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Introduction

In no other branch of mathematics is it so easy for experts to blunder as in
probability theory.

Martin Gardner

I have to confess that my mathematical formation is not that of a probabilist. I am a
geometer /analyst by training. About fifteen years ago I stumbled on some probabilistic ge-
ometry questions. The ad-hoc methods I used were producing encouraging but unsatisfactory
answers. A chance encounter with a trained probabilist led me to a pretty advanced mono-
graph dealing with related problems from a probabilistic view point. I spent a sabbatical
year learning probability so I could understand that book.

I eventually did understand that book, I was able to phrase the original questions in a
better language and I even offered answers to questions I could not conceive before. A “side
effect” of this effort was that I got a taste of probability.

To the geometer in me, the probabilistic thinking looked (and still looks) like mathematics
with a bit more, somewhat similar to classical mechanics, that is mathematics with a sprinkle
of physical intuition. I find this subject fresh, full of of interesting and enticing questions.
This is how my probabilistic journey began and I have been enjoying it since. In the meantime
I matured a bit more by teaching probability, both at undergraduate and graduate level. This
book partially reflects this personal journey.

Probability theory has grown out of many concrete examples and questions and I firmly
believe that probabilistic thinking can only be grasped through examples. Compared to other
mathematical areas I am familiar with, probability contains an unusually large number of
counterintuitive results. To me, these represent one of the attractive features of the subject.
So a substantial part of this book is devoted to examples, some truly fundamental and quite a
few more esoteric but which are aesthetically very pleasing and pedagogically very revealing.
Some of these examples are recurring, appearing in many places in the text and, as we develop
more and more sophisticated technology, we dig a deeper and deeper into them.

While teaching probability I discovered that probabilistic simulations enhance the under-
standing of probabilistic thinking. That is why I have included a brief introduction to R and
a few of the simple codes that allows one to do basic Monte-Carlo simulations. I hope I can
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ii Introduction

tempt the reader to try a few of these and be amazed, like myself and my students, of the
remarkable agreement between practice and theory.

I have divided the book into five chapters. The first one concentrates on the measure
theoretic foundations of probability and its theoretical part. It is essentially the content of
Kolmogorov’s foundational monograph. I assume that the reader is familiar with the measure
theory and integration. I survey this subject and I present complete proofs only of results
that have important probabilistic applications or significance.

The first genuinely probabilistic concept is that of independence and I prove early on
Kolmogorov’s zero-one theorem. It is a striking all-or-nothing result and its deeper impli-
cations are gradually revealed in the later parts of the book. The ubiquitous concept of
random variable and its numerical characteristics are discussed in detail. Along the way I
discuss the various modes of convergence of random variables. I made sure the reader has the
opportunity to see these ideas at work so I present many classical random variables and some
of their probabilistic occurrences. Among the classical problems/themes I discuss I should
mention, the inclusion-exclusion principle, sieves and Poissonization, Poisson processes, the
coupon collector problem, the longest common subsequence problem.

Section 4, one of the largest of this chapter, is devoted to the concept of conditional
expectation, a central probabilisitic concept that takes some getting used to. Analytically, the
existence of conditional expectation is a simple consequence of the Radon-Nicodym theorem.
This however hides its probabilistic significance. I opted for the more involved approach that
reveals the meaning of this object as the best predictor given certain information.

To get to the heart of the rather subtle concept of conditional expectation I tried to present
many examples, from simple computations to more sophisticated applications to stochastic
optimization problems such as the classical secretary problem. I spend considerable time
on the concept of kernels a.k.a. random measures, regular conditional distributions and
disintegration of measure describing the various connections between them. I opted to only
sketch the proof of the existence of regular conditional distributions since I felt that the
missing details add little to the understanding of this important concept. Instead, I have
included a large and varied number of concrete examples to give the reader a better feel of
this concept.

The last section of this chapter is an introduction to stochastic processes. The central
result of this section is Kolmogorov’s existence/consistency theorem that guarantees that
various objects discussed in the previous sections do indeed have a mathematical existence.
I decided to present a complete proof of this result so the reader can see the source of this
existence, namely Tikhonov’s compactness theorem, a result that is deeply rooted in the
foundations of mathematics.

Chapter 2 is devoted to a major theme in probability, the law of large numbers and
its relatives. The first section is devoted to the Strong Law of Large Numbers. I present
Kolmogorov’s proof that reduces this result to the convergence of random series with in-
dependent summands. I find the Law of Large Numbers philosophically surprising since it
extracts order out of chaos. The Monte Carlo method is one convincing manifestation of the
order-out-chaos phenomenon. I could not pass the opportunity to introduce the concept of
entropy and its application via the law of large numbers to coding/compression of data. The
second section is devoted to the central limit theorem.
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The third section is devoted to concentration inequalities. We describe the basics of Cher-
noff’s estimates and produce a few fundamental concentration inequalities. As an application
we discuss Lindenstrauss-Johnson lemma stating that the geometry of a cloud of points in
a high-dimensional vector space is, with high confidence, little disturbed by an orthogonal
projection onto a random subspace of much smaller dimension.

Section 4 is devoted to more modern considerations, namely uniform limits of empirical
processes. The Glivenko-Cantelli is the pioneering result in this direction. I also discuss
more recent results showing how this uniform convergence can be obtained by combining the
concentration results in the previous section and the concept of VC-families/dimension. I
briefly describe the significance of such results to PAC-learning, a concept central in machine
learning.

The last section of this chapter is a brief introduction to the theory of Brownian motion. I
used it as an opportunity to discuss more concepts and results involving stochastic processes
such as Gaussian processes and Kolmogorov’s continuity theorem.

Chapter 3 is devoted to the castle that J. L. Doob built, namely the theory of submartin-
gales, discrete and continuous. I present in detail the theoretical pillars of this edifice: stop-
ping/sampling, asymptotic behavior, maximal inequalities and I discuss a large and diverse
collection of examples: occurrence of patterns, Galston-Watson processes, optimal gambling
strategies, Azuma and McDiarmid inequalities and their application to combinatorial op-
timization problems, backwards martingales, exchangeable sequences, de Finetti’s theorem,
and asymptotics in Polya’s urn problem, Brownian motion.

Chapter 4 is an introduction to Markov chains. This beautiful and rich subject is still
actual, growing, and has many applications and ramifications. The first three sections are
devoted to the “classical” part of this subject and culminates with the law of large numbers
for such stochastic processes. Section 4 is devoted to a more recent (1950’s) point of view,
namely the connection between reversible Markov chains and electrical networks. I adopt a
more geometric approach based on the old observations of H. Weyl and R. Bott (see [18])
that Kirckhoff’s laws have a Hodge theoretic description. The last section is devoted to finite
Markov chains I describe various ways of estimating the rate of convergence of irreducible
recurrent Markov chains. The chapter ends with brief discussion of the Markov Chain Monte
Carlo methods.

The last chapter of the book is the shortest and is devoted to the classical ergodic the-
orems. I have included it because I felt I owed it to the reader to highlight a principle that
unifies and clarifies the main limit theorems in Chapters 2 and 4.

As the title indicates, this book is meant as an introduction to the modern, i.e., post
Kolmogorov’s axiomatization, theory of probability. The reader is assumed to have some
familiarity with measure theory and integration and be comfortable with the basic objects
and concepts of modern analysis: metric/topological spaces, convergence, compactness. In a
few places, familiarity with basic properties of Banach spaces is assumed.

This book could serve as a textbook for a year-long basic graduate course in probability.
With this purpose in mind I have a included a relatively large number of exercises, many of
them nontrivial and highlighting aspects I did not include in the main body of the text.

The book grew up from notes for a one-semester graduate course in probability that
I taught at the University of Notre Dame. That course covered Chapter 1, the classical
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limit theorems (Sec.2.1-2.3) and discrete time martingales (Sec. 3.1-3.2). Some of the proofs
appear in fine print as a suggestion to the potential student/instructor that they can be
skipped at a first encounter with this subject.

Work on this book has been my constant happy companion during these improbable
pandemic times. I hope I was able to convey my curiosity, fascination and enthusiasm about
probability and convince some readers to dig deeper into this intellectually rewarding subject.

Notre Dame, May 2022



Notation and
conventions

We set N :=Z~o, Ny :=Z>.

For n € N we set I, := {1,2,...,n}.

For n € N we denote by &,, the group of permutations of I,,.

We set Ry := [0, 00).

For x € R we set |z] := maxZ N (—o0, x|, [z] ;= minZ N [z, 00).

x Ay :=min(z,y), z Vy = max(x,y).

i=+/-1

Given a subset A of a set X we denote by A° its complement (in X).
For any set X we denote by 2% the collection of all the subsets of X.
For any set X we denote by 25( the collection of all the finite subsets of X.
We will denote by |S| or #S the cardinality of a set S.

For natural numbers n > k we denote by (n); the falling factorial,

Mg :=nn—-1)---(n—k+1)=

(n— k)"
If T is a topological space, then we denote by Br the g-algebra of Borel subsets of
T.

We denote by A the standard Lebesgue measure on R and by A, the standard
Lebesgue measure on R™.

If (©Q,%) is a measurable space and (A;);er is a collection of subsets of F, then
o(A;,i € I) is the smallest sub-o-algebra of F containing all the collections A;.

For a collection (X;);er of random variables defined on the same probability space
we denote by o(X;;i € I) the sub-o-algebra generated by these variables.
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Notation and conventions

e Given an ambient set Q and a subset A C  we denote by I4 : @ — {0,1} the
indicator function of A,

1, weA,
IA(OJ)Z{O Wi A

e We denote by w,, the volume of the unit ball in R™ and by o,_1 the “area” of the
unit ((n — 1)-dimensional) sphere in R™.

1 2I°(1/2)"
Wn = Eo'n—l’ On-1= M
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Chapter 1

Foundations

At the beginning of the twentieth century probability was in a fluid state. There was no clear
mathematical concept of probability, and ad-hoc methods were used to rigorously formulate
classical questions. Probability at that stage was a collection of interesting problems in search
of a coherent setup. According to Jean Ville, a PhD student of M. Fréchet, in Paris probability
was viewed among mathematicians as “an honorable pastime for those who distinguished
themselves in pure mathematics”.

The whole enterprise seemed to be concerned with concepts that lie outside mathemat-
ics. Henri Poincaré himself wrote that “one can hardly give a satisfactory definition of
probability”. As Richard von Misses pointed out in 1928, the German word for probability,
“wahrscheinlich”, translates literally as “truth resembling”; see [175]. Bertrand Russel was
quoted as saying in 1929 that “Probability is the most important concept in modern science,
especially as nobody has the slightest notion of what it means”. The philosophical underpin-
nings of this concept are discussed even today. For more on this aspect we refer to the recent
delightful book [50].

In his influential 1900 International Congress address in Paris D. Hilbert recognized this
state of affairs and the importance of the subject. In the sixth problem of his famous list of
23 he asked, among other things, for rigorous foundations of probability. These were laid by
A. N. Kolmogorov in his famous 1933 monograph [100]. According to Kolmogorov himself,
this was not a research work, but a work of synthesis. A brilliant synthesis I might add. His
point of view was universally adopted and modern probability theory was born. The theory
of probability can now be informally divided into two eras: before and after Kolmogorov.

The present chapter is devoted to this foundational work of Kolmogorov. The pillars of
probability theory are the concept of probability or sample space, random variables, inde-
pendence, conditional expectations, and consistency, i.e., the existence of random variables
or processes with prescribed statistics.

So efficient is his axiomatization that to the untrained eye, probability, as envisaged
by Kolmogorov, may seem like a slice of measure theory. In a 1963 interview Kolmogorov
complained that his axioms have been so successful on the theoretic side that many mathe-
maticians lost interest in the problems and applications that were and are the main engines of
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2 1. Foundations

growth of this subject. I understand his criticism since I too was one of those mathematicians
that was not interested in these applications. Now I know better.

In this chapter I present these pillars of probability theory and prove their main properties.
I have included a large number of detailed examples meant to convey the subtleties, depth,
power and richness of these concepts. No abstract theorem can capture this richness.

I want to close with a personal anecdote that I find revealing. A few years ago, at a
conference, I had a conversation with J. M. Bismut, a known probabilist whose mathematical
interests were becoming more and more geometric. He noticed that I was in the middle
of a mathematical transition in the opposite direction and asked me what prompted it. I
explained my motivation, how I discovered that probability is not just a glorious part of
measure theory and how much I struggled to truly understand the concept of conditional
expectation, a concept eminently probabilistic. He smiled and said: “Probability theory
is measure theory plus conditional expectation”. I know it is an oversimplification, but it
contains a lot of truth.

1.1. Measurable spaces
1.1.1. Sigma-algebras. Fix a nonempty set (2.

Definition 1.1.1. (a) A collection A of subsets of € is called an algebra of Q if it satisfies
the following conditions

(i) 0,2 € A.

(ii) VA,Be A, AUB € A.

(ili) VA e A, A° € A.
(b) A collection 8§ of subsets of Q is called a o-algebra (or sigma-algebra) of Q if it is an
algebra of 2 and the union of any countable subfamily of § is a set in 8, i.e.,

V(An)nen € 8%, | An €38. (1.1.1)

n>1

(¢c) A measurable space is a pair (£2,8), where 8 is a sigma-algebra of subsets of 2. The
subsets S € § are called (8-)measurable. O

Remark 1.1.2. To prove that an algebra § is a o-algebra is suffices to verify (1.1.1) only for
increasing sequence of subsets B, € 8. Indeed, if (Ay,),en is an arbitrary family in 8 the the
new family of sets in 8

n
B, = UA"’ n €N,
k=1

is increasing and its union coincides with the union of the family (A, )nen. O

Example 1.1.3. (a) The collection 2% of all subsets of € is obviously a o-algebra.

(b) Suppose that 8 is a (o-)algebra of a set Q and F : Q- Qisa map. Then the preimage
FY8)={F(S); Ses}
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is a (0-)algebra of subsets of ). The o-algebra F~1(8) is denoted by o(F) and it is called the
o-algebra generated by F or the pullback of 8 via F. We will often use the more suggestive
notation
(FeSt:=F1S)={wecQ; F@es}.
(c) Given A € Q we denote by 84 the o-algebra generated by A, i.e.,
Sa={0,A,A°Q}.

We will refer to it as the Bernoulli algebra with success A. Note that 84 is the pullback of
2101} via the indicator function I4 : Q — {0,1}.

(d) If € C 2% is a family of subsets of 2, then we denote by o(€) the o-algebra generated by
G, i.e., the intersection of all o-algebras that contain C. In particular, if 81,82 are o-algebras
of €, then we set

81V 8y = 0’(81 U 82)

More generally, for any family (8;);e; of o-algebras we set

\/si:=a<Us¢>.

iel icl
(e) Suppose that we are given a countable partition { Ay, },en of
Q= | A
neN

The sets A, are called the chambers of the partition.Then the o-algebra generated by this
partition is the o-algebra consisting of all the subsets of {2 who are unions of chambers. This
o-algebra can be viewed as the o-algebra generated by the map

X:Q=N, X=) nla,
neN
so that A, = X~ ({n}).
(f) If (8;)icr is a family of (o-)algebras of €, then their intersection

ﬂSiCQQ

is a (o-)algebra of Q.

(g) If (©1,81) and (Q2,82) are two measurable spaces, then we denote by 8; ® 83 the sigma
algebra of {21 x 9 generated by the collection

{S1x Sy: S1 €81, Spe€ 8y} C2Ux

(h) If X is a topological space and Tx C 2% denotes the family of open subsets, then the
Borel o-algebra of X, denotes by By, is the o-algebra generated by Tx. The sets in By
are called the Borel subsets of X. Note that since any open set in R" is a countable union of
open cubes we have

Brn = BF". (1.1.2)

Any finite dimensional real vector space V can be equipped with a topology by choosing
a linear isomorphism L : V — RV This topology is independent of the choice of the
isomorphism L. It can be alternatively identified as the smallest topology on V such that all
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the linear maps V' — R are continuous. We denote by By, the sigma-algebra of Borel subsets
determined by this topology.

We set R = [—00,00]. As a topological space it is homeomorphic to [—1, 1]. For simplicity
we will refer to the Borel subsets of R simply as Borel sets.

(i) If (2, 8) is a measurable space and X C €2, then the collection
Slx ={SNX: SGS}CQX
is a o-algebra of X called the trace of 8 on X. a

Remark 1.1.4 (Nedoma’s pathology). Suppose that (€2,8) is a measurable space. The
product € x 2 contains a distinguished set, the diagonal

Q={(ww); weQ}cCcOxq.
Then A is not measurable measurable with respect to the product sigma-algebra § ® § if
Card Q > X, = Card R. For a proof we refer to [150, Sec. 21.8].

Suppose that Q is a Hausdorff topological vector space, and § = By is its associated
Borel sigma-algebra. The diagonal A is closed with respect to the product topology. In
particular it belongs to the Borel sigma-algebra defined by the product topology. However,
if Card Q > X, then the diagonal it is not measurable with respect to the the product 8 ® 8!
In other words the product of Borel sigma-algebras is strictly smaller than the Borel sigma-
algebra By« x determined by the product topology! This phenomenon is referred to as the
Nedoma’s pathology. a

Definition 1.1.5. Let € be a collection of subsets of a set 2. We say that C is a w-system
if it is closed under finite intersections, i.e.,

VA, BeC: ANBEeC.
The collection C is called a \-system if it satisfies the following conditions.
(i) 0,Q € €.
(ii) if A,B€ Cand A C B, then B\ A € C.
(iii) If A; C Ay C --- belong to C, then so does their union.
O

Note that a collection € is a o-algebra if it is simultaneously a 7 and a A-system.! Since
the intersection of any family of A-systems is a A-system we deduce that for any collection
€ C 2% there exists a smallest A-system containing €. We denote this system by A(C) and
we will refer to it as the A-system generated by C. .

Example 1.1.6. Suppose that JH is the collection of half-infinite intervals
(—o0,z], z€R.

Then H is w-system of R. The A\-system generated by H contains all the open intervals. Since
any open subset of R is a countable union of open intervals we deduce that A(P) coincides
with the Borel o-algebra Bg.

LCheck this.
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If X is a topological space and Tx is the collection of open subsets, then Tx is a w-system.
g

Theorem 1.1.7 (Dynkin’s 7 — A\ theorem). Suppose that P is a w-system. Then
A(P) = o(P).

In other words, any \-system that contains P, also contains the o-algebra generated by

P.

Proof. Since any o-algebra is a A-system we deduce A(P) C o(P). Thus it suffices to show
that

a(P) C A(P). (1.1.3)
Equivalently, it suffices to show that A(P) is a o-algebra. This happens if and only if the
A-system A(P) is also a m-system. Hence it suffices to show that A(P) is closed under (finite)
intersections.

For any subset A C 2 we define
La={Be2?: ANBeA?)}.
It suffices to show that
A(P) C La, YA A(P). (1.1.4)
Observe that £ 4 is a A-system if A € A(P). Indeed, 2 € £ 4 since A € A(P). The properties

(ii) and (iii) in the definition of a A-system are clearly satisfied since A(P) is a A-system.
Thus, to prove (1.1.4), it suffices to show that

PCLa, VAeEADP). (1.1.5)

Note that since P is a w-system
PcLlp, VBeD.

In particular, since £ is a A-system, we deduce

A(P)cC Lp, VBeP.
Thus, if A € A(P) and B € P, then AN B € A(P). In other words, B € L4, VB € P,
VA € L(P), i.e.,

PC Ly, VAeAD).
This proves (1.1.5) and completes the proof of the 7 — A-theorem. O

1.1.2. Measurable maps.

Definition 1.1.8. A map F : Q; — 9 called measurable with respect to the o-algebras §;
on €, i = 1,2 or (81, 8s)-measurable if F~1(83) C 81, i.e.,

F_I(SQ) € 81, VS, € 8o.
Two measurable spaces (£2;,8;), i = 1,2, are called isomorphic if there exists a bijection

F : Q01— such that F~1(83) = 8; or, equivalently, both F and its inverse F~! are
measurable. O
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Definition 1.1.9. Suppose that (€, 8) is a measurable space. A function f : Q — R is
called 8-measurable if, for any Borel subset B C R we have f~1(B) € 8. O

Example 1.1.10. (a) The composition of two measurable maps is a measurable map.

(b) A subset S C Q is 8-measurable if and only if the indicator function I'g is a measurable
function.

(c) If A is the o-algebra generated by a finite or countable partition
0=||A, ICN,
el
then a function f: Q — (R, Br) is A-measurable if and only if it is constant in the chambers
A; of this partition. O

The measurability of a map F : (21,81) — (€9,82) imposes infinitely many constraints
on F', one constraint for each measurable set Sy € 8o. It is very impractical to decide the
measurability of such a map since very often 89 has a very complicated description. The next
result is extremely useful in practice since it shows that often the measurability of a map is
decided by a lot fewer and more transparent constraints.

Proposition 1.1.11. Consider a map F : (21,81) — (€2, 82) between two measurable spaces.
Suppose that Co is a w-system of Qg such that o(Co) = S8o. Then the following statements are
equivalent.

(i) The map F is measurable.

(ii) Fﬁl(C) S 81, VC € Csy.

Proof. Clearly (i) = (ii). The opposite implication follows from the 7 — X\ theorem since the
set

{Ces8y FHC)eSi}

is a A-system containing the m-system C, that generates So. O

Corollary 1.1.12. If F': X — Y is a continuous map between topological spaces, then it is
(Bx,By) measurable.

Proof. Denote by Ty the collection of open subsets of Y. Then Ty is a w-system and, by
definition, it generates By . Since F is continuous, for any U € Ty the set F~1(U) is open in
X and thus belongs to Bx. O

O

Corollary 1.1.13. Let (2,8) be a measurable space. A function X : Q@ — R is (8,Br)-
measurable if and only if the sets X ~1((—o0,z]) are §-measurable for any x € R.

Proof. It follows from the previous corollary by observing that the collection

{(~o0,2]; zeR} c 2k
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is a m-system and the o-algebra it generates is Bg.
O

Remark 1.1.14. In measure theory and analysis, sigma-algebras lie in the background and
rarely come to the forefront. In probability they play a more important role having to do
with how they are perceived.

One should think of € as the collection of all the possible outcomes of a random exper-
iment. A o-algebra of 2 can be viewed as the totality of information we can collect using
certain measurements about the outcomes w € ). Let us explain this vague statement on a
simple example.

For example, suppose that the set of possible outcomes is [0, 1), but our measuring devices
detect with certainty only the first digit of the decimal expansion of a number in [0,1). We
say that a subset S of [0, 1) is measurable if using our device we can conclude with absolute
certainty that an outcome w belongs or not to S. In this case the only measurable subsets
are unions of the intervals [kl—_ol, % ), k=1,...,10.

Suppose now we are given a measurable space (£2,8) and a function X : 2 — R. Can we

measure the value of X at an outcome w using the same measurements that determine 8?7

Suppose that we can absolutely confirm about the outcome w of an experiment is whether
X (w) < x for any given x € R. In other other words, we can detect by measurements the
collection of sets
{X <z} := X_l((foo,x]), r € R.
In particular, we can detect whether X (w) > x, i.e., we can detect the sets {X >z} = {X < z}°.
More generally, we can determine the sets

{a <X <b} ={X >a}N{X <b}.

Indeed, we can do this using two measurements: one measurement to decide if X < a and
one to decide if X < b. Moreover, we are allowed to perform countably many measurements.
In particular, we can decide if

we ﬂ {z—1/n<X(w)<z+1/n},
neN
or, equivalently, if X (w) = x.
We say that a set S is X-measurable if given w € {2 we can decide by doing countably many

measurements on X whether w € S. If 51,...,5,,... C Q are known to be X-measurable,
then their union is X-measurable. Indeed,

w € USn<:>EIn€N: w € S,.
neN

Let us observe that the set theoretic conditions imposed on a sigma-algebra have logi-
cal/linguistic counterparts. Thus, the statement
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translates into the formula 3 € I, w € 5.

Conversely, statements involving the quantifiers 3,V can be translated into set theoretic
statements.

The information we can collect by doing such measurements of the function X is collected
into the sigma-algebra o(X) = X !(Bg) generated by the map X : Q — (R, Bg). O
Corollary 1.1.15. Consider a pair of maps between measurable spaces

F: (Q,S) — (Qz,Sz), 1=1,2.
Then the following statements are equivalent.
(i) The maps F; are measurable.
(ii) The map
F1 X Fg Q- Ql X QQ, w = (Fl(w),Fg(w))

is (8,81 ® 82)-measurable.

Proof. (i) = (ii) Observe that if the maps F1, F» are measurable then

F7H(S1), Fy'(S2) €8, VS1 €81, Sy€8

= (F1 x Fy)71(S1 x S9) = Fy Y (S1) N Fy 1 (Sa) €8, VS; € 81, Sy € 8a.
Since the collection S7 x Sz, S; € &;, i = 1,2, is a w-system that, by definition, generates

31 ® 89 we see that the last statement is equivalent with the measurability of F} x F5.

(ii) = (i) For ¢ = 1,2 we denote by 7 the natural projection Q; x Qs — Q;, (w1, ws2) — w;.
The maps m; are (81 ® 82, 8;) measurable and F; = m; o (F} X F3). O

Definition 1.1.16. For any measurable space (£2,8) we denote by £%(8) = L_O(Q,S) the
space of 8-measurable random variables, i.e., (8, Bg)-measurable functions 2 — R.

The subset of £%(€2,8) consisting of nonnegative functions is denoted by £9 (€, 8), while
the subspace of £%(€2,8) consisting of bounded measurable functions is denoted £>(12,8).

O
Remark 1.1.17. The algebraic operations on R admit (partial) extensions to R.
c+ too=t00,00+ 00 =00, c-00=00, Vec>0.
As we know, there are a few “illegal” operations
o0 —o00, 0-00, Qetc. O

Proposition 1.1.18. Fiz a measurable space (§2,8). Then the following hold.
(i) For any X,Y € £°(Q,8) and any ¢ € R we have
X +Y, XY, cX € £%(Q,8),

whenever these functions are well defined.



1.1. Measurable spaces 9

(i) If (Xp)nen is a sequence in £°(§2,8) such that, for any w € ) the limit
Xoo(w) = lim X, (w)

n—o0
exists. Then Xoo : Q@ — R is also 8-measurable.

(iii) If (Xn)nen is a sequence in £°(£2,8). For any w € Q we set
Yoo(w) = inf X, (w), Zp(w) = sup X, (w).
neN neN

Then Yoo, Zoo € L9(9, 8).

Proof. (i) Denote by D the subset of R? consisting of the pairs (z,y) for which z + y is well
defined,

D= R2 \ { (007 —OO), (_007 OO) }
The set D is obviously a Borel subset of R? since it is open. Observe that X + Y is the
composition of two measurable maps

Q->DCRY we (Xw),Y(W), D=R, (z,9) ~»z+y.

Above, the first map is measurable according to Corollary 1.1.15 and the second map is Borel
measurable since it is continuous. The measurability of XY and cX is established in a similar
fashion.

(ii) Observe first that the set {Xo > —oo} is measurable because
Xoo(w) > —c0<=3IM €Z, AN € N, Vn > N, X,(w) > M.
We will show next that for any 2 € R the set { Xoo(w) > x } is S-measurable. Note that
Xow)>z<—= I eN, AIN=Nw)eN: Vn>N: X,(w)>z+1/v.

Equivalently
{Xoo(w) >x} -Jun {Xn>x—i—1/1/} es.
veNNeN n>N
(iii) The proof is very similar to the proof of (ii) so we leave the details to the reader. 0

Corollary 1.1.19. For any measurable function f € £°(€2,8), its positive and negative parts,
f+ = ma‘x(f7 0)7 fﬁ = maX(_fv 0)
are also measurable.

Proof. The function f7 is the composition of the continuous function z* = max(x,0) with

f. O

Definition 1.1.20. A function f € £°(€,8) is called elementary or step function if its range
is a finite subset of R. We denote by Elem((,8) the set of elementary functions. O

More concretely, a function f : 2 — R is elementary if there exist finitely many disjoint
measurable sets Ai,...,Axy € 8, and constants c1,...,cy € R such that

N
flw) = chIAk(w), Yw € Q. (1.1.6)
k=1
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The decomposition (1.1.6) of an elementary function f is not unique. Among the various
decompositions there is a canonical one

f = ZTIf*l(T)'
reR

The above sum is finite since f~!(r) is empty for all but finitely many 7’s.

Let us also observe that Elem(f2,8) is a vector space. Indeed if fy, f1 are elementary
functions with ranges Ry and respectively Ri, then their sum is measurable and its range is
contained in Rg + R;. This is a finite set since Ry, R1 are finite. Clearly the multiplication
of an elementary function by a scalar also produces an elementary function.

Any nonnegative measurable function is the pointwise limit of an increasing sequence of
elementary functions. To see this, for each n € N we define

n2" E_1
Dy, 1 [0,00) = [0,00), Dy(r) =Y 5 L1z 2 (1)-
k=1

Let us observe that if € [0, n], then D,,(r) truncates the binary expansion of r after n digits.
E.g.,if r €[0,1) and

o0
€
r:0.6162...en...:222—]]z, er € {0,1},
k=1

then
Dy (r) =0.€1 ... €.

This shows that (Dy,)nen is a nondecreasing sequence of functions and

lim D,(r)=r, Vr>0.

For f € £9(£,8) and n € N we define D,[f] : (€2,8) — [0, 0)
n2" E—
DlfI) = D7) = 3 o i (F@) 4 sy (1)) (LLT)
k=1

We deduce that the sequence of nonnegative elementary functions D,,[f] converges increas-
ingly to f.
Definition 1.1.21. Let (£2,8) be a measurable. A collection M of 8-measurable functions is
called a monotone class of (€, 8) if it satisfies the following conditions.
(i) Iq e M.
(ii) If f,g € M are bounded and a,b € R, then af + bg € M.
(iii) If (fy) is an increasing sequence of nonnegative random variables in M with finite

pointwise limit foo, then foo € M.
O

Theorem 1.1.22 (Monotone Class Theorem). Suppose that M is a monotone class of
the measurable space (2,8) and C is a mw-system that generates 8 and such that Ic € M,
VC € C. Then M contains £°(82,8) and all the nonnegative 8-measurable functions.
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Proof. Observe that the collection
A::{AES: IAGM}

is a A-system containing the m-system € so A = o(C) = 8, by the m — A theorem. Thus
M contains all the elementary functions. Since any nonnegative measurable function is an
increasing pointwise limit of elementary functions we deduce that M contains all the nonneg-
ative measurable functions. Finally, if f is a bounded measurable function, then f*, f~ are
nonnegative and bounded measurable functions so f*, f~ € M and thus

f=fr—fem
O

Definition 1.1.23. The o-algebra generated by a collection (X;);es of real-valued functions
on a set () is
o(Xpiel):=\/X;"(Bp).
i€l
O

The next result provides an interpretation of the concept of measurability along the lines
of Remark 1.1.14 .

Theorem 1.1.24 (Dynkin). Suppose that F : (,8) — (€, 8') is a measurable map. Let
X :Q — R be an 8-measurable function. Recall that o(F) = F~1(8'). Then the following are
equivalent.

(i) The function X is (o(F), Br )-measurable.
(ii) There exists an (8, Br)-measurable function X' : Q' — R such that X = X' o F.
Proof. Clearly, (ii) = (i). To prove that (i) = (ii) consider the family M of o(F')-measurable

functions of the form X'o F', X’ € LO(Y, 8'). We will prove that M = £°( €, o(F) ). We will
achieve using the monotone class theorem.

Step 1. I € M.

Step 2. M is a vector space. Indeed if X,Y € M and a, b € R, then there exist §’-measurable
functions X’,Y”’ such that

X=X0oF Y=Y0oF, aX+0bY =(aX'+bY')oF.
Hence aX + bY € M.
Step 3. I4 € M, VA € o(F). Indeed, since A € o(F) there exists A" € 8 such that
A=F14)
so I4 =14 oF. Hence M contains all the o(F)-measurable elementary functions.

Step 4. Suppose now that X € LO(Q,U(F)) is nonnegative. Then there exists an in-
creasing sequence (X, )nen of o(F')-measurable nonnegative elementary functions that con-
verges pointwise to X. For every n € N there exists an 8-measurable elementary function
X/ : Q' — R such that

Xp(w) =X, (F(w)), YweQ
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Define
b= {w' € Q5 the limit lim, . X, (w') exists and it is ﬁnite}
Let us observe that (Y is 8'-measurable because
JeQe=VY>1 AIN>1, Vm,n>N: |X, (W) - X (W) <1/v,

i.e.,
=NU N {Ix) - xne) <1y}
veNN>1mmn>N
Clearly, F(2) C €. For any o’ € Q' we set
lim, 00 X, ('), w' € Qy,
X () =
0, W e\ Q.

Arguing as in the proof of Proposition 1.1.18(ii) we deduce that X/  is 8’-measurable. For
any w € Q the sequence X}, ( F(w)) = X, (w) is increasing and the the limit

lim X, (F(w))

n—oQ

exists and it is finite. Hence
X (Fw)) =X(w), VweQ.

This proves that M is a monotone class in LO(Q,J(F)) that is also a vector space so it
coincides with £°%(Q,0(F)). O

Corollary 1.1.25. Suppose that X1, ..., X, : (£2,8) — R are 8-measurable random variables.
The the function X : Q — R is o(X, ..., X,)-measurable if and only if there exists an Brn-
measurable function u : R™ — R such that

X =u(X1,..., X,).

Proof. Apply the above theorem with (€/,8") = (R, Bgn) and
Flw) = (X1(@) .. Xn()).
O

Remark 1.1.26. We see that, in its simplest form, Corollary 1.1.25 describes a measure
theoretic form of functional dependence. Thus, if in a given experiment we can measure
the quantities X1,..., X, and we know that the information X < ¢ can be decided only by
measuring the quantities X7, ..., X, then X is in fact a (measurable) function of Xy, ..., X,.
In plain English this sounds tautological. In particular, this justifies the choice of term
“measurable”. a
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1.2. Measures and integration

1.2.1. Measures. Throughout this section (€2, 8) will denote a measurable space. Given a
function f : X — R we will use the notation {f < ¢} to denote the subset f~'((—o0,d]).
The sets {a < f < b} etc. are defined in a similar fashion.

Definition 1.2.1. A measure on (€2, 8) is a function p : § — [0,00], S+ p[S] such that
the following hold.

° N[(Z)] =0, and

e it is o-additive, i.e., for any sequence of pairwise disjoint 8-measurable sets (A, )nen

we have
U 4
neN

=> u[An]. (1.2.1)

n>1

7

The measure is called o-finite if there exists an increasing sequence of S-measurable sets
A CAyC -

such that

J 4n =9 and p[A,] <oo, ¥neN.

neN
The measure is called finite if ,u[Q] < 00. A probability measure is a measure P such that
P[Q] = 1. We will denote by Prob(£, 8) the set of probability measures on (2, 8). 0

Remark 1.2.2. The o-additivity condition (1.2.1) is equivalent to a pair of conditions that
are more convenient to verify in concrete situations.

(i) p is finitely additive, i.e., for any finite collection of 8-measurable sets Aj,..., A,

we have
U4k =D nl4].
k=1 k=1

(ii) p is increasingly continuous i.e., for any increasing sequence of S8-measurable sets

Ay CAyC---
U 4
neN

I

1 = lim p[Ay]. (1.2.2)

If n[Q] < oo and p is finitely additive, then the increasing continuity condition (ii)
is equivalent with the decreasing continuity condition, i.e., for any decreasing sequence of
S-measurable sets By D By D - -

p| () Ba| = lim pu[By]. (1.2.3)

nen
Indeed, the sequence BS = Q\ B, is increasing and M[Bg] = M[Q] — M[Bn]- This last
equality could be meaningless if ,u[Q] =0 O

Definition 1.2.3. (a) A measured space is a triplet (€2, 8, 1), where (£2,8) is a measurable
space and p : 8 — [0, 00] is a measure. 0
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Our next result shows that a finite measure is uniquely determined by its restriction to
an algebra generating the sigma-algebra where it is defined.

Proposition 1.2.4. Consider a measurable space (§2,8) and two finite measures py, s : 8 — [0, o0
such that py [Q] = ,ug[Q] < 00, then the collection

g = {SGS; ,ul[S] :,ug[S] }
is a A-system. In particular, if [C] = ,ug[C’] for any set C that belongs to a mw-system C,

then uy and s coincide on the o-algebra generated by C.

Proof. Clearly ), e &. If A,B € & and A C B, then
p[A] =pa[A] <oo, m[B]=p2[B] <oo
SO
pi[B\A] = [B] —m[A] =p2[B] — e[ A] = 2B\ A],

so B\ A € C. The condition (iii) in the Definition 1.1.5 of a A-system follows from the
o-additivity of the measures u1, uo. a

Definition 1.2.5. A probability space, or sample space, is a measured space (2, 8,P), where
P is a probability measure. In this case we use the following terminology.

e The subsets S € 8 care called the events of the sample space.

An event S € 8 is called almost sure (or a.s.) if P[S] = 1. An event S is called
improbable if IP’[S] =0.

The measurable functions X : (Q,8,P) — R are called random variables.
A random variable X : (€, 8,P) — Ris called a.s. finite if

P[|X|<oo] =1.

A random variable on (2, 8,P) is called deterministic if there exists ¢ € R such that
X =cas.

O

# Traditionally the random variables have capitalized names X,Y, Z etc to distinguish them
from deterministic quantities that are indicated in small caps. We will try to adhere to this
convention throughout this book

Example 1.2.6. (a) If (£2,8) is a measurable space, then for any wy € , the Dirac measure
concentrated at wg is the probability measure

1, wy€eS,

buo 18— [0,00), du,[S] = {O w0 d S

(b) Suppose that S is a finite or countable set. A measure on (S, 2%) is uniquely determined
by the function

w: S —[0,00], w(s)=pn[{s}].
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We say that p[{s}] is the mass of s with respect to u. The function w is referred to as the
weight function of the measure. Often, for simplicity, we will write

pls]=mul{s}].
The associated measure i, is a probability measure if

Zw(s) = 1.

seS
When S is finite and

w(s) = Vs €S,

1
S|’
then the associated probability measure p,, is called the uniform probability measure on the
finite set S.

(c) Suppose that F : (©2,8) — (£/,8') is a measurable map between measurable spaces. Then
any measure ;4 on €2 induces a measure Fiup on € according to the rule

Fup[S'] =pn[F1(S)].
The measure Flyp is called the pushforward of p via F'.

(d) Fix a set T' with two elements, 7" = {0,1}. For any p € (0,1) the probability measure
By : 21— [0,00) defined by
Bp[1]=p, Bpl0] =qi=1-p
is called the Bernoulli distribution with success probability p. We abbreviate it by Ber(p).
(e) Given finite or countable sets Q, ..., ,, and probability measures p; : 2% — [0,1], we
obtain a probability measure
= ® - @ iy : DX 10 ]
by setting
,u[(wl,...,wn)] :;Ll[wl] '--,un[wn], V(wi, . oywn) € Q1 X oo X Q.
In particular, there exists a probability measure ﬁl‘?" on {0,1}"™.

Note that we have a random variable
N :{0,1}" — Ny, N((el,...,en)) =€+ +e€n, Ver,...,e, €{0,1}.

The push-forward P = P, ,, := N#ﬁl‘?” is a probability measure on {0,1,...,n} called the
binomial distribution corresponding to n independent trials with success probability p and
failure probability ¢ = 1 — p. It is abbreviated Bin(n,p). Note that Bin(1, p) = Ber(p). For
any k € {0,1,...,n} we have

n

P=> P[k]6,
k=0
where

Plk] =5 IN=k= >  B"[(c,... )]

€1+“'+€n:k

_ kn—k_ (" k nk
= > 1 —<k>pq :
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(f) The Lebesgue measure A defines a measure on Bg. For any compact interval [a,b] the
uniform probability measure on [a, b] is

mI[a’b]A. EI

Definition 1.2.7. Let X be a topological space. As usual B x denotes the o-algebra of Borel
subsets of X. A measure on X is called Borel if it is defined on Bx. O

The Lebesgue measure on R is a Borel measure.

Definition 1.2.8. Suppose that X € L£9(Q,8,P). Tts distribution is the Borel probability
measure Px on R defined by

Px[B]=P[X € B], VB € Bg.
In other words, Py is the pushforward of P by X, Px = X4P. a

Definition 1.2.9. Suppose that u is a measure on the measurable space (£2,8).
(i) A set N C Q is called p-negligible if there exists a set S € 8§ such that
N C S and ,u[S] =0.
We denote by N, the collection of p-negligible sets.

(ii) The o-algebra § is said to be complete with respect to p (or p-complete) if it
contains all the p-negligible subsets.

(iii) The p-completion of 8 is the o-algebra 8# := o (8, N,,).
O

Remark 1.2.10. (a) It may be helpful to think of a sample space (2,8, P) as the collection
of all possible outcomes w of an experiment with unpredictable results. The observer may
not be able to distinguish through measurements all the possible outcomes, but she is able
to distinguish some features or properties of various outcomes. An event can be understood
as the collection of the all outcomes having an observable or measurable property. The
probability P associates a likelihood of a certain property to be observed at the end of such
a random experiment.

Take for example the experiment of flipping n times a coin with 0/1 faces. One natural
sample space for this experiment is based on the set 2 = { 0,1 }n

If we assume that the coin is fair, then it is natural to conclude that each outcome w € €
is equally likely. Suppose that we can distinguish all the outcomes. In this case

§ = 28,

Since there are 2" outcomes that are equally likely to occur we obtain a probability measure
P given by

5]
A random variable on a sample space is a numerical attribute X that we can assign to each
outcome w of a random experiment with the following feature: for any ¢ € R the property

X(w) < c is observable, i.e., the set X~ ((—o0,c]) belongs to the collection 8 of observable
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properties. For example, in the situation of n fair coin tosses, the number N of 1’s observed
at the end of n tosses is a random variable.

(b) Often one speaks of sampling a probability distribution on R. Modern computer systems
can sample many distributions. More concretely, we say that a probability measure p on
(R, Bgr) can be sampled by a computer system if that computer can produce a random?
experiment whose outcome is a random number X so that, when we run the experiment a
large number of times n, it generates numbers x1,...,x, and, for any ¢ € R, the fraction of
these numbers that is < ¢ is very close to u[ (—o0,c]].

When we speak of sampling a random variable X, we really mean sampling its probability
distribution Py. O

Clearly 8* is the smallest u-complete o-algebra containing 8. The proof of the following
result can be safely left to the reader.

Proposition 1.2.11. Suppose that u is a measure on the o-algebra 8 C 2.
(i) The completion 8" has the alternate description
$¢={SUN; Se8, NeN,}c2?

(ii) The measure p admits a unique extension to a probability measure fi : 8# — [0, 00).
More precisely

vSeS8, NeN, a[SUN]|=pu[S].
O

Definition 1.2.12. A set S C R is called Lebesgue measurable if it belongs to the A-
completion of Bg. O

The most versatile method of constructing measures is Carathéodory Extension Theorem.
We need to introduce the appropriate concepts.

Definition 1.2.13. Fix a set Q and an algebra F C 2

(i) A function p : F — [0, 00] is called a premeasure if it satisfies the following condi-
tions.

(a) u[0] =0
(b) pis finitely additive, i.e., for any finite collection of disjoint sets Ay,..., 4, € F

we have
UAs | =2 nl4].
k=1 k=1

(¢) p is conditional countably additive, i.e., for any sequence (A, )pen of disjoint
sets in F whose union is a set A € F we have

ulA] =2 n[An].

n>1

I

2The precise term is pseudo-random since one cannot algortitmically simulate randomness.
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(ii) The premeasure p is called o-finite if there exists a sequence of sets (£2,)pen in F
such that
Q= p[] <o, VneN.
neN
O

Remark 1.2.14. Suppose that u: F — [0,00) is a finitely additive function on an algebra
F of subsets of a set 2 such that ,u[Q] < 00. Then u is a premeasure if and only if, for any
decreasing sequence (Fy,)nen of sets in F with empty intersection we have

lim p| F, | =0.

n—o0

Indeed, if (A, )nen is a sequence of disjoint sets of F whose union A is also a set in F, then
the sequence

Fo=A\ LnJAk
k=1

is a decreasing sequence in F with empty intersection and

LB = 4] = Lo nl )

O

The (conditional) countable additivity condition in the definition of a premeasure could
be challenging to verify. The next result whose proof is left to you as an exercise give a
simpler sufficient condition guaranteeing this countable additivity.

Theorem 1.2.15 (Alexandrov). Suppose that that K is a compact topological space, F is
an algebra of subsets of K and p : F — [0,1] is a finitely additive function satisfying the
following reqularity property: for any F € F and any € > 0 there exists a set F_ € F such
that

cd(F_)CF, p[F\F_]<e.

Then p is a premeasure. O

Proof. Let us introduce a convenient terminology. For € > 0 we define an e-squeeze of a set
F € F to be a set G € F such that cl(G) C F and pu[F\ G| <e.

