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Introduction

The concepts of convergence and divergence, while not defined explicitly until early 19th
century, have been studied since the third century BC. Throughout this time, mathemati-
cians have largely focused upon convergent sequences and series, having seemingly little
analytical reason to study series that diverged. However, as the area of mathematical
analysis developed over the past few centuries, studying properties of divergent series and
methods that sum divergent series has produced results that are very useful in the areas of
harmonic analysis, number theory, and combinatorics/probability theory. This paper is es-
sentially an investigation of such methods–called summation methods–and includes classical
examples, as well as proofs of general properties about these methods.

The first section of the paper contains definitions and basic terminology used through-
out the paper, as well as a brief commentary on summation methods and the divergent
series to which they are applied. Since all the summation methods within this paper will
all essentially involve the process of averaging, a definition of weighted averaging is also
provided.

Within section two of the paper, we present classical examples of summation methods,
starting with the identity summation method. Next, the summation method involving
standard averaging by arithmetic means, called the Cesàro method, is discussed. After
this point, more involved summation methods are discussed at length, including Hölder
methods, higher order Cesàro means, and the Euler method. For each of these summation
methods, its corresponding collection of averaging weights can be organized as an infinite
matrix, and is listed explicitly as such when possible. These matrices are afterwards referred
to as “averaging” matrices.

In the latter part of this section, we present three theorems pertaining to averaging
matrices–the first states that the product of any two averaging matrices will also be an av-
eraging matrix. The second theorem gives a necessary and sufficient condition that ensures
a matrix will be “regular”–that is, it will not affect the limit of series that is convergent in
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the normal sense–a property that is typically desirable in summation methods. Finally we
offer a theorem that proves the product of two regular averaging matrices is also a regular
averaging matrix.

The section is concluded with a discussion of a summation method unlike those mentioned
before. This method, called the Abel method, is a less obvious averaging method whose
collection weights cannot be organized within an infinite matrix. Rather, to each real
number in the interval (0, 1) there corresponds a sequence of averaging weights–thus, we
have a continuous, uncountable collection of weights for the Abel method.

The third section of the paper includes two Abelian theorems. An Abelian theorem
relates the relative “strengths” of two specific summation methods–we say that a summation
method X is “stronger” than another method Y, if it sums all Y-summable series and
possibly more. The first Abelian theorem included in the section states that the Abel
method is stronger than the Cesàro method, and the second that the Cesàro method is
stronger than the identity method (convergence in the normal sense).

The final section of the paper contains two Tauberian theorems, which are partial con-
verses to the Abelian theorems. That is, given summation methods X and Y with X stronger
than Y, a Tauberian theorem specifies what additional properties a Y-summable series must
possess to be X-summable as well. The two Tauberian theorems included in this section
are exactly the partial converses to the two Abelian theorems listed in section three. The
proofs of the Tauberian theorems require the most sophisticated mathematics seen within
this dissertation, and are quite involved. For further information regarding this topic, the
reader is encouraged to turn to the text that was central in the writing of this paper, G.H.
Hardy’s “Divergent Series”.

I would like to take this opportunity to thank the University of Notre Dame Math De-
partment for their consistent support throughout the writing of this thesis, and my entire
time as an undergraduate at Notre Dame. I am grateful to the many kind and encouraging
faculty members within Hayes-Healy that have taught and guided me over the past four
years. I would like to especially thank Prof. Liviu Nicolaescu, who over the past two years
has sacrificed much of his time to work with me to sharpen my mathematical skills and
develop the very paper that you are currently reading. Throughout my correspondence
with him, Liviu always remained enthusiastic, interested, and generous, and I am thankful
to have had him as an advisor.

1. The Basics

We begin by briefly covering basic concepts involving sequences and series, as well as
defining general terminology. Given any series,

∑
k≥0 ak, we say that such a series converges

if the sequence of partial sums sn =
∑n

k≥0 ak converges to some limit as n approaches
infinity.

For every set A we denote by RA the set of functions A→ R. We define

Seq := RN,

where N denotes the set of non-negative integers. Denote by Seqc the subspace of Seq
consisting of converging sequences. We regard the limit of a convergent sequence as a linear
map lim : Seqc → R.

Definition 1.1. A summation method is a quadruple (T,X, U, u0) where
• X is a subspace of Seq,
• U is a topological space, u0 ∈ U ,
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• T is a linear operator T : X→ RU∗ , U∗ = U \ {u0}
such that the following hold:
(a) Seqc ⊂ X

(b) For any sequence s ∈ X, the functions Ts : U∗ → R has a finite limit at u0,
Typically, we will refer to the (T,X, U, u0) method as the T-method. The vector space

X is called the space of T-convergent sequences. The method T is said to be regular if
∀s ∈ Seqc we have limn→∞ s = limu→u0 Ts(u) ut

For any summation method T discussed within this paper, consisting of the quadruple
(T,X, U, u0) as stated above, the topological space U will be one of the following two types.

In the first case, we take U to be the compactification

U = N := N ∪ {∞}.

the transformation T takes a sequence, say s, to another sequence, call it s′. In this case,
we are interested in investigating the limit of the transformed sequence at infinity. Thus,
for any summation method with U = N, u0 =∞, (i.e. limu→u0 Ts(u) = limu→∞ Ts(u)).

