, which is Lag−, has the

homotopy type ofU(∞). (see Section 2.5 and Theorem2.5.14)

The Atiyah-Singer space,BFred∗ embedds inLag−, simply by associating to an

operator itsswitchedgraph.

{(v, Av) | v ∈ H} graph ← A → {(Av, v) | v ∈ H} switched graph
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We prove that this map is a weak homotopy equivalence. In thisway, the classical

index, as defined by Atiyah and Singer of a family of self-adjoint, Fredholm operators

is simply the homotopy class of the family of switched graphs. This definition extends

to the unbounded case.

In the second part of this paper we build geometric representatives for the generators

of the cohomology ring ofLag− which we identify with some ”canonically” defined

cohomology classes ofLag−. These canonical classes are described as follows. The

natural inclusionsin : U(n)→ Lag− induce isomorphisms in cohomology:

Hk(Lag−)→ Hk(U(n)), ∀k < 2n− 1

The cohomology ring ofU(n) is an exterior algebra overZ with n-generatorsxi(n).

These generators are obtained by transgressing the Chern classesci(n) of the universal

rankn bundle overS1 ∧ U(n). Therefore there existuniquecohomology classesxi ∈

H2i−1(Lag−) that pull-back via the inclusion mapsin to these generatorsxi(n).

The geometrical representatives of the classesxi are build from some finite codi-

mensional stratified spaces ofLag−. These spaces are the analogues of the Schubert

varieties on the usual finite Grassmannian with the crucial difference that the strata are

real manifolds.

Here is briefly the construction. The set

Zk := {L | dimL ∩Wk−1 = 1}

is a cooriented, codimension2k − 1 submanifold ofLag−. Its set of singularities,

∂Zk := Zk \Zk has codimension bigger than2k+1 in the ambient space. This implies
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that

Hk(Lag−) ≃ Hk(Lag− \∂Zk)

is an isomorphism. The submanifoldZk is closed inLag− \∂Zk. The cohomology

class, denoted[Zk, ωk], defined byZk, with the natural coorientationωk is the image of

1 via the composition of maps:

H0(Zk) ≃ H2k−1(Lag− \∂Zk,Lag− \Zk)→ H2k−1(Lag− \∂Zk) ≃ H2k−1(Lag−)

Above, the first map is the Thom isomorphism combined with excision and the second

and the third map are the natural pull-backs. We have the following result (for details

see Theorem 3.2.14)

Theorem A The geometric cohomology class[Zk, ωk] coincides with the canonical

classxk.

Suppose now thatM is a closed manifold and suppose one has a smooth family

of self-adjoint, Fredholm operators parametrized byM . Then taking their (switched)

graphs one gets a smooth mapf : M → Lag−. In transversal conditions, made precise

in Section 3.4, the preimage setf−1(Zk) is a stratified space with no singularities in

codimension one with both a coorientation and an orientation on the top stratum. We

denote by[f−1(Zk), f
∗ωk]

∗ the cohomology class and respectively[f−1(Zk), f
∗ωk]∗

the Borel-Moore homology class it determines. We have the following result.

Localization Theorem Letf : M → Lag− be the map determined by a smooth family

of self-adjoint operators. Then

f ∗(xk) = [f−1(Zk), f
∗ωk]

∗, (a)
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PD f ∗(xk) = [f−1(Zk), f
∗ωk]∗, (a∗)

wherePD denotes Poincaré duality.

In the case whenM has complementary dimension toZk, i.e. dimM = 2k − 1,

then the preimage consists of a bunch of points with signs. The relevance of these0-

cycles for index theory is that they represent up to a fixed constant the Poincaré dual

of the2k − 1 th component of the cohomological index (see Section 4.3 andTheorem

4.4.5). In the case whenM = S2k−1 then the degree of the0-cycle,i.e. the sum of

the local intersection numbers determines completely the homotopy type of the mapf .

This number is always divisible by(k− 1)! by Bott divisibility theorem. (see Theorem

4.3.3).

We devote the last part of this paper to find formulae for the local intersection num-

bers in terms of the differentials of the family of operators. One of the difficulties in

doing intersection theory with the Schubert varieties we described is finding a useful

characterization of their normal bundle. In order to achieve this we used a general form

of reduction. (see section 3.3). Arnold’s theorem comes to rescue in some key technical

points in achieving this description. (see Proposition 3.3.17)

In the casek = 1 we recover the classical description of the spectral flow. For k ≥ 2

as one might expect the local intersection numbers, unlike the spectral flow depend not

only on the variation of the eigenvalues but also on the variation of the eigenspaces. An

example in that direction is Proposition 4.4.14.

In the last chapter of this dissertation we also discuss whatit means for a family

of operators to be smooth. We use our criterion of differentiability on the universal

family of self-adjoint elliptic operators, parameterizedby the groupU(N). This family

associates to a unitary matrix, the Dirac operator on theCN vector bundle on a circle
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obtained from the unit interval by gluing the end vector spaces via the corresponding

unitary operator. Doing symplectic reduction on this example we get that the associated

family of graphs is homotopy equivalent with the inclusionU(N) →֒ Lag− reproving

a result that first appeared in [22]. This universal family is key to the proof that Atiyah-

Singer classifying space is homotopy equivalent withLag−.

In an Appendix we include a collection of known facts that we deemed important

for understanding how one builds cohomology classes out of stratified spaces endowed

with a coorientation and having no singularities in codimension1.
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CHAPTER 2

CLASSIFYING SPACES FOR ODDK-THEORY

In this chapter we will introduce our main objects of study. These are various real

Banach manifolds classifying forK−1 that can be described either as subsets of the

unitary group of a complex Hilbert space or as subsets of the infinite Lagrangian Grass-

mannian determined by the same Hilbert space. The connection between the two dif-

ferent types of classifying spaces is provided by a generalization to infinite dimensions

of a theorem of Arnold. Symplectic reduction turns out to be auseful technique that

reduces many of our questions to their finite dimensional counterpart.

2.1 The infinite unitary group

This section is designed to recall some well-known facts about spaces of unitary

operators and to introduce notation and terminology that will be used throughout.

The space ofboundedoperators on a fixed, complex, separable Hilbert spaceH is

denoted byB or B(H).

The group ofunitary operators

U := {U ∈ B | UU∗ = U∗U = I} ⊂ B

has the structure of a Banach manifold modelled on the space of self-adjoint, bounded

8



operators

Sym := {A ∈ B | A = A∗}.

The charts are given by the Cayley transforms. For a fixedU0 ∈ U the set

AU0 := {U ∈ U, 1 + UU−1
0 invertible}

is open and the map

U ∋ U → i(1− UU−1
0 )(1 + UU−1

0 )−1 ∈ Sym

is a homeomorphism. In fact,U is a Banach-Lie group since multiplication and inverse

(actually adjoint) are obviously differentiable.

Definition 2.1.1. The open setAU0 together with the Cayley transform is called the

Arnold chart aroundU0.

A famous result of Kuiper, [25], says that the group of unitary operators on a Hilbert

space has trivial topology. Nevertheless, certain subspaces are more interesting.

We recall the following

Definition 2.1.2. A bounded operatorT : H → H is calledFredholm if the dimension

of both its kernel and cokernel are finite dimensional spacesand if its image is a closed

subspace ofH.

An densely defined operatorT : D(T ) ⊂ H → H is Fredholm if it is closed,i.e.

the graph is closed inH ⊕H, its image is closed and its kernel and cokernel are finite

dimensional spaces.

Let us now introduce the following subset of the group of unitary operators onH

U−1 := {U : H → H | UU∗ = U∗U = I, 1 + U is Fredholm}.
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Another way of saying that1 + U is Fredholm is−1 /∈ σess(U), that is−1 is not an

essential spectral value ofU . We will see in the next sections thatU−1 is an open subset

of the space of unitary operatorsU that has the homotopy type ofU(∞). This space

also appears in [6].

Remark 2.1.3. Notice thatU−1 is not a group. Indeed, ifU is a unitary operator such

that±1 are not among its spectral values then so is−U∗ and1 + U(−U∗) = 0.

Definition 2.1.4. Let K be the ideal of compact operators inB and letI ⊂ K be a

non-trivial, two-sided, subideal with a topology at least as strong as the norm topology.

ThePalais unitary groupUI of typeI is the subgroup ofU consisting of operators of

typeU = I + T whereI is the identity operator andT ∈ I.

Let us note that any two-sided ideal is∗-closed.

The topology onUK is the norm topology, the topology onUI is the topology in-

duced byI on its subsetUI− I.

Palais [33] showed that the Palais unitary groups are classifying for oddK-theory,

that is to say, they are homotopy equivalent with

U(∞) := lim
→
U(n),

whereU(n) is the unitary group onCn. We will reprove his result, using different

methods in section2.5.

The two-sided ideals have been classified by Calkin in [10]. For a quick description

of the relevant aspects of the theory a good reference is [38]. We will be content to

describe the ideals of Schatten class operators; see also [32].

Definition 2.1.5. Fix a numberp, p ∈ [1,∞]. A compact operatorK is of theSchatten

10



classp if Tr(K∗K)p < ∞. An operator of Schatten classp = ∞ is just a compact

operator.

We will use the notationSchp for the set of all operators of Schatten classp ∈ [1,∞].

These are naturally Banach spaces with the norm:

‖K‖p = (Tr(K∗K)p)1/p for p ∈ [1,∞)

or the operator norm in the casep = ∞. Let us notice that for a compact operator the

following relation about their spectra is trueσ(K∗K) = σ(KK∗). This is because both

have0 in their spectrum and it is easy to see that an eigenvalue forT ∗T is an eigenvalue

for TT ∗ as well and vice-versa. It follows that the spacesSchp(H) are∗-invariant. Also

we have the following important inequality .

‖TK‖p ≤ ‖T‖p1‖K‖p2, whenever p−1 ≤ p−1
1 + p−1

2

which holds for allp1, p2 ∈ [1,∞], K ∈ Schp2 andT ∈ Schp1 and moreover it holds

for T ∈ B in which case the norm‖ · ‖p1 is the operator norm. This turnsSchp into a

closed ∗ subideal ofK. It is also saying that the Schatten ideals increase withp.

The casesp = 1 of trace class operators andp = 2 of Hilbert-Schmidt operators are

most likely the more familiar examples. The spacesSchp(H) should be taken as abstract

analogues of the usualLp spaces. Indeed one other similar feature is the following. Let

p̂ := p
p−1

for 1 < p < ∞, 1̂ = ∞ and∞̂ = 1. Then the following duality relations

hold:

(Schp)∗ = Schp̂ for 1 < p <∞

(Sch∞)∗ = (K)∗ = Sch1

(Sch1)∗ = B

The Palais groups are all Banach-Lie groups modelled on the space of self-adjoint

operators.
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SymSchp := {A ∈ Schp | A = A∗}.

Remark 2.1.6. We haveUI ⊂ U−1 for every idealI since the only essential spectral

value ofU = I +K is 1.

2.2 The complex Lagrangian Grassmannian

Our main object of study is the space of all lagrangians on a Hilbert space, endowed

with an extra complex structure. We will give first the main definitions.

Definition 2.2.1. Let H be a separable, complex Hilbert space and letĤ = H ⊕ H.

We denote byH+ the spaceH ⊕ 0 and call it thehorizontal subspaceand byH− the

space0⊕H and call it thevertical subspace.

Let JĤ → Ĥ be the unitary operator which has the block decomposition relative

Ĥ = H ⊕H

J =




0 1

−1 0




The essential properties ofJ areJ = −J∗ = −J−1 so we can think ofJ as a complex

structure onH.

Definition 2.2.2. A complex subspaceL ⊂ Ĥ is calledlagrangian if JL = L⊥.

The (hermitian)Lagrangian Grassmannian, Lag(Ĥ, J) or simplyLag is the set

of all lagrangian subspaces ofĤ.

Remark 2.2.3.Notice thatJL = L⊥ implies thatL is closed sinceL⊥ is always closed

andJ is unitary.

12



Remark 2.2.4. The notion of Lagrangian Grassmannian of a complex space already

appears in the literature for example in [13] . We caution the reader that the notions

which we use here is not the same as the one used there. The symplectic structure that

underlines the definition of a lagrangian in our case,〈J(·), ·〉 is skew symmetric in the

hermitian sense, that is〈J(x), y〉 = −〈J(y), x〉. As we will see, ourLag is only a real

manifold.

Example 2.2.5. i) Each of the spacesH± is a lagrangian subspace andJH± =

H∓.

ii) Given a self-adjoint operator, bounded or unboundedT : D(T ) ⊂ H → H, its

graph:

ΓT := {(v, Tv) | v ∈ D(T )}

and itsswitched graph:

Γ̃T := {(Tw,w) | w ∈ D(T )}

are both lagrangian subspaces inĤ.

The Lagrangian Grassmannian is naturally endowed with a topology as follows.

To each lagrangianL we associate the orthogonal projectionPL ∈ B(Ĥ) such that

RanPL = L. The condition thatL is a lagrangian translates into the obvious relation

JPL = PJLJ = P⊥
L J = (1− PL)J

If we letRL := 2PL − 1 be the reflection inL thenL is lagrangian if and only if

JRL = −RLJ

13



It is easy to see that ifR is an orthogonal reflection that anticommutes withJ then

Ker (I −Rl) is a lagrangian subspace. In other words we get a bijection

Lag↔ {R ∈ B(Ĥ) | R2 = 1, R = R∗, RJ = −JR}

and soLag inherits a topology as a subset ofB(Ĥ).

The following lemma is well- known.

Lemma 2.2.6. (a) If L is a lagrangian andS ∈ Sym (L) is a self-adjoint operator

then the graph ofJS : L→ L⊥ is a lagrangian as well.

(b) For a fixed lagrangianL, if L1 is both lagrangian and the graph of an operator

T : L→ L⊥ thenT has to be of the typeJS with S ∈ Sym(L) self-adjoint.

Proof: (a) The graph ofJS is closed sinceJS is bounded. Then for everyv ∈ L one

has

J(v, JSv) = J(v + JSv) = Jv + SJ(Jv) = SJw + w = (SJw,w)

wherew = Jv ∈ L⊥. It is easy to see that

〈(v, JSv), (SJw,w)〉 = 0, ∀v ∈ L, w ∈ L⊥

HenceJΓJS ⊥ ΓJS. In order to finish the proof one has to show that

JΓJS + ΓJS = Ĥ

which comes down to showing that for every(a, b) ∈ L⊕ L⊥ = Ĥ the system






v + SJw = a

JSv + w = b

14



has a solution(v, w) ∈ L⊕ L⊥. Indeed we can choose

v = (1 + S2)−1(a− SJb)

w = (1 + JS(JS)∗)−1(b− JSa)

(b) The orthogonal complement of the graph ofT is the switched graph of−T ∗. Hence

JΓT = Γ̃−T ∗

implies thatJTJ = T ∗ which is another way of saying thatJT is self-adjoint.

It is a known fact that, in the finite dimensional case the setsSym (L) are mapped

to open subsets ofLag aroundL, turning the Lagrangian Grassmannian into a mani-

fold. The situation in the infinite dimensional case is identical. However we need the

following important proposition.

Proposition 2.2.7.LetL be a lagrangian space,L ∈ Lag. The following are equiva-

lent:

(a) L is the graph of an operatorJA : L0 → L⊥
0 whereA ∈ Sym(L0).

(b) L ∩ L⊥
0 = {0} andL+ L⊥

0 is closed.

(b′) Ĥ = L⊕ L⊥
0 .

(b′′) Ĥ = L+ L⊥
0 .

(c) RL +RL0 is invertible.

Proof: (a) ⇒ (b) Clearly if L is the graph of an operatorL0 → L⊥
0 thenL is a linear

complement ofL⊥
0 .
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(b)⇒ (b′)⇒ (b′′)⇒ (b). We have the following equality:

(L+ L⊥
0 )⊥ = L⊥ ∩ L0 = J(L ∩ L⊥

0 ) = {0}

and this proves that(b)⇒ (b′). Clearly(b′) implies(b′′) and(b′′) implies(b) because if

z ∈ L ∩ L⊥
0 thenJz ⊥ L andJz ⊥ L0 and soz = 0.

(b)⇒ (c) It is easy to check that

Ker (PL − PL⊥
0
) = L ∩ L⊥

0 ⊕ L⊥ ∩ L0 = {0}

The injectivity now follows fromRL +RL0 = RL − RL⊥
0

= 2(PL − PL⊥
0
).

Part(b′) gives alsoĤ = L⊥ ⊕ L0. This implies that

Range (RL − RL⊥
0
) = Range (PL − PL⊥

0
) = L+ L⊥

0 = Ĥ

which proves the surjectivity.

To see the second equality pick firstz ∈ L. ThenĤ = L⊥ ⊕ L0 implies that

z can be written uniquely asz = −z⊥ + y with z⊥ ∈ L⊥ andy ∈ L0. Therefore

(PL − PL⊥
0
)(z + z⊥) = z.

Similarly giveny⊥ ∈ L⊥
0 there exists a uniquey ∈ L0 such thaty − y⊥ ∈ L⊥ and

so(PL − PL⊥
0
)(y − y⊥) = y⊥.

(c) ⇒ (a) We show that the restriction toL of the projection ontoL0, PL0 |L is an

isomorphism. FirstKerPL0|L = L∩L⊥
0 and sinceKer (RL +RL0) = L∩L⊥

0 ⊕L⊥∩L0

one concludes thatL ∩ L⊥
0 = {0}.
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Surjectivity comes down to showing that the adjoint(PL0|L)∗ is bounded below [5].

But (PL0|L)∗ is nothing else butPL|L0 .

Forx ∈ L0 one has the following string of equalities

‖PL|L0(x)‖ = ‖PLPL0(x)‖ = 1/4‖(RL + 1)(RL0 + 1)(x)‖ =

1/4‖(RL +RL0 −RL0 + 1)(RL0 + 1)(x)‖ = 1/4‖(RL +RL0)(RL0 + 1)(x)‖ =

= 1/2‖(RL +RL0)PL0(x)‖ = 1/2‖(RL +RL0)(x)‖

The lower bound follows from the invertibility ofRL +RL0 .

It is clear thatL is the graph of an operatorT : L0 → L⊥
0 , T = PL⊥

0

∣∣
L
◦ (PL0 |L)−1.

This operator has to be of the typeJA with A ∈ Sym(L0) by partb) in the previous

lemma.

Corollary 2.2.8. The set{L ∈ Lag | L is the graph of an operatorL0 → L⊥
0 } is an

open neighbourhood aroundL0

Proof: The invertibility ofRL +RL0 is an open condition.

Definition 2.2.9. For a fixed lagrangianL, the mapAL : Sym(L) → Lag which

associates to an operatorS the graph ofJS is called theArnold chart aroundL. We

will sometimes use the same notation,AL to denote the image of this map inLag.

The only ingredient missing from turningLag into a Banach manifold modelled on

Sym(H) is to make sure that the transition maps are differentiable.To see that this is

17



indeed the case we pick a unitary isomorphismU : L0 → L1. Then

U ♯ =




U 0

0 JUJ−1




is a unitary isomorphism ofĤ written in block decomposition as a map

L0 ⊕ L⊥
0 → L1 ⊕ L⊥

1 .

Let L ∈ AL0 ∩ AL1, that isL = ΓJT = ΓJS whereS ∈ Sym (L1) andT ∈

Sym (L0). Let S̃ = U−1SU ∈ Sym (L0). We pickv ∈ L1 and letw = U−1v ∈ L0.

Then

v + JSv = Uw + JSUw = Uw + JUJ−1JU−1SUw = U ♯(w + JS̃w)

SoΓJS = U ♯ΓJS̃ = ΓJT . Therefore

T = −JPL⊥
0
◦ U ♯ ◦ (I, JS̃) ◦ (PL0 ◦ U ♯ ◦ (I, JS̃))−1,

where(I, JS̃) : L0 → Ĥ is the obvious operator whose range is the graph ofJS̃. The

differentiability is now clear so we have just proved:

Proposition 2.2.10.The Arnold charts turn the Lagrangian GrassmannianLag into a

Banach manifold modelled on the space of self-adjoint operatorsSym (H).

Let us a give an application of what we did so far. We will need this computation

later.

Lemma 2.2.11.LetP : Lag→ Sym (Ĥ) be the map that associates to the lagrangian

L the orthogonal projection,PL, ontoL. Then the differentialdLP : Sym (L) →
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Sym (Ĥ) is given by the following expression relativêH = L⊕ L⊥

dLP (Ṡ) =




0 ṠJ−1
L

JLṠ 0


 =




0 −ṠJ

JṠ 0




whereJL : L→ L⊥ is the restriction ofJ toL.

Proof: We need an expression for the projectionPΓJS
onto the graphJS : L → L⊥.

That comes down to findingv in the equations





a = v − SJ−1w

b = JSv + w,

wherea, v ∈ L andb, w ∈ L⊥. We get

v = (1 + S2)−1(a+ SJ−1b)

so that the projection has the block decomposition relativeL⊕ L⊥

PΓJS
=




(1 + S2)−1 (1 + S2)−1SJ−1

J(1 + S2)−1S J(1 + S2)−1S2J−1


 (2.2.1)

Differentiating this atS = 0 we notice that the diagonal blocks vanish since we deal

with even functions ofS and so the product rule delivers the result.

We will see later that the tangent space ofLag can be naturally identified with the

”tautological” bundle

T := {(L, S) ∈ Lag(H)×B(H ⊕H) | S ∈ Sym(L)}.
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The spaceLag is not very interesting from a homotopy point of view and in the

next section we will prove that it is diffeomorphic with the unitary groupU(H) and so

it is contractible. To get something non-trivial we restrict our attention to the subspace

of vertical, Fredholm lagrangians.

Definition 2.2.12. A pair of lagrangians(L1, L2) is called aFredholm pair if the fol-

lowing two conditions hold

dim(L1 ∩ L2) <∞ and L1 + L2 is closed.

The Grassmannian ofvertical, Fredholm lagrangiansis

Lag− := {L ∈ Lag | (L,H−) is a Fredholm pair}.

Fredholm pairs have been studied before both from the point of view of the projec-

tions ([4]) and from the point of view of closed subspaces of a linear space ([30]). We

summarize the main definitions and properties from [4].

Definition 2.2.13. (a) A pair of orthogonal projectionsP andQ in a separable Hilbert

spaceH is said to be aFredholm pair if the linear operator

QP : RanP → RanQ

is Fredholm.

(b) A pair of closed subspacesU andV of H is said to be a Fredholm pair if

dimU ∩ V <∞, dimU⊥ ∩ V ⊥ <∞ and U + V closed.
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(c) Two subspacesU andV are said to form acommensurateFredholm pair ifPU −

PV is a compact operator.

WhenU andV are lagrangian subspaces the middle condition in the definition of a

Fredholm pair is superfluous.

Proposition 2.2.14.Let (P,Q) be a pair of projections. Then the following statements

are equivalent.

(a) The pair(P,Q) is a Fredholm pair.

(b) The pair(Q,P ) is a Fredholm pair.

(c) The operatorsP −Q± 1 are Fredholm.

(d) The pairs of subspaces(RanP,KerQ) = (RanP, (RanQ)⊥) and(RanQ,KerP ) =

(RanQ, (RanP )⊥) are Fredholm pairs.

Proof: For the equivalence of the first three claims see Proposition3.1 and Theorem

3.4 (a) in [4].

(c)⇒ (d) LetU = RanP andV = KerQ = Ran (1−Q). Then

U ∩ V = Ker (1− P +Q) and U⊥ ∩ V ⊥ = Ker (1−Q+ P ).

If Ran (1−Q+ P ) is closed then the following sequence of inclusions proves that

U + V is closed

(U⊥ ∩ V ⊥)⊥ = Ker (1−Q+ P )⊥ = Ran (1−Q+ P ) ⊂ U + V ⊂ (U⊥ ∩ V ⊥)⊥

(d)⇒ (a) We need to prove that

PV ⊥ : U → V ⊥
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is Fredholm. Its kernel can be identified withU ∩ V so it is finite dimensional. Denote

byW the subspace

W = U + (U⊥ ∩ V ⊥) = U + (U + V )⊥.

ClearlyW is a closed subspace since(U⊥∩V ⊥) is a closed subspace ofU⊥. Moreover

W + V = H so that the operatorPV ⊥ : W → V ⊥ is Fredholm because it is surjective

and has finite dimensional kernel. The inclusionU →֒ W also Fredholm and soPV ⊥ is

Fredholm as a composition of two Fredholm operators

U →֒ W → V ⊥.

Proposition 2.2.15.Suppose(U, V ) is a Fredholm pair of closed subspaces and that

W is another subspace commensurable withV . Then the pairs(V ⊥,W ) and (U,W )

are Fredholm pairs.

Proof: This follows from the previous proposition and Theorem 3.4 (c) in [4].

Let P±|L be the orthogonal projections onH± restricted to the lagrangianL and

PL|H± be the projection onL restricted toH±. The following is just a corollary of the

definitions and the first of the previous propositions.

Lemma 2.2.16.The set of vertical, Fredholm lagrangians,Lag−, coincides with the

set

{L ∈ Lag | P+|L is Fredholm of index0}.
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2.3 Arnold’s Theorem

In this section we generalize a result by Arnold ([3], see also [29]) to infinite

dimensions. In his article, Arnold showed that the finite Lagrangian Grassmannian

Lag(N) ⊂ Gr(N, 2N) is diffeomorphic to the unitary groupU(N).

We introduce now the main suspects. Consider the∓i eigenspaces ofJ , Ker (J ± i)

and let

Isom (Ker (J + i),Ker (J − i))

be the set of Hilbert space isomorphisms between the two eigenspaces. To each la-

grangianL we associate the restriction toKer (J + i) of the reflectionRL. SinceRL

anticommutes withJ we get a well-definedreflection map

R− : Lag→ Isom (Ker (J + i),Ker (J − i)), R−(L) = RL

∣∣
Ker (J+i)

Notice that

RL =




0 R−(L)∗

R−(L) 0




relative to the decomposition̂H = Ker (J + i) ⊕ Ker (J − i). On the other hand, to

each isomorphismT ∈ Isom (Ker (J + i),Ker (J − i)) we can associate its graphΓT

which is a subspace of̂H. It is, in fact, a lagrangian. Indeed

w ∈ JΓT ⇔ w = J(Tv + v) = −iTv + iv = z − T ∗z ∈ Γ̃−T ∗

for somev ∈ Ker (J + i), with z = −iTv ∈ Ker (J − i). It is standard that the

switched graph̃Γ−T ∗ is the orthogonal complement ofΓT . Therefore, we get a second
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well-definedgraph map

Γ− : Isom (Ker (J + i),Ker (J − i))→ Lag, Γ−(T ) = ΓT

Notice that given a lagrangianL there are canonical Hilbert space isomorphisms

φ∓(L) : L→ Ker (J ± i), φ∓(L)(v) = 1/
√

2(v ± iJv)

Notation: When there is no possibility for confusion we will useφ∓ := φ∓(L).

Every isomorphismT ∈ Isom (Ker (J + i),Ker (J − i)) comes from a unitary op-

eratorUT ∈ U(L).

L

φ−

UT

L

φ+

Ker (J + i)
T

Ker (J − i)

It is straightforward to see that the graph,ΓT , is expressed in terms of the unitary

operatorUT as the set

ΓT = {(1 + UT )v + iJ(1− UT )v | v ∈ L}.

