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Introduction

Consider the situation in Figure 1. The radial projection maps the boundary of the square
homeomorphically onto the circle. The net effect of this transformation was to smooth
out the corners, while leaving the topology unchanged. We can then ask if we can smooth
out the corners of any topological manifold, and if so, are there many different ways of
doing this. This turns out to be a very subtle problem, and even some of the simplest
situations lead to completely unexpected conclusions. I would like to give you a glimpse
of this developing line of research. I will begin by rigourously defining what it means to
“smooth out the corners”, and explain when we should consider two smoothing procedures
to be inequivalent. Next I will describe a sample of known facts.

Figure 1: Smoothing corners

1 Topological versus smooth manifolds: the fundamental questions

§1.1 Local charts and transition maps. Suppose M is a topological space and m
is a point in M . A local n-dimensional chart near m is a pair (U, Φ), where U is an open
neighborhood of m and Φ : U → R

n is a homeomorphism of U onto an open subset of R
n.

For every u ∈ U we denote by (x1(u), · · ·xn(u)) the coordinates of the point Φ(u) ∈ R
n.

The functions
U � u �→ xi(u) ∈ R, i = 1, · · · , n

are called the local coordinates defined by the local chart (U, Φ).
For example, if M is the upper hemisphere

M =
{

(x, y, z) ∈ R
3; x2 + y2 + z2 = 1, z > 0

}
,

∗Notes for the first year graduate student seminar, February 2003, Notre Dame.
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m0 = (0, 0, 1) ∈ M is the north pole, and Φ : R
3 → R

2 is the orthogonal projection onto the
xy-plane then (M, Φ) is a 2-dimensional local chart near m0. Suppose (U1, Φ1) and (U2, Φ2)
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Figure 2: Transition map.

are two n-dimensional charts on M near m1 and respectively m2 such that

U12 := U1 ∩ U2 �= ∅.
Φ1 maps U12 homeomorphically to an open set O1 ⊂ R

n while Φ2 maps U12 to another open
set O2 ⊂ R

n. These two open sets are related by a homeomorphism (see Figure 2)

Φ21 := Φ2 ◦ Φ−1
1 , O1

Φ−1
1−→ U12

Φ2−→ O2.

The homeomorphism Φ21 is called the transition map between the first coordinate chart to
the second coordinate chart. Observe that Φ12 = Φ−1

21 .

§1.2 Topological and Smooth structures. An n-dimensional topological manifold
is a Hausdorff space M such that for every m ∈ M there exists a n-dimensional coordinate
chart (U, Φ) near m. An atlas on a topological manifold M is a collection of local charts{

(Uα, Φα)
}

α∈A
such that

⋃
α∈A

Uα = M.

An atlas describes how to reconstruct the manifold from the pieces Uα homeomorphic to
open subsets in R

n. More precisely Uα is to be glued to Uβ along Uαβ using the transition
map Φβα.

A smooth atlas on the n-dimensional manifold M is an atlas A =
{

(Uα, Φα)
}

α∈A
such

that all the transition maps Φβα are smooth maps between open subsets in R
n.

For two smooth atlases A and B we write A ∼ B if A ∪ B is a smooth atlas. “∼”
is an equivalence relation on the set of smooth atlases. A smooth structure on M is an
equivalence class of smooth structures. A smooth manifold is a pair (M, τ), where M is a
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topological manifold and τ is a smooth structure on M . The topological manifolds which
admit smooth structures are called smoothable.

Roughly speaking a smooth structure is a decomposition of M into tiny open pieces
homeomorphic to open sets in R

n which are glued together via smooth maps. We obtain a
space “without corners”.
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Figure 3: Pulling pack a smooth structure via a homeomorphism.

Observe that if A =
{

(Uα, Φα)
}

is a smooth atlas on the topological manifold M and
f : N → M is a homeomorphism, then we get a smooth atlas f∗A on N defined by (see
Figure 3)

f∗A :=
{(

Vα := f−1(Uα), Ψα := Φα ◦ f
)}

α∈A
.