In the other case, where we have a summation method T with topological space U = [0, 1],
the transformation T takes a sequence s to a function Ts : [0, 1)→ R. In this case, u0 = 1,
and we investigate the limu→1− Ts(u).

As indicated above, since T is a summation method, if s converges to a finite limit at
infinity, Ts also converges to a finite limit at u0. Moreover, s may be divergent, yet Ts may
converge to a finite limit at u0. Naturally, we tend to think of sequences which converge to a
finite limit as “well-behaved” or “tame”, while we think of divergent sequences as disordered
or wild. Since a summation method has the ability to transform a divergent sequence into
a function that possesses a finite limit at infinity, while not disrupting the finite limit of a
sequence that is already convergent, it is natural to think of T as a “taming”-transformation.

Remark 1.2. Note that there exists a canonical bijection between any sequence, say an,
and its series

∑
k≥0 ak. Namely to the series

∑
k≥0 ak we associate the sequence of partial

sums

sn =
n∑
k=0

ak, ∀n ≥ 0

Conversely, to the sequence s(n) we associate the series
n∑
k=0

ak = sn, a0 = s0, an = sn − sn−1, ∀n ≥ 1.

And so, while each method actually operates upon a sequence, we will think of that sequence
as the sequence of partial sums of a series. Thus we see the reason for calling such processes
summation methods. ut

All of the summation-transformations within this paper will be obtained by averaging.
For every fixed u ∈ U∗ we will consider a sequence of weights:

w(u) = w0(u), w1(u), ..., wn(u), ...

As a true weighted-average, the sequence satisfies the following two properties:

wn(u) ≥ 0, ∀n, (∗)



4 JACK ENYEART∑
n≥0

wn(u) = 1, ∀u (∗∗)

Given any sequence s = s0, s1, . . . , sn, . . ., we form its averages

Ts(u) = w0(u)s0 + w1(u)s1 + . . .+ wn(u)sn + . . . =
∑
n≥0

wn(u)sn

If limu→u0 Ts(u) = c, where c is finite, then we say that s is T-convergent and
∑
ak is

T-summable, with T-limit c.

+ While within this paper we will apply summation methods directly to given sequences,
it is important that the reader keep in mind the relationship between sequences and series,
and the series that the sequence originates from.

- Notation Let f,g be real functions.
• f ∼ g if and only if

lim
n→∞

f(n)
g(n)

= 1

• f(n) = O(g(n)) as n→∞ if and only if there exists M > 0 and N ∈ R such that

|f(n)| ≤M |g(n)| ∀n > N

• f(n) = o(g(n)) if and only if

lim
n→∞

f(n)
g(n)

= 0

2. Examples of summation techniques

When U∗ = N, the collection of weights {w(u)}u∈U∗ can be organized as an infinite matrix.
The collection {w(u)} occupies the uth row of the infinite matrix.

Definition 2.1 (Averaging Matrix). Let M be an infinite square matrix, with entries
M(ij) = mij where i corresponds to row, and j to column. We call M an averaging matrix
if it satisfies the following properties.

mij ≥ 0, ∀i, j ∈ N. (2.1a)∑
j≥0

mij = 1, ∀i ∈ N. (2.1b)

ut

Note: row/column indices of matrices will start with 0, and increase as usual. We will
now give several examples of standard summation methods that can be represented by
averaging matrices. We refer [1] for a wealth of many other examples.

Example 2.2 (The Identity summation method). Let I be the identity map Seq → Seq.
Here we take U to be the compactification

U = N := N ∪ {∞}.
Then u0 = ∞, U∗ = N. We define the family of weights used in this trivial method as
follows:

wn(u) =

{
0, if n 6= u;
1, if n = u.
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Therefore, I is represented by the infinite identity matrix:

I =


1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
... · · ·


To calculate Is, we write s as an infinite column vector and multiply:

Is =


1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
... · · ·



s0
s1
s2
...


Clearly Is = s, and thus, limu→∞ Is(u) = limu→∞ su, so the I-convergent sequences are

sequences that converge in the normal sense, just as we would expect. ut

Example 2.3 (Cesàro method). The Cesàro method uses standard averaging, and is the
most simple non-trivial summation method. The weights are evenly distributed, and are
defined as follows:

wn(u) =

{
1

u+1 , if n ≤ u;
0, if n > u.

which can be represented by the following infinite averaging matrix,

C =



1 0 0 0 · · ·

1
2

1
2 0 0 · · ·

1
3

1
3

1
3 0 · · ·

...
...

...
. . .

...

1
n

1
n

1
n · · ·

...
...

...
...

...
...


Applying the Cesàro method to any sequence s yields the following transformed sequence.

Cs = s0,
s0 + s1

2
,
s0 + s1 + s2

3
, · · ·

So in general:

Cs(u) =
1

u+ 1

u∑
i=0

si

If the sequence Cs is convergent, then the sequence s is called (C, 1)-convergent and the
limit is called the (C, 1)-value of the sequence. Additionally, the series

∑
k=0 ak that bijects

with the sequence s is called (C, 1)-summable. ut
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Example 2.4 (Hölder means). Hölder methods are a generalization of the Cesàro method.
The kth Hölder method, referred to as the Hk method, is described by applying the Cesàro
method k successive times to a given sequence. Thus, the infinite matrix that describes the
weights for the kth Hölder method is given by Ck. The general expression for the weights
of the kth Hölder method will not be listed explicitly, as this expression is rather involved.
However, the following theorem ensures that all the rows of the matrix Ci will satisfy the
two necessary weighting properties, (2.1a) and (2.1b).

ut

Theorem 2.5. If A and B are both lower-triangular averaging matrices, then AB will be
a lower-triangular averaging matrix as well.