For each lagrangianL, we will call theCayley graph mapthe following application

CL : U(L)→ Lag

CL(U) := Γ−(φ+ ◦ U ◦ (φ−)−1) = Ran{L ∋ v 7→ (1 + U)v + iJ(1− U)v ∈ Ĥ}

We have the following result.

Theorem 2.3.1(Arnold ). (a) The reflection and the graph maps,R− and Γ− are
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inverse to each other.

(b) For every lagrangianL, the Cayley graph map,CL : U(L) → Lag is a diffeo-

morphism of real Banach manifolds.

(c) The restriction of the Cayley graph map induces a diffeomorphism of the follow-

ing open setsU−1(L) := {U ∈ U(L) | 1 + U is Fredholm} and

Lag− (L) := {L1 ∈ Lag | (L1, L)Fredholm pair}

Proof: (a) The identityR− ◦ Γ− = id boils down to computing the reflection in the

graph an the isomorphismT : Ker (J + i)→ Ker (J − i) in terms ofT . Notice that the

next operator on̂H written relative the decomposition̂H = Ker (J + i)⊕Ker (J − i),




0 T ∗

T 0




is an orthogonal reflection whose eigenspace correspondingto the eigenvalue1 is ΓT .

HenceR−Γ−(T ) = T .

In order to see thatΓ− ◦ R− = id it suffices to show thatΓ− ◦ R−(L) ⊂ L. Take

v ∈ Ker (J + i). Then

Γ(R−(L)) ∋ v +RL(v) = 2PL(v) ∈ L.

(b) The only issue one needs to be concerned with is differentiability. Fix a la-

grangianL and letSym(L) ∋ S → ΓJS ∈ Lag be the Arnold chart centered atL.

Then using (2.2.1) we get the following expression for the reflectionRΓJS
relative to
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Ĥ = L⊕ L⊥

RΓJS
= 2PΓJS

− 1 =




(1− S2)(1 + S2)−1 2S(1 + S2)−1J−1

2JS(1 + S2)−1 −J(1− S2)(1 + S2)−1J−1




which is differentiable function ofS. SinceR− = P i ◦ R
∣∣
Ker (J+i)

, whereP i is the

projection on thei eigenspace ofJ , we conclude thatR− is smooth and therefore its

inverseΓ− is smooth and so isCL.

(c) Notice that it is enough to prove the claim for a single lagrangianL, which we

will take to beH+. Let C = CH+ Since the Fredholm property is an open condition it

follows thatU−1 is open inU(H). We will, in fact, see a proof in the next section that

Lag− is an open set ofLag.

By standard spectral theory, the Fredholm property of1 + U implies that

Ker (1 + U) = C(U) ∩H− is finite dimensional and also−1 /∈ σ(U |Ker (1+U)⊥).

We can now factor outKer(1 +U). To that end, let̆H = Ker (1 + U)⊥, andH̆± be

the horizontal/vertical copy of̆H in H̆ ⊕ H̆ andU ′ = U |H̆ . Since1 + U ′ is invertible,

the Cayley graph ofU ′ is in the Arnold chart ofH̆+ and soC(U ′) + H̆− is closed by

proposition2.2.7. On the other hand

C(U) +H− = C(U ′) + H̆− + Ker (1 + U)

whereKer (1 + U) ⊂ H− is finite dimensional and this proves thatC(U) + H− is

closed.

Conversely, letL ∩ H− be finite dimensional andL + H− be closed. If we letL′

andH̆− be the orthogonal complements ofL∩H− in L andH− respectively, these two

spaces are lagrangians inJH̆− ⊕ H̆− whose intersection is empty, and whose sum is
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closed. Their sum is closed because of the relation

L′ + H̆ = (L ∩H−)⊥

where the orthogonal complement is taken inL+H−. The⊆ inclusion is obvious.

To prove the⊇ inclusion note that every

z = z1 + z2 ∈ L+H−

can be written as

z = z1 + z2 = x1 + y1 + x2 + y2.

L ∩H− L′ H̆

Soz = (x1 + y1) + (x2 + y2) with x1 + y1 ∈ L ∩ H− andx2 + y2 ∈ (L ∩H−)⊥

and therefore, ifz ∈ (L ∩H−)⊥ thenz = x2 + y2 ∈ L+H−.

We have just proved thatL′ is in the Arnold chart ofJH̆−, henceL′ = ΓS where

S : JH̆− → JH̆− is a self-adjoint operator. Finally, we haveL = C(U) whereU is the

extension by−1 onJ(L ∩ H−) of the Cayley transform ofS. It is clear that1 + U is

Fredholm.

Since our main interest is inLag− we will deal with this case separately.

Notation: To simplify notation we will useC to denote the Cayley graph map atH+,

i.e. C := CH+ .

Corollary 2.3.2. The Cayley graph mapC : U(H)→ Lag

C(U) := Ran{H ∋ v → ((1 + U)v,−i(1− U)v) ∈ H ⊕H}
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induces a diffeomorphism betweenU−1 andLag−.

Proof: This is just the caseL = H+ in Arnold’s theorem. The reason for−i in the

second component is that under the canonical identificationsH = H+ andH = H−,

J
∣∣
H+ acts as minus the identity.

Remark 2.3.3.Our choice of the reflection map,R− to go fromKer (J + i) toKer (J − i)

rather then the other way around was not accidental. The Arnold chart at the vertical

spaceH− = 0 ⊕ H associates to a self-adjoint operatorA ∈ Sym(H−) the switched

graphΓ̃A := {(Av, v) | v ∈ H} ⊂ H ⊕ H. In the case whenH = C we want the

composition

S1 C
Lag(1)

(Γ̃A)−1

Sym(C)

defined where it makes sense (i.e. forλ 6= 1) to be orientation preserving. This is

related to the definition of the spectral flow; see4.5.1. In our case, the composition is

λ→ i
1 + λ

1− λ

This is indeed orientation preserving as a map from the unit circle minus a point to the

real axis.

For each lagrangianL we introduce the change of basis isomorphism

ΦL : L⊕ L⊥ → Ker (J + i)⊕Ker (J − i), ΦL =




φ− 0

0 φ+ ◦ J−1


 (*)

whereJ−1 : L⊥ → L is the inverse of the restrictionJ : L→ L⊥. As a mapL⊕L⊥ →

28



L⊕ L⊥, ΦL has the expression

ΦL =
1√
2




1 J−1

iJ −i




Notice thatΦL diagonalizesJ relative to the decomposition̂H = L⊕ L⊥, i.e.

Φ−1
L JΦL =



−i 0

0 i




Lemma 2.3.4.LetU ∈ U(L) be a unitary map. Then the reflection in the lagrangian

LU := CL(U) has the following expression relativêH = L⊕ L⊥

RLU
= ΦL




0 U∗J−1

JU 0


 Φ−1

L

Proof: LetTU : Ker (J + i)→ Ker (J − i) be the isometry that corresponds toCL(U),

in other wordsTU = (φ+)U(φ−)−1. Then

RLU
=




0 T ∗
U

TU 0


 =




φ− 0

0 φi







0 U∗

U 0







φ−1
− 0

0 φ−1
+




The claim follows from the expression forΦL.

Using the previous lemma we get a different characterization of Lag−.

Corollary 2.3.5. The space of vertical, Fredholm lagrangians has the following char-

acterization Lag− = {L ∈ Lag | RL + RH+ is Fredholm}.
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Proof: If U is the operatorL is coming from via the Cayley graph map then

RL +RH+ = ΦH+




0 (1 + U)∗J−1

J(1 + U) 0


 Φ−1

H+

Clearly,RL +RH+ is Fredholm if and only if1 + U is Fredholm.

Corollary 2.3.6. The Cayley graph map,C takes the Arnold chart aroundU0 bijectively

onto the Arnold chart aroundL0 := C(U0).

Proof: Let T := U + U0, LU := C(U). Then

RLU
+RL0 = ΦH+




0 −T ∗

−T 0


Φ−1

H+

is invertible if and only ifT is invertible and hence by proposition2.2.7we getCH+(U) ∈

AL0 if and only if T is invertible.

Corollary 2.3.7. Let M be a differentiable manifold andF : M → Lag be a map.

ThenF is differentiable if and only ifR ◦ F is differentiable whereR : Lag → B(Ĥ)

associates to every lagrangianL the reflection in it.

Proof: ClearlyF is differentiable if and only ifF1 := (C)−1 ◦ F : M → U(H+) is

differentiable. NowR ◦ C : U(H)→ B(Ĥ) has the following expression

R ◦ C(U) = ΦH+




0 −U∗

−U 0


 Φ−1

H+
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SoF1 is differentiable if and only ifR ◦ C ◦ F1 is differentiable.

A closer look at the Cayley graph map suggests a useful reformulation of Arnold’s

theorem. Notice that for every unitary operatorU ∈ U(L), with LU := CL(U) the map

Ũ : L→ LU

Ũ(v) = 1/2((1 + U)v + iJ(1− U)v))

is acanonicalHilbert space isomorphism that carriesL into LU . We can build out of

Ũ an automorphismU ♯ of Ĥ by taking the direct sum of̃U with JŨJ−1 : L⊥ → L⊥
U .

Written in the decomposition̂H = L⊕ L⊥ this automorphism has the expression:

U ♯ =
1

2




1 + U −i(1− U)J−1

iJ(1− U) J(1 + U)J−1


 = ΦL




1 0

0 JUJ−1


 Φ−1

L

We are now ready to give a reformulation of Arnold’s theorem.

Theorem 2.3.8. (a) For a fixed lagrangianL, the following map is a Banach-Lie

group embedding

OL : U(L) 7→ U(Ĥ), OL(U) = ΦL




1 0

0 JUJ−1


 Φ−1

L

where the decomposition is relative tôH = L⊕ L⊥. The orbit of the lagrangian

L under the action of this subgroup, i.e.{OL(U)L | U ∈ U(L)}, is the entire

spaceLag and the stabilizer is trivial. The bijection

U(L)→ Lag, U → OL(U)L

is a diffeomorphism of real Banach manifolds.
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(b) The subgroup ofU(Ĥ) determined byOL does not depend onL, but only onJ .

Relative to the decomposition̂H = Ker (J + i) ⊕ Ker (J − i), the mapOL has

the expression:

OL(U) =




1 0

0 φ+Uφ
−1
+




(c) The bundleUτ ⊂ Lag×B(Ĥ) overLag whose fiber over a lagrangianL consists

of unitary operatorsU ∈ U(L) is canonically trivializable and the map:

O : Uτ → U(Ĥ), O(L,U) := OL(U)

is differentiable.

Proof: (a) Note thatOL(U)L = CL(U) and so the job is done by Theorem2.3.1.

(b) Self-explanatory.

(c) Let us notice that the tautological bundleτ ⊂ Lag×Ĥ, τ := {(L, v) | v ∈ L}

overLag is naturally trivializable. A natural trivialization is given as follows. For every

lagrangianL, letUL := C−1(L) be the unitary operator onH+ corresponding toL via

the Cayley graph map. Then the following map is a trivialization of the tautological

bundle

α : τ → Lag×H+, α(L, v) = (L, (OH+(UL))−1 (v))

since bothC−1 andOH+ are differentiable. It is straightforward thatUτ is naturally

trivializable.

In order to show thatO is differentiable it is enough to show that the map

Φ : Lag→ U(Ĥ), L→ ΦL
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is differentiable. SinceOH+ andCH+ are differentiable, the following identity proves

this claim.

Φ(C(U)) = OH+(U)ΦH+ =
1√
2




1 −U

−i −iU


 , ∀U ∈ U(H+)

The decomposition is relativêH = H ⊕H. To see why the identity is true, letLU :=

CH+(U) andv ∈ H+. Then

x := OH+(U)(v) = 1/2((1 + U)v,−i(1− U)v) ∈ LU

and

ΦLU
(x) = 1/

√
2(x+ iJx) = 1/

√
2(v,−iv)

Letw ∈ H−. Then

y := OH+(U)(w) = 1/2(i(1− U)w, (1 + U)w) ∈ L⊥
U

and

ΦLU
(y) = 1/

√
2(J−1y − iy) = 1/

√
2(−Uw,−iUw).

Notation: For a lagrangianL and a unitary mapU ∈ U(L) we will use the notatioñU

for the Hilbert space isomorphism:

Ũ : L→ CL(U), Ũ(v) = OL(U)(v) = 1/2((1 + U)v + Ji(1− U)v)
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We see that Arnold’s theorem gives more than just a diffeomorphism between two

real Banach manifolds. It shows that given two lagrangiansL1 andL2, there exists

canonicalunitary operators

U(L1, L2) ∈ U(L1), U(L1, L2) := C−1
L1

(L2)

U(L2, L1) ∈ U(L2), U(L2, L1) := C−1
L2

(L1)

that induce isomorphisms between the two lagrangians

Ũ(L1, L2) : L1 → L2 and Ũ(L2, L1) : L2 → L1

Notice that for every lagrangianL

Ũ(L,L) = id

Moreover, the following is true

Lemma 2.3.9.For every two lagrangiansL1 andL2 and for every unitary mapX ∈

U(L1) the following identities hold:

(a) U(L1, L2) = (φ+(L1))
−1 ◦ φ+(L2) ◦ (φ−(L2))

−1 ◦ φ−(L1);

(b) Ũ(L1, L2) = φ−1
− (L2) ◦ φ−(L1);

(c) O(L1, U(L1, L2)XU(L1, L2)
−1) = O(L2, Ũ(L1, L2)XŨ(L1, L2)

−1).
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Proof: (a) This identity follows from the commutativity of the diagram

L1
U(L1,L2)

φ−(L1)

L1

φ+(L1)

Ker (J + i) Ker (J − i)

L2
id

φ−(L2)

L2

φ+(L2)

To see why this diagram is commutative think that bothidL2 andU(L1, L2) induce an

isomorphismT ∈ Isom (Ker (J + i),Ker (J − i)) whose graph is exactlyL2.

(b) We have

Ũ(L1, L2) =




1 0

0 φ+(L1)U(L1, L2)(φ+(L1))
−1




∣∣∣
L1

=




1 0

0 φ+(L2)(φ−(L2))
−1




∣∣∣
L1

where the decomposition is relativêH = Ker (J + i)⊕Ker (J − i). On the other hand

for v ∈ L1 we have:

v = 1/
√

2(φ−(L1)v, φ+(L1)v) ∈ Ker (J + i)⊕Ker (J − i)

and so

Ũ(L1, L2)v = 1/
√

2(φ−(L1)v, φ+(L2)(φ−(L2)
−1φ+(L1)v) = 1/

√
2(φ−(L2)w, φ+(L2)w)

for somew ∈ L2. The identity is now obvious.

(c) Let U12 := U(L1, L2). We consider(Ũ12v, JŨ12J
−1w) ∈ L2 ⊕ L⊥

2 where(v, w) ∈
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L1 ⊕ L⊥
1 . Notice that for all pairs(v, w) we have

O(L2, Ũ12XŨ
−1
12 )(Ũ12v, JŨ12J

−1w) = (Ũ12a, JŨ12J
−1b)

where




a

b


 =

1

2




1 +X −i(1−X)J−1

iJ(1−X) J(1 +X)J−1







v

w


 = O(L1, X)(v, w)

The same relation can be written as

O(L2, Ũ12XŨ
−1
12 )O(L1, U12) = O(L1, U12)O(L1, X)

from which the identity follows.

Corollary 2.3.10. LetLi, i ∈ {1, 2, 3} be three lagrangians and let̃U(L1, L2) be the

canonical isomorphisms between them. Then

Ũ(L2, L3) ◦ Ũ(L1, L2) = Ũ(L1, L3)

Proposition 2.3.11.The tangent space ofLag is isomorphic with the tautological bun-

dle

T := {(L, S) ∈ Lag× Sym (Ĥ) | S ∈ Sym(L)} and they are both naturally trivi-

alizable.

Proof: The isomorphism between the tangent space ofLag andT is given by:

(L, [α])→ (L, α′(0))

where[α] is an equivalence class of curves andα′(0) is the derivative of a representative

of α in the Arnold chart ofL.
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For every lagrangianL let UL := C−1
H+(L). Consider now the following automor-

phism of the trivial bundle

Lag× Sym (Ĥ) 7→ Lag× Sym (Ĥ), (L, S) 7→ (L,O(UL)−1SO(UL))

It restricts to an isomorphism

T → Lag× Sym(H+), (L, S)→ (L, Ũ−1
L SŨL)

We saw in Corollary2.3.6 that the Arnold chart around a unitary operatorU0 is

taken by the Cayley graph map,CH+ , to the Arnold chart around the corresponding

lagrangianL0 := C(U0). The Arnold chart ofU0 consists of those operatorsU such

thatU0 + U is invertible. These operators live in the image of the composition

Sym(H)

Cay0

U(H)
U0·

U(H), A 7→ i− A
i+ A

=: U 7→ U0U

where the first map is the Cayley transform at identity. WhenH = Cn this Cayley trans-

form preserves the natural orientation onU(n). We denote this composition byCay0.

On the other hand,Sym(L0) is naturally isomorphic withSym(H) by conjugation with

the Hilbert space isomorphism̃U0 : H → L0 given by

v → 1/2((1 + U0)v,−i(1− U0)v)
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Let Ã0 be the application that mapsSym(H) bijectively to the Arnold chart ofL0.

Sym(H)

Ã0

Sym(L0) Lag, A 7→ Ũ0AŨ
−1
0 =: X 7→ ΓJX

Proposition 2.3.12.The compositioñA−1
0 ◦ O ◦ Cay0 : Sym(H) → Sym(H) is the

identity.

Proof: We know that the Arnold chart atU0 maps to the Arnold chart atL0. Every

unitary operatorU ∈ U(H) such that1+U is invertible maps via left multiplication by

U0 to an operatorU ′ such thatU0 + U ′ is invertible. We fix such an operatorU and let

Ã ∈ Sym(L0) be defined by

Ã := Ũ0
i(1− U)

1 + U
Ũ−1

0

We show thatÃ corresponds via the map̃A 7→ ΓJÃ to the lagrangian determined by

U0U . Indeed, letx ∈ H andv ∈ L0 be two vectors related byv = Ũ0(1 + U)x. Then

v + JÃv =
(
Ũ0(1 + U)x+ JÃŨ0(1 + U)x

)
=

(
Ũ0(1 + U)x+ iJŨ0(1− U)x

)

= 1/2
(
(1+U0)(1+U)x,−i(1−U0)(1+U)x

)
+

(
1−U0)(1−U)x,−i(1+U0)(1−U)x

)

=
(
(1 + U0U)x,−i(1 − U0U)x

)
∈ O(U0U)

Since the correspondencev ↔ x is bijective the claim follows.

Plugging inU = (i−A)(i+ A)−1 with A ∈ Sym(H) finishes the proof.
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2.4 More examples of Lagrangians

In this section we will discuss what happens with the Palais groupsUI through the

Cayley graph bijection. Let

Lag−
I := C(UI)

be the space of lagrangians that correspond to the Palais groups. The computation of the

reflectionRLU
in Arnold’s theorem proves again useful for an intrinsic characterization

of Lag−
I . HereLU := C(U).

RLU
+RH− = ΦH+




0 1− U∗

1− U 0


 Φ−1

H+

Hence, if we letIΦ to denote the Banach subspace ofB(Ĥ)

IΦ := {X ∈ B(Ĥ) | X = ΦH+




0 T ∗

T 0


 Φ−1

H+ , T ∈ I} =

=




X ∈ B(Ĥ) | X =




T + T ∗ i(T − T ∗)

i(T − T ∗) −(T + T ∗)


 , T ∈ I





we have the following description/definition forLag−
I .

Lemma 2.4.1. The space ofI-commensurable lagrangians withH+, Lag−
I (or just

commensurable whenI = K) has the following description as a subset ofLag−

Lag−
I = {L ∈ Lag− | RL +RH− ∈ IΦ} = {L ∈ Lag− | PL − PH+ ∈ IΦ}.

The spaceIΦ is not an ideal ofB(H⊕H), (it is not even an algebra) but the obvious

topology that it inherits fromI, topology which we will denote by superscripts (from

strong) makes the identity map continuous in one direction:
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id : Is

Φ → I
‖·‖
Φ

With this topology onLag−
I the Cayley graph map becomes a homeomorphism when

restricted toUI.

Remark 2.4.2. It is tempting to have a description ofLag−
I in terms of the projections

in the spirit of the Lemma2.2.16. Such a description suggests itself and we would like

to say that if the lagrangianL is in Lag−
I thenP−|L ∈ I. Nevertheless such a statement

must be taken with a grain of salt. This is because the set of projectionsP−|L is not a

subspace ofB(H) and in general it does not have an algebraic structure.

On the other hand it is true that forL ∈ Lag−
I , one hasP−|L ◦ ŨL ∈ I, where

ŨL is the unitary isomorphismH → L provided by the Cayley map and conversely if

P−|L ◦ UL ∈ I thenL ∈ Lag−
I . Therefore, if we takeP−|L ∈ I to meanonly a certain

boundedness condition on the singular values ofP−|L, the same one that describes

I ([38] ), e.g., trace class or Hilbert-Schmidt condition, then the previous description

makes perfect sense:

Lag−
I = {L ∈ Lag(H) | P+|L is Fredholm of index0 andP−|L ∈ I}

We will put charts onLag−
I and turn it into a manifold modeled on the Banach space

SymI. With this manifold structure the Cayley graph map becomes adiffeomorphism

UI
C

Lag−
I

We know for example thatAH+ ⊂ Lag− and it is easy to see that in order to have

ΓT ∈ Lag−
I for a self-adjoint operatorT : H → H one needs to haveT ∈ I. Hence
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AH+ ∩ Lag−
I ≃ SymI(H). The first set is open in the norm topology, so it is open

in the strongers topology. This way we obtained a first chart onLag−
I . In order to

put other charts on this space notice that we can unambiguously talk about the ideal

I ⊂ B(H) as an ideal ofB(L) for any separable, Hilbert spaceL. Indeed since every

ideal is conjugation invariant one can just take a unitary isomorphism betweenH and

L and ”transfer”I, via conjugation, to a subset ofB(L).1

Let us fix a finite codimensional spaceV ⊂ H+. Then

Lemma 2.4.3.The lagrangianV ⊕JV ⊥ belongs to all subsetsLag−
I . The intersection

of the Arnold chart inLag− aroundV ⊕ JV ⊥ with Lag−
I is an Arnold chart ofLag−

I

aroundV ⊕ JV ⊥. In other words the graph map induces a bijection

SymI(V ⊕ JV ⊥) ≃ AV ⊕JV ⊥ ∩ Lag−
I .

Proof: The first claim is true becauseP+|V ⊕JV ⊥ is clearly Fredholm andP−|L is a

finite rank operator.

One easy observation is that the unitary mapU ∈ U(H+) in Arnold’s theorem

which satisfiesO(U)H+ = V ⊕ JV ⊥ is:

U =





I onV

−I onV ⊥

Let T ∈ Sym(V ⊕ JV ⊥). It is not hard to see thatΓJT = O(U)ΓJT̃ where T̃ =

U−1TU ∈ SymI(H
+). (hereU is the unitary isomorphismH+ → V ⊕ JV ⊥ induced

1In other words we do not have to define what we understand by a compact or Hilbert-Schmidt
operator on each separable, Hilbert space.

41



by the Cayley map ofU ∈ U(H+) defined before). Indeed we have :

O(U)ΓJT̃ =








U 0

0 JUJ−1







v

JT̃ v


 | v ∈ H+





and the latter set is justΓJT .

If we let UT̃ := 1+iT̃
1−iT̃

be the Cayley transform of̃T thenΓJT = O(U)O(UT̃ )H+ =

O(UUT̃ )(H+). HenceUUT̃ is the unitary transform in Arnold’s theorem which takes

H+ to ΓJT . It is easy to see thatUUT̃ ∈ 1 + I if and only if T̃ ∈ I iff T ∈ I.

Remark 2.4.4. The fact that the Arnold chartsAI
V ⊕JV ⊥ := AV ⊕JV ⊥ ∩ Lag−

I with V

cofinite dimensional inH+, coverLag−
I is just an observation in the next section.

Simple examples of vertical, Fredholm lagrangians come from the graphs of bounded,

self-adjoint operatorsS : H → H. More interesting examples arise when one looks at

switched graphs of operators. In this case in order for theswitchedgraph to be Fred-

holm pair with the vertical space,T itself has to be Fredholm. Most importantly,T

need not even be bounded.

Let T be a self-adjoint, Fredholm operator and letU = C−1(Γ̃T ) be the unitary

operator it corresponds to via the Arnold isomorphism. Thenthe operatorX = 1− U

is bounded and induces a bijectionX : H → D(T ). If we let

〈v, w〉D(T ) = 〈X−1v,X−1w〉H , ∀v, w ∈ D(T )

be an inner product onD(T ) induced byX then with this inner product two things are

true, the inclusionD(T ) → T is continuous andX : H → D(T ) is a Hilbert space

isomorphism. The following result is now straightforward:
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Lemma 2.4.5.For every closed, self-adjoint operatorT : D(T ) ⊂ H → H there exists

a bounded operatorX ∈ B(H) which is a bijection ontoD(T ) and which induces an

inner product onD(T ) such thatT : D(T )→ H becomes a bounded operator and

T = iX−1(2−X)

The new norm onD(T ) is nothing else but the graph norm as the next result shows.

Definition 2.4.6. For every closed, densely defined operatorT : D(T ) ⊂ H → H the

graph normonD(T ) is

‖v‖g = ‖Tv‖+ ‖v‖, ∀v ∈ D(T )

Lemma 2.4.7.LetH0 be a dense subset ofH and letT : H0 → H be a self-adjoint

operator. Consider the norm〈·, ·〉0 onH0 induced by the operatorX from the previous

lemma. Then this is equivalent with the graph norm.

Proof: Let v ∈ D(T ) and letw = X−1(v) ∈ H. Notice that

‖v‖0 ≤ 1/2‖v‖g

Indeed the inequality is equivalent with

‖w‖ ≤ 1/2(‖TXw‖+ ‖Xw‖)

which becomes by (2.4.5)

‖w‖ ≤ 1/2(‖(2−X)w‖+ ‖Xw‖)
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This is just the triangle inequality.

Conversely one has

‖v‖g = ‖(2−X)w‖+ ‖Xw‖ ≤ (‖X‖+ ‖2−X‖)‖w‖ = M‖v‖0

We have the following result

Lemma 2.4.8.If U = C−1(Γ̃T ) is the unitary operator that corresponds to the switched

graph ofT andRT (−i) = (T + i)−1 is the resolvent ofT at−i then

U = 1− 2iRT (−i)

Proof: LetX := 1− U . By Lemma2.4.5we have

X = 2i(T + i)−1 = 1− U

Corollary 2.4.9. The switched graph of a self-adjoint, Fredholm operatorT is in LagI

if and only if the resolventRT (λ) ∈ I for someλ /∈ σ(T ).

Proof: By the previous lemma1− U ∈ I if and only ifRT (−i) ∈ I.

2.5 Symplectic reduction

Our big goal for this section is to prove thatLag−, together with its little brothers,

Lag−
I are all classifying spaces for oddK-theory, i.e. they all have the same homotopy

type asU(∞). To achieve this we use the technique called (linear) symplectic reduction

which we now describe.
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Definition 2.5.1. An isotropic subspace of the complex Hilbert spaceĤ = H ⊕ H,

endowed with a complex structure as in the previous section is aclosedsubspaceW ⊆

Ĥ such thatJW ⊆W⊥.