Note that if A ∼ B then f∗A ∼ f∗B. This implies that a homeomorphism of manifolds
N → M , and a smooth structure τ on M naturally define a smooth structure f∗τ on N
called the pullback of τ via the homeomorphism f .

Two smooth manifolds (M1, τ1) and (M2, τ2) are called diffeomorphic if there exists a
homeomorphism f : M1 → M2 such that τ1 = f∗τ2.

Example 1.1. R
n admits a tautological smooth structure defined by the atlas consisting

of a single chart (Rn,1Rn).

Example 1.2. The unit sphere Sn ↪→ R
n+1 admits a canonical smooth structure defined

by the atlas consisting two charts (Unorth, Φnorth) and (Usouth, Φsouth), where Unorth =
Sn \ {North Pole}, and Φnorth is the stereographic projection from the north pole. Usouth

and Φsouth are defined similarly.

§1.3 The fundamental questions. Work of Tibor Rado early in the twentieth century
and Edwin Moise in the early fifties showed every topological manifold of dimension ≤ 3
admits a unique smooth structure. The following questions are thus natural.

Question 1: Decide whether a given topological manifold M is smoothable.
Equivalently, this question asks if M is homeomorphic to some smooth manifold. Roughly

speaking, this means that we can obtain M by gluing small open subsets in R
n via smooth

maps. The manifolds which are not smoothable should have “weird corners which cannot
be smoothed out”.

3



Question 2: Do there exist topological manifolds with more than one smooth structure?
Equivalently, do there exists smooth manifolds which are homeomorphic but which

are not diffeomorphic. Any homeomorphism between two such smooth manifolds “must
introduce corners”.

Question 3: Classify all the smooth structures on a topological manifold

☛ All the above questions are global in nature. One cannot answer them by doing exper-
iments and measurements only in the neighborhood of a point, because the neighborhood
of any point in any manifold looks like a neighborhood of a point in an Euclidean space.
The smoothability issue has to due with how all the various local patches are put together
and thus we need to understand the manifold as a whole.

2 A smorgarsbord of oddities

§2.1 The higher dimensional world. In 1956 John Milnor took the mathemati-
cal world by surprise by showing that even “nice” topological manifolds such as the 7-
dimensional sphere can have smooth structures other than the canonical one. Such smooth
structures have since been dubbed exotic.

Observe that the set Θn of smooth n-dimensional spheres forms an Abelian group with
respect to the connected sum operation. The sphere Sn with its canonical smooth structure
is the identity element of this group.

A few years later after Milnor’s first example of exotic sphere, M. Kervaire and J.Milnor
proved another shocker. More precisely, they showed that Θ7 is a cyclic group of order 28.
Moreover, they proved that Θ4k−1 contains a cyclic group of order 22k−2(22k−1 − 1)ν(k),
where ν(k) denotes the numerator of (4Bk/k), and Bk denotes the k-th Bernoulli1 number.

In the mid sixties E. Brieskorn and F. Hirzebruch showed that Milnor and Kervaire’s
exotic 7-spheres can be given an extraordinarily simple description. For every k > 0 denote
by Xk ⊂ C

5 the singular hypersurface

Xk :=
{
�z = (z0, z1, z2, z3, z4) ∈ C

5; z6k−1
0 + z3

1 + z2
2 + z2

3 + z2
4 = 0

}
.