Proof. Since A(ij) = aij ≥ 0 and B(ij) = bij ≥ 0 ∀i, j ∈ N, it is obvious that AB(ij) ≥ 0
∀i, j ∈ N. It is also clear that lower-triangularity is preserved in matrix multiplication.
Thus, we need only show that AB satisfies (2.1b).

Since A and B satisfy property (2.1b) individually, and are lower triangular we deduce

∑
j≥0

aij =
i∑

j=0

aij =
∑
j≥0

bij =
i∑

j=0

bij = 1 ∀i.

By matrix multiplication:

AB(ij) =
i∑

k=0

aikbkj

Since AB is lower-triangular, the sum of the elements on the ith row of AB, for any i, is
expressed as:∑

j≥0

AB(ij) =
i∑

j=0

AB(ij) =
i∑

j=0

i∑
k=0

aikbkj =
( i∑
k=0

aik

)( i∑
j=0

bkj

)
= 1, ∀i.

This shows that AB is also an averaging matrix. ut

Thus, according to the previous theorem, the space of lower-triangular averaging matrices
is closed under multiplication. There are other interesting properties of averaging matrices
that are preserved under multiplication, and we will discuss these later in the paper.

Example 2.6 (Cesàro means). Multiplication by the matrix C above is equivalent to taking
a standard average, which essentially involves two steps: a summation, and then a division.
In this way, the Hölder method can be thought of process of repetitive averaging–that
is, a summation, followed by a division, followed by a summation, followed by a division,
etc. While the Hölder method involves alternating between the process of summation and
division, the Cesàro method involves a finite amount of summations performed successively,
followed by only a single division. Although perhaps not as apparent as in the case of
the Hölder method, the Cesàro method is indeed an averaging method–a fact that can be
verified through investigation of its weighting sequences. To introduce the general Cesàro
method, we will first define a few terms. Given any sequence s = s0, s1, . . . , sn, . . ., we
define

S1
n = s0 + s1 + s2 + . . .+ sn
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and define Skn by the follow recursion relation:

Skn = Sk−1
0 + Sk−1

1 + . . .+ Sk−1
n

We now go through the following steps to describe the weighting sequence of the Cesàro
method and explain the need to define the above terms. Consider the generating functions:∑

n≥0

S1
nx

n = (1 + x+ x2 + . . .)
∑
n≥0

snx
n = (1− x)−1

∑
n≥0

snx
n

⇒ (1− x)
∑
n≥0

S1
nx

n =
∑
n≥0

snx
n

Similarly,

(1− x)
∑
n≥0

S2
nx

n =
∑
n≥0

S1
nx

n,

so that,

(1− x)2
∑
n≥0

S2
nx

n =
∑
n≥0

snx
n

Iterating the above procedure we obtain the following identity.

(1− x)k
∑
n≥0

Sknx
n =

∑
n≥0

snx
n ⇐⇒

∑
n≥0

Sknx
n = (1− x)−k

∑
n≥0

snx
n (2.2)

Taking the (k − 1)st derivative of the equality

(1− x)−1 =
∑
n≥0

xn |x| < 1

we deduce
(k − 1)!
(1− x)k

=
∑
n≥0

n!
(n− k + 1)!

xn−k+1,

i.e.,
1

(1− x)k
=
∑
n≥0

(
n

k − 1

)
xn−k+1

Since the terms in the above sum are 0 for n < (k − 1), we begin the the summation at
n = (k − 1), which yields

1
(1− x)k

=
∑
n≥0

(
n+ k − 1
k − 1

)
xn. (2.3)

Thus, by (2.2) and (2.3):∑
n≥0

Sknx
n = (1− x)−k

∑
n≥0

snx
n =

∑
n≥0

(
n+ k − 1
k − 1

)
xn
∑
n≥0

snx
n.

Hence

Skn =
n∑

m=0

(
n−m+ k − 1

k − 1

)
sm.
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Thus, we can see how to partially construct a matrix to model the weights of the kth Cesàro
method: 

δ0
(
k−1
k−1

)
0 0 0 · · · · · ·

δ1
(
k
k−1

)
δ1
(
k−1
k−1

)
0 0 · · · · · ·

δ2
(
k+1
k−1

)
δ2
(
k
k−1

)
δ2
(
k−1
k−1

)
0 · · · · · ·

...
...

...
...

...
...

δn
(
n+k−1
k−1

)
δn
(
n+k−2
k−1

)
· · · δn

(
k−1
k−1

)
0 · · ·

...
...

...
...

...
...


Now we just need to define the coefficient δn, for each row, to ensure that each row sums
to 1. The sum of the nth row is:

n∑
i=0

δn

(
i+ k − 1
k − 1

)
= δn

{(
k − 1
k − 1

)
+
(

k

k − 1

)
+ . . .+

(
n+ k − 1
k − 1

)}
.