Lemma 1.2.16. Suppose that Fy, Fs € F, F5» C F1, and fori = 1,2, G; is an €;-squeeze of
F;. Then G1 NGy is an (g1 + €2)-squeeze of Fy.
Proof of Lemma 1.2.16. Clearly
Cl(Gl N Gg) - Cl(Gg) C Fy,
Fy \ (Gl N GQ) =N (Gl N Gg)c =N (G'i U G%) = (FQ N Gi) U (F2 N Gg),
and
p[ P\ (GiNG2)] = p[(F\G1) U (F2\ Gy) |
Sp[F\Gi]+u[Fo\Go] Sp[Fi\Gi]+p[F\Ga] <ei+eo.
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To prove that u is a pre-measure it suffices to show that if (F},),en is a decreasing sequence
in F with empty intersection, then

i pFu] =0
Fix ¢ > 0. For n € N, fix an g7-squeeze G, of F,. Define
n n c
Hn::ﬂGn, En::ZQ—kze(l—2_n).
k=1 k=1

Applying Lemma 1.2.16 iteratively we deduce that H,, is an ,-squeeze of F},. By construction
the sequence H,, is decreasing and thus the sequence of closures c¢l(H),) is decreasing as well.

Note that
(el(Hy) C () Fn=0.

n

Since K is compact we deduce that there exists N = N(g) € N such that el(Hy) = (). Hence
Hy = 0 and since Hy is an ey-squeeze we deduce that, Vn > N

plF.] Sp[Fn]=p[Fy\Hy] <ey<e.
O

For a proof of the next central result we refer to [6, Sec. 1.3], [56, Chap. 3] or [99,
Thm.1.53, 1.65].

Theorem 1.2.17 (Carathéodory Extension Theorem). Suppose that F is an algebra of sub-
sets of Q and p : F — [0,00] is a o-finite premeasure on F. Then the following hold.

(i) The premeasure p admits a unique extension to a measure i : o(F) — [0, 00].

(ii) For any A € o(F) and any € > 0 there exist mutually disjoint sets Ay, ..., Ay € F
and B1,...,B, € F such that

ACGAj,ﬁ OAJ\A <eg,

j=1 =1
and
n
i|AA B <e.
k=1

O

Example 1.2.18. Let F denote the collection of subsets of R that are union of intervals of
the type (a,b], —oo < a < b < oo. This is an algebra of sets. Any F' can be written in a
(non)unique way as a union

n
F = U(ai,bi], ai<bi§a,~+1<bz~+1, Vi=1,...,n—1.
J=1

While this decomposition is not unique the sum

n

A[F]=> (b — a)

i=1
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depends only on F' and not on the decomposition. It is not very hard to show that the
correspondence
FoF = A[F] €10,q]

is finitely additive. The fact that X is a premeasure, i.e., it is (conditionally) sigma-additive,
is much more subtle, and it is ultimately rooted in the compactness of the closed and bounded
intervals of R. More precisely if we denote by F,, the trace of F to [—n,n] and by A, the
restriction of A to F,, then Alexandrov’s Theorem 1.2.15 implies that A,, is a premeasure for
any n € N. A simple argument then implies that A itself is a premeasure. For details we
refer to [6, Sec. 1.4] or [56, Chap. 3]. The resulting measure on B is called the Lebesgue
measure on R and we continue to denote it by A . O

Definition 1.2.19. A distribution function is a right-continuous nondecreasing function
F:R—[0,1]
such that F'(—oo) =0 and F(c0) = 1. 0

Example 1.2.20. Suppose that X is a random variable defined on the probability space
(€2,8,P). The function

Fx:R— [O, 1], Fx(x) :]P)[X < l‘]
is a distribution function called the cumulative distribution function or cdf of the random
variable X. O

Example 1.2.21 (Lebesgue-Stieltjes measures). Suppose that F R [0, 1] is a distribution
function. Then there exists a unique Borel probability measure p = g on By such that

pl(z,yl] = F(y) — F(z), Yo <yeR. (1.2.4)

The uniqueness follows from the fact the collection of intervals (—oo, x| is a m-system that
generates the Borel algebra of R. The existence follows from Caratheodory’s extension theo-
rem; see [6, Sec. 1.4] or [56, Chap 3.]. Below we will describe another existence proof that
relies only the existence of the usual Lebesgue measure.

The above measure pp is called the Stieltjes probability measure associated to the dis-
tribution function F. Its extension to the completion Bf is called the Lebesgue-Stieltjes
measure associated to the distribution function F'.

Conversely, if y is a Borel probability, measure on R, then p is the Stieltjes measure
associated to its cumulative distribution function (cdf) F : R — [0,1], F(z) = p[(—o0,]].
O

Example 1.2.22 (Quantiles). Here is an alternate description of this measure based on
a construction frequently used in statistics. Suppose that F' : R — [0,1] is a cumulative
distribution function. The quantile function of I is a generalized inverse of the nondecreasing
function F'. Here is a geometric description of Q.

The non-decreasing function F' has at most countable many discontinuities, all of jump
type. Graph F' in the xy plane and the fill in the gaps at its discontinuities by vertical
segments; see Figure 1.1. The result is the completed graph of F'. It ”continuous” curve in
the plane that may contain vertical segments. Given p € (0,1), the horizontal line y = p
intersects this curve at a point or along a closed horizontal segment. The quantile Q(p) is
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Figure 1.1. Visualising a cdf and its quantile.

the leftmost /smallest abscissa of a point on this intersection. For example, for F' as in Figure
1.1 we have Q(0.3) = 1.

Formally
Q:[0,1] =R, Qp):=inf{z: p<F(x)} 125
=inf 7' ([p,1]). o
Since F' is right-continuous the above definition is equivalent to
FY([p,1]) = [Q(p), o).
Suppose that zq is a point of discontinuity of F' and we set
Py = lim F(x) < F(x9) =: po.
x T
Note that Q(pg) = zo and if p € (py, po], then Q(p) = xo.
Note that for any x € R we have
0<y< Fa)«Q(y) <, (1.2.6)
Q_l( [—o00,z]) = [0, F(z)]. (1.2.7)

Indeed, ¢ € Q_l( [—oo,a:]) if and only if Q(¢) < z, i.e., £ < F(z). In particular,
Q' ((z,9]) = (F(z), F(y)], ¥—oo <z <y< oo,
The quantile is left continuous. Indeed, let p,  po. We will show that
lim Q(pn) = Q(po)-

Note that lim, Q(p,) < Q(po) since @ is nondecreasing. To prove that we have equality we
argue by contradiction. Set z,, := Q(pn), To = Q(po). Suppose

lmz, = e < xg = inf{x; F(x) > po }
n
From the definition of inf as the greatest lower bound we deduce that there exists =, € (z0, Zo)

such that F(x.) < po. Thus F(x,) < F(z,) Since p, / po we deduce p,, > F(z*) for all n
sufficiently large. This implies

o ¢ {x; F(x)>pn}=[Q(pn),0)

ie., z, = Q(pn) > x4, for all n sufficiently large. This contradicts the fact that x,, — Too < Z4.
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If Ajp,1] denotes the Lebesgue measure® on [0, 1], then

QuXp[(@,y]] =A[Q ' ((z,9])] = F(y) — F(x).

Hence the pushforward measure QAo ] satisfies (1.2.4) since it coincides with pp on the
m-system consisting of the the intervals of the form (a, b] it coincides with pp on the sigma-
algebra of Borel sets.

When F' is the cumulative distribution function of a random variable, the associated
quantile function is called the quantile of the random variable X and it is denoted by Q) x.

The intersection of the horizontal line y = % is a, possibly degenerate, horizontal segment.
The abscissas of points on this segment are called the medians of X. O

1.2.2. Independence and conditional probability. The next concepts are purely prob-
abilistic in nature. They have no natural counterpart in the traditional measure theory.

Definition 1.2.23. (a) The events A, Ag,..., A, of a sample space (2,8,P) are called
independent if, for any nonempty subset {i1,...,i} C {1,...,n}, we have
]P)[Ail m'”mAik} :P[Ah] P[Alk]

(b) The families of events Aj,..., A, C 8 are called independent if for any A; € A,
i=1,...,n, the events Aq, ..., A, are independent.

(c) The (possibly infinite) collection of families of events (A;);er is called independent if for
any ii,...,i, € I the finite collection A;,,...,A;, is independent.

in
(d) An independency is an independent collection (8;);c; of sigma-subalgebras of 8.

(e) The collection of random variables X; € £%(Q,8), i € I, is called independent if the
collection of o-algebras (o (X;) ), ¢ is independent. O

1w We will use the notation X 1LY to indicate that the random variables X,Y are indepen-
dent.

Remark 1.2.24. (a) We want to emphasize that the independence condition is sensitive to
the choice of probability measure involved in this definition.

(b) It is possible that n 4+ 1 events be dependent although any n of them are independent.
Here is one such instance, [162, Ex. 3.5]. Suppose we flip a fair coin n times. In this case a
natural sample space is

Q=2"={0,1}",

with the uniform probability measure. (Above, 1= Heads.) For k = 1,...,n we denote by k
the event “Heads at the k-th flip”, i.e.,

E, = {w: (Wiy.. . wp) €Q; w = 1}.
Denote by FEy the event “the number of heads in these n flips is even”, i.e.,

Eoz{wEQ; w1+---+wn622}

3The proof of the existence of the Lebesgue measure is based on Caratheodory’s extension theorem.
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Clearly
P[Ey] = % Vk=1,...,n.

Since the probability of flipping an even number of Heads is equal to the probability of flipping
an odd number of Heads, we deduce that

1
For any subset I C {0,1,...,n} we set
E[ = ﬂ EZ
el
The events E1, ..., F, are independent. Observe that for any subset I C I, |I| = k < n, we

have
P[EOmEI} :P[{weg; wi=1Viel, Y w=1I mod2}]

il
—Pl{we® wi=1Viel}|-P[{we® Y w=[mod2}]
~ Z il

2
1
= o7 =P[Eo] [ [P[E:].

i€l
Thus, any n of the events Ey, F1, ..., E, are independent. Finally, note that

L 1 0 n odd
P[E;|=—— and P[EgNnE N---NE,] =4 ’
ZHO [ Z] gnt1 A [ of L0 n] {217” n even.

This shows the events Fy, E1, ..., E, are dependent.

(c) If Q is contained in each of the families of events Aj,...,A,, then these families are
independent if and only if
Pl[AiN---NA, | =P[A]---P[A,], VA, € Ay, k=1,...,n. O

Proposition 1.2.25. Let (2,8,P) be a sample space and that Py, ..., P, C 8 are w-systems
each containing 2. The following statements are equivalent

(i) The families Py, ..., P, are independent
(ii) The collection of o-algebras o(P1),...,0(Py) is independent .

Proof. Clearly it suffices to prove only (i) = (ii). Fix S; € P;, i =2,...,n. Let
J:={5€8: P[SNS;N---NS, | =P[S]|P[S;]---P[Sn] }.
Note that P; C J. Next let us observe that J is a A-system. Indeed if A,B € Jand A C B
then
P[(B\A)NS;N---NS, | =P[(BNS2N---NS,)\(ANS2N---NS,)]

=P[B|P[Sy]---P[S,]| —P[A]|P[S2]---P[Spn] =P[B\A|P[S2]---P[S5y].

If Ay c Ay C--- C A, C is an increasing sequence of events in J and
A=lm4, =] A,

v>1
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then
P[ANS;N---NS, | = lim P[4, NS;N---NS,]

V=00
= lim P[A,[P[S ] P[S,] =P[A]P[S;] - P[S,].
The m — A theorem implies that o(P;) C J so that
P[ANSN---NS, | =P[A|P[S2] - P[S,],
for all A; € 0(P1), S; € Pi, i =2,...,n. Repeating the above argument we deduce
P[AiNAyN---NA, | =P[A|P[A2] - P[An], VAr €0 (Pi), k=1,...,n.
Remark 1.2.24 shows that the o-algebras o(P1),...,0(P,) are independent. O

Corollary 1.2.26. Consider the random variables X1, ..., X, : (,8,P) — R. The following
statements are equivalent.

(i) The random wvariables X1, ..., X, are independent.
(ii) For any z1,...,2, € R
]P)[Xl <z,...,X, < an] = P[Xl < 111} e ]P[Xn < xn]

Proof. It follows from Proposition 1.2.25 applied to the m-systems

Pu. ;:{{ngxk}: xke(—oo,oo]}, k=1,...,n.
O

Corollary 1.2.27 (Partition of independencies). Suppose that (8;)ics is an independency of
(Q,8,P). For any partition (I4)aca of I we set

Foi=\/ 8, a€A
i€l

Then the collection (Fq)aca is also an independency.

Proof. Denote by C, the m-system obtained by taking intersections of finitely many events
from (J;e;. 8i- Then
Fa =0(Cp), YVae A
and the family (Cy)aca is independent. The conclusion now follows from Proposition 1.2.25.
O

Corollary 1.2.28. Suppose that the random variables X1,...,X, € LP(Q, SL]P’) are indepen-
dent. Then for any 1 < k < n and any Borel measurable functions f : R¥ = R, g : R** - R
the random variables

f(Xla o an)v g(X/C+17 .. aXn)
are independent. O

Definition 1.2.29 (Tail algebra). Consider a sequence (8, )nen of sub-o-algebras of (2,8, P).
The tail algebra of this sequence is o-algebra

T=TSn) =) Tm» Tm:=\ Sn. (1.2.8)

meN n>m
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The events in T are called tail events. O

Remark 1.2.30. (a) An event S is a tail event of the sequence (8,,)nen if
VmeN; Se \/ s,
n>m
The sequence of o-algebras (8, ),cn can be viewed as an information stream. The tail events

are described by a stream of information and are characterized by the fact that their occur-
rence is unaffected by information at finitely moments of time in the stream.

(b) To a sequence of random variables X,, : (©,8,P) — R we associate the sequence of o-
algebras 8,, = 0(X,,) and the event C:= "the sequence (X, )(w)n>1 converges” . To see that
this is a tail event note that T, = o(X41, Ximy2,...) and

C= () Cm,

meN
where (), is the event

Cnm ::{WEQ; Vv eN, AN >m, Vki, ko > N ‘Xkl(w)—sz(w)‘<l}.

v
Next, observe that for k1, ke > m and r > 0 the event

{ ‘Xkl(w) — Xy (w) ‘ < r}
is T,,-measurable since Xy, and Xy, are J,,-measurable and so is their difference. Hence
Cm € T 0

Theorem 1.2.31 (Kolmogorov’s 0-1 law). If A is a tail event of the independency (8y)nen,
then IP’[A] =0 or IP’[A} =1.

Proof. Let T, as in (1.2.8). According to the principle of partition of independencies the

collection 81,...,8,,, T is an independency and, since T C T,,, the collection 81,...,8,,, T
is also an independency, Vm € N. We deduce that for any m € N the o-algebras

m

\/ Sk, T

k=1

are independent so {Jp, T} is an independency since Ty is generated by the 7-system

m

U (Vs).
m>0 k=1

Hence, for any A € T, and any B € Ty, we have

P[ANB] =P[A]P[B].
If above we choose B =A € T C Ty we deduce
P[A] =P[A]*, VAeT=P[A] €{0,1}, VAET.
g
Definition 1.2.32. Let (€2,8,P) be a probability space. A zero-one event is a an event

S € 8 such that P[S] € {0,1}. A zero-one algebra is a sigma-subalgebra  C § consisting of
Zero-one events. O
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Corollary 1.2.33. Suppose that (X, )nen s a sequence of independent random variables on
the probability space (2, 8,P). Then the series

X,
neN

1s either almost surely convergent, or almost surely divergent. In other words, the almost sure
convergence is a zero-one event. O

Definition 1.2.34. Suppose that A, B are events in the sample space (£2,IP,8) such that
IP’[B] # 0. The conditional probability of A given B is the number
P[ANB]

P[A|B] := P[]

Note that we have the useful product formula
P[ANB]| =P[A|B|P[B]. (1.2.9)

In particular, we deduce that A, B are independent if and only if IP[A] = }P’[A|B ] Note
that the map

P[ —|B]:8—10,1], S~ P[S|B]
is also a probability measure on §. We say that it is the probability measure obtained by

conditioning on B.

Remark 1.2.35. Observe that n events A1,...,A,, n > 2, are independent if and only if,
for any nonempty subset I C {1,...n} of cardinality < n, and any j ¢ I we have

IP’[Aj|AI] = Aj, where Aj ::ﬂAi. O
el
Suppose we are given a finite or countable measurable partition of (€2, 8, P)
Q=||A, TCN, P[A]+#0, Vi
el
The law of total probability states that
P[S]=> P[S|A]P[A:], VSeS. (1.2.10)
iel
Indeed,
P[s] =Y P[sna] "2V Y P[54 ]P4i].
icl iel
Example 1.2.36. Suppose that we have an urn containing b black balls and 7 red balls. A

ball is drawn from the urn and discarded. Without knowing its color, what is the probability
that a second ball drawn is black?

For k = 1,2 denote by By the event “the k-th drawn ball is black”. We are asked to find
P[By]. The first drawn ball is either black (B;) or not black (B{). From the law of total
probability we deduce

P[ By | =P[B|B: |P[ By | +P[ Bs| B |P| Bf].
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Observing that

b r
]P)B = PBC = —
[ 1] b+r and [ 1] b+r’
we conclude
b—1 b b T b(b—1)+ br
P By | = . . =
[ B ] b+r—1 b+r+b+7“—1 b+r  (b+r)b+1r—1)
bb+r—1 b
_ X ) =P[B].

b+r)b+r—1) b+r
Thus, the probability that the second extracted ball is black is equal to the probability that
the first extracted ball is black. This seems to contradict our intuition because when we
extract the second ball the composition of available balls at that time is different from the
initial composition.

This is a special case of a more general result, due to S. Poisson, [35, Sec. 5.3].

Suppose in an urn containing b black and r red balls, n balls have been
drawn first and discarded without their colors being noted. If another ball
s drawn drawn next, the probability that it is black is the same as if we
had drawn this ball at the outset, without having discarded the n balls
previously drawn.

To quote John Maynard Keynes, [97, p.394],

This is an exceedingly good example of the failure to perceive that a
probability cannot be influenced by the occurrence of a material event
but only by such knowledge as we may have, respecting the occurrence of
the event.

This example hides an even subtler phenomenon, namely exchangeability. We discuss this
phenomenon in greater detail in Subsection 3.2.8. O

Example 1.2.37 (The ballot problem). This is one of the oldest problems in probability. A
person starts at Sy € Z and every second (or epoch) he flips a fair coin: Heads, he moves
ahead, Tails he takes one step back. We denote by 5, its location after n coin flips. The
sequence of random variables (Sy,)nen is called the standard (or unbiased) random walk on
Z.

Formally we have a sequence of independent random variables (X, )nen such that

P[X,=1] =P[X, = 1] =, WeN,
The random variables with this distribution are called Rademacher random variables. Then
Sp=8S+X1+ -+ X,.
So=0,L,:={1,...,n}
H, ::#{keﬂn; szl}, T, :{ke]ln; Xk:—l}.

Thus H,, is the number of Heads during the first n coin flips, while 7,, denotes the number
of Tails during the first n coin flips. Note that

n=H,+1T, S,=5+H,—T,=25y+2H, —n.
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We deduce that
Sp =m<—=n-+m— Sy =2H,.
In particular this shows that S;, =n — S mod 2, Vn € N. Moreover,
— 5
Sp=m << H, = W,

and we deduce.

((n—mgso)/2)2*n m =n — Sp mod 2,

0, otherwise.

P[S, =m] :{

It is convenient to visualize the random walk as a zig-zag obtained by successively connecting
by a line segment the point (n — 1,5,_1) to the point (n,S,), n € N. The connecting line
segment has slope X,;; see Figure 1.2

24

Figure 1.2. A zig-zag describing a random walk started at So = 0

Suppose that y € N and Sy = 0. The ballot problem asks what is the probability p, that
S, >0, Vk=1,...,n—1 given that S, =y.

One can think of a zigzag as describing a succession of votes in favor of one of the two
candidates H or T. When the zigzag goes up, a vote for H is cast, and when it goes down,
a vote in favor of T is cast. We know that at the end of the election H was declared winner
with y votes over T'. Thus p, is the probability that H was always ahead during the voting
process.

We set H,, :=a, T, :==bson=a-+b, y=a—>b. The sample space in this problems is
the space ), , of zigzags w that start at the origin and end at (n,y). There are

i-()-(7)

equally likely such zigzags. We seek the probability of the event
E = {w € Q,4; w touches the horizontal axis }
Then p, =1-P[E].

We will compute }P’[E ] by conditioning on S;. There is a silent trap on our way. Since
the first vote is equally likely to have been H or T, one might be tempted to think that
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IP’[SI = j:l] = % This is however not the case since the zig-zags in €2, , are subject to an
extra condition, namely the location (n,y) of their endpoints. We have

P[E] =P[E|S1=-1|P[S1=-1]+P[E|S1=1]P[S1 =1]
=P[S;=-1]+P[E|S1=1]P[S1 =1].

=)

equally likely zigzags from (1,—1) to (n,a —b), so

Note that there are

_ ("n) _b_ b
Plo=1l= T =n =i
Next,
b a
P[S1=1]=1-P[S =1] =l- =

To count the number of zigzags from (1,1) to (n,a—b) that touch the horizontal axis we rely
on a clever and versatile trick called André’s reflection trick.

For each such zigzag Z denote by k(Z) the first moment it touches the horizontal axis.
Denote by Z" the zigzag obtained from Z by reflecting in the horizontal axis the part of Z
from k(Z) to n; see Figure 1.3

24

_24

Figure 1.3. The zigzag Z" traces Z until Z hits the horizontal axis. At this moment the
zigzag Z" follows the opposite motion of Z (dashed line).

The end point of Z" is (n,—(a — b)). The transformation Z — Z" produces a bijec-
tion between the zigzags with origin (1,1) and endpoint (n,a — b) that touch the horizon-
tal axis and the zigzags with origin (1,1) and endpoint (n,—(a —b)). Indeed, any zigzag
Z': (1,1) = (n,b — a) must cross the horizontal axis. After the first touch we reflect it in
this axis and obtain a zigzag Z : (1,1) — (n,a —b) such that Z" = Z’. Clearly Z touches the
horizontal axis.

The number of zigzags (1,1) — (n,b—a) is

Go)-(70)
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Hence
() (a—DW b
P[E|S;=1] = —%~ = ~ =
2] ) (a:le) allb-1)!  a
We deduce b b %
a
P[E] T2 arb axb a+b
and % b S
a — y n
—1— — =2 =" 1.2.11
Py a+b a+b n n ( )
O

Proposition 1.2.38 (Bayes’ formula). Suppose we are given a finite or countable measurable
partition of (2,8, P)
Q=||A, TCN, P[A]+#0, Vi

1€l
Then, for any S € & such that fP[S} # 0 and iy € I we have
P[ S| Ai, |P[ Ai |
P| A;,|S | = : 1.2.12)
S S IR P (

Proof. According to the law of total probability, the denominator in the right-hand-side of
(1.2.12) equals P[S]. Thus, the equality (1.2.12) is equivalent to

P[Ai0|S]P[S] = P[S’Aio ]P[Aio]‘
The product formula shows that both sides of the above equality are equal to ]P’[Aio ns ]
O

Remark 1.2.39. We should mention here a terminology favored by statisticians.
e The events Ay are called hypotheses.
e The probability P[Ak] is called prior (probability).

The probability IP’[Ak]S } is called posterior (probability).

The probability P[ S|Ay ] is called likelihood.

Here is one frequent application of Bayes’ principle. Suppose that we observed a random
event S we know that it can be caused only by one of the random events A;. To decide
which of the events A; is more likely to have caused S we need to find the larges of the pos-
teriors P[ 4;|S |. Bayes’ formula shows that the most likely cause maximizes the numerator

Example 1.2.40 (Biased coins). We say that a coin has bias 6 € (0,1) if the probability
of showing Heads when flipped is #. Suppose that we have an urn containing c¢; coins with
bias 61 and co coins with bias 9. Let n := ¢; + ¢o denote the total number of coins and set
pi = 3, i =1,2. We assume that

c1 < cg and 91 > 92, (1.2.13)

i.e., there are fewer coins with higher bias. We draw a coin at random we flip it twice and we
get Heads both times. What is the probability that the coin we have drawn has higher bias.
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If 6 denotes the (unknown) bias of the coin drawn at random, then we can think of 6 as
a random variable that takes two values 61, 0o with probabilities

Denote by E the event that two successive flips produce Heads. Then
P[E|0;] :=P[E|0=06;] = 6;.

Bayes’ formula shows that

P[E[6:]P[6:] +P[E[6:]P[62]  pi67 +p263 | o (;)2
p1 \ 01
Our assumption (1.2.13) shows that
2_P2y g0
P 01
Observe that if ca03 > ¢16%, then
1
P[@l‘ E] < 5

Thus, in this case, if we observe two Heads, then the coin we randomly drew from the urn is
less likely to be the one with bigger bias. For example if 6; = 2 and 6y = % and c3 > 8cy,

3

then .
P [ 01 ‘ E ] < g,
so the randomly drawn coin is less likely to be the one heavily biased towards Heads. O

1.2.3. Integration of measurable functions. We outline below, mostly without proofs,
the construction and the basic facts about integration of measurable functions. For details
we refer to [56, 109, 166].

Fix a measured space (2, 8, ). Recall that Elem(£2, 8) denotes the vector space of elemen-
tary 8-measurable functions (see Definition 1.1.20). We denote by Elemy(€2,8) the convex
cone of Elem(€2,8) consisting of nonnegative elementary functions. Define

s Blem (2.8) = [0.0c], 1> ulf] = [ fenlas].
as follows. If
M
f=> aila, A,... Ay disjoint,
k=1
then
M
nl f] :/Qf(w)u[dw] ::Zai,u[Ai].
i=1
Note that if

N
f=> _biIp, Bi,...,B, dijoint,
j=1
then a; = bj if A; N B;j # (). Hence

D_an[Ai] =3 > an[AinB;] =3 Y bin[AinB;] = bin[B;].
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This shows that the value of [, f(w)u(dw) is independent of the decomposition of f as a
linear combination of indicators of pairwise disjoint measurable sets.

The above integration map satisfies the following elementary properties.

Vf,g € Elem,(Q,8) f<g=pu[f] <p[g]. (1.2.14a)
Va,b >0, f,g€Elem;(Q,8): plaf+bg]=aul[f]+bulg]. (1.2.14b)
For f € £9(£,8) we set
& = {g€Elem (Q.8); g< [}
The set 8{: is nonempty since 0 € Ei. Define
nlf] = /Qfd,u: /Qf(w),u[dw] = gseuepz/Qg(w)u[dw] € [0,00) |- (1.2.15)

Definition 1.2.41. A measurable function f € £%((,8) is called u-integrable if
plf7], wlf7] < oo

In this case we define its Lebesgue integral to be

Afmwiéfwmhm]= REITAEA

We denote by £1(Q,8, ) the set of u-integrable functions and by L}F(Q,S,,u) the set of

p-integrable nonnegative functions. O
Note that
Vi, geLL(8) f<g=nu[f] <n[g] (1.2.16)
Moreover,
Ve L£9(0,8): u[f>0]:O<:>/fdu:0. (1.2.17)
Q

The integral L(}r S5 f— ,u[ f ] € [0, oo] enjoys the following key continuity property which
is the “workhorse” of the Lebesgue integration theory.

Theorem 1.2.42 (Monotone Convergence theorem). Suppose that (f,)nen s a sequence
in L9 (€2, 8) that converges increasingly to f € £9.(Q,8). Then

ulfa] 7 u[ ] asn— oo
O

Proof. The sequence u[fn] is nondecreasing and is bounded above by ,u[f] Hence it has a, possibly infinite, limit
and

lim p[fn] <ulf].

n—oo
The proof of the opposite inequality
lim M[fn} > N[f}

n— 00

relies on a clever a clever trick. Fix g € Ei, c€ (0,1), and set

Sui={w €D fulw) > cg(w) }.
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Since f = lim f,, and (fn) is a nondecreasing sequence of functions we deduce that S, is a nondecreasing sequence of
measurable sets whose union is 2. For any elementary function h the product Ig, h is also elementary. For any n € N
we have f, > fnls, > cglg, so that
plfal] > p[Is, fn] > culgls, ]
If we write g as a finite linear combination
9=>_g;la,
J

with A; pairwise disjoint, then we deduce

ulfn] >cnlgls, ] =c> gin[A;NSa].
J
The sequence of sets (A; N Sp)pen is nondecreasing and its union is A; so that

Jim p[fa] 2 e} g5 lim p[A;080] =D gin[A;] = eulg].
J J

Hence
im [ fn] >culg], Vg€ el vee (0,1),
so that
Jim [ fn] > eu[f], Vee(0,1).
Letting ¢ 1 we deduce limp— o0 ,u[fn} > /,L[f} ]

Corollary 1.2.43. For any f € Lg(Q,S) we have
plf] = lim p[Du[f]]. O

Corollary 1.2.44. For any f,g € £LY(,8, 1) and a,b € R such that af + bg is well defined
we have af +bg € LY(Q, 8, 1) and

/(af + bg)dp = a/ fdu+ b/ gdp. (1.2.18)
Q Q Q
Moreover, if f,g € LY(Q,8, 1) and f(w) < g(w), Yw € Q then

]gfdﬂféjggdu-

Since |f| = fT + f~ we deduce the following resullt.
Corollary 1.2.45. Let f € £%(Q,8). Then
feLt (9,8, u) = |fl € £1(Q,8, ). O

Corollary 1.2.46 (Markov’s Inequality). Suppose that f € L} (Q,8,u). Then, for any
C > 0, we have

pl{f>=C}] < é/gfdu. (1.2.19)

In particular, f < co, p-a.e..
Proof. Note that
Clyscy < f= Cul{f>C}] —/QCI{f>o} < /Qfdu-

Corollary 1.2.47. If f € £1(Q, 8, n), then p[{|f| = o0} | =0.
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Proof. Note that
pl{Ifl=o00}] = (| u[{f >n}].
neN
On the other hand, Markov’s inequality implies

ol |f]
p[{f>n}] < [n ] — 0.
O
Proposition 1.2.48. Suppose f,g € £L°(2,8) and f = g, p-a.e.. Then
feL(Q,8,u)<=gelL'(Q,8,p).
Moreover, if one of the above equivalent conditions hold, then u[f] = u[g]. O

Remark 1.2.49. The presentation so far had to tread carefully around a nagging problem:
given f,g in £1(,8, 1), then f(w)+ g(w) may not be well defined for some w. For example,
it could happen that f(w) = 0o, g(w) = —oo. Fortunately, Corollary 1.2.47 shows that the
set of such w’s is negligible. Moreover, if we redefine f and g to be equal to zero on the set
where they had infinite values, then their integrals do not change. For this reason we alter
the definition of £1(£2,8, i) as follows.

L4, 8, 1) == {f:(Q,S) — R; f measurable /Q|f|d,u<oo}.

Thus, in the sequel the integrable functions will be assumed to be everywhere finite.

With this convention, the space £1(2, 8, 1) is a vector space and the Lebesgue integral is
a linear functional

po L8, ) = R, f el f]. O

Remark 1.2.50 (Daniell-Stone integral). A Daniell-Stone integral is a triplet 2, €, L) where
Q) is a set, € is a vector space of bounded functions 2 — R and L : ER is a linear map
satisfying the following properties.

(i) Yf,g € €, max(f,g), min(f,g) € €.
(i) Vf € € min(f,1) € €.
(iii) If f,g € € and f < g then L[ f] < L[g].
(iv) If (fn)n> is a sequence if & such that f, \, 0 as n — oo, then L[ f, | N\, 0.
The Daniell-Stone theorem states that that there is only one way of producing Daniell-

Stone integrals. More precisely, if 8 denotes the sigma-algebra of subsets of () generated by
the functions f € &, then there exists a unique measure y on 8 such that

€e Ll (Q,8,u) and p[f] =L[f], VfeE&.
For a proof we refer to [56, Sec.4.5] or [117, Chap.III].

For example, if (€2, 8, 1) is a sigma-finite measures space and € = (€2, 8, 11) is the subspace
of elementary functions spanned by indicators of sets of finite measure, then the triplet
(Q, €, u[—]) is a Daniell-Stone integral. O
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Recall that for any sequence (x,)nen of real numbers we have

liminf z,, = hm xy = 1nf T
n—0o0

The sequence (z}) is nondecreasing. The Monotone Convergence Theorem has the following
useful immediate consequence.

Theorem 1.2.51 (Fatou’s Lemma). Suppose that (fn)nen is a sequence in £9.(€2,8). Then

/liminffn(w) [ dw <hm1nf/ fndp |
Q

n—00 n—00
O
Proof. Set
= inf fp.
9k = b In
Proposition 1.1.18(iii) implies that g € LQ(Q,S). The sequence (g ) is nondecreasing and
B = g o
The Monotone Convergence Theorem implies that
/ hm mf fn(w)u dw = hm / grdp.
Note that g < fn, Vn > k, and thus
/ oy < / Fndpt, V>,
Q Q
ie.,
dp < inf du.
/ng u_;rzlk/an I
Letting £ — oo we deduce
lim gkd,u < lim inf / fndp =lim inf/ fndp.
k—oo k—ocon>k n—oo Jo
[m}

The next result illustrates one of the advantages of the Lebesgue integral over the Riemann
integral: one needs less restrictive conditions to pass to the limit under the Lebesgue integral.

Theorem 1.2.52 (Dominated Convergence). Suppose (fn)nen is a sequence in £1(€2,8, i)
satisfying the following properties

(i) There exists f € £L°(2,8) such that
Tim f, (@) = (@), Yo € Q.
(ii) There exists g € L1(£2, 8, 1) such that
|frn(w)] <g(w), VweQ, neN.
Then f € £LY(Q,8, 1) and
nh_)ngo fndp = / fdu, (1.2.20a)

lim / | fn(w) = f(w)|dp = 0. (1.2.20b)

n—oo
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Proof. Set gn = |f| — fn. Then gn, >0 and limg, = |f| — f. Fatou’s Lemma implies

071~ Py < timint [ (11 fydn = [ 171du = timsup [ o

We deduce
limsup/ fnd,ug/ fdu.
Q Q

Arguing in the same fashion using the sequence f, — |f| we deduce

/ fdu S hmlnf/ fnd,u,.
Q Q

/ fdu < 1iminf/ frndp < limsup/ fndp < / fdu.
Q Q Q Q
This proves (1.2.20a). The equality (1.2.20b) follows by applying (1.2.20a) to the sequence gn = |fn — f|. m|

Hence

Theorem 1.2.53 (Change in variables). Suppose that (20, 80), (21, 81) are measurable spaces
and
D : (90,80) — (91,51)
is a measurable map. Fiz a measure o : So — [0, 00] and a measurable function f € £L°(21,87).
Then
f € L1(1,81, Pyp0)=0*(f) := f o ® € L (Q, S0, o)

and

| o= [ v (1.221)
QO Ql

Proof. Note that it suffices to prove the theorem in the case f > 0. The result is obviously
true if f € Elem; (£21,81). The general case follows from the Monotone Convergence Theorem
using the increasing approximation D, [f]  f of f by elementary functions; see (1.1.7). This
has the property that D,[®*(f)] = ®*( Dy[f]). O

Remark 1.2.54. Unlike the well known change-in-variables formula, the map 7" in (1.2.21)
need not be bijective, only measurable.

If T' is bijective with measurable inverse, then for any measure p; on ( 24,81) then (1.2.21)
applied to the map 7T~ reads

/Ql f(wl),ul[dwl] = /QO f(TwO)T?;l/Ll[dwO], (1.2.22)

Vf e Ll(Ql,Sl, /Ll).
In particular, if ); are open subsets of R", T : Qy — O is a C'-diffeomorphism onto,
and p is the Lebesgue measure on y, then (1.2.22) reads

F)A[dy] _/ F(Ta)| det Jr(z) |A[dz], (1.2.23)
951 Q

0

where Jp(z) is the Jacobian of the C! map x — T'x. O

Proposition 1.2.55. Let f € £9(Q,8). Suppose that p : 8§ — [0,00] is a sigma-finite
measure. Define

pif =8 — [0, 00], uf[S]Z/Sfdu 1=/QISfdM-
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Then, py is a measure. Moreover
Wiy = pp <= fo = f1, pu— almost everywhere. a
The above result has an important converse. To state it we need to introduce the concept

of absolute continuity.

Definition 1.2.56. Suppose that u, v are two measures on the measurable space (£2,8). We
say that v is absolutely continuous with respect to p, and we write this v < p if

vSeS8: u[S]=0=v[S5]. O
For a proof of the next result we refer to [17, 37, 166].

Theorem 1.2.57 (Radon—Nikodym). Suppose that pu,v are two o-finite measures on the
measurable space (2,8). The following statements are equivalent.

(i) v < p.
(ii) There exists p € £9.(Q,8) such that v = p,, i.e.,

V[S]:/Spu[dw], VS e 8.

The function p is not unique, but it defines a unique element in L(_)F(Q,S,u) which we

denote by g—; and we will refer to it as the density of v relative to pu. O

1.2.4. LP spaces. We recall here an important class of Banach spaces. For proofs and many
more details we refer to [56, 109, 166]. We define an equivalence relation ~, on £°(£,8)
by declaring f ~,, g iff u[f #* g] = 0. Note that
fetl@sandgnyf > ge (@8 md [ gdu= [ fau
Q Q

We set
LO(stvu) = LO(Q&M)/ s Ll(stau) = Ll(stau)/ ~u

For p € [1,00) we set
CP(Q,8,p) = {f € L8, m); 1S € L@ 8, |,

Lp(Q7Sa:u) = LP(Q?SHH)/ N,LL .
We will refer to the functions in LP(,8, ) as p-integrable functions. For p € [1,00) and

feLr(Q,8,u) we set
Il i= ([ 1)

L2, 8, p) = { [f] € L%, 8, p); g € L2(2,8), g~ [}
For f € £%(Q,8) we define
[flloc = ess sup|f] = inf {a > 0; u[|f| >a]=0]}.
Note that this quantity only depends on the ~-equivalence class of f and
Lo, 8, 1) = { f € L8, 1); || flloo < 00}

Define
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In this fashion we obtain for every p € [1, 00] maps
= llp : L(2,8, p) — [0, 00).

Theorem 1.2.58 (Holder inequality). Let p,q € [1,00] such that

L
p q
Then for any f € LP(Q, 8, 1) and g € LI(Q, 8, 1) we have fg € LY(Q, 8, 1) and

/Q Faldp < 1 £l - gl (1.2.24)

Theorem 1.2.59 (Minkowski’s inequality). Let p € [1,00], Then,

Vg€ LP(Q,8,u): [If +gllp < Fllp +llgllp-

Theorem 1.2.60. Fiz a sigma-finite measured space (2,8, 11).

(i) For any p € [1,00], the pair (LP(, 8, 1),|| — ||p) is a Banach space.

(ii) If p € [1,00), the vector subspace of p-integrable elementary functions is dense
in LP(2,8,P). In particular, if 8 is generated as a sigma-algebra by a countable
collection of sets, then LP(Q, 8, u) is separable. O

The above density result follows from a combined application of the Monotone Class
Theorem and the Monotone Convergence Theore; see Exercise 1.9.

Suppose that (£2,8, u) is a measured space and p € [1,00]. Denote by ¢ the exponent
conjugate to p, i.e.,

1 1
C o= lesg= 2
P q p—1

If g € L9, 8, 1), then Holder’s inequality shows that fg € L', Vf € LP(Q,8, 1) and the
resulting linear map

D803 Fr &)= [ afdueR
is continuous.

Theorem 1.2.61. Suppose that (2,8, 1) is a sigma-finite measured space and p € (1,00).
Then the map

LIY(Q,8, 1) 3 g & € LP(Q, 8, u)* = the dual of the Banach space LP(2, 8, 1)

s a bijective isometry of Banach spaces. a
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1.2.5. Measures on compact metric spaces. Up to this point we have indicated how one
can use a measure to define an integral. The integral is a linear functional on an appropriate
space of measurable spaces.

On certain measurable spaces one can invert this process. Suppose that X is a topological
space and B = By is the sigma algebra of Borel sets. We denote by Cj(X) the vector space
of bounded continuous functions on X. This is equipped with the sup-norm

| flloc = sup | f(z)].
zeX

Any finite Borel measure u on B defines via integration a continuous linear functional

L:Cy(X) >R, L[f] = /Xf(x)u[dm].
This linear functional satisfies the positivity condition
I[f] =0, Vf € Cy(X), f=0. (Pos)

On metric spaces the measure p is uniquely determined by the associated functional yu. More
precisely we have the following fact.

Proposition 1.2.62. If X is a metric space and u,v are two finite Borel measures such that

Iu[f] :I,u[f]a VfGCb(X),
then ,u[B] :V[B] for any subset B C X.

Proof. Since the Borel sigma-algebra of X is generated by the m-system Cx of closed subsets it suffices to show that
p,[C] = V[C], VC € Cx.
To see that this indeed the case fix C' € Cx and, for any n € N denote by D,, the closed set
Dy :={=z € X; dist(z,C) > 1/n}.
Define fr € Cp(X)

dist(x, D)
fn(z) = — - .
dist(z, Dn) + dist(z, C)
The function f,, is identically 1 on C and identically 0 on D,,. Moreover

lim fn(z) = Ig(z), V€ X.
n—oo
Using the Dominated Convergence Theorem we deduce

We want to include a useful consequence of the above proof.
Corollary 1.2.63. Suppose that X is a metric space and i is a finite Borel measure on X.
Then the space Cy(X) is dense in L'(X,Bx, ). 0
We have the following remarkable result.

Theorem 1.2.64 (Riesz Representation). Suppose that X is a compact metric space and L
is a linear functional on C(X) satisfying the positivity condition (Pos). Then there exists a
unique finite Borel measure y on X such that

Lif]=1L[f], VfeCX).
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Idea of proof. Observe that the triplet (K, C(K), L) is a Daniell-Stone integral; see Remark
1.2.50. Indeed, observe that L is continuous since

| L[ F]] < L[1] - [Iflloe; VS € C(K).

If (fn)n>o0 is a sequence of continuous functions converging decreasingly to 0, then Dini’s
theorem implies that f, converge uniformly to 0, so L[ fm] N\, 0. Moreover, the sigma-
algebra generated by the continuous functions on K coincides with the Borel sigma-algebra
since any closed set S C K is the zero set of the continuous function x — dist(z, C'). Theorem
1.2.64 is now obviously a special case of the Daniell-Stone theorem; see Remark 1.2.50. O

For a details we refer to [58, Sec. IV.6, Thm.3| or [166, Thm. 13.5].

Example 1.2.65. We can use the above result to construct probability measures on a smooth
compact manifold M of dimension m. As shown in e.g. [133, Sec. 3.4.1] a Riemann metric
g on M, defines a continuous linear functional

C(M)> f— /Mdeg eR,

usually referred to as the integral with respect to the volume element determined by ¢.The
Riesz Representation Theorem shows that this corresponds to the integral with respect to a
finite Borel measure Vol, on M called the metric measure. The metric volume of M is then

Vol, [M ] = / Iydvy,.
M
We can associate to it the metric probability measure P,

1
PQ[B] = WVOIQ [B],
for any Borel subset B C M.

In particular, if M is a compact submanifold of an Euclidean space RY, then it comes
equipped with an induced metric and as such, with a finite metric measure pjs and thus
with a probability measure Pj;. We will refer to this probability measure as the Fuclidean
probability measure.

Suppose for example that M = S™ is the unit sphere in R™
S™ = {(xg,xl...,xm) e R™=1. I%—I—-'-—f—fbm = 1}.
The Euclidean volume of S™ is (see e.g. [133, Eq. (9.1.10)])

or(m+1)/2
Om = T(mty
(%)
and the Euclidean probability measure is
1

PSm = 7/_,LSm.
Om

For example, if m = 1, then pg1 is expressed traditionally as df, where 6 is the angular
coordinate. Hence

Pgi[df] = %dﬁ. (1.2.25)



1.3. Invariants of random variables 41

If we use spherical coordinates (i, #) on S?, where ¢ denotes the Latitude and @ the Longitude,
then

1
Pg2 [dpdf | = Esin wdpdf. (1.2.26)
g

1.3. Invariants of random variables

We have defined the random variables as measurable functions on a probability space. In
concrete examples this probability space is not specifically mentioned. In fact there could be
different looking random variables describing essentially the same random quantity.

Consider for example the simplest example of rolling a fair die and observing the number
N that shows up. The possible values of N are {1,...,6}. We equip Ig with the uniform
probability measure and then we can view N as the map

N :Ig —» R, N(k‘):ki, Vk € Ig.

Consider now a different experiment. Pick a point x uniformly random in (0, 1]. We receive
a reward R(x) = k € I if [6x] = k. The functions N and R are obviously different but
the random quantities they described are very similar and they should have many things in
common.