The spaceW ω := (JW )⊥ is called theannihilator of W .

For an isotropic spaceW , the orthogonal complement ofW in W ω, denotedHW is

called the(symplectically) reducedspace ofĤ.

One trivial observation is thatHW is the orthogonal complement ofW ⊕JW in Ĥ.

Notice thatHW is J-invariant since its orthogonal complement is.

Definition 2.5.2. The isotropic spaceW is calledcofinite if HW is finite dimensional

and

dim Ker (i± J |HW
) = 1

2
dimHW .

Remark 2.5.3. The reason for considering the signature zero condition foriJ |HW
in

the previous definition is because we want the Lagrangian GrassmannianLag(HW ) to

be nontrivial wheneverHW is not trivial. We want it nontrivial because this guarantees

that every maximal, cofinite, isotropic space is actually a lagrangian. Indeed, with our

definition in place, if a maximal, cofinite, isotropic space were not a lagrangian, it

would mean thatHW is non-zero and henceLag(HW ) is nontrivial and so a choice of

a lagrangian inHW added to the initial isotropic space would yield a bigger isotropic

space contradicting the maximality.

Example 2.5.4.Every finite codimensional subspaceW ⊂ H± is in fact cofinite,

isotropic and the same is true about every finite codimensional subspace of any la-

grangian, not onlyH± .
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Definition 2.5.5. For a fixed, cofinite, isotropic spaceW we say that the lagrangianL

is cleanwith W if it belongs to the set:

LagW := {L ∈ Lag, L ∩W = {0}, L+W closed}

If W = L0 is a lagrangian itself, we haveLagW = AL⊥
0
.

The next proposition/definition is fundamental.

Proposition 2.5.6.For every cofinite, isotropic spaceW the following are true:

a) The map

R : LagW 7→ Lag(HW ), L 7→ RangePHW
|L∩W ω

is well-defined. HerePHW
|L∩W ω is the orthogonal projection ontoHW restricted

toL ∩W ω. The mapR is calledsymplectic reduction.

b) Given any lagrangianL ∈ LagW there exists another lagrangianL0 ⊃ W such

thatL ∈ AL⊥
0
⊂ LagW . HenceLagW is an open subset ofLag.

c) If L0 ⊃W is a lagrangian andW⊥ is the orthogonal complement ofW in L then

R(AL⊥
0
) = AJW⊥. In these Arnold coordinatesR(T ) = PJW⊥TPJW⊥, for every

operatorT : L⊥
0 → L0. HenceR is differentiable.

Proof: a) The case whenW is a lagrangian itself, is trivial since thenHW = 0. We

will therefore suppose thatW is not lagrangian in what follows.

Let us fixL ∈ LagW . The first thing to notice is thatL ∩W ω 6= 0. Indeed suppose

L ∩W ω = {0}. ThenJ(L ∩W ω) = {0} and so(L+W )⊥ = {0} which implies that

L+W = H⊕H. SinceL∩W ω = {0} we get thatW is a linear complement ofL and

becauseW ω ⊃W the only wayL∩W ω = {0} is if W ω = W , that isW is lagrangian,

which is not our assumption.
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Let nowℓ := PHW
(L ∩W ω). We must haveℓ 6= {0} as well, sincePHW

|L∩W ω is

injective because of the equality

KerPHW
|L∩W ω = L ∩W ω ∩ (W ⊕ JW ) = L ∩W = {0}.

MoreoverJℓ = PHW
(L⊥ ∩ (JW )ω). This is true becausePHW

J = JPHW
which is

another way of saying thatHW is J invariant.

We will check thatℓ ⊥ Jℓ. Letx = y1 + z1 with x ∈ L∩W ω, y ∈ HW andz ∈W .

Let alsox⊥ ∈ L⊥ ∩ (JW )ω be decomposed asx⊥ = y2 + Jz2 with y2 ∈ HW and

z2 ∈W . We notice that

W ω ∋ x ⊥ Jz2 ∈ JW and(JW )ω ∋ x⊥ ⊥ z1 ∈W

The next relation is now straightforward, thus proving the claim.

〈y1, y2〉 = 〈x− z1, x⊥ − Jz2〉 = 0

Soℓ is an isotropic subspace ofHW andL0 = Jℓ + W is an isotropic space of̂H

such thatL0+L is closed andL0∩L = {0}. We will prove this claim. Takez = x+y ∈

(Jℓ+W ) ∩ L, with x ∈ Jℓ ⊂ HW andy ∈W . Thenz ∈ L ∩W ω = L ∩ (HW ⊕W )

which also means thatx = PHW
(z) ∈ ℓ and sincex ∈ Jℓ we conclude thatx = 0 and

thereforez = y ∈ L ∩W = {0}.

We notice now thatL0 has to be a maximal, isotropic space, hence lagrangian. If

it were not maximal, we could repeat the whole process, withL0 instead ofW . This

means that lettingHL0 ⊂ HW be the orthogonal complement ofL0 +JL0 andℓ0 be the

projection ofL ∩ Lω
0 ⊂ L ∩W ω ontoHL0 thenℓ0 ⊂ HL0 would be non-zero and also

a subset ofℓ. Sinceℓ ⊥ HL0, we get a contradiction.
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b) We only need to show thatAL⊥
0
⊂ LagW whereL0 is as before and we are done.

The finite dimensionality follows immediately fromL ∩W ⊂ L ∩ L0.

Notice that we have the set equalityL + W = L⊥
0 + W because ifL = ΓT for

some operatorT : L⊥
0 → L0, then for every pair(a, b) ∈ L⊥

0 + W the equation

(x, Tx) + (0, y) = (a, b) has a unique solution. The spaceL⊥
0 + W is the orthogonal

complement ofW⊥ in Ĥ and so it is closed.

c) We want to see what happens when we restrictR toAL⊥
0

. First of all we can see

W⊥ as a distinct lagrangian inLag(HW ).

We claim thatR(AL⊥
0
) = LagW⊥

(HW ) and the last set is just the Arnold chart

AJW⊥ in HW . To prove the claim we will compute the symplectic reductionof a graph

ΓT ⊂ L⊥
0 ⊕ L0 of an operatorT : L⊥

0 = JW ⊕ JW⊥ → L0 = W ⊕ W⊥ with

components:

T =




T1 T2

T3 T4




This is actually easy to do and the answer isR(ΓT ) = ΓT4 ⊂ JW⊥ ⊕W⊥. This com-

putation also proves the last claim.

Remark 2.5.7. Given a cofinite, isotropic spaceW and a lagrangianL such that

dimL ∩W <∞ andL+W closed, the symplectic reduction ofL is still well-defined.

However the symplectic reduction as a map is not continuous on this set. We will

see that it is continuous and in fact differentiable when restricted to each subspace of

lagrangians with a fixed dimension of the intersectionL ∩W . See Section3.3.

The next set-theoretic equality is a useful by-product of the previous lemma.

48



Lemma 2.5.8. If L0 is a lagrangian which containsW , thenAL⊥
0

= R−1(AJW⊥) ⊂

LagW , whereW⊥ is the orthogonal complement ofW in L0.

Proof: The inclusion⊂ is clear from the proof of the previous lemma. For the other

one, letL be a lagrangian such thatR(L) ∩W⊥ = {0}.

Consider nowx ∈ L ∩ L0 = L ∩ (W ⊕W⊥) ⊂ L ∩W ω. This meansx = a + b

with a ∈ W andb ∈ W⊥ and sob = PHW
(x) ∈ R(L). Thereforeb = 0 which implies

x = a ∈ L ∩W = {0}.

The sumL+L0 is closed because it is the sum of a closed spaceL+W and a finite

dimensional oneW⊥.

We want to show next that the symplectic reduction is actually a linear fibration.

First let us notice that we have a canonical section ofR, namely

S : Lag(HW ) 7→ LagW , ℓ 7→ ℓ⊕ JW.

Remember that by Lemma2.3.11the tangent bundle ofLagW is identified with

the bundle whose fiber atL are just the self-adjoint operatorsSym(L). For everyℓ ∈

Lag(HW ), the lagrangianℓ⊕JW is clean withW . We saw in Lemma2.5.6, partc) that

in the Arnold chart ofL = ℓ ⊕ JW , the symplectic reduction withW has the simple

expression of projection onto theℓ × ℓ block. We conclude thatKer dLR consists of

self-adjoint operatorsS : L→ L with block decomposition:

S =




0 S∗
2

S2 S3




We have the following equivalent of the tubular neighborhood theorem:

Proposition 2.5.9. a) (Ker dR)
∣∣
Lag(HW )

is a trivializable bundle overLag(HW ).
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b) LetLag(HW ) be embedded inLagW via S. Then the map

N : (Ker dR)
∣∣
Lag(HW )

7→ LagW , (L, S) 7→ ΓJS ⊂ L⊕ L⊥

is a diffeomorphism which makes the diagram commutative:

(Ker dR)
∣∣
Lag(HW )

N
LagW

R

Lag(HW )

Proof: a) In this infinite dimensional context we need to make sure firstthat

(Ker dR)
∣∣
Lag(HW )

is a manifold.

We fix ℓ0 ⊂ Lag (HW ) and letL0 := ℓ0 ⊕ JW = S(ℓ0).

We will show that there is a natural homeomorphism of(Ker dR)
∣∣
Lag(HW )

with a

product

Lag(HW )×Sym0(L0), which commutes with the projections toLag(HW ) and is linear

on each fiber. HereSym0(L0) := Ker dL0R is a Banach subspace ofSym(L0).

The spaceSym0(L0) has a concrete description. It is the set of all self-adjoint

operators onL0 which are zero on theℓ0 × ℓ0 block.

Recall that the finite version of Arnold’s theorem tells us that for every lagrangian

ℓ1 ∈ Lag (HW ) there exists a canonical unitary isomorphism̃Uℓ1 : ℓ0 → ℓ1. Let

L1 := ℓ1 ⊕ JW . The canonical unitary isomorphism̃UL1 : L0 → L1 has a block

decomposition

ŨL1 :=




Uℓ1 0

0 1




as a mapℓ0 ⊕ JW → ℓ1 ⊕ JW .
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In these conditions, if theℓ1 × ℓ1 block of a self-adjoint operatorS ∈ Sym (L1) is

zero, then theℓ0 × ℓ0 block of Ũ−1
L1
SŨL1 is zero as well.

The map:

(Ker dR)|Lag(HW ) 7→ Lag(HW )× Sym0(L0), (L1, S) 7→ (ℓ1, Ũ
−1
L1
SŨL1)

is the homeomorphism we were after. The continuity of the second component follows

by noticing as in corollary2.3.11thatŨ−1
L1
SŨL1 is theL0×L0 block ofC(UL1)

−1SC(UL1).

b) We will build an inverse forN. LetL ∈ LagW and letℓ = R(L) be its symplectic

reduction.

We consider the lagrangianL1 = ℓ ⊕ JW . It has the property thatL + L⊥
1 =

L+W + JR(L) is closed and alsoL ∩ L⊥
1 = {0}.

We prove the last claim. Let us takex ∈ L∩W ⊕ Jℓ decomposed asx = a+ b+ c

wherea ∈W, b ∈ JW andc ∈ HW . We haveb = 0 becausex, a andc are inW⊕HW .

It follows thatc is the projection ofx ontoHW and by definition this is justRL(x) ∈ ℓ.

On the other handc is in Jℓ becausea + c ∈ W ⊕ Jℓ and c ⊥ W and soc = 0.

Thereforex = a ∈ L ∩W = {0} and we are done with the claim.

By Proposition2.2.7, L is the graph ofJS with S ∈ Sym (L1). We claim that the

ℓ× ℓ block ofS is zero.

Notice first thatR(L) = R(L1) = ℓ andL = ΓJS. But the symplectic reduction of

the graph ofJS with W is the graph ofJS1 whereS1 is theℓ× ℓ block ofS. Since the

graph ofJS1 is ℓ we conclude thatS1 = 0.

Therefore the inverse is:

L→ (R(L), JPL⊥
1
◦ (PL1|L)−1)
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The differentiability of the maps is immediate when one works in the Arnold charts

of ℓ on the base space of symplectic reduction and uses Lemma2.5.8.

We will go back now to our spaceLag−. We fix a complete, decreasing flag of

cofinite, closed subspaces inH−.

H− = W0 ⊃W1 ⊃W2 ⊃ . . .

We will also use the associated increasing flag:

{0} = W⊥
0 ⊂W⊥

1 ⊂W⊥
2 . . . ⊂ H−

Let us briefly recall that every closed subspace of a lagrangian is isotropic.

Lemma 2.5.10.For any flag of cofinite, isotropic subspaces of the vertical spaceH−

we have:
⋃

i

LagWi = Lag−, and LagWi ⊂ LagWi+1 for all i

HenceLag− is an open subset ofLag.

Proof: The inclusion
⋃

LagWi ⊂ Lag− is straightforward since ifL ∈ LagWi then

dim L ∩ H− ≤ codimWi = i andL + H− = L + Wi + W⊥
i is closed since the

orthogonal complementW⊥
i finite dimensional.

Conversely the decreasing sequence of finite dimensional spacesL ∩Wi has trivial

intersection so it must be that there is ani such thatL ∩Wi = 0. The fact thatL+Wi

is closed for everyi follows by noticing thatWi is commensurate withH− and using

2.2.15.

The inclusionLagWi ⊂ LagWi+1 is straightforward.
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We now describe how a choice of a complete flag of cofinite subspaces forH−

defines an atlas onLag−. Choose a unitary basis(fn)n≥1 of H− and for eachk-tuple

I = {i1, i2, . . . ik} let

FI := span{fi; i ∈ I}

and letFIc be the orthogonal complement ifFI in H−.

Furthemore we will let

H+
I = FI ⊕ JFIc

H−
I = JFI ⊕ FIc

In other words eachH±
I is a lagrangian consisting of a direct sum between a subspaceof

H+ and one ofH−. We chose± in order to suggest thatH±
I has a finite codimensional

space in common withH±. In particularH±
I andH± are commensurate.

Lemma 2.5.11. a) For n ≥ max{i | i ∈ I} we haveAH+
I
⊂ LagWn .

b) The Arnold chartsAH+
I

coverLag−, that is :

⋃

I

AH+
I

= Lag−

Proof: At a) notice that forn ≥ max{i | i ∈ I} we haveFIc ⊃ Wn and soH−
I ⊃ Wn

and thereforeAH+
I
⊂ LagWn.

For b) we writeT : H+
I → H−

I as

T =




A B

C D




relative to the decompositionsH+
I = FI ⊕ JFIc andH−

I = JFI ⊕ FIc. It is easy to

see thatΓT ∩H− = KerC. Now the sumΓT +H− is closed being the sum of a finite
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dimensional space and the set{v+Bv+Dv | v ∈ JFIc}+ FIc. The later set is closed

because it is just the graph ofJFIc ⊕ FIc ∋ (a, b)→ Ba ∈ JFI . SoAH+
I
⊂ Lag−.

Conversely, we know by the previous lemma thatL ∈ Lag− is in some setLagWn .

We letHWn
= W⊥

n ⊕ JW⊥
n . It is known (see [29] ) that in the finite dimensional

case the Arnold charts ofFI ⊕ JFIc
n

coverLag(HWn
). HereI = {i1, i2, . . . , ik} is a

k-tuple in{1, 2, . . . , n} andIc
n is its complement. Now notice thatJWn⊕JFIc

n
= JFIc

and hence by Lemma2.5.8we must have thatL ∈ Lag− is in some Arnold chart as

above.

In a very similar manner one can prove the next result:

Lemma 2.5.12.Let V denote a finite codimensional subspace ofH+ andV ⊥ its or-

thogonal complement inH+. An atlas ofLag− is given by the collection of Arnold

charts aroundV ⊕ JV ⊥:
⋃

V ⊂H+

AV ⊕JV ⊥ = Lag−

Remark 2.5.13.This lemma, together withLag−
I ⊂ Lag− finishes the proof thatLag−

I

is a manifold modelled onSymI with the charts described at the end of last section. In

fact all the previous lemmas of this section are true, withLag−
I replacingLag−.

The following important theorem is an application of symplectic reduction.

Theorem 2.5.14.The spaceLag− is weak homotopy equivalent ofU(∞). The same is

true aboutLag−
I .

Proof: If we can prove that for a fixedk there exists ann big enough such that the

pair (Lag−,LagWn) is k-connected than we are done becauseLagWn is homotopy

54



equivalent withLag(HWn
) and this will imply that the induced map

Lag(∞) := lim
n

Lag(HWn
) 7−→ lim

n
LagWn = Lag−

is a weak homotopy equivalence.

We have of course thatLagWn = Lag− \{L | dimL ∩Wn ≥ 1} and we will see in

the next section that the setZn+1 := {L | dimL ∩Wn ≥ 1} is a finite codimensional

stratified subset ofLag− whose ”highest” stratum has codimension2n+1. We therefore

fix n > 1/2(k − 1) and show the induced map on homotopy groups

πk(LagWn) 7→ πk(Lag−)

is an isomorphism.

Every continuous mapσ : Sk → Lag− is contained in an open setLagWN for some

N > n big enough so one can deform it to mapSk → Lag(HWN
) →֒ Lag− simply

by composing with the symplectic reduction which is a deformation retract. The new

mapσ1 : Sk → Lag(HWN
) can be deformed into a smooth map and can also be put

into transversal position withZn+1 ∩ Lag(HWN
) which is a Whitney stratified set of

codimension2n+1 in the finite dimensional manifoldLag(HWN
). But fork < 2n+1

this means that there is no intersection and hence the resulting mapσ2 has its image in

LagWn. This proves the surjectiviy of the map on homotopy groups.

The injectivity follows by noticing that every mapI×Sk → Lag− can be deformed

to a mapI × Sk → LagWn by the same type of argument as before for2n > k.

The same proof works forLag−
I .

We want to give an example of how symplectic reduction works in a concrete case:
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Example 2.5.15(The universal family). For each unitary mapU ∈ U(N), the Hilbert

spaceL1,2
U ([0, 1]) is the completion of the space of smooth maps

C∞
U ([0, 1]) := {f : [0, 1]→ CN} | f ∈ C∞([0, 1]; CN), f(1) = Uf(0)}

in theL1,2 norm:

‖f‖21,2 =

∫ 1

0

|f ′(t)|2 + |f(t)|2 dt

The differential operator:

TU : L1,2
U ([0, 1])→ L2([0, 1]), TU = −i d

dt

is a closed, densely defined, self-adjoint, elliptic (henceFredholm) with compact resol-

vent. If we letU ∈ U(N) vary we get a family of differential operators and by taking

the switched graphs, a map:

T : U(N)→ Lag−(L2([0, 1])⊕ L2([0, 1]))

We will prove later that this family is in fact differentiable, Corollary4.1.11.

The isotropic space we choose to do symplectic reduction with, WN ⊂ H− :=

L2([0, 1]) will be the orthogonal complement of the spaceCN of constant functions.

Notice that in general this is not a subspace of the domain ofTU . The annihilator,W ω
N

is the spaceCN ⊕ L2([0, 1]) ⊂ L2([0, 1])⊕ L2([0, 1]).

First, let us check thatTU is clean withWN for all U . This comes down to proving

that the system 



TU(φ) = 0

∫ 1

0
φ(t) dt = 0
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admits only the trivial solution. And that is easy to do.

We look now at the intersection of the switched graph ofTU with the annihilator.

This means solving the equations:

TUφ = c

φ(1) = Uφ(0)

with c ∈ CN . We getφ(t) = ict + b and ic + b = Ub. So c = i(1 − U)b and one

has solutions only for those constantsc that lie in the image ofi(1− U) in which case

φ(t) = (U − 1)bt + b. We have to project this to the subspace of constant functions,

which means computing the integral:

∫ 1

0

φ(t) dt = 1/2(U + 1)b

In the end, the symplectic reduction of the switched graph ofTU with WN is the

subspaceLU of CN ⊕CN described by the following:

x ∈ LU ⇔ x = (i(1− U)b, 1/2(1 + U)b) for someb ∈ CN

This looks almost like the map that gives the finite dimensional Arnold isomor-

phism. The following is true. The map:

U(N)→ U(N), U 7→ (1− 3U)(3− U)−1

is a diffeomorphism and in fact an involution. If we let

U1 := (1− 3U)(3− U)−1 and a := i/4(3− U)b
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then

x = (i(1− U)b, 1/2(1 + U)b) = ((1 + U1)a,−i(1− U1)a)

Recall that Arnold’s theorem says that the Cayley graph map

U(N)→ Lag(CN ⊕ CN), U → Ran[v → ((1 + U)v,−i(1− U)v)]

is a diffeomorphism.

We conclude that the composition of the inverse of the Cayleygraph map with the

symplectic reduction of the universal family,(ΓC)−1 ◦RWN
◦T : U(N)→ U(N) is the

involution ofU(N) given by

U → (1− 3U)(3− U)−1

The following is a family of diffeomorphisms of the unitary group

C×C\{(λ, µ) | |λ| = |µ|}×U(N) 7−→ U(N), (λ, µ, U) 7−→ (λ−µU)(µ̄−λ̄U)−1

The real hypersurface|λ| = |µ| splits C × C into two connected components

(C×C)± := {(λ, µ) | sgn(|µ| − |λ|) = ±}. So(1, 3) can be connected with(0, 1) and

therefore the previous involution is homotopy equivalent with the identity map.

We have therefore proved the next result.

Proposition 2.5.16.The universal family is homotopy equivalent with the inclusion

U(N) →֒ Lag−(L2([0, 1])⊕L2([0, 1])) whereU(N) is identified withLag(N) ⊂ Lag−

via the Cayley graph map.

Remark 2.5.17.Notice that the expression for the Cayley graph map in Arnold’s the-

orem plays a very important role in determining the homotopyclass of the universal
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family. This is because the group of diffeomorphisms ofU(N) is not connected. No-

tice also that changing the boundary condition, for exampletoUφ(1) = φ(0), changes

the homotopy type of the universal family to its conjugate.

When one looks back at Arnold’s theorem, a legitimate question is certainly what

does symplectic reduction mean for the unitary group. We conclude this section with

the answer.

Proposition 2.5.18.LetU ∈ U(H) be a unitary operator such that1 + U is Fredholm

and letW ⊂ H be a finite codimensional, closed subspace. Suppose thatKer (1 + U)∩

W = {0}. LetW⊥ be the orthogonal complement ofW and let

U =




X Y

Z T




be the block decomposition ofU relativeH = W ⊕W⊥. Then1 + X : W → W is

invertible and the operatorR(U) : W⊥ →W⊥:

R(U) := T − Z(1 +X)−1Y,

is unitary. MoreoverKer (1 + R(U)) = PW⊥(Ker (1 + U)) and in particular

dim Ker (1 + R(U)) = dim Ker (1 + U).

Proof: We write1 + X = PW ◦ (1 + U)|W . The operator(1 + U)|W is Fredholm as

a composition of two Fredholm operators,1 + U andiW : W →֒ H. So the image of

(1 + U)|W is closed and it has the same codimension asW in H. This follows from

ind (1 + U)iW = ind (1 + U) + ind iW
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and from noticing thatind (1 + U) = {0} since

Ker (1 + U) = KerU(1 + U∗) = Ker (1 + U∗).

If we can show thatRange (1 + U)|W ∩W⊥ = {0} thenW⊥ would be an algebraic

complement ofRange (1 + U)|W and so this would imply thatPW ◦ (1 + U)|W is

invertible. Let noww ∈W be such that

〈(1 + U)w, v〉 = 0 ∀v ∈ W

In particular this is true forv = w and so:

‖w‖2 + 〈Uw,w〉 = 0 (2.5.1)

or in other words|〈Uw,w〉| = ‖w‖2 which is the equality case in the Cauchy inequality

sinceU is unitary and soUw = λw. Going back to(2.5.1) one sees thatλ = −1 and

sow ∈ W ∩Ker (1 + U) = {0}.

We check thatR(U) is unitary. First, we have





X∗X + Z∗Z = 1

X∗Y + Z∗T = 0

Y ∗Y + T ∗T = 1

Y ∗X + T ∗Z = 0

Hence

(T ∗ − Y ∗(1 +X∗)−1Z∗)(T − Z(1 +X)−1Y ) = 1− Y ∗Y + Y ∗(1 +X∗)−1X∗Y+
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+Y ∗X(1 +X)−1Y + Y ∗(1 +X∗)−1(1−X∗X)(1 +X)−1Y =

1− Y ∗[(−1 + (1 +X∗)−1X∗) +X(1 +X)−1 + (1 +X∗)−1(1−X∗X)(1 +X)−1]Y

The sum in the square brackets is equal to

−(1 +X∗)−1 +X(1 +X)−1 + (1 +X∗)−1(1 +X)−1− (1 +X∗)−1X∗X(1 +X)−1 =

= (1 +X∗)−1(−1 + (1 +X)−1) + (1− (1 +X∗)−1X∗)X(1 +X)−1 =

= −(1 +X∗)−1X(1 +X)−1 + (1 +X∗)−1X(1 +X)−1 = 0

and we are done proving thatR(U) is unitary.

Let us take(w,w⊥) ∈ Ker (1 + U). This means that





(1 +X)w + Y w⊥ = 0

Zw + (1 + T )w⊥ = 0

Since1 +X is invertible one gets thatw = −(1 +X)−1Y w⊥ and therefore

(1 + T )w⊥ − Z(1 +X)−1Y w⊥ = 0

This means, of course, thatw⊥ ∈ Ker (1 + R(U)).

Conversely, ifw⊥ ∈ Ker (1 + R(U)), then it is straightforward to see that

(−(1 +X)−1Y w⊥, w⊥) ∈ Ker (1 + U).

The fact that the dimensions are equal follows from the injectivity of PW⊥|Ker (1+U).

Remark 2.5.19. If λ + U is Fredholm, where|λ| = 1 is a unit complex number and

W is closed, cofinite such thatKer (λ+ U) ∩W = {0} then one should replaceR(U)
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with Rλ(U) = T − Z(λ + X)−1Y . The conclusion is thatRλ(U) is unitary and the

relationKer (λ+ Rλ(U)) = PW⊥(Ker (λ+ U)) holds, as one can easily check.

Definition 2.5.20. Let U ∈ U(H) be a unitary operator such that1 + U is Fredholm

and letW be a finite codimensional subspace. ThenU is said to be clean withW if

Ker (1 + U) ∩W = {0}.

Example 2.5.21.Every unitary matrixU ∈ U(2) can be written in a unique way as

U =




z −λw̄

w λz̄




where(λ, z, w) ∈ C3 such that|λ| = 1 and|z|2 + |w|2 = 1. Hereλ = detU . A unitary

matrixU is clean withW := C⊕ 0 if and only if z 6= −1.

The reduction map associates to everyU ∈ U(2) \ {U | z = −1} the unit complex

number:

λz̄ − w 1

1 + z
(−λw̄) = λz̄ + λ

1− |z|2
1 + z

= λ
1 + z̄

1 + z

Whenλ = 1 this descends to a map

R : SU(2) \ {−1} 7→ S1 \ {−1},




z −w̄

w z̄


 7→ 1 + z̄

1 + z
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CHAPTER 3

THE TOPOLOGY OF THE LAGRANGIAN GRASSMANNIAN

In this chapter we describe a Schubert cell stratification ofLag− that parallels the

one given in the finite dimensional case by Nicolaescu in [29]. These cells are finite

codimensional submanifolds of the Lagrangian Grassmannian whose closures naturally

determine cohomology classes that correspond to the generators of the cohomology

group ofLag−. For the ”canonical” generators of the cohomologyring of Lag− there

is a different stratification which is more suitable for doing intersection theory.