From the classical identity
n∑
i=0

(
i+ k − 1
k − 1

)
=
(
n+ k

k

)
we conclude that if the sum of the nth is 1 if and only if

δn :=
1(
n+k
k

) .
It is worth noting that the denominator of each coefficient δn is exactly the number of terms
of our original sequence that have been summed in each particular row. For example, when
n = 2, we have summed

(
k+1
k−1

)
copies of s(0),

(
k
k−1

)
copies of s(1), and

(
k−1
k−1

)
copies of s(2),

for a total of
(
k+2
k

)
terms–thus, we divide by this number since this is an averaging method.

That being said, we now we have a legitimate sequence of weights for the Cesàro method
that we can write explicitly. The weighting sequence for the kth Cesàro methodis,

wn(u) =

{
δu
(
u−n+k−1

k−1

)
, if n ≤ u;

0, if n > u.

where δu is defined as above. Note that when k = 1, we obtain the sequence of weights
represented by the matrix C given before–thus the 1stCesàro method is equivalent to the
1st Hölder method, as we expected. ut

Example 2.7 (The Euler method). The weights of Euler method also involve binomial
coefficients, yet the distribution of the weights is concentrated toward the middle, rather
than the beginning (as was the case for Cesàro method). For the Euler method, we define
the following weighting system:

wn(u) = εu

(
u

n

)
, where εu :=

1
2u
.
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Thus, the transformation matrix of the Euler Method is the following:

E =



ε0
(
0
0

)
0 0 0 · · · · · ·

ε1
(
1
0

)
ε1
(
1
1

)
0 0 · · · · · ·

ε2
(
2
0

)
ε2
(
2
1

)
ε2
(
2
2

)
0 · · · · · ·

...
...

...
...

...
...

εu
(
u
0

)
εu
(
u
1

)
· · · εu

(
u
u

)
0 · · ·

...
...

...
...

...
...


It is clear that the sum of any row of E is 1, since∑

n≥0

εu

(
u

n

)
=

u∑
n=0

1
2u

(
u

n

)
=

1
2u

u∑
n=0

(
u

n

)
= 1 ∀u.

Given any sequence s, if the limu→∞ Es(u) exists and is finite, then we say that s is
E−convergent and its Euler Sum is (limu→∞ Es(u)).

ut

At this point in the paper, we have seen many examples of averaging methods that were
able to be represented by infinite matrices, and we claimed that these were all legitimate
summation methods. That is, we claimed that they were able to induce convergence in some
divergent sequences, while not affecting the limit of already convergent sequences. We will
now prove this claim, and in fact, elucidate the key properties that determine whether or
not a matrix will be a summation method.

Theorem 2.8 (Characterization of regular averaging matrices). Suppose T is a summation
method given by an averaging matrix (cmn)m,n≥0. Then the summation method is regular if
and only if

lim
m→∞

cmn = 0, ∀n. (2.4)

Proof. First we will prove sufficiency of (2.4). Suppose s is a convergent sequence with limit
s. Define

tm :=
∞∑
n=0

cmnsn.

We want to show that limm→∞ tm = s. Thus, we need to show that

∀ε > 0, ∃M > 0 : |tm − cms| < ε, ∀m > M.

Observe that

|tm − s|
(2.1b)

= |
∞∑
n=0

cmnsn −
∞∑
n=0

cmns| = |
∞∑
n=0

cmn(sn − s)| ≤
∞∑
n=0

|cmn||sn − s|. (2.5)

Since sn → s as n→∞, ∃N > 0 such that

|sn − s| <
ε

2K
, ∀n > N. (2.6)
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We now express the infinite sum on the right hand side of the inequality (2.5) as follows:
∞∑
n=0

|cmn||sn − s| =
N∑
n=0

|cmn||sn − s|+
∞∑
n>N

|cmn||sn − s|

(2.6)

≤
N∑
n=0

|cmn||sn − s|+
ε

2K

∞∑
n>N

|cmn|
(i)

≤
N∑
n=0

|cmn||sn − s|+
ε

2
.

Now consider:
N∑
n=0

|cmn||sn − s| = |cm0||s0 − s|+ |cm1||s1 − s|+ · · ·+ |cmN ||sN − s|

Set
AN := max{|s0 − s|, |s1 − s|, ..., |sN − s|}.

Thus,
N∑
n=0

|cmn||sn − s| ≤ (|cm0|+ |cm1|+ · · ·+ |cmN |)AN

But by (2.4), limm→∞ |cmi| → 0 ∀i. Thus for any i = 0, 1, . . . , N , there exists Mi > 0 such
that

∀m > Mi : |cmi| <
ε

2(N + 1)AN
.

Let
M := max{M0,M1, ...,MN}.

Thus, if m > M then
N∑
n=0

|cmn||sn − s| <
N∑
n=0

ε

2(N + 1)AN
AN =

ε

2

Therefore

|tm − cms| ≤
∞∑
n=0

|cmn||sn − s| =
N∑
n=0

|cmn||sn − s|+
∞∑
n>N

|cmn||sn − s| <
ε

2
+
ε

2
= ε.

This shows that limm→∞ tm = s. We have thus shown the sufficiency of (2.4).
To prove the necessity we argue by contradiction. Thus we assume that T is regular yet

(2.4) is not satisfied. Then there exists N such that the sequence of terms on the N -th
column does not converge to zero. Consider the sequence s = s0, s1, . . . , sn, . . ., where

sn =

{
0, n 6= N ;
1, n = N.