This is analogous to the situation we encounter in geometry or physics when the same
physical or geometric object can be given different descriptions using different coordinates.
The laws of physics or geometry are however independent of coordinates. Technically, this
means they are described in terms of tensors.

In this section we explain a few basic techniques for describing the behavior of random
variables that capture the similarities we observe intuitively.

1.3.1. The distribution and the expectation of a random variable. Fix a probabil-
ity space (2,8,P). For any random variable X € £%(€,8) the most basic invariant is its
probability distribution or the law of X, i.e., the pushforward

Py := X4P. (1.3.1)

Thus Py is a Borel probability measure on R and, as such, it is uniquely determined by
the cumulative distribution function (cdf)

F(z) = Fx(z):=P[ X <z].
More precisely, Px can be identified with the associated Lebesgue-Stieltjes measure,
Px = dFx.

When the random variable X is discrete, i.e., the range of X is a finite or countable discrete
subset 2" C R, then Px is completely determined by the “mass” of each z € 27,

Px[{z}] =P[X ==z].

For this reason in this case the probability distribution of X is often referred as the probability
mass function (or pmf) of X.
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The quantile of X is the quantile of its cdf; see Example 1.2.22. More precisely, the
quantile is the function

Qx :[0,1] =R, Qx(p):inf{xeR; P[X < 2] Zp}. (1.3.2)

# Given a Borel probability measure i on R, we will use the notation X ~ p to indicate that
the probability distribution of X is u, i.e., Px = pu.

Any probability measure p on (R,Bg) tautologically defines a random variable with
probability distribution p. If we denote by 1z the identity map R — R, then the random
variable

X = ]lR : (R,BR,M) —R
has probability distribution Px = p. Because of this fact random variables are often identified
with their probability distributions. We will use the notations

XLy or X~Y
to indicate that X and Y have the same distribution.

Definition 1.3.1 (Expectation). The ezpectation or the mean of the integrable random
variable X € £1(£,8,P) is the quantity

E[X]=Es[X] ::/QX(w)IP’[dw]. 0

We deduce from the Change in Variables Theorem 1.2.53 that

/xPX[d:g} :/]lR(z:)X#IP[d:c] :/ 1Ig(X(w))P[dw] =E[ X ]
R R Q
so that obtain the useful formula
E[X] :/RxIP’X[dac]. (13.3)

If F(z) = Fx(z) is the cdf of X, F(z) = P[X < z], then the distribution Px is the
Lebesgue-Stieltjes measure dF' determined by F' and (1.3.3) takes the classical form

E[X]= / zdF(x). (1.3.4)
R
The above equality shows that
XLy S E[X]=E[Y]

More generally, for any Borel measurable function f : R — R such that f(X) is integrable or
nonnegative we have*

E[f(X)] :/Rf(x)}P’X[dx]. (1.3.5)

In other words, the expectation of a random variable is determined by its probability distri-
bution alone, and not on the precise nature of the sample space on which it is defined.

4 undergraduate probability classes this formula is often referred as LOTUS: the Law Of The Unconscious
Statistician.
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For example, the random variables N and R described at the beginning of this section
have the same distribution and thus they have the same mean

1+---4+6 7
E{N|=E|R|=——F—=—.

[N]=E[R] = 1 t0 T

Remark 1.3.2 (Bertrand’s paradox). More often than not, in concrete problems the sample

space where a random variable is defined is not explicitly mentioned. Sometimes this can

create a problem. Consider the following classical example.

Pick a chord at random on a unit circle. What is the probability that its length is at
least v/3, the length of the edge of an equilateral triangle inscribed in that unit circle?

The answer depends on the concept of “at random” we utilize.

For example, we can think that a chord is determined by two points 61,02 on the circle
or, equivalently, by a pair of numbers in [0, 27]. The corresponding chord has length < /3 if
and only if |#; — 6| > 2?” The region in the square [0, 27| occupied by pairs (01, 62) satisfying
|01 — 62 > 2{ consists of two isosceles right triangles with legs of size %” with vertices (0, 27)
and (27,0). By gluing these triangles along their hypothenuses we get a square one third the
size of [0,27]. Assuming that the point (61,602) is chosen uniformly inside the square [0, 27]

we deduce that the probability that the chord has length at most /3 is %.

On the other hand, a chord is uniquely determined by the location of its midpoint inside
the unit circle. The chord has length at least V3 if and only if the midpoint is at distance at
least % from the center. Assuming that the midpoint is chosen uniformly inside this circle,
we deduce that the probability that the chord is at least v/3 is % since the disk of radius %
occupies i of the unit disk.

We can try to decide empirically which is correct answer, but any simulation/experiment
must adopt a certain model of randomness. Things are even more complex. The set of chords
has a natural symmetry given by the group of rotations about the origin. Any “reasonable”
model of randomness ought to be compatible with with this symmetry. In mathematical
terms this means that the underlying probability measure ought to be invariant with respect
to this symmetry.

As a set, we can identify the set of chords with the unit disk: we can describe a chord
by indicating the location of its midpoint. The problem boils down to choosing a rotation
invariant Borel measure on the unit disk. The quotient of the disk with respect to the group
of rotation is a segment. In particular, any probability measure p on the unit interval defines
a rotation invariant probability measure P, defined on the unit disk, determined by the
requirements

P [0<r<ry, 6g<0<6]= ] [0,m1]].

Hence, there are infinitely may geometric randomness models. In our first model of random-
ness, the measure p is the distribution the Lebesgue measure on [0,1] and P, = drdf. In
the second model of randomness the measure p is 2rdr and P, = %rdrd&, the normalized
Lebesgue measure on the unit disk. O

01 — 6o
2

If X,Y € £1(,8,P) and a,b € R, then aX +bY € £L1(Q,8,P) and
E[aX +bY | =aE[X | + bE[Y ] (1.3.6)

The above linearity of the expectation is a very powerful tool. Here is a simple illustration.
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Example 1.3.3. Suppose that n > 3 birds are arranged along a circle looking towards the
center. At a given moment each bird randomly and independently turns his head to the left
or to the right, with equal probabilities. After they turn their heads, some birds will be visible
by one of their neighbors, and some not. Denote by X, the number of birds that are invisible
to their neighbors. We want to compute E[Xn ], the expected number of invisible birds. We
leave the reader to convince herself/himself that X, is indeed a well defined mathematical
object.

For k =1,...,n we denote by By, the event that the k-th bird is invisible to its neighbors.
Then

Xn=)Y Ip, and E[X,| =) E[Ip ] =) P[B:]=nP[B].
k=1 k=1 k=1

The probability that the first bird is invisible to is neighbors is computed by observing that

this happens iff its right neighbor turns his head right and its left neighbor turns his head

left. Since they do this independently with probabilities % we deduce

1 1 1
PlBi]=55=7
Hence n

To appreciate how efficient this computation is we present an alternate method.

We will determine the expectation by determining the probability distribution of X, or equivalently its probability
generating function (pgf)
Gx, () =E[t*"] = > P[X, =k]t".
k>0
I learned the argument below from Luke Whitmer, a student in one of my undergraduate probability courses.

Assume the birds sit on the edges of a convex n-gone P,. Orienting an edge corresponds to describing in which
direction the corresponding bird is looking. We will refer to a choice of orientations of the edges of P, as an orientation
of Pp,. We denote by Q,, the collection of orientations of P,,. Note that |Q,| = 2".

Fix a cyclic clockwise labelling of the vertices of n-gon, v1,v2, ..., vy and define vy, for m € N by requiring v; = v;
if i = j mod n. The i-th bird sits on the edge E; := [v;, v;4+1]. The i-th bird, or equivalently the edge E;, is invisible to
its neighbors if F;_1 is oriented from v; to v;—1 and E;1 is oriented from v; 41 to v;42. Given an orientation w of Py,
we denote by xn(w) the number of invisible edges in this orientation. Thus

_ #{WGQM In(“’):j}.

P[ X, =] o

We distinguish two cases.

1. n = 2k. Denote by P;\ the polygon obtained from P,, by collapsing the edges E1, E3, Es, . ... As vertices of the new
polygon we can take the collapsed edges. The edges of the new polygon are

Ef = Fs, Ef = Ey4,... B = Egy.
Similarly, we denote by P;, the polygon obtained from P,, by collapsing the edges Ea, E4,.... We can take the collapsed
edges as vertices of the new polygon. Its edges are
E =FE1, By =F3,..., B, =FEa,_1.
Note that an orientation of P, induces orientations of fP% and conversely, orientations ﬂ’% determine an orientation of
Prn. We denote by Q?f the set of orientations of fP,jf. We thus have a bijection
Qn dwe (w,w-) €QF x Q.

Suppose now that we have an oriented m-gon Q,,. If q1,...,¢mn are the vertices Qy,, we say that v; is an out-vertex if
both edges at v; are oriented away from v; and it is an in-vertez, if both edges at v; are oriented towards v;. A neutral
vertex is a vertex with an incoming edge and one outgoing edge. For an orientation w of Q,, we denote by ym (w) the
number of out-vertices.
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Fix an orientation on P,. An edge E; is an invisible in this orientation if and only if the corresponding vertex in

TP%_U is an out vertex. More explicitly, if ¢ is even/odd, then the corresponding vertex in 'J’ff is an out-vertex. Note
that,

Top(w) = Yk (W) + yr(w-). (1.3.7)
We denote by z, ; the number of oriented n-gons with j invisible edges and we set
Po(t) =Y anjtt= Y o),

Jj=0 wEp

Note that 1
Gx, (t) = 2—nPn(t).
We denote by ¥y, ; the number of oriented m-gons with j out-vertices and we set
Qm(t) = Zym,jtj = Z ty"”(w).
ji>0 WEQm

From (1.3.7) we deduce
Poy(t) = Qi (t)*. (1.3.8)

2. n =2k + 1. Fix an orientation of P,. Consider a new oriented n-gon Q,, with edges, in clockwise order
Ei7Eé7 A '7E’:L7

where E/ carries the orientation of the edge E(2i—1) mod n of Pn. Denote the vertices of Qn by q1, g2, ..., qn, so the two
edges that meet at g; are E]_; and E/.

Imagine stepping in a clockwise fashion on the edges of P, and skipping every other edge and labelling by E! the
i-th edge we stepped on. Observe that the edge E; mod n Of Pn is invisible iff the vertex ¢;+1 (where E; <> FEo;_1 and
E1/'+1 <> E2;41 meet) is an out-vertex. Thus, the number of invisible edges of P;, is equal to the number of out-vertices
of Q,. Hence

Pop11(t) = Qary1(t). (1.3.9)

To determine @, (¢) fix an orientation w of an m-gon Q,,. As we travel clockwise from one vertex to the next,
the out- and in-vertices alternate: once we leave an out-vertex, the first non-neutral vertex we meet is an in-vertex
and similarly once we leave an in-vertex the first non-neutral vertex we encounter is an out-vertex. In particular this
shows that there is an equal number of in and out-vertices. Fix a cyclic labelling {1,2, ..., m} of the vertices of Qp,. If
Ym(w) = J then zpy, (w) = j so the set S of locations of in-/out-vertices has cardinality 2j,

S={1§€1<f2<“'<€2j§m,}.

The above discussion shows that if ¢; is an out/in- vertex, then all vertices 3, 5, ... are out/in-vertices while the even
vertices l2, 4, ... are in/out-vertices. This shows that
n n .
- — J
s =2(2). @m0 =X (2)e

j=0

QmtH) =1 +H)™+ (1 —t)™.

Hence

Pop(8) = ((L+0)F + (1= 0)F)? = (1 + )% + (1 — )% +2(1 — ),

Par(#2) = (1= )F 4 (1%L,
‘We conclude that
) (1 7\/{)2k+1 4 (1+\/z)2k+1’ n=2k+1,
Gx, ()= - x
A+ v+ (1 -V +2(1-0)" n=2k
The mean of X, is
E[Xn] =G, ().

O

Theorem 1.3.4. Suppose that (2,8,P) and F,G C § are two independent sigma-subalgebras.
If X € LY(Q,TF,P), Y € LY(Q,G,P), then XY € L1(Q,8,P) and

E[XY]=E[X]E[Y]. (1.3.10)
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Proof. Observe that the equality (1.3.10) is bilinear in X and Y. The equality holds for
X=1Ip, FeFandY = Ig, G € G and thus, by bilinearity, it holds for X € Elem(Q2, F)
and Y € Elem(€Q, ).

If X,Y are nonnegative, then D, [X]|D,[Y] / XY and the Monotone Convergence The-
orem shows that (1.3.10) holds for X,Y > 0. O

Corollary 1.3.5. Suppose that X,Y € L£'(Q,8,P) are independent random variables such
that XY € LY(Q,8,P). Then
E[XY]=E[X]E[Y]. (1.3.11)

Proof. Use Theorem 1.3.4 with ¥ = o(X) and § = o(Y). O

Corollary 1.3.6. Suppose that the random variables Xi,..., X, : (2,8,P) — R are inde-
pendent. Then, for any Borel measurable functions fi,..., fn : R = R such that

fi(X:) € £1(Q, 8,P)
we have f1(X1) - fo(Xn) € LYQ,8,P) and

Proof. Follows inductively from Corollary 1.3.5 by observing that for any k = 2,...,n the
random variables f1(X1)--- fr—1(Xk—1) and fi(Xy) are independent. O

Corollary 1.3.7. Let X € L'(Q,8,P) and suppose that T C § is sigma-subalgebra. Then the
following are equivalent.
(i) For any Borel measurable function f : R — R such that f(X) € L' and any F € F
E[f(X)Ir] =P[F|E[f(X)].
(ii) The random variable X is independent of F.

Proof. The implication (i) = (ii) follows by using f = I _, ), * € R. The converse follows
from Theorem 1.3.5. O

The following is not the usual definition of a convex function (see Exercise 1.30) but it
has the advantage that it is better suited for the applications we have in mind.

Definition 1.3.8. Let I be an interval of the real axis. A continuous function ¢ : I — R is
called convez if for any xg € I there exists a linear function ¢(z) such that®

(z0) = ¢(x0), l(x) <p(z), Vrel.

The convex function is called strictly convex if for any xg € I there exists a linear function
¢(x) such that

U(zo) = o(x0), L(z) < p(x), Ve el\{z}. O

For example, if ¢ : I — R is C?, then ¢ is convex (resp. strictly convex) if ¢”(x) > 0
(resp. ¢'(x) >0),Vz € 1.

5The graph of such an £ is tangent to the graph of ¢ at zg.
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Theorem 1.3.9 (Jensen’s Inequality). Suppose that (2,8, P) is a probability space, X € £1(£,8,P),
and ¢ : I — R is a convex function defined on an interval I that contains the range of X.
Then E[ p(X) ] is well defined (possibly infinite )and

P(E[X]) <E[p(X)]. (1.3.12)

Moreover, if ¢ is strictly convex, then go(]E[X] ) = E[cp(X)] iff X is a.s. constant.

Proof. Observe that when ¢ is linear theorem is valid in the stronger form

p(E[X]) =E[(X)].
We can find a linear function ¢ : R — R such that ¢(z) > ¢(x), Vz € I and it is clear that if
the theorem is valid for the nonnegative convex function g := ¢ — £, then it is also valid for
¢. Note that E[ g(X)] € [0, 0] and thus the addition E[g(X)] + ¢(E[ X | ) is well defined
and yields a well defined E[¢(X) |, when ¢(X) is integrable or nonnegative. Moreover ¢(X)
is integrable if and only if g(X) is so. Because of this, we set

E[¢(X)] := oo if ¢(X) is not integrable.

Set p = IE[X] and observe that € I since X € I a.s.. Choose a linear function £: R — R
such that
U(z) < p(z), Vo el and {(u) = p(n).
Then
P(E[X]) =o(n) = t(n) =E[(X)] <E[¢(X)].
If ¢ is strictly convex, then we can choose ¢(x) such that

U(z) <p(x), Yo el\{u} and l(n) = p(n).
If X is not a.s. constant neither is the nonnegative random variable ¢(X) — £(X) so
E[¢(X) - ¢(u) ] =E[p(X) - £(X)] > 0.
O

For any convex function ¢ : R — R we define the g-entropy of an integrable random
variable X to be the quantity

Ho[ X ] :=E[p(X)] —¢(E[X]). (1.3.13)
Jensen’s inequality shows that H,, [X ] > 0.
1.3.2. Higher order integral invariants of random variables. On a probability space
(©,8,P) we have the inclusions

LPY(Q,8,P) C LP°(2,8,P), V1 < py < p1 < oc.
Indeed, let X € LP1(Q,8,P). Set

pi= &, p(x) =2, >0, Y =|X|P.
Po
Since p; > pg the function ¢ is convex and we have

(1.3.12)
<

(IXI)” =E[IXB)" = o(B[Y]) < E[6()] = (IX])""
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In particular, if pg = 1 < p we deduce
E[|X]]” <E[|X[?]. (1.3.14)
Given k € N and X € £*(Q, 8, P) we define the k-th momentum of X to be the quantity
pe[ X ] =E[X*].
Note that p1[ X | = E[X].

Definition 1.3.10 (Variance). Let (€2, 8, P) be a probability space. Suppose that X € £2(Q, 8, P)
is a random variable with mean p := E[X]. The variance of X is the real number

Var [X | =E[(X — p)*].
The standard deviation of X is the quantity

U[X}::\/Var[X]. O

Var [ X]| =0<= X =E[X ] as..

Observe that

The quadratic function
qt) =E[(X —t)*] = * — 2ut + E[ X?]
achieves its minimum at ¢ = u so that

Var [ X | zl;réiHI{ﬂE[(X—t)Q].

Thus the standard deviation is the distance from X to the 1-dimensional space of deterministic
quantities. The variance can be given the alternate description

Var [X ] =E[X?] = = o[ X ] — [ X )% (1.3.15)
Indeed, if we set p := E[X], then
Var [ X | =q(p) = E[X2] —
This shows that the variance is a special case of p-entropy. More precisely,
Var [ X] = H,[X] =E[¢(X)] - ¢(E[X] ), @)= a2
Note that
Var [aX +b] =a®Var [ X ], Va,b€eR. (1.3.16)
Indeed, set X := X — pp and Z := aX + b. Then
Var [X | =E[X?], Z-E[Z] =a(X —E[X]) = aX,
Var [Z] =E[a®X?] = a® Var [ X ].

Theorem 1.3.11 (Chebyshev’s inequality). Let X € £2(1,]8,P) Set p := E[X] and o = o[ X].
Then

1
P[|X — | > co] < 5 Ve > 0. (1.3.17)
Equivalently
Var[X 2
P[IX —pl > 7] gag]:‘;, Vr > 0, (1.3.18)
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Proof. Set Y :=|X — u|?. Then

(1.2.19) 1 Var[ X]
— 2 —
]P’[\X —,u\>r] —]P’[Y >7r ] < TZE[Y}— o
Chebyshev’s inequality (1.3.17) now follows from (1.3.18) by setting r = co. O

Definition 1.3.12. Let (€2, 8,P) be a probability space and X,Y € £3(,8,P). We set
wx = E[X], wy ‘= E[Y]
(i) The covariance of X,Y is the quantity
Cov [ X,V | :=E[(X — pux)(Y — py) |

(ii) If X,Y are not deterministic we define the correlation coefficient of X and Y to be

COV[X,Y[

Y = Xy

Proposition 1.3.13. Let X,Y € £L2(Q,8,P). Then the following hold.

(i) Cov [ X, Y] =E[XY ]| -E[X |E[Y].

(ii) If X,Y are independent, then Cov [X,Y] =0.

(ili) Var [X +Y ]| =Var [X ]+ Var[Y] +2Cov [X,Y].

(iv) If X,Y are independent, then Var [ X +Y | = Var [ X | 4+ Var [Y].
Proof. Set

X ::E[X], X=X —px, ,u,y:E[Y[, Y=Y —py.
(i) We have
Cov [ X, Y] =E[XY]|=E[XY ]| -E[puxY ]| —E[ X | +pxpy

S— N——
KX HY KX HY

—E[XY] - pxpy.
(ii) Corollary 1.3.5 shows that if X, Y are independent, then IE[XY] = uxpy,ie., Cov [X, Y] =0.
(iii) Next
Var [ X+ Y] =E[(X+Y)*| =E[X?]| +E[Y?] + 2E[ XV ]
=Var[X ]+ Var [Y ] +2Cov [X,Y].
(iv) This follows from (ii) and (iii). 0

Corollary 1.3.14. If X1,..., X, € £L2(Q,8,P) are independent, then

Var [ X1+ + X, | =Var [ X1]| +---+ Var [ X, ]. (1.3.19)
O

Example 1.3.15. Consider a probability space (£2,8,P) and two events A, B € 8. We have
Cov [Ia,Ip] =P[ANB]| —-P[A|P[B].
Thus A, B are independent iff Cov [IA, IB} = 0. O
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Definition 1.3.16 (Moment generating function). Let X be a random variable defined on a
probability space (£2,8,P) such that e/X € £1(£2,8,P) for all ¢ in an open interval I containing
0. The moment generating function or mgf of X is the function

My : I >R, Mx(t) =E[X]. O

The proof of following result is left to you as an exercise.

Proposition 1.3.17. Let X € £L%(Q,8,P) be a random variable.

(i) If Mx(t) = E[e'X ] is well defined for all t € (—to,to), then all the momenta of X

of X are well defined and
oo tn
Mx(t) = pn [ X] o Vit <to. (1.3.20)
n=0 ’

(ii) If all the momenta of X are well defined and power series

oo tn
n=0 )
converges Vt € (—to,to), then its sum is Mx (t), V|t| < to .
O

Corollary 1.3.18. Suppose that X1, ..., X, € £L°(Q,8,P) are independent random variables
such that etXx € LYQ,8,P) for any k = 1,...,n and any t in an open interval I C R that
contains the origin. Then

M, 4tx, (8) = Mx, () - - - Mx, (t), Vte I

Proof. This is a special case of Corollary 1.3.6 corresponding to the choices

fl(x):"':fn(x):emv tel
O

Remark 1.3.19 (The moment problem). Denote by Prob the set of Borel probability mea-
sures on the real axis and by Prob™~ the subset of Prob consisting of probability measures
p such that

/ lo[Fplda] < oo, VE € .
R

For p € Prob®™™ and k € Ny we set

mlp) = [ aplde].

We denote by RN the set of sequences of real numbers s = (Sn)n>0- We have a map
p: Prob®” = RY, plp] = (ua[p]),50-
The moment problem asks the following.

(i) Describe the range of u, i.e., given a sequence of real numbers s = sg, s1,. .., decide
if there exists p € Prob®™ such that u,[p] = sy, Vn > 0.
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(ii) Is it true that the moments uniquely determine a probability measure, i.e., given

s in the range of p is it true that there exists a unique p € Prob®™™ such that
plp] = s?

Party (i) of the moment problem is completely understood in the sense that there are known

several necessary and sufficient conditions for a sequence s to be the sequence of momenta of
a probability measure on R. We refer to [152, Chap. 3| for more details.

As for part (ii), it is known that a sequence s can be the sequence of momenta of sev-
eral probability measures; see Exercise 1.37. On the other hand, there are known sufficient
conditions on s guaranteeing the uniqueness of measure with that sequence of momenta; see
[152, Chap. 4] for more details. In particular, if X is a random variable such that X is
integrable for any ¢ in an open interval containing 0, then Py is uniquely determined by its
moments, [152, Cor. 4.14]. 0

We formulate for the record the last uniqueness result mentioned above. In Exercise 2.53
we outline a proof of this special case.

Theorem 1.3.20. Let X,Y € £9(Q,8,P) such that there exist v > 0 with the property that
E[etX], E[etx} < oo, V|t| <
Then
X2y = Mx(t) =My (t), V| <r 0

Corollary 1.3.21. Suppose that Po,Py are Borel probability measures on R supported on
[0,1], i.e.,
Po[R\[0,1]] =P[R\ [0,1]] =0.

Then
Py=P /:L‘”,uo[dﬂ :/;U”,ul[dm], Vn € N.
R R
a
Proof. Note that
/w”Pi[d:n] < lé/etxPi[dx} <oo, Vt€R
R R
and
/ethP’O[cm} = / empl[da:], Vi e R
R R
<— /a:"]P’O[dx] = / x"IP’l[dx], Vn € Np.
R R
a
To a random variable X with range contained in Ny = {0,1,2,... } we can associate its

probability generating function (or pgf)
Gx(t):=) P[X=n]t"=E[t*].
n>0

Note that
Gx(1)=1, G%x(1)=E[X], GXx(1)=E[X(X-1)]. (1.3.21)
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Similarly, if X, Y are two independent Ny-valued random variables, then

Gxiy(t) =E[t*T ] =E[+¥ JE[t" ] = Gx ()G (2).

1.3.3. Classical examples of discrete random variables. The theory of probability
has grown mostly from concrete intriguing examples. In this process people encountered
various frequently occurring patterns encoded by some ubiquitous random variables. We
describe a few of them in the following subsections. These examples are part of the theory
of probability and have many and varied uses. Their knowledge is absolutely necessary for a
genuine understanding of probability.

Before Kolmogorov (and currently in most undergraduate probability courses), the world
of random variables was divided into three categories: discrete, continuous and neither, or
mixed. The discrete random variables are those whose ranges are discrete subsets of R.
A random variable X is called continuous if its probability distribution Px is absolutely
continuous with respect to the Lebesgue measure on R. We throw in the third category
the random variables that do not fit in these two categories. We want to describe a few
classical example of discrete and continuous random variables that play an important role in
probability. Throughout our presentation we will frequently assume that given a sequence
(tin)nen of Borel probability measures on R there exists a probability space (€2,8,P) and
independent random variables X,, : (€,8,P) — R such that Px, = pn, ¥n € N. The fact
that such a thing is possible is a consequence of Kolmogorov’s existence theorem, Theorem
1.5.6.

We begin by introducing some frequently occurring discrete random variables by describ-
ing the random experiments where they appear.

Example 1.3.22 (Bernoulli random variables). Suppose we perform a random experiment
aiming to observe the occurrence of a certain event S, p := IP’[S ] When S has occurred we
say that we have registered a success. Traditionally such an experiment is called a Bernoulli
trial with success probability p. When the event .S is not observed we say that the experiment
was a failure. The failure probability is ¢ := 1 — p. The Bernoulli trial is encoded by the
random variable I's which takes the value 1 when we register a success, and the value 0
otherwise. We also say that I'g is a Bernoulli random variable . Observe that

2
E[Is] =p, Var[Is] =E[I3] - (E[Is])" =p-p"=pq.
Note that any random variable with range {0, 1} is a Bernoulli random variable since
X = I{le}. O

Example 1.3.23 (Binomial random variables). Suppose that we perform the experiment in
the above example n times, and the results of these experiments are independent of each
other. We denote by N the number of successes observed during these n trials.® We say that
N is a binomial random variable corresponding to n trials with success probability p and we
indicate this N ~ Bin(n, p).

6Think for example that you roll a pair of dice 10 times and you aim to count how many times the sum of the
numbers on the dice is 7. In this case success is when the sum is 7 and it is not hard to see that the probability of

success is é .
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For k =1,...,n we denote by Sy the event “the k-th trial was a success”. Then

N=> I and E[N] =) E[Ig,]=np.
k=1 k=1

Since the events (Sk)1<k<pare independent we deduce from Corollary 1.3.6 that

Var [N] = ZVar [ng] = npq.
k=1

Next observe that
Gn(s) =q+ps, My(t) =g+ pe,
SO
Gn(s) = Grs, ()" = (¢ +ps)", My(t) =Mrg (1)" = (¢ +pe')". O

This string of Bernoulli trials can be realized abstractly in the probability space
((0.1y7,200" 527
described in Example 1.2.6(e). The events
Spi={(e1,....en) €{0,1}"; g =1}, k=1,...,n,
are independent and ]P’[Sk] =p,Vk=1,...,n. Then
Is, () =€, Ve=(e1,...,en) € {0,1}"
As explained in Example 1.2.6(e), the probability distribution of NV is given by the equalities

P[N=k] = (Z);;’fq"k, k=0,1,....n.

Equivalently,

n n -
Py = <k>pkqn *6).
k=0

O

Example 1.3.24 (Waiting for successes). Suppose that we perform independent Bernoulli
trials until we register the first success. We denote by 77 the moment we observe the first
success, T1 € NU{oo}. The random variable T} is a geometric random variable with success
probability p. We write this 77 ~ Geom(p).

Observe that T7 = n iff the first n—1 trials where failures and the n-th trial was a success.
Thus
IP’[Tl = n] =¢" 1p.
In particular, IP’[Nl = oo] = 0. We deduce that the probability distribution of T} is
Pr, = pg" o,
n>1

Moreover

d 1
E[Ti] =) npg" ' =p) ng" =ry > g = a fq)Q - (1.3.22)
n>1 n>1 n>0



54 1. Foundations

Here is a simple plausibility test for this result. Suppose we role a die until we first roll a 1.
The probability of rolling a 1 is % so it is to be expected that we need 6 rolls until we roll
our first 1.

‘We have
o0 oo
E[Tl — Znn—l Znn—l -1
n=1 n=2
d? 1 2pq 2q
St () = 2 -
pqz e Plag\1=¢) ~ 0 —q? ~ p?
We deduce that 5 ) 5 ) )
q q q
E[T2 == +=, Var [T} ]| == +-— 5 = —.
[1} p2 P [ } p2 P p2 p2
Note that
t
pe
M, (t) = E[ e ] qu” ' ”t—petz g )" =1

Consider now a more general Sltuatlon. Fix k € N and perform independent Bernoulli trials
until we observe the k-th success. Denote by T the number trials until we record the k-th
success. Note that

Tk:Tl+(T2—T1)+(T3—Tg)-i-"'—}—(Tk—Tk,l).

Due to the independence of the trials, once we observe the i-th success it is as if we start
the experiment anew, so the waiting time T;; — T; until we observe the next success, the
(i + 1)-th, is a random variable with the same distribution as T;

Ty -T2 Ty, VieN.
Hence E[T;1 —T; ] =E[T1] = ; so

E[Ty] =kE[T1] = ];. (1.3.23)

The probability distribution of T}, is computed as follows. Note that T}, = n if during the first
n — 1 trials we observed exactly & — 1 successes, and at the n-th trial we observed another
success. Hence

n—1\ 1.1 .— n—1 e
P[Tkzn]:<k,_1)p’“ 'q k-p=<k 1>p'“q ,, (1.3.24)

i = ()

Since the waiting times between two consecutive successes are independent random variables
we deduce

and

k
Var [Ty ] =k Var [T} ] = —2.
p
The above probability measure on R is called the negative binomial distribution and Ty, is
called a negative binomial random variable corresponding to k sucesses with probability p.

We write this T}, ~ NegBin(k, p). O
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Let us describe a classical and less than obvious application of the geometric random
variables.

Example 1.3.25 (The coupon collector problem). The coupon collector’s problem arises
from the following scenario. Suppose that each box of cereal contains one of m different
coupons. Once you obtain one of every type of coupons, you can send in for a prize. Ann
wants that prize and, for that reason, she buys one box of cereals everyday. Assuming that the
coupon in each box is chosen independently and uniformly at random from the m possibilities
and that Ann does not collaborate with others to collect coupons, how many boxes of cereal
is she expected to buy before she obtain at least one of every type of coupon?

Let N denote the number of boxes bought until Ann has at least one of every coupon.
We want to determine IE[N] For i = 1,...,n — 1 denote by IN; the number of boxes she
bought while she had exactly 7 coupons. The first box she bought contained one coupon.
Then she bought N7 boxes containing the coupon you already had. After 1 + N7 boxes she
has two coupons. Next, she bought No boxes containing one of the two coupons you already
had etc. Hence’

N=1+Ny+-+Np_1.
Let us observe first that for ¢ = 1,--- ;m — 1 we have
N; ~ Geom(p;), p; = o g=1-p=—.
m m

Indeed, at the moment she has i coupons, a success occurs when she buys one of the remaining
m — 1 coupons. The probability of buying one such coupon is thus mﬂji. Think of buying a
box at this time as a Bernoulli trial with success probability % The number N; is then
equal to the number of trials until you register the first success. This argument also shows
that the random variables N; are independent. In particular,

_ 1 m

From the linearity of expectation we deduce
E[N]=1+E[N]+E[No] + - +E[Npi ]

1 1 1
=m|l+-++—7+—].
2 m—1 m

—Hn
Asymptotically H,, differs from log m by the mysterious Euler-Mascheroni constant v ~ 0.5772,
i.e.,
lim (H,, —logm) = .

m—0o0
Thus the expected number of boxes needed to collect all the m coupons is about m log m~+m-y.
g

Remark 1.3.26. We can ask a more general question. For £ > 1 we denote by X, = X},
the number of boxes Ann has to buy until she has at least k of each of these m coupons. We
have seen that that E[le] = mH,,. One can show that as m — oo we have

E[ Xgm | =m(logm+ (k — 1)loglogm +~ — log(k — 1)! + o(1) ),

"Here we tacitly assume that we can describe quantities N; as measurable functions defined on the same probability
space. In Exercise 1.13 we ask the reader to do this. It is more challenging than it looks.
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where v is the Euler-Mascheroni constant. For details we refer to [61, 131]. O

Example 1.3.27 (The hypergeometric distribution). Suppose that we have a bin containing
w white balls and b black balls. We select n balls at random from the bin and we denote
by X the number of white balls among the selected ones. This is a random variable with
range 0,1,...,n called the hypergeometric random variable with parameters w, b, n. We will
use the notation X ~ HGeom(w,b,n) to indicate this and we will refer to its pmf as the
hypergeometric distribution. For example, if A is the number of aces in a random poker
hand, then A ~ HGeom(4,48,5).

To compute IP[X = k:] when X ~ HGeom(w, b,n) note that a favorable outcome for the
event X = k is determined by a choice of k£ white balls (out of w) and another independent
choice of n — k black balls (out of b) so that the number of favorable outcomes is

The number of possible outcomes of a random draw of n balls (w:{b). Hence

() Gaor)
P[X=k]= ’“(wfb)’“
n

Its probability generating function is

Gx(s) = (i,)zw: <Z> <nﬁk>8k’ N :=w+b.

n/ k=0
We can identify Gx(s) as the coefficient of 2™ in the polynomial

Qs,7) = ——(1 + s2)"(1 + 2)".

()
wz(1 + z)°
(W)

The mean of X is G’y (1) and it is equal to the coefficient of 2™ in

We have

Q

E(s,x) = (1+ sz)v L.

0Q _wx N1 w(ﬁf_’ll) _wn _ wn
a T Em T TN Ty
Hence
E[ HGeom(w,b,n) | = wli ;- (1.3.25)

O

Example 1.3.28 (Poisson random variables). These random variables count the number N
of random rare events that occur in a given unit of time. E.g., N could mean the number
of computers in a large organization that die during one fiscal year. They depend on a
parameter A and we indicate this using the notation N ~ Poi(\). If N ~ Poi()\), then

e}

P[N—n] =e g ie., PN—;e Son
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Then .
nA" AT
[N] Z n! Z (n—1)!
n>0 n>1
The moment generating function of N is
_ N7 _ =X (Ae)" _ A(et=1)
Mpy(t) =E[e"™ ] =e 7;) o =¢ .
We have
My (t) = )\eteA(et_l), My (t) = AeleMe =D 4 ()\et)Qe’\(et_l)
SO
E[N?] =M} (0) = A+ A?, Var[N] =\
g

Example 1.3.29 (The inclusion-exclusion principle). Suppose that (€2, 8,P) is a prob-
ability space and Aj,..., A, € 8. We want to compute the probability distribution of the

random variable

N=> I,
k=1

If the events Ay were independent and had identical probabilities, then N ~ Bin(n,p). Set

I, ::{17...,71}.

For m =0,1,...,n we denote by §2,, set of points w € €2 that belong to exactly m of the sets

A1, ..., A,. In other words Q,, = {N = m}. Note that
o=A1U---UA,.

Ap = {ﬂiel Ai, T,
Q, I=19.

For I C I, we set

For k € {0,1,2,...n} we define

Sk = sy 1= Z P[A;].

ICan
\I|=k
The inclusion-exclusion principle states that
n—m
m—+k
P[N =m] = P[] = kz()(—m( Yo =01 m

Using the above equality with m = 0 we obtain the better known formula

n

PAyU--U 4] = 1=B[20] = (-1 3 B[Ar] = Y1

k=1 ICl,, k=1
\I|=k

To prove (1.3.27) we set
Se=05p:= Y 1Ia,.

ICl,,
|I|=k

(1.3.26)

(1.3.27)

(1.3.28)

(1.3.29)
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Note that
=E[S}].
We will prove that
Io, = S (=" TP) s, 0. 1.3.30
o= S0 Y (1.3.30)

Indeed, using the equality I sng = I 4 - I p we deduce

fo.= Y (T T1 1) = 3 (TT2a TT (- 1)

ICl, \i€el GEILN\T Icl, \iel JEIN\I
[|=m [I|=m
n—m
_ k
=Y (=1 D e Dla,.
k=0 |J|=m-+k

Now observe that for any subset J C I, of cardinality m + k there are (m;:k)

of writing I 4, as a product

different way

Iy, = IAIIAJ\I’ | =m
Thus ¢(J) = (mntk) for |J| = m + k. We deduce

> etnta = (") s

|J|=m+k
Using the linearity of expectation we deduce from (1.3.30) that

n—m

P[Qn] =E[Io, ] = 3 (- <m+k>E[Sm+k]a

k=0
where E[Serk} = Smtk-

Associated to the equality (1.3.27) there is a sequence of inequalities called the Bonferroni
inequalities. For £ € N and 5= > ¢

20—1 20
> <—1>’f(m; ’“) Sk < P[] < z<-1>k(m; ’“) St (1.3.31)
k=0 k=0

The above inequalities follow from the “motivic” Bonferroni inequalities

— k
Z (m - )SW <Iq,
2/

Z (m—l—k)Serk’ 1§£§n—2m.

To prove this we fix w € 2. We have to show that

(1.3.32)

20—1 20

S (-1t <m; "’) Smik() < To, (@) < S (—1)F <m£ k) Smer@)  (13.33)

k=0 k=0
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for k < #5™. Define

Lo={i€l; weAl} rw)=|ll=Y I
k=1

Note that I4,(w) = 0 if |[I| > r(w). In particular, this shows that all the terms in the
inequality (1.3.32) are equal to zero if r(w) < m.

Suppose that r(w) > m. Then, for any k& < r, we have

Thus, the inequality (1.3.33) evaluated at w is equivalent to

%Zl(—l)’“<m; k) <mr+ k) <Iq,(w) < é(—l)%mg k) (m: k) (1.3.34)

k=0
The inclusion-exclusion identity (1.3.27) shows that the inequalities become equalities for
20 > r —m so we assume 2¢ < r —m.
For r = m the inequality (1.3.34) is obvious since the sums in the left and right-hand
sides consist of a single term equal to 1 = I (w). Assume r > m. In this case (1.3.34) is
equivalent to

2:2:_%1(_1>ka <0< kﬁ:;(—l)kak, ag = <m;; k) (m: k:) (1.3.35)

Observe that

e ()0 rerm

The inequality (1.3.35) reduces to

Y
o< (5) () G) e (7))

where 2¢ < p. These inequalities are immediate consequences of two well known properties
of the binomial coefficients, namely their symmetry

P\_( P
k p—k)’
and their unimodality

@ = @ =S (Lp]/jzﬂ - (L(p+p1)/2j) - (Lp/2IJ)+1> = @

For m = 0 we obtain the inequalities

n

iP[Ak] = Y PlANA] <P[AU---UA,] <D P[A].

1<i<j<n k=1

The right-hand-side inequality is referred to as the union bound. O
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Remark 1.3.30 (Binomial inversion). Consider the upper triangular matrices

-1 m-L(m ’ /< m,
A = (afm)ogf,m, Apy, = {( ) (@) =

0, {>m,
and
" k<n
B:bn nvbn: (k)’ -
(b )ngg K {0, k > n.

The collections ((z — 1)m)m>0 and (a;”)n>0
with real coefficients. Newton’s binomial formula implies

(x—1)" = Zagma:e, " = Zbkn(w — 1)k,
L k

are bases of the space R[(I}] of polynomials

Hence A~! = B, B~! = A. This fact is known as binomial inversion. Note that (1.3.27)

reads
]P)[QZ] = Z AmSm;

m>{
We deduce that

Sp = Z bka[Qm].

m>k

Weset X =14, +---+ 1I,,. In Exercise 1.23 we ask the reader to prove that

-e[(2)]

Example 1.3.31 (Sieves and poissonization). Suppose now that we have an upper triangular
array of measurable sets (Ay, ;)ier,, n € N.

O

Aia
A1, Aza
An,la An,27 An,?) T An n

)

For n > ¢ we denote by (27, the set of points in 2 that belong to exactly m of the sets
Api..., Apy, ie., QF = {X,, = m}. Using Bonferroni’s inequalities we deduce that for fixed
¢ and n > 2¢ 4+ m we have

%Z_l(l)k (m N k) smik P[] < i(l)k (m M k) S e (1.3.36)

k=0 " k=0 m
Suppose now that there exists A > 0 such that, for any ¢ € N we have
A7
lim s} = —. (1.3.37)

n—ooo 4 q!
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If we let n — oo in (1.3.36) we obtain
201

1 A N , 1 L AR
EZ(—l) thnnl)ng[Qm] §h?1;n_>S£p]P’[Q%] Sﬁ (-1) R
k=0 k=0
If we now let ¢ — oo we deduce
—/\)\m
lim P[Qr,] =S

We can rephrase this in an equivalent way. Set

n
Xni=Y Ia,,.
k=1

Then ), = {X,, = m} and thus we showed that if (1.3.36) holds, then
lim P[ X, =m] =P[ Poi(\) =m],
where we recall that Poi(\) denotes a Poisson random variable with parameter A.
The phenomenon depicted above is referred under the generic name of poissonization
or Poisson approximation. Let us observe that if the events A, ; are independent and

P[A,;] =2, then
n) (A" A
Szz<k><n> ~ g @ n oo

In this case X,, = Bin(n,A/n). The success probability % is small for large n and for this
reason the Poisson distribution is sometimes referred as the law of rare events.

The estimation techniques based on various versions of the inclusion-exclusion principle
are called sieves. We refer to [159, Chap. 2, 3| for a more detailed description of far reaching
generalizations of the inclusion-exclusion principle and associated sieves. O

Example 1.3.32 (Fixed points of random permutations). Let us show how the above argu-
ments work on the classical derangements problem . Denote by &,, the group of permutations
of I,,, We equip it with the uniform probability measure so each permutation ¢ has probability
1. For each o € &,, we denote by F(0) = F,,(0) its number of of fixed points, i.e.,

F(o)=#{kel,; ok)=k}.
Thus F : &, — {0,1,...,n} can be viewed as a random variable.

A derangement is a permutation o with no fixed points, i.e., F'(c) = 0. A concrete oc-
currence of a derangement can be observed when a group of n, slightly inebriated, passengers
board a plane and pick seats at random. A derangement occurs when none of them sits on
his/her preassigned seat.

We want to compute the probability distribution of F},, i.e., the probabilities
P[F,=m], k=0,1,...,n.

For j € I, we denote by E; the event o(j) = j. The set of permutations that fix j can be
identified with the set of permutations of I, \ {j} so
n=1)! 1

PLE == =
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Observe that

n
Fn:ZIEka
k=1

=Y E[Ig]=) P[E]=1 (1.3.38)
k=1 k=1

Thus the expected number of fixed points is rather low: a random permutation has, on
average, one fixed point.

Let us compute the probability distribution of F. For each I C I, we set
Er=|JE.
el
Thus ¢ € Ey if and only if the permutation o fixes all the points in I. We deduce that if
|I| = k, then

P[E[] = (n ;!k)! and s = sy == Z P[E;] = <Z> (n—k)! _ %
=

Note that if F},(c) = m, then o fixes exactly k points and (1.3.27) yields

#le =] = S0 (" o= T
k=0 k=0
In particular, the number of derangements is
- 1
_ _ k
P[F,=0]=) (-1) o

k=0

The equality ]E[Fn] = 1 yields an interesting identity

1:zn:m}P’[Fn:m] Zn: T (nm )

m=1 k=0
Note that
-1
. e
nh_)rrololP’[Fn =m]= ooy (1.3.39)
The sequence <, m > 0 describes the Poisson distribution Poi(1). O

1.3.4. Classical examples of continuous probability distributions. We want to de-
scribe a few example of random variables whose probability distributions are absolutely con-
tinuous with respect to the Lebesgue measure on the real axis. They all have the form

Pldz] = p(z)A[dz], pe LL(R, Bg,A), /Rp(a:)x[da;} =1

The function p is called the probability density of the Borel probability measure on R. To
ease the notational burden we will use the simpler notation

p(z)dz == p(z)\[ dx |
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Such distributions are classically known as continuous probability distributions. The proba-
bilistic significance of the examples discussed in this section will gradually be revealed in the
book.
Example 1.3.33 (Uniform distribution). A random variable X is said to be wuniformly
distributed or uniform in the interval [a,b], and we write this X ~ Unif(a, b), if
1
PX [dw] = mI[a’b}dx.