3.1 Schubert cells and varieties

The topological structure ofLag− is intimately connected with the structure of the

finite Lagrangian Grassmanians which are nothing else but the classical unitary groups.

A detailed topological study of these spaces has been undertaken by Nicolaescu in [29].

In that paper, the author shows that the Poincaré duals of the generators of the cohomol-

ogy group ofU(n) can be represented by integral currents supported by semialgebraic

varieties. That approach is not available in our infinite-dimensional context. However

we have on our side symplectic reduction that reduces most ofthe problems to their

finite dimensional counterpart.

In section2.5we introduced a complete, decreasing flag:

H− = W0 ⊃W1 ⊃W2 ⊃ . . .
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We also fixed an orthonormal basis{f1, f2, . . .} ofH− such thatW⊥
n = 〈f1, f2, . . . , fn〉

and we setei := Jfi.

To everyk-tuple of positive integersI = {i1 < i2 < . . . < ik} we associated the

following vector spaces

FI = 〈fi | i ∈ I〉, FIc = 〈fi | i ∈ Ic〉 andH+
I = 〈fi | i ∈ I〉 ⊕ 〈ej | j ∈ Ic〉

Definition 3.1.1. Let I = {i1 < i2 < . . . < ik} be ak-tuple of positive integers. Set

i0 := 0 andik+1 :=∞. The weight of thek-tuple is the integer:

NI :=
∑

i∈I

(2i− 1)

TheSchubert cellof typeI denotedZI is a subset ofLag− defined by the following

incidence relations with respect to a fixed flag

ZI = {L ∈ Lag− | dimL ∩Wj = k − p, ∀ 0 ≤ p ≤ k, ∀ j such thatip ≤ j < ip+1}

Remark 3.1.2.One way to look at the incidence relations is by thinking thatthek-tuple

(i1, i2, . . . , ik) records the ”nodes” in the flag where the dimension of the intersection

with the lagrangianL drops by one.

Remark 3.1.3. Notice that the orthogonal complementW⊥
n of Wn is naturally a la-

grangian inHWn
:= W⊥

n ⊕ JW⊥
n andWn ⊂ HWn

will play the role ofH−. The flag

W0 = H− ⊃W1 ⊃W2 induces a complete, decreasing flag ofW⊥
n :

W̃0 := W⊥
n ⊃ W̃1 := W1/Wn ⊃ . . . ⊃ W̃n := Wn/Wn = {0}

We letZI(n) be the Schubert cell inLag(HWn
) described by the same incidence rela-

tions as the setsZI above withW̃i replacingWi.
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The following description of Schubert cells proves that they are actually Banach

spaces when regarded in the right charts.

Proposition 3.1.4.The Schubert cellZI is a closed vector subspace of the Arnold chart

AH+
I

of codimensionNI . More preciselyΓJA ∈ AH+
I
∩ ZI if and only if the bounded

self-adjoint operator satisfies the linear equations

〈Afi, fj〉 = 0, ∀ j ≤ i, i, j ∈ I

〈Afi, ej〉 = 0, ∀ j ≤ i, i ∈ I, j ∈ Ic

Proof: We will show first thatZI ⊂ AH+
I

. Let L ∈ ZI . Notice that(L,H−
I ) is a

Fredholm pair by Proposition2.2.15sinceH−
I is commensurate withH−.

We will show thatL ∩ H−
I = {0} thus proving thatL = ΓJA ∈ AH+

I
with A ∈

SymH+
I .

Let us remark thatL ∩ FIc = {0} because otherwise the dimension ofL ∩ Wj

would drop at ”nodes” other thani1, i2, . . . ik, (takev =
∑

j∈Ic ajfj ∈ L ∩ FIc with

p = min {j ∈ Ic | aj 6= 0} thenv ∈ L ∩Wp−1 \ L ∩Wp). This is saying thatL ∩H−

is the graph of an operatorT : FI → FIc.

To see thatL ∩H−
I = {0}, let x = v1 + v2 ∈ L ∩ JFI ⊕ FIc. ThenJx ∈ L⊥ and

so〈Jx, w + Tw〉 = 0, for all w ∈ FI . This implies:

〈Jv1, w〉 = 0 ∀ w ∈ FI

We getv1 = 0 and sox = v2 ∈ L ∩ FIc = 0, thus finishing the proof thatL = ΓJA ∈

AH+
I

.

Let nowA ∈ Sym (H+
I ) such thatΓJA ∈ ZI and let
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A =




A1 A2

A3 A4




be the block decomposition ofA relative toH+
I = FI ⊕ JFIc.

One checks immediately that the intersectionΓJA ∩ H− is just the graph of the

restrictionJA3|Ker A1 which has the same dimension asKerA1 ⊂ FI . SinceFI has

dimensionk, one concludes that

dim ΓJA ∩H− = k ⇐⇒ A1 = 0⇐⇒ 〈Afi, fj〉 = 0, ∀ j ≤ i, i, j ∈ I

To prove the rest of the relations, i.e.,〈Afi, ej〉 = 0, ∀i ∈ I, j ∈ Ic, j ≤ i we

observe first that

ΓJA ∩H− = ΓJA3 and〈Afi, ej〉 = −〈JA3fi, fj〉.

The graph ofJA3 = T : FI → FIc satisfies the incidence relations if and only if the

required coefficients vanish, otherwise we would have dimension drops at the wrong

places again.

Remark 3.1.5.For every two-sided symmetrically normed idealI we can defineZI(I) =

ZI ∩ Lag−
I . Since the next results are true forZI , as well as forZI(I) making only the

minimal changes, we choose to work withZI to keep the indices to a minimum.

Notice thatZI ⊂ LagWn for all n ≥ max {i | i ∈ I} so we could look at the sym-

plectic reduction ofZI . We record the obvious:

Lemma 3.1.6. For n ≥ max {i | i ∈ I} the symplectic reduction

R : LagWn → Lag(HW ) takesZI ⊂ LagWn toZI(n). The strongerR−1(ZI(n)) = ZI
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is also true.

Proof: For n ≥ max {i | i ∈ I} we have thatFI ⊂ W⊥
n and soAH+

I
⊂ LagWn (see

Lemma2.5.11). The reduction of the Arnold chart aroundH+
I is the Arnold chart

aroundH+
I (n). The reduction in the Arnold chart being just the projection, the lemma

easily follows.

Definition 3.1.7. For everyk-tuple I = {i1, i2, . . . , ik} the Schubert varietyis the

closure ofZI in Lag−, denotedZI .

Lemma 3.1.8. The Schubert varietyZI can be described by the following incidence

relations:

ZI = {L ∈ Lag− | dimL ∩Wj ≥ k − p, ∀ 0 ≤ p ≤ k, ∀ j such thatip ≤ j < ip+1

wherei0 = 0, ik+1 =∞ andip ∈ I, ∀ 1 ≤ p ≤ k}

Proof: The fact that the closure is included in the right hand side isa consequence of

the upper semi-continuity of the functions:

L→ dimL ∩H−, L→ dimL ∩Wi1 , . . . L→ dimL ∩Wik

Conversely, let us notice that forn big enough we have the following obvious equali-

ties

LagWn ∩ZI = cln(ZI) = R−1(ZI(n)) wherecln(ZI) is the closure ofZI in LagWn .

Now, a lagrangian that satisfies the incidence relations in the lemma is in someLagWn

and its reduced space will satisfy the same incidence relations with respect to the flag

W̃ ⊃ W̃1 ⊃ . . . ⊃ W̃n. But this means it is inZI(n), since the finite version of the

lemma is true by a result from [29]. This concludes the proof.
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Remark 3.1.9. The Schubert variety is not included in any of the clean setsLagWn .

Nevertheless, the intersection has a very simple description:ZI∩LagWn = R−1(ZI(n)).

We can now describe the strata in the Schubert varietyZI . Notice first that ifZJ ⊂

ZI then|J | ≥ |I| since|J | = dimL ∩H− for everyL ∈ ZJ . SayJ = {j1 < j2 <

. . . < jl} andI = {i1 < i2 < . . . < ik} with l ≥ k. We deduce thati1 ≤ jl−k+1 since

jl−k+1 records the node where the dimension of the intersection ofL ∈ ZJ with the flag

drops tok − 1 and similarlyis ≤ jl−k+s for all 1 ≤ s ≤ k. We record this:

Lemma 3.1.10. a) If ZJ ⊂ ZI then |J | = l ≥ k = |I| and is ≤ jl−k+s for all

1 ≤ s ≤ k.

b) If ZJ ⊂ ZI has codimensionNI + 1 in Lag− whereNI =
∑

i∈I(2i − 1) is the

codimension ofZI in Lag− then |J | = k + 1, j1 = 1 and js+1 = is for all

1 ≤ s ≤ k.

In the proof of the Theorem2.5.14we used the following:

Corollary 3.1.11. The fundamental Schubert varietyZn can be described by the simple

incidence relation:

Zn = {L | dim (L ∩Wn−1) ≥ 1}

Proof: Let J = {j1, . . . , jl}, L ∈ ZJ andZJ ⊂ Zn. The previous lemma tells us

thatjl ≥ n and so the node where the dimension of the intersection ofL with the flag

drops to 0 is bigger thann − 1. This proves the′′ ⊂′′ inclusion. The other inclusion is

obvious.
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3.2 The cohomology ring and geometrical representatives

Our plan is to define geometrical representatives for the most important cohomology

classes ofLag−, i.e., for certain canonical generators of its cohomology ring which we

call transgression classes. The candidates are of course the stratified spacesZI . We

identify the class whose underlying space isZI with a class expressed in terms of these

generators. When pulled-back to oriented, closed manifolds, via suitable maps, each

of these cohomology classes has a Poincare dual that is nothing else but the homology

class determined by the preimage of the setZI together with an induced orientation.

All cohomology groups are considered withZ coefficients.

Proposition 3.2.1. (a) The inclusion map

Lag(HWn
) →֒ Lag−, L→ L+ JWn

induces an isomorphism of cohomology groups

Hq(Lag−) ≃ Hq(Lag(HWn
))

for q ≤ 2n− 1.

(b) A cohomology class inHq(Lag−) is uniquely determined by its restriction to

Lag(HWn
) via the inclusion map.

Proof: (a) By proposition2.5.9 we have that the inclusion induces a homotopy

equivalence ofLag(HWn
) with LagWn = Lag− \Zn+1.

On the other handZn+1 is a stratified subset whose top stratum has codimension
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2n+ 1 hence by the extension property, see Proposition5.1.7, the natural map

Hq(Lag−)→ Hq(Lag− \Zn+1)

is an isomorphism.

(b) It follows from (a).

For the rest of the section we will identifyLag(HWn
) with the unitary groupU(n)

via the Cayley graph map.

Remark 3.2.2.Technically speaking we have a canonical isomorphism betweenLag(HWn
)

andU(JW⊥
n ) (whereJW⊥

n is the horizontal subspace ofHWn
) given by the Arnold the-

orem and an identification ofU(JW⊥
n ) with U(n) via a non-canonical unitary map

JW⊥
n ≃ Cn. From a cohomological point of view it does not matter what this unitary

map is since any other choice will induce the same isomorphism

H∗(U(JW⊥
n )) ≃ H∗(U(n))

simply because every unitary map on a vector space is homotopic to the identity.

Following [29], the groupsU(n) have canonically defined cohomology classesxi ∈

H2i−1(U(n),Z). On the productS1×U(n) there is a rankn complex vector bundleEn

called the universal bundle. The bundle is obtained by modding out theZ action on the

Z-equivariant bundle:

R× U(n)× Cn → R× U(n)

The action on the total space is given by

k(t, U, v) := (t+ k, U, Ukv), ∀(t, U, v) ∈ R× U(n)×Cn, k ∈ Z
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whereas on the base space,Z acts in the obvious way on theR component. The classes

xi are transgressions of the Chern classes ofEn, i.e.,

xi(n) :=

∫

S1

ci(En)

The classesxi(n) ∈ H2i−1(U(n)), 1 ≤ i ≤ n, generate the cohomology ring ofU(n),

i.e.,

H∗(U(n),Z) ≃ Λ(x1, . . . , xn)

Notice that via the canonical inclusion

S1 × U(n) →֒ S1 × U(n + 1)

the bundleEn+1 pulls-back to give a bundle isomorphic toEn⊕C. Therefore the class

xi(n + 1) pulls back toxi(n).

This compatibility with the natural inclusions of the classesxi(n) prompts the fol-

lowing definition.

Definition 3.2.3. The fundamentaltransgression classesonLag− are the unique coho-

mology classeszi ∈ H2i−1(Lag−) that pull-back to the classesxi(n) ∈ H2i−1(U(n))

via the induced map

U(n) i
Lag− , xi(n) = i∗(zi)

wherei is the composition of the natural inclusionLag(n) →֒ Lag− with the Cayley

graph diffeomorphism.

For every set of positive integersI = {i1, . . . ik}, define the product classzI ∈
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HNI (Lag−) to be the cup product of fundamental transgression classes:

zI = zi1 ∧ zi2 ∧ . . . ∧ zik .

We now turn to our Schubert varietiesZI . In the Appendix5.1we describe in detail

how one can construct cohomology classes out of a cooriented, stratified space without

singularities in codimension1. We summarize the main definitions and procedures:

Definition 3.2.4. Let X be a Banach manifold. Aquasi-submanifoldof X of codi-

mensionc is a closed subsetW ⊂ X together with a decreasing filtration by closed

subsets

W = F0 ⊃ F1 ⊃ F2 ⊃ F3 ⊂ · · ·

such that the following hold.

• F1 = F2.

• The strataSk = Fk \ Fk+1, are submanifolds ofX of codimensionk + c.

The quasi-submanifold is calledcoorientableif S0 is coorientable. A coorientation

of a quasi-submanifold is then a coorientation of its top stratum.

The main ingredients to define a cohomology class out of a coorientable quasi-

submanifold are:

• A Thom isomorphism of the top dimensional stratumS0, which is a submanifold

and closed subset ofX \ F2. This depends on the choice of a coorientation.

• An extension isomorphism in cohomology, over the singular stratumF2, which

exists becauseF2 has codimension at least two bigger thanS0.
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A choice of a coorientationω of the top stratum defines a Thom isomorphism (of

the closed submanifoldS0 ⊂ X \ F2):

H0(S0) ≃ Hc(X \ F2, X \ F0)

On the other hand by Proposition5.1.17the quasi-submanifoldF2 has homological

codimension at leastc+ 2 and so the restriction map

Hc(X)→ Hc(X \ F2)

is an isomorphism. The cohomology class determined by the pair [W,ω] is the image

of 1 ∈ H0(S0) via the composition:

H0(S0) ≃ Hc(X \ F2, X \ F0)→ Hc(X \ F2) ≃ Hc(X)

Remark 3.2.5. A legitimate question is what role does the filtration play inthe defini-

tion of the cohomology class? In the appendix5.1we show that if a quasi-submanifold

W comes with two different filtrations(W,F) and(W,G) which have common refine-

ment(W,H), where by refinement we understand thatH2 ⊂ F2 ∪ G2 and the coorien-

tation onW \H2 restricts to the coorientations ofW \ F2 andW \ G2 then they define

the same cohomology class. It is possible that any two filtrations of a quasi-manifold

have a common refinement. However we could not prove that.

To state the next result we introduce a bit of notation and terminology.

Notation:

Z◦
I := ZI ∪ ZI∪1, ∂ZI := ZI \ Z◦

I
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Definition 3.2.6. We call thestandard filtrationonZI the following

F0 := ZI ; F1 = F2 := ∂ZI ; Fk :=
⋃

ZJ⊂ZI
NJ≥NI+k

ZJ .

Theorem 3.2.7.The standard stratification on the Schubert varietyZI turns it into a

coorientable quasi-submanifold ofLag− of codimensionNI . There exists a canonical

choice of a coorientationωI on the top stratum such that the following equality of

cohomology classes holds

[ZI , ωI ] = zI .

Before we go into the proof, a short digression on the resultsof [29] is necessary.

In that article, Nicolaescu uses the theory of analytic currents to build out of the finite

dimensional Schubert variety,ZI(n) ⊂ Lag(n), endowed with an orientation, a homol-

ogy class. He shows that this class is Poincare dual to the classxI(n) ∈ HNI (Lag(n)).

We summarize the main results:

Proposition 3.2.8. The setsZI(n)◦ are orientable smooth, subanalytic manifolds of

codimensionNI in Lag(n) .

Proof: See [29], Lemma 5.7.

Proposition 3.2.9.The closed setZI(n) with the canonical orientationωI is an analyt-

ical cycle and so it defines a homology class inHn2−NI
(U(n)) which is Poincare dual

to xI(n).

Proof: See [29], Theorem 6.1
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It is clear that an orientation onZI(n)◦ induces a coorientation on the same space

by using the normal bundle first convention.

Proof of Th. 3.2.7: We considern ≥ 1/2(NI + 1) and we look at the symplectic

reductionRn. We haven ≥ max i ∈ I and soZ◦
I ⊂ LagWn . By Lemma3.1.6we

have thatR−1
n (Z◦

I (n)) = Z◦
I . SinceRn is a vector bundle, the normal bundle toZ◦

I

is canonically isomorphic with the pull-back viaRn of the normal bundle ofZI(n)◦.

Hence it induces an orientation. With this coorientation onZI we get a cohomology

class[ZI , ωI ] ∈ HNI (Lag−). By Proposition3.2.1this class is uniquely determined by

its restriction toLag(HWn
).

Now, the inclusion mapi : Lag(HWn
) →֒ Lag− is transversal toZI and the fol-

lowing set equality holds

i−1(ZI) = ZI(n).

To see why it is transversal notice that the image ofi is the zero section, i.e.S(Lag(HWn
)),

of the symplectic reduction. It is therefore enough to provethe transversality ofLag(HWn
)

with ZI ∩ LagWn (which is a stratified set with a finite number of strata). Thisis true

because of Lemma3.1.6.

By Proposition5.1.15we have

i∗([ZI , ωI ]) = [ZI(n), ωI(n)] ∈ HNI(Lag(HWn
))

By Nicolaescu’s results the class on the right equalsxI(N). Since inLag− there is

another class that restricts toxI(N), namelyzI we get the desired equality.

We make precise the (co)orientation conventions. We consider the Schubert vari-
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etiesZI(n) as subsets ofU(n) and, as usual, we use the Cayley graph diffeomorphism

to transfer the structure (here the (co)-orientation) to the Schubert varieties ofLag(n).

Orientation conventions I: The space of unitary operatorsU(n) is naturally oriented

as follows. The Lie algebrau(n) is the set ofn × n skew-symmetric matrices. We

identify it with the set of self-adjoint matricesSym(n) by the map:

u(n)→ Sym(n), B 7→ −iB

Let

θ1, . . . θn, (αij)1≤i<j≤n, (βij)1≤i<j≤n : Sym(n)→ R

be the linear functionals onSym(n) defined as follows:

θi(A) = 〈Aei, ei〉, αij = Re〈Aei, ej〉, βij = Im〈Aei, ej〉

The vector spaceSym(n) is oriented by the following element of
∧n2

(Sym(n))∗.

θ1 ∧ . . . ∧ θn ∧
∧

1≤i<j≤n

(αij ∧ βij)

In [29] (see Example 5.5) L. Nicolaescu introduced coorientations for all the Schubert

cellsZI(n) of U(n) using the basis{e1, . . . , en}. Roughly the idea is the following.

First, one identifiesTidU(n) with TUI
U(n) via left multiplication byUI where

UI :=





id on 〈{ej | j ∈ Ic}〉

− id on 〈{ei | i ∈ I}〉

Second, one uses the fact that in the Arnold chart centered atUI the equations for the
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Schubert cellZI(n) are linear. The equations describingZI(n) in this chart are exactly

the ones given by Lemma3.1.4. The coorientation is induced by the linear exterior

form of rankNI onTidU(n) (thought as the space of self-adjoint matrices).

∧

i∈I

θi ∧
∧

k<i,i∈I

(αki ∧ βki)

”transported” via left multiplication byUI to TUI
U(n). In other words the differential

at0 of the composition

Sym(n) i·
u(n)

exp
U(n)

UI · U(n)

takes the previous form to a coorientation form ofZI(n) atUI .

We saw in this section that the coorientation onZI(n) induces a coorientation on

the Schubert cellZI ∈ Lag−. On the other hand in Section3.3 we will see that at

least for the Schubert cellsZk we have a natural coorientation coming from an explicit

description of the normal bundle. The two coorientations onZk are in fact one and the

same.

Definition 3.2.10. The triple composed of the Schubert varietyZI with the standard

filtration and the coorientationωI is called the Schubert cocycle or the geometric rep-

resentative ofzI . The cohomology class it represents is denoted by

[ZI , ωI ].

We consider now families of vertical, Fredholm lagrangians. By that we simply
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mean smooth maps

F : M → Lag−

Definition 3.2.11. A mapF : M → Lag− is said to be (standard) transversal toZI if

it is transversal to every stratum in the standard stratification.

Lemma 3.2.12.Any smooth familyF : M → Lag− can be deformed by a smooth

homotopy to a family transversal toZk.

Proof: SinceM is compact, transversality withZI means actually transversality of the

reduced family withZI for n big enough. Transversality with Whitney stratified spaces

is an open, dense condition in the space of all smooth mapsG : M → Lag(n).

Proposition 3.2.13.LetM be a closed oriented manifold and letF : M → Lag− be

a family transversal toZI . ThenF−1(ZI) is quasi-submanifold ofM with a naturally

induced coorientationF ∗ωI and

[F−1(ZI), F
∗ωI ] = F ∗[ZI , ωI ]

Proof: The pull-back of the normal bundle toZ◦
I is naturally isomorphic with the

normal bundle toF−1(Z◦
I ) and the coorientationF ∗ωI is the one induced via this iso-

morphism. For the rest, see Proposition5.1.15.

In the infinite dimensional context, Poincaré Duality doesnot make sense. Instead

we aim for an expression of Poincaré duality for families oflagrangians parametrized

by a closed, oriented manifoldM . One way to build homology classes out of strati-

fied spaces is via the theory of analytic cycles, which we already mentioned, used by

Nicolaescu to prove the dualityZI(n) = xI(n).
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Another way, which is more appropriate to the point of view wetake in this paper

is via Borel-Moore homology. In the Appendix5.1we describe the relevant aspects.

Inside an oriented manifoldM of dimensionn, any oriented quasi-submanifoldF of

dimensiond defines a Borel-Moore homology class as follows. Every smooth, oriented

manifoldS of dimensiond has an orientation class[S] ∈ HBM
d (S). In the case of an

oriented quasi-submanifoldF of dimensiond, S := F \ F2 represents the top stratum.

This class can be extended to a class inHBM
d (F) because the absence of singularities in

codimension one implies that we have an isomorphismHBM
d (F) ≃ HBM

d (S). Finally,

this class can be pushed-forward to a class in the ambient spaceM . It turns out that

whenM is closed and oriented this class is Poincaré dual to the cohomology class

determined byF with the coorientation induced in the obvious way.

In the case whenF is compact, e.g. whenM is compact, then the Borel-Moore

homology group ofF coincides with the singular homology group.

We summarize our discussion:

Theorem 3.2.14.Let F : M → Lag− be a smooth map from an oriented, closed

manifoldM of dimensionn to Lag−. SupposeF is transversal toZI . Then the preim-

ageF−1(ZI) has a naturally induced orientation and so it defines a homology class

[F−1(ZI)]M ∈ Hn−NI
(M) which is Poincaŕe dual to the classF ∗[ZI ].

Remark 3.2.15. The fundamental class of an oriented quasi-submanifold canbe de-

fined without appeal to Borel-Moore homology, provided something stronger is true.

SupposeF = F0 ⊃ F1 = F2 ⊃ . . . ⊃ Fk is an oriented quasi-submanifold of dimen-

siond such that every pair(Fi,Fi+1) is a good pair, i.e. there is an open neighborhood

U ⊂ Fi of Fi+1 that retracts toFi. For example, if the stratification satisfies the Whit-

ney condition then Goresky has shown thatF can be triangulated in such a way that the

triangulation respects the filtration (see [15], Prop.5). LetU be a neighborhood ofF1
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in F that retracts toF1. Then the Poincaré duality for a manifold with boundary says

that

H i(F \ U) ≃ Hd−i(F \ U, ∂(F \ U))

This implies thatH i(F \F1) ≃ Hd−i(F,F
1) (both are isomorphic with the(d− i)-

th Borel-Moore homology group ofF \ F1). Therefore, the canonical class1 from

H0(F \ F1) gives a classa ∈ Hd(F,F
1). The map

Hd(F)→ Hd(F,F
1) = Hd(F,F

2)

is an isomorphism because there are no singularities in codimension1, i.e. F1 = F2.

For the proof one uses the fact that(Fi,Fi+1) is a good pair. Then one can ”extend” the

classa to a class inHd(F) which is the fundamental class of the quasi-submanifold.

The following considerations justify the fact that our quasi-submanifolds fit into the

picture just described. For a mapF : M → Lag− transversal to the quasi-manifoldZI

the preimageF−1(ZI) is always a Whitney stratified space. To see why it is Whitney

stratified notice that the compactness ofM implies thatF (M) ⊂ LagWn for n big

enough. It is easy to see that the transversality ofF with ZI implies the transversality

of F with ZI(n) and alsoF−1(ZI) = F−1(ZI(n)). Now,ZI(n) is a Whitney stratified

space and Whitney property is preserved under transversal pull-backs.

3.3 Generalized Reduction

In this section we take the first steps towards doing intersection theory. Recall that

the standard stratification ofZI has as its top stratum the setZ◦
I . It turns out that at

least in the case when♯I = 1 there is a better stratification ofZk, wherek ∈ N∗, which

comes with a natural coorientation and is more suitable for intersection theory. Here we
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define this stratification and describe the normal bundle of the maximum stratum. This

top stratum of the new stratification containsZ◦
I and it also defines a quasi-submanifold

structure forZI . By Remark3.2.5each of the stratifications defines the same cohomol-

ogy class.

In section2.5we described the process of symplectic reduction with cofinite isotropic

space as a differentiable map going from the set of clean lagrangians to a finite dimen-

sional Lagrangian Grassmannian. The symplectic reductionis a well defined process

on the entireLag−, the trouble being that it is not a continuous map everywhere. How-

ever it is continuous and in fact differentiable on certain submanifolds ofLag−. First a

definition.

Definition 3.3.1. For a fixed, finite codimensional of codimensionp subspaceW ⊂ H−

let

LagW (k) := {L ∈ Lag− | dimL ∩W = k}

be the space of lagrangians that intersectW along a space having fixed dimensionk.

We call these lagrangiansk-cleanor justcleanwhenk = 0.

Remark 3.3.2. For a complete, decreasing flag

H− := W0 ⊃W1 ⊃W2 ⊃

we have

Z◦
k ⊂ LagWk−1(1) ⊂ Zk

Compare with Corollary3.1.11.

In the rest of this section we will prove thatLagW (k) is a coorientable submanifold
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of Lag− and we will identify the normal bundle ofLagW (k) with a certain tautologi-

cally defined bundle overLagW (k).

Lemma 3.3.3.For everyk-clean lagrangianL letV = L∩W andV ⊥ be its orthogonal

in W . ThenL is clean with the isotropic spaceWL := JV ⊕ V ⊥.