Clearly limn→∞ sn = 0. Thus, since T is regular, limm→∞ Ts = 0. On the other hand, we
have

Ts(m) =
∞∑
n=0

cmnsn = cmNsN = cmN .

Thus.
lim
m→∞

Ts = lim
m→∞

cm,N 6= 0 = lim
n→∞

sn (Contradiction!)

This contradiction implies that (2.4) is necessary
ut
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The reader is now encouraged to revisit the aforementioned averaging method matrices,
and verify that each one is indeed regular–that is, each one satisfies the conditions of
Theorem 2.8.

Now that we specific conditions for regularity, we can give a more general proof of The-
orem 2.5.

Theorem 2.9. If A and B are both regular averaging matrices, then AB will be a regular
averaging matrix as well.

Proof. AB satisfies (2.1a) and (2.1b) automatically, by Theorem 2.5. We need only show
that it satisfies (2.4) listed above.

After matrix multiplication, the entry AB(ij) is given by:

AB(ij) =
i∑

k=0

ai,kbk,j

We want to show that:

lim
i→∞

AB(ij) = 0 ∀j ∈ N

Let j be some fixed column, and let ε > 0 be arbitrarily small. Since B satisfies (iii), we
know that ∃ N > 0 such that bi,j < ε

2 for every i > N .
Since N is finite, we know that

∑N
k=0 bk,j is bounded, so ∃K such that:

N∑
k=0

bk,j < K

Also, A satisfies (2.4), so

∃ M0 : ai,0 <
ε

2K
∀i > M0

∃ M1 : ai,1 <
ε

2K
∀i > M1

...

∃ MN : ai,N <
ε

2K
∀i > MN

Set
M∗ := max{M0,M1, . . . ,MN}.

Now consider:

AB(ij) =
i∑

k=0

ai,kbk,j =
N∑
k=0

ai,kbk,j +
i∑

k>N

ai,kbk,j

For all i > M∗ :
N∑
k=0

ai,kbk,j ≤
ε

2K

N∑
k=0

bk,j ≤
ε

2K
∗K ≤ ε

2

Employing how we’ve defined N, as well as using the fact that
∑

j≥0 ai,j = 1:

i∑
k>N

ai,kbk,j ≤
ε

2

i∑
k>N

ai,k ≤
ε

2
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Thus,

AB(ij) =
i∑

k=0

ai,kbk,j =
N∑
k=0

ai,kbk,j +
i∑

k>N

ai,kbk,j ≤
ε

2
+
ε

2
= ε

⇒ lim
i→∞

AB(ij) = 0.

ut

Example 2.10 (Abel Summation). In this case, U = [0, 1], u0 = 1. For any u ∈ [0, 1), we
let

wn(u) = (1− u)un, ∀n ≥ 0.

In this case, the u− average of a sequence s

(1− u)
∑
n≥0

snu
n

The sequence is called Abel convergent or A− convergent if the limit

lim
n→1−

(1− u)
∑
n≥0

snu
n

exists and is finite.
When sn are the partial sums of the series

∑
n≥0 an , then the notion A − convergence

can be rephrased in a very intuitive way. Denote by a(t) a generating series of the sequence
(an)n≥0.

a(t) =
∑
n≥0

ant
n

Then the generating series of the sequence sn is∑
n≥0

snt
n = (1 + t+ t2 + · · · )

∑
n≥0

ant
n =

1
1− t

∑
n≥0

ant
n.

Hence,

(1− u)
∑
n≥0

snu
n =

∑
n≥0

anu
n

We see that the series
∑

n≥0 an is A-convergent if the following two things happens:

• The series
∑

n≥0 anu
n is convergent for any u ∈ [0, 1).

• The limu→1−
∑

n≥0 anu
n exists and it is finite. This limit is called the Abel sum of

the series.

For example, the alternating series
∑

n≥0(−1)n is A-convergent and its Abel sum is 1
2 .

Indeed, ∑
n≥0

(−1)nun =
∑
n≥0

(−u)n =
1

1 + u
, ∀u ∈ [0, 1).

ut
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3. Abelian theorems

We now prove a theorem that demonstrates how the Abelian Method is indeed stronger
than any Cesàro Method, in the sense that any series that is Cesàro summable is immedi-
ately Abel summable, but not vice-versa.

Theorem 3.1. If the series
∑

n≥0 an is Cesàro summable to S then it is also Abel summable,
with the same sum, S. In other words, if

∑
an = S (C, 1), then

∑
an = S (A).

Proof. The proof of the theorem will follow immediately form the following result.

Lemma 3.2. If dn > 0,
∑
dn =∞,

∑
dnx

n is convergent when 0 ≤ x < 1 and cn ∼ Sdn,
where S 6= 0, then

C(x) =
∑

cnx
n ∼ SD(x) = S

∑
dnx

n, as x↗ 1. ut

Let us first explain how we can deduce Theorem 3.1 from Lemma 3.2. Without loss of
generality, we may assume that S 6= 0. Set

sn := a0 + · · ·+ an, S1
n := s0 + · · ·+ sn.

Because of the Cesàro convergence we have

S1
n ∼ Sn as n→∞.