When X ~ Unif(a,b) we have
1 b etb _ eta b — g™ tn—l
Mx (t) = iy = = .
x(®) b—aLtz T —a) Ezn@—aﬂn—lﬂ

In particular we deduce

Figure 1.4. The graph of v, , for o =1 (dotted red curve) and o = 0.1 (continuous blue curve).

Example 1.3.34 (Gaussian random variables ). The Gaussian or normal random variables
form a 2-parameter family N(u,02), p € R, o0 > 0 where X ~ N(u,o?) iff

1 _@w?
Px[dx] =, ,2(x)de, v, 2() = mge 202,

We will use the simpler notation 7,2(z) := ¢ ,2. The measure
T, ,2[dz] = Vo2 (T)dx
is called the Gaussian measure on R with mean y and variance o2. Let us observe

X~NWJ%¢¢3X—M~N@U
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Indeed if we set 1
Y =—(X -
—(X—n),

then
oyt+i
PlY <y|=P[(z—p)/o<y| =Pz <oy+u] :/ Vo2 (T)dx
y Y
:o—/ 7u702(0t+,u)dt:/ Yo.1(t)dt.
Thus
E[X]=E[Y]+p, Var[X]=0Var[Y].
We have )
E[Y]= = [ ye ¥ /?dy=0
[ :| \/%/R:ye y )
and

1 92 00
R 0
(S:y2/27 y:\/%)
2

:l Oosl/Qe_ss:l _—-1 =
ﬁ/o d ﬁF(3/2) NG 2I‘(1/2) 1,

where at the last two steps we used basic facts about the Gamma function recalled in Propo-
sition A.1.2. We deduce that

X ~N(p,0%) = E[X]=p, Var[Y]=0" (1.3.41)
A variable X ~ N(0,1) is called a standard normal random variable. Its cdf is
P(z) =P[X <z] = \/12? /; e %24y, (1.3.42)
plays an important role in probability and statistics. The quantity
P[X > ]
71(2)

is called the Mills ratio of the standard normal random variable. It satisfies the inequalities

In Exercise 1.32 we outline a proof of this inequality.
Observe that if X ~ N(0,1), and o € R, then 0 X € N(0,0?) and
M, x (t) = E[ ™ | = Mx[ot].
On the other hand, if X ~ N(0, 1), then

1 2 1 242 2
M~ (¢ tr—x /2d / (2te—a=—t2)/2 t /2d
X()—ﬁ/e x———ﬁ e e x

o2 1 / —@1)2/20, _ 22
=e . e r =€ .
V21 Jr
=1
Thus o)1
pom [ X] = ™ o S, o [X] =0, YmeN. 0
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Example 1.3.35 (Gamma distributions). The Gamma distributions with parameters v, A
are defined by

Lya[dz] = gu(z; N)de.
where the densities g, (x; \), A, v > 0 are given by

AY v—1_—A\x
gu(x;\) = F(y)x eI (0 00)- (1.3.44)

From the definition of the Gamma function we deduce that g, (x;\) is indeed a probability
density, i.e.,

[o.¢]
/ gu(x; N)de = 1.
0
We will use the notation X ~ Gamma(r, A) to indicate that Px =T, .

The Gamma(1, \)-random variables play a special role in probability. They are called
exponential random variables with parameter A\. We will use the notation X ~ Exp()\) to
indicate that X is such a random variable. The distribution of Exp(\) is

Exp(\) ~ )\ef)‘xI(oﬁoo)daz.

We will have more to say about exponential variables in the next subsection.

The parameter v is sometimes referred to as the shape parameter. Figure 1.5 may explain
the reason for this terminology.

2.5

0.5 \

Figure 1.5. The graphs of g, (z;\) forv > 1 and v < 1.

For n =1,2,3,... the distribution Gamma(n, ) is also known as an Erlang distribution
and has a simple probabilistic interpretation. If the waiting time T for a certain event is
exponentially distributed with rate A, e.g., the waiting time for a bus to arrive, then the
waiting time for n of these events to occur independently and in succession is a Gamma(n, \)
random variable. We will prove this later.

The distribution g, /»(7;1/2), where n = 1,2, ..., plays an important role in statistics it
also known as the chi-squared distribution with n degrees of freedom and it is traditionally
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denoted by x?(n). One can show that if X1,..., X,, are independent standard normal random
variables, then the random variable

X{+-+ X,
has a chi-squared distribution of degree n.

If X ~ Gamma(v, \) is a Gamma distributed random variable, then X is s-integrable for
any s >1. Moreover, for any k € {1,2,...} we have

AV o0
,Uk[X} — F(y) /O xk+l/flef)\xdx

(x =AU, do = A"ldt, Az =t, F =1 = ARkt

_ 1 /Oo =1 =t gy _ ['(k+v)
0

AT (v) MNeD(v) -
We deduce Mw+1) v
BLx] = m[x] - LD ¥
v v (v A
Var [X] = pa[X] — [ X]? = W _L 2w

Finally, if X ~ Gamma(v, A), then for t < A we have

AV o0
Mx (t) = T /0 e Az gy

o, e (55)

Example 1.3.36 (Beta distributions). The Beta distribution with parameters a,b > 0 is
defined by the probability density function

r=y/(r—1)

O

1 a—1 b—1
Ba,b(x) = B(a, b)x (]‘ - x) I(Oyl)
The normalizing constant B(a,b) is the Beta function (A.1.2),
['(a)T(b)
B(a,b) = ——=.
(@5 = Ta 1)

We will use the notation X ~ Beta(a, b) to indicate that the pdf of X is a Beta distribution
with parameters a, b.

Suppose that X ~ Beta(a,b). Then
1 ! _ B(a+1,b)
E[X]| = a(l — ) gy = 22T 27
(X1 = Gy ) #0 - oae = P
(A14) D(a+1)I'(a +b) a

F(aT(a+b+1) a+?b’

_ b 1, T@+2T(a+b)  ala+1)
E[X*] = /0 21— a) e = e = T e b )
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Hence
_ 27 2 a a+1 o a
v [x] =[] B (X" = 4 (- o)
~a  (a+1)(a+b)—ala+b+1) ab
a+b (a+b)(a+b+1) (a+b)2(a+b+1)

Note that Beta(1,1) = Unif ([0,1]). The distribution Beta(1/2,1/2) is called the arcsine
distribution. In this case

1 1
r)= -
Bi2,1/2(x) i)
and
* 2
ds = — i .
/0 Bi/2,1/2(s)ds — arcsin N
We refer to Exercise 1.43 for an alternate interpretation of Beta(1/2,1/2). 0O

In Appendix A.2 we have listed the basic integral invariants of several frequently occurring
probability distributions.

1.3.5. Product probability spaces and independence. Suppose (£2;,8;), i = 0,1, are
two measurable spaces. Recall that So®38; is the sigma-algebra of subsets of {29 x2; generated
by the collection R of “rectangles” of the form Sy x S, S; € 8;, ¢ =0, 21.

The goal of this subsection is to show that two sigma-finite measures measures p; on §;,
1 = 0,1 induce in a canonical way a measure pg ® 1 uniquely determined by the condition

po @ pu1 [ So x S1] = po[So|pui[S1], VS, €8, i=0,1.

The collection A of subsets of 2y x €; that are finite disjoint unions of rectangles is an
algebra. This suggests using Carathéodory’s existence theorem to prove this claim.

We choose a different route that bypasses Carathéodory’s existence theorem. This alter-
nate, more efficient approach, is driven by the Monotone Class Theorem and simultaneously
proves a central result in integration theory, the Fubini-Tonelli Theorem. For every measur-
able space (€, 8) we denote by £°(€2,8), the space of § measurable functions f: Q — R.

Lemma 1.3.37. Suppose that
fe LO(QO X 01,80 ® 81)* U Lg_(Qo x 1, 8¢ ®51).
Then, for any wi € 0 the function fBl : Qp — R,
oy (wo) = f(wo,w1)
is Sg-measurable and, for any wy € o, the function f(io 1 (Q1,81) = R,
o (w1) = f(wo,w1)
18 S1-measurable.

Proof. We prove only the statement concerning fBl For simplicity will write fu,instead of fBl We will use the
Monotone Class Theorem 1.1.22.

Denote by M the collection of functions f € LO(QO x Q1,80 X 81)« such that f,, is Sp-measurable, Vwi € Q.
Clearly is f, g € M are bounded then af + bg € M, Va,b € R
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The collection R of rectangles is a w-system. Note that for any rectangle R = Sy x S1 the function f = Ig belongs
to M. Indeed, for any wi € €1 we have
Is,, wie€s,
fwl =
0,

w1 € Q1 \ S1.

If (fn) is an increasing sequence of functions in M so is the sequence of slices fy ., so the limit f is also in M. By
the Monotone Class Theorem the collection M contains all the nonnegative measurable functions. Since M is a vector
space, it must coincide with £%(20 x Q1,80 ® 81)s.

When f € £9, but f is allowed to have infinite values, the function f is the increasing limit of a sequence in M.
Hence this situation is also included in the conclusions of the lemma. 0O

Theorem 1.3.38 (Fubini-Tonelli). Let (€2;,8;,1i), @ = 0,1 be two sigma-finite measured
spaces.

(i) There exists a measure p on 8y @ 81 uniquely determined by the equalities
1 Sox S1] =po[Solui[S1], VS €80, Si€8i.
We will denote this measure by g & 1.
(ii) For each nonnegative function f € LY (Qy x Q1,80 ® 81) the functions

wo Il[f](wo) ::/Q f(wo,wl)ul[dwl] € [0, o],

w1 — Io[f](wl) = o f(CUo,wl),uo[dwo] S [0, OO]

are measurable and

/Qo < (o f<w0’w1)'u1[dw1]> o [ dewo |

= / flwo,wi)po @ pn [ dwoduwr | (1.3.45)
QoXQl

z/Q1 < o f(wo,W1)Mo[dw0])M1[dwl]~

In particular, if only one of the three terms above is finite, then all three are finite
and equal.

(iii) Let f € L1(Q0 x Q1,80 @ 81,110 @ p1). Then each of the three terms in (1.8.45) is
well defined, finite and the equalities (1.5.45) hold.

Proof. We will carry the proof in several steps.

Step 1. We will prove that for every positive function f € £%(Q x Q1,80 x 81) the nonnegative function
wob—)Il[f}(wo)Z/ f(wo,wl),ul[dwl]
2
is measurable so the integral

Lolf] = /QO ( [ f(WOMl)ul[dm])uo[dw] € [0,o0]

is well defined.

This follows from Dynkin’s m — A Theorem arguing exactly as in the proof of Lemma 1.3.37. For S € Sg ® 81 we
set

p10[S]) =Iio[Is].
Note that
I [Isyxs, | =/ Ty xa, (wo,wi)ur [dwr .

Q1
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If wo € Qo \ So the integral is 0. If wg € Sp the integral is

/ Ig dpy =pi[S1].
Q

Hence
I [Isyxs, | = w151 ]1s,.
We deduce
I,0[So x S1] :Hl[sl]/ﬂ Igdpo = po[So] - p1[S1].
0

Clearly if A, A’ € § are disjoint, then I 4,47 = Ia + I 4/ so that
II,O[IAUA’] = Il,O[IA] +11,O[IZA]

and
p1,0[AUA ] = o[ A] +pio[A'].
If
A1 CAx C -+
is an increasing sequence of sets in § and
A= An,
n>1

then invoking the Monotone Convergence Theorem we first deduce that I [IA,J is a nondecreasing sequence of
measurable functions converging to I1 o [IA} and then we conclude that ;11,0[An converges to fi1,0 [A} Hence 1,0
is a measure on § = §g ® 81.

Step 2. A similar argument shows that

10,1 [S] :/Ql (/f.lo Is(wmwl)uo[dwo])ul[dm]

is also a sigma-finite measure on § = §p ® 81. Note that
#1,0[So x S1] = po,1[So x S1], VSo € 80, S1 € 81.
Thus ,ulyo[R] = /vbo,1[R}, VR € R.

We want to show that if v is another measure on 8 such that V[R] = 1,0 [ R] for any R € R, then V[A] = 1,0 [A],
VA € S.

To see this assume first that puo and p; are finite measures. Then Qg X Q1 € R
u170[90 X Ql] :u[Qo ><Q1] < o0
and since R is a w-system we deduce from Proposition 1.2.4 that u1,0 = v on 8.
To deal with the general case choose two increasing sequences Ef € §;, i = 0,1 such that
MZ[E:J < oo, Vn and Q; = U E;, i=0,1.
n>1
Define
En:=ES x B, u7[Si] == wi[SinEL], Si€8;, i=0,1,
u”[A} = I/[AﬁEn], VA € S.
Using the measures uj' we form as above the measures “?,0 and we observe that
,uio[A] =po,i[ANEn], Vn, VAES.
For any rectangle R, the intersection RN E, is a rectangle and
N?,O[R] =v"[R], Vn.
Thus
,u’ll’o[A} =u"[A], VneN, A€s.
If we let n — oo in the above equality we deduce that p1,0 = on 8.

We deduce that po,1 = p1,0. Thus the measures po,1 and p1,0 coincide on the algebra of sets generated by the
rectangles and thus they must coincide on the 8¢9 ® 81. This common measure is denoted by po ® w1 and it clearly
satisfies statement (i) in the theorem

Step 3. From Step 2 we deduce that (1.3.45) is true for f = Ig, VS € 89 ® 81. From this, using the Monotone Class
Theorem exactly as in the proof of Lemma 1.3.37 we deduce (1.3.45) in its entire generality. The claim in (iii) follows
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from the fact that any integrable function f is the difference of two nonnegative integrable functions f = f+ — f~ and
the claim is true for f*. O

The above construction can be iterated. More precisely, given sigma-finite measured
spaces (Q, Sk, pk), k = 1,...,n, we have a measure 1 = p1 ® - -+ ® u, uniquely determined
by the condition

M[Sl XSQX XSn] :Ml[sl}MZ[SZ] ,un[Sn]a VSkESk, k::l?"'an

Remark 1.3.39. Recall that A denotes the Lebesgue measure on R. The measure A®™ on
Brn is called the n-dimensional Lebesgue measure and will denoted by A,, or simply A, when
no confusion is possible. A subset of R™ is called Lebesque measurable if it belongs to the
completion of the Borel sigma-algebra with respect to the Lebesgue measure.

One can prove that if a function f:R™ — R is absolutely Riemann integrable (see [132,
Chap.15]), then it is also Lebesgue integrable with respect to the Lebesgue measure on R"

and, moreover
| s@asl= | s

where the left-hand-side integral is the (improper) Riemann integral.

We recommend the reader to try to prove this fact or at least to try to understand why a
Riemann integrable function defined on a cube is Lebesgue measurable. This is not obvious
because there exist Riemann integrable functions that are not Borel measurable.

For example, if C' C [0, 1] is the Cantor set, then there exists a subset A of C' that are
not Borel because the cardinality of the set 2 is bigger than the cardinality of the family
of Borel subsets of C. The subset A is Lebesgue measurable since C' is Lebesgue negligible.
The indicator function I, is Riemann integrable but not Borel measurable.

The change in variables for the Riemann integral shows that if U,V are open subsets of
"and F: U — V is a C'-diffeomorphism onto V, then

F#Zl)\v[dzz:] = |det Jp(z)| Ay [ dz].

Let us present a few useful consequences of Fubini’s theorem.

Proposition 1.3.40. Suppose that X is a nonnegative random variable defined on the prob-
ability space (2,8,P). For any p € [1,00) we have

E[XP] :p/ PIPIX > z]d. (1.3.46)
0
In particular,

E[X]= /OOO P[X > z]dz. (1.3.47)

Proof. We have

p/ooo 2P IPX > x)dr = /OOO (/Q I{X>x}(w)}P’[dw]> paP~tdx

= -1
— J(w,z)eQx(0,00) px” P®)\[dwdm]

0<z<X(w)
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(use Fubini-Tonelli)

([ et - f et s

We want to point out that when p = 1 the equality

(w,2)€NX[0,00) P® A[dwdx] = E[X]
0<z<X (w)

simply says that E [ X ] is equal to the “area” below the graph of the function X :  — [0, c0).

Example 1.3.41. Suppose that X is a random variable that takes only nonnegative integral
values. Then

Px =Y P[X =n]d,,
n>0
and

E[X] (1'3:'46)/0 P[X > 2]da

:Z/nnHIP’[X >z)de =Y P[X >n].

n>0 n>0

(1.3.48)

Let us apply this identity to a geometric random variable with success probability p, T ~ Geom(p).
Note that IP’[T > n] is the probability that the waiting time for a success is > n or, equiva-
lently, the probability that the first n trials are failures. Hence

1 1
Pl T > =q" ElT|= M= —— = —,
[T>n]=q" so E[T] goq "
Similarly
p2[T]) =E[T?] =2) nP[T >n]
n>0
:2an”:2q2nqn_1: 24 :ﬁ.
= = 1-¢q? p?
In particular
Var[T]:IE[TZ]—E[T]Q:]%. 0

Example 1.3.42. Suppose that T is an exponential random variable with parameter A, i.e.,
a random variable with the exponential probability distribution

Pr[dt] = Xe Mg o dt

This random variable describes the waiting time for an event to happen, e.g., the waiting
time for a laptop to crash, or the waiting time for a bus to arrive at a bus station. The
quantity e~ *dt is the probability that the waiting time is in the interval (¢, ¢ 4 dt]. Then

P[T > t] :/ e Mdr =e*, E[T] :/ e_Atdt:%,
t 0
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We see that % is measured in units of time. For this reason A is called the rate and describes
how many rare events take place per unit of time.

Similarly
oo o0 2 oo
p2|[T) = E[T2] = 2/ tP[T > t]dt = 2/ te Mdt = )\2/ se” °ds
0 0 0
2 2

The function S(t) := ]P’[T > t] is called the survival function. For example, if T denotes the
life span of a laptop, then S(t) is the probability that a laptop survives more than g units of
time.

The exponential distribution enjoys the so called memoryless property
P[T>t+sT>s|=P[T>t]. (1.3.49)
For example, if T is the waiting time for a bus to arrive then, given that you’ve waited more

that s units of time, the probability that you will have to wait at least ¢ extra is the same as
if you have not waited at all. The proof of (1.3.49) is immediate.

Pl T —A(t+s)
P[T>t+s|T>s]|= EP)[;:;]S] = ee_ASS =e M=P[T >t]. O

Example 1.3.43 (Integration by parts). Suppose that pg, 1 are two Borel probability mea-
sures on R supported on [0, c0), i.e.
pi[ (=00,0)] =0, k=0,1.
We set
Fy(z) = ,uk[(foo,:c]], k=0,1,
so that py is the Lebesgue-Stieltjes measure determined by Fj. Note that

Fi.(0) = g [ {0} ].
Classically, the integral

/ u(w)py | de |
[0,a]
was denoted by
/ u(x)dFy(z).
0

This classical notation is a bit ambiguous due to the following simple fact

/[O,a] (@) [ da ] = u(0)Fi(0) + / u(x)py | de .

(0,a]
We want to prove a version of the integration by parts formula. Namely, we will show that
if one of the functions Fy, F} is continuous, then

/Oa Fo(x)dFl(a:) = Fo(a)Fl(a) - Fo(O)F1(0) — /Oa Fl(l’)dF()(l') (1350)

Assume for simplicity that Fj is continuous so F7(0) = 0. Set p := po ® u1. Observe that
since
Fo(a)Fi(a) — Fo(0)F1(0) = Fo(a)Fi(a) = p[ [0,a] x [0,4] ].

—_———
Sa
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Using the Fubini-Tonelli theorem we deduce

[ Aware = [ ([ [T ]ala]) wl)

(F} is continuous)

B /[O,a] (/M T10.)(y) ul[dy]> poldz] = p[Ro],

RO::{(w,y)€R2; 0<y<z<a, y<a:}.

[ mwarn= [ ([ swamlas] ) imla] = olm]

Ry:={(z,y) eR* 0<z<y<a},
Observe that the regions Ry, R are disjoint.

where

Similarly

The region Ry is the part of the square S, = [0,a] x [0, a] strictly below the diagonal
y = x, while R is the part of this square above or this diagonal. Hence S, = Ry U R; and
thus

plRo]+p[Ri] = n[Sa]
Let us observe that the integration by parts formula is not true if both Fy, F} are discontin-
uous. Take for example the case pug = 1 = %((51 + (53). Then

0, z<l1.
Fo(z) = Fi(z)=F(z) =<1, 1<z<3,
1, >3

In this case we have

o F(x)dF(x) = [072}1 T )0 dr | = 2} = -, I = —.
SO )
x T 2.

The reason for this failure has a simple geometric origin: the diagonal {y = z} may not
be po ® py-negligible. The continuity assumption allowed us to discard the diagonal of the
square because in this case it is indeed negligible. O

Definition 1.3.44. Fix a probability space (£2,8,P).

(i) Suppose that V is a finite dimensional vector space. We denote by By the sigma-
algebra of Borel subsets of V. A V-valued random vector is a measurable map

X (Q,8,P) = (V,By).

Its probability distribution is the pushforward measure Px := X 4P. By definition,
Px is a Borel probability measure on V.
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(ii) The joint probability distribution of the random variables
X1, X0 1 (,8,P) =R
is the probability distribution of the random vector
X = (X1,...,Xpn) : (,8,P) — R".
We will denote by Px, . x, the joint distribution.
O

Observe that joint probability distribution Px, . x, is uniquely determined by the prob-
abilities
P[Xi<a,....Xn <], 21,...,2, €R.
Note also that if ; : R™ — R denotes the natural projection (z1,...,z,) — z;, i = 1,2,...,n,
then

The probability distributions Py, are often referred as the marginals (or marginal distribu-
tions) of the joint probability distribution Px, . x,,.

Proposition 1.3.45. Suppose that (2,8, P) is a probability space and
Xi,..., X, € L%, 8,P)

are random variables with probability distributions Px,,...,Px,. The following statements

are equivalent.

"

(i) The random variables X1, ..., X, are independent.

(i) Px,,..x, =Px, ® - ®Py,.

Proof. The random variables X, ..., X, are independent iff for any Borel sets By, ..., B, C R
we have

P[ Xy € By,...,Xn € B, | =P[X; € Bi]---P[X,, € By
Py, x,[Bix - xB, ]| =Px, @ ®@Px, [ By x -+ x By ].

Thus the random variables X1,..., X, are independent iff the measures Px, . x, and
Py, ® --- ® Px,, coincide on the set of rectangles By x --- x B, i.e.,

Px,..x,=Px, ® - ®Px,.
This set of rectangles is a m-system that generates the Borel algebra of R™. The conclusion
follows from Proposition 1.2.4. O
1.3.6. Convolution of Borel measures on the real axis.

Definition 1.3.46. Let y,v be two finite Borel measures on (R¥, Bg). The convolution of
p with v is the Borel measure p * v on (R, Bgr) defined by

pxv|B] :/RkM[B—y]u[dy}, VB € Bg. (1.3.51)
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For y € R* we denote by S, the shift S, : R¥ — R¥ S, (z) = 2 +y and set p, := (S) gp.
Note that for any Borel set B C RF we have
py[B] =p[STH(B)] = pn[B-y],

so we can rewrite(1.3.51) in the form

pev[ == [ ml = vla].

A simple argument based on the Monotone Convergence Theorem shows that u * v is indeed
a Borel measure on R. By letting B = R in (1.3.51) we see that p * v is indeed a finite
measure. It is a probability measure if both p and v are.

Note that pu* v is a mizture in the sense that it is obtained by averaging of the family of
probability measures (fi,),ecr With respect to the probability measure v[dy]. For example, if

"1
UV = Z 55%,
=1
then

1 n
p*V = n;um
1=

In the remainder of this section I will concentrate exclusively on the one-dimensional case,
k=1.
Proposition 1.3.47. Let p,v be probability measures on (R, Bg) and

®:R? >R, (z,y)=x+y.

Then pxv =@u(p@v) =vx*p.

Proof. Let B € Bg and set B = ®~'(B). Set
Ey ={z (z,9) EE} =B -—uy.
Then

Pu(p@v)[B] = /[R2 Iz @ v|dedy

(use Fubini-Tonelli)

:/ﬂ{(/RIéyu[deu[dy] =/Ru[3—y]1/[dy] = pxv[B].

The equality p * v = v * u follows by changing the order of integration in the Fubini-Tonelli
theorem. 0

Corollary 1.3.48. Let X,Y € £%(Q,8,P) be two independent random variables with distri-
butions Px and Py. Then

Px+y = Px x Py.

Proof. Since X,Y are independent we have Pxy = Px ® Py. Note that Pxy = ®4Px y.
The conclusion now follows from Proposition 1.3.47. g
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Remark 1.3.49. (a) Suppose that F), is the cdf of the probability measure p, i.e.,
Fu(c) = p[(-o0,c]], VeeR.
Then the cdf F),., of u* v satisfies

Fluw(c) = / Fu(c—z)v[dz], YceR.
R
We write this equality as
Flw = F *v. (1.3.52)
If 1 is absolutely continuous with respect to the Lebesgue measure A on R so
pldz] = pu(z)de, v[dz] = py(z)dz, pu,py € L'(R,N),
then p* v < A and

Hx V[dw] = P (T)dz, pps () = pp* pu(z) = /Rpu(x - ?J)V[dy]-

To see this it suffices to check that for any ¢ € R we have

C

prv|(—oo,d] = / Psv (T)dx.

—0o0

We have

wevl(ood] = [ulooe=allolan = [ ([ puterie ) vian

R 00

- /R </:y pu(x)dx> v[dy] = /R (/.: p(z — y)dz> v(dy]
_ /_; </R pulz — y)f/[dy]> dz = /_COO pusv(2)[dz].

(b) Any Borel probability measure g on R is the probability distribution of the random
variable

(use Fubini)

Ig: (R,'BR,/L) — R, 11]1{(1’) =x.

If @1, po, ps are diferent Borel probability measures on R, then we can define three indepndent
random variables

X1, X0, X3¢ (R®, Brs, 11 @ pr2 @ o ) — R,
Xp(z1,m2,23) = 21, K =1,2,3.
Note that Px, = u , Yk =1,2,3. Since (X; + X2) 1L X3 and X; L (X2 + X3) we deduce

(h1 % p12) % 13 = Px, 4 x0) x5 = Pxy+(Xo4Xg) = M1 % (p2 * p3).
Similarly
w1k g =Px 4 x, = Px,px, = po * p1.
Note that u * V[R] = M[R] . V[R]. In particular, the space Prob(R) of Borel probability

measures on R has a structure of commutative semigroup with respect to the convolution.
The Dirac measure dg is the identity element of this semigroup. a
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1.3.7. Poisson processes. Suppose that we have a stream of events occurring in succession
at random times S < Sy < S3 < --- such that the waiting times between two successive
occurrences

lesl, T2:52_51,...7Tn:5’n_5’n71,...
are i.i.d. exponential random variables T;, ~ Exp(\), n =1,2,.... We set Sp := 0.

It may help to think of the sequence (7},) as inter-arrival times for a bus. The first bus
arrives at the station at time S7 = T;. Once the n-th bus has left the station, the waiting
time for the next bus to arrive is an exponential random variable 7,41, independent of the
preceding waiting times. From this point of view, S, is the arrival time of the n-th bus.

For t > 0 we denote by N(¢) the number events that of occurred during the time interval
[0,¢]. In terms of streams of busses, N(t) would count the number of buses that have arrived
at the station in the interval [0,¢]. In other words

N(t)zmax{nZl; Sngt}:#{nZL Sngt}.

This is a discrete random variable with range {0,1,2,3,...}. The collection of random
variables {N (t), t> O} is called the Poisson process with intensity A. Note that

N(t) =Y Tjo,(Sn)-
n=1

Let us find the distribution (pmf) of N(t). We have
P[N({t)=0]=P[T1 > t] = e~ = the survival function of Exp()\).

If n > 0, then N(¢) = n if and only if the n-th bus arrived sometime during the interval [0, ¢],
i.e., Sy, <t, but the (n + 1)-th bus has not arrived in this time interval. We deduce

P[N(t)=n] = P[ (Sn <3\ {Snps < 1} ] =P[S, <t] —P[Sui1 < t].
If we denote by F),(t) the cdf of S, then we can rewrite the above equality in the form
P[N() =n] = Falt) - Fasa (1)

We have
Pg, = Exp(\) * - - -« Exp())

n

= Gamma(\, 1) % - - - x Gamma(\, 1) (1-6.62) Gamma(\, n).

~~
n

An+1 t An+1 t
Foii(t) = )/ se Mds = / s~ ds.
0 0

Hence, for n > 0

F'n+1 n!

For n > 0, we integrate by parts to obtain

s=t

_ (A s A" L VN (2)) L
Fn+1(t)——<n!s e 0+(n—1)! ; s"Tre T M¥ds = — o e N 4 Fo(t).

s=

Hence
(A" _n
P[N(t)=n] = F,(t) — Foa(t) = e >0, (1.3.53)

This shows that N(¢) is a Poisson random variable, N (t) ~ Poi(At).
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The family of random variables (N (t) is nondecreasing and thus there exist right and left
limits
N({t—-0)=lmN N(t+0)=1lmN(s).
(t—0) =1lim N(s), N(t+0)=limN(s)
It is not difficult to see that
Vit >0, N(t)=N({t+0), N(t)—N(N—-0)e{0,1} as. (1.3.54)

The Poisson process plays an important role in probability since it appears in many situations
and displays many surprising phenomena. One such interesting phenomenon is the waiting
time paradoz, [65, 1.4]. To better appreciate this paradox we consider two separate situations.

Suppose first that buses arrive at a bus station following a Poisson stream with frequency
A. Bob arrives at the bus station at a time ¢t > 0, the bus is not there and he is waiting for
the next one. His waiting time is

Wt = SN(t)+1 —1

We want to compute its expectation w; := E[Wt] There are two possible heuristic argu-
ments.

(i) The memoryless property of the exponential distribution shows that w; should be
independent of £ so w; = wg = %
(ii) Bob’s arrival time ¢ is uniformly distributed in the inter-arrivals interval
(S N(t)s S N(t)+1) of expected length % and, as in the earlier deterministic compu-
tation, the expectation should be half its length, %
We will show that (i) provides the correct answer. However, even the reasoning ( ii) holds

a bit of truth. To see what is happening we compute the expectations of Sy and Sy ()41-
We have

t
E[SN(t)} :/O ]P[SN(t)>$]d$.

Note that
P[SN(t)>x]:ZP[SN(t)>x7 N(t):n].
n>0
On the other hand,
]P’[SN(t)>w, N(t):n]:IP’[w<Sn§t, Sn+Tn+1>t].

The random variables S, and T},41 are independent and the joint distribution of (S, Ty+1)
is

A" n—1_—Asy _ —AT
]P)Sn,Tn+l [det] = WS 16 e dsdT
p(s,T)
SO
P[m < Sp <t, Sy + The1 > t} il S p(s, T)dsdr
s+7>1

t 00 t A7
= p(s, T dT> ds = / P[Tp >t—s]|———s""te Mds
/z </t—s ( ) x [ i ] (n - 1)!

t n —Atyn t —Aty\n
= e AMt—s) A L P A A s"lds = & A (t” —z" )
x (n—1)! (n—1!J, n!
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We deduce
—At A"

(tn o xn) —1_ e—/\(t—a:),

P[SN(t) >J}] :Ze

n>0
¢ t
E[ Sy ] :/0 (1e‘A(t—I))d:c:te—M/0 e’\xdt:t—%(eM—l).

E[S ]:t—1+Q:1E[N(t)—1+e—”]. (1.3.55)
N XA
Let us compute E[S N()+1 ] Again, we have
P[Snw+1 > ] = ZP[SN(t)—f—l >x, N(t)=n],
n>0

n!

Hence

and
IP’[SN(t)H >z, N(t):n} :P[SnStSnH Zmax(t,x)]
_JP[Su <t Syt T 2], w <t
O\ P[Sw <t S+ Thsr > 2], x>t
For any ¢ >t we have
P[Sy, <t, Sp+Thi1 >c] = _, p(s,t)dsdr

s<t
s+1>c¢

¢ o0 n t e n
= / / p(s T)dT ds = )\/ ef)\(cfs)snflef)\sds _ ﬂ
0 c—s ’ (TL — 1)' 0 n

Observing that
3 e )" o~ Ac—t)

n!
n>0

we deduce that

1, z <t,
P[Sn@ > ] = { “Ma—t)

e , x>t.
Hence
‘ a [T e L1
E[SN(t)+1]—/OdiU+€ /t e Mdr =1+ = E[N(t)+1], (1.3.56)
and .
wt:E[SN(t)H]—t:X.

In fact much more is true. One can show (see [144, Sec. 3.6]) that the waiting time W,
is an exponential random variable, W; ~ Exp(}), in agreement with the conclusion of the
argument (i).

The above computation show that the expectation of Ly = Sy)41 — Sn() 18

E[Lt] = - - — = 2 for ¢ large.

We have reached counterintuitive conclusions. The expected waiting time from the moment
bus N(t) left the station until bus N(¢) 4+ 1 arrives in the station is twice the expected
inter-arrival times E [Tn } !



80 1. Foundations

On the other hand, the actual expected time w; from epoch ¢ until the arrival of bus
N(t) + 1 is the usual expected inter-arrival time. This shows that even the argument (ii)
captures a bit of what is going on since w; is close to half the expected length of the inter-
arrival interval (SN(t), SN(t)+1 )

The number of busses arriving during a time interval [0,¢] is N(¢). The busses arrive
with a frequency of % per unit of time, so we should expect to wait ¢ = %]E[N(t)] units of
time for N (t) busses to arrive. However, formula (1.3.55) shows that we should expect less
than ¢ units of time for N(¢) busses to arrive. On the other hand, formula (1.3.56) shows
that we should expect ¢t +1 = tE[ N(¢) + 1] units of time for N(t) + 1 busses to arrive! We
refer to Remark 3.2.35 for another (technical) explanation for this paradoxical divergence of
conclusions.

The Poisson processes are special cases of renewal processes. For an enjoyable and highly
readable introduction to renewal processes we refer to [65] or [144, Chap. 3|. For a more
in-depth presentation of these processes and some of their practical applications we refer to
[7]. O

1.3.8. Modes of convergence of random variables. Fix a probability space (2,8, P).
Definition 1.3.50 (Almost sure convergence). We say that the sequence of random variables
X, € £°%(Q,8,P), neN,
converges almost surely (or a.s.) to X € £°%(€, 8, P) if there exist g € § such that

P[Q] =1, lim X (w) = X(w), Yw € Qo

We will use the notation X,, == X to indicate the a.s. convergence. O

Tautologically, the a.s. convergence is well defined in LY. To describe a useful criterion
for a.s. convergence we need to rely on a very versatile classical result.

Definition 1.3.51. For any sequence of events (A, )nen C 8 we denote by A, i.0. the event
“A, occurs infinitely often”,
A, 0. = ﬂ U A,.

m>1n>m
Thus
we€Ayio < VmeN In>m: weA,. O

Theorem 1.3.52 (Borel-Cantelli Lemma). Consider a sequence of events (Ay)nen C 8.
(i) If
ZP[AH] < 0.

n>1
Then P[ A, i0.] = 0.
(i) Conversely, if the events (Ap)nen are independent then P[ A, i0.]| € {0,1}, and
P[Apio.] =0« > P[A,] < oc. (1.3.57)

n>1
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Proof. (i) We set

N:=) 14,

n>1
Note that {4, i.0.} = {N = oco}. From the Monotone Convergence Theorem we deduce
N] =) E[I4,]=)_P[A,
n>q n>1
so P[N =o00] =0.
(ii) Kolmogorov’s 0-1 theorem shows that when the events (A,),>1 are independent we have
P[ A, i0.] €{0,1}.
To prove (1.3.57) we have to show that if
>ela,
n>1

then IP’[An i.o.] = 1. We have

UA

(use the independence of A,,)

(1—x<e ™ VreR)
>1—e 2nzm PlAR] 1

Hence

]P’[An i.o = lim P
m—0o0

U 4.

n>m

O

Remark 1.3.53. Statement (i) in Theorem 1.3.52 is usually referred to as the First Borel-
Cantelli Lemma while statement (ii) is usually referred to as the Second Borel-Cantelli
Lemma. Exercises 3.12 and 3.20 present refinements of the Borel-Cantelli lemmas. O

Observe that X,, — X a.s. if and only if, for any v € N
P[{|X,—X|>1/v}io. ] =0.
The Borel-Cantelli Lemma now implies the following result.

Corollary 1.3.54. Suppose that there exists X € £°(€, 8, P) such that the sequence X,, € £L°(2, 8, P)
satisfies
> P[IX, - X|>¢e] <00, Ve>0.

n>1

Then X,, =2 X. 0
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Proof. The Borel-Cantelli Lemma implies that
P[|Xn — X|>¢ i0.] =0, Ve>0.
Hence, for any € > 0 there exists a negligible set S; € § such that, for any w € 2\ S we have
lim sup |Xn(w) — X (w) ’ <e.
n—00

Set

Seo = | Siyk
keN

We deduce that for any w € Q\ Ss we have
lim sup ’Xn(w) - X(w) ‘ <1/k, Vk eN.
n—oo

O

Definition 1.3.55. We say that the sequence X,, € £°(2,8,P) converges in probability to
the random variable X € £%(Q, 8, P) if, Ve > 0, we have

lim P[|X, - X|>¢] =0.

n—oo

We will use the notation X,, — X to indicate convergence in probability. O

Observe that if X,, — X in probability and, for any n € N, we have X,, = X a.s.,
then X/ — X in probability. Thus the convergence in probability is correctly defined in
LY, 8,P).

The convergence in probability is equivalent to the convergence defined by a metric on
LP(£,8,P). For X,Y € £°(£,8,P) we set

dist(X,Y) := E[ min(|X — Y, 1)] (1.3.58)
Clearly dist(X,Y) = dist(Y, X) and
dist(X, Z) < dist(X,Y) + dist(Y, Z).
Note that dist(X,Y) =0 iff X =Y a.s. so “dist” is a metric on L°({, 8, P).
Proposition 1.3.56. Let X, X,, € £L%(Q,8,P). Then the following statements are equivalent.
(i) X, — X in probability as n — co.
(i) dist(X,, X) — 0 as n — co.
Proof. Set
p(z) := min(|z|,1), Y, =X, — X.
Using Markov’s inequality we deduce that for any n > 1 and any ¢ € (0,1) we have
eP[|Yy| > ] =eP[p(Yn) > ] <E[p(Yy)] = dist(Yy,0).
This shows that (ii) = (i).

Conversely, observe that, for any € > 0, we have

E[p(Y,)] = /lY - p(Yy,)dP + /Y . p(Yo)dP < e +P[|Y,] >¢].

This proves that 0 < lim inf dist(Y},,0) < limsupdist(Y;,0) <e, Ve > 0. 0
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The next result describes the relationships between a.s. convergence and convergence in
probability.

Theorem 1.3.57. Let X, X,, € £L%(Q,8,P). Then the following hold.
(i) If X, = X a.s., then X,, — X in probability.

(ii) If X,, — X in probability, then (X,) contains a subsequence that converges a.s. to
X.

(iii) The sequence X,, converges in probability to X if and only if any subsequence con-
tains a further subsequence that is a.s. convergent to X.

Proof. (i) Set Y,, := X,, — X. Since Y;, — 0 a.s. we have min(|Y,|,1) — 0 a.s.. From the
Dominated Convergence Theorem we deduce

dist(X,,, X) = E[|Y,]] — 0,

so that Y, = 0.
(ii) Suppose that Y;, — 0 in probability. We deduce that for any k € N there exists ny € N
such that

Vn >ng: P[Y,| > 1/k] < o

Now observe that for any m > 0, the series

> PV, | > 1/m]

E>1
is convergent since, for k > m we have

1
P[|Yn,| > 1/m] <P[|Yn,| > 1/k] < 5

The desired conclusion now follows from Corollary 1.3.54 .
(iii) Recall that a sequence in a metric space converges to a given point if and only if any
subsequence contains a sub-subsequence converging to that point. The properties (i) and (ii)

show that the seqeunce (X,,) satisfies this condition with respect to the metric dist defined
by p. O

Corollary 1.3.58. If the sequence (X,,) in L°(Q,8,P) converges in probability to X, then
for any continuous function f : R — R the sequence f(X,,) converges in probability to f(X).

Proof. The sequence (X,,) satisfies the necessary and sufficient conditions (iii) in Theorem
1.3.57. Since f is continuous, the sequence f(X,,) satisfies these necessary and sufficient
conditions as well. O

The next result is also an immediate consequence of Theorem 1.3.57(iii).

Corollary 1.3.59. Suppose that (X,,) and (Y,) are two sequences of a.s. finite random vari-
ables converging in probability the the a.s. finite variables X and respectively Y. Then X, +Y,
converges in probability to X +Y . O
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Definition 1.3.60. Let p € [1,00). We say that the sequence (X,,)nen C L2(Q, 8, P) coverges
in p-mean or in LP to X € LY(£, 8, P) if

X, X, € LP(Q,8,P), ¥n €N,

and
lim E[|X, - X|’] =0.
n—oo
The convergence in the L>-norm is rerred to as a.s. uniform convergence. O

Proposition 1.3.61. If X,, — X in p-mean, then X,, — X in probability. In particular, X,
admits a subsequence that converges a.s. to X.

Proof. Set Y,, := X,, — X. Then

(1.2.19) 1
P[|[Yn]| >e] =P[|VoP >eP] < E—pE[\Yn|p] — 0 as n — oo.

Example 1.3.62. For each n € N and each 1 < k < n we set
A =[(k=1)/n,k/n], Xgn=14,, :[0,1] =R
Then the sequence of random variables
X1,1, X192, X090, X13,X03,X33,...

converges in mean and in probability to 0. It does not converge a.s. to 0 because for any
x € [0, 1] infinitely many of these random variables are equal to 1 at x.

The related sequence Y}, = nXj, converges in probability to 0 but not in mean since
||Yk:,nHL1 =1. O

Example 1.3.63 (Bernoulli). Suppose that (X,,),>1 is a sequence of i.i.d. Bernoulli random
variables with wining probability p = % Set

1
Sp=X1+ -+ X, ~Bin(n,1/2), M, = —S,.
n

Then ) . .
Var [ M, | = ﬁVar 1S ] = EVar [ Ber(1/2)] = i
Hence )
M, —1/2|12 = m — 0 asn — oo,
so that M,, converges in 2-mean to % and thus, in probability to % Intuitively, M,, is the

fraction of Heads in a string on n independent fair con flips. From Chebyshev’s inequality

we deduce that )

PIMn—1/2/ > ][ < £
It turns out that this deviation probability is much smaller. In (2.3.12a) we will show that
P[|M, —1/2| > &] < 2¢2"".
For example if e = 1072, n = 10° then
P[|Mygs —1/2] > 0.01] <2 ~4.2x 1077 O
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Example 1.3.64 (Longest common subsequence). Consider a finite set A, |A| = k, called
alphabet. A word of length n in the alphabet A is a finite sequence of the form

z = (21,...,2,) € A".
A subsequence of such a word is a word of the form

(a:f(l), ce .Z'f(g)) S .AE,
where f an increasing function f : {1,...,¢} — {1,...,n}. The natural number /¢ is called
the length of the subsequence.

A common subsequence of two words z,y € A" is a word w € Af that is a subsequence
of both. For example, if A = {H, T}, then H, T, H,T, T is a subsequence of both words

H,T,T,H,H,7T,T and T,H,T,H,T,T, H

We are interested in the length of the longest common subsequence of two random words of
length n on the alphabet A. Such a problem arises in genetics. In that case the alphabet
is {A,C,T,G}. The DNA molecules are described by (very long) words in this alphabet.
The existence a long common subsequence of two such words is an indication of a common
ancestor of two living organisms with those DNAs.

From a mathematical point of view, we fix a probability measure 7 on an alphabet A and
we choose independent random variables

{Xn,Yn; neN}

where X,,,Y,, are A-valued and have common distribution 7.

One can think that these random variables are obtained as follows. Two individuals in-
dependently roll identical ”dice” with faces labeled by A and whose occurrences are governed
by 7. The first individual generates the sequence (X,,) while the second individual generates
the sequence Y,,. We denote by L, the length of the longest common subsequence of the
words

(X1,...,X,) and (Y3,...,Y,).
We want to prove at a.s. and L' we have
L L
lim =" = R(w) := sup — (1.3.59)

n—,oo N n21 n
In particular, this shows that

L
lim — > L; > 0.

n—oo m

Note that L; is a Bernoulli random variable with success probability
2
p= Z 7'('[&] .
acA

The equality (1.3.59) is due to Chvétal and Sankoff [36], but we will follow the presentation
in [160, Chap. 1].