Moreover, the symplectic reduction withW coincides with the symplectic reduction

withWL, that is if

RW (L) = RangePHW
|L∩W ω

then

RW (L) = RWL
(L)

Therefore it is a well-defined mapR : LagW (k)→ Lag (HW ).

Proof: The first claim is obvious. For the second notice thatHWL
= HW .

What we have to compare are the projections of

L ∩ (J(L ∩W )⊕ V ⊥ ⊕HW ) andL ∩ ((L ∩W )⊕ V ⊥ ⊕HW )

ontoHW . Let us notice thatL∩ (J(L∩W )⊕ V ⊥ ⊕HW ) = L∩ (V ⊥ ⊕HW ). Indeed

if one writes

x = a + b + c

L J(L ∩W ) V ⊥ HW

notice thata ∈ JL ⊥ L anda ⊥ b, c soa = 0.

Now PHW
(L ∩ (V ⊥ ⊕HW )) ⊂ PHW

(L ∩ ((L ∩W )⊕ V ⊥ ⊕HW )) obviously and

the other inclusion follows from noticing that if

x = a + b + c

L (L ∩W ) V ⊥ HW
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thenx− a ∈ L ∩ (V ⊥ ⊕HW ) andPHW
(x) = PHW

(x− a) = c.

Corollary 3.3.4. For every lagrangianL ∈ LagW (k) the intersectionL ∩ W ω has

dimension equal tok + p = dimL ∩W + 1/2 dimHW . Moreover, using the same

notations as in the lemma,L ∩W ω decomposes orthogonally as

L ∩W ω = L ∩W ⊕ L ∩ (V ⊥ ⊕HW )

Proof: The image of the projectionPHW
: L ∩W ω → HW has dimension equal to

1/2 dimHW and the kernel is justL ∩W .

Clearly the two spaces that appear in the sum are orthogonal and they are both

subsets ofL ∩W ω. So it is enough to prove thatL ∩ V ⊥ ⊕HW has dimensionp. But

we saw in the proof of the lemma that

L ∩ (V ⊥ ⊕HW ) = L ∩ J(L ∩W )⊕ V ⊥ ⊕HW =: L ∩W ω
L

Moreover, the projectionPHW
: L ∩ W ω

L → HW is injective and its image is a

lagrangian inHW which has dimensionp.

The notations we used in the previous lemma will be used throughout this section.

Definition 3.3.5. For every lagrangianL ∈ LagW (k), let V := L ∩ W , V ⊥ be the

orthogonal complement ofV in W and letℓ be the symplectic reduction ofL with W .

The spaceLW := ℓ ⊕ V ⊕ JV ⊥ is called theassociated lagrangianor simply the

associate.

Lemma 3.3.6. a) For anyL ∈ LagW (k), the associated lagrangian,LW , is in

LagW (k). Moreover, everyL ∈ LagW (k) is in the Arnold chart of its asso-
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ciate and it is given by the graph ofJX whereX ∈ Sym(LW ) has the block

decomposition: 


0 0 X∗
2

0 0 0

X2 0 X4




b) Let W = V ⊕ V ⊥ be an orthogonal decomposition ofW such thatV is k-

dimensional and letℓ ⊂ HW be a lagrangian. Thenℓ ⊕ V ⊕ JV ⊥ ∈ LagW (k)

and the setLagW (k) ∩ Aℓ⊕V ⊕JV ⊥ is described in the Arnold chart by linear

equations. More precisely, givenS ∈ Sym(ℓ⊕ V ⊕ JV ⊥) thenΓJS ∈ LagW (k)

if and only if itsV × V andV × ℓ blocks are zero.

c) The spaceLagW (k) is a submanifold ofLag− of codimensionk2 + 2pk and the

symplectic reduction map:

R : LagW (k)→ Lag(HW ), L→ RangePHW
|L∩W ω

is differentiable.

Proof: a) The fact that the associated lagrangian is indeed a lagrangian is a simple

check. NowLW ∩W = V , hence clearlyLW is in LagW (k).

For the second claim, notice that(L, V ⊥) is a Fredholm pair andV ⊥ andL⊥
W ar

commensurable, so(L,L⊥
W ) is a Fredholm pair. Moreover the intersectionL ∩ L⊥

W is

trivial. Indeed let

x = a + b + c

L Jℓ JV V ⊥

Then b ∈ L⊥ and sob = 0. From x = a + c it follows that x ∈ L ∩ W ω and

a = PHW
(x) ∈ ℓ soa = 0. This impliesx = c ∈ L ∩ V ⊥ = {0}.
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For the last part notice that ifL is the graph of an operatorJS : LW → L⊥
W

thenJS|L∩LW
= 0. Simply becauseJS = PL

W⊥
◦ (PLW

|L)−1. On the other hand

V ⊂ L ∩ LW . This and the self-adjointness implies that the middle row and column

of S are zero. The vanishing of the top, left block follows from the following consid-

erations. The symplectic reduction of any lagrangian in theArnold chart ofLW with

WL := JV ⊕ V ⊥ is just the graph of theℓ× ℓ block of the self-adjoint operator onLW

that givesL. But the only operatorℓ → ℓ for which ℓ := RWL
(L) = RW (L) is the

graph of, is the zero operator.

b) Clearlyℓ⊕ V ⊕ JV ⊥ ∈ LagW (k).

Now, every lagrangian in the Arnold chartAℓ⊕V ⊕JV ⊥ is just the graph of an operator

JS whereS ∈ Sym (ℓ⊕ V ⊕ JV ⊥). SoS has a block decomposition

S =




Sℓ,ℓ SV,ℓ SJV ⊥,ℓ

Sℓ,V SV,V SJV ⊥,V

Sℓ,JV ⊥ SV,JV ⊥ SJV ⊥,JV ⊥




The conditionv + JSv ∈ W wherev = (v1, v2, v3) ∈ ℓ ⊕ V ⊕ JV ⊥ implies that

the sum

v1 + v2 + v3 + (JSℓ,ℓv1 + JSV,ℓv2 + JSJV ⊥,ℓv3) +

ℓ V JV ⊥ Jℓ

(JSℓ,V v1 + JSV,V v2 + JSJV ⊥,V v3) + (JSℓ,JV ⊥v1 + JSV,JV ⊥v2 + JSJV ⊥,JV ⊥v3)

JV V ⊥
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is in V ⊕ V ⊥. Sinceℓ⊕ Jℓ⊕ V ⊕ JV ⊥ ⊥ V ⊕ V ⊥ we get

v1 = v3 = (JSℓ,ℓv1 + JSV,ℓv2 + JSJV ⊥,ℓv3) = (JSℓ,V v1 + JSV,V v2 + JSJV ⊥,V v3) = 0

andv2 + (JSℓ,JV ⊥v1 + JSV,JV ⊥v2 + JSJV ⊥,JV ⊥v3) ∈ V ⊕ V ⊥

We conclude that in order forv+ JSv to be inW one must havev2 ∈ KerT where

T := (SV,ℓ, SV,V ) : V → ℓ ⊕ V . Also ΓJS ∩ W is the graph of the restriction

(JSV,JV ⊥|Ker T ). The only way the graph ofJSV,JV ⊥|Ker T can have dimension equal to

the dimension ofV is if KerT = V , that is

(SV,ℓ, SV,V ) = 0

Hence the intersectionAℓ⊕V ⊕JV ⊥∩LagW (k) consists of graphs of operators whose

V × V , V × ℓ andℓ× V blocks are zero.

c) Every lagrangianL ∈ LagW (k) is in the Arnold chart of its associate which is of

the type required by partb). In these chartsLagW (k) is described by linear equations

and one can very fast see that the codimension is the one indicated.

In the Arnold chart ofℓ ⊕ V ⊕ JV ⊥ the symplectic reduction of any lagrangian

L0 ∈ LagW (k) with W is the graph of the projection onto theℓ × ℓ block and the

differentiability follows.

We would like to say something about the diffeomorphism typeof LagW (k). For

that end let us notice that beside the symplectic reduction,RW , there is another natural

map one can define onLagW (k) namely:
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D : LagW (k)→ Gr(k,W ), D(L) = L ∩W

whereGr(k,W ) is the grassmannian ofk-dimensional subspaces ofW . Before we

proceed to study this map let us recall a few well-known factsabout the infinite grass-

mannian.

For every Hilbert spaceH the setGr(k,H) gets the structure of a metric space

by considering each subspace being represented by the corresponding projection and

considering the norm topology on the set of all these projections. It is endowed with

the structure of (complex) Banach manifold by the followingsimple lemma:

Lemma 3.3.7.For everyk-dimensional subspaceV0 ⊂ H− the map

Hom(V0, V
⊥
0 )→ Gr(k,H), T → ΓT

sets a homeomorphism betweenHom(V0, V
⊥
0 ) and{V ∈ Gr(k,H) | V ∩ V ⊥

0 = {0}}

which is an open subset ofGr(k,H).

Proof: WhenV ∩ V ⊥
0 = {0} the orthogonal projectionPV0 |V : V → V0 is a linear

isomorphism soV is just the graph of a linear map fromV0 to V ⊥
0 . Now the condition

V ∩ V ⊥
0 = {0} impliesV0 ∩ V ⊥ = {0}. Otherwise, due to the dimension constraints

V0 + V ⊥ would be a proper subset ofH which, by taking orthogonal complements

would say thatV ∩ V ⊥
0 6= {0}. But V ∩ V ⊥

0 ⊕ V0 ∩ V ⊥ = {0} is equivalent with

PV −PV ⊥
0

is invertible and that proves that{V ∈ Gr(k,H) | V ∩V ⊥
0 = {0}} is an open

set. The continuity of the maps is immediate since thePΓT
can be computed explicitly

in terms ofT andT ∗.

Corollary 3.3.8. The tangent space ofGr(k,H) is naturally isomorphic with the ho-
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momorphism bundle associated with the tautological bundleand its orthogonal com-

plement,

T Gr(k,H−) ≃ Hom(τ, τ⊥)

whereτ := {(V, v) | v ∈ V } ⊂ Gr(k,H)×H.

We will denote the open sets{V ∈ Gr(k,H) | V ∩ V ⊥
0 = {0}} byAgr

V0
.

Definition 3.3.9. Thegeneralized reductionis the map:

R : LagW (k)→ Lag(HW )×Gr(k,W )

L→ (RangePHW
(L ∩W ω), L ∩W )

Remark 3.3.10. Notice that in the casek = 0 we get what we called symplectic re-

duction since the second component is just a point. This is why we prefer to keep the

notationR. In fact to eliminate any possibility of confusion we will denote symplec-

tic reduction from now on byR1 since that is the first component in our generalized

reduction.

The generalized reduction behaves very much like the symplectic reduction mean-

ing it inherits the structure of a vector bundle whose fiber wewill identify in a moment.

First let us see thatR comes with a natural section namely

S : Lag(HW )×Gr(k,W )→ LagW (k), (ℓ, V )→ ℓ⊕ V ⊕ JV ⊥.

Every associate lagrangian lies on this section.
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Theorem 3.3.11. (a) The restriction to the image ofS of the tangent space ofLagW (k)

can be naturally identified with the vector subbundle ofT Lag− whose fiber at

ℓ⊕ V ⊕ JV ⊥ consists of self-adjoint operatorsS ∈ Sym(ℓ⊕ V ⊕ JV ⊥) which

have the following block decomposition:

S =




S1 0 S∗
2

0 0 S∗
3

S2 S3 S4



.

(b) The generalized symplectic reduction is differentiable and(Ker dR)|Lag(HW )×Gr(k,W )

can be identified with the vector subbundle ofT LagW (k)|Lag(HW )×Gr(k,W ) whose

fiber atℓ⊕ V ⊕ JV ⊥ consists of self-adjoint operatorsS ∈ Sym(ℓ⊕ V ⊕ JV ⊥)

which have the following block decomposition.

S =




0 0 S∗
2

0 0 0

S2 0 S4




(c) The natural map

N : (Ker dR)|Lag(HW )×Gr(k,W ) → LagW (k), N(ℓ⊕ V ⊕ JV ⊥, S) = ΓJS

is a diffeomorphism that makes the diagram commutative
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(Ker dR)
∣∣
Lag(HW )×Gr(k,W )

N
LagW (k)

R

Lag(HW )×Gr(k,W )

(d) The spaceLagW (k) is diffeomorphic withLag(HW )× (τ⊥)p ⊕ Sym(τ⊥) where

τ⊥ is the orthogonal complement of the tautological line bundle overGr(k,W ).

Proof: (a) This is obvious since as we saw in the proof of the Lemma3.3.6, in the

charts centered atL = ℓ ⊕ V ⊕ JV ⊥ the manifoldLagW (k) can be described exactly

as the set of those self-adjoint operators with the claimed block decomposition.

(b) In what concerns the differentiability, we only have to prove that the second

component,R2, is differentiable. For that we again send to the proof of Lemma3.3.6

where we saw that in the Arnold chartAℓ⊕V ⊕JV ⊥ the intersectionΓJS ∩ W is just

ΓJS
V,JV ⊥

for everyS ∈ LagW (k).

The second claim is also obvious when one works in the Arnold charts centered at

L = ℓ⊕V ⊕JV ⊥ since thendLR is just the projection on theℓ×ℓ andV ×JV ⊥ blocks.

(c) We construct an inverse forN. To everyL ∈ LagW (k) we associate the la-

grangianℓ⊕ V ⊕ JV ⊥ whereV = L ∩W andℓ is the symplectic reduction withW .

In the Arnold chart centered atℓ⊕ V ⊕ JV ⊥ the lagrangianL is a graphΓJS whereS

has to be of the type:

S =




0 0 S∗
2

0 0 0

S2 0 S4
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Indeed, according to the Lemma3.3.6, V = L∩W = ΓJS
V,JV ⊥

and soJSV,JV ⊥ : V →

V ⊥ has to be zero. So the inverse toN associates toL the lagrangianℓ ⊕ V ⊕ JV ⊥

and the two operators,S2 andS4, which are the projections onto the(ℓ, JV ⊥) and

(JV ⊥, JV ⊥).

(d) In (b) and (c) we have identified the fiber ofLagW (k) overLagHW
×Gr(k,W )

at(ℓ, V ) with the vector spaceHom(ℓ, JV ⊥)⊕Sym (JV ⊥). We know that the tautologi-

cal bundle overLagW (k) is naturally trivializable so the bundle with fiberHom(ℓ, JV ⊥)

over LagHW
×Gr(k,W ) is naturally isomorphic with the bundleHom(W⊥, JV ⊥)

where the lagrangianW ∈ Lag(HW ) is just the orthogonal complement ofW in H−.

A choice of a basis onW⊥ proves thatHom(W⊥, JV ⊥) is in fact(τ⊥)p.

Example 3.3.12.We will describe the spacesLagW (k) whendimH = 2. The spaces

LagW (0) are open subsets ofLag− and were described in section2.5.

LetH = C2 andW1 = 〈e2〉. Then

LagH−

(1) = Z{1} ∪ Z{2}

is a3-dimensional sphere minus a point. The point is

LagH−

(2) = Z{1,2}

In terms of unitary operators these spaces correspond to sets of operatorsU for which

Ker 1 + U has dimension1 or 2.
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Another non-trivial space which has the diffeomorphism type of the circle is

LagW1(1) = Z{2} ∪ Z{1,2}.

One of our general goals is to describe how one can do intersection theory inLag−.

We would therefore need a description of the normal bundle ofLagW (k) in Lag−. It

will be enough to describe a splitting of the differential ofthe inclusionLagW (k) →֒

Lag−. We have a canonical choice for this splitting in the charts along the zero section

as the Theorem3.3.11shows. In order to find a global characterization we will use

transition charts. The next two lemmata are very important.

Lemma 3.3.13.Let L,L0 ∈ Lag− be two lagrangians such thatL ∈ AL0. Then the

differential atL of the transition map between the Arnold chart centered atL0 and the

Arnold chart centered atL is the map:

dL : Sym (L0)→ Sym (L) dL(Ṡ) = PL|L0 ◦ Ṡ ◦ PL0|L

Proof: Let L1 ∈ AL0 ∩ AL. This means thatL1 can be described both asΓJX where

X ∈ Sym (L0) andΓJS whereS ∈ Sym (L) It is not hard to see whatS should be.

JS = PL⊥ ◦ (I, JX) ◦ [PL ◦ (I, JX)]−1

The image of the map(I, JX) : L0 → Ĥ gives the lagrangianL1 and the inverse of

PL ◦ (I, JX) is a well-defined operatorL → L1 sinceL1 is in AL. We consider the

function:

F : Sym (L0)→ Sym (L), F (X) = −JPL⊥ ◦ (I, JX) ◦ [PL ◦ (I, JX)]−1
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Notice that forX0 = −JPL⊥
0
◦ (PL0|L)−1 we haveF (X0) = 0 sinceX0 ∈ Sym (L0) is

the self-adjoint operator such thatL = ΓJX0. The differential ofF atX0 is

dX0F (Ṡ) = −JPL⊥ ◦ (0, JṠ) ◦ [PL ◦ (I, JX0)]
−1 − JPL⊥ ◦ (I, JX0) ◦ [. . .] =

= −JPL⊥ ◦ (0, JṠ) ◦ [PL ◦ (I, JX0)]
−1

The reason for the cancellation of the second term is that theimage of(I, JX0) is inL.

It is easy to see that[PL ◦ (I, JX0)]
−1 = PL0|L, the restriction toL of the projection

ontoL0. Also sincePJL(Jv) = JPL(v) for any lagrangianL and for anyv ∈ Ĥ we

get that−JPL⊥ ◦ (0, JṠ) = PL ◦ Ṡ. So

dX0F (Ṡ) = PL|L0 ◦ Ṡ ◦ PL0 |L

and this is ourdL.

It is convenient to have another description of the differential of the transition map.

To this end let us recall that Arnold’s theorem provides a canonical unitary isomor-

phism:

Ũ : L0 → L, Ũ(v) :=
1

2
[(1 + U)v + iJ(1− U)v], ∀ v ∈ L0,

whereU ∈ U(L0) is the Cayley transform of the self-adjoint operatorX0 ∈ Sym(L0)

that givesL as a graph ofJX0 : L0 → L⊥
0 . Notice first that the projectionPL|L0 has

a description in terms of the same self-adjoint operatorX0. The orthogonalL⊥ is the

switched graph of−(JX0)
∗ = X0J . So in order to find the projectionPL|L0 in terms
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of X0 one needs to solve the system





a = v + X0Jw

0 = JX0v + w

wherea, v ∈ L0 andw ∈ L⊥
0 . This is easy and one gets

v = (1 +X2
0 )−1(a)

which yields the expression for the projection:

PL|L0(a) = (1 +X2
0 )−1(a) + JX0(1 +X2

0 )−1(a).

We now plug in

X0 = i(1 + U)−1(1− U)

to conclude that

PL|L0(a) =
1

2
Ũ((1 + U∗)(a))

SincePL0 |L = (PL|L0)
∗ we have just proved the following result:

Lemma 3.3.14.The mapdL in the previous lemma can be written as:

dL(Ṡ) =
1

4
Ũ(1 + U∗)Ṡ(1 + U)Ũ∗

Definition 3.3.15. Let j : E → F be an injective morphism of vector bundles over a

smooth Banach manifoldX. An algebraic complementG of E is a vector bundle over
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that splitsj. This means that there exists an injective morphismk : G→ F such that

F = E ⊕G

Notation: LetF : X1 → X2 be a smooth immersion of Banach manifolds. An algebraic

complement of the tangent bundleTX1 is denoted byNX1.

Lemma 3.3.16.LetF : X1 → X2 be a smooth immersion of Banach manifolds. Then

every algebraic complement ofTX1 is naturally isomorphic with the normal bundle

νX1.

Proof: The natural projectionNX1 → νX1 is an isomorphism.

We have all we need for proving the following

Proposition 3.3.17. a) Every lagrangianL ∈ LagW (k) has an orthogonal decom-

positionL = ℓ⊕L ∩W ⊕Λ whereℓ is the orthogonal complement ofL ∩W in

L ∩W ω andΛ is the orthogonal complement ofL ∩W ω in L. Then the space of

operatorsS ∈ Sym (L = ℓ⊕ L ∩W ⊕ Λ)

S =




0 S∗
1 0

S1 S2 0

0 0 0




is an algebraic complement ofTL LagW (k).

b) The algebraic complement ofT Lag− |LagW (k) described above is a finite dimen-

sional, orientable bundle. Ifk = 1, it has a natural orientation.

Proof: a) The claim is clearly true for any associate lagrangianLW by Lemma3.3.6.
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We want to use the transition maps between two different Arnold charts atL, namely

the one given byLW and the one centered atL to show that the claim is true in general.

In order to avoid any confusion we will letRW L =: ℓ0 ⊂ LW . SoLW = ℓ0 ⊕ L ∩

W ⊕ JV ⊥.

By definition ℓ0 = PHW
(ℓ). We are looking for a relation betweenℓ and ℓ0 in

terms of the unitary isomorphismU . HereU ∈ U(LW ) is the Cayley transform of the

self-adjoint operatorX whose graph isL, that is:

X = i
1− U
1 + U

, U =
i−X
i+X

and L = ΓJX .

It is not hard to see from what we just said thatℓ is the graph of the restriction

JX|ℓ0. Now Ũ : LW → L has the following expression.

Ũv =
1 + U

2
v + iJ

1− U
2

v.

In other words,

2Ũ(1 + U)−1w = w + JSw.

We conclude that

2Ũ(1 + U)−1ℓ0 = ℓ.

Let ℓ̃ := Ũ∗ℓ andΛ̃ := Ũ∗Λ. The previous identity says that

2

1 + U
ℓ0 = ℓ̃ or − i(i+X)ℓ0 = ℓ̃. (3.3.1)

SinceŨL∩W = id we deduce that̃U∗ takes the decompositionL = ℓ⊕L∩W ⊕Λ to

an orthogonal decompositionLW = ℓ̃⊕ L ∩W ⊕ Λ̃. The operatorsS ∈ Sym (L) with

the given block decomposition go via conjugation byŨ to operatorsS̃ ∈ Sym (LW )
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with the same type of block decomposition relativeLW = ℓ̃⊕ L ∩W ⊕ Λ̃.

We realize, looking at Lemma3.3.14, that due to dimension constraints the only

thing one needs to prove is that the equation

1 + U∗

2
B

1 + U

2
= S (3.3.2)

has only the trivial solutionBi = 0, Si = 0, where

B =




B1 0 B∗
2

0 0 B∗
3

B2 B3 B4




and S =




0 S∗
1 0

S1 S2 0

0 0 0




The main point here is that the block decomposition ofB is relativeLW = ℓ0 ⊕ L ∩

W ⊕ JV ⊥ and decomposition ofS is relative toLW = ℓ̃ ⊕ L ∩W ⊕ Λ̃. Notice that

(3.3.2) can be written as

B = −(i−X)S(i+X)

This is the same thing as

〈Bv,w〉 = −〈(i−X)S(i+X)v, w〉 = 〈S(i+X)v, (i+X)w〉, ∀v, w ∈ LW .

We take firstv ∈ ℓ0 andw ∈ L ∩W . Relation(3.3.1) andX = 0 onL ∩W imply

0 = −i〈S(i+X)v, w〉 = −i〈S1(i+X)v, w〉.

We conclude thatS1 ≡ 0. Similarly takingv, w ∈ L∩W we getS2 ≡ 0 which finishes

the proof.
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b) Let us notice that we have two tautological bundles overLagW (k) namelyϑ and

ϑω whose fiber atL consists ofL ∩W andL ∩W ω, respectively.

ϑ →֒ LagW (k)×W

↓ ↓

ϑω →֒ LagW (k)×W ω

. We have of course thatϑ is a subbundle ofϑω and if we letθ be the orthogonal com-

plement ofϑ in ϑω, then the bundle described in the statement isSym (ϑ)⊕Hom (θ, ϑ).

Hence it is the direct sum of a complex bundle, always naturally oriented and the bundle

of self-adjoint endomorphisms associated to a complex bundle. But this last one is up

to isomorphism the bundle associated to the principal bundle of unitary frames via the

adjoint action of the unitary group on its Lie algebra. This is clearly orientable.

In the casek = 1, ϑ is a line bundle andSym (ϑ) is oriented by the identity.

Orientation conventions II: Notice that we have the following inclusionZ{k} ⊂ LagWk−1(1)

of manifolds of codimension2k − 1. In Section3.2we showed how the finite dimen-

sional Schubert cellsZ{k}(n) induce a coorientation onZ{k}. We would like to show

that the coorientation described there is the same as the natural orientation of the alge-

braic complement ofT LagWk−1(1) explained above.

The connection between the two is Proposition2.3.12. It is enough to consider the

finite dimensional case, i.e. we will work withU(n), Lag(n) andZ{k}(n).

Let Uk ∈ Z{k}(n) be the orthogonal reflection with the−1 eigenspace given by

〈ek〉. The coorientation atUk of Z{k}(n) ⊂ U(n) is induced by the exterior monomial

of rank2k − 1 onTidU(n).

θk ∧
∧

j<k

(αjk ∧ βjk). (*)
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This form can be transported to a linear form onTUk
U(n) by the differential at0 of the

map

Sym(n)

Cayk

U(n)
Uk·

U(n), A 7→ i− A
i+ A

=: U 7→ UkU

The reason why we can use the Cayley transformation, in placeof the exponential

map as we did in Section3.2is because the differential at0 of the Cayley transform

A 7→ i− A
i+ A

is the identity, after we identifyu(n) with Sym(n) via multiplication by−i.

We consider the coorientation onZ{k}(n) ⊂ Lag(n) atH+
k to be the one obtained

from the natural orientation onSym(〈fk〉)⊕Hom(〈fk〉, 〈e1, . . . , ek−1〉). By Proposition

2.3.12, in order for the Cayley graph mapO : U(n) → Lag(n) to be coorientation

preserving, i.e., to take the coorientation atUk of Z{k}(n) ⊂ U(n) to the coorientation

atH+
k of Z{k}(n) ⊂ Lag(n) we need to check that the (differential of the) map

Sym(n)→ Sym(H+
k ), A 7→ ŨkAŨ

−1
k

is coorientation preserving, i.e. that it takes the form(∗) to a positive multiple of the

orientation form of

Sym(〈fk〉)⊕Hom(〈fk〉, 〈e1, . . . , ek−1〉)

This is straightforward.
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3.4 Local intersection numbers

We are now ready to do intersection theory onLag−.

In this sectionM will be a closed, oriented manifold of fixed dimension2k − 1,

unless otherwise stated. This is the codimension of the Schubert varietyZk. Let F :

M → Lag− be a smooth map. We will call such a map a (smooth, compact) family of

lagrangians.

In Section3.2we defined the transversality ofF toZk to be transversality on every

stratum in thestandard stratification. In the case whenM has complementary dimen-

sion this implies thatF can only meet the top stratum,Z◦
k . In this section we weaken

this condition of transversality by defining a new stratification onZk whose top stratum

containsZ◦
k .

We saw in the previous section that if

H− := W0 ⊃W1 ⊃W2 ⊃

is a complete, decreasing flag ofH−, we have

Z◦
k ⊂ LagWk−1(1) ⊂ Zk

whereLagWk−1(1) is a smooth submanifold.