The origin �0 ∈ C
5 is a singular point of this hypersurface. If an observer sits at this point

and “looks around” in Xk then he will notice a “horizon”

Hk := Xk ∩ S9
ε ,

where S9
ε is the sphere of radius ε in C

5 centered at the origin �0. One can think of this
sphere as the“horizon” of an observer in C

5 situated at the origin. A simple application
of the implicit function theorem shows Hk is a smooth 7-dimensional submanifold of S9

ε .
Thus each of the smooth manifolds Hk defines an element [Hk] ∈ Θ7. E. Brieskorn and F.
Hirzebruch have shown that [H1] is a generator of the cyclic group Θ7, and in fact

[Hk] = k · [H1] in Θ7,

1The Bernoulli numbers are described by the Taylor expansion

t

(et − 1)
= 1 − t

2
+

B1t
2

2!
− B2t

4

4!
+ · · · ,

so that B1 = 1
6
, B2 = 1

30
, B3 = 1

43
, B4 = 1

30
, B5 = 5

66
etc.
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i.e. Hk is diffeomorphic to Hk+28 and with the connected sum of k-copies of H1. Moreover,
for every k �≡ 0 mod 28, Hk is a manifold homeomorphic but not diffeomorphic to S7.

One can then ask whether the Euclidean spaces admit smooth structures not equivalent
to the tautological one. In the early sixties it was proved that if n �= 4 the Euclidean space
R

n admits a single smooth structure. The case n = 4 had to wait twenty more years for a
dramatic and unexpected resolution.

Due to the efforts of several mathematicians, by late sixties it was understood that
the answer to Question 1 for a topological manifold of dimension ≥ 5 can be decided
by homotopic theoretic methods. However, homotopy theory has had limited success in
dimension 4. This has nothing to do with the lack of human ingenuity. It is now understood
that the smoothability issue for 4-manifolds goes beyond homotopy theory. The lack of 4-
dimensional counterparts of higher dimensional theorems has now a simple explanation:
most of the obvious 4-dimensional counterparts are not true. The elegant machinery of
homotopy theory breaks in this dimension.

§2.2 The wild world of four manifolds. For simplicity I will concentrate only on
simply connected topological 4-manifolds. Suppose M is such a compact 4-manifold. Then
H2(M, Z) is a free Abelian group of rank b2-the second Betti number of M . Poincaré duality
shows that there is a nonsingular, symmetric, Z-bilinear map

IM : H2(M, Z) × H2(M, Z) → Z, (u, v) �→ u · v.

IM is called the intersection form of M . By choosing a basis of H2(M, Z) we can repre-
sent IM as a b2 × b2-matrix A with integral entries. Then the nonsingularity condition is
equivalent with the condition detA = ±1. (We say that A is unimodular.) The symmetry
translates into the symmetry of A, A = At. By changing Z-bases, A changes to a new
matrix SASt for some S ∈ GL(n, Z). We say that A and SASt are equivalent over Z.
Contrary to the case of symmetric matrices with real entries, the integral ones cannot be
diagonalized by an appropriate choice of basis. For example, there exist infinitely many
unimodular, symmetric, positive definite and pairwise inequivalent matrices.

J.W.C Whitehead had shown in the forties that two compact, simply connected topo-
logical 4-manifolds are homotopy equivalent iff they have equivalent intersection forms.

The following question then suggests itself.
☞ Given a symmetric, unimodular matrix A, does there exist a compact simply connected
topological 4-manifold whose intersection form is described by A?

In the late seventies, after a remarkable tour de force, Michael Freedman proved the
following result.

Theorem 2.1. For any symmetric, unimodular matrix A there exists at least one simply
connected 4-manifold with intersection form represented by A. Moreover, there can exists
at most two such manifolds.

Around the same time (very early eighties) a young mathematician by the name of
Simon Donaldson proved a completely unexpected negative result.
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Theorem 2.2. If A is a unimodular, symmetric positive (or negative) definite matrix which
cannot be diagonalized over Z, then none of Freedman’s manifolds with intersection form
A admits smooth structures. In particular, there exist infinitely many such 4-manifolds.