The key observation is that the sequence (¢,)nen is superadditive, i.e.,

U + by < lonin, ¥m,m € N. (1.3.60)
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The proof is very simple. We set Z,, = (X,,,Y},) and we observe that the random variable L,
is an invariant of the sequence of pairs (Z1,...,%Z,), L, = L(Z1,...,Z,). Clearly

Lo =L(Zpi1,. .., Zpim), ¥m,n € N.

If we concatenate the longest common subsequence of (Z1, ..., Z,) with the longest common
subsequence of (Zy, 41, ..., Zn+m) We obtain a common subsequence of (Z1, ..., Zn, Znt1,- -+ Zntm)
of length

L(Zy,....,2Zn) + L(Zns1,- -, Zngm)
showing that
L(Zi,...;Zn) + L(Zns1y -y Zntm) < L(Z1, ...y Zny Zns 1y - -+ s Znem) s
i.e.,
Ly + Ly, < Lpyyyyn, Ym,neN. (1.3.61)
Taking the expectations of both sides in the above inequality we obtain (1.3.60).

The conclusion (1.3.59) is now an immediate consequence of the following elementary
result.

Lemma 1.3.65 (Fekete). Suppose that (z)n>1 is a subadditive sequence of real numbers,

1.€.,
Tman < Ty + T, Vm,n € N.
Then
lim m—n:,u:: inf 27
n—oo N n>1 n

Proof. Then, for any ¢ > u we can find k£ = k(c) > 0 such that x5 < ¢. The subadditivity
condition implies xx, < nxi, Vn € N, so that

MSLT;:<C, Vn € N.
n

Hence

x
< liminf =2 < c, VYe> pu,
n—oo N

ie.,
. . o Tn
¢ = liminf —.
n—oo n

Now observe that for any n > k(c) > 0, there exist m € N and r € {0,1,...,k(c) — 1} such
that n = mk(c) + r. Hence

T < MTg(e) + 1 <MC+ 2y
so that
<=+ —, Me=sup{|zi| 4+ + |zl }-
Hence

) Tn . (n—r)c
limsup — < limsup ————
n—oo N n—00 n

=c, V> pu.

This completes the proof of the lemma. a
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The conclusion (1.3.59) follows from Fekete’s Lemma applied to the sequence z,, = — L.
The inequality (1.3.61) show that
L

L
— — R:=sup —.
n n n

Set r =r(m):=E [ R}. We deduce from the Cauchy-Schwartz inequality that

r>E[Li] =) n[a]®> % (Zﬂ'(a)>2 = % > 0.

acA acA

The Dominated Convergence Theorem implies that

1
r= lim ~E[L,].
n—oo N
The exact value of r(7) is not known in general. In Example 3.1.34, using more sophisti-
cated techniques, we will show that the limit R(7) is constant, R(mw) = r and % is highly
concentrated around its mean r,. O

The concept of convergence in probability is weaker than the concepts of convergence a.s.
or in p-mean. In many applications it is useful to know sufficient additional assumptions that
will guarantee that a sequence convergent in probability is also convergent in p-mean. The
a.s. convergence does not guarantee convergence in mean. The next elementary example is
typical of what can go wrong.

Example 1.3.66. Consider the interval [—1, 1] equipped with the uniform probability mea-
sure %da:. Consider the sequence of nonnegative random variables

XTL - 2”1—[_277%2774.
Note that X,, — 0 a.s. but

on 2—"m
E[Xn] :2/2_ndx:1, vn.

As we will see later in Chapter 3, the reason why the convergence in mean fails is the high
concentration of X, on sets of smaller and smaller measures. O

Our next result is an example of a sufficient condition for a sequence converging in
probability to also converge in the mean. It is a stepping stone towards the more refined
results that we will discuss in Chapter 3.

Theorem 1.3.67 (Bounded Convergence Theorem). Suppose that (X,) is a sequence in
LY(Q,8,P) that converges in probability to X € L*(Q,8,P). If the sequence (X,,) is bounded
in L>(,8,P),i.e.,
M :=sup || Xp |0 < 00,
neN
then X,, — X in L' and

lim E[ X, | =E[X | (1.3.62)

n—oo
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Proof. We follow the approach in [173, Thm. 1.4]. Since
[E[Xn] —E[X]| <E[|X, - X]],
and | X,, — X| — 0 in probability, it suffices to consider only the special case X =0, X,, > 0,

and X,, > 0 a.s.. In such an instance the claimed L!-convergence follows from (1.3.62).

For any € > 0 we have
E[Xn] =E[XpI(x, <o} | +E[ Xnd (x50 ] S e+ MP[X, >¢].
Letting n — oo taking to account that X,, > 0 and X,, — 0 in probability we deduce
0< liminfE[Xn] < limsupIE[Xn] <eg, Ve>D0.

n—0o0 n—o0o

O

Remark 1.3.68. The Bounded Convergence theorem does not follow immediately from the
Dominated Convergence Theorem which involves a.s. convergence. However, using Theorem
1.3.57(iii) we can use the Dominated Convergence Theorem to provide an alternate proof of
the Bounded Convergence Theorem. O

1.4. Conditional expectation

The concept of conditioning is a central pillar of the theory of probability. It has a genuinely
probabilistic origin and very rich and subtle ramifications. Also, it takes some time getting
used to it. This concept is one important reason why in probability sigma-algebras play a
much more important role than in analysis.

Fix a probability space (22,8, P).

1.4.1. Conditioning on a sigma subalgebra. The main formal constructions of this
section are best understood if we first consider a special but very useful example.

Example 1.4.1 (Conditioning on a partition). Suppose that (2,8,P) and (Fi)aca, A CN,
is a finite or countable partition of €2 with measurable and nonnegligible chambers, i.e.,

F, €8, P[F,] >0, Va€ A

We denote by F the sigma-algebra generated by this partition. In other words, F' C ¥ if and
only if it is a union of chambers F,,. This means that 3B C A such that

F=|J Fs

BeB

Observe that a function Y : @ — R is F-measurable if and only there exist real numbers
(Ya)acAa such that

Y=Y yola, Io:=1Ig,.
acA
Moreover

Vel —= Z\yaW[Fa] < 0.
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Suppose now that X € £1(Q,8,P). We define the expectation of X given the event F, to
be the the expectation of X with respect to the conditional probability IP’[ - ‘ F, ], i.e., the

number

1 1

To =E[X|F,] = WE[XIQ] ~B[A] FaX(w)IP[dw]. (1.4.1)
We obtain an F-measurable random variable
X = Z:EQIQ.
Note that )
|Za| < P[FQ]E[!X\IQ]
SO B
E[IX]] <) E[|X|I,] =E[|X]|] < oc.
Since _
E[XI,| =E[XI,], Vac€ A,
we deduce

E[XIr]=E[XIp], VF€J. (1.4.2)

X =) dal,
o
is another F-measurable, integrable random variable that satisfies (1.4.2), then

P[Fo]ea =E[XI,| =E[XI,] =P[F,]iq, Ya€ A,

Note that if

so that £ = Ta, Vo, ie., X is uniquely determined by (1.4.2).

As a special case, suppose that Y € £°(€2,8,P) that has finite or countable range Y. We
obtain a countable measurable partition of Q (F,),cy, £y = {Y = y}. In this case

S w w
= BT =37] oy ¥R

If, additionally, the range of X is also finite or countable, then X coincides with the random
variable E[ X || Y| defined in Exercise 1.16.

If in (1.4.2) we set F' = Q we deduce

E[X]=E[X] =) Z.P[Fa] =) E[X|F.|P[F,]. (1.4.3)
When X = Ig, then
E[Is’F ] :M:P[S”F ]
“ P[Fy | b
In this special case the equality (1.4.3) becomes the law of total probability
P[S]=> P[S|F.|P[F,]. (1.4.4)

The next result explains why the condition (1.4.2) is key to our further developments.
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Proposition 1.4.2. IfF C 8§ is a sigma-subalgebra and Yy, Y1 € LY(Q, F,P) are two F-measurable
random variables such that

then Yo = Y7 a.s..

Proof. Set Z =Yy — Yj. Then Z is F-measurable, integrable and satisfies
E[ZIp] =0, VFeJ. (1.4.6)

If we let F ={Z > 1/n}, n € N, we deduce that

1

EP[Z > 1/TL] < E[ZI{Z>1/n}] =0, VneN.
Thus

P[Z>1/n] =0, VneN=P[Z>0]=0.
A similar argument shows that IP’[Z < 0] =0. O

Definition 1.4.3. Let (©2,8,P) be a probability space, F C 8 a sigma subalgebra, and
X € LI(Q,S,P)._A version of the conditional expectation of X given F is an F-measurable
random variable X € £1(Q, F,P) such that

E[XIr]=E[XIp], VFe€J. (1.4.7)
O

According to Proposition 1.4.2, any two random variables )_(0,)_(1 € £1(Q, T, P) satisfying
(1.4.7) are a.s. equal. Their equivalence class in L'(Q,F,P) is denoted by E[X | F] and it
is called the conditional expectation of X given F. Also, if X =Y a.s. and E[ X || F] exists,
then E[Y || F] also exists and E[ X | F| =E[Y || F] ass..

# About the notation. I am using different notations, one for the conditional expecta-
tion given and event, IE[X ‘ F ], and another for the conditional expectation given a sigma-
subalgebra, E[X | F ], for a simple reason: I want to emphasize visually that the first is a
number and the latter is a function.

Remark 1.4.4. Using the Monotone Convergence Theorem and the Monotone Class Theo-
rem we deduce that the following are equivalent.

(i) The random variable X € £1(Q,F,P) is a representative of E[X| 5]
(ii) For any Y € L>(Q, F,P)

E[XY]=E[XY]. (1.4.8)
(iii) There exists a m-system A C F that contains 2, generates F, and
E[XI4] =E[XI4], VA€ A. (1.4.9)
From Corollary 1.3.7 we deduce that
X is  measurable, E[ X —X] =0and (X ~X) L F = X =E[ X | F]. (1.4.10)

O
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We will soon prove (Theorem 1.4.8) that the conditional expectation of an integrable
random variable given a sigma-subalgebra exists.

Definition 1.4.5. Given random variables X € L°(Q,8,P), Y € L'(Q,8,P) we write

E[Y|X]=E[Y|o(X)]]

where o(X) denotes the sigma-subalgebra generated by X. This random variable is called
the conditional expectation of Y given X. O

Remark 1.4.6. A function Y € £1(Q, 0(X),P) represents E[Y || X] if, for any z € R we
have

/ Y (w)Pldw] = / Y(w)P[dw].
{X<z} {X<z}

Since E[Y || X ] is ¢(X)-measurable we deduce from Dynkin’s Theorem 1.1.24 that there
exists a Borel measurable function f : R — R such that

f(X)=E[Y|X] as.
This is equivalent to the statement
E[YIix<sy]| =E[f(X)I{x<s) ], Yz R (1.4.11)

“The value f(z) of the function f at z”® is called the conditional expectation of Y given
X =z and it is denoted by E[Y{ X = 3:] Think of it as the conditional expectation of Y
given the possible negligible event {X = x}. The graph of x — E[Y | X = :z:} was classically
referred to as the regression curve.

Note that
E[Y]=E[Y] =E[E[Y|X]]| =E[/(X)].
Thus
E[Y] =E[f(X)] :/Rf(q:)IF’X[dx].

We can rewrite the last equality as
E[Y] :/E[Y|X =z |Px[dz]. (1.4.12)
R

This approach to computing the expectation of Y by relying on the above identity is referred
to computing the expectation of Y by conditioning on X. This generalizes the elementary
situation in Exercise 1.16. O

Example 1.4.7. Suppose that X, Y : (©,8,P) — R are two random variables such that their
joint probability distribution Py y € Prob(R?) is absolutely continuous with respect to the
Lebesgue measure on R2. This means that there exists a Lebesgue integrable function

PXY - R? — [0, 00)
such that
P[(X,Y)eB] = / pxy(z,y)dxdy, VB € Bpe.
B

8We used quotes since “the value at a point” is not a precise concept for a function defined almost everywhere.
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We denote by Px and respectively Py the probability distributions of X and respectively Y.
Note that the cumulative distribution function Fx of X is

Fe()=P[x<e]= [ (/]RPX,Y(any)dy> ir= [ pxtwd

— 0 —00

=px(z)

This shows that Px is absolutely continuous with respect to the Lebesgue measure on R and
Px[dx] = px(z)dz.
Similarly
Py[dy] = py(y)dy = /Rpx,y(a?,y)dx.

Classically, the probability distributions Px and Py are called the marginal distributions of
the random vector (X,Y). We define

i) px(@) # 0,
PY\X:x(y) =

0, px(x) :=0.

Assume that Y is integrable. Define

1#(:6) Jrypxy(z,y)dy, px(x)#0,
fiR=R, f(z)= /Rpr|X:z(y)dy =
0, px(x) = 0.

Using the Fubini-Tonelli theorem and the integrability of Y we deduce that the above integrals
are well defined and the resulting function f is Borel measurable. Note that

f(@)px(z) = /Rpr,Y(l”,y)dy, Va € R.

We want to show that f(z) = E[Y|X = ], i.e., f(X) is a version of E[V || X |. We will
show that it satisfies (1.4.11).

Let ¢ € R. We have

E[f(X)Ix<c] = /_ ; f(@)px (z)dx = /R </R pr’ydy> Ty (1.4.13)

= /2 Yl (—ooq(7)px )y (7, y)drdy = E[YIXSC].
R

The function f(z) is the conditional expectation E[Y|X = x| discussed in Remark 1.4.4.

Note that the event {X = x} has probability zero so this nomenclature should be taken
with a grain of sand since we cannot apply (1.4.1). Intuitively

E|\YI
E[YIX = o] = lm E[ Y| {|X — o] < }] V4" lup L} Dix=aice]
e\0 s\OP[|X—$|<5]
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One issue we need to address is the existence of the conditional expectation. There is a
fast proof based on the Radon—Nikodym theorem. We will use a more roundabout approach
that sheds additional light on probabilistic the nature of conditional expectation. As an
aside, let us mention that this approach leads to an alternate proof of the Radon—Nikodym
theorem that does not rely on the concept of signed-measure.

Theorem 1.4.8. For any X € L'(Q,8,P) and any sigma subalgebra F C 8 there exists a
conditional expectation E[ X || F| € LY(Q, T, P).

Proof. We follow the approach in [181]. We establish the existence gradually, first under
more restrictive assumptions.

Step 1. Assume X € L?(£,8,P). Then L%*(Q,J,P) is a closed subspace of L?((2,8,P).
Denote by Py X the orthogonal projection of X on this closed subspace. We claim that

PsX =E[X ||F], (1.4.14a)
X>0=E[X|TF]=>0. (1.4.14b)
Set Y := Py X. Since X — Y 1 L?(Q,7,P) we deduce
E[(X-Y)Z] =0, VZ € L*(Q,5,P).
In particular,
E[(X-Y)Ip]| =0, VFeJT.
This proves (1.4.14a). Now suppose that X > 0. For any n € N we have
0<E[XIycam] =E[YIy<im]< —%P[Y < -1/n},
SO
P[Y <-1/n] =0, VneN.
This proves (1.4.14b). Clearly, the resulting map
L*(,8,P) > X »E[X ||F] € L*(Q,F,P)
is linear.
Step 2. Assume X € L'(2,8,P). Decompose X = X* — X~ and, for n € N, set
X = min (Xi,n).

Note that X € L>®(€,8,P) and, as n — oo, XF 7 X* a.s.. From Step 1 we deduce that
the random variables X;© have conditional expectations given F. Choose versions

VE=E[XT|T].
Since X;& — X£ > 0 as. if m < n we deduce from (1.4.14b) that
0<YE<YE as, Vm<n.

We set
Y+ := lim Y, .

From the Monotone Convergence Theorem we deduce that

+£1 _ 1 £1_ 1 +7 _ +
oo>E[X ]_nlggoE[X”]_q}ggoE[Y”]_E[Y ]
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This shows that the random variables Y. are integrable and in particular a.s. finite. We set
Vi=Y"-Y".
We will show that Y is a version of the conditional expectation of X given F. Let F € F.
Then
E[XIp|=E[X{Ip]|-E[X_Ip]=lim E[XIp]— lim E[ X, Ip]

n—0o0 n—00
= lim E[Y,"Ip] - lim E[Y, Ip] =E[Y'Ir| -E[Y Ir] =E[YIF].
This proves that Y is a version of E[ X || F]. O

Remark 1.4.9. (a) The sigma-subalgebra F should be viewed as encoding partial informa-
tion that we have about a random experiment. Following a terminology frequently used in
statistics, we refer to the F-measurable random variables as predictors determined by the
information contained in F.

Step 1 in the above proof shows that the conditional expectation X of a random variable
X, given the partial information &, should be viewed as the predictor that best approximates
X given the information F. The missing part X — X is independent of F so it is unknowable
given only the information encoded by J.

Intuitively, suppose we perform a random experiment with space of outcomes 2. The
result of one experiment is an outcome w. We have at our disposal a “deemon”’ who can
only give yes or no answers to questions of the type: given F' € &, does w belong to F'? Then
X(w) is the best guess about X (w) using the “dezemonic information” available to us.

Note that when F = {0, Q}, then
E[X ]| =E[X |I,.

To put it differently, if the only information we have about a random experiment is that there
will be an outcome, then the most/best we can predict about a numerical characteristic of
that outcome is its expectation.

(b) There is an alternate approach to proving the existence of conditional expectation. A
random variable X € L!(2,8,P) defines a signed measure

px : F—0,00), MX[F] —/FX(w)IP’[dw], VF € F.

This measure is absolutely continuous with P (restricted to F). The Radon-Nikodym theorem
implies that there exists an F-measurable integrable function px € L'(2,F,P) such that

MX[dw] = px(w)IP[dw], ie.,
/X(w)l[”[dw] :/px(w)}P’[dw], VEF € 3.
F F

This shows that px =E[ X || F] ass..

Conversely, one can show with considerable effort and ingenuity that the existence of
conditional expectations implies the Radon-Nicodym Theorem. We refer to [181, Sec. 14.15]
for details. a

9Use the concept of deemon in Socratic sense
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Definition 1.4.10. Given a sigma subalgebra ¥ C §, and an event S € §, we define the
conditional probability of S given F to be the random variable

P[S|F] =E[Is|TF]. O

Example 1.4.11 (Conditioning on an event). Suppose that S € § is an event such 0 < P[S] < 1.
Let Y € L(Q,8,P). Then

E[Y | Is] =E[Y|S]Is+E[Y]|S]Ise,
where we recall that (see (1.4.1))

1

E[Y|S] = 375]

E[YIg]. O

Our next result lists the main properties of the conditional expectation.

Theorem 1.4.12. Suppose that F C § is a sigma subalgebra. Then the following hold.
(i) Let X € LY, 8,P). IfY is any version of E[ X || F], then E[Y | = E[X |. In
other words
E[E[X|F]] =E[X]. (1.4.15)
(i) If X,Y € LY(Q,8,P) and X <Y as., then E[ X || F| <E[Y || F] as..
(iii) The map
L',8,P) > X »E[X|TF] € LY (2, TF,P)
s a linear contraction, i.e., it is linear and satisfies
|E[X1F] || < I1XN, VX € LY(Q,8,P).
(iv) If X € LY(Q,8,P) and Y € L>=(2, F,P), then
E[XY|F]=YE[X|F].
(v) If § C T is another sigma subalgebra, then for any X € L*(,8,P) we have
E[X 5] =E[E[X|F]]$].
(vi) If0< X, /X a.s., X € LY(Q,8,P), then
E[ X, |F] /"E[X]|F], as. and L'.
(vii) If X, € LY(Q,8,P), n € N, X,, > 0 a.s., liminf X,, € L' a.s., then
E[ liminf X,, | F] < liminfE[ X,, || F] as..
(viii) If X,, — X a.s. and there exists Y € L'(Q,8,P) such that | X,| <Y a.s., then
E[Xn||F] - E[X|TF] as.
(ix) If X € L' (2, 8,P) and ¢ : R — R is a convex function such that p(X) is integrable,
then
(E[X117] ) <E[¢(X)F] as.
In particular, if we choose p(x) = |x|P, p > 1 we deduce that the conditional
expectation defines a linear map

E[ — [|F] : LP(Q,8,P) — LP(Q, T, P)
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that is linear contraction, i.e.,
|E[x 15|, < 1Xlizn.
(x) If G is another sigma-algebra that is independent of o(X) V F, then
E[X[|FVG] =E[X]|F].
In particular, if X € L'(Q,8,P) is independent of G, then
E[X|S]=E[X].
Proof. (i) Follows by choosing F' = Q in (1.4.7). (ii) Follows from the proof of Theorem
1.4.8.

(iii) The linearity follows from the fact that the defining condition (1.4.7) is linear in X. Now
let X € L'(Q,8,P). We have X = X+ — X~. Choose versions Y* of E[ X* | F]. Then
Yi > 0 and
E[X||F]| =Yt -y | <Yt +Y" =E[X*+ X |F] =E[|X]||F].

Hence

|elx 15|, <E[E[IXI1F]] =E[1X]] = IXI|.2.
(iv) Choose a version Z of E[ X || F]. Let Y € L>®(Q,F,P). We have to show that YZ is a
version of E[ XY || F], i.e.,

E[XYIp|=E[ZYIp], VF€eT. (1.4.16)
Let F € F. Since Z is a version of E[ X || F]| we deduce from (1.4.8) that
E[XU]=E[ZU], VU € L™(Q,5,P).

In particular, VF' € F we have

EXYIp | =E[ZU] =E[ZYIF].
——
U
Thus ZY satisfies (1.4.16).
(v) Choose a version Y of E[ X || F], and a version Z of E[Y || §]. We have to show that Z
is also a version of IE[X Il 9]. Let G € G. We have
E[YIp| =E[ZIp],

E[XIo] € E[YIg] =E[ZIp].

(vi) Choose versions Y, of E[ X,, || F] and Y of E[ X || F]. Note that Y, is increasing. The
Monotone Convergence theorem implies that || X — X,,|z1 — 0. From (iii) we deduce

1Yo = Yl < X0 = Yo,
Proposition 1.3.61 implies that Y, admits a subsequence that converges a.s. to Y. Since the
sequence Y,, is increasing we deduce that the whole sequence converges a.s. to Y.
(vii) Set
Y, = inf X,,.
n>k
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The sequence of random variables (Y}) is increasing and converges a.s. to X := liminf X,.
We deduce from (vi) that

E[Y:||F] /E[X||F].
Note that since Yy < X,,, Vn > k, we have
E[Y||F] < Zi := inf E[ X, || 7]
S0
E[X|F] =lmE[Y} || F] < lim Z; = liminf B[ X, || F].
(viii) Set Y, := X, + Y. Then Y,, > 0 and Y¥;, = X + Y a.as. We deduce from (vii) that
E[X|F]+E[Y|TF] <lminfE[ X, |F] +E[Y | T]

i.e.,

E[X[|F] <liminfE[ X, || F].
Similarly, we set Z, =Y — X,,. Then Z,, > 0 and Z,, —» Y — X a.s.. Applying (vii) to Z, we
deduce

limsupE[ X, || F] <E[X | F].

(ix) We need to use a less familiar property of convex functions, [6, Thm.6.3.4]. More
precisely, there exist sequences of real numbers (a,)nen and (by,)nen such that

o(x) = sup(apx + by), Vo €R.
neN

Set £, (x) = anz + b,V Clearly
£n<E[X ||?]) =E[6u(X)|F] <E[o(X) ] F].
Hence
o(E[X (5] ) =suptu(E[X |F] ) = supE[£(X) | 5] < E[o(X) | F].
neN neN
(x) Let G € G and F in F. Then, the random variables I'¢ and X I are independent so
E[XIpng| =E[XIplg) =E[XIp]|P[G].
If Y is a version of E[X | F ], then Y is F-measurable and thus independent of G, so
E[YIpng| =E[YIplg) =E[YIr|P[G]
=E[XIp|P[G| =E[XIpn¢], VFe€TF, GeG§.
Since the collection
{FNG; FeF, Ge§}
is a w-system generating ¥V G, we deduce from Dynkin’s (7 — A) theorem that
E[YIs| =E[XIg], VSeTFVEG,
sothat E[ X |FVG] =Y, ie,E[X|F]=E[X[|FVG]. O

10When ¢ is C! the family £, coincides with the family of tangent lines (£q)4cq, £q(z) = ¢'(¢)(z — @) + ¢(q).



98 1. Foundations

1.4.2. Some applications of conditioning. To give the reader a taste of the power and
uses of conditional expectation we describe some nontrivial and less advertised uses of con-
ditional expectation.

Example 1.4.13. Suppose that a player rolls a die an indefinite amount of times. More for-
mally, we are given a sequence independent random variables (X}, ),en, uniformly distributed
on I :={1,2,...,6}.
For k € N, we say that a k-run of length k occurred at time n if n > k and
Xpn=Xp1="= nfk+1:6'
We set
R=R; = {n; a k-run occurred at time n} C NU{oco}, T =T =inf Ry,
where inf () := oco. Thus T is the moment when the first k-run is observed. We want to show
that E[T'] < oo.

Note that for each n € N the event {T" < n} belongs to the sigma algebra JF,, generated
by Xi,...,X,. The explanation is simple: if we know the results of the first n rolls of the
die we can decide if a k-run was occurred. Consider the conditional probability

PHT <n+k} | Fn] =E[ Tirensry | Fn]-

This conditional probability is a random wvariable. Since the sigma-algebra &, is defined by
the partition

Sil,..-,in = {Xl = ’il, ceey Xn = in}, ij c {1, ceey 6},
we see that P[T' < n+ k| F,] has the form

----------

i1yeein=1
where
Pirrinp =P[T <n+k| X1 =i1,..., X =in].
Note that, irrespective of the i;-s, we have

1
Diy,..inlk = g "

Hence
P[T<n+k|F,]>r, Vn.
In particular,
P[T>n+k|F,]<(1-r)<1, VneN.
Now observe that for any n € N, £ € Ny we have {T' > n+ ¢k € F,, 14 }. Hence

P[T >n+ ((+ k]| =E[Iirsns @i L irsnton |
= E[I{T>n+£k}]E[T >n+ (04 Dk || Fppon ] }

Iterating, we deduce that for any i € {1,...,k} and any ¢ € N we have
P[T>i+tk]<(1-r)P[T>i] <(1-1)"
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Now observe that

E[T] = ZP[T>n]=§:ZP[T>i+ek]<§:Z(1—r)f=f<oo.

nENg 1=1 ¢eNp i=1 €Ny

This proves that E [ T] is finite. In Example 3.1.31 we will use martingale techniques to show

that

6" — 6
Bl =——=—

O

Example 1.4.14 (Optimal stopping with finite horizon). Let us consider the following ab-
stract situation. Suppose we are given N random variables

Xi1,..., XN € L°(Q,8,P).

For n € Iy := {1,2,...,N} we denote by &, the sigma-algebra generated by Xi,...,Xp.
Suppose that we are also given a sequence of rewards

R, € L'(Q,F,,P), nely.

A stopping time is a random variable T": (2,8,P) — I such that {T' < n} € F,, Vn € Iy.
Equivalently, T' is a stopping time if and only if {T' = n} € F,, Vn. Note that if T is a
stopping time, then {T'>n} =Q\{T' <n—1} € F,_1.

One should think of the collection X1,..., Xy as a finite stream of random quantities
flowing in time, one quantity per unit of time. The reward R,, depends only on the observed
values X1,...,X,, i.e, R, = R,(X1,...,X,). A stopping time describes a decision when to
stop the stream based only on the information accumulated up to the decision moment. After
we observe the first quantity X7, we can decide if T = 1. If this not the case, we observe a
second quantity and, using the information about X;, and X, we can decide to stop, i.e., if
T = 2 or not. We continue until we either observe all the random quantities or at the first n
such that T = n.

We set
Rp =Y RuIir_p.
nely
In other words Rp is the reward at the random stopping time 7. We denote by T the
collection of all possible stopping times. Note that
N
E[|Rr|] <> E[|Rn|] <o, VT €T.
n=1
We want to show that there exists T, € T such that
IE[RT*] =r.= SupE[RT]
TeT
Such a T, is called an optimal stopping time. To prove the existence of an optimal time
we establish a Fermat-like optimality condition that the optimal stopping times satisfy. We
follow [32, Chap. 3].
For n € Iy we set
Th ::{TE‘T; TZn}.
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Note that
T=T71D2T2D--DTn.

A stopping time T belongs to T, if and only if the decision to stop comes only ofter we have
observed the first n random variables in the stream, X1,...,X,.

We will detect an optimal stopping strategy using a process of “successive approxima-
tions”. The first approximation is the simplest strategy: pick the reward only at the end,
after we have observed all the NV variables in the stream. In this case the reward is Yy = Ry.
This may not give us the largest expected reward because some of the up-stream rewards
could have been higher. We tweak this strategy a bit to produce a better outcome.

We wait to observe the first N — 1 variables in the stream, and then decide what to do.
At this moment our reward is Ry_1. To decide what to do next we compare this reward
with the expected reward Ry given that we observed X1,..., Xy_1, i.e., with the conditional
expectation E[YN I ?N,l] = IE[RN I H’N,l]. This is an Fy_i-measurable quantity, i.e., a
quantity that is computable from the knowledge of X1,..., Xn_1.

If the reward Ry_1 that what we have in our hands is bigger than we expect to gain
given our current information, we choose it and we stop. If not, we wait one more step
to stop. More formally, we stop after N — 1 steps if Ry_1 > E[RNHST”N_J and we
continue one more step otherwise. The decision is thus based on the random variable
YN—l = max (RN_l,E[YN ” ?N—l] )

This heuristic suggests the following backwards induction.

YN = RN, Yn = maX{R’na E[Yn+1 ||977Lj| }’

To=min{i>n; R;>Y;} =min{i>n; R, =Y }. (1.4.17)
Note that T}, > n and, for any k > n,
{Tw>k}={Ri <E[Yip1|Fk] } € Fp.
Hence T, € T,,. We claim that for any n = 1,..., N we have
Y, > E[Rr|F,], VT € T, (1.4.18a)
E[ Ry, | Fn] = Ya. (1.4.18Db)
Hence
E[Rr, | Fn] > E[Yn] =E[Rr|Fn], VT € Tp.
By taking expectations we deduce
E[ Rz, | = sup E[Rr]. (1.4.19)

IESU

In particular, this shows that the stopping time 77 is optimal.

The optimal stopping strategy 71 has a natural description: stop at the first moment when
the reward at hand is not smaller than the expected future reward, given the information we
have at that moment. The stopping strategy 7T;, is similar, but delayed for n units of times.

We will prove (1.4.18a) and (1.4.18b) by backwards induction on n.
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The inequality (1.4.18a) is clearly true for n = N. Assume it is true for n. Let T' € T,,_1
and set 7" = max{T,n}. Then T" € T,,. For A € F,,_1 we have

/ Ry = / R, +/ Ry
A AN{T=n—-1} AN{T>n}

:/ Rn—1+/ E[RT’ ||\’-:Fn—1]
AN{T=n—-1} AN{T>n}

=/ Rn1+/ E[E[ R || 5] || 50 |
AN{T=n-1} AN{T>n}

(use the induction assumption E[ Ry || F, | < Y;,)

{T'>n} e Fp1)

</ Roy + E[Ya | Fot] < [ Yoo
AN{T=n-1} —~— JAn{T>n} —— > Ja
SYnfl <Yn,-1

This proves the inequality (1.4.18a).

To prove the equality (1.4.18b), we run the above argument with 7' = T,,_;. Observe
that in this case

un = {T =n— 1} = {Rn—l Z E[Yn H EFn—l]} = {Yn—l = Rn—l}y (1420&)
Vn = {Tn—l >n— 1} = {Rn—l < E[Yn || \"Jtn_l]}

(1.4.20b)
— (Yoo =E[Y,[|Fan ]}
We have T,,_1 =n—1on U, and T;,,_1 = T,, on V,, so that
/ Ry, , = / Rp—1 +/ Rr,
A ANy, ANV,
(Vn S \rfn_1)
:/ Ry +/ E[E[ Rz, | 50] 1 Foct |
ANUs, ANVy,
(Yo =E[ Ry, || &, ] by induction)
ANy, ANV,
(use (1.4.20a) and (1.4.20b))
= / max { Rp—1, B[V, | Fno1] } = / Vo1
A A
g

Remark 1.4.15. The procedure for determining the optimal time T} outlined in the above
example is a bit counterintuitive. The maximal expected reward is E[Yl ] By construction,
the random variable Y7 is Fj-measurable, by construction, and thus has the form f(X;) for
some Borel measurable function f : R — R. Thus we can determine Y; knowing only the
initial input X;. On the other hand the definition of Y7 by descending induction used the
knowledge of the entire stream X1, ..., X, not just the initial input X;.

What it is true is that we can compute the maximal expected reward without running
the stream. On the other hand, the moment we stop, and the actual reward when we stop are
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random quantities. It is conceivable that if we do not stop when Tj tells us to stop we could
get a higher reward later on. However, on average, we cannot beat the stopping strategy 77.

We will illustrate this process on the classical secretary problem. a

Example 1.4.16 (The secretary problem). Suppose we have a box with N prizes with values
v1 < -+ < vy. Bob would like to pick the most valuable item but he does not know the
actual values v,. He is allowed to sample them successively without replacement. At the
Jj-th draw he is told the value V; of the j-th prize. He can either accept the j-th prize or he
can decline it and ask to sample another one. A prize once declined cannot be accepted later
on. We are interested in a strategy that maximizes the probability that Bob picks the most
valuable prize.!!

Consider the relative rankings
X =#{j<n; V;2Vo}. (1.4.21)

Thus, X,, counts how may gifts unveiled up to the moment n are at least as valuable as
the n-gift revealed. In particular, if X,, = 1, then V,, is the largest of the observed values
| T VA

We might be tempted to set the reward R, = Iy,
We can fix this issue by setting

—un}s but this is not F,,-measurable.

Ry = E[I{Vn:UN} | X"]

Observe that for any stopping time 71" we have

N N
BlRe] =3 [ Re=3 [ Ty
n=1 =n n=1 =n

N
=> P[Va=Vy,T=n]=P[Vr=uy].
n=1
We want to find a stopping time 7' that maximizes IE[RT], i.e., the probability that Bob
pick the biggest prize. Let us make a few remarks.

1. Observe that rankings (X, )nen defined in (1.4.21) are independent and
1
P[X,=j]=—, V1<j<n<N. (1.4.22)
n

Indeed, the random vector (V1, ..., Vy) can be identified with a random permutation ¢ € Sy
of In
(Viy oo V) = (Ug(1)s - - -5 V()
The rank X, is then a function of ¢
Xo(e) i=#{j <n; ¢(j) = ¢(n)}.
To reach the desired conclusion observe that the map

X:6y =i xLx-xIy, ¢ (Xi(),....Xn(¢))

HThink of N secretaries interviewing for a single job and the values vy, ..., vn rank their job suitability, the higher
the value the more suitable. The interviewer learns the value vy only at the time of the interview.
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is a bijection.!?

2. We have
n mn
R, = NI{anl} = Nf{vn:v,v}-

Indeed, the conditional expectation R,, = E[I {(Va=on} I Xn] is a function of z,, € II,, and we
have

Ru(zn) = E[ Iy, —op}| Xn =20 | =P[ Vi =on | Xy = 2]
This probability is zero if X,, > 1. Now observe that
PV, =uvn] (N —1)! n

Pl = oy X = = S =] = ey W

n

Following (1.4.17) and (1.4.18a) we set y, = E[Y,]. The quantity y, is the probability of
Bob obtaining the largest prize among the strategies that discard the first (n — 1) selected

prizes. We have

1
Yy =Ry =Tyy=on} UN = -
Since {Vy = vy} = {Xn = 1} is independent of Fy_; we deduce

4.22) 1
E[Tvymony 1F3-1] = E[ Tz ] 57 < = o,

Yn_1 = maX{RN—h E[I{vy=ony | Fn-1] }

N -1 1
= max {RN—la YN } = TI{XN—lzl} + NI{XN—1>1}’

1,2

Similarly
E[Yno1||Fn-2] =E[Yn_1] =yn—1

Yn_2 = max { RN_2,yn—1}

=max{(N —2)/N,yn—1} {xy_,=1} T yn-11{xy_,>1}5

1.4.22 1 N-3
P s { (N = 2) /N, g1} g + v

Yn-2
Iterating we deduce
Y, = max { Rn, yYns1 } = max{n/N,yns1 - x, =13 + ynt1{x, 513,

1 n-1
Yn = max{n/N, yn-‘rl}ﬁ + T@/nﬂ-
While it is difficult to find an explicit formula for y,, the above equalities can be easily
implemented on a computer. The optimal probability is py = y1. Here is a less than optimal

but simple R code that computes y; given N.

12From the equality ¢~ 1(N) = max{j, X;(¢) = 1} we deduce inductively that X is injective. It is also surjective
since &y and ngl I, have the same cardinality.
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optimal<-function(N){
p<-1/N
m<-N-1
for (i in 1:m){
p<—max ((N-i)/N,p)/(N-i)+((N-i-1)/(N-1i) ) *p
}

p
}

Here are some results. Below, py denotes the optimal probability of choosing the largest
among N prizes.

N | 3 4 5 6 8 100 200
pn || 0.5 ] 0.458 | 0.433 | 0.4277 | 0.4098 | 0.3710 | 0.3694

Note that yn11 < y, with equality when y,11 > 5. We deduce that
Yn+1 = %éynﬂzyn:'“:?ﬂ-
We set
N, :=max{n; y, > (n—1)/N }.
SO YN, +1 < YN, = YN,—1 = -+ - = y1. The optimal strategy is given by the stopping time T}, :
reject the first IV, — 1 selected gifts and then pick the first gift that is more valuable than
any of the preceding ones.

N ||3]4|8|10|50 100 | 1000
N335 95120 39 | 370

For example, for N = 10 we have

n| 1 2 3 4 6 7] 8 1 9 ]10
y, || 0.398 ] 0.398 ] 0.398 | 0.398 | 0.398 [ 0.372 ] 0.32 [ 0.26 | 0.18 | 0.1

In this case N, = 5 and the optimal strategy corresponds to the stopping time 7T5: reject the
first four gifts and then accept the first gift more valuable then any of the previously chosen.
In this case the probability of choosing the most valuable gifts is p1p ~ 0.398.
Let us sketch what happens as N — oo. Consider the sequence zV := (Zn)1<n<N+1
defined by backwards induction
n—1

1
N1 =0, zp = zn+1—|—N, 1<n<N.

One can show by backwards induction that z, < y,, Yn < N and z, = y,, Vn > N,.
Denote by fn : [0,1] — R the continuous function [0, 1] — R that is linear on each on the
intervals [(i — 1)/N,i/N] and such that
fN(l/N) = ZN+1—1; 1= 0, 1, ce ,N.

Note that
1

1
N N_ iZN—H-l

= % (1—1_11,/NfN(2‘/N)>.

In((i+1)/N) = f(i/N) = z2v_i — 2N—i41 =
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We recognize here the Euler scheme for the initial value problem

1
17—tf’ f0)=0 (1.4.23)

corresponding to the subdivision i/N of [0, 1].

f=1-

The unique solution of this equation is f(t) = —(1 — t)log(1 —¢) and fy(t) converge to
f(t) uniformly on the compacts of [0,1). In fact, (see [28, Sec. 212]) for every T' € (0,1),
there exists C' = Cr > 0 such that

Cr
sup ’fN(t) - f(t)‘ < N
te[0,7
Set gn(t) = fn(1 —t); see Figure 1.6.
@ ]
= © -
o
S T T T T T |
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.6. The graph of gioo.

Note that z, = 2’ = gn((n—1)/N),n=1,..., N+1. We deduce that if n/N — 7 € (0, 1]
as N — oo we have

2N g(r) = —7logT, %zn — —log .
From the equality
N(zp — zny1) =1— %Zn+1, Vi<n<N
we deduce that

lim N(Zn—zn+1) = 1—|—]0g7-:

N/n—t >0, 7<1/e.

{< 0, 7>1/e,

This implies that as N — oo we have

N, 1 1
_— — - & 0.368, YN, = ZN, —7 —
N e e

as N — oo. For details we refer to [32, Sec.3.3] or [75].

As explained in [75] a (nearly) optimal strategy is as follows. Denote by m the largest
integer satisfying
N-1/2 1 N-1/2 3
— s <m<s— 4L
e 2 e 2
Reject the first m prizes and accept the next prize more valuable than any of the preceding

ones. |
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1.4.3. Conditional independence. Suppose that (£2,8,P) is a probability space.

Definition 1.4.17. Fix a sigma-subalgebra G of 8. The family (F;);cr of sigma-subalgebras
of 8 is said to be conditionally independent given G if, for any finite subset J C I and any
events F; € ¥, j € J, we have

E[ 115 Hg} - HE[IF], ||9} a.s..

jeJ jeJ

Given sigma algebras J,G,H C 8§ we use the notation F L gH to indicated that I is
independent of H given §. O

The next proposition generalizes the result in Exercise 1.10.

Proposition 1.4.18 (Doob-Markov). Given sigma algebras Fy,Fo,C 8 the following are
equivalent.

(i) E[ X4 |F-VFo| =E[ X, | Fo] as.., VX4 € LY(Q,Fy,P).
(ii) Ty L g, F_.

Proof. The condition (i) is equivalent to
E[XX,]= E[XE[L 150] ] VX € LO(Q, Fo Vv T_, P). (1.4.24)

The condition (ii) equivalent to

E[ X X_||Fo] =E[ X4+ [|Fo|E[X_|Fo], VX4 € L®(Q, T, P).
Note that since IE[X+ I &"0] is an Jp-measurable random variable we have

E[ X, |F0]E[X_ | Fo] =E| X E[Xy || Fo] || %o .
Thus, (ii) is equivalent to
E[X: X ||Fo] = E[ X-E[ X, | 5] | Fo ],
i.e., for any nonnegative, bounded, Fp-measurable random variable Xy we have
E[XoX-X1] =E[ XoX-E[ Xy || Fo] |-

Since Fy V F_ coincides with the sigma-algebra generated collection of random variables
XoX_, Xo € L*(Q,Fy,P), X_ € L™(Q,F_,P) we deduce that the last equality is equivalent
to (1.4.24), i.e., (i) is equivalent to (ii). O

Remark 1.4.19. You should think of a system evolving in time. Then Fy collects the present
information about the system, F_ collects the past information and F collects the future
information. Roughly speaking, the above proposition shows that the information about an
event given the present and the past coincides with the information given the present if and
only if the future is independent of the past given the present. a
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1.4.4. Kernels and regular conditional distributions. Suppose that (9, F) and (21, 81)
are two measurable spaces.'® A kernel from (99, J0) to (Q1,81) is a function

K :Qpx8 —[0,00], (wo,S1)+— Kw[Sl]
with the following properties.
(K1) For each wp € Qp, the map
81581 = Kuy[S1] €0, 00]
is a measure. We will denote this measure by K, [dwl ]
(K2) For each S; € 81 the function
Qo 3 wo = Kuy [ S1] €10, 0]
is Fp-measurable. We will denote this random variable by K [ Sl}

The kernel K is called a probability kernel or a Markovian kernel if Kwo[ — ] is a
probability measure on (£21,81), for any wy € Q.

We will use the notation K : (Q0,F0) ~> (©1,81) to indicate that K is a kernel from
(QQ, 3'0) to (Ql, 81)

The condition (Kj) above shows that a kernel is a family (K.,[—])w,e0, of measures on
(Q1,81) parametrized by Q. Condition (K2) is a measurability condition on this family. For
this reason kernels are also know as random measures.

Example 1.4.20. Consider the Bernoulli measure
Bp := qdp + pd1 € Prob(R), pe€[0,1], ¢g=1—p.

To obtain a random measure we let p be a random quantity. More precisely, if f : (£2,8) — [0, 1]
is a measurable function, then

Brw) = (1 — f(w) )50 + f(w)d
defines a Markov kernel K : (£2,8) ~ (R, Br),
K,[B]=(1-f(w))d[B]+ f(w)ér[B]. O

Given a measure p on the measurable space (2, F) and a nonnegative measurable function

f e Ly F) we set
) i=ulF] = [ finlde] € 0.00]
Q

Theorem 1.4.21. Suppose that K : (0, Fp) ~» (22, 81).
(i) For any f € £9(Q1,81) we define its pullback by K to be the function

K*f 1 Qp — [0, OO}7 K*f(wo) = o f(wl)Kwo [dwl]
Then K* f € £9.(Q0, Fo).

131 the story of kernels, the sigma-algebras Fy, 8; play rather different roles and, for this reason, we chose to
indicate them using visually distinctive notation.
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(ii) For any measure p : Fy — [0, 00] we define its push-forward by K to be the function
K, : 81 — [0,00] defined by

K[ Fy ] ::/Q Koo [ S1]p[dwo] €[0,00], S1 € 81 (1.4.25)

Then K.p is a measure on (21,81).