Definition 3.4.1. Thenon-standard stratificationonZk:

Zk := S0 ⊃ S2 ⊃ S3 ⊃

has at its highest stratum the manifoldS0 \ S2 := LagWk−1(1), while the other strata,

Si \ Si+1 are unions ofZJ ⊂ Zk each of which has codimension(2k − 1) + i in Lag−.
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A functionF : M → Lag− is (non-standard) transversal toZk if it is transversal to

every stratum in the non-standard stratification.

Remark 3.4.2. In the rest of this paper the stratification onZk is the non-standard and

the notion of transversality we use is the one adapted to thisstratification.

Remark 3.4.3. The two stratifications on the Schubert varietyZk define the same co-

homology class inLag−. See Remark3.2.5and appendix5.1for details.

By Proposition 3.3.17, LagWk−1(1) →֒ Lag− has an algebraic complement

N LagWk−1(1) which is naturally oriented as follows.

Let L ∈ LagWk−1(1), V := L ∩ Wk−1 and ℓ be the orthogonal complement of

L ∩ Wk−1 in L ∩ W ω
k−1. The algebraic complement toTL LagWk−1(1) is the vector

subspace ofSym (L) of operators coming from

Sym(V )⊕ Hom(ℓ, V )

The spaceV is one dimensional and soSym(V ) is a one dimensionalreal vector space,

naturally oriented by the identity map. A non-zero operatorA ∈ Sym(V ) is positively

oriented if the following number is positive:

〈Av, v〉 for anyv ∈ L ∩Wk−1

The canonical orientation onHom(ℓ, V ) is given by the following data. Letv be a unit

vector inV and{g1, g2, . . . , gk−1} be a complex orthonormal basis forℓ. We say that a

basisT1, . . . T2k−2 is positively oriented forHom(ℓ, V ) if the following determinant is

positive:
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∣∣∣∣∣∣∣∣∣∣∣∣∣

Re〈T1g1, v〉 Im〈T1g1, v〉 . . . Re〈T1gk−1, v〉 Im〈T1gk−1, v〉

Re〈T2g1, v〉 Im〈T2g1, v〉 . . . Re〈T2gk−1, v〉 Im〈T2gk−1, v〉

. . . . . . . . . . . . . . .

Re〈T2k−2g1, v〉 Im〈T2k−2g1, v〉 . . . Re〈T2k−2gk−1, v〉 Im〈T2k−2gk−1, v〉

∣∣∣∣∣∣∣∣∣∣∣∣∣

One can check that the orientation does not depend on the choice ofv or of the basis

{g1, g2, . . . , gk−1}.

The following is straightforward:

Lemma 3.4.4. For a self-adjoint operatorS ∈ Sym(L) the Sym(V ) ⊕ Hom(ℓ, V )

block is described in the orthonormal basis{v, g1, g2, . . . , gk−1} by the operator:

v → 〈Tv, v〉v

g1 → 〈Tg1, v〉v

. . .

gk−1 → 〈Tgk−1, v〉v

This lemma and the previous observations prompts the following definition:

Definition 3.4.5. Let F : M → Lag− be an oriented family of lagrangians of dimen-

sion2k − 1 transversal toZk and letp ∈ F−1(Zk) = F−1(LagWk−1(1)) be a point in

M .

Let {ǫ1, . . . ǫ2k−1} be an oriented basis forM atp, v be a unit vector inF (p)∩Wk−1

and{g1, g2, . . . , gk−1} be a unitary basis ofℓ(p), the orthogonal complement ofF (p)∩

Wk−1 in F (p) ∩W ω
k−1.

The intersection numberat p of F andZk, denoted♯(M ∩ Zk)p is the sign of the
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determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈dpF (ǫ1)v, v〉 Re〈dpF (ǫ1)g1, v〉 . . . Im〈dpF (ǫ1)gk−1, v〉

〈dpF (ǫ2)v, v〉 Re〈dpF (ǫ2)g1, v〉 . . . Im〈dpF (ǫ2)gk−1, v〉

. . . . . . . . . . . .

〈dpF (ǫ2k−1)v, v〉 Re〈dpF (ǫ2k−1)g1, v〉 . . . Im〈dpF (ǫ2k−1)gk−1, v〉

∣∣∣∣∣∣∣∣∣∣∣∣∣

Theorem3.2.14implies the following:

Proposition 3.4.6.LetF : M → Lag− be a smooth family of lagrangians transversal

toZk. The following equality holds:

∫

M

F ∗([Zk, ωk]) =
∑

p∈F−1(Zk)

♯(M ∩ Zk)p,

where the integral represents the evaluation of a cohomology class on the fundamental

class ofM .

It is useful to have a formula for the intersection number in terms of projections.

Lemma 3.4.7. Let F : M → Lag− be a smooth family of lagrangians transversal

to Zk and letP : Lag− → B(Ĥ) be the smooth map that takes a lagrangian to its

orthogonal projection. Denote byPF : M → B(Ĥ) the composition−JP ◦ F . The

intersection number♯(M ∩ Zk)p is equal to the sign of the determinant:

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈dpPF (ǫ1)v, v〉 Re〈dpPF (ǫ1)g1, v〉 . . . Im〈dpPF (ǫ1)gk−1, v〉

〈dpPF (ǫ2)v, v〉 Re〈dpPF (ǫ2)g1, v〉 . . . Im〈dpPF (ǫ2)gk−1, v〉

. . . . . . . . . . . .

〈dpPF (ǫ2k−1)v, v〉 Re〈dpPF (ǫ2k−1)g1, v〉 . . . Im〈dpPF (ǫ2k−1)gk−1, v〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
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Proof: By Lemma2.2.11we have

dP (Ṡ) =




0 ṠJ−1
L

JLṠ 0




and so(−JdLP )|Sym(L) = idSym(L). Since all the vectorsv, g1, . . . , gk−1 belong to

L := F (p) the proposition follows.

The intersection numbers whenk = 1 have received a particular attention.

Notation: Let Mas := LagH−

(1) = {L | dimL ∩H− = 1} be the top stratum in the

non-standard stratification ofZ1.

The notation is justified by the following definition.

Definition 3.4.8. For every familyF : S1 → Lag−, transversal toMas the intersection

number
∑

p∈F−1(Mas)

♯(M ∩Mas)p

is called theMaslov index.

Proposition 3.4.9.The Maslov index is a homotopy invariant that provides an isomor-

phism:

π1(Lag−) ≃ Z

Proof: This is obvious in the light of the fact that the Maslov index is the evaluation over

S1 of the pull-back of the cohomology class determined byMas, namely[Z1, ω1].

Lemma 3.4.10.The Maslov index of a familyF : S1 → Lag− can be computed by the

formula:
∑

p∈F−1(Mas)

sgn〈−JṖpvp, vp〉
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wherevp is a non-zero vector inF (p) ∩H− andṖp is the derivative atp of the family

of the associated projections.

Proof: This is just a particular case of3.4.7.

Remark 3.4.11. Although we defined the Maslov index for families of lagrangians

parametrized by the circle, one can use the same definition for families parametrized

by the interval[0, 1]. The Maslov index is then a homotopy invariant of maps with the

end-points fixed.

The following observations lead to an interesting formula.Let k ≥ 1 and denote by

Z≥k the union of Schubert cells:

Z≥k :=
⋃

i≥k

Zi

Lemma 3.4.12.The setZ≥k is a closed subspace and a smooth submanifold of codi-

mension2k − 2 in Mas. Moreover the following set equalities hold:

(a) Z≥k = R−1(P(Wk−1)) whereR is the generalized reduction

R : Mas→ P(H−).

(b) Z≥k = Mas∩LagWk−1(1).

(c) Z≥k = Zk.

Proof: The first set equality proves thatZ≥k is a smooth manifold of codimension

2k − 2 in Mas since the generalized reduction is a vector bundle andP(Wk−1) is a

closed submanifold ofP(H−).
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Remark 3.4.13.A new stratification ofZk with Z≥k being the top stratum does not turn

Zk into a quasi-submanifold becauseZ≥k does not contain the codimension1 stratum

Z1,k.

Definition 3.4.14. A smooth2k − 1 dimensional familyF : M → Lag− is strongly

transversaltoZk if the following conditions hold

• F is transversal toZk.

• F is transversal toZ1.

• F−1(Z1) = F−1(Mas), i.e. dimF (m) ∩H− ≤ 1 for all m ∈M .

Remark 3.4.15. The first and the third conditions of strong transversality imply that

F−1(Zk) = F−1(Z≥k). Indeed, the first condition implies that

F−1(Zk) = F−1(LagWk−1(1)), whereas the third implies thatF−1(Zk) ⊂ F−1(Mas).

Remark 3.4.16. Every smooth family can be deformed to a family that satisfiesthe

first two transversality conditions. However the third condition of strong transversality

is not amenable to perturbations, since there are topological obstructions to achieving

that. An example is a family for which cohomology classF ∗[Z1,2, ω1,2] is non- trivial.

Things are good whenk = 2 since then there are no topological obstructions in that

case.

Lemma 3.4.17.Let dimM = 3. Any familyF : M3 → Lag− can be deformed to a

strongly transversal family toZ2.

Proof: First deform the family to a map transversal toZ2 and then move it off
⋃

k≥2Z1,k

which has codimension 4 and has the property that
⋃

k≥2 Z1,k = LagW1(1) \Mas.

106



Proposition 3.4.18.LetM be an oriented, closed manifold of dimension2k − 1 and

let F : M → Lag− be a family, strongly transversal toZk. ThenM1 := {m ∈

M | dimF (m) ∩H− = 1} is a closed, cooriented submanifold ofM of dimension

2k − 2. Let γ ⊂ M1 × P(H−) be the tautological bundle overM1 with fiberγm :=

L ∩H−. Then ∫

M

F ∗[Zk, ωk] =

∫

M1

c1(γ
∗)k−1

Proof: Notice thatM1 = F−1(Mas). The fact thatM1 is a cooriented submanifold

of M of codimension1 follows from the second condition of strong transversalityand

the fact thatMas is a cooriented submanifold ofLag− of codimension1. It is closed

because it is the preimage ofZ1 by the third condition of strong transversality.

We have the following commutative diagram

F−1(Zk)
F Z≥k

R
P(Wk−1)

M1
F |

M1

Mas
R

P(H−)

M
F

Lag−

The local intersection number ofM andZ≥k in Lag− at a pointm ∈ M is the local

intersection number ofM1 andMas atm ∈M , which is the local intersection number

of R ◦ F |M1 with P(Wk−1) atm ∈M .

Let τ ∗ be the dual to the tautological bundle ofP(H−). Then the Poincaré dual of

P(Wk−1) in P(H−) is c1(τ ∗)k−1 wherec1 is the first Chern class ofτ ∗. The total inter-

section number ofM1 andP(Wk−1) is the evaluation of the pull-back of the Poincaré
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dual toP(Wk−1) onM1. The next equality finishes the proof

γ = (R ◦ F |M1)∗(τ)
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CHAPTER 4

APPLICATIONS

In this chapter we aim to relate the theory developed so far toindex theory. We intro-

duce a criterion for deciding when a general family of operators is continuous/differentiable.

We describe how the Atiyah-Singer classifying space forK−1, that is a certain con-

nected component of the set of bounded, self-ajoint operators relates toLag−. The

section on the odd Chern character is based on standard results and is designed to make

the connection between the fundamental cohomology classesof Lag− and index the-

ory. In the last two sections we give concrete local intersection formulae for different

families of self-adjoint operators.

4.1 Differentiable families

In practice, families of lagrangians come from closed, self-adjoint operators. In or-

der to be able to do differential topology one needs an easy criterion to decide when

these families are differentiable, especially when one hasin mind to work with opera-

tors whose domain varies, such as elliptic boundary problems. In this section we give

such a criterion and some examples.

We start by recalling Kato’s definition of differentiability. LetB be a smooth man-

ifold.
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Definition 4.1.1(Kato, [20], Ch.VII-1.2). Let (Tb)b∈B be a family of closed,densely de-

fined, self-adjoint operators with domainsD(Tb)b∈B . The family is

continuous/differentiable if there exist continuous/differentiable families ofbounded

operatorsSb, Rb : H → H such thatRange(Sb) = D(Tb) andTbSb = Rb for all b.

Our operators will always be Fredholm so we concentrate on them.

Notation: Let SFred be the set of all closed, densely-defined, self-adjoint, Fredholm

operators.

To each closed, self-adjoint, Fredholm operator one can associate its switched graph.

More precisely one has a map:

Γ̃ : SFred→ Lag−, T 7→ Γ̃T := {(Tv, v) | v ∈ D(T )}

Lemma 4.1.2.Let T : B → SFred be a family of operators. SupposeΓ̃ ◦ T : B →

Lag− is continuous/differentiable. ThenT is continuous/differentiable in the sense of

Kato.

Proof: If Γ̃ ◦ T is continuous/differentiable then the family of corresponding unitary

operatorsUb = C−1(Γ̃(Tb)) is continuous/differentiable and we take

Sx = −i(1− Ux), Rx = 1 + Ux

in Kato’s definition.

In order to state the main result of this section we introducesome terminology. We

keep the notations from the previous sections.

Definition 4.1.3. A symplectic operator on̂H is a bounded, invertible operator that
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satisfies the relation

X∗JX = J

Let Symp(Ĥ) be the group of all symplectic operators onĤ.

Lemma 4.1.4. (a) LetL ⊂ Ĥ be any closed subset of̂H andX : Ĥ → Ĥ be any

bounded, invertible operator. Then

(XL)⊥ = (X∗)−1L⊥

(b) The groupSymp(Ĥ) acts onLag.

(c) LetL ∈ Lag andX ∈ Symp(Ĥ). Denote

XL := X
∣∣
L

: L→ XL, and XL⊥ := (X∗)−1
∣∣
L⊥ : L⊥ → (XL)⊥

LetψL be the unitary operator on̂H which, as a mapL⊕ L⊥ → XL⊕ (XL)⊥,

has the expression

ψL(X) =




XL ◦
√
X∗

LXL
−1

0

0 XL⊥ ◦
√
X∗

L⊥XL⊥
−1


 .

Then the orthogonal reflection inXL is given byRXL = ψL(X) ◦RL ◦ ψL(X)∗.

Proof: (a) FirstX∗(XL)⊥ ⊥ L because ifx ∈ L andw ∈ (XL)⊥ then

〈X∗w, v〉 = 〈w,Xv〉 = 0

This is the same thing asX∗(XL)⊥ ⊂ L⊥. ReplacingL by L⊥ one also gets that
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X∗(XL⊥)⊥ ⊂ L. We claim that

X∗(XL)⊥ +X∗(XL⊥)⊥ = L+ L⊥ = Ĥ

and so, the previous two inclusions are in fact equalities. Indeed, since all the spaces

involved are closed

((XL)⊥ + (XL⊥)⊥)⊥ = XL ∩XL⊥ = {0}

and so(XL)⊥ + (XL⊥)⊥ = Ĥ and the claim follows.

(b) We haveJXL = (X∗)−1JL = (X∗)−1L⊥ = (XL)⊥.

(c) One checks immediately that forv ∈ L andw ∈ L⊥

RXLψL(X)(v) = ψL(X)RL(v) = XL ◦
√
X∗

LXL(v), and

RXLψL(X)(w) = ψL(X)RL(w) = −XL⊥ ◦
√
X∗

L⊥XL⊥(w).

Proposition 4.1.5.The groupSymp(Ĥ) is a Banach-Lie group modelled on the infinite

Lie algebra of operatorsY that satisfy:

Y ∗J + JY = 0

The natural actionSymp(Ĥ)× Lag→ Lag is differentiable.

Proof: The first part is standard. We prove the second part in two steps. First, we show
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that if one fixes a lagrangian, sayH+, the map

Symp(Ĥ)→ Lag, X → XH+

is differentiable. By Corollary2.3.7this is equivalent to proving that the map of asso-

ciated reflections is differentiable. By part(c) of the previous lemma this is obvious

since

XL = X ◦ PL and
√
X∗

LXL =
√
PLX∗XPL

Second, we notice that ifX ∈ Symp(Ĥ) andL ∈ Lag then

XL = XO(H+,C−1(L))H+

whereC−1 is the inverse of the Cayley graph map. The map

Symp(Ĥ)× Lag→ Symp(Ĥ), (X,L)→ XO(H+,C−1(L))

is differentiable sinceO andC−1 are.

The following theorem gives a useful, general criterion fordifferentiability. LetB

be the open, unit ball inRn

Theorem 4.1.6.Let (Tx)x∈B : D(Tx) ⊂ H → H be a family indexed byB of densely-

defined, closed, self-adjoint, Fredholm operators. LetH0 := D(T0) and supposeH0

comes equipped with an inner product such that:

(1) the inclusionH0 → H is bounded and

(2) the operatorT0 : H0 → H is bounded.
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Suppose there exists a differentiable family of bounded, invertible operatorsU : B →

GL(H) such that

(a) U∗
x(H0) = D(Tx);

(b) the new family of operators̃Tx := UxTxU
∗
x is a differentiable family of bounded

operators inB(H0, H).

Then the family of switched graphs associated to(Tx)x∈B is differentiable at zero in

Lag−.

Proof: Let us notice that the family of operators on̂H

Ûx =




Ux 0

0 (U∗
x)−1




is a differentiable family of symplectic operators such that ÛxΓ̃Tx
= Γ̃T̃x

. Hence it is

enough to prove the differentiability of the familỹTx. We will assume from now on that

all operatorsTx are defined on the same domain such that(a) and(b) are satisfied for

Ux = id.

Suppose now thatKerT0 = {0}. ThenΓ̃T0 is in the Arnold chartAH+ and for‖x‖

small enough the switched graphsΓ̃Tx
are in the same open set sinceΓ̃Tx

∩H+ = KerTx

andL → L ∩ H+ is an upper semi-continuous function. EachTx in this smaller set

has an inverseSx : H → H0 ⊂ H. The differentiability of the familyTx in B(H0, H)

is equivalent with the differentiability of the familySx ∈ B(H,H0). This implies the

same property forSx seen as a family inB(H,H) sincei : H0 → H is differentiable.

Since the switched graph ofTx is the graph ofSx it follows thatΓ̃Tx
is differentiable.

The way to place ourselves in the situationKerT0 = {0} is by adding a real constant

λ to the familyTx constant for whichKer (T0 + λ) = {0}. We can do this becauseT0
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is Fredholm. In order to justify that this does not change anything we look back at

Arnold’s isomorphism. We claim that if the unitary operatorUx corresponds toTx, i.e.

C(Ux) = Γ̃Tx
, then

Ux(λ) := (2i+ λ(1− Ux))
−1(2iUx + λ(1− Ux))

corresponds toTx +λ. Indeed ”the denominator”,2i+λ(1−Ux) is invertible for every

real constantλ since2i+λ
λ

has modulus one if and only ifλ ∈ −i + R. One can easily

verify thatUx(λ)Ux(λ)∗ = I. It is also a matter of routine to check that




(1 + Ux(λ))v

−i(1− Ux(λ))v


 =




((1 + Ux)− λi(1− Ux))[2i(2i+ λ(1− Ux))
−1v]

(−i(1− Ux))[2i(2i+ λ(1− Ux))
−1v]




and this proves the claim.

The next result gives a practical way to decide when condition (b) in the previous

theorem is satisfied for a family of operators defined on the same domain.

Lemma 4.1.7.LetH0 ⊂ H be a dense subset inH, are endowed with an inner product

such that the inclusionsH0 ⊂ H is continuous. LetT, g2 : B → B(H0, H), g1 : B →

B(H), be three families of operators such that

(a) g1(0) = id andg2(0) = 0;

(b) T (x) = g1(x)T (0) + g2(x), ∀x ∈ B.

Supposeg1 andg2 are differentiable at zero. ThenT is differentiable at zero.

Proof: Let dgi, i ∈ {1, 2} be the differentials at0 of gi. Then

‖g1(x)T0+g2(x)−T (0)−dg1(x)T0−dg2(x)‖ ≤ ‖(g1(x)−g1(0)−dg1(x))‖H‖T0‖H0,H+
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+‖(g2(x)− g2(0)− dg2(x))‖H0,H

Dividing by ‖x‖ and taking the limitx→ 0 finishes the proof.

Corollary 4.1.8. If in the previous propositiong2 is a continuous map of bounded op-

eratorsg2 : B → B(H,H) then the claim stays true.

Proof: This is based on the fact that‖T‖H0,H ≤ ‖T‖H,H.

Definition 4.1.9. A family of operators(Tx)x∈B : H0 → H is called affine if

Tx − T0 ∈ B(H), ∀x

Corollary 4.1.10. An affine family of operators(Tx)x∈B is differentiable at0 if the

associated family of bounded operatorsTx − T0 is differentiable.

Corollary 4.1.11. The universal familyT : U(N) → Lag−(L2[0, 1]) (see Example

2.5.15) is differentiable.

Proof: We use the previous criterion to prove differentiability at1. Take a chart at1

in U(N). For example one can takeφ : Sym(N) → U(N) be the Cayley transform

or φ(A) = eiA. For everyA ∈ Sym(N) let UA : C∞
φ(A)([0, 1]) → C∞

1 ([0, 1]) be the

operator defined by:

UA(f)(t) = φ(tA)−1f(t) = φ(−tA)f(t)

One checks easily that these operators extend to a differentiable family of unitary oper-
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atorsU : Sym(N)× L2[0, 1]→ L2[0, 1]. The resulting family is:

UATφ(A)U
−1
A (f) = −idf

dt
− iφ(−tA)

(
d

dt
φ(tA)

)
f

This is a differentiable family of bounded operatorsL1,2([0, 1]) → L2([0, 1]) by the

previous corollary.

4.2 Index Theory

This section is inspired by [31].

The classifying space for oddK-theory,Lag− is not the usual space one uses in

index theory. In their work [2], Atiyah and Singer looked at the homotopy type of the

spaceBFred ⊂ Sym of bounded, self-adjoint, Fredholm operators endowed withthe

norm topology. They proved it has three connected components BFred+, BFred− and

BFred∗ characterized by :

• T ∈ BFred± ⇔ T has only positive/negative essential spectrum

• T ∈ BFred∗ ⇔ T has both positive and negative essential spectrum

The first two components,BFred± are contractible andBFred∗ is classifying forK−1.

Let B be compact space. It follows from Atiyah-Singer results that every element

in K−1(B) can be represented by the homotopy class of a continuous map

B → BFred∗ b 7→ Tb (4.2.1)

The homotopy class of such a family of operators is the analytic index of the family.

117



Notice that the map

[0, 1]× B → BFred∗ b 7→ Tb√
1 + tT 2

b

provides a homotopy between the initial map and the associated family of ”zeroth or-

der” operators

B → BFred∗ b 7→ Tb√
1 + T 2

b

This leads to the standard trick that allows one to define an analytic index for a family

of unboundedself-adjoint, Fredholm operators with spectrum stretching to both±∞.

To make the ideas more precise we introduce the following function

Ri : R→ R, x 7→ x√
1 + x2

Recall thatSFred is the set of all closed, densely defined, self-adjoint, Fredholm oper-

ators on the Hilbert spaceH. The map

Ri : SFred→ BFred T 7→ Ri(T )

is an injection.

Definition 4.2.1. TheRiesz topologyonSFred is the topology induced by the metric

d(T1, T2) = ‖Ri(T1)−Ri(T2)‖

A functionf : B → CS is called Riesz continuous if it is continuous with respect to the

Riesz topology.

TheAtiyah-Singer indexof a Riesz continuous, family of operatorsT : B → SFred
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for whichRi(T (b)) ∈ BFred∗ is the homotopy class of the map

Ri ◦T : B → BFred∗

Remark 4.2.2. In order to define an analytic index in the unbounded case, using the

Atiyah-Singer classifying spaceBFred∗ oneneedsthe family to be Riesz continuous.

At the other extreme, if all the operators involved are bounded, then Riesz continuity is

equivalent with the norm continuity andRi ◦T is homotopic withT .

The vertical, Lagrangian Grassmannian,Lag− suggests a different approach. A

self-adjoint, Fredholm operator,T : D(T ) ⊂ H → H bounded or unbounded gives

rise to a vertical, Fredholm lagrangian, namely its switched graph.

T → Γ̃T := {(Tv, v) | v ∈ D(T )}

Definition 4.2.3. A family T : B → SFred of Fredholm operators isgap continuous

if the map

Γ̃ ◦ T : B → Lag−, b 7→ Γ̃Tb

is continuous.

Thegraph indexof a gap continuous family of Fredholm operatorsT : B → SFred

is the homotopy class of the map

Γ̃ ◦ T : B → Lag− .

Lemma 4.2.4.The map

Γ̃ : BFred→ Lag− T → Γ̃T
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is continuous hence every mapT : B → BFred which is continuous in the norm is also

gap continuous.

Proof: The reflection in the switched graph can be computed explicitly in terms of the

operator and Corollary2.3.7finishes the proof.

Lemma 4.2.5.Riesz continuity is invariant under conjugation, i.e. ifT : B → SFred

is Riesz continuous andU : B → U(H) is a continuous family of unitary operators

then the familyT̃ : B → SFred such thatT̃b := UbTbU
∗
b for all b ∈ B is continuous.

Proof: This is straightforward in light of

Ri(T̃b) = Ub Ri (Tb)U
∗
b

LetH0 be a dense subspace inH such that there exists an inner product〈·, ·〉0 that

makes the inclusionH0 → H continuous.

Remark 4.2.6. If T : H0 → H is a bounded operator, than the topology defined by the

graph norm ofT onH0, (see2.4.6) is weaker than the topology of the norm‖ · ‖0. In

other words the identity map:

(H0, ‖ · ‖0)→ (H0, ‖ · ‖g)

is continuous as one can easily see. On the other hand ifT is Fredholm then the norms

are equivalent. Indeed there exists a constantC1 > 0 such that

‖v‖g = ‖v‖H ≥ C1‖v‖H0, ∀v ∈ KerT
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simply becauseKerT is finite dimensional. Moreover there existsC2 > 0 such that

‖v‖g ≥ ‖Tv‖H ≥ C2‖v‖H0, ∀v ∈ KerT⊥

becauseT
∣∣
Ker T⊥ : KerT⊥ → RanT is invertible.

Proposition 4.2.7. Let T : B → SFred(H) be a family of self-adjoint, Fredholm

operators such thatTb : H0 → H is bounded and the family is continuous atb0 as a

mapT : B → B(H0, H). ThenT is Riesz continuous atb0.

Proof: See Proposition 1.7 in [31] and Theorem VI.5.12 in [20].

Definition 4.2.8. Let T : B → SFred be a family of self-adjoint, Fredholm operators,

let b0 ∈ B and letH0 := D(TB0) be endowed with the graph norm ofTb0 . The

family is callednice at b0 ∈ B if there exist acontinuousfamily of unitary operators

U : B → U(H) such that

(a) H0 = UbD(Tb);

(b) The new family(T̃ )b∈B, T̃b := UbTbU
∗
b is continuous as a family of bounded

operatorsT : B → B(H0, H).

A family is called nice if it is nice at every point.

The following result is a consequence of what we said above.

Proposition 4.2.9.Every nice family of operators is Riesz continuous.

Example 4.2.10.Every continuous, affine family of operators is nice.

Example 4.2.11.The universal family is nice.

Proposition 4.2.12.Every Riesz continuous family of operators is gap continuous.
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Proof: See Lemma 1.2 in [31].

Theorem 4.2.13.The graph map̃Γ : BFred∗ → Lag− is a weak homotopy equiva-

lence and for every Riesz continuous familyT : B → SFred the Atiyah-Singer index

coincides with the graph index.