Remark 2.3. A majority of these nonsmoothable manifolds can be produced by analyzing
the singularities2 of polynomials of three complex variables. The polynomials P2,3,6k−1 =
x6k−1 + y3 + z2 which also appear in the Brieskorn-Hirzebruch construction of the exotic
7-spheres play a special part. Here is how one can use the polynomial P2,3,5 to construct
an example of topological manifold which admits no smooth structure.

Consider the Milnor fiber of the polynomial P2,3,5

M2,3,5 :=
{
�z ∈ C

3; |�z| ≤ r, P2,3,5(�z) = ε
}

,

where r, ε are two small numbers. This is a 4-manifold with boundary

Σ(2, 3, 5) :=
{
�z ∈ C

3; |�z| = r, P2,3,5(�z) = ε
}

.

The 3-manifold has an illustrious history. It is known as the Poincaré homology sphere. Its
integral homology is isomorphic to the integral homology of the 3-sphere S3 and Poincaré
thought it is in fact homeomorphic to S3. He succeeded in computing its fundamental
group which turned out to be a finite group of order 120 so this cannot be homeomorphic
to the sphere. He then amended his guess and stated what now is one of the most famous
unsolved problems, namely the Poincaré conjecture: every compact simply connected 3-
manifold is homeomorphic to the 3-sphere. A century later we still don’t have an answer
to this question.

M. Freedman observed a strange phenomenon: Σ(2, 3, 5) bounds a contractible topo-
logical 4-manifold3 Z !!! Now glue Z to M(2, 3, 5) along Σ(2, 3, 5) to produce a simply
connected 4-manifold X as depicted in Figure 4.

M(2,3,5) Z

X

Σ(2,3,5)

Figure 4: Constructing a nonsmoothable 4-manifold.

2In fact all of these examples are intimately related to singularities of 2-dimensional complex analytic
varieties.

3Z cannot be the 4-ball since Σ(2, 3, 5) is not homeomorphic to S3. In particular this result of Freedman
shows that there exist contractible 4-manifolds not homeomorphic to the 4-ball!!!
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A computation based on ideas going back to Poincaré shows that the intersection form
of X is negative definite and cannot be diagonalized over Z. Thus X is a non-smoothable
topological 4-manifold.

To put Donaldson’s result in perspective let us mention a result of Frank Quinn which
states that every topological 4-manifold is smoothable away from an arbitrary point. Loosely
speaking this means that we can smooth out all “corners” with the possible exception of
one. Donaldson theorem thus produced examples of manifolds for which this one last corner
cannot be removed.

Soon after Donaldson’s result Michael Freedman noticed that by combining his tech-
niques with Donaldson’s conclusion he can prove the following.

Theorem 2.4. There exists a smooth 4-manifold X with the following properties.

(i) X is homeomorphic to R
4.

(ii) There exists a compact set C ⊂ X with the property that it cannot be surrounded by a
smoothly embedded 3-sphere.

In particular, this result shows that R
4 admits exotic smooth structures4 because in the

tautological R
4 every compact set is surrounded by a sufficiently large round sphere so it

cannot be diffeomorphic to X.
Perhaps, as surprising as the result itself is the technique Donaldson used to prove

it. It relies on some nonlinear differential equations arising in the theoretic physics. The
equations are called the Yang-Mills equations, and Donaldson’s technique opened up a
new and very eclectic branch of mathematics called gauge theory. Since its inception it
has helped dispel many long held beliefs. In the mid nineties, the Donaldson theory was
substantially simplified by the introduction of a new set of equations arising in string theory.
These equations are called the Seiberg-Witten equations, and according to general physical
principles, these equations should contain the same information as the original Yang-Mills
equations. The new equations are much more user friendly, and have lead to new striking
discoveries.

What next?

The 4-dimensional world turned out to be quite unruly, and although a few patterns have
been observed, it is still a jungle out there, with intriguing and still unexplained connections
with most branches of mathematics.

If you want to learn more about this addictive subject stop by my office for a chat, or
have a look at any of the references below.

4It is now known that R
4 admits uncountably many exotic smooth structures.
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