(iii) The pullback and push-forward by K are adjoints of each other. More precisely, for
any measure (1 on (o, Fo) and any measurable function f € £°(Q1,81) we have

(1 K f) = (K, f). (1.4.26)

Proof. (i) For any S € 8; we have K*Ig(wg) = KwO[S] so K*Is € £°%(Qq,Fp). Clearly
the correspondence f — K*f is monotone and the conclusion follows from the fact that
a nonnegative function is measurable iff it is the limit of an increasing sequence of simple
functions.

The statement (ii) follows from the Monotone Convergence theorem and (Kj). For part
(iii), fix the measure pu. Observe that for S € 8§; we have

(1, K°Ts) = | K*Is(wo)p[duo] = /Q 0 < /Q () K [ ] ) ] duoo

Qo

:/ Koo [ S]p[dwo]| = Kip[S] = (K, Is).

Qo
Thus (1.4.26) holds for f = Ig, S € 8;. The general case follows by invoking the Monotone
Class Theorem. O

When K is a Markovian kernel and p is a probability measure, then the pushforward
K, is also a probability measure. For any S7 € §; the measure K, pu [ Sl] is the expectation
of the random variable wy — K, [Sl] with respect to p. The measure K, pu is said to be a
mizture of the random measure wg — Ky, [ — ] driven by pu.

Example 1.4.22. (a) Suppose that (29, Fo), (21, F1) are two measurable spaces and
T: (Qg,?o) — (Ql,?l)
is a measurable map. Then T defines a kernel K7 : (Q9, o) ~ (21, F1)
Koo [F1] = dry [F1],
where 4, denotes the Dirac measure on (€21, ) concentrated at w;; see Example 1.2.6(a).

Observe that for any measure p on Fy and any f € Lg(Ql, F1) we have
Klp=Typ, (K')'f=Tf:=foT.
Thus, (1.4.26) contains as a special case the change in variables formula (1.2.21).

(b) Any measurable function f : (£2,8) —— [0, 1] defines as in Example 1.4.20 the random

Bernoulli measure
Ky[ =] = (1= f(w))do+ f(w)hn
Given a probability measure p on (£2,8) we have

Kgu=Ber(f)= (1~ f)do+ fo, f=E.[f].



1.4. Conditional expectation 109

(c) Suppose that 2" is a finite or countable set. A kernel (27,27 ) ~ (27,27 ) is defined by
a function (matrix) K : 2" x 2" — [0, 00|, via the equality

=> K(x,s), Vee X, SCZ.

ses

The kernel is Markovian if

Z K(z,2)=1, Vx € 2.

e
(d) Suppose that f: R? — [0,00) is an integrable function such that

/ f(z,y)dy =1, Vax € R.
It defines a Markovian kernel K : (R, Bg) ~~ (R, Br)

/fxydy,

Vz € R and any Borel subset B C R. The measurability of the map = — Kx[B] follows
from Fubini’s theorem. We can rewrite this as K, [dy] = f(z,y)dy.

(e) Suppose that v is a finite Borel measure on R. It defines a kernel
K, : (R,Bgr) ~ (R,Bgr), K,y|[B]=v[B-y].

In Exercise 1.60 we ask the reader to prove that the map y — K, , [B} is measurable for any
Bores set B C R. Then, for any finite Borel measure p on R we have (K,).pu = u* v. O

Suppose that (€2, 8,P) is a probability space and F C § is a sigma subalgebra. For every
event S € 8§ the random wvariable
P[S|F] :=E[Is]|TF]
is called the conditional probability of S given F. The random variable P[5 || F] is unique
up to equality off a negligible set.

Note that for any increasing family (S),),>1 C 8 there exists a negligible set N C Q such
that
HmP[S, | F](w) =P[ lim S, | F](w), Yw e Q\N.

A priori, the negligible set N depends on the family (S;),>1, and there might not exist one
neglible set that works for all such increasing families. When such a thing is possible we
say that the conditional probability IP’[ — | F ] admits a reqular version. Here is the precise
definition.

Definition 1.4.23. Let (2,8,P) be a probability space and F C 8 a sigma-subalgebra. A
reqular version of P| — || F] is a kernel Q : (Q,F) ~ (,8) such that, for any S € 8, the
random variable Q2 5 w — Q[ S ] is a version of P[S||F]. In other words,

e the map w +— QW[S} is F-measurable and
e for any S € §, F € F we have

P[SNF] = /FQw[s]p[dw].



110 1. Foundations

Proposition 1.4.24. IfQ : (2, F) ~ (Q,8) is a reqular version ofIP’[— I ff“], then VX € LY(Q,8,P),

E[X|F] =Q"X,
1.€.,

E[X||F], /X )Quldn] = Q" X (w) as.. (1.4.27)

Proof. Note that (1.4.27) holds in the special case X = I'g because
QIs(w) = Qu[S] =P[5 F](w) =E[Ls ] F](w).

The general case follows from the Monotone Class theorem. O

The equality (1.4.27) can be written in the less precise, but more intuitive way

E[ X ||F] / X(n)P[dn||F]. (1.4.28)

More generally, consider a measurable ‘map T: (Q,g) — (Q,8). Let P be a probability
measure on (Q S) and suppose that FCSisa sigma subalgebra. For every S € § we set
Pr[S||F] =P[TeS|T] =Ex[T*Is|F] =Ez[Ir-1(5 | T ). (1.4.29)
We will refer to IPT[ — |l 5"] as the conditional distribution of T' given F. Observe that when
(2,8)=(Q,8), P=P and T = 1q,
then B B
Pio[ = IIF] =P[ - | F].
Note that for any increasing family (S, )n>1 C 8§ we have

nIEEOPT[S“ ||§'“] :]P’T[ linLnSan}] a.s..

We say that IPT[ — g] admits a regular version if we can choose representatives for each

Pr[F| g], F € F so that the above equality holds for any increasing sequence (S,,). Here is
a more precise definition.

Definition 1.4.25. Let ((~2 S I?PJ’) be a probability space and T : (§~2 g) — (€, 8) be a mea-

surable map. Fix a sigma-subalgebra FcC8. A regular version of the conditional probability
distribution Pr[ — || F | of the map T conditioned on F is a kernel Q : (Q F ) ~ (€,8) such

that, for any S € §, the random variable QD[ ] is a version of IP’T[S | F ] In other words,
e the random variable Qo[ S] (on Q) is F-measurable and
° foranyFG?,SESwehave
B[FNT\(5)] = / Qa[ SB[ d5]. (1.4.30)
) O
A conditional probability distribution need not admit a regular version. For that to

happen we have to impose conditions on 8, the sigma algebra in the target space. This
requires a brief topological digression.
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Definition 1.4.26. A Lusin space is a topological space homeomorphic to a Borel subset of
a compact metric space. O

Remark 1.4.27. (a) The above is not the usual definition of a Lusin space but it has the
advantage that emphasizes the compactness feature we need in the proof of Kolmogorov’s
existence theorem.

There are plenty of Lusin spaces. In fact, a topological space that is not Lusin is rather
unusual. We refer to [17, 39, 44| for a more in depth presentation of these spaces and their
applications in measure theory and probability. To give the reader a taste of the fauna of
Lusin spaces we list a few examples.

The Euclidean spaces R™ are Lusin spaces.

A Borel subset of a Lusin space is also Lusin space.

The Cartesian product of two Lusin spaces is a Lusin space.

A less obvious example is that of Polish spaces, i.e., complete separable metric
spaces. More precisely every Polish space is homeomorphic to a countable intersec-
tion of open subsets of [0, 1]"; see [20], Chap, IX, Sec.6.1, Corollary 1.

A Hausdorff space is Lusin iff it is the image of a continuous bijection from a Polish
space.

A Hausdorff space is Lusin if and only if it is homeomorphic to a Borel subset of a
Polish space.

(b) From a measure theoretic point of view the Lusin spaces are indistinguishable from the
Polish spaces. More precisely, for any Lusin space X, there exists a Polish space Y and a
Borel measurable bijection ® : X — Y such that the inverse is also Borel measurable; see
[39, Prop. 8.6.13].

The Polish spaces have another important property. More precisely, a Polish space
equipped with the o-algebra of Borel subsets is isomorphic as a measurable space to a Borel
subset E of [0, 1] equipped with the o-algebra of Borel subsets. For a proof we refer to [138,
Sec.1.2]. Moreover, any two Borel subsets of R are measurably isomorphic if and only if they
have the same cardinality, [138, Ch.I, Thm.2.12].

On the other hand, it is known that the continuum hypothesis holds for the Borel subsets
of a Polish space; see [44, Appendix I11.80] or [104, XII.6]. In particular, any Borel subset of
R is either finite, countable or has the continuum cardinality. We deduce from this a theorem
of Kuratwoski that a Lusin space is isomorphic as a measurable space with either a finite set,
N, or [0, 1] equipped with their natural Borel sigma-algebra. Hence any Lusin space is Borel
isomorphic to a compact metric space! O

We have the following general existence result.

Theorem 1.4.28 (Existence of regular conditional probabilities). Suppose that
e (,8,P) is a probability space,
e Y is a Lusin space and

o By is the sigma-algebra of Borel subsets of Y.
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Then, for every measurable map Y : (©,8) — (Y, By), and every o-subalgebra F C 8 there ex-
ists a reqular version @Q : (,F) ~ (Y, By), (v, B) — QW[B], of the conditional distribution
Py [ — || F]. This means that

Qu[B] =P[Y € B||F] as., VB C By.

Moreover, for any measurable function f: (Y, By) — R, we have

E[foY|F](w /fy [dy], Ywe Q. (1.4.31)

Ideea of proof. For a complete proof we refer to [37, Th. IV2.10], [44, II1.71], [45, IX.11]
r [148, I1.89].

We can assume that Y is a compact metric space. Fix a dense countable subset U C C(Y")
such that 1 € U and U is a vector space over Q. We can find representatives ®(u) of
E[w(Y) | F] such that the map

U ur—r ®(u) € L' (Q,TF,P)

is Q-linear, ®(1) =1 and ®(u) > 0 if u > 0. For every nonnegativef € C(U) we set
O*(f) :==sup{ ®(u); uel, 0<u<f}.
One can show that
®*(f) :==inf { P(u); uel, u>f}.

For arbitrary f € C(Y) we set

*(f) = @ (f7) = @*(f).
One can show that the resulting map

C(Y)> f— @*(f) € £1(Q,F,P)

is R-linear, ®*(1) = 1 and ®*(f) > 0 if f > 0. The Riesz Representation Theorem 1.2.64
implies that for ay w € € there exists a probability measure y,, : By — [0, 1] such that

=/ FWpo | dy .
Y

One then shows that for any B € By the map Q 3 w — [ B] € [0,1] is F-measurable and
thus it is a regular version of the conditional distribution of Y given JF. O

In the special case case when JF is the o-algebra generated by a measurable map X : Q — 27,
2" some measurable space, we use the notation

Py [dy || X ] =Py [dy|o(X)]

to denote a regular version for the conditional distribution of Y given X. This is a random
Borel measure on Y.

Example 1.4.29. Consider the special case of Theorem 1.4.28 where Y = Rand Y € L!(Q, §,P).
For any sigma subalgebra & C § there exists a kernel @ : (Q2,F) ~ (R, Bg) such that

PY <y 5] =Qno[(~c0.y]].

Moreover
E[Y|TF] :/yQD[dy], P — a.s. on €.
R
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O

Example 1.4.30. Suppose that X, Yy, X1,Y; are random variables and T : R? — R¥ is a
Borel measurable map. Denote by P? the joint probability distribution of (Xo, Yp). Suppose
that the joint distribution of (X1, Y1) has the form

Pl[da:dy] = g(T(x,y))]P’O[dxdy]
for some nonnegative measurable function g : R¥ — [0, 00).

We denote by P*[ — || T'] the regular conditional probability P*[ — ||o(T)]. In other
words, for any bounded nonnegative measurable function f : R¥ — [0, 00) and any Borel set
B CR? we have P'[ B||T| € L9 (R?,o(T))) and

/ IBf(m,y))pi[dmy]:/ P[B|T]f(T(x.y) )P [dzdy], i=0,1.
R2 RQ
Note that

/RQ Ipf(T(x,y) )P [dady] = /]R Ipf(T(w,y))g(T(.y) )P° [ dudy]

:/R2]p>0[3HT}f(T(x,y))g(T(m,y))PO[dﬂfdy]

:/RQIP’O[B\T]f(T(x,y))IP’l[dxdy].
Hence

P'[B|T]=P°[A|T], VB € Bge.
Suppose that the distribution P is known and would like to get information about the
distribution of (X7, Y1) by investigating T'(Xo, Yy). The above equality shows that knowledge

of T adds nothing to our understanding of the density g( T(z,y) ) beyond what we know from
(X0, Yp)- 0

1.4.5. Disintegration of measures. Suppose that (€;,8;), ¢ = 0,1 are two measurable
spaces and K : (Qp,80) ~ (21,81) is a kernel from (£,8¢) to (©21,81). Then any measure
o on (o, po) defines a measure p = jig ,, on (£2,8) := (o x Q21,80 ® 81) via the equality

plS] = /Qo (/91 IS(WO>W1)Kwo[dW1]> pio[ dewo ] (1.4.32)

We say that a measure p on (Qg x Q1,80 ® 81) is disintegrated by po or that pg disintegrates
p if g1 is of the form g ,, defined above. In this case K is called a disintegration kernel,
and we say that K disintegrates u with respect to pg. Often we will use the notation

u[dwodwl] = g [dwo]KwO [dwl] (1.4.33)

Observe that if K is a Markovian kernel and pg is a probability measure, then ug ,, is a
probability measure. In this case, for emphasis, we use the notation Pg ,,

Example 1.4.31. For any probability measures p; on (£2;,8;), i« = 0, 1, the product measure
© = po ® py is disintegrated by pg since

p="Pr Kwo[_]zﬂl[_]~
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Example 1.4.32. Consider a measure v on (o x 21,89 ® 81), a measure p on (0,8p).
Suppose that f : (€,80) — [0,00) is a nonnegative measurable function. Denote by ps the

measure uf[dwo] = f(wo),u[dwo].
If v is disintegrated by j; then it is also disintegrated by . Indeed if K is the disinte-
gration kernel of v with respect to s, K = K, [dwd so that

V[dwodwl} = uf[dwo]Kwo[dwl} = u[dwg]f(wo)Kwo[dwl].

Hence, the kernel Kf given by Kﬁjo [dwl] = f(wo)Ku, [dwl] disintegrates v with respect to
. O

Consider two measurable spaces (£2;,8;), i = 0,1. We have natural projections
T . Q- Qi, Wi(wo,wl) = W, 7= 0, 1,
and we set go = 770_1(80) C8:=8)® 8.

Suppose that the probability measure p on (£2,8) := (Qp x Q1,80 ® 8;) is disintegrated
by po := (mo)#pt, i-e., b = i, uo- We can rewrite (1.4.33) as

u[dwodwl] = (wo)#u[dwo]KwO [dwl]. (1.4.34)
Note that if p1q := (m1)xpu, then, for any Sy € 81, we have

pi[S1] = p[Q0 x 1] :/s Koo [ S1 ] o[ dwo ]

In other words, 1y = Kipo. Thus, pp is a mixture of the measures (Kwo [ — ] )wo € driven
by pip.
Observe next that for any 5’0 =5y x 1 € 8, and any 57 € 81, we have

(500 80] = u 8o 53] L [ [ o[ o]
0

This shows that the the map

K:QX51—>[0,1], ((wo,wl),Sl)%K( Sl]ZKwO[Sl]

wo,w1) [

a regular version of the conditional distribution of the measurable map m; conditioned on go;
see (1.4.30).

Conversely, any regular version of the conditional distribution P, [ — || go] of m given
8o. produces a disintegration kernel of the measure u. Indeed, if Q(wo,m)[ — ] is such a

regular distribution, then its go-measurability implies that for any S; € 81 the function
(w07 wl) = Q(wo,wl) [Sl ]
is independent'* of w;. Then

i Sox Si] = p[n7'(S1)NSo] (1230

Quio [ 51 1| dwodewr |
So X1

= /. Quo [ S1]p0[dwo ], o = (m0)4p1.

Tdgor any 50 S go, the indicator ISO (wo,w1) is independent of w; and thus any go—elementary function is inde-

pendent of wj.
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Thus p is disintegrated by uo and @ is the disintegration kernel. Theorem 1.4.28 implies the
next result.

Corollary 1.4.33. If (1, 81) is isomorphic as a measurable space with a Lusin space equipped
with the Borel sigma algebra then, for any measurable space (Qo, So), any probability measure
by P on (2 x Q1,80 ® 81) is disintegrated by its marginal Py := (mo) P, O

Example 1.4.34. Consider a random 2-dimensional vector (X,Y") with joint distribution

Pxy € Prob(R?).

According to Corollary 1.4.33, the distribution Px of X disintegrates the joint distribution
Pxy. Suppose that Kx[dy] is a disintegration kernel of Px y, i.e.,

]P’X’y[da:dy] :Kx[dy]IF’X[dx].

Let f : R — R be a measurable function such that f(Y) € L'. Then E[ f(Y) || X | is well
defined and has the form E[ f(Y) || X | = h(X), for some measurable function h. Traditionally
h(z) is denoted by E[ f(Y)| X = z].

We can give a more explicit description of E[ f (Y)| X = :U] using the disintegration
kernel. More precisely, we will show that

B[/ 2] = | f)K.[dy] = (o). (1.4.35)

A Monotone Class argument shows that the g(x) is Borel measurable. For any zp € R we
have

E[f(N xsen] = | SO (ooan)@Px.y [ dady]

:/R(/Rf(y)Km[dy])I(_oo,wo](:c)PX[d:v] :/Rg(l')I(—oo,:vo](x)PX[dx]

= E[Q(X)I{ngo}]'

Since the sets {X < ¢} form a 7-system that generate o(X) we deduce that
E[f(V)Is] =E[g(X)Ig], VS € o(X).

Thus

9(X)=E[f(Y)| X].
We write this as

BL)|1X] = [ fwkx[dy].
R
Hence the conditional expectations E[ f(Y) || X | are determined by the kernel K that disin-
tegrates the joint probability distribution Px y .
In particular, if B C R is a Borel set, and f = Ip we have the law of total probability

P[Y € B] =E[Ip(Y)] _/RIE[IB(Y)‘X_x]IP’X[dx],

where
E[Ip(Y)|X =2] =P[Y € B| X =z :/BKm[dy].
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This proves that the disintegration kernel Km[dy] is a regular conditional distribution of Y
given X, i.e.,
P[X € [z,2+dz],Y € [y,y +dy] ]

Kx[dy] :]P[Y c [y,y—i—dy]‘X € [x,:c—i—dm]]“:” IP[X €[z x+d1:]]

For this reason Kx[dy] is called the conditional distribution of Y given that X = z and it
is sometimes denoted by Py|x_, [dy] Hence we can rewrite (1.4.35) as

E[fV)X =z]= /Rf(y)anx[dy]- (1.4.36)

Observe that if Py y is absolutely continuous with respect to the Lebesgue measure on R?
so that

Pxy[dzdy| = p(z,y)dzdy,

then (.9)
p\z,y
Y|X7x[ y] o (@) Y, po(x) /Rp(ﬂ%y) Y,
where we set (()”E’f)) =0 if po(z) = 0. Then

O

Example 1.4.35. Suppose that Xi,..., X, are independent and uniformly distributed in
the interval [0, L]. Set

Xn) = 11;1]2;”)(;“ Xy = 1I§I}€1£InXk

Note that

P[Xpy <o) =P[Xp <o, Vh=1,...,n] = (7).,

so that the probability distribution of X, is

n—1

P, [dz] = R%I[O,L] (x)dz.

Similarly,

L—x)\"
P[X(1)>x]:IP>[Xk>x, Vk:l,...,n]:<( )> ’
so the probability distribution of Xy is

L—g) 1
n(L”) I, (z)d.
—_————

=:p1(x)

Pl[dm] =

Let us compute the conditional distribution P Xm | Xy =1 [dazn ] We begin by computing the
random variables.
Observe first that V0 < z1, 2, < L,

(zn —21)}

E[IX(n)SﬂCnIX(:l)ZIl] :P[.’L'ngl,XnSl'n] = In
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We need to find a function f(:rl) = fzn(acl ) such that

(zn —21)}

E[f(X(l))IX(l)Zﬂfl] = In

) Vl’l,

i.e.,
(xn —21)

/ f(@)pr(z)de = I Vay.
[‘Tl’L]

Derivating with respect to x; we deduce

(zn — wl)i_l

fla)pi(z) = n——77
Hence 1
(wn —2) " (y—m)}
P{ X < y| Xq)y=21] = - '
[ X <yl Xy =a]=n Lmpy(21) (L —ay)nt

Thus, the conditional distribution of X, given that Xy =z is

(n— 1)(xn - 1:1)71—2

_ +
]P)X(n)|X(1):~T1 [dfﬁn] = (L — le)n_l dl’n

We define the empirical gap or sample range to be the random variable G = X,y — X(q).

To find the distribution of G' we condition on X(;) and we have

P[G <y] :/[ ]P[X(n) <m ~I—g\X(1) =$1]PX(1)[d961]
0,L

- /[OL] P[X(n) < X1y + 9| Xy = 21 ] p1(21)dar.

Now observe that

P[X(ny < Xy +9| Xy = 21] =/ , P | X1y =21 [ 420 ]
[0,min(L,z1+g)]

n—2

:/ (n_l)(xn_x1)+ d
[0,min(L,z1+g)] (L - xl)n
gn—l
= Tzt tor-a @)+ I (@1).
Thus
n—1 L—g n—1 n
g ng" (L—g) g
PlG<g|= / dacl—i—/ p1(x1)dr; = ——— + =—.
(G =9l =75 ), ) et
We deduce
d nn—1)g" 2 n*¢"" ng"' _ n(n—1)g""? g
—PG<g|= _ _ (1 _ 7) _
dg [G S g} -1 + In In T 7
Thus, the probability distribution of G is
n(n —1)g"2 g
Pgldg] = <Ln_)1 (1 - Z) Ipo,)(9) dg.

If L =1, then the above distribution is the Beta distribution Beta(n — 1,2).



118 1. Foundations

Example 1.4.36. Suppose that f : [0,1] — R is a C'-function whose graph has length L,
i.e.,

1
L:/ I+ (@)d.
0
Define a random measure K : ([0, 1],3) ~ (R,B), Ky = 0fz)-
Let
/ 2
VIHIOR. Nar] € Prob ([0.1).

Then the Borel probability measure Pg ,,, on [0,1] x R corresponds to the integration with
respect to the normalized arclength along the graph of f. a

po|de | =

Example 1.4.37. Suppose that X1, ..., X,, are independent random variables with common
distribution p(z)A[dz ]. Denote by X the random vector (X1,...,X,). Let f : R* - Rbe a
Borel measurable function. Denote by P the distribution of the random vector (X , f(X) )
This is disintegrated by the distribution g := Px of the random vector X . The disintegration
kernel K is the conditional distribution of f(X) given X. We deduce that

Kx1,...,xn[ - ] = 6f(m1,...,a:n)'
If By is a Borel subset of R™ and Bj is a Borel subset of R, then

P[BoxBl] :/B IBl(f(xl,...,xn))p(xl)---p(xn)dxl---d:nn.

Using a notation dear to theoretical physicists we can rewrite the above equality as

P[dwl---dacndy] = ((5(y — flx1, ... ) )p(wl)---p(xn))dy)d:vl---dxn,

where 6(z) denotes the Dirac “function” on the real axis. O

Remark 1.4.38. We refer to [29] for a very enlightening presentation of a more general
concept of disintegration and some of its application to statistics. O

1.5. What are stochastic processes?

We have already met stochastic processes though we have not called them so. This section
has a rather restricted goal namely, to explain what they are, describe a few basic features
and more importantly, show that stochastic processes with prescribed statistics do exist as
mathematical objects.

1.5.1. Definition and examples. A stochastic process is simply a family (X;)icr of ran-
dom variables parametrized by a set T. They are all defined on the same probability space
(©,8,P). The variables could be real valued, vector valued or we can allow them to be valued
in a measurable space (X, J), where F is a sigma-algebra of subsets of X. Frequently X = R"
for some n but, as we will see below, it is very easy to produce more complicated examples

Obviously stochastic processes exist, but once we impose some restriction on their behav-
ior, the existence of such stochastic processes is less obvious. A classical situation, intensely
investigated in probability, is that of families (X;)scr of real valued random variables that
are independent, identically distributed (or i.i.d. for brevity). We denote by Px common
distribution.
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A basic question arises. Given a Borel probability measure p on R and a set T', can we
find a probability space (€2, 8,R) and independent random variables
X (2,8,R) =R, teT,
such that Px, = p, Vt € T?
When T is finite, say T := {1,2,...,n} the answer is positive. As probability space we
can take
(Q,8,P) = (Rn, Brn, u&™" )
The random variables are then the coordinate functions
Xi:R" - R, Xp(xy,...,2n) =2, k=1,...,n.
Using the notation R” instead of R” we see that we have defined a probability measure on
the space of functions T' — R.

If T is infinite, say T' = N, the question is then about the existence of a sequence (X,,)nen
of i.i.d. random variables with common probability distribution u. A substantial portion of
probability is devoted to such sequences and it would be embarrassing, to say the least, if it
turned out they do not exist. We will see that this is not the case.

It is also very easy to stumble into situations in which the random variables are not
independent, or take value in some infinite dimensional space. We have encountered a such
a situation already.

Suppose that (2,8, P) is a probability space and F C 8 is a sigma-subalgebra. For any
S € 8 choose a version Xg € £1(Q,F,P) of the conditional probability P[S||F]. The
collection (Xg)ges is a stochastic process on (2, F,P) parametrized by 8. We can view it as
a map

X :Q —[0,1)° = the space of functions 8 — [0, 1].
Here is another such situation, of a different nature.
Example 1.5.1. Suppose that Ay, A1, ..., A, is a family of i.i.d. (real valued) random vari-
ables defined on the probability space (2,8, P). For every t € [0, 1] we set
Xy = Ag+ At + -+ Ant".

We now have on our hands a family of random variables (X¢).c[o,1). These are dependent. To
understand why suppose, for simplicity, that the variables A; have mean zero and variance
1. Then X; has mean zero and for any s,t € [0, 1]

Cov [ X, Xy | =E[ XXy | =14 (st) + -+ (st)" > 1.
Thus the random variables (Xt)yc[,1) are dependent.

Let X denote the Banach space C’( [0,1] ) equipped with the sup norm. The family (X;)
defines a map

X:0-X, Q3w Xi(w) = ZAk(w)tk eX.
k=0

The space C([0,1]) comes with a natural family of linear functionals
B C([0,1]) 5 R, te0,1], B(f) = f(t), ¥ eC([0,1]).

Note that X; = E;o0X. The Borel sigma-algebra of C(]0, 1]) coincides with the sigma-algebra
generated by the collection of functions Fy, t € [0,1]; see Exercise 1.4. This implies that
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the map X : Q — X is measurable with respect to the Borel sigma-algebra of X. The push-
forward of P via the map X defines a Borel probability Px measure on X so (X, Bx,Px) is
a probability space. Thus we can view X, as a random continuous function. O

Suppose now that (X;);er is a general family of random variables
X (Q,8,P) = (X, F),
where (X, J) is a measurable space. This family defines a map
X:TxQ—=X, TxQ3 (t,w)— X(t,w) = X¢(w) € X
such that X; is measurable for any t.
Equivalently, we can view this as a map
X : Q — X! = the space of functions f : T — X, (1.5.1)

where to each w € Q we associate the function X (w) : T — X, ¢t — X;(w).
It is convenient to regard X' as a product of copies X; of X, t € T,
X7 =] %
teT
Each copy X; is equipped with a copy F; of the sigma-algebra F.

The map (1.5.1) is measurable with respect to the sigma-algebra F7 in X7 the smallest
sigma-algebra 8 in X7 such that all the evaluation maps

Ev,: (X7,8) = (X,F), Evi(f):= f(t),
are measurable. Equivalently,
F" =\/ Ev; (%)
teT
Any measurable map X : (2,8, P) — (XT,F7T) defines a stochastic process

Xi(w) =Evy (X(w)).

Note that any probability measure on F7 is the distribution of a stochastic process, namely
the tautological process

1: (X7, 97 P) —» (XT,97,P), Li(w)=uw(t), YweX".

Suppose that X : (©2,8,P) — (XTI, FT) is a stochastic process. For any finiteset I = {t1,...,t;,} C T
we have a sigma-algebra F/ in X/,

?I:?tl ®...®97tm’
and we obtain a random “vector”
X' (,8) = (XLFN), we (X (w)yeens s Xp (w)) € X

We denote by P; its probability distribution Py := (X!)4P. Note that we have a a tautological
measurable projection IT; : XT — X!, and

]P)] = (H])#(IP)X )
Suppose now that J C T is another finite set containing 1

J:{tl,...,tm,tm+1,...,tn}, n>m.
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We get in a similar fashion a probability measure on X’. We have a canonical projection
Prr: X o X1 (33151,---,fﬁtm,$tm+1,---,$tn) — (wtl,...,:z:tm).
and, since X! = P;;(X7), we have
(Pry)uPy =Pr. (1.5.2)

Observe that F7' is generated by the collection of subsets HI_I(F 7), I C T finite, Fy € F1.
This collection is an algebra of subsets of X”'. Proposition 1.2.4 shows that Py is the unique
probability measure P on X7 such that for any finite subset I C T, and any F; C F! we have

P{II; ' (Fr)] = Pr[ Fr].

Equivalently, this means

Pr = (1) 4% (P).
A family of measures P; on X!, I finite subset of T, constrained by the compatibility condition
(1.5.2) for any finite subsets I C J C T is said to be a projective or consistent family.

We have thus shown that to any probability measure P on (XT, F7) we can naturally

associate a projective the family of probability measures P; := (’/T])#(P). Moreover, P is
uniquely determined by this projective family.

There are other ways of constructing projective families.

Example 1.5.2. Suppose that we are given a sequence of measurable spaces (2, Fp)n>0 is
a measurable space. For n € Ny :={0,1,...} we set [,, = {0,1,...,n},

%ﬁ” = ﬁ 2k, ffﬁ" = éfﬂc.
k=0 k=0

Consider a family of Markovian kernels K, : (in", ?ﬁ") = (Zn+1,Fns1), n € Ng. In other
words we have random probability measure

%Hn > (7307 ce awn) — Ka:o,xl,...,:cn [d$n+1]

on (Zn+1,Fn+1).- Then, starting with a probability measure py on (27,F), we obtain a

family of probability measures P,, on 2" described inductively by the disintegration formula
(1.4.32)

P() = Mo, ]Pn—f—l = ]P)Kn,]P’n' (153)

This means that for any S € Flnt1 we have

Poii[5] :/j{ | Kalday | Ts( z )P 7], = (z0.....0)

Equivalently, PP, disintegrates P, and K, is the disintegration kernel.
Denote by P, n+1 the natural projection %i”“ — %ﬁ",
(X0y X1y vy Ty Tng1) > (L0, T1y -+ -y Tpy)-

Since K is a Markovian kernel, i.e.,

/ Kf[d:n'] =1, VX¥e %ﬁ",
z
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we deduce that P, = (Ppn41)#Pnt1, Y € No. This shows that the collection (I/P\)n)neNo is a
projective family of probability measures.

Note that if Kxo7,_,,mn[ — ] is independent of =z, ..., z,, then we can think of K,, as a
probability measure p, on 2. In this case

If (25,Fn) = (2,9) for all n > 0 can obtain kernels K, as above starting from a single
Markovian kernel K = (27, F) — (2, 9)

K: 2 xF—[0,1], (z,F)— K[ F].
In this case the measures P, on Fn are defined by

Pn[dxgdxl'--d:cn] = ,uo[d:vo]KxO[dﬁ] oKy [dazn]

More precisely, for any S € Fln we have
P, [S] :/ﬁ Ts(Z)po[dzo] Kug [d1 ] -+ Ky [dins | Kuy, [den]. (154)

The above is an iterated integral, going from right to left, i.e., we first integrate with respect
to x,, next with respect to x,_1 etc.

Such a situation occurs in the context of Markov chains. O

1.5.2. Kolmogorov’s existence theorem. Fix a topological space X and a parameter set
T. We denote by QE‘)F the collection of finite subsets of T'. For I € QOT we denote by By the
Borel o-algebra in X! equipped with the product topology. For any finite subsets I C J C T
we denote by P;; the natural projection X’ — X!, This associates to a function J — X its
restriction to I.

For t € T we denote by m; the natural projection
7 XE = X, m(z) = 4.
More generally, for any I € QOT we define 77 : XT — X! by setting
X'sz— wr(z) = (x)ier € x!.

Definition 1.5.3. The natural o-algebra 7 in X7 is the smallest o-algebra & C 2X" such
that all the maps m, t € T, are (€, Bx)-measurable, i.e., the o-algebra generated by the
family of g-algebras ;' (Bx). O

Remark 1.5.4. The sigma-algebra &7 can also be identified with the g-algebra of the Borel
subsets of X' equipped with the product topology. O

A cylinder is a subset of X” of the form
(S =Sx XN el SeB,.

We denote by Cr the collection of cylinders. Clearly Cr is an algebra of sets that generates
the natural o-algebra Ep.
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Definition 1.5.5. A projective family of probability measures on X' is a family P; of prob-
ability measures on (X!, B;), I € 2%, such that for any I C J in 2¥ we have

Pr = (Pry)#P;. (1.5.5)
O

As discussed in the previous subsection any Borel measure on X defines a canonical
projective family. Kolmogorov’s existence (or consistency) theorem states that, under mild
topological constraints on X, all the projective families are obtained in this fashion.

Theorem 1.5.6 (Kolmogorov existence theorem). Suppose that X is a Lusin space, i.e.,
a Borel subset of a compact metric space; see Definition 1.4.26. For any projective family
(P1)162§ of Borel probability measures on X! there exists a probability measure P on Ep

uniquely determined by the requirement: VI € 28 and P; = (’PI)#(]?’). This means that for
any By € By,

Plr; Y (Br)] =P/ Br]. (1.5.6)
Proof. The uniqueness follows from Proposition 1.2.4.

The existence is a rather deep result ultimately based on Tikhonov’s compactness result.
We follow the approach in [148, Sec. 30, 31].

Observe that C' is a cylinder if and only if
il e QOT and By € B such that C = 77;1(31).
For I € 2] we set CL := 771(B;) C &r. Note that

CeelheC=BxX" B;eB, (1.5.7a)
Cechbnel#0 = Cceell (1.5.7b)

Define R R
IP)] : G%w — [0,00), P[[C] :P[[W](C)].
Note that if C € G% N G%, then, according to (1.5.7b), C' € (‘35? for some K C I'NJ. Then
11(C) = Py (7x(C) ), ms(C) =Pl (7k(C)).
Thus
P[[?T](C)] :Pl[?gll(ﬂ‘K(C))] = (TK[)#P[[WK(C)] = PK[TFK(C)],

and, similarly,
By [ms(C)] = Pr[ P (Pu(C)) | = (Prca)yPs [ 7x(C)] U2 e [ri ()],
Hence, if C € Gé N G%, then @I[C] = @J[C].

We have thus defined a finitely additive measure P on the algebra
er=J e

Ieal
To invoke Carathéodory’s extension theorem (Theorem 1.2.17) it suffices to show that P is

countably additive of Cp . We will achieve this step by relying on Alexandrov’s Theorem
1.2.15, but to complete this step we need to make a brief foundational digression.
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Digression 1.5.7 (Regularity of Borel measures). When dealing with measures on topologi-
cal spaces there are several desirable compatibility conditions between the measure-theoretic
objects and the topological ones.

Definition 1.5.8. Let X be a topological space and p a Borel measure on X.

(i) The measure p is called outer regular if for any Borel set B € Bx we have
B|= inf .
u[B] = nf u[U]
U open
(ii) The measure p is called inner regular if for any Borel set B € Bx we have
,u[B] = sup u[C’].
CCB,
¢ closed
(iii) The measure p is called regular if it is both inner and outer regular.

(iv) The measure p is called Radon if it is outer regular, and for any Borel set B € By,
we have
,u[B ] = sup ,u[K ]
KCB,
K compact

Note that a finite Borel measure is regular iff it is inner regular. From the above definition
it is clear that
w is Radon = p is regular.
A deep result in measure theory states that any Borel probability measure on a Lusin space
is Radon, [17, Thm. 7.4.3]. For our immediate needs we can get away by with a lot less. We
have the following useful result, [138, Chap. II, Thm.1.2]. A proof is outlined in Exercise
1.64.

Theorem 1.5.9. Any Borel probability measure on a metric space is reqular.

From Theorem 1.5.9 we deduce the following result.

Lemma 1.5.10. Let Y be a compact metric space. Then any Borel probability measure on
Y is Radon. O

This concludes our digression. a

As mentioned in Remark 1.4.27(b), any Lusin space is Borel isomorphic to a compact
metric space. Thus it suffices to prove Kolmogorov’s theorem only in the special when X is a
compact metric space. In this case Kolmogorov’s theorem follows from Alexandrov’s Theorem
1.2.15.

Note first that Tikhonov’s compactness theorem implies that the space X’ is compact
with respect to the product topology. Suppose that C' € Cr is a cylinder. Thus, there exists
a finite subset I C T and a Borel subset By of X! such that C' = w;l(Bi). Theorem 1.5.9

implies that for any € > 0 there exists a closed subset K, € X! such that
Pr[Br\ K.] <e.
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Note that the set Iy := 7TI_1 ( Kg) is also a cylinder contained in C' it is closed as a subset of
XT and R

P[C\F.] =P;[B/\K.] <e.
Alexandrov’s Theorem 1.2.15 implies that Pisa premeasure and thus extends to a probability
measure on 7. O

The real axis R is a Lusin space. Given a Borel probability measure P on R we can
construct trivially a projective family Py, I € QON. More precisely P; = P2l on RT. We
deduce that we have a natural Borel probability measure RY. We have natural random
variables on this probability space

X, RY 5 R, X, (2) =z, V&= (21,20,...,) € RN,

Note that Py, = P, Vn and the joint distribution of X7,..., X,, is P®". Thus, the random
variables (X,,) are independent and have identical distributions. We have thus proved the
following fact.

Corollary 1.5.11. For any probability measure P € Prob(R, Br), there exists a probability
space (€2,8,P) and a sequence of independent identically distributed (or i.i.d. for brevity)
random variables X, : (,8,P) — R, n € N, with common distribution P. O

Remark 1.5.12. (a) An earlier version of the Existence Theorem 1.5.6 was proved by P. J.
Daniell [42]. We refer to [3] for an interesting historical perspective on this theorem. The
existence theorem can be substantially generalized; see e.g. [17, Sec. 7.7].

(b) The proof of Theorem 1.5.6 uses in an essential fashion the topological nature of the

projective family of measures (IPI ) 1ear- We want to emphasize that in this theorem the set
0

of parameters T is arbitrary.

If the set of parameters T is countable, say T = Ny, then one can avoid the topological
assumptions.

Consider for example the projective family of measures P,, constructed in Example 1.5.2.
Recall briefly its construction that we are given a sequence of measurable spaces (2, Fp)n>0
and measures P,, on

(3&”0 X oo X «%m?o@"'@?n)
such that P, disintegrates P, 11, Yn > 0. (Observe that this codition is automatically satisfied
if each 2, is a Lusin space.) Set

X = ﬁ Fns
n=0

denote by 7, the natural projection 2°*° — 2, and by F®* the sigma-algebra
FOX = \/ W;I(ffn).
n>0

A theorem of C. ITonescu-Tulcea (see e.g. [92, Thm. 8.24] or [99, Thm. 14.32]) states that
there exists a unique probability measure Py, on F€> such that

(Pn)#Poo = P, ¥n >0,

where P,, denotes the natural projection 2 — 2y X -+ - X Z4,.
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As a special case of this result let us mention an infinite-dimensional version of Fubini-
Tonelli: given measures p,, on J,, there exists a unique measure pio, on F* such that

(:Pn)#/f«oo = ®Mk-
k=0

For this reason we will denote the measure fioo by Qo fin- O
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1.6. Exercises

Exercise 1.1. Let §g,8; be two sigma-algebras of a set {2. Prove that the following are
equivalent.

(i) The union 8y U 8; is a sigma-algebra.
(ii) Either 8¢ C 81 or 81 C 8y.
g

Exercise 1.2. Construct a bijection F : [-1,1] — R such that both F' and F~! are Borel
measurable. O

Exercise 1.3. Fix a set 2. Denote by B(f2) the space of bounded functions 2 — R. Let
§ C B(f) be a vector subspace with the following property: if (f,) is a nondecreasing
sequence of nonnegative functions in § converging pointwisely to a function fo, € B(),
then foo € §. Suppose that M C § is a collection closed under multiplication. Then §
contains every bounded o(M)-measurable function. O

Exercise 1.4. Let Q denote the space C([0,1]) of continuous functions w : [0,1] — R
equipped with the topology defined by the sup-norm

Jwll := sup [w(t) |
teT
Denote by B the resulting Borel sigma-algebra. For each t € [0, 1] we have an evaluation map
E; . 0 — R, Et((U) = Wt.

Denote by € sigma-algebra generated by the evaluation maps

€ = \/ Et_l(B]R).

te€[0,1]
Prove that B = €.
Hint. Prove first that
lw|| = sup |Et(w) |7 Yw € C([0,1]).
t€[0,1]NQ
Use next the fact that the Banach space C([0, 1]) is separable. g

Exercise 1.5. Suppose that (X,d) is a complete, separable metric space. Denote by Bx
the Borel sigma-algebra generated by the open subsets of X, and by B x«x the Borel sigma-
algebra generated by the product topology on X x X. Prove that

O
Exercise 1.6. Fix a set 2 of finite cardinality m and a probability measure P on 2. Assume

that P[{w}] # 0, Vw € Q. Set Q> := QN so the elements of 0 are functions w : N — €,
n — wy = w(n). For every n € N define

Tt Q% = Q" 7y (w) = (Wi, ... wy),
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and denote by C,, the collection of sets of the form
C=mr,8), ScQ", neN.

C:.= U C,.

neN

Note that €; C Cy C ---. Set

The sets in € are called cylinders.

(i) Show that G, is a o-algebra of subsets of Q°°, Vn € N.
(ii) For any n € N define 5, = B, » : €, — [0, 1],

baln®)] = [s] = Y [[Pliwn]

(wlu"'7w7l)€S j:1

Show that (3, is a well defined measure on C,, and

ﬁn-{—l ‘en = /Bn
(iii) Equip 2°° with the metric

0, w=mn,

2" 1, w#n.

neN

d(ﬂ’ 77) = Z ih(wmnn)’ h(w7n) = {

Prove that (QOO, d) is a compact metric space. Hint. Use the diagonal procedure to show

that any sequence if 2 admits a convergent subsequence.
(iv) Define g = gp : € — [0, 1],
B‘en = Bn-
Show that 3 is a well defined premeasure on €. Hint. Use Theorem 1.2.15. Prove first that

any cylinder is simultaneously closed and open.
(v) Prove that o(€) coincides with the Borel sigma-algebra of the metric space (2%, d).
(vi) Denote by 3 = Bp the extension of 3 as measure to the o-algebra o(C). (Its existence
is guaranteed by the Caratheodory extension theorem.) For wy € Q we set
Ay, 1= {ge Q: dIm €N such that w, = wy, Vn>m}.

Show that Ay, € 0(€) and B[ Ay, | = 0.

(vii) Define X,, : Q*° — Q, X, (w) = wy,. Show that the collection of random variables
(Xn)nen is independent and have the same distribution P.

(viii) Let @ = {0,1}, P=the uniform measure on {0,1}, and consider Q> = {0,1}N
equipped with the measure 8 = fp constructed as above. Show that the map
1
B: (Qoova(e)) - ([07 1]73[0,1] )a B = Z 27Xn
neN
is measurable and find By . O
Exercise 1.7. Suppose that (Q, F, u) is a measured space and (5, d) a metric space. Consider
a function
F:SxQ—=R, (s,w)— Fs(w)

satisfying the following properties.
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(i) For any s € S the function 2 5> w — Fs(w) € R is measurable.
(ii) For any w € € the function S 5 s — Fg(w) € R is continuous.
(iii) There exists h € £L1(Q, 8, 1) such that |Fy(w)| < h(w), V(s,w) € S x €.
Prove that Fy € £Y(,8, ), Vs € S, and the resulting function

Sas+—>/ ER

is continuous. Hint. Use the Dominated Convergence Theorem. a

Exercise 1.8. Suppose that (Q,F, ) is a measured space and I C R is an open interval.
Consider a function

F:IxQ—=R, (t,w)— F(t,w)
satisfying the following properties.

(i) For any ¢ € I the function F(¢,—) : Q — R is integrable,

/Ftw],u dw] <

(ii) For any w € Q the function I 5 ¢t — F(t,w) € R is differentiable at ty € I. We
denote by F'(tp,w) its derivative.

(iii) There exists h € £Y(Q, 8, 1) and ¢ > 0 such that
|F(t,w) — F(to,w)| < h(w)|t —to|, Y(t,w) € I x Q.