Proof: See Proposition 3.1 and Theorem 3.3 in [31].

The previous Theorem says that the graph index is the appropriate notion of analytic

index one has to look at.

Definition 4.2.14.LetF : M → SFred be a family of self-adjoint, Fredholm operators

parametrized by a compact topological spaceM . ThenF is said to be continuous if

Γ̃ ◦ F is continuous. The analytic index of a continuous familyF , denoted[F ] is the

homotopy class of the map

Γ̃ ◦ F : M → Lag−

Remark 4.2.15.All nice families of operators are continuous.

4.3 The Chern Character

Let M be a finite, CW-complex, hence compact. The Chern character is a ring

homomorphism:

ch : K0(M)→ Heven(M,Q)

122



The suspension isomorphism, which is actually taken to be the definition ofK−1, helps

us extend the Chern character to the odd case:

K̃−1(M)

ch

Σ
K̃0(ΣM)

ch

H̃odd(M,Q)
Σ

H̃even(ΣM,Q)

It is well-known thatU(∞) is a classifying space forK−1. Hence every element in

K̃−1(M) can be represented by the homotopy class of a (pointed) mapf : M →

U(∞). Let [f ] ∈ K−1(M) be the element this map represents. ThenΣf : ΣM →

ΣU(∞) represents an element iñK0(ΣM) which corresponds tof via the suspension

isomorphism. The previous commutative diagram can be written as

Σ ◦ ch [f ] = ch ([Σf ]) (4.3.1)

A short digression is necessary at this point. The spaceΣU(∞) comes with a

principalU(∞) bundleŬ , namely the bundle obtained with the clutching map given by

the identity. More precisely one starts with the trivialU(∞) bundle over[0, 1]×U(∞)

and identifies(0, U, g) with (1, U, Ug) for all (U, g) ∈ U(∞)× U(∞).

This is an old acquaintance of ours. Indeed the pull-back of this bundle toΣU(n) is

nothing else but the bundle frame bundle associated to the vector bundleEn which we

considered in Section3.2.

Another way of looking at these bundles is via the periodicity map (see [32], page

224-225)

ΣU(n)→ Gr(n, 2n) →֒ Gr(n,∞) ≃ BU(n)
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where the first map is given explicitly as follows

[0, π]× U(n)→ Gr(n, 2n), (t, U)→ cos t




1 0

0 −1


− sin t




0 U−1

U 0




The right hand side is an involution ofCn ⊕ Cn. The bundleEn is the pull-back of

the universalU(n)vector bundleEU(n). In the same way̆U comes from the universal

U(∞)-bundle overBU(∞).

Now every continuous mapf : M → U(∞) defined on a compact setM is homo-

topy equivalent with a map (which we denote by the same letter) f : M → U(n). The

class[f ] ∈ K−1(M) or the class[Σf ] ∈ K̃0(ΣM) can be represented by the bundle

(Σf)∗En (which determines a stable isomorphism class). Using equation (4.3.1) we get

that

ch [f ] = Σ−1 ch((Σf)∗En)) = Σ−1((Σf)∗ chEn) (4.3.2)

The inverse of the suspension isomorphismΣ is easy to describe. It is the composi-

tion

H̃even(ΣM,Z)
π∗

H̃even(S1 ×M,Z)
/dt

Heven−1(M,Z)

whereπ : S1×M → ΣM stands for the projection and/dt stands for the slant product

with the orientation class ofS1. So

Σ−1((Σf)∗ chEn) = (π∗(Σf)∗ chEn)/dt = ((Σf ◦ p)∗ chEn)/dt = (4.3.3)

= ((idS1 × f)∗ chEn)/dt = f ∗(chEn/dt)

The classchEn/dt ∈ Hodd(U(n),Q) is called thetransgressionclass of the Chern

character. Of course, one can do slant product componentwise and get, for each positive
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integerk a class:

chτ
2k−1 := ch2k (En)/dt ∈ H2k−1(U(n),Q)

There is nothing special about the Chern character. The sametransgression process can

be applied to any characteristic class ofEn, in particular to the Chern classes and we

have already done this in Section3.2where we denoted those classes byxi. We use a

different notation now which is more appropriate to this context.

cτ2k−1 := ck(En)/dt ∈ H2k−1(U(n),Z)

There is a very simple relation betweenchτ
2k−1 andcτ2k−1:

Lemma 4.3.1.

chτ
2k−1 =

(−1)k−1

(k − 1)!
cτ2k−1

Proof: First of all, ch2k (En) ∈ H̃2k(S1 × U(n),Q) is a polynomial in the variables

c1(En), . . . , ck(En) and the coefficient ofck(En) is (−1)k−1/(k − 1)!. On the other

hand, every element inH2k(S1 × U(n),Z) is a sum:

z = x+Dt ∧ y

wherex ∈ H2k(U(n),Z), y ∈ H2k(U(n),Z) andDt ∈ H1(S1,Z) satisfiesDt(dt) =

1. We claim that for every characteristic class ofEn itsH2k(U(n),Z) component van-

ishes. Indeed the classx is the pull-back ofz via the inclusion{1}×U(n)→ S1×U(n)

and the claim follows by noticing that the pull-back of the bundleE is trivial overU(n).

We conclude that the cup product of any two characteristic classes ofEn is zero and
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so we have

ch2k (En) =
(−1)k−1

(k − 1)!
ck(En)

which after taking the slant product gives the identity we were after.

Suppose now thatM is a closed, oriented manifold andf : M → Lag−. Theorem

3.2.7says that the pull-backf ∗xk = f ∗[Zk, ωk]. On the other hand by the previous

lemma, relations (4.3.2), (4.3.3) and Proposition3.2.13we have the following result

Proposition 4.3.2.LetM be a closed manifold and letf : M → Lag− be a smooth

map transversal toZk. The following holds:

ch2k−1([f ]) =
(−1)k−1

(k − 1)!
f ∗[Zk, ωk] =

(−1)k−1

(k − 1)!
[f−1(Zk), f

∗ωk]

Let us take nowM := S2N−1. On one hand we have an isomorphism:

π2N−1(Lag(N))→ π2N−1(Lag−)

because ifWN is a subspace of codimensionN in H− thenLag− \LagWN has codi-

mension2N + 1 in Lag−, being equal with the Schubert varietyZN+1 and so every

mapS2N−1 → Lag− can be homotoped to a mapS2N−1 → LagWN . The later space is

a vector space overLag(N).

On the other hand we have a morphism

π2N−1(Lag(N))→ H2N−1(S2N−1,Z), [f ]→ f ∗[ZN , ωN ] (*)
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Moreover this morphism is injective. Indeed, by what was said above we have

f ∗[ZN , ωN ] = cτ2N−1(Σf)∗EN = Σ−1(cN(Σf)∗EN )

This means thatf ∗[ZN , ωN ] = 0 if and only if the Euler class of the complex bundle

(Σf)∗EN overS2N is zero. But the Euler class is the only obstruction to trivializing a

rankN complex bundle overS2N . Hence the classifying mapΣf has to be homotopi-

cally trivial. On the other hand, via Bott periodicity the suspension map

π2N−1(U(N))→ π2N (ΣU(N)), [f ]→ [Σf ]

is an isomorphism. Hence if[Σf ] = 0 then[f ] = 0.

The morphism(∗) is not surjective. If we compose it with the isomorphism obtained

by integrating over the fundamental class ofS2N−1,

H2N−1(S2N−1,Z)→ Z, α 7→
∫

S2N−1

α

then we get a morphismπ2N−1(Lag(N))→ Z. Its image is in the subgroup(n− 1)!Z

by Bott divisibility theorem which is saying that the Chern character of every rankN

complex vector bundle overS2N is an integer, because it is the index of the twisted

signature operator. (see Theorem IV.1.4 in [28]) This implies that the Euler class of that

bundle is divisible by(N −1)!. In fact the image is the whole subgroup(n−1)!Z since

there exists an elementa ∈ K̃(S2N ) such thatch a = PD (pt) (see Theorem 24.5.3

in [18]). We can represent this by a mapΣf : S2N → BU(N). The clutching map

associated to theU(N)-principal bundle overS2N induced byΣF is the (desuspension)

mapf : S2N−1 → U(N) whose Chern character isPD (pt).

The previous discussion leads to the following result.
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Theorem 4.3.3.The map

ΠN : π2N−1(Lag−)→ Z, ΠN([f : S2N−1 → Lag−]) =

∫

S2N−1

f ∗[ZN , ωN ]

is injective and the image is the subgroup(n− 1)!Z.

Corollary 4.3.4. The homotopy type of a mapf : S2N−1 → Lag− is determined by the

integer ∫

S2N−1

f ∗[ZN , ωN ]

which is always divisible by(N − 1)!. If f is transversal toZN then this integer is the

total intersection number off andZN .

Remark 4.3.5. Any mapf : S2N−1 → Lag− can be deformed to a mapS2N−1 →

Lag(N). After identifying Lag(N) with U(N) one gets a mapLag(N) → S2N−1

coming from the fibrationp : U(N) → S2N−1. The degree of the compositionp ◦ f :

S2N−1 → S2N−1 is exactly the integer from the theorem.

4.4 Intersection for Families of Operators

The intersection formulae in the Section3.4were given in terms of the differential

of the family of lagrangians or, what is more or less the same thing, the differential of

the associated projections. In practice these lagrangiansare switched graphs of self-

adjoint, Fredholm operators. In order to adapt those intersection formulae to the case

of operators, the first thing to do is to make sure that we know what we mean by the

differential of a family of operators. This is clear in the case when all the operators

involved are bounded and that is what we do next. In the case when the operators

are unbounded but the family is affine (see Definition4.1.9) then the formulae of this

section hold with minimal changes.
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LetM be a smooth manifold. Recall a definition:

Definition 4.4.1. Let F : M → SFred be a family of self-adjoint, Fredholm operators.

ThenF is said to be smooth/ continuous ifΓ̃ ◦ F is smooth/continuous. Theanalytic

index of a continuous familyF , denoted[F ] is the homotopy class of the map

Γ̃ ◦ F : M → Lag−

Remark 4.4.2. All families of operators satisfying the conditions of Theorem4.1.6are

smooth/continuous.

The homotopy class of a continuous familyF determines an element inK−1(M)

also called the index.

Definition 4.4.3. The cohomological indexof a continuous familyF is denoted by

ch[F ] ∈ Hodd(M,Q) and represents the cohomology class obtained by applying the

Chern character to the analytic index.

LetW be a codimensionk− 1 subspace ofH−. We consider the associated2k− 1

codimensional cocycle whose underlying space is the following Schubert variety

ZW = {L ∈ Lag− | dimL ∩W ≥ 1}

Definition 4.4.4. A smooth familyF : M → SFred is said to be in general position

with respect toW if Γ̃ ◦ F is transversal to the Schubert varietyZW with the non-

standard stratification.

If M has complementary dimension toZW , i.e.,dimM = 2k − 1, the condition to

be in general position with respect toW implies that there are only a finite number of
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pointsp ∈M such that

dim Γ̃F (p) ∩W = 1 (4.4.1)

This means that

dim Ker (F (p)) ∩W = 1

Notation: Let F : M → SFred be a smooth family in general position with respect

toW . For everyp ∈ M such thatdim Ker (F (p)) ∩W = 1 denote byǫp ∈ {±1} the

intersection number atp of Γ̃ ◦ F with ẐW := LagW (1) = {L | dimL ∩W = 1}.

Theorem 4.4.5. Let M be a closed oriented manifold of dimension2k − 1, let

F : M → SFred be a smooth family of self-adjoint, Fredholm operators and let

W ⊂ H be a codimensionk − 1 subspace such thatF is in general position with

respect toW . Denote byMW the setMW := {p ∈ M | dim Ker (F (p)) ∩W = 1}.

Then

PD ch2k−1([F ]) =
(−1)k−1

(k − 1)!

∑

p∈MW

ǫpp

where the term on the left is the Poincaré dual to the2k− 1 component of the cohomo-

logical index.

Proof: This is a restatement of Theorem3.2.14using Proposition4.3.2.

Our main goal in this section is to give a formula for the intersection numbersǫp.

This is a local problem. We first take up the case of bounded operators. A simple but

important result is

Lemma 4.4.6. If T ∈ Sym(H) is a bounded self-adjoint, Fredholm operator the pro-

jectionP− : Γ̃T → H− is a Banach space isomorphism.

Proof: Straighforward.
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Let B be the unit ball inR2k−1. The next result relates the operator differential to

the graph differential.

Lemma 4.4.7.Let T : B → Sym(H) be a family of bounded, self-adjoint, Fredholm

operators, differentiable at zero. Then the family of switched graphs(Γ̃Tx
)x∈B is differ-

entiable at zero. Moreover, for every unit vectorv ∈ Rn, the following equality holds

between the graph and the operator partial derivatives of the family at0

P−
0 ◦

∂Γ̃

∂v

∣∣∣
0
◦ (P−

0 )−1 = (1 + T 2
0 )−1 ◦ ∂T

∂v

∣∣∣
0
∈ Sym(H)

HereP−
0 is the projection of the switched graph ofT0 ontoH−.

Proof: For differentiability see Theorem4.1.6.

For ‖x‖ small the switched graph ofTx is in the Arnold chart of̃ΓT0. Therefore it

is the graph of an operatorJSx : Γ̃T0 → JΓ̃T0 , whereSx ∈ Sym (Γ̃T0). We fix such an

x. We are looking for an expression forP−
0 Sx(P

−
0 )−1 as an operator onH.

For every vectorv ∈ H we have a decomposition:

(Txv, v) = (T0z, z) + J(T0y, y) = (T0z + y, z − T0y)

It is not hard to see that

y = (1 + T 2
0 )−1(Tx − T0)v

v = (1 + T0Tx)
−1(1 + T 2

0 )z

The last relation makes sense, since1+T0Tx approaches the invertible operator1+T 2
0 .

The operatorP−
0 Sx(P

−
0 )−1 : H → H is nothing else but the correspondencez → y
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hence the expression:

P−
0 Sx(P

−
0 )−1 = (1 + T 2

0 )−1(Tx − T0)(1 + T0Tx)
−1(1 + T 2

0 )

Differentiating this expression with respect tox finishes the proof.

In order not to repeat ourselves we give the following

Definition 4.4.8. A smooth family of bounded, self-adjoint, Fredholm operators F :

B → Sym(H) is calledlocalizedat0 with respect toW if the following two conditions

hold

• F is in general position with respect toW ;

• (Γ̃ ◦ F )−1(ẐW ) = {0}

The fact that switched graph ofF (0) is in ZW implies that1 ≤ dim KerF (0) ≤ k

by Corollary3.3.4.

We treat first a particular non-generic case.

Proposition 4.4.9.LetF : B → BFred be a family of self-adjoint, Fredholm operators

localized at0 with respect toW . Suppose thatdim KerF (0) = k. Letφ ∈ KerF (0) ∩

W be a unit vector, letφ⊥ be the orthogonal complement of〈φ〉 in KerF (0) and let

{ψ1, . . . ψk−1} be an orthonormal basis ofφ⊥.

The intersection number,ǫ0, is given by the sign of the determinant:

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈∂1Fφ, φ〉 Re〈∂1Fψ1, φ〉 . . . Im〈∂1Fψk−1, φ〉

〈∂2Fφ, φ〉 Re〈∂2Fψ1, φ〉 . . . Im〈∂2Fψk−1, φ〉

. . . . . . . . . . . .

〈∂2k−1Fφ, φ〉 Re〈∂2k−1Fψ1, φ〉 . . . Im〈∂2k−1Fψk−1, φ〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
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where∂iF is the partial derivative ofF at zero in thei-th coordinate direction ofR2k−1.

Proof: Let F̃ := Γ̃ ◦ F .

Sincedim KerF (0) = k we get that

Γ̃JF (0) ∩W ω = Γ̃JF (0) ∩H− = KerF (0)

and so the vectorsg1, . . . , gk−1 in the definition of the intersection number3.4.5are all

in the domain ofF (0) = H− and we can take them all inKerF (0). We want to replace

the partial derivatives of̃F in that intersection formula with the partial derivatives of F .

The claim that proves the lemma is:

〈d0F̃ (x)g, φ〉 = 〈∂F
∂x

(0)g, φ〉

for every unit vectorx and everyg ∈ 〈{φ, ψ1, . . . , ψk−1}〉. In order to prove the claim

let P−
0 be the projection of the switched graph ofF (0) ontoH− and letw := (1 +

F 2
0 )−1 ◦ ∂F

∂x
(0)g. Then

(P−
0 )−1 ◦ (1 + F 2

0 )−1 ◦ ∂F
∂x

∣∣∣
0
◦ P−

0 (0, g) = (F0w,w)

Therefore, by using Lemma4.4.7we get

〈d0F̃ (x)g, φ〉 = 〈(F0w,w), (0, φ)〉 = 〈w, φ〉

Then

〈w, φ〉 = 〈∂F
∂x

(0)g, (1 + F 2
0 )−1φ〉 = 〈∂F

∂x
(0)g, φ〉

The last equality holds becauseφ ∈ KerF0.
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In the casek = 2, the intersection numbers still have a quite simple description.

Suppose for now thatB is the three dimensional ball.

Proposition 4.4.10.LetT : B → BFred be a family of bounded, self-adjoint, Fredholm

operators. Lete ∈ H be a vector and suppose thatT is localized at0 with respect to

〈e〉⊥. Let0 6= φ be a generator ofKerT0 ∩ 〈e〉⊥. Then only one of the two situations is

possible

I dim KerT0 = 1, in which case letψ be a non-zero vector satisfying the following

two relations 




〈φ, ψ〉 = 0

T0ψ = e
(4.4.2)

II dim KerT0 = 2, in which case letψ ∈ KerT0 be a non-zero vector such that

ψ ⊥ φ.

Then the intersection number,ǫ0 of T withZe⊥ is given by the determinant

∣∣∣∣∣∣∣∣∣∣

〈∂1Tφ, φ〉 Re〈∂1Tψ, φ〉 Im〈∂1Tψ, φ〉

〈∂2Tφ, φ〉 Re〈∂2Tψ, φ〉 Im〈∂2Tψ, φ〉

〈∂3Tφ, φ〉 Re〈∂3Tψ, φ〉 Im〈∂3Tψ, φ〉

∣∣∣∣∣∣∣∣∣∣

where∂iT is the directional derivative ofF in thei-th coordinate direction ofR3.

Proof: Let W = 〈e〉⊥. The intersection of the switched graph ofT0 with W ω is two

dimensional. Hence the kernel ofT is either one or two-dimensional. One vector

in the intersectioñΓT ∩ W ω is (0, φ). If the kernel ofT is two dimensional, then

Γ̃T ∩W ω = KerT and so the second vector in the intersection formulae is a generator

of the orthogonal complement inKerT of 〈φ〉. This is the condition imposed onψ in

this situation.
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In the latter case the equationTψ = ae1 has solutions if and only ifa = 0.

If dim KerT0 = 1, the condition(T0α, α) ∈ W ω imposes thatT0α = ae for some

constanta. Of course we are looking for a solution whena 6= 0, since otherwiseα

is a multiple ofφ. At any rate the projectionψ of α/a to KerT0
⊥ is an element of

W⊥ ⊂ W ω and a generator of the orthogonal complement ofKerT0 in Γ̃T ∩W ω. It

satisfies the two conditions we imposed onψ.

The fact that one can replace the partial derivatives of the switched graphs in the

g1 = (Tψ, ψ) direction by the partial derivatives ofT in theψ direction is a computa-

tion exactly as in4.4.9where we used Lemma4.4.7.

We state now the general case. AndB is again the2k − 1 dimensional ball.

Proposition 4.4.11.LetW ⊂ H be ak − 1 codimensional subspace and letT : B →

BFred be a family of bounded, self-adjoint, Fredholm operators localized at0 with

respect toW . Suppose thatdim KerT0 = p ≤ k. Letφ be a generator ofKerT0 ∩W

and letφ1, . . . , φp−1 be a basis of the orthogonal complement ofφ in KerT0.

The spaceWT := W ∩ RanT0 has dimensionk − p. Let ψ1, . . . , ψk−p be an

orthonormal basis ofP
∣∣∣
(Ker T )⊥

T0
−1(WT ).

Then the intersection number,ǫ0, ofT withZW is the sign of the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈∂1Tφ, φ〉 〈∂2Tφ, φ〉 . . . 〈∂2k−1Tφ, φ〉

Re〈∂1Tφ1, φ〉 Re〈∂2Tφ1, φ〉 . . . Re〈∂2k−1Tφ1, φ〉

. . . . . . . . . . . .

Im〈∂1Tφp−1, φ〉 Im〈∂2Tφp−1, φ〉 . . . Im〈∂2k−1Tφp−1, φ〉

Re〈∂1Tψ1, φ〉 Re〈∂2Tψ1, φ〉 . . . Re〈∂2k−1Tψ1, φ〉

. . . . . . . . . . . .

Im〈∂1Tψk−p, φ〉 Im〈∂2Tψk−p, φ〉 . . . Im〈∂2k−1Tψk−p, φ〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Proof: One only needs to make sense of what the orthogonal complement of KerT0∩W

in Γ̃T ∩W ω is.

If the reader thinks, as we do, that these expressions for thelocal intersection num-

bers do not have a great deal of aesthetic appeal, we will try to make it up by a different

global formula. This formula is not always available but we think it is worth writing it

down.

We make the following definition based on3.4.14

Definition 4.4.12. A smooth familyT : M → BFred of bounded self-adjoint, Fred-

holm operators is called strongly transversal toZk if Γ̃ ◦ T is strongly transversal to

Zk

Lemma 4.4.13.LetdimM = 3. Any smooth familyT : M → BFred can be deformed

to a strongly transversal family toZ2.

Proof: This is just proof of Lemma3.4.17with the addition that one has to make sure

that in the course of deformation one stays insideBFred. This is true because the map

Γ̃ : BFred→ Lag− is open.

Proposition 4.4.14.Let M be a closed, oriented manifold of dimension2k − 1 and

let T : M → BFred be a strongly transversal family toZk. ThenM1 := {m ∈

M | dim KerTm = 1} is a closed, cooriented manifold. Letγ ⊂ M1 × P(H) be the

tautological line bundle overM1 with fiberγm = KerTm. Then

∫

M

F ∗[Zk, ωk] =

∫

M1

c1(γ
∗)k

Proof: This is just Proposition3.4.18formulated in terms of operators.
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We want to describe the coorientation ofM1 in concrete terms. Letm ∈ M1 and

v ∈ TpM \ TpM
1 be a vector. The vectorv is said to be positively oriented if given

a curveα : (−ǫ, ǫ) → M such thatα ∩M1 = m = α(0) andα′(0) = v, the curve

of operatorsT ◦ α has local spectral flow equal to+1. This means that the eigencurve

determined by alpha has a0 eigenvalue at0 and the derivative is positive.

4.5 Intersection for Families of Operators II

The motivating example for this paper was thespectral flow. The idea behind the

spectral flow is very simple although to put it in a general differentiable topological

framework turns out to be a difficult task. Classically, one starts with a family of self-

adjoint, elliptic operatorsAt parameterized by the circle, or by the unit interval. The

elliptic operators have discret eigenvalues and if the family is continuous the eigenval-

ues of the family also vary in continuous families(λj(t))j∈Z called eigencurves. Since

the family is compact only a finite number of eigencurves willbecome zero at some

moment in time. The spectral flow is the difference between the number of eigencurves

that start with a negative and end up with a positive sign and those which start with a

positive and end up with a negative sign. In other words, the spectral flow is a count

with sign of the0-eigenvalues and to such a0-eigenvalue one associates the sign of the

derivative ˙λ(t0) of the eigencurve that contains that0.

In order to make the picture rigorous one has to answer certain questions. What

does it mean for the family of operators to be continuous? There are several possible

answers: in the Riesz topology, in the gap topology or, if oneis dealing with an affine

family of Dirac operators for example then one can use the topology of the underlying

space. Another question is when are the eigencurves differentiable around0. One can
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argue that in order to count those eigencurves that become zero at some moment in

time one does not need differentiability but only continuity (one fixes a finite family

of eigencurves that contains all those that go thru zero and then the spectral flow is

[
∑+(1)−∑−(1)]−[

∑+(0)−∑−(0)] where
∑±(p) is the number of positive/negative

end points of the eigencurves atp ∈ {0, 1}). We are interested in the situations when

one can localize the spectral flow, arguably a more useful method of computation.

If the family At satisfies all the good conditions one wishes then the sign ofλ̇(t0)

coincides with the sign of〈Ȧt0v, v〉 for any vectorv ∈ KerAt0 . Indeed ifAt andλt

are differentiable families of operators then so isBt := At − λt. The correspondence

B → KerB is a differentiable map whendim KerB is constant and so we can, locally

aroundt0, choose a smooth family of unit eigenvectorsvt for At and eigenvalueλt.

That is we have the relation:

Atvt = λtvt

To simplify notations supposet0 = 0. We can differentiate at0 to get:

Ȧ0v0 + A0v̇0 = λ̇0v0
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We notice of course that〈A0v̇0, v0〉 = 0 sinceA0 is self-adjoint. So

〈Ȧ0v0, v0〉 = 〈λ̇0v0, v0〉 = λ̇0

The sign of〈Ȧ0v0, v0〉 does not depend on the choice of the vectorv0 ∈ KerAt0 .

Among the good conditions one wishes ofA is the fact that the derivativėAt makes

sense, which is the case if the operators are bounded, or moregenerally if the family is

affine (see Definition4.1.9). Another useful observation is the fact that, for a smooth

family of bounded or affine operators(At)t∈[0,1], if At0 is an isolated operator with

one-dimensional kernel, meaning thatKerAt = 0 for all t 6= t0 close enough, then

〈Ȧt0v0, v0〉 6= 0 for some vectorv0 ∈ KerAt0 .

These observations lead us to the following definition.

Definition 4.5.1. Let A : [0, 1] → SFred be a smooth (see Definition4.4.1) family of

bounded or affine, self-adjoint, Fredholm operators. The family is said to be in general

position if the following two conditions hold

• There are only a finite number of pointst ∈ [0, 1] such thatKerAt 6= 0.

• For every operatorAt with non-trivial kerneldim KerAt = 1.

Let Z := {t ∈ [0, 1] | KerAt 6= 0}. The local spectral flowat t0 ∈ Z of A is the

sign of the number〈Ȧt0v, v〉 for some vectorv ∈ At0 .

Thespectral flowof the family is the sum of the local flows, i.e.,

∑

t0∈Z

sign〈Ȧt0v, v〉

Proposition 4.5.2.The spectral flow of a family is the Maslov index of the associated

family of switched graphs̃A : [0, 1]→ Lag−.
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Proof: In the bounded case this is just4.4.9for k = 1. The affine case follows the same

line of argument.

When one deals with affine families of operators, the local intersection numbers are

not more complicated than the bounded case. The specific casewe consider are families

of Dirac operators defined on the same domain where we let the connection vary. For

more on Dirac operators see [28] or [34].

Let Cl(M) → M be the bundle of Clifford algebras associated to a compact,

oriented, Riemannian manifold. LetS :→ M be a Cliffford module overM . For

us, this means thatS is a hermitian bundle that comes with a bundle endomorphism

c : Cl(M) → End (S), called Clifford multiplication, which is a unitary Clifford alge-

bra representation in each fiber.