In particular, this implies that the series
∑

n≥0 S
1
nx

n is absolutely convergent for |x| < 1.
We conclude that the series

f(x) =
∑
n≥0

anx
n = (1− x)2

∑
n≥0

S1
nx

n

is absolutely convergent for |x| < 1. Using the identity

(1− x)−2 =
d

dx
(1− x)−1 =

∑
nxn−1 =

∑
(n+ 1)xn

we deduce ∑
n≥0

anx
n =

1
(1− x)−2

∑
n≥0

S1
nx

n =
∑
S1
nx

n∑
(n+ 1)xn

But recall
∑
an = S(C, 1), which implies S1

n ∼ nS (so of course S1
n ∼ (n+ 1)S). Thus, by

Lemma 3.2 f(x)→ S as x→ 1, so
∑
an = S(A).

ut

Proof of Lemma 3.2. Without loss of generality, we may suppose S = 1. Because
cn ∼ dn, for any ε > 0, there exists N such that n > N ensures that

1− ε < cn
dn

< 1 + ε

We obtain

C(x) =
N∑
n=0

cnx
n +

∞∑
n>N

cnx
n ≤ (1 + ε)D(x) +

N∑
n=0

|cn|xn

and similarly,

C(x) ≥ (1− ε)D(x)−
N∑
n=0

dnx
n −

N∑
n=0

|cn|xn
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Since dn > 0 we see that,

D(x) ≥
N∑
n=0

dnx
n ∀N

Thus,

lim
x→1

D(x) ≥ lim
x→1

N∑
n=0

dnx
n ∀N

Since D(x)→∞ as x→ 1, when we divide both bounding inequalities of C(x) by D(x) we
see that

lim sup
x→1

C(x)
D(x)

≤ 1 + ε, lim inf
x→1

C(x)
D(x)

≥ 1− ε,

and so C(x) ∼ D(x). ut

We now know that any Cesàro summable series is automatically Abel-summable. Thus,
to show that the Abel method is “stronger” than Cesàro, we need only produce a series
that is Abel-summable, but not Cesàro-summable.

Example 3.3. Consider an = (−1)n+1n. As usual, we define
∑n

k=0 ak = sn. We can see∑
n≥0 an clearly by looking at the sequence of partial sums,

s = s0, s1, s2, . . . , sn, . . . = 0, 1,−1, 2,−2, 3,−3, 4, . . .

Thus, we can write sn explicitly as,

sn =

{
−n

2 , n even;
n+1

2 n odd.

which obviously diverges as n→∞. Additionally,
∑
an is not Cesàro-summable (C, 1), i.e.

Cs diverges. Recall that

Cs(u) =
1

u+ 1

u∑
i=0

si

Now we investigate the sequence partial sums of Cs:

Cs = Cs(0),Cs(1), . . .Cs(n) . . . = 0,
1
2
, 0,

1
2
, 0, . . .⇒

Cs(n) =

{
0, n even;
1/2 n odd.

Thus, Cs diverges as claimed, and
∑
an is not Cesàro-summable. Now apply the Abel

method to the same series.∑
n≥0

anu
n =

∑
n≥0

(−1)n+1nun = −
∑
n≥0

n(−u)n

But we can quickly derive the following identity for the expression on the right-hand side:∑
n≥0

(−u)n =
1

1 + u
∀u ∈ [0, 1)

Differentiating both sides, and multiplying by (−u) we obtain,

−
∑
n≥0

n(−u)n =
u

(1 + u)2
∀u ∈ [0, 1)
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Therefore, we have ∑
n≥0

anu
n =

u

(1 + u)2
∀u ∈ [0, 1)

and
lim
u→1−

∑
n≥0

anu
n = lim

u→1−

u

(1 + u)2
=

1
4

so
∑

n≥0 an is Abel-summable. Thus, we have found a series that is Abel-summable, but
not Cesàro-summable. Using this fact, along with the statement of Theorem 3.1, we see
how the Abel method is ”stronger” than the Cesàro method (i.e. it can sum all of the
Cesàro-summable series, and more).

4. Tauberian theorems

We have so far proved the following sequence of implications

usual convergence⇒ Cesàro summability⇒ Abel summability

In this section we want to describe conditions when the opposite implications hold. Such
conditions are known in the literature as Tauberian conditions. Before starting, we briefly
explain notation that will be used.

xn = OL(yn)⇐⇒ ∃K : xn > −Kyn ∀n.
Our first result The following theorem lists conditions that guarantee that an Abel-summable
series will be Cesàro-summable as well.

Theorem 4.1. If
∑
an = s(A), an is real, and sn = OL(1), then

∑
an = s(C, 1).

To prove 4.1 we follow the strategy in [1]. We first observe that Theorem 4.1 is a
consequence of the following more general result.

Theorem 4.2. If

f(x) =
∑

anx
n ∼ C

1− x
(4.1)

when x→ 1, and an is real, and an = OL(1), then (a0 + a1 + . . .+ an) = sn ∼ Cn.

In fact, we can easily show that Theorem 4.1 is a corollary of Theorem 4.2. If the
conditions of Theorem 4.1 are satisfied, then∑

n≥0

snx
n =

1
1− x

∑
n≥0

anx
n ∼ s

1− x
,

and sn = OL(1). Thus, assuming Theorem 4.2 is true, we can apply it to sn (rather than
an, as used in Theorem 4.2) to obtain

(s0 + s1 + . . .+ sn) ∼ sn ⇐⇒ s0 + . . .+ sn
n

∼ s

and so
∑
an = s(C, 1). Thus Theorem 4.2⇒ 4.1. Now we progress to the substantial proof

of Theorem 4.2 (and consequently 4.1). We will prove this as a special case of the theorem
that involves Stieltjes integrals.