Prove that the function

IBt%/F(t,w)u[dw] eR
Q

is differentiable at ¢ty and

C;it‘t:to </QF(t’w)“[dw}> :AF,(to,w)u[dw}. 0

Exercise 1.9. Suppose that (2,8, 1) is a finite!> measured space and A C 8 a countable
m-system that generates 8, o(A) = 8. Assume Q € A. Denote by R[A] the vector space
spanned by I4, A € A. Fix p € [1,00) and denote by M, the intersection of L>°(, 8, 1) with
the LP-closure of R[A].

(i) Prove M, = L>®(Q,8,P).
(ii) Prove that R[A] is dense in LP(,8, u).
(iii) Prove that LP(, 8, u) is separable. 0

Exercise 1.10 (Markov). Let (€,8,P) be a sample space and A_, Ag, A4, P[Ag N A_] # 0.
We say that Ay is independent of A_ given Ay if

]P)[A_:,_QA_‘A()] :P[A+|A0]P[A_|A0].
Show that A is independent of A_ given A if and only if
]P)[A_i_}AOﬁA_] :]P)[A+‘A0] a

15The sigma-finite situation follows from the finite situation in a standard fashion.
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Exercise 1.11 (M. Gardner). A family has two children. Find the conditional probability
that both children are boys in each of the following situations.

(i) One of the children is a boy.
(ii) One of the children is a boy born on a Thursday. O

Exercise 1.12. A random experiment is performed repeatedly and the outcome of an exper-
iment is independent of the outcomes of the previous experiments. While performing these
experiments we keep track of the occurrence of the mutually exclusive events A and B, i.e.,
AN B =(. We assume that A and B have positive probabilities.'® What is the probability
that A occurs before B? Hint. Consider the event C = (A U B)¢ = neither A, nor B. Condition on the result
of the first experiment which can be A, B or C.

O

Exercise 1.13. Prove that the random variables Ny, ..., N, that appear in Example 1.3.25
on the coupon collector problem can be realized as measurable functions defined on the same
probability space. Hint. Use Exercise 1.6. O

Exercise 1.14. Construct a probability space (€2, 8,P) and random variables
X, Y :(Q,8,P) = (0,00)
such that
E[X] <E[Y] <oo and P[X >Y ]| <P[X <Y]. O

Exercise 1.15 (Your neighbor has more neighbors). Consider a connected finite unoriented
graph. Denote by 'V its set of vertices and by € the set of edges. For each v € V we denote
by deg(v) the number of neighbors of v. Pix a vertex A € V uniformly randomly, and then
choose a neighbor B of A, equally likely among the deg(A) neighbors of A. Prove that

E[ deg(A)] <E[ deg(B)].
O

Exercise 1.16. Suppose that X,Y : (Q,8,P) — R are two random variables whose ranges
2 and Y are countable subsets of R. Assume additionally that X € £! ( Q, S,]P’). We set

E[X Y] =) E[X|Y =y]Iy_y, € L(Q0(),P),
yeY

where

E[X|YV =y]:=) aP[X =z]Y =y] = P[{ley}]/{y }X(w)IP[dw].
zeX =Y

The random variable E[X I Y] is called the conditional expectation of X given Y. Prove

that
E[X]=E[E[X|Y]]. 0

6oy example if we roll a pair of dice, A could be the event “the sum is 4” and B could be the event “the sum is

7”. In this case 3 1 6 "
[A]l=—=— P .

36 12
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Exercise 1.17 (Polya’s urn). An urn U contains ry red balls and g red balls. At each stage
a ball is selected at random from the urn, we observe its color, we return it to the urn and
then we add another ball of the same color. We denote by by R,, the number of red balls and
by G, the number of green balls at stage n. Finally, we denote by C), the “concentration” of
red balls at stage n,

J— Rn

R+ Gy

(i) Show that E[Cy1 || Ry ] = Cn, where the conditional expectation E[ Cpy1 || Ry |
is defined in Exercise 1.16.

(ii) Show that E[Cy,] = -2 Vn € N.

r0+90

Ch

a
Exercise 1.18. Prove the claim about the events S; at the end of Example 1.3.23. O

Exercise 1.19 (Banach’s matchbox problem). An eminent mathematician fuels a smoking
habit by keeping matches in both trouser pockets. When impelled by need, he reaches a
hand into a randomly selected pocket and grabs about for a match. Suppose he starts with
n matches in each pocket. What is the probability that when he first discovers a pocket to
be empty of matches the other pocket contains exactly m matches? O

Exercise 1.20. Suppose that X,, € £1(Q,8,P), n € N, is a sequence of independent and
identically distributed (i.i.d.) random variables and T' € £!(Q, 8,P) is a random variable with
range contained in N and independent of the variables X,,. Define St : Q — R

T(w)
Sr(w) = Y Xa(w)
n=1
Prove Wald’s formula

E[Sr] =E[T]E[ X1 ]. (1.6.1)
(|
Exercise 1.21. A box contains n identical balls labelled 1,...,n. Draw one ball, uniformly
random, and record its label N. Next flip a fair coin N times. What is the expected number
of heads you roll? Hint. Use Wald’s formula. O

Exercise 1.22. Suppose that X € L°(£,8,P) is a nonnegative random variable. Prove that
if the range of 2" is contained in Ny, then

E[X]-1<) PX >n] <E[X].
n>0
In particular, conclude that
X € L'(Q,8,P) < ) P[X >n] <o,
n>0

Hint. Use (1.3.48) o

Exercise 1.23. Let X be a random variable with range contained in {0,1,...,n}.
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(i) Prove that for any k € {0,...,n}

where,

By(z) = (;) - %x(w—l)---(x—m—kl) e R[z].

Hint. Set pp = ]P’[X = k] Then E[Bm(X)} => (:l)pk Conclude using the binomial inversion
trick, Remark 1.3.30.

(ii) Let Ay,..., A, be a collection of measurable subsets of a probability space ( Q,8, IP’)

and set
n
X =) 1y,
k=1
Prove that
E|[Bi(X)] = sp
for any k € {O, 1,... ,’I’L}, where S}Z is defined in (1326) Hint. Use binomial inversion.

O

Exercise 1.24. Consider the standard random walk on Z started at 0. More precisely, are

given a sequence of i.i.d random variables (X}, ),en such that IP’[X” = 1] = IP’[Xn = —1] = %,

Vn and we set
Spi=X14+- -+ X,
Let T denote the time of the first return to 0,
T:=min{neN; S, = 0},
where min () := co. Set f, = IP’[T = n], Uy, 1= P[Sn = 0].
(i) Prove that ug, = IF’[Sl #£0, S9#0,...,5, # 0]. Deduce that fo, = usn_o — Usp.

Hint. Use André’s reflection principle in Example 1.2.37.
(ii) Prove that P[T < oo ] =1, but E[T'| = co. Hint. Use (i) and (1.3.48).

(iii) Visualize the random walk as a zig-zag of the kind depicted in Figure 1.2. For such
a zigzag we denote by L, (z) the number of its first n segments that are above the
x axis. Equivalently,

Ln(2) == #{k; 1 <k <n; max(S,_1,5) >0}.
For example, for the zig-zag z in Figure 1.2 we have

Lg(z) = Lg(Z) = Llo(z) = 8.

Show that
_ =2k <2
P[Ly =m] = U2k U2n—2k; m_ = 4
0, m = 1 mod 2.
(iv) Prove that P[ Lo, = 2k| Sz, =0] = %H s
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Exercise 1.25. Consider the group &,, of permutation of n ordered objects. We equip it
with the uniform probability measure. Let Z,, denote the number of inversions of a random
permutation, i.e.,

Zn(p) = #{(4,4); 1<i<j<mn, o(i)>e(j)}
Compute the mean and variance of Z,. Hint. For ¢ € 6, and 1 < k <n — 1 set
Zn k(@) =#{4; n>j>kand ¢(j) < o(k) }.

Prove that Z, = 22;11 Zn, and that the random variables Zy 1,..., Zn n—1 are independent. You will also need to
use the classical identities

1+2+~-~+m=@, 12+22+...+m2:w,
|
Exercise 1.26. There are n unstable molecules my, ..., m, in a row. One of the n — 1 pairs

of neighbors, chosen uniformly at random, combine to form a stable dimer. This process
continues until there remain U, isolated molecules, no two of which are adjacent.

(i) Show that the probability p, that m; remains uncombined satisfies
(n—1)pp=p1+p2+-+DPp2.
Deduce that

n—1 (_1)k
pn:Z ol —~e ! asn— oo.
k=0 ’

Hint. Condition on the first pair of molecules (m,, m,4+1) that gets combined.
(ii) Show that the probability g, that the molecule m, remains uncombined is p,pp—r+1.
(iii) Show that

n

E[Un] =D rn-

r=1

(iv) Show that

lim lE[Un] =e 2.

n—oo n

Hint. At some point you may need to take for granted the result in Exercise 2.6.

O

Exercise 1.27. Let N = N,;, be the random variable defined in the coupon collector problem
described in Example 1.3.25. Show that

Var[Nm]:mka_Qk. O
k=1

Exercise 1.28 (The Birthday Problem). Let N € N. Consider a sequence (Xp)nen of
independent random variables uniformly distributed on the finite set {1,..., N}. Define By
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to be the birthday random variable'”
Bn(w) =min{j € N: 31 <i < jsuch that X;(w)= X;(w) }.
Compute the probabilities
]P’[BNgkz], k=1,...,N. O

Exercise 1.29 (Buffon’s Problem). A needle of length ¢ is thrown at random on a plane
ruled by parallel lines distance d apart. Denote by N, the number of lines that intersect the
needle.

(i) Compute P[N; = 1] when ¢ < d.
(ii) Prove that E[NgOJrgl] = E[Ngo] + E[Ngl ], Vo, 41 > 0.
(iii) Compute E[ N, ], £ > 0.
O

Exercise 1.30. Suppose that I is an interval of the real axis and f: I — R is a continuous
function. Prove that the following are equivalent.
(i) For any z,y € I, and any ¢ € (0,1) we have f((1—t)z+ty) < (1—¢t)f(z)+tf(y).
(ii) For any zo € I there exists a linear function ¢ : R — R such that

l(zo) = f(xo), L(z) < f(x), Vx el

Exercise 1.31 (Hermite polynomials). Suppose that X ~ N(0,1) so

Px|dz] = T1[da] := v (x)A[dz ], ~i(z) = \/12?6382.

For k € Ny we denote by R[z] the space of polynomial with real coefficients. Define the linear
operators

M)

P, Q:R[z] = R[z],
(Pf)(z) = f(x), (Qf)(x)=—f(2)+2f(x). (1.6.2)
The operator P is called the annihilation operator and the operator @ is called the creation

operator.

(i) Prove that for any f € R[z] we have

(PQ—-QP)f =F.
(ii) Denote by Hy € R[:U] the constant polynomial identically equal to 1. Show that
for any n € N the function
H, = Q"Hy
is a degree n polynomial satisfying
PH, =nH, 1, QPH, =nH,, ¥necN,

L7You should think of By as follows. Suppose that you have an urn with N balls labelled 1,..., N. Suppose we
perform the following experiment: draw a ball at random, record its label, put it back in the box, and then repeat
until you notice that the label you’ve drawn has appeared before. The random variable By is the first moment when

you’ve noticed a label that was drawn before. Note that By < N + 1. The classical birthday problem is the special
case N = 365.
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and

H,=zH, 1 —(n—1)H,—2, Vn>2.
The polynomials H,(z) are called the Hermite polynomials. The operator —QP is
called the Ornstein-Uhlenbeck operator.

(iii) Show that for any f,g € ]R[:c}

/ Pf(x)g(x) T1[dz] = / f(2)Qg(x) T [dz). (16.3)
R R

(iv) Show that

[V

T

22
H,(z) = (-1)"¢z P"(e" 7 ), VneN. (1.6.4)
(v) Show that for any m,n € Ny we have
/ Hoy(2) Hyn ()T [da] = 216,
R

(vi) Show that
ZHn(a:)/\— = N2, (1.6.5)

n!

(vii) Suppose that f € R[z], deg f < n. Recall that X ~ N(0,1). Prove that

£@) = 3 B[P0 ).

k=1
a
Exercise 1.32. Suppose that X ~ N(0,1), i.e.,
1 22
Px|dz| = x)dzx, xr) = e z.
X[ } 71(2) 71(2) N
Set &)(x) = P[X > x] Prove the Mills ratio inequalities (1.3.43) , i.e.,
x = 1
m’h(x) <P(z) < ;71('@)) Ve > 0.
Hint. For the upper bound observe that
—Qb= / ®(z)dz > 0,
where @ is the operator defined in (1.6.2). Next express
/ = QI(t)dt <0
in terms of ® and ~1- O

Exercise 1.33. We denote by Dens(R) the space of probability densities on R, i.e., functions
p € LY(R, \) such that

/p(:x)d:c =1 and p(x) > 0 almost everywhere.
R

For p € Dens(R) we set

E[p] ::/Rxp(:c)d:v, Var [p} ::/RJUQp(J:)dx—IE[p]Z.
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The entropy'® of p € Dens(R) is the quantity

Ent [p] := —/p(:c) log p(x)dx € [0, o],
R
where we set 0 -log0 = 0.

(i) Show that if

1 _ =2
71(33) = /727_(_6 v /27
then Lt log 2
+ log 27
But [, ] = — 2.

(ii) Show that if p,q € Dens(R) and ¢(z) > 0, Vz € R, then

Ent [p] < —/Rp(x) log q(x)dx

if the integral on the right hand side is finite. Moreover equality holds iff p = g.
Hint. Show that p(z) — p(z) log p(z) < q(z) — p(z) log q(z), Vz € R.

(iii) Show that if p € Dens(R) satisfies
E[p] =0 :E[*yl], Var [p} =1= Var [’yl],
then Ent [p] < Ent [’yl] with equality iff p = ;.

Exercise 1.34. Let X : (,8,P — Ny) be a random variable and A > 0. Prove that the
following are equivalent.

(i) X ~ Poi(A).

(ii) IE[)\f(X +1)— Xf(X)] = 0, for any bounded function f : Ny — R.

O
Exercise 1.35. Prove Proposition 1.3.17. O
Exercise 1.36. Show that
Mn(t) = 2 it N~ G
N(t) - 1_ q€t 1 ~ eom(p)a
My (t) = =D if N ~ Poi()),
and
My (t) = N if X ~ Exp(A).
O

Exercise 1.37. Let Y ~ N (0, 1) be a standard normal random variable and set X := exp(Y’).

18 pe entropy is a measure of disorder or randomness of the probability density: the higher the entropy the less
predictable is the associated random variable.
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(i) Show that
E[X"] =e"/? VneN.
(ii) Prove that the probability distribution Px of X is given by the log-normal law
%ﬁe—%(log”&)? x>0
Py |dz | = p(x)dz, p(x) =< zver ’ ’
x[dz] = p(2) (z) 0 2 <0,
where log denotes the natural logarithm.
(iii) For a € [—1,1] we set
p(z)(1 + asin(2rlogz)), x>0,
pa(z) =
0, z < 0.

Prove that for any a € [—1,1] and any n € Ny we have

/ x"po(x)dr = e,

R

Thus, for any a € [—1,1], the function p,(x)dx is a probability density on R and
the probability measure p,(z) has the same moments as X,

O

Exercise 1.38. Let X : (©2,8,P) — R be a random variable with range contained in
No={0,1,2,... }.
Its probability generating function (or pgf for brevity) is the formal power series

PGx(s) = ZIP’[X =n|s".

n>0

(i) Show that the power series defining PGx is convergent for any |s| < 1. Moreover,
vVt < 0 we have
M_)((t) = PGx(et).
(ii) Compute PGx when X ~ Bin(n,p), X ~ Geom(p), X ~ Poi(A).

0
Exercise 1.39. Show that
Gamma(ry, \) x Gamma(vy, A) = Gammal(vy + v1,\), Vg, v > 0, (1.6.6a)
N(0,v9) * N(0,v1) = N(0,v9 +v1), Vvg,v1 >0, (1.6.6b)
Poi(Ag) * Poi(A1) = Poi(Ag + A1), YAg, A1 > 0. (1.6.6¢)
Hint. Use Theorem 1.3.20, Corollary 1.3.18 and Corollary 1.3.48. O

Exercise 1.40. Let pg, 1 € Prob([0,1]) be two Borel probability measures. Prove that the
following statements are equivalent.

(i)
1 1
/Ox”,uo[dx]:/o x"ul[dx], Vn € N.
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(ii) For any Borel subset B C [0,1], uo[ B] = p1 [ B].
O

Exercise 1.41. Suppose that ;1 is a Borel probability measure on R>q. We define its Laplace
transform to be the function

£, :[0,00) = R, L“(A):/ e Muldr].

R0
Consider the measurable map F': [0,00) — [0,1], F(z) = e™*. We set i := Fyup.
(i) Prove that
o= [ yald)
[0,1]

(ii) Prove that the measure y is uniquely determined by its Laplace transform £,,.

O

Exercise 1.42. Denote by Prob = Prob(RR, Br) the space of probability measures on (R, Bg).
Show that (Prob, x) is a commutative semigroup with unit dg, the Dirac measure concentrated
at 0. O

Exercise 1.43. Consider the interval [—7/2, /2] equipped with the probability measure
1
P[dw] = —A[dw],
T
A = the Lebesgue measure. We regard the function
X :[-n/2,7/2] - R, X(t)=sin?t

as a random variable on this probability spaces. Prove that X ~ Beta(1/2,1/2). O

Exercise 1.44. For any a,b > 0 we define the incomplete Beta function

1 e _
Bap: (0,1) = R, Byy(x) = Bl b)/o (1 — )P tdt, .

where B(a,b) is the Beta function (A.1.2).
(i) Prove that

(1 —2)®
W = Ba’b(ﬂj) Ba_l,_l’b(l'). (1673)
(1 —2)®
W = Bap+1(x) = Bap(w). (1.6.7b)
(ii) Show that if k,n € N, k < n we have
n n .
By pt1-k(z) = Z <a> (1 —az)" % (1.6.8)
a=k
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Exercise 1.45. Suppose that X1,..., X, : (2,8, 4) — R are random variables with joint
probability distribution

Px, .x. [dxl e dmn] =p(z1,...,2n)dxy -+ - dxy,

p >0, / p(z1,...,xp)dzy - - dzy = 1.

Consider the new random variables

n
Y, = Zainj, ajj € R
k=1

is invertible with inverse A~1 = (aij ) Prove that

where the matrix A = (aij )ngn I<ij<n

the joint distribution of Y7,...,Y,, is given by the density
1
qW1,- -, Yn) = mp(an?/l o a My, a My amyn). O

Exercise 1.46. Suppose that Xq,..., Xy are independent standard normal random vari-
ables. For n = 1,..., we denote by R? the random variable X3 + -+ + X2,

(i) Prove that

1
R% ~ x%(n) := Gamma(v, \), v = %’ A\ = 5

(ii) Prove that
R731 n N —n

5 ~ Beta(a,b), where a = 5 b=
N
a

Exercise 1.47. Fix a probability space (£2,8,P). Show that L°(2,8,P) equipped with the
metric dist defined in (1.3.58) is a complete metric space. More precisely, show that if a
sequence of random variables X,, € L°(Q, 8, P) is Cauchy in probability, i.e.,

lim P[|X,, — X,|>7] =0, Vr >0,

m,n—0o

then there exists a random variable X € L°(€2,§,P) such that X,, — X in probability. 0

Exercise 1.48. Fix a probability space (€2, 8,P). Prove that if a sequence of random variables
X, € L°(, 8, P) converges a.s. to a random variable X € LO(Q, S, IP’) iff it satisfies

lim P| sup | Xj— Xp|>r|= ¥r>0.
m,n—00 m<k<n

O
Exercise 1.49. Prove the claim in Remark 1.4.4. O

Exercise 1.50. Suppose that X,Y are independent random variables with distributions Px
and respectively Py. Let f : R?> — R be a Borel measurable function such that f(X,Y) is
integrable. Show that

E[f(X,Y) [ X ] = h(X),
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where
h(z) = /Rf(w,y)Py[dy]- O
Exercise 1.51. Suppose that (£2,8,P) is a probability space, F C 8 a sigma-subalgebra and
X € L£%Q,8), Y € £L%Q,F). Prove that the following are equivalent.
(i) X =Y as..
(ii) For any bounded Borel measurable function f: R — R, E[ f(X) [ F] = f(Y) a.s.
O
Exercise 1.52. Suppose that the sequence of independent random variables (X,,)nen con-

verges in probability to a random variable X. Prove that X is a.s. constant. Hint. Use

Kolmogorov’s 0-1 theorem. O

Exercise 1.53 (Strong memoryless property). Suppose that 7' is an exponential random
variable and Ty, S > 0 are nonnegative random variables so that T, Ty, S are pairwise inde-
pendent. Then

P[T>To+S|T>S|=P[T>Tp].
Note that when Tp, S are deterministic we recover the memoryless property (1.3.49). O
Exercise 1.54. For n € N we denote by C,, the cone in R"™ defined by
C, ::{(xl,...,:vn) eER": 1 <z9< -+ Sxm}.

Define ord : R™ — C,,

(1‘1, B ,{L‘n) — ord(wl, c ,{L‘n) = (1’(1),1'(2), c ,:E(n)),

where

Ty = min{z1,..., T}, () =min ({xl, ce Tt \ {a;(l)}>, e
In other words, x(y),...,2(,) are the numbers x1,. .., z, rearranged in increasing order.

Suppose X1, ..., X, are n i.i.d. random variables with common cdf
xX
F@) = [ po)ds, pe L@
—00

The order statistics of the random variables X1, ..., X, is the random vector

ord(X) == (X(1), -+, X(m));
where X = (X1,...,Xp).
(i) Show that the distribution of ord(X) is
Poracxyldry - - dan] = nlp(@1) - p(zn)Ic, (21, .., 2p)doy - - - dy,.
(ii) Denote by F(;) the cdf of the component X j), F(;)(z) = P[ X(j) < «]. Prove that
Fijy(z) =Y <Z> F(a)*(1—-F(x))" .

k=j
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(iii) Suppose that Xi,..., X,, ~ Unif(0,1). Show that
. . J
X(j) ~ Beta(j,n +1— j), E[X(j)] =T
(iv) Suppose that X,..., X, ~ Unif(0,1) and consider the random vector
Compute the conditional distribution of ¥ given Xy
]P’y[dyg codyn || Xy = x}

(v) Suppose that X1, ..., X, ~ Exp(\). Show that!?
1
Xy ~Exp(n)), E[Xq] = —
(vi) Suppose that Xi,..., X, ~ Exp(\). Show that

nXay, (0= (X = X)) 2( X1y = Xn-2) )s Xy = Xn-1)

are independent EXp(A) random variables. Hint. Use (i) and Exercise 1.45 to prove first that
the spacings
S1=Xa), S2=X@)— Xy, =Xmn) = X1

are independent exponential random variables.

O

Exercise 1.55. Suppose that Xi,...,X,_1 are independent and uniformly distributed in
[0,1]. Consider their order statistics

X = = Xpey
and the corresponding spacings?’
S1=Xqay, S2=X)—Xa),--, S0 =1-X(_1)-
Denote by L,, the largest spacing, L, = max (Sl, ceeySp).
(i) Prove that (Si,...,Sy) is uniformly distributed in the simplex

A, ::{(31,...,3n) € [0,1]"; zn:.skzl}.

k=1
Deduce that E[Sk] = %, Vk=1,...,n.
(ii) Show that

1o 1(n
E[L,] ==Y (-D)F—( ).
Hint. Let For x € [0,1] denote by Ej = Ej(x) the event {Sy > z}. Then {L, > z} = (;_; Ex(z).

Conclude using inclusion-exclusion, (i) and (1.3.47) .

19, appreciate how surprising then concusion (v) think that an institution buys a large number n of computers,
all of the same brand, and X1, ..., X, denote the lifetimes of these machines. Each is expected to last 1/ years. The
random variable X1y is the lifetime of the first computer that breaks down. The result in (v) show that we should
expect the first break down pretty soon, in TIA years!

20The n — 1 points X1,...,X,—1 divide the interval [0, 1] into n subintervals and the spacings are the lengths of

these subintervals.
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(iii) Let Y1,...,Y, be independent Exp(1) random variables. Set T,, = Y1 + --- + Y,,.
Find the joint distribution of (Y1,...,Y,,T,) and show that the random variables

Y1 Y,

T,
has the same joint distribution as the spacings Si, ..., S,. Deduce that L, has the

same distribution as
maxlgkgn Yk }/(n)

T, T,

(iv) Prove that L,, and
1 Y
To = k

have the same distribution.Hint. Use (iii) and Exercise 1.54(vi). Deduce that?!

|
:n;k.

Remark 1.6.1. Observe that the above exercise produces a strange identity,
S =i ()
k=1
O
Exercise 1.56. Consider the Poisson process (N (t)):>0 with intensity A described in Example
1.3.7.
(i) Find the distribution of Wy = N(¢) + 1 — ¢.
(ii) Show that N(t+ h) — N(t) ~ PoiAh, t >0, h > 0.
O
Exercise 1.57. Consider the Poisson process (N (t));>0 with intensity A described in Example
1.3.7. Let S be a nonnegative random variable independent of the arrival times (7},),>0 of

the Poisson process. For any arrival time 7}, we denote by Zr, g the number of arrival times
located in the interval (7,7, + S]

ZTn,S = #{/{? >n; T, <Ty <T, —|—S}
Prove that

00 k
_ 1] — “kas (As)
IP’[ZTmS_k]_/O e P fas). 0
Exercise 1.58. Suppose that N(t) is a Poisson process (see Example 1.3.7 ) with intensity
A and arrival times

T <Tp <

2lhis equality shows that E [ Ln, ] ~ 105", which is substantially higher than the mean of each individual spacing,
E[Sk] =1, Vk.
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Fix t > 0 and let (X,,),>1 be i.i.d. random variables uniformly distributed in [0, ¢]. Prove
that, conditional on N (¢) = n, the random vectors

(Tl,...,Tn) and (X(l)aaX(n))

have the same distribution. O

Exercise 1.59. Suppose that the 20 contestants at a quiz show are each given the same
question, and that each answers it correctly, independently of the others, with probability P.
However, the probability of success P itself is a random variable.?? Suppose, for the sake of
illustration, that P is uniformly distributed over the interval (0, 1].

(i) What is the probability that exactly two of the contestants answer the question
correctly?

(i) What is the expected number of contestants that answer the question correctly?

O

Exercise 1.60. Let v be a Borel probability measure on R. Prove that for any Borel subset
B C R the map Up : R — R, \IJB(y):V[B—y] is measurable. O

Exercise 1.61 (Skhorohod). Denote by Prob’(R) the set of Borel probability measures on

R such that
/as,u[d:c] = 0.
R

Clearly Prob’(R) is a convex subset of the set Prob(R) of Borel probability measures on R.

For u,v > 0 such that u 4+ v > 0 we define the bipolar measure

Buw = ——0_+ ——5, € Prob’(R)..
’ U+ v U+ v

Let Q := {(u,v) eR? wv>0 ut+v> O}. We regard f,, as a random measure (or
Markov kernel) 5 : Q x Bg — R
B((U,U),B) = Bu,v[B]

Prove that for any p € Prob’(R) there exists a Borel probability measure v on @Q such that
p := Byv. In other words, any measure p € Prob®(R) is a mixture of bipolar measures. O

Exercise 1.62. Given sigma algebras 1, Fy, C §, prove that the following are equivalent.
(i) Fy L g, F_.
(ii) FL Ly, FoVvI_.

a
Exercise 1.63. Given sigma algebras F1, Fy, C 8, prove that the following are equivalent.
(i) Fp L FoVvI_
(11) ff+ A Sr'(] and ff+ A Fo F_.
a

22Think of P as a random Bernoulli measure of the kind discussed in Example 1.4.20. The source of randomness
could be due to the fact that the difficulty of the questions could change randomly from one show to another.
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Exercise 1.64. Suppose that u is a Borel probability measure on the metric space (X, d).
Denote by C the collection of Borel subsets S of X satisfying the regularity property: for any
go there exists a closed subset Cz C S and an open subset O, D S such that

,u[OE \ CE] <e.
(i) Show that S € C= S°:= X \C € C.
(ii) Show that any closed set belongs to C.23

)
)
(iii) Show that C is a 7-system.
(iv) Show that C is a A-system.

(v) Show that € coincides with the family of Borel subsets.

O

Exercise 1.65. Suppose that (X, d) is a compact metric space and p is a finite Borel measure
on X. Prove that for any p € [1,00) the space C(X) of continuous functions on X is dense
in LP(X, ,u,) Hint. Use Exercise 1.64 to show that for any Borel subset B C X the indicator function I'p can be

approximated in LP by continuous functions. O

23This is where the fact is a X metric space plays an important role.



Chapter 2

Limit theorems

The limit theorems have preoccupied mathematicians from the dawns of probability. The first
law of large numbers goes back to Jacob Bernoulli at the end of the seventeenth century. The
Golden Theorem in his Ars Conjectandi is what we call today a weak law of large numbers.
Bernoulli considers an urn that contains a large number of black and white balls. If p € (0, 1)
is the proportion of white balls in the urn and we draw with replacement a large number n of
balls, then the proportion p, of white balls among the extracted ones is with high confidence
within a given open interval containing p.

His result lacked foundations since the concept of probability lacked a proper definition.
The situation improved at the beginning of the twentieth century when E. Borel proved a
strong form of Bernoulli’s law. Borel too lacked a good definition of a probability space, but
he worked rigorously. In modern terms, he used the interval [0, 1] with the Lebesgue measure
as probability space. He then proceeded to construct explicitly a sequence of functions
X, @ [0,1] — R which, viewed as random variables are i.i.d. with common distribution
Bin(1/2).

It took the efforts of Hinchin and Kolmogorov to settle the general case. The strong law
of large numbers states that if (X,,),en are i.i.d. random variables with finite mean u, then
the empirical mean

converges a.s. to the theoretical mean p.

This chapter is devoted to these limit theorems. In the first section we investigate the
SLLN= Strong Law of Large Numbers. The approach we use is due to Kolmogorov. It
reduces this law to the convergence of random series of independent random variables.

The second section is devoted to the Central Limit Theorem stating that the distribution
of M, is very close to the distribution of a Gaussian random variable with the same mean
and variance as M,,. The third section, is more modern, and it is devoted to concentration
inequalities. These state in a quantitative fashion that the probability that M,, deviates
from the mean g by a certain amount is extremely small under certain conditions. The
fourth section is devoted to uniform limit theorem of the Glivenko-Cantelli type. We have

145
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included this section due to its applications in machine learning. In particular, we show how
such results coupled with the concentration inequalities lead to Probably Approximatively
Correct, or PAC, learning.

The last section of this chapter is devoted to a brief introduction to the Brownian motion.
This is such a fundamental object that we thought that any student of probability ought to
make its acquaintance as soon as possible. As always, along the way we present many, we
hope, interesting examples.

2.1. The Law of Large Numbers

This section is devoted to the (Strong) Law of Large numbers. We follow Kolmogorov’s
approach based on random series, a subject of independent interest.

2.1.1. Random series. Fix a probability space (2, 8,P) and consider a sequence of inde-
pendent random variables
Xn:(Q,8,P) >R, neN.
The independence of the random variables (X,,) allows us to invoke Kolmogorov’s 0-1 theorem
and conclude that the random series
> X (2.1.1)

neN
either converges almost surely, or diverges almost surely. We want to describe by describing
one simple sufficient condition for convergence.

Theorem 2.1.1 (Kolmogorov’s one series). Suppose that

E[X,] =0, VneN, (2.1.2a)
> Var [ X,] < oc. (2.1.2b)
n>1

Then the series (2.1.1) converges almost surely and in L*.

Proof. For n € N we denote by S,, the n-th partial sum of the series (2.1.1),

Sy = iXk.
k=1

The L2-convergence follows immediately from (2.1.2b) which, coupled with the independence
of the random variables (X,,) implies that the sequence (S,,) is Cauchy in L? since

k
ISn+k — Snllz2 =Y Var [Xni;], Vk,neN.
j=1

The proof of the a.s. convergence is more difficult. It relies on a fundamental inequality which
we will further generalize in the next chapter. The independence of the random variables
(X,,) is used crucially in its proof.

Lemma 2.1.2 (Kolmogorov’s maximal inequality). Set

M, := max |Sk|.
1<k<n
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Then, for all a > 0, we have

n

P[M, >a] < —Var Z (2.1.3)
k=
Additionally if 3¢ > 0 such that | X,| < ¢, Vn, then
(a+0)”
— = <P M, >al. 2.14
Var [Sn] - [ a] ( )

Proof of Kolmogorov’s maximal inequality. Define
N:Q—-NU{oco}, N(w):=inf{n>1; |Sy(w)>a}.
Notice that N(w) is the first n € NU {oco} such that S, (w) > a, i.e.,
Nw)=k<=S1(w),...,Sk—1(w) < a and Si(w) > a.

This shows that the event Ay = {N = k} is in the o-algebra generated by Xy, ..., Xj. Since
Sy — Sk = Xg41 +- -+ X, we deduce that I4,, I 4, S are independent of S,, — Sj. We have

Var [ S, ] = E[S2] > E[S2I{rr,5a) ]
_ZE 14,52 ZE[IAk(Sk+2Sk(S —5p) + (Sn—sk)ﬂ

(La,,Ia, Sk L S — Sk)

—Z( (14,57] +2E[ 14,5 ] B[S, — 5] +E[Ly, |E[ (S, — 5] )

This proves (2.1.3).
To prove (2.1.4) we argue as in [115, Sec.17.2] and we set
By :=9Q, By ::{N>k}:{Mk§a}.
Observe that, Vk =1,...,n, Bx_1 D By and
Ay={N=k}={N>k—-1}\{N>k} =By 1\By,
Sk—1Ip, , +XpIp, , = Sklp, , = Sklp, + Skla,.
Since By_1 € 0(X1,...,Xk—1) we have X, I Sy_1Ip, ,. Hence
E[(Sk11p, ) (Xilp, )] =E[(Si_1Ip, ) Xz] =0.
We deduce that
E[ (S 1Ip, , +Xelp, )’ ] =E[(Sk1Ip, )] +E[ (XpIp,_,)?]
(Xy L Ip, ;)
=E[(Sk-1IB,_,)*]| + Var [ X} |P[ Bp_1].
On the other hand, I'p I, =0 so

E[(SkIp, +Skla, )] =E[(Selp,)?] +E[(Sela,)?].
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Hence

E[(Sk—1Ip, ,)*] + Var [ X} |P[Be_1] = E[(SkIB,)* | + E[ (SkIa,)?].
Since |Xi| < c and |Si_1] < a on Ay we deduce

1Skd ay| < [Se—1La, + [XilLa, < |Sk—1Ta, +cla, < (a+c)lq,

Observe that }P’[Bk_l] > ]P’[Bn ] We deduce

<E[(Sk-1Ip, ,)*] + Var [ X; |P[Bn]| <E[(SiIp,)* ] + (a+¢)*P[ A ].
Hence

Var [ XZ|P[B,] <E[(SeIp,)?] —E[(Sk—11Ip, ,)*] + (a+c)’P[ A}]

and
n

> Var [X{P[B,] <E[(SuIp,)*| + (a+c)*) P[A;]
k=1 k=1
< aQIP’[Bn] + (a+c)2]P’[BfL] < (a +c)?
In other words,
Var [ S, | (1 =P[M, >a]) < (a4 c)?
This proves (2.1.4). O

We can now complete the proof of Theorem 2.1.1. Using Kolmogorov’s maximal inequality
for the sequence (Xy4n)neny we deduce that for any n € N we have

1 1 &
L imi Sucs= Sl > €] < 5 Vo [Siusn = Su] = 55 3 Var [Xov]

Thus

IP[ SUP [Smsn — S| > e} <m, (2.1.5)
n>1 e

We set

Yy, = sup [S; —Sj|, Zm :=sup|Smin — Sml.
ij>m n>1

Now observe that .S, converges a.s. iff Y, — 0 a.s. The sequence Y,, is nonincreasing and
thus it converges a.s. to a random variable Y > 0. We will show that Y =0 a.s..

Note that, for i, 7 > m we have
1S; — S5 < |Si = S| + 155 — Sml <22,

so Y, <2Z,, Ym so

(2.1.5)
Yin > 2= Zn > €5 B[V > 2] SP[Zn>c] < ¥m21, Ve >0,

Hence
lim P[Y,, >¢] = lim P[|Z,]>¢]=0.
m—0o0

m—0oQ
In other words, the sequence (Y;,,) converges in probability to 0. Since it also converges a.s.
to Y we deduce that Y =0 a.s.. g
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Kolmogorov also established necessary and sufficient conditions for convergence in his
three series theorem. Before we state it let us introduce a convenient notation. For any
random variable X and any positive constant C' we denote by X the truncation

X7 ’X‘SC,

(2.1.6)
0, |X|>C.

C ._ _
X" = Xxi<ey = {

Theorem 2.1.3 (Kolmogorov’s three series theorem). Consider a sequence of independent
random variables X, € £°(Q,8,P). The following statements are equivalent.

(i) The series
> X (2.1.7)

n>1
converges almost surely.

(ii) There exists C' > 0 such that the following three series are convergent.

Y P[IXal > C) =) P[X, # XS], (2.1.8a)
n>1 n>1
STE[XT], D Var[ X (2.1.8b)
n>1 n>1

Proof. (ii) = (i) Note that that condition (2.1.8a) coupled with the first Borel-Cantelli
lemma (Theorem 1.3.52(i)) implies that P[ X, # X¢ i.0.] = 0. Hence the series >, _, Xy,

converges a.s. iff the series ) X,? convergence. The convergence of the latter follows from
(2.1.8b) and Kolmogorov’s one series theorem.

(i) = (ii) Since the series ) |
any ¢ >0

n>0 Xn 18 a.s. convergent we deduce that X,, — 0 a.s.. Thus, for

P[|X,| >cio.] =0
and the second Borel-Cantelli Lemma (Theorem 1.3.52(ii)) implies
ZIP[\Xn\ > C'io.] < oo
n>0

This proves (2.1.8a). Hence P[X,, # X¢ i.0.] = 0. Since the series 3, ., X, converges a.s.
we deduce that ) X¢ converges a.s.. The conditions (2.1.8b) are now a consequence of
the following result of independent interest.

Lemma 2.1.4. Suppose that (Y, )nen is a sequence of independent random variables that are
uniformly bounded and such the series ), Y, converges a.s.. Then the numerical series

Y E[Yn] and Y Var[Y,].
n n
converge.

Proof of Lemma 2.1.4. We follow the approach in [115, Sec.17.3]. The proof uses a clever
symmetrization trick.

Choose a sequence of independent random variables (Y,)), that are independent of (Y},)
and such that Y;, and Y, have the same distribution for any n. We set Y,* :=Y,, —Y,. The
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random variables Y," are symmetric in the sense that for any Borel subset B C R we have
P[YyeB]=P[ -Y; € B].
Fix C' > 0 such that |Y,,| < ¢, Vn. Then
V| < Vo] + |V <20, E[Y;] =0, Var[V;] =2Var[V,].
Since ), Y, converges a.s. so does ) Y*. We set
n
k=1
Form <n
Mo = 102x |5y 4 = Sy
Using (2.1.4) we deduce that for any € > 0 and any 0 < m < nwe have
B (e + ¢)?

Var [ S — S¥, |

Since S;; converges a.s. we deduce that for any € > 0

lim P[ My, >e]| =0.

m,n—00

<P[Mpy>el.

Choose mg > 0 such that P[Mmo’n > s] < %, Vn > mg. Hence, Vn > my
2 Z Var [V, ] = Z Var [V ] = Var [ S — Sp, | < 2(s+0)%.

mo<k<n mo<k<n

Z Var [Yn ]
is convergent. Kolmogorov’s one series theorem implies that the series

> (Yo —E[Va])

n>0

This proves that the series

converges a.s.. We deduce that Zn>oE[Yn] is convergent since ) .Y, converges a.s.. O

This completes the proof of Theorem 2.1.3. O

Example 2.1.5. Consider a sequence of i.i.d. Bernoulli random variables (Bj,),en with
success probability % The resulting random variables R, = (—1)B» are called Rademacher
random variables and take only the values +1 with equal probabilities.

>

n>1
is a deterministic series with bounded positive terms.We obtain the random series

> Ruan. (2.1.9)

n>1

Suppose that

We have E[Rnan] = 0 and Kolmogorov’s one series theorem shows that if

> al < oo

n>1
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the random series (2.1.9) is a.s. convergent. Conversely, if the random series (2.1.9) is a.s.
convergent, then Lemma 2.1.4 implies that is ), 5 a3 < oo .

As a special case, suppose that a, = %, Vn > 1. Consider the harmonic series with

random signs

R 1.1
d =k ok, (2.1.10)
n 2 3
n>1
We know that if all the terms are positive, a probability zero event, then we obtain the
harmonic series which is divergent. On the other hand,
1

> E <o

E>1
and we deduce from Kolmogorov’s one series theorem that the series (2.1.10)is a.s. convergent.

Thus, if we flip a fair coin with two sides, a + side and a — side and we assign the signs in
(2.1.10) according to the coin flips, the resulting series is convergent with probability 1! O

Remark 2.1.6. The so called Lévy’s equivalence theorem, [53, §111.2,Cor. 2], [56, §9.7], [112,
§43], [115, Sec.18.2] or [173, Thm.3.9] states that a series with independent terms converges
a.s. iff converges in probability, iff converges in distribution; see Definition 2.2.3(iii).The proof
that the convergence in probability implies convergence a.s. is outlined in Exercises 2.1 and
2.2. O

2.1.2. The Law of Large Numbers. The frequentist interpretation of probability asserts
that the probability of an event is roughly the frequency of the occurrence of that event in a
very large number of independent trials. The Law of Large Numbers formalizes this intuition.
The surprising thing, at least to this author, is that reality respects the theory so closely: the
Law of Large Numbers adds a surprising level of predictability to uncertainty!

Throughout this section (X,,),>1 is a sequence of iid random variables X,, € Ll(Q, S, P).

Set
p=E[X,], Sp=X1+ - +X,.

The various versions of the Law of Large Numbers state that the empirical means S, /n
converge in an appropriate sense to the theoretical mean p. The convergence in probability is
usually referred to as the Weak Law of Large Numbers (or WLLN) while the a.s. convergence
is known as the Strong Law of Large Numbers (or SLLN). We begin by presenting a few
special, but historically important, cases.

Theorem 2.1.7 (Markov). If X,, € L*(Q,8,P), then %Sn — pin L? and thus also in probability.

Proof. Denote by o2 the common variance of the random variables X,,. Since they are

independent we have Var [S’n} = no?, so

1 1
Var [Sn/n] = ﬁVar [STL] = W
Let € > 0. Note that E[S,/n] = pu so
1
| Sn/n—uHi2 =Var [S,/n] = —.

no?
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Sn
n

Hence converges to p in L2, Proposition 1.3.61 implies that S,,/n — u in probability. O
Theorem 2.1.8 (Cantelli). If X,, € L*(Q,8,P), then 1S, — p almost surely.

Proof. By replacing X,, with Y, := X, — u we can assume u = 0. We set

0% = [ Xp], vt = [ Xi], My = Sp/n.

Note that
P[|M,| >¢e] =P[|M,|* > ] < g%]E[M;*] = nj€4E[5;‘;]
Observe that
E[S,] = zn: E[X:X; X, X;]. (2.1.11)

2,5,k 0=1
Let ¢ # j. Due to the independence of the random variables (X,,),en we have
E[X7X}] =E[X?]E[X]] =o', E[X,X]] =E[X;]E[X]] =0
Similarly, for distinct i, j, k, ¢ we have
IE[XZ-XijXg] =0.
Thus
4 n
E[S.] = ntrt + 2<2> 204 =nrt 4 6<2>a4 = O(n?) asn — oco.
i<k
Hence E[ Mt ] = O( #), SO
P[|M,| >e] =0 L —
nl >el = 3.1 ) AsTm oo
Since the series Zn21 # is convergent we deduce that, for any € > 0,
D P[IM,] >¢e] < .
n>1
Corollary 1.3.54 implies that M,, — 0 a.s.. O
Remark 2.1.9. The above Strong Law of Large Numbers is not the most general, but its
proof makes the role of independence much more visible. More precisely the independence,
or the small correlations force the fourth moment of S,, to be “unnaturally” small and thus

the large fluctuations around the mean are highly unlike, i.e. the IP’[ | M| > E] is very small
for large n. a

The next result, due to Kolmogorov, generalizes both results above.