For each hermitian connection∇ onS, compatible with the Levi-Civita connection

onCl(M) one gets a Dirac operator,D∇:

C∞(S) ∇ C∞(T ∗M ⊗ S) c C∞(S)

D∇ := c ◦ ∇

It is a known fact that this operator can be extended to a bounded operator

D∇ : L1,2(S)→ L2(S)

which is self-adjoint, elliptic.

The space of hermitian connections onS, A(S) is an affine space modelled on

Ω1(AdU(S)), which is the set of one forms with values in the bundle associated to

the principal bundle of orthonormal frames ofS, via the adjoint representation. On
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AdU(S) one has a hermitian metric so one can speak ofL2 sections ofT ∗M⊗AdU(S)

and this is exactly whatΩ1(AdU(S)) will represent for us,L2 sections rather than just

smooth ones.

Therefore, once one fixes a hermitian connection, the spaceA(S) becomes a Hilbert

space.

Lemma 4.5.3.The map

D : A(S)→ B(L1,2(S), L2(S)), ∇ 7→ D∇

is differentiable.

Proof: If one fixes a connection∇0 then one gets an induced map:

Ω1(AdU(S))→ B(L2(S), L2(S))

∇−∇0 → D∇ −D∇0 = c(∇−∇0)

This family is clearly differentiable. The rest follows from Lemma4.1.7.

By Theorem4.1.6the associated family of switched graphsΓ̃ ◦D : A(S)→ Lag−

is differentiable. We can actually compute this differential explicitly. In order to do

that let us first remember a classical fact about first-order,elliptic operators, namely the

elliptic estimates. In our case, for example, there exists aconstantC, depending only

on∇ such that for everyφ ∈ D(D∇) one has the inequality:

‖φ‖1,2 ≤ C(‖D∇(φ)‖2 + ‖φ‖2)
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This inequality can be rephrased as saying that the map:

γ : L1,2(S)→ Γ̃D∇
⊂ L2(S)⊕ L2(S), φ→ (D∇φ, φ)

is continuous and therefore an isomorphism of Banach spaces. 1

We compute the differential of̃Γ ◦D at a fixed connection∇0. The result is a map

Ω1(AdU(S))→ Sym (Γ̃D0)

The target space of this map are self-adjoint operators on the switched graph ofD∇0 .

We can identify this space with a subspace ofB(L1,2(S)) via the mapγ.

Sym (Γ̃D∇
)→ B(L1,2(S)), T → γ−1Tγ

Definition 4.5.4. If ∇0 is a fixed connection then the following map

dD
∣∣
0

: Ω1(AdU(S))→ B(L1,2(S)), dD
∣∣
0
(ω) := γ−1d(Γ̃ ◦D)

∣∣
∇0

(ω)γ

is called the(projected) graph differentialof D at∇0.

Lemma 4.5.5.The following relation holds between the graph differential and the dif-

ferential ofD at∇0:

dD
∣∣
0
(ω) = (1 + D2

∇0
)−1c(ω)

Proof: Let ω ∈ Ω1(AdU(S)) be a1-form with values in(AdU(S)) and letDt :=

D∇ 0
+ tc(ω) be the associated affine path of Dirac operators that starts at D∇ 0

. We will

1a useful consequence is that one can change the inequality sign in the elliptic estimates and still get
a true sentence
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denote bẽΓt the switched graph ofDt.

We want to express the switched graph ofDt as the graph of a bounded, self-adjoint,

operator̃Γ0 → Γ̃0. So let:

(Dtx, x) = (D0y, y) + J(D0z, z) = (D0y, y) + (z,−D0z)

wherex, y andz are inL1,2(S). In order to solve the system:

Dtx = D0y + z

x = y −D0z

we will suppose first thatx, y ∈ L2,2(S). Then:

(1 + D0Dt)x = (1 + D2
0)y

(Dt −D0)x = (1 + D2
0)z

Of course,1+D2
0 is an invertible operatorL2,2(S)→ L2(S) and because the association

∇ → D∇ is continuous, so is1 + D0Dt for t small enough. Therefore:

z = (1 + D2
0)

−1(Dt −D0)(1 + D0Dt)
−1(1 + D2

0)y

Notice that the operator on the right hand side is pseudo-differential of order minus one

and as such it can be extended to a continuous operatorL1,2(S)→ L1,2(S). The associ-

ationy → z is the operator̃Γ0 → Γ̃0 seen only after conjugation with the isomorphism

γ.

The derivative att = 0 of this family of operators is exactly the one that appears in

the statement of the lemma.
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Remark 4.5.6.The previous computation is almost exactly the same as the one carried

in Lemma2.2.11. The only thing that is different is the target for the projected graph

differential which is a subspace of the space of bounded operators onL1,2 rather than

L2. This is true more generally for affine families of operatorsand the same relation

between derivatives holds. More precisely, letB be the unit ball in someRn andF :

B → B(H0, H) be a smooth family of self-adjoint Fredholm operators such thatF (b)−

F (0) = Ab ∈ B(H). Then the projection mapP0 : Γ̃F (0) → H0 identifies the switched

graph atF (0) with H0 (with the graph norm) and so the projected graph differential

and the ”differential” ofF satisfy

P−1
0 d(Γ̃ ◦ F )P = (1 + F (0)2)−1dA

Proposition 4.5.7. Let F : Rn → A(S) be a smooth family of Dirac operators as

above, or more generally a family of affine operators. Then the local intersection for-

mulae of section4.4 for bounded operators, still hold with the obvious modifications.

For example, in the case of4.4.10the intersection number is computed by the sign of

the determinant:

∣∣∣∣∣∣∣∣∣∣

〈c(∂1f)φ, φ〉 Re〈c(∂1f)ψ, φ〉 Im〈c(∂1f)ψ, φ〉

〈c(∂2f)φ, φ〉 Re〈c(∂2f)ψ, φ〉 Im〈c(∂2f)ψ, φ〉

〈c(∂3f)φ, φ〉 Re〈c(∂3f)ψ, φ〉 Im〈c(∂3f)ψ, φ〉

∣∣∣∣∣∣∣∣∣∣

where〈φ〉 = Ker D0 ∩ 〈e〉⊥ andψ satisfies the relations:






ψ 6= 0

〈φ, ψ〉 = 0

D0ψ = ae1

(4.5.1)
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for some constanta, which is0 whenKerD0 is two dimensional.

Proof: The passing from the graph derivative to the operator derivative is given by the

previous lemma. The rest goes just as in the proof of Proposition 4.4.9.
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CHAPTER 5

APPENDIX

5.1 Representatives of cohomology classes in Banach manifolds

We describe in this appendix how certain stratified spaces inan infinite Banach

manifold define cohomology classes. Our presentation is inspired from the work of B.

Iversen [19] and G. Ruget [37].

In the sequel our spaces will be assumed paracompact. In factour ambient spaceX

is assumed to be a metric Banach manifold. For such a space,Hk(X) will denote the

(Čech) cohomology of a topological spaceX with coefficients in the constant sheafZ.

If the space is locally contractible then the cohomology with coefficients in the constant

sheafZ can be identified with singular cohomology. see [8, Chap.III].

For a closed subsetC ⊂ X we denote byH•
C(X) the local homology ofX alongC

(see [19, Sec. II.9]). IfS andX are locally contractible then,

H•
C(X) ∼= H•

sing(X,X \ C).

One important property of local cohomology is [19, Prop. II.9.5] :

Proposition 5.1.1(excision exact sequence). LetC1 ⊃ C2 be two closed subsets of the

topological spaceX. Then one has the following long exact sequence:

→ Hk
C2

(X)→ Hk
C1

(X)→ Hk
C1/C2

(X/C2)→ Hk+1
C2

(X)→
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Remark 5.1.2. WhenC1 andC2 are locally contractible then the previous sequence

corresponds to the long exact sequence in singular cohomology associated to the triple

(X,X \ C1, X \ C2).

For any closed subsetC we denote byHk
C the sheaf onX associated to the presheaf

H̃k
C such that for any open setU ⊂ X we have

Γ(U ∩ C, H̃k
C) = Hk

C∩U(U).

For everyx ∈ X the stalk atx of Hk
C is denoted byHk

C(x) and can be described by the

inductive limit

Hk
C(x) := lim−→

U∋x

Hk
U∩C(U),

whereU runs through all the open neighborhoods ofx. Notice that this sheaf has

support onC and because of that we have:

H∗(X,Hk
C) ≃ H∗(C, i−1Hk

C)

Definition 5.1.3. The closed spaceC is said to havehomological codimension inX at

leastc if and only if Hk
C = 0, ∀k < c. We write this as

codimh
X(C) ≥ c.

Observe that the above definition is local, i.e.,codimh
X(C) ≥ c if and only if for

some open coverU of X we have

codimh
U(U ∩ C) ≥ c, for anyU ∈ U.
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Definition 5.1.4. A closed subsetC →֒ X is said to benormally nonsingular(or NN)

of codimensionc if the following holds.

• For any pointw ∈ C there exists a neighborhoodN of w in X and a homeomor-

phism of pairs

(N,N ∩ C)−→
(

Rc × (N ∩ C), {0} ×N ∩ C
)
.

Remark 5.1.5. If C →֒ X is NN of codimensionc thencodimh
X C ≥ c.

Remark 5.1.6. If C →֒ X is submanifold ofX of codimensionc andC is closed as a

subset ofX thenC is NN of codimensionc. In particular,codimh
X C ≥ c.

If C →֒ X is NN of codimensionc the sheavesHk
C are trivial if k 6= c, while if

k = c the sheafHc
C is locally isomorphic to the constant sheafZ. We say thatHc

C is the

co-orientation sheafof C →֒ X and we will denote it byΩC.

The Grothendieck spectral sequence for local cohomology (see [11, Remark 2.3.16])

converges toH•
C(X) and itsE2 term is given by

Ep,q
2 = Hp(X,Hq

C) =





0 q ≤ c

Hp(C,ΩC) q = c.

The following extension property is a consequence of has been just said

Proposition 5.1.7(Extension property). If codimh
X(S) ≥ c then, for any closed subset

C ⊃ S and anyq < c− 1, the restriction map

Hq
C
(X)→ Hq

(C\S)(X \ C)

is an isomorphism. We will refer to its inverse as theextension acrossS.
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Proof: By what has just been saidHq
S
(X) = 0 for all q < c. The rest is taken care by

the excision exact sequence (Proposition5.1.1).

Corollary 5.1.8. If codimh
X(S) ≥ c, then the for anyq < c− 1 the restriction map

Hq(X)→ Hq(X \ S)

is an isomorphism.

The Grothendieck spectral sequence gives aThom isomorphism

TC : H•(C,ΩC)→ H•
C(X)[c] := H•+c

C (X).

The composition of this morphism with the natural morphismeX,C : H•
C(X)→ H•(X)

is theGysin map

γC : H•(C,ΩC)→ H•(X)[c].

Definition 5.1.9. SupposeC →֒ X is NN of codimensionc in X.

(a) The setC is calledcoorientablein X if the co-orientation sheafΩC is isomorphic

to the constant sheafZ with stalkZ at every point. Aco-orientationof the embedding

C →֒ X is a choice of an isomorphismZ → ΩC. A coorientation is uniquely deter-

mined by an elementωC ∈ H0(C,ΩC) which, viewed as a section ofΩC, it has the

property thatωC(w) generates the stalkΩC(w) for anyw ∈ C.

(b) For any coorientationωC of C we define by

ΦC := TC(ωC) ∈ Hc
C(X), [C]X := γX,C(ωC) ∈ Hc(X).

The classΦC is called theThom classof the (normally nonsingular) embeddingC →֒
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X, and theelement[C]X is called thecohomology classdetermined by the normally

nonsingular co-oriented embeddingC →֒ X.

Proposition 5.1.10.SupposeC →֒ X is aNN subset ofX of codimensionc andS ⊂ C

is a closed subset ofC such that

codimh
X(S) ≥ c + 2,

such theNN subsetC \X is coorientable inX \ S. ThenC is coorientable inX and

any coorientation ofC \ S in X \ S extends to a coorientation ofC in X.

Proof: Proposition5.1.7gives an isomorphism

Hc
C(X)→ Hc

C\S(X \ S).

which fits in a commutative diagram

H0(C,ΩC)

τ

H0
(
C \ S,ΩC |C\S

)

τ

Hc
C(X) Hc

(X\S)∩C
(X \ S)

where we notice that the restriction toC \ S of the coorientation sheafΩC is the coori-

entation sheafΩ(X\S)/(C\S). The vertical arrows are the Thom isomorphisms. Since the

bottom horizontal arrow is an isomorphism, we deduce that the same is true for the top

one. In other words, the restriction morphism

Γ(W,ΩC)→ Γ(C \ S,ΩC |C\S)

is an isomorphism.

150



The coorientation ofC \ S in X \ S determines a sectionωC\S of ΩC overC \ S

such that for everyw ∈ C \ S the elementωC\S(w) is a generator of the stalkΩC(w).

From the above diagram we deduce that there exists a unique sectionωC of ΩC overC

that restricts toωC\S. We want to show that for everyw ∈ C, the elementωC(w) is a

generator of the stalkΩC(w). We want to check this whenw ∈ S ⊂ C.

Sincecodimh
X S ≥ c+ 2 we deduce thatS has empty interior as a subset ofC. This

is because ifs were a point in the interior ofS thenHc
X/S

(s) ∼= Hc
C(s) 6= 0. Choose

a small, connected open neighborhoodU of w in C such that the restriction ofΩC is

trivial. This is possible since the sheafΩC is trivial. Note thatU \ S 6= ∅.

On the neighborhoodU the sections ofΩC can be identified with locally constant

functionsU → Z. SinceU is connected, any such function must be constant. Thus

ωC|U can be identified with a constant functionU → Z whose value at any point

w′ ∈ U \ S is a generator ofZ. This shows thatωC is indeed a coorientation ofC in

X.

The normal nonsingularity is still a pretty strong restriction. We want to explain

how to associate a cohomology class to a closed subset that slightly violates the normal

nonsingularity condition.

Definition 5.1.11. A closed subsetC ⊂ X is called quasi normally nonsingular (for

short QNN) of codimensionc if there exists a closed subsetS ⊂ C such that the follow-

ing hold.

• codimh
X(S) ≥ c+ 2, and

• C \ S is a NN closed subset ofX \ S of codimensionc.

The setS is calleda singular locusfor the embeddingC →֒ X.
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Remark 5.1.12.The singular locus in the above definitionis not uniquely determined

by C. For example ifS is a singular locus andw ∈ C \ S thenS ∪ {w} is a singular

locus ifdim C > 1.

SupposeC →֒ X is a QNN subset ofX of codimensionc. Fix a singular locus

S ⊂ C. By Proposition5.1.7and Corollary5.1.8we have thatHk
S(X) = 0, ∀k ≤ c+1,

and an isomorphism

Hc
C(X)→ Hc

(C\S)(X \ S).

We denote byES its inverse, and we refer to it as theextension acrossS. If the singular

locus S is such thatC \ S is coorientable inX \ S, then a choice of coorientation

defines an elementωC,S ∈ H0
(
C \S,Ω(X\S)|(C\S)

)
. We denote byΦX,C,S the element in

Hc(X,X \ C) that corresponds toωC,S via the isomorphism

H0(C \ S,Ω(X\S)/(C\S))
T−→ Hc

(C\S)(X \ S)
ES−→ Hc

C(X).

Proposition 5.1.13.SupposeW →֒ X is aQNN of codimensionc, such that for some

choice of singular locusS0 theNN setC \ S0 is coorientable inX \ S0. Then for any

other choice of singular locusS1, such that

codimh
X(S0 ∩ S1) ≥ c+ 2

theNN setC\S1 is coorientable inX \S1, and any coorientationω0 of C\S0 induces

a unique coorientationω1 ofC\S1 which agrees withω0 onC\(S0∪S1). Moreover, the

classΦX,C,S0 ∈ Hc
C(X) determined byω0 coincides with the classΦX,C,S1 ∈ Hc

C(X)

determined byω1.

Proof: We carry the proof in three steps.
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Step 1. If S0 ⊂ S1 are singular loci ofC, andC \ S1 is coorientable inX \ S0, then

any coorientation ofC \ S1 extends to a unique coorientation ofC \ S0 and we have an

equality between the corresponding elements inHc
C(X)

ΦX,C,S0 = ΦX,C,S1.

SetX ′ = X \ S0, C′ = C \ S0, S′ = S1 \ S0. ThenS1 \ S0 is closed inC \ S0 and

codimh
X\S0

(S1 \ S0) = codimh
X S1 ≥ c+ 2.

Proposition5.1.10implies that any coorientation ofC′ \ S1 extends to a coorientation

of C′ in X ′. Moreover, the diagram below is commutative

Hc
C\S1

(X \ S1)
ES1\S0

ES1

Hc
C\S0

(X \ S0)

ES0

Hc
C(X)

We only need to check thatES′ maps the Thom class of the embeddingC′\S′ →֒ X ′\S′

to the Thom class of the embeddingC′ →֒ X ′. This follows from the functoriality of the

Grothendieck spectral sequence which in this special case can be rephrased as saying

that the Thom isomorphism is compatible with the restriction to open sets.

Step 2.If S0 andS1 are singular loci such thatcodimh
X(S0 ∩ S1) ≥ c+ 2, thenS0 ∪ S1

is a singular locus.Observe that for everyx ∈ X we have a Mayer-Vietoris long exact

sequence (see [24, Eq. (2.6.29)])

. . .→ Hk
X\(S0∩S1)(x)→ Hk

X\S0
(x)⊕Hk

X\S1
(x)→ Hk

X\(S0∪S1)(x)→ Hk+1
X\(S0∩S1)(x)→ . . . ,
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where for any closed subsetC ⊂ X we denoted byHk
X\C(x) the stalk atx of the local

cohomology sheafHk
X\C .

Step 3. SupposeS0 and S1 are singular loci such thatC \ S0 is coorientable and

codimh
X(S0 ∩ S1) ≥ c + 2. Fix a coorientationω0 denote byΦX,C,S0 the element in

Hc
C(X) determined byω0.

The coorientationω0 restricts to a coorientationω01 of C\ (S0∪S1) that determines

an elementΦX,C,S0∪S1 ∈ Hc
C(X). From Step 1 we deduce

ΦX,C,S0 = ΦX,C,S0∪S1 .

By Proposition5.1.10the coorientationω01 extends to a unique coorientationω1 of

C\S1 and from Step 1 we conclude that the elementΦX,C,S1 determined byω1 coincides

with the elementΦX,C,(S0∪S1) determined byω01.

Definition 5.1.14. (a) If C isQNN of codimensionc in X, C is said to becoorientable

if there exists a singular locusS →֒ C such that theNN subsetC \ S →֒ X \ S is

coorientable inX \ S. A coorientation ofC is defined to be a coorientation ofC \ S in

X \ S.

(b) If C isQNN of codimensionc in X, then two singular lociS, S′ of C are said to be

equivalent if there exists a sequence of singular loci

S = S0, . . . , Sn = S′

such that

codimh
X(Si−1 ∩ Si) ≥ c+ 2, ∀i = 1, . . . , n.

From Proposition5.1.13we deduce that ifC is a co-oriented QNN subset of codi-
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mensionc in X, then thecohomologyclass

[C]X := eX,C

(
ΦX,C,S

)
∈ Hc(X) (5.1.1)

depends only on the equivalence class of singular locusS and it is called thecohomology

class determined byC and the (equivalence class of the) singular locusS. AboveeX,C

denotes the natural extension morphismHc
C(X)→ Hc(X).

The next results follows immediately from the above definitions.

Proposition 5.1.15.SupposeX,Y are smooth Banach manifolds,E ⊂ X is a closed

subset such thatcodimh
X E ≥ c+2, C →֒ Y is a cooriented QNN of codimensionc, and

f : X \ E → Y is a smooth map with the following properties.

• There exists a singular locusS for C such that

codimh
X

(
f−1(S) ∪E

)
≥ c+ 2.

• The restriction off toX \ (f−1(S) ∪E) is transversal toC \ S.

Then the following hold.

(a) The subsetf−1(C) is a coorientedQNN subspace ofX \ E of codimensionc

with singular locusf−1(S).

(b) The subsetf−1(C)∪E is a canonically orientedQNN subspace of codimension

c in X with sinylar locusf−1(S) ∪ E .

(c) The canonical inclusioni : X \ E → X induces an isomorphism

i∗ : Hc(X)→ Hc(X \ E)
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and

i∗[f−1(C) ∪ E]X = [f−1(C)]X\E = f ∗[C]Y.

TheQNN subspaces of a Banach manifold may be difficult to recognize due to the

homological codimension conditions. We recall now a definition (see3.2.4)

Definition 5.1.16.A quasi-submanifoldofX of codimensionc is a closed subsetF ⊂

X together with a decreasing filtration by closed subsets

F = F0 ⊃ F1 ⊃ F2 ⊃ F3 ⊂ · · ·

such that the following hold.

• F1 = F2.

• ThestrataSk = Fk \ Fk+1, are submanifolds ofX of codimensionk + c.

The quasi-submanifold is calledcoorientableif S0 is coorientable. Acoorientation

of a quasi-submanifold is then a coorientation of its top stratum.

The stratification is said to be finite if there exists ann such thatFn = ∅.

(b) If f : Y→ X is a smooth map, andF is a quasi-submanifold ofX, thenf is said to

be transversal toF if it is transversal to every stratum ofF.

Proposition 5.1.17.Any quasi-submanifoldF = F0 ⊃ F1 = F2 ⊃ · · · of codimension

c in a Banach manifoldX is aQNN subset of codimensionc with singular locusF2.

Proof: It suffices to prove that

codimh
X F0 ≥ c and codimh

X F2 ≥ c+ 2.
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The fact thatF1 = F2 plays no role in the proof of these inequalities so we prove only

the first one.

It is enough to show that givenw ∈ F0

Hk(U,U \ F0) = 0 ∀k ≤ c

for all small open neighborhoodsU of w. But for U open small enoughU ∩ F0 is

a stratified space with a finite stratification because there exists ann such thatw ∈

Fn \ Fn+1 andFn+1 is closed. So without restriction of the generality we can suppose

the that the stratification is finite.

We now use induction on the number of strata and the excision exact sequence

for local cohomology to prove the result. Indeed sayFn+1 = ∅. Then there exists a

maximalN < n such thatFN is a nonempty, closed submanifold of codimensionc+N

in X. ThereforeFN is normally non-singular and so it has homological codimension at

leastc + N . Suppose we have proved thatF1 hascodimh ≥ c + 1. Then in the long

exact sequence:

Hk(X,X \ F1)→ Hk(X,X \ F0)→ Hk(X \ F1, X \ F0)→ Hk+1(X,X \ F1)

the first and the last group are zero for allk < c. On the other hand

Hk(X \ F1, X \ F0) = Hk(X \ F1, (X \ F1) \ (F0 \ F1))

Now F0 \F1 is a closed submanifold ofX \F1 of codimensionc so it has homological

codimension at leastc so the previous group also vanishes fork < c and this finishes

the proof.
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We summarize the previous discussion. Any cooriented, codimensionc quasi-

submanifoldF →֒ X determines

i) a Thom classΦF ∈ Hc
F(X);

ii) a cohomology class[F]X ∈ Hc(X,Z).

It is clear the the preimage of a cooriented quasi-submanifold F →֒ X of codimen-

sionc via a smooth mapF : Y→ X transversal to the strata ofF is a quasi-submanifold

of Y of codimensionc equipped with a natural coorientation and

[
F−1(F)

]Y
= F ∗

(
[F]X

)
.

In finite dimensions the cohomology class associated to a cooriented

quasi-submanifold class is intimately related to Poincar´e duality. For any locally com-

pact spaceX we denote byHBM
• (X) theBorel-Moore homology. In the particular case

whenX admits a compactificationX such that the pair(X,X) is a CW-pair then one

can take the definition of the Borel-Moore homology to be

HBM
k (X) := Hk(X,X \X)

where on the left we mean singular homology. For example ifX is a compact differen-

tiable manifold the Borel-Moore homology coincides with the usual singular homology.

The ”classical” Poincare-Alexander duality (see for example Th. 8.3 in [9]) says

that for an oriented manifoldX of dimensionn and a compact subsetK ⊂ X the

following groups are isomorphic:

Hp(K) ≃ Hn−p(X,X \K)
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where on the left we havěCech cohomology and on the right we have singular coho-

mology. Suppose now we want to switch the role of homology andcohomology in the

previous isomorphism. Then Poincaré duality (see Th. IX. 4.7 in [19]) has the form:

Hp
K(X) = Hp(X,X \K) ≃ HBM

n−p(K)

for any closed subsetK ⊂ X.

WhenK = X Poincaré duality takes the form:

Hp(X) = HBM
n−p(X)

LetX be an oriented smooth manifold of dimensionn, with orientation class[X] ∈

HBM
n (X), andF →֒ X a cooriented quasi-submanifold ofX of codimensionc. The

coorientation ofF defines an orientation of the top stratumF◦ := F \ F2 of F and thus

a canonical element

µF◦ ∈ HBM
n−c (F

◦).

On the other hand we have:

Proposition 5.1.18.LetF is a quasi-submanifold of codimensionc inside an-dimensional

manifoldX. Then

HBM
k (F) = 0 ∀k > n− c

Proof: This follows by induction on strata from the long exact sequence:

HBM
k (F1)→ HBM

k (F)→ HBM
k (F \ F1)→ HBM

k−1 (F1)

and from the fact that the Borel-Moore homology of ap-dimensional vanishes in di-

mension bigger thenp.
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We deduce that

HBM
n−c (F)→ HBM

n−c (F
◦)

is an isomorphism and thus there exists an elementµF ∈ HBM
n−c (F) that maps toµF◦. If

i denotes the canonical inclusionF →֒ X, we obtain an element

[F]X := i∗[µF] ∈ HBM
n−c (X)

called the (Borel-Moore) homology class determined by the cooriented

quasi-submanifoldF.

Proposition 5.1.19.The classµF ∈ HBM
n−c (F) is Poincaŕe dual to the Thom classΦF ∈

Hc
F(X) and the class[F]X ∈ HBM

n−c (X) is Poincaŕe dual to[F]X ∈ Hc
F(X).

Proof: see [19] Ch. X.4.

The way this relates with the theory of analytic cycles whichwas used by Nico-

laescu, [29] to construct Poincaré duals to the generators of the cohomology ring of

U(n) is as follows. LetX be a compact subanalytic manifold and letF be a quasi-

submanifold which is subanalytic. We can choose a triangulation of X that is compati-

ble with the stratification

X ⊃ F ⊃ F2 ⊃ . . .

After some barycentric subdivisions we can assume that a simplicial neighborhood of

F2 in F deformation retracts toF2. In this case we have

HBM
n−c (F

◦) = Hn−c(F,F
2)

The orientation onF◦ induces orientations on the top dimensional simplices contained

in F. The codimension condition onF◦ insures that fact that the sum of these top
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dimensional simplices with orientations defines a relativehomology class inHn−c as

its boundary lies in the simplicial neighborhood and then − c − 1-homology of this

negihborhood is zero.

R. Hardt[16, 17] has described another model of homology based on subanalytic

currents. His theory satisfies the Eilenberg-Steenrod axioms and thus, for any compact

triangulated subanalytic setX we have a canonical isomorphism

Hsimplicial
∗ (X)→ HHardt

∗ (X)

Via the above isomorphism the class[F]X coincides with the current of integration over

F◦.
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