Theorem 4.3. If α(t) increases with t,

I(y) =
∫
e−ytdα(t) (4.2)

is convergent for y > 0, and I(y) ∼ Cy−1 where C ≥ 0, when y → 0, then α(t) ∼ Ct.
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Proof. We will need two lemmas to complete this proof.

Lemma 4.4. If g(x) is a real function, and Riemann integrable in (0, 1), then there are
polynomials p(x) and P (x) such that p(x) < g(x) < P (x) and∫ 1

0
(P (x)− p(x))dx =

∫ ∞
0

e−t(P (e−t)− p(e−t)dt < ε. (4.3)

g(x) =

{
1, a ≤ x ≤ b;
0, otherwise.

where 0 ≤ a < b ≤ 1. Let ε > 0 be arbitrary. Although g is discontinuous, we can certainly
find a continuous function h(x) such that

g ≤ h,
∫ 1

0
(h− g)dx < ε/6

By Stone-Weierstrass theorem, there exists polynomial Q(x) such that |h−Q| < ε/6 for all
x ∈ [0, 1]. If P(x) = Q + ε/6, then g ≤ h < P and since

|P − g| ≤ |P −Q|+ |Q− h|+ |h− g| ⇒∫ 1

0
|P − g|dx ≤

∫ 1

0
|P −Q|dx+

∫ 1

0
|Q− h|dx+

∫ 1

0
|h− g|dx < ε/2

We can go through an entirely symmetric process for p such that p < g to ensure that∫ 1
0 |g − p|dx < ε/2. This being true, along with the fact that p < g < P implies∫ 1

0
|P − g|dx+

∫ 1

0
|g − p|dx =

∫ 1

0
(P − g)dx+

∫ 1

0
(g − p)|dx =

∫ 1

0
(P − p)dx < ε

It follows from the previous argument that the Lemma applies to any step function con-
taining a finite number of jumps. We know that if g is a Riemann integrable function, then
there are finite step-functions g1 and g2 such that

g1 ≤ g ≤ g2,
∫ 1

0
(g2 − g1)dx < ε/3

We now associate polynomials p1, P1 with g1, and p2, P2 with g2, in the way that the Lemma
suggests. Then ∫ 1

0
(P2 − g2)dx < ε/3

∫ 1

0
(g1 − p1)dx < ε/3

So ∫ 1

0
(P2 − p1)dx =

∫ 1

0
[(P2 − g2) + (g2 − g1) + (g1 − p1)]dx < 3ε

We can carry out a simple substution in the above integral, with x = e−t,∫ 1

0
(P2(x)− p1(x))dx =

∫ ∞
0

e−t(P2(e−t)− p1(e−t))dt

ut
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Lemma 4.5. Suppose that α(t) increases with t, that I(y) is convergent for y¿0, that I(y) ∼
Cy−1, and that g(x) is of bounded variation in (0,1). Then

χ(y) =
∫
e−ytg(e−yt)dα(t)

exists for all positive values of y except values τ/ω, where ω is a discontinuity of α, and τ
a discontinuity of g(e−t); and

χ(y) ∼ C

y

∫
e−tg(e−t)dt (4.4)

when y → 0 through any sequence of positive values which excludes these exceptional
values.

Proof. Since τ and ω are at most countable individually, their intersection is also countable
(i.e. the points that we throw away), so we exclude at most a countable set of values, call
them yk, of y, which will not affect the value of the integral. Because a function of bounded
variation is Riemann integrable, by Lemma 4.4 we can choose polynomials p and P such
that

p < g < P,

∫
e−t[P (e−t)− p(e−t)]dt < ε

So ∫
e−tp(e−t)dt <

∫
e−tg(e−t)dt <

∫
e−tP (e−t)dt;

and since α increases with t,∫
e−ytp(e−yt)dα(t) ≤

∫
e−ytg(e−yt)dα(t) ≤

∫
e−ytP (e−yt)dα(t),

when y 6= yk.∫
e−yte−nytdα(t) =

∫
e−(n+1)ytdα(t) ∼ C

(n+ 1)y
=
C

y

∫
e−te−ntdt,

and thus ∫
e−ytP (e−yt)dα(t) ∼ C

y

∫
e−tP (e−t)dt.

Hence, if y → 0 through any sequence of not including values yk, we have

lim sup
y→0

y

∫
e−ytg(e−yt)dα(t) ≤ lim sup

y→0
y

∫
e−ytP (e−yt)dα(t)

= C

∫
e−tP (e−t)dt <

∫
e−tg(e−t)dt+ Cε

In a completely similar process involving p, we arrive at the following relationship,

lim inf
y→0

y

∫
e−ytg(e−yt)dα(t) > C

∫
e−tg(e−t)dt− Cε;

Which essentially proves (4.4). ut
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Now we are able to prove Theorem 4.3. Suppose, without loss of generality, that α(0) =
0. We take

g(x) =

{
x−1, if e−1 ≤ x ≤ 1;
0 if 0 ≤ x < e−1;

So clearly g(e−t) = et for 0 ≤ t < 1 and g(e−t) = 0 for t > 1. Then we have,

χ(y) =
∫ ∞

0
e−ytg(e−yt)dα(t) =

∫ 1
y

0
dα(t) = α(

1
y

)

And ∫ ∞
0

e−tg(e−t)dt =
∫ ∞

0
dt = 1.

Thus, by Theorem 4.3, α(y−1) ∼ Cy−1 when y → 0, or equivalently, α(t) ∼ Ct when
t→∞, with the exception being made in either case of the countable sets of discontinuity.
In this specific case we need only worry about one countable set of discontinuities, name
the values of α, thus, α(t) ∼ Ct as t → ∞ through points of continuity of α(t). And since
α increases with t, it is true without special stipulation. ut

Now we will demonstrate that Theorem 4.3 implies Theorem 4.2. Let α(t) be a step-
function with jumps an ≥ 0 for t = n, so

I(y) = S(y) =
∑

ane
−ny,

and S(y) ∼ Cy−1, which implies sn ∼ Cn. This is very close to the statement of Theorem
4.3. We just need the same conclusion for an = OL(1). Assume the conditions of Theorem
4.3 are satisfied, and there exists H such that an > −H. Then let bn = an +H > 0. Then∑

bnx
n =

∑
anx

n +
H

1− x
∼ C +H

1− x
.

Thus, assuming what we’ve just shown in the previous paragraph,

b0 + b1 + . . .+ bn ∼ (C +H)n,
and so

∑n
k=0 ak = sn ∼ Cn, which is Theorem 4.2. ut

We will now state and prove the second of the two major Tauberian theorems discussed
in this paper. This theorem will describe conditions that, when satisfied, ensure a Cesàro-
convergent sequence is convergent in the normal sense.

Theorem 4.6. If
∑
an = s(C, 1), for an real, and an = OL(n−1), then

∑
an converges.

Proof. We follow the elegant approach of [2]. First, we let

sn = a0 + . . .+ an

Sn = s0 + s1 + . . .+ sn

We consider the following discrete analog of Taylor’s formula for h > 0,

Sn+h = Sn + hsn +
1
2
h(h+ 1)aξ, (4.5)

where aξ is a number such that

min ak ≤ aξ ≤ max ak for n < k ≤ n+ h.
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To prove (4.5), consider

Sn+h − Sn = (s0 + . . .+ sn+h)− (s0 + . . .+ sn) = (sn+1 + sn+2 + . . .+ sn+h)

⇒ Sn+h − Sn = h(a0 + a1 + . . . an) + (han+1 + (h− 1)an+2 . . . an+h)

⇒ Sn+h − Sn = hsn + (han+1 + (h− 1)an+2 + . . .+ an+h)

The bound on aξ follows from

1
2
h(h+ 1) min

n<k≤n+h
ak ≤ (han+1 + (h− 1)an+2 + . . .+ an+h) ≤ 1

2
h(h+ 1) max

n<k≤n+h
ak.

The remaining expression (4.5) follows from the Intermediate Value Theorem.
We may now assume that

∑
an = 0(C, 1) since, if

∑
an = L(C, 1), then we can replace

a0 by a0 − L and every partial sum will be decreased by L. So we need only consider∑
an = 0(C, 1), which implies

lim
n→∞

Sn = lim
n→∞

s0 + s1 + . . .+ sn
n

= 0

We can re-write equation (4.5) in a form that isolates sn,

hsn =
1
2
h(h+ 1)aξ + Sn+h − Sn

Since h > 0, we may divide to give

sn =
Sn+h − Sn

h
− 1

2
(h+ 1)aξ

We now use

an ≥
−K
n

for some K > 0 and |Sn| ≤ nε

⇒ sn ≤
2n+ h

h
ε+K

h+ 1
2n

Since this inequality holds for all h, we take h ≈ 2n
√
ε/K, which yields the following

arbitrarily small positive upper bound on sn.

sn < 3
√
Kε

Now we go through a similar process to obtain a lower bound for sn, in which we use an
analogous form of equation 4.5 for h < 0. For the sake of ease, let h = −i < 0. Through an
entirely similar process as performed above, we see that

Sn − Sn−i = sn + sn−1 + . . .+ sn−i+1

or equivalently,

Sn − Sn−i = sn + (sn − an) + (sn − (an + an−1)) + . . .+ (sn − (an + an−1 + . . . an−i+2))

We can now group all the sn terms together to give,

isn = Sn − Sn−i +
n∑

ν=n−i+1

(ν − (n− i+ 1))aν

which can be further simplified to

sn =
Sn − Sn−i

i
+

1
2

(i− 1)aγ
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where min aj ≤ aγ ≤ max aj for n− i+ 1 ≤ j ≤ n. Now, we once again use that

an ≥
−K
n

for some K > 0 and |Sn| ≤ nε

to give the lower bound,

sn ≥
−(2n+ i)

i
ε−K i− 1

2(n− i)
and taking i ≈ 2n

√
ε/K we obtain a lower bound on sn, (This may need an added

step/additional justification)

sn > −3
√
Kε

So together with the expression for the upper bound we have

−3
√
Kε < sn < 3

√
Kε

and since ε was arbitrary, we conclude that sn → 0.
ut

Remark 4.7. One can prove (see [3, I.5]) that if
∑

n≥0 is Abel convergent and an =
OL(n−1) then sn = OL(1). Theorem 4.1 then implies that

∑
n≥0 an is Cesaro convergent.

Invoking Theorem 4.6 we deduce that
∑

n≥0 an is convergent in the usual sense. ut
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