Theorem 2.1.10 (The Strong Law of Large Numbers). Suppose that (X,,)n>1 is a sequence
of #id random variables X, € L*(,8,P). Then

lim —S, = p as..
n—oo n
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Proof. We accomplish this in several steps.
Step 1. Truncate. Set
Yo i= Xoxojenys Tni=Yi+ -+ Y.
Obviously |Y,,| < n, ¥n. We claim that
P[ X, #Y, io.] =0. (2.1.12)
Indeed, since the random variables (X,,) are identically distributed we have
SOP[IX > k] = S P[1X1| > k] < /OOIP[\XI\ > t]dt "EYR[1x)]] < 00
E>1 E>1 0
and Borel-Cantelli’s Lemma implies implies that
P[|Xg| > kio.] =0.
This is equivalent to (2.1.12). We deduce from (2.1.12) that

lim l‘Sn—Tn‘ =0 a.s..
n—oo n

Thus, it suffices to show that
1
lim —T, =p as.. (2.1.13)

n—oo n

Step 2. Centering. The sequence (E[Yk])k>1 converges to yu = E[X]as k — oo. Indeed,

since the random variables are identically distributed we have
E[Y:] = B[ XeTyx, <y ] = B[ Xilyx, <y ] = B[ X0 ],

where at the last step we used the Dominated Convergence theorem. It follows that the
sequence E[Yn] is also Césaro convergent! to the same limit, i.e.,

1 R
Jn BT = Jun ) B[V] =
Thus, it suffices to prove that
1o 1o
nlin;o <n kg_l Y, — -~ kg_lE[Yk] ) =0, a.s.

Zn =Y, —E[Y,].
The random variables Z,, are bounded, centered, independent but not identically distributed.
We have to prove that the Césaro means of Z,, converge to 0 a.s., i.e.,

R
Jim > Z,=0 as. (2.1.14)
k=1
Step 3. Conclusion. We will rely on the following elementary result.

Lemma 2.1.11 (Kronecker’s Lemma). Suppose that (an)neny and (xn)nen are sequences of
real numbers satisfying the following conditions.

(i) The sequence (ay) is increasing, positive and unbounded.

1Use Exercise 2.6 with Pr,n = 1/n.
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(ii) The series Y, ~; 2= is convergent.
- n
Then

lim —E xp = 0.
n—oo Q.
" k=1

Assume temporarily the validity of Kronecker’s lemma. Thus, to prove (2.1.14) it suffices
to show that the random series
>
n

n>1
is a.s. convergent. The independence assumption will finally play a role because we will invoke
the one-series theorem. Clearly the random variables Z” are independent. We claim that

y Vaz[f’“] < . (2.1.15)
k>1
We have
Var [ Z,] = Var [V ] =E[ V2] —E[V:]® <E[Y?]
(1'3_'46)/0 2yIP’[]Yk] > y]dy —/0 2y]P’[k: > | Xk| > y]I{y<k} dy
< /0 2yP[ | X| > y [Ty dy.
Thus
v
y Al s / 2P [ X4] > y] L (yepy dy
k>1 k>1
o0 1 o0 1
:/ >l | P[] >y]dy:/ > | | PlIX > y]dy.
0 E>1 0 k>y
=w(y)
We claim that
w(y) <6, Yy >0. (2.1.16)

Indeed, for y < 1 we have
1
wly) =2y o5 <Ay <4
E>1
For y € (1, 2] we have

1
wly) =2y) 5 <2<
k>2

1
Z2_/J1t2 ly] -1

k>y

For y > 2 we have

SO
2 2|y] +2 4
y 2l 9

W(y)gtyj—l_LyJ—l_ LyJ—1<6'
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Using (2.1.16) we deduce
Var|Z o0
> k[Q I 6/ P[|X1] > y] dy = 6E[|X1|] < co.
E>1 0
This proves (2.1.15) and completes the proof of the SLLN, assuming Lemma 2.1.11. O

Proof of Lemma 2.1.11. Set
n
T
Yn = la S0 = ap = Oa Sp = Zykv n Z 17
n k=1

so that the sequence (s,)n>1 is convergent. We have to show that

L
nh_}ngo%kzlakyk =0.

We have?
n n
D akyr =Y ar(sk —sk-1) = ar([51]—s0) +aa(s2—[51]) + -+ an( 50— $0-1)
k=1 k=1
n
= ansn — Y _ sp—1(ar — ap_1).
k=1
Now set
wy,
Wk = Qg — Qk—1; Pnk = —-
Gnp

Since (an)nen is increasing, positive and unbounded we deduce

n
mek = 17 vn > 1a lim Pnk = 07 Vk. (2117)
k;:l n—oo
Observe that

1 & n
I P
Gn

k=1 k=1

The conditions (2.1.17) imply that (see Exercise 2.6)

n
lim E Dk,nSk—1 = lim s,.

O

Since a.s. convergence implies convergence in probability we deduce from the SLLN the
Weak Law of Large Numbers (or WLLN)

Corollary 2.1.12. Suppose that X, € L'(€,8,P), n € N, is a sequence of i.i.d. random
variables with common mean . We set

S, = ZXk~
k=1

Then the empirical mean %Sn converges in probability to p. O

2This is classically known as Abel’s trick. It is a discrete version of the integration by parts trick.
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Remark 2.1.13. (a) With a bit more effort one can show that in Strong Law of Large
Number the empirical mean %Sn not jus a.s. but also in L'; see Corollary 3.2.62.

(b) Let us observe that in the Weak Law of Large Numbers Theorem 2.1.7 the random
variables X, need not be independent or identically distributed. Assuming all have mean 0,
all we need for that for the Weak Law of Large numbers to hold is that the random variables
are pairwise uncorrelated,

E[XmXn ]| =E[ X, |E[Xn], Vm #n, (2.1.18)
and the only constraint on their distribution is
sup]E[XfL] < 00.

In Exercise 2.9 we ask the reader to show that the WLLN holds even the random variables
are not identically or dependent. It suffices to we assume something weaker than (2.1.18)
namely that if [m — n| > 1, the random variables X,,, and X,, are weakly correlated, i.e.,
lim sup ’E[Xme-l—k] ‘ = 0.
k—00 meN
Similarly, in the Strong Law of Large Numbers the variables to be independent. The theorem
continues to hold if the variables are identically distributed, integrable and only pairwise
independent. For a proof we refer to [59, Sec. 2.4].

The arguments in the proof Theorem 2.1.8 show that the SLLN holds even when the
variables X,, are neither independent, nor identically distributed. Assuming that all the
variables have mean zero, the SLLN holds if any four of them are independent, and the only
assumptions about their distributions is

supE[X,ﬂ < 0.
n

A natural philosophical question arises. What makes the Law of Large Numbers possible?
The above discussion suggests that it is a consequence of a mysterious form of “asynchronic-
ity”: their fluctuations around the mean cannot be in resonance and they cancel each other
out. These features can be observed in the other Laws of Large Numbers we will discuss in
this text.

If the random variables are independent, but not necessarily identically distributed, there
are known necessary and sufficient conditions for the WLLN to hold. We refer to [65, IX],
[76, §22.], or [139, Chap. 4] for details. O

Remark 2.1.14. Suppose that (X,,),>1 is a sequence of i.i.d. variables. The Strong Law of
Large Numbers shows that if they have finite mean pu, then the empirical means

1
My = —( X1+ + X))

converge a.s. to u. If p = 0o and M, converge a.s. to a random variable M, then M, is
a.s. constant. Exercise 2.12 outlines a proof of this fact. O

Example 2.1.15. Suppose we roll a fair die a large number n of times and we denote by S,
the number of times we roll a 1. Intuition tells us that if the die is fair, then for large n, the
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fraction of times we get a 1 should be close to %, ie.,

S, 1
2~ forn>>0.
n 6

This follows from the SLLN. Indeed, the above experiment is encoded by a sequence (X, )nen
of i.i.d. Bernoulli random variables with success probability p = %. Then

n
Sn=> X,
k=1

and the SLLN

&—HE[XJ zla.s.asn—>oo.
n 6

It helps to visualize a computer simulation of such an experiment. Suppose we roll a die a
large number N of times. For ¢ = 1,..., N we denote by f; the frequency of 1-s during the
first ¢ trials, i.e.,

The resulting vector (f;)1<i<ny € RY is called relative or cumulative frequency.

The R-code below simulates one such experiment when we roll the die 12,000 times.

N<-12000

x<-sample(1:6, N, replace=TRUE)
rolls<-x==
rel_freq<-cumsum(rolls)/(1:N)

plot(1:N,rel_freq,type="1", xlab="Number of rolls",
ylab="The frequency of occurrence of 1",

main="Average number 1-s during random rolls of die")
abline(h=1/6,col="red")

The output is a plot of the collection of points (i, f;) depicted in Figure 2.1. O

Average number 1-s during random rolls of die

0.20

0.00

T T T T T T T
0 2000 4000 6000 8000 10000 12000

The frequency of occurence of 1
0.10

Number of rolls

Figure 2.1. The frequencies f; fluctuates wildly initially and then stabilizes around the
horizontal line y = 1/6 in perfect agreement with SLLN.
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Example 2.1.16 (The Monte-Carlo method). Consider a box (parallelepiped)
By:=I x - x I c RF

where Iy,...,I; C R are nontrivial bounded intervals. Consider independent random vari-
aables X1, ..., X}, where X; is uniformly distributed on I;. The the probability distribution
of the random vector X = (Xy,..., Xy) is

1

——1

where we recall that A;, denotes the Lebesgue measure on R¥. If f : B, — R is integrable,
then

1
—_— )\ (de) =E| f(X)|.
5]y, f@e) = EL100)]
Suppose that X,, = (X 1,..., X, %), n € N, is a sequence of i.i.d. random vectors uniformly

distributed in By, then the sequence of random variables ( f(X ) Jnen is i.i.d., with the same
distribution as f(X). The SLLN implies that the sequence random variables

Zo= (X0 oo+ (X))

converges a.s. to

1
—_— ()N (dx).
e[ Br] /B,
This fact can be used to produce approximations to integrals using probabilistic methods.
When the dimension k is large these methods are, to this day, the only viable methods for

approximating integrals of functions of many variables.

In Example A.3.19 we describe a computer implementation of this strategy using the
programming language R. O

2.1.3. Entropy and compression. Let us describe a surprising application of the law of
large numbers. Suppose that we are given a finite set 2~ equipped with a probability measure
[P defined by the function p: 2" — [0, 1]

p(z) :=P[{z}].
We will refer to the pair (27, p) as alphabet.

Example 2.1.17. A good example to have in mind is the “alphabet” of the English language.
In this alphabet we throw in not just the letters, but also the punctuation signs and the blank
space. The elements z; are letters/symbols of the alphabet. The probabilities p(z;) can be
viewed as the frequency of the symbol z; in the written texts. One way to estimated these
frequencies® is to count the number of their occurrences in a large text, say Moby Dick.

Another good example is the alphabet {0, 1} used in computer languages. The frequencies
_ _1
p(0) =p(1) = 3. U

3As a curiosity, the letter “e” is the most frequent letter of he English language; it appears 13% of the time in
large texts. It is for this reason that it has the simplest Morse code, a dot.
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For a letter x; of the alphabet we define the “surprise” or “information” contained in the
letter x; to be the quantity

S(z;) := —logy p(x;).
The base 2 of the logarithm is the convention used in information theory and we will stick
with it. The unit of measure of surprise/information is the bit. Note that S(z;) € [0, o0].

Observe that the less likely the letter z;, the bigger the surprise. The Shanon entropy or the
information entropy of the alphabet is the quantity

Ent; [p] :=E,[S] :=— Z p(z) logy p(x), (2.1.19)

X

where we adhere to the convention 0 -log 0 = 0. Thus the entropy is the expected “surprise”
of the alphabet. For example, if an urn contains 99 black balls and only one white ball. We
would be extremely surprised if when we randomly draw a ball from the urn it urns out to
be the white one. The average amount of surprise in this case is

—0.9910g,(0.99) — 0.01 log,(0.01) ~ 0.08.
If pg is the uniform probability measure on 2", then
Ents [po | = log, | 2]
Let m := |Z|. Note that Prob(Z") can be identified with the (m — 1)-dimensional simplex
Ap={p=(p1,...,pm) €[0,00)™; p1+ - +pn=1}

We can view the entropy as a function Enty : A1 — [0,00). One can check that it is

concave since the function [0,00) 3 z — f(z) = —xlogy x is strictly concave. We have
m
Ent [p] = Zf(pz)
i=1

Jensen’s inequality shows that

1 & 1 _ logym
m; (ps) <f<mz ) )_Tv

with equality if and only if py = -+ = pp, = % We deduce
Enty [p] <log,| 2’|, Vp € Prob(Z), (2.1.20)

with equality if and only if p is the uniform probability measure. We will see later that the
above is a special case of the Gibbs’ inequality (2.3.9). Intuitively, this inequality says that
among all the probability measures on a finite set, the uniform one is the the most “chaotic”,
the least “predictable”.

We will refer to the elements of 2" as words of length n. The term “word” is a bit
misleading. For example, when 2 is the English alphabet as above, an element of 2™ with
large n can be thought of as the sequence of symbols appearing in a large text. On the other
hand, we can think of 2™ itself as a new alphabet with frequencies

Pr(x1, ..y xn) =p(x1) - plTy).
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The amount of “surprise” of a word (z1,...,x,) is

n

S(@1,. ) =Y S(p).

k=1
The entropy of (2™, py) is
Ento [pn] = n Entq [p]
We denote by 2™* the disjoint union of the sets 2™,
2r=|]am
neN
and we will refer to it as the vocabulary of the alphabet 2~

Fix and alphabet (27,p). We want to describe an efficient way of encoding the words
in 2™ by words in the vocabulary of the binary alphabet B := {0,1}. Thus, we want to
construct a code map C : 2™ — B* such that the words x € & with high frequency are
encoded by words in B* of short length. Normally we would require that € be injective but
we are willing to sacrifice precision a bit for the sake of efficiency. We would be happy if the
probability that two different words have the same code is very small, i.e., the event

v, € 2", x# 2 and C(z) = C(z)
has a very small probability.

Definition 2.1.18. Let ¢ > 0. The e-typical set Ag") with respect to p(x) is the set
Aé”) C Z™ consisting of words (z1,x2,...,z,) with the property

2—n(Ent2[p}+5) < p(«Tl, To,. .. 755'77,) < 2—n(Ent2[P]—€). (2,1,21)
O

Theorem 2.1.19 (Asymptotic Equipartition Property). For anye > 0 there exists N = N(¢)
such that for any n > N (e), the following hold.

(i) pn[Agn)] >1—¢.
(i) |AT| < on(Entalpl+e),
(i) |A| > (1 — )27 (Bntalp]-e)
Proof. We sample (£, p) it according to the frequencies p(x;) and we obtain a sequence

(X )nen of i.i.d. 2 -valued random variables distributed according to p. We obtain random
words (Xi,...,X,), n € N. The average amount of surprise per letter in this word is

1 1<
~S(X, . Xn) =~ ;S(Xk).

The law of large numbers shows that the random variables %S (X1,...,X,) converge in
probability to Ents [ p]. Now observe that

(X1,...,X,) € Aé’”(:} Ento [p] —e< %ZS(X;C) < Entq [p} 4+
k=1
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SO

P, [ A ] :]P’[ Enty [p] —e < %ZS(Xk) < Ent, [p] —i—s} —1
k=1

as n — oo. Fix N = N(e) such that
p[AM] >1—¢, Vn> N(e).
Note that for n > N (e)
1

= 3 p@) > Y palx) > 2Bl A
ze™ reAl™

and thus we have
|A£”)| < on(Enta[pl+e)

Finally, for n > N(e) we have
l—e< IP’n[Agn)] < Z g—n(Entz[pl—e) — g—n(Enta[p]—)| g(n)|
zeA™

and conclude that yA§")| > (1 — g)2n(Enta[p]—e) 0

The Asymptotic Equipartion Property (or AEP) shows that a typical set has probability
nearly 1, all its elements are nearly equiprobable, and its cardinality is nearly 27F2[?] The
inequality (2.1.20) shows that if p is not he uniform probability measure on 2", then

oBnt2(p] 1 2.

Hence, if € > 0 is sufficiently small, then
AL
|2

exponentially fast as n — oco. That is, the typical sets have high probability and are “extremey
small” if the entropy is small.

—0

This suggests the following coding procedure. Fix € > 0 so that 1—¢ will be our confidence

level. For n > N(e) the set A™ has about 2L elements where L = [nEnty [p] | elements
and thus we can find an injection

7: A 5 BL

For x € Aé”) we attach the symbol 1 at the beginning of the word J(x) € B and the resulting
word in BE*! will encode x. It uses L + 1 bits. The first bit is 1 and indicates that the word
x is typical.

We are less careful with the atypical words. Chose any map
g: 2"\ AW - Bl

and we encode an atypical word x using the binary word J(x) with a prefix 0 attached to
indicate that it is atypical. The resulting map C : 2™ — BL+! is not injective, but if two
words have the same code, they must be atypical and thus occur with very small frequency.
This is an example of compression.
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Take for example the English language. There are various estimates for its entropy,
starting with the pioneering word of Claude Shannon. Most recent ones* vary from 1 to 1.5
bits. How do we encode efficiently texts consisting of n = 10® symbols say? For example, the
book “Moby Dick” has 206,052 words and the average length of an English word is 5 letters
so “Moby Dick” consists of about 1.03 million symbols.

Forgetting capitalization and punctuation there are 26" such texts and a brute encoding
would require 26™ codewords to cover all the possibilities. The above result however says that
roughly 21" texts suffice to capture nearly surely almost everything. The term compression
is fully justified since this is a much smaller fraction of the total number of possible texts.
Also we only need codewords of lengths 1.5 million. Thus we need is roughly 1.5 gigabits
to encode such a text. If the letters of the alphabet where uniformly distributed in human
texts® then the entropy would be log,(26) ~ 4.70 > 3 x 1.5 and we would need more than
three times amount of memory to store it.

Remark 2.1.20. The story does not end here and much more precise results are available.
To describe some of them note first that for any alphabet 2" there is an obvious operation
of concatenation

$ 1 XM X X (2,a)) e wx

where the word x * 2’ is obtained by by writing in succession the word x followed by z’. Note
that this code uses on average % ~ Enty [ p] bits per symbol in a word. This is an example
of compression.

A binary code for the alphabet (£, p) is an injection
C: % — B*

For each x € 2" we denote by Lo (x) the length of the code word C(x). The expected lengh
of a codeword is

lc:=E[Lc]| = Z Lo(x)p(x).
zeX
Note that C' extends to a map

C*: 27" = B, C*"(x1,...,25) = C(x1) %+ % C(xy).
The code C' is called uniquely decodable if its extension C* : Z™* — B* is also injective.

An important subclass of uniquely decodable codes are instantaneous codes. A code C'is
called instantaneous if no codeword is a prefix of some other code word. E.g., if one of the
codewords is 10, then no other codeword can begin with 10.

Here is a very revealing example. Consider an alphabet A consisting of four letters
A = {a,b,c,d} with frequencies
Pa=1/2, pp=1/3, pc=ps=1/12.
Consider the following instantaneous code

a—1, b—01, ¢— 001 d— 000.

4 Google search with the keywords “entropy of the English language” will provide many more details on this
subject.

5The famous monkey on a typwriter produces texts where the letters are uniformly distributed, but we can safely
call the resulting texts highly atypical of the English texts humans are used to.
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The expected code length is

1 2. 3 3 5
R T

= —=1.
2 3 12 12 3 666

The entropy of alphabet is
_log2 log3  logl2

Enty [A] = St t g 162

Kraft’s inequality shows that for any uniquely decodable code C we have

EC > EDtQ [,A]

Moreover, there exist optimal codes C' such that
lc < Entg [‘A} + 1.

Such codes are called Shannon codes. The above code is a Shannon code. In fact it is a
special example of the famous Huffman code, [41].

Let us discuss a particularly suggestive experiment that highlights a defining feature of
Huffman codes and reveals one interpretation of the entropy of an alphabet.

Suppose we have an urn containing the letters a,b, ¢, d, in proportions py, pp, Pe, Pg- A
person randomly draws a letter from the urn and you are supposed to guess what it is by
asking YES/NO question. Think YES = 1, NO= 0. The above code describes an optimal
guessing strategy. Here it is.

(1) Ask first if the letter is @ — 1. If the answer is YES (= 1), the game is over. The
game has length 1 with probability 1/2

(01) If the answer is NO (= 0) the letter can only be b,c or d. Ask if the letter is
b — 01. If the answer is YES (= 1) the game is over. The game has length 2 with
probability 1/3

(001) If the answer is NO (= 0) ask if the letter is ¢ — 001. The game has length 3 with
probability 1/6.

For more details about information theory and its application we refer to [41, 121]. For
a more informal introduction to information theory we refer to [66]. The eminently readable
[77] contains historical perspective on the evolution of information theory. Kolmogorov’s
brief but very rich in intuition survey [101] is a good place to start learning about the
mathematical theory of information. O

2.2. The Central Limit Theorem

The goal of this section is to prove a striking classical result that adds additional information
to the Law of Large numbers.

Suppose that (X, )nen is a sequence of i.i.d. random variables with mean p and finite
variance o2. Note that the sum S,, := X; + - - -+ X,, has mean ny and variance no?. Loosely
speaking, the central limit theorem states that for large n the probability distribution of S,
“resembles” very much a Gaussian with the same mean and variance.

For example, if the X,,-s are Bernoulli random variables with success probability p, then
p=p, 02 = pg and S,, ~ Bin(n,p). In Figure 2.2 we have illustrated what happens in the
case p = 0.3 and n = 65.
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Figure 2.2. Visualizing the Central Limit Theorem.

The vertical lines depict the probability mass function of the binomial distribution while
the curve wrapping them is the Gaussian with the same mean and variance. They obviously
do “resemble”. However, we need to define precisely what we mean by “resemble”.

2.2.1. Weak and vague convergence. Let (X, d) be a metric space. Denote by Meas(X)
the set of finite Borel measures on X, Prob(X) C Meas(X) the space of Borel probability
measures on X, and by Probg(X) the space of subprobability measures® on X, i.e., Borel
measures i on X such that M[X] <1.

We denote by Cept(X) the space of continuous functions X — R with compact support
and by Cp(X) the space of bounded continuous functions X — R. This is a Banach space
with respect to the sup-norm

[ flloo == sup | f(z) |-
For any f € Cy(X) and p € Meas(X) we set

/f pldz] < oo.

Definition 2.2.1. Consider a sequence (pi,)nen of finite Borel measures on X.

(i) We say that the sequence (u,) converges vaguely to p € Meas(X), and we write
this py, --+ p if

h%m f( z)pn [ dz | / f@)p[dz], Vf € Cope(X). (2.2.1)

(ii) We say that the sequence () converges weakly to u € Meas(X), and we write this
pn = if

h_)m f( ) | d | / f@)uldz], Vfe Cy(X). (2.2.2)

(iii) A sequence of random variables (X,,)nen valued in X is said to converge in law or
in distribution if
Px, = Px in Prob(X),

630me authors refer to subprobability measures as defective distributions.
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ie.,

lim E[ f(Z,)] =E[f(2)], Vf € Cy(X). (2.2.3)

n—oo

We will use the notation Z,, i> Z or Z, = Z to indicate that Z,, converges to Z
in distribution. O

Remark 2.2.2. The weak convergences of Borel probability measures on Polish space (X , d)
admits an surprising characterization due to I.I. Skorokhod. More precisely, Skorokhod’s
representation theorem a sequence of Borel probability measures p, € Prob(X), n € N,
converges weakly to the Borel probability measure p € Prob(X) if and only if there exists
a probability space (Q,S,]P’) and Borel measurable maps X, : @ — X, n € NU {oo} such
that Py, = n, Vn € NU {oo} and d( Xy, Xoo) — 0, P-as..

For a proof and more details we refer to [14, Thm. 6.7] or [56, Thm. 11.7.2]. Exercise
2.23 asks you to prove a refined version of this theorem in the special case X = R. O

Definition 2.2.3. A collection F C Cy(X) is called separating if given g, 1 € Meas(R¥)
suchthat,uo[f]:,ul[f],VfEF,then,uo:ul. O

As shown in Proposition 1.2.62, the collection Cy(X) is separating so the above definition
is not vacuous for any metric space.

In the remainder of the subsection we will focus exclusively on the special case when
X = RF equipped with its natural metric.

Lemma 2.2.4. The collection C’Cpt(Rk) is separating. More precisely, let ug, py € Meas(R¥).
If

MO[f] :/R'ul[f]a erccpt(Rk)7
then o = 1.

Proof. According to Proposition 1.2.4 it suffices so show that for any compact subset K C R"
po[ K] =m[K].
Set
Spi={z¢€ RF: dist(z, K) > 1/n}.
For n € N define f,, : R — [0, 1]

fu(a) dist(z, Sy)

- dist(z, K) + dist(z, Sp,)

Observe that f, is continuous, and fn‘ S,=0, SO fn has compact support. Moreover and
lim f,(z)=Ik as..
n—oo

The Dominated Convergence Theorem implies that

[ Ts@ylds) = lin [ f@plde] = tim [ fuaylds) = [ Tipidel
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Lemma 2.2.4 shows a sequence of Borel probability measures on R* has at most one vague
limit, i.e., if g, --» and p, --» g/, then p = p'.

Proposition 2.2.5. Let ju,, € Prob(R¥), n € N be a sequence of probability measures.

() If pn converge vaguely to a measure p € Meas(R¥), then u is a subprobability
measure.

(ii) If un converge weakly to a measure p € Meas(R¥), then u is a probability measure.

Proof. (i) For each € > 0 fix a radius R. such that u[R*\ Bg_(0)] <e.

Consider the continuous function ¢ : R — [0, 1] uniquely determined by the requirements

1, t <0,
e(t) =140, t>1,
1—t, tel0,1].

We set pr(t) = ¢(t — R) and define
ng : RF = [0,1], nR(x):goR(‘xU :cp(‘x‘ - R).

Note that ¢p is supported in Br11(0) and Ip, < ¢r < 1. We have ,un[nga] <1,VneN.
Letting n — oo we deduce

M[Rk] —ESN[BRE] gu[goRE] <1, Ve > 0.
This proves H[Rk] <1
(ii) We have
,u[]Rk] :,u[l] = lim un[l] =1.

n—oo

Example 2.2.6. Let

Hn = % Z 5k/n
k=1

Then
pn = p = I (x)dz ~ Unif(0,1).
Indeed, if f € Cy(R), then

[ Famalda) = 3 f/m).
R k=1

The sum in the right-hand-side of the above equality is a Riemann sum for f corresponding

to the uniform partition

1
T

12
0<—< =< <
n n

Since f is Riemann integrable we deduce

i Ly = ' = T €T
i 2 700/ = /0 f@yts = [ faplde).
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Example 2.2.7. There exist vaguely convergent sequences of Borel probability measures on
R that are not weakly convergent. Take for example u,, = 6,, n € N. Then pu, --+ 0 yet u,
does not converge weakly to 0 since p, [R] =1, Vn. O

Theorem 2.2.8 (Mapping theorem). Suppose that F: R¥ — R™ is a continuous function
and X, : (2,8,P) — R*, n € N is a sequence of random vectors converging in distribution
to the random vector X. Then the sequence of random wvectors Y, = F(X,) converges in
distribution to Y = F(X).
Proof. Let f € Cp(R™). Then fo F € Cp(R™) and
E[f(yn)] :E[foF(Xn)] —)E[fOF(X)] :E[f(yn)]

g

Proposition 2.2.9. If the random variables X, converge in probability to X, then they also

converge in law to X. In particular, if X,, converge in p-mean to X, then they also converge
i law to X.

Proof. We deduce from Corollary 1.3.58 that for any f € Cp(R) the random variables f(X,,)
converge in probability to f(X). The Bounded Convergence Theorem implies

lim E[ f(X,)] =E[f(X)], Vf € Cy(R),
O

Example 2.2.10. Fix a standard normal random variable X. Then Px =P_x so —X is a
standard normal random variable as well. Consider the constant sequence

X,=X, neN.
Then Px, = P_x, but X,, does not converge to —X in probability. O
Theorem 2.2.11 (Portmanteau theorem). Let y,, € Prob(R¥), n € N, be a sequence of Borel
probability measures on R¥. The following statements are equivalent.

(i) The sequence (fin)nen converges weakly to p € Meas(RF).
(ii) For any open set U C R¥ we have

M[U] < liminf,u,n[U].
(iii) For any closet set C C R* we have
,u[C] > limsupun[C].
(iv) For any Borel set B C R* such that u[ﬁB] =0 we have
M[B] :nli_{gloun[B].
Proof. (i) = (ii) According to Theorem 1.5.9 the measure p is regular, i.e., for any € > 0
there exists a closed set C; C U such that
M[U} > M[C’g] > M[U] —e.
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Consider the continuous function
dist(z, U°)

'R 1 = .
fiR=(01], f(@) dist(z, U¢) + dist(x, C;)
Note that f =1 on C; and f = 0 outside U so Ic. < f < Iy, and thus
pn[ £1 < pn[U], VneEN.
In particular, we deduce that, Ve > 0, we have

,u[U} —5<M[Cg] Su[f] :T}Lngoun[f] glimninfun[U].

This proves (ii).

(ii) <= (iii) Follows from the following facts
e The set U is open iff U€ is closed
e For any Borel set B C R, ,u[BC] =1- u[B].

(i) + (iii) = (iv). Let B C R” be a Borel set such that u[ 9B ] = 0. Denote by U the interior
of B and by C'its closure so that 0B = C'\ U. We deduce

plB] =u[C]=plU]
Thus
limsupun[C] §,u[C] :u[B] :u[U} Sliminf,um[U].
Since 0B is closed we deduce

limsup,un[aB] < ,u[@B] = 0.

Hence
,un[U] :un[C] +,un[aB], li}Lnun[({)B] =0,
SO
liminf,un[U] zliminf,un[C'].
Hence

liTIln/Ln[C] :,u[C], lign,un[B] :liflln,un[C] +li7rln,un[aB} :,u[B].

(iv) = (i). Clearly it suffices to show that ,un[f] — u[f], for any nonnegative, bounded,
continuous function f on R¥.

Suppose that f be such a function. Set K := sup f. For any v € Prob (Rk) we can
regard f as a random variable (R¥, Bgi,v) — R. The integral V[f] is then the expectation
of this random variable. Using Proposition 1.3.40 with p = 1 we deduce that

K
El,[f]_/Rf(:):)u[dx]—/Ru[f>t]—/0 o[ f > t]dt.

Note that

v[f=t]=0=v[d{f >t}] =0.
Observe next that for any n € N we have

#{tER; l/[f:t] Zl/n}gn,
so, for any v € Prob(R¥) the set

{tER; u[f:t}>0}



2.2. The Central Limit Theorem 169

is at most countable. We deduce from (iv) that
lim ,un[f > t] = u[f > t] for almost any t.
n—o0

From the Dominated Convergence Theorem we deduce

K K
lim pip[ f] = lim un[f>t]dt:/0 plf>t]dt=pnlf]

n—oo 0

O

Corollary 2.2.12. Let X,,, n € N, be a sequence of random variables. Denote by F, (x) the
cdf of X,

Fo(z)=P[X, <z], z€R.
The following statements are equivalent.

(i) The random variables X,, converge in law to the random variable X .
(ii) If F(x) is the cdf of X, then
lim F,(x) = F(x),

n—o0

for any point of continuity x of F.

Proof. Set p, := Px,, p := Px The condition (ii) is a special case of condition (iv) of the
Portmanteau Theorem so (i) = (ii).

(ii) = (i) Denote by 2" C R the set of points continuity of F'. Note that its complement
R\ 2 is at most countable so 2 is dense. Note that for a,b € 27, a < b we have

Pla< X <b] =F(b) — F(a).
For any a,b € R, a < b and any € > 0 there exist a.,b. € 27, a < a. < b < b such that
F(bs) — Fac) =Pla. < X <b.| >Pla< X <b] —e.

Hence
lim (F,(bs) — Fu(ac) ) = F(bs) — Faz) >Pla< X <b] —e.

n—oo

On the other hand
Pla < X, <b] >P[a. < X, <b:], Vn,
so that
liminfPla < X, <b] >Pla< X <b] —¢, Ve >0,

n—oo

i.e.,
liminfPla < X, <b] >Pla< X <b], Va<beR.
n—o0

Thus, the sequence p, satisfies the condition (ii) in the Portmanteau Theorem 2.2.11, where
U is any open interval of the real axis. Since any open set of the real axis is a disjoint union
of countably many open intervals, we deduce that condition (ii) in the Portmanteau Theorem
is satisfied for all the open sets U C R.

Indeed suppose that

U:UQ

k>1
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where [ are pairwise disjoint open intervals. For K € N we set

Uk = U 1.

1<k<K
Then
P[X € Ux | <liminfP[ X, € Ux | <liminfP[ X,, € U], VK € N.
n—oo n—oo
Letting K — oo we deduce the desired conclusion. a

Theorem 2.2.13 (Slutsky). Suppose that (X, )nen and (Yn)nen are sequences of random
variables such that (X,) converges in distribution to X and Y, converges in probability to
c € R. Then the sum X, + Y, converges in distribution to X + c.

Proof. Without loss of generality we can assume ¢ = 0. We follow the argument in [14,
Chap. 1, Sec. 3]. Fix a closed subset C' C R. For € > 0 set
Ce:={zeR; dist(z,C) <e}.
The set C; is closed and we have
{Xn+Y,eClc{lYal>c}u{X,eC.}.
and thus
P(X,+Y,€C] <P[|Y,]|>¢e]| +P[X, € C:].
Letting n — oo we deduce from the assumptions and the Portmanteau Theorem that

limsup]P’[Xn+Yn € C} < limsupIP’[Xn € Cg] S}P’[X € Cg].
n—oo

n—oo

Now let € N\, 0 observing that C. \,C.

We can now formulate and prove the main convergence criterion of this subsection.
Theorem 2.2.14. Suppose that (un)nen S a sequence of nonzero finite Borel measures on

R* and u € Meas(R¥). The following statements are equivalent.
(i) The sequence (un) converges weakly to p € Meas (R¥).

(ii) The sequence () converges vaguely to p and
lim ,un[Rk] :,u[]Rk].
n—oo

(iii) There exists a collection F C Cy(RF ) whose closure in Cy(R¥) contains Cepy (R
and such that
iim [ f@palde] = [ fanlde], s e,

n—oo RE

(2.2.4)
lim ,un[Rk] :N[Rk}.

n—o0
Proof. In each of the statements (i)-(iii) we have
0<C:= supun[Rk] < 0.
n

Replacing the measures p,, by é Un we can assume that all the measures pu,, are subprobability
measures.
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Obviously (i) = (ii) and (ii) = (iii). It suffices to prove that (ii) = (i) and (iii) = (ii).
We will need the following result.

Lemma 2.2.15. Any finite Borel measure . € Meas(R¥) is on R is Radon, i.e., for any
Borel set B C R and any € > 0, there exists a compact set K C B such that M[B \ K] <e.

Proof. Let B C R* be a Borel set and € > 0. According to Theorem 1.5.9, the measure y is
regular. Hence, there exists a closed set C' C B such that
€

On the other hand, we can find R > 0 sufficiently large such that

u[Br(0) ] > u[RF] - =

We set K := Bp N C. The set K is clearly compact and

n[C\K] < u[RM\Br(0)] < 3.
Thus u[ B\ K| =p[B\ K]+ p[C\ K] <e. O

(ii) = (i) We will show that the sequence () satisfies the condition (ii) in the Portmanteau
Theorem. Now let U C R* be an open set and ¢ > 0. Lemma 2.2.15 shows that for any € > 0
there exists a compact set K C U such that ,u[K] > ,u[U] — €.

Choose r < 1 dist(K, U¢) and set
C,:={z eRF; dist(z,K) >r}.
The set C, is closed and its complement
V,i={zeRF dist(z, K)<r}cU
is precompact. Consider the continuous function
B dist(z, Cy)
dist(z, K) + dist(z, C,)

Observe that it vanishes on C; and thus it has compact support contained in U. Moreover,
w=1on K. Thus I'yx < ¢ < Iy so that

il K] < [ 9] <[],

@ RF — [0,1], o(x)

Letting n — oo we deduce
,u[U] —e< ,u[K] < u[gp] = lim,un[ap] < liminf,u,n[U], Ve > 0.
n n
This establishes condition (ii) of the Portmanteau Theorem.
(iii) = (ii) Let ¢ € Cep(R¥). For any € > 0 choose f. € F such that ||¢ — f.|jc < §. Then
v f] —v]e]]| < %, Vv € Prob,(R").
We deduce

| ™

limsup | [ fo] = pn[ @] = limsup | pn[ fo] = pn[ ]| <

n—oo

On the other hand .
lule] —ulfe]l <5
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so that, Ve > 0,

limsup [u[@] —pm[o] | < |n[e] —nufe] [ +lmsup|u]fe] —ua[e] ] <e.
Hence
Jim [l e] —nle]|=0.

O
Corollary 2.2.16. Consider a sequence i, € Prob (Rk) and p € Meas (Rk) Then the
following are equivalent.

(i) The sequence (un) converges weakly to p.

(ii) For any bounded Lipschitz function f : RF — R we have
pn [ f]=nlf].

Proof. The implication (i) = (ii) is obvious. To prove that (ii) = (i) observe first that
any compactly supported continuous function can be uniformly approximated by compactly
supported smooth functions” so the closure in Cj(RF) of the set of bounded Lipschitz functions
contains Cept(R¥). The measure y is a probability measure since the constant function Ik
is bounded and Lipschitz and thus

M[IR;C} ZRILH;“”[IR’“} =1.
The conclusion now follows from Theorem 2.2.14. O

Corollary 2.2.17. If a sequence p,, € Prob (Rk ) converges vaguely to a probability measure,
then it also converges weakly. O

Corollary 2.2.18. Suppose that (X,,)nen and X are random variables with ranges contained
in Z. Then X, = X if and only if

lim P[ X, =k|=P[X =k], VkeZ (2.2.5)

n—oo
Proof. The condition (2.2.5) is clearly satisfied if X,, = X since
P[X=k]=P[k—1/2<X <k-+1/2]
= lim P[k—1/2< X, <k+1/2] = lim P[X, =k].

n—oo
Conversely, if (2.2.5) is satisfied, then Vo € Cepi(R) the set Z N supp ¢ is finite and thus
Elo(X)] = > kP[X,=k] = > @kP[X=k]=E[oX)].
k€ZNsupp ¢ k€eZNsupp ¢
The conclusion now follows from Theorem 2.2.14. O

Corollary 2.2.19. The topology of weak convergence on Prob(RF) is metrizable, i.e., there
exists a metric d on Prob(R¥) such that

pn = v <=d(n,v) = 0.

7On simple way to see this is to use Weierstrasss approximation theorem.
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Proof. Let
F= {f()aflv"‘}

be a countably subset on Cj(R) whose closure contains 1 and Cgpt(R™). Define

d: Prob(R) x Prob(R) — [0,50), d(,v) =3 % maxc((| ulfel — vlfdl |, 1).
>0

According to Theorem 2.2.14 we have

:un:>V<:>,un[f€] %Nn[fﬁ] —)I/[fg], Ve > 0.
O

Remark 2.2.20. For any metric space X there exists a metric dpp on Prob(X) called the
Lévy-Prokhorov metric such that, the convergence with respect to this metric implies the
weak convergence, i.e.,

drp(pn, 1) = 0= pn = p.
If moreover the metric space X is separable, the convergence in the Lévy-Prokhorov metric
is equivalent to the weak convergence. To describe this metric we need a bit of notation. For
any subset S C X and any € > 0 we set

5S¢ :={zeX; dist(z,S) <e}.

The function x — dist(z, S) is Lipschitz so S¢ for any S C X. Given pg, 1 € Meas(X) we
define

drp(po, 1) ==1inf{e > 0; po[B] <m[B°]+e, m[B]<m[B°]+e, VBeBx}.
For more details and proofs we refer to [14, Sec.6] or [56, Sec.11.3]. 0

The next result generalizes Fatou’s Lemma. However, our proof relies on Fatou’s Lemma.

Proposition 2.2.21. Suppose that the sequence of random variables (Xp)nen converges in
distribution to X. Then
E[|X]] < liminf E[ |X,|].
n—oo
In particular, X is integrable if the sequence (Xp)nen is bounded in L', i.e.,

supE[ | X,|] < oc.
n

Proof. The Mapping Theorem 2.2.8 implies that the sequence (|X,|)nen converges in dis-
tribution to |X|. Thus

imP[|X,| > t] =P[|X| > t],

neN

for all ¢ outside a countable subset of [0,00). Using (1.3.46) we deduce

E[|X]] :/OOOIP’[]X]>t]dt, E[|X,] :/OOOIP[\Xn|>t]dt, V.

Fatou’s Lemma implies

/P[\X|>t]dt§hminf/ P[|Xn| > t]dt.
0 n—o0 0



174 2. Limit theorems

At this point it is profitable to look at the concept of weak convergence from a functional
analytic viewpoint. If (K, d) is a compact metric space, then Riesz’s Representation Theorem
1.2.64 shows that Meas(K) is a closed convex cone in C'(K)*, the topological dual of the
Banach space C'(K) (with the sup-norm).

The weak convergence of finite measures corresponds to the convergence in the weak*
topology on the dual space; see [24, Sec. 3.4]. Since C(K) is separable, the weak™ topology
on C(K)* is defined by a countable family of seminorms and thus it is metrizable. The
Banach-Alaoglu theorem [24, Thm. 3.16] implies that the unit ball in C(K)* is compact, so
any abounded subsequence in C(K)* admits a convergent subsequence. In particular, this
shows that any sequence (i, )nen such that

supun[K] < 00
n

admits a subsequence that converges weakly to a finite Borel measure on K.

To see this principle at work consider the compactification R= [—00, 0] of R. The map
tan : (—7/s,m/2) — R induces a homeomorphism [—m/2, /2] and thus the compactification
[—00,00] is metrizable. The continuous functions on R are the continuous functions on R
that have finite limits at +o0c. In particular, C(]l_%) C Cp(R). A finite measure p € Meas(R)
extends to a measure /i € Meas(R), namely, ji| B| = u[ BNR], for any Borel subset B C R.
We thus have an inclusion

Meas(R) C Meas((f&).
This inclusion is strict: the Dirac measures d1, do no belong to Meas(R).

Suppose that (pn)n>1 is a sequence in Prob(R). The sequence (fip))n>1 in Prob (]1_%)
admits a subsequence [i,, that converges weakly to a measure jio. This defines a measure
loo € Meas(R) by setting

poo| B] = fisc [ B], VB € B C By
In particular, we deduce that for any compactly supported continuous function f : R — R
we have
Note that the limit s need not be a probability measure since

NOO[R} = ﬂw[@\{ioo}] =1 _ﬂw[{ioo}]-
Theorem 2.2.22 (Helly’s selection theorem). Any sequence (vn)n>1 of finite, nontrivial
Borel probability measures on R such that

supyn[R] < 00

n

admits a vaguely convergent subsequence.

Proof. After extracting a subsequence we can assume that sequence Vn[R] converges to

Vso > 0. Set
1
= Vp.
TR
The above discussion shows that the sequence of probability measures u, admits a subse-
quence (fin, ) that converges vaguely to 1o € Meas(R). The subsequence I/nk[ — ] converges

Voo',uoo[—] O
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Proposition 2.2.23. Suppose that (i) is a sequence in Meas(R) that converges vaguely to
a measure [~ € Meas(R) and

Sup Ly [R] < 00.
n
Then following are equivalent

(i) The sequence converges weakly to oo .
(ii) Moo[R] = lim,, 00 un[R].
(iii) The sequence (uy,) is tight, i.e.,
lim sup p, [R\ [-L,L]] = 0.

Proof. We proved the equivalence (i) = (ii) In Theorem 2.2.14. Let us show that (iii) =
(ii). Fix L > 0 such that

oo [R\ [-L, L] ] <e.
Fix L > 0. As in the proof Theorem 2.2.14 choose ¢, € Cept(R) such that

I pp<er<1l=Igr
Hence

pn[R] —e <pnler] < pa[R], ¥ € NU{oo}
The tightness condition implies that for any ¢ > 0 we can choose L = L(e) such that
Vn € NU{oo}, pn[[-L,L]] > pn|[R] —c.

Letting n — oo we deduce

Ve > 0, limsupun[R] —ESMOO[QDL(E)] glinrgicgfun[R].

n—oo

Since this holds for any € > 0 we deduce that
liminfun[]R] = lim un[]R].
n—oo n—oo

Thus, for any € > 0

| lim i [R] = o[ 0re) | | <&, [Hoo[0rie)] — heo[R] | <.

n—oo
Hence
Jim pn [R] = poo[R].
This proves (ii).
Finally, let us prove that (i) = (iii). For each L > 0 choose as above f1, € Ccpi(R) such
that I'_p, 1) < fr < 1. Next, for any € > 0 choose L = L(¢) such that

oo [R] 2 pioe[ ()] 2 oo [[-L(6), L) ] > poo [ R] — &

Let g. =1 — fr(c) € Co(R). Then pin| ge | = poo[ ge | so that

lim (i [R] = pin [ fre)]) = poo[R] = poo[ fr)] <
Thus there exists N = N(e) such that, for any n > N(¢)

pn[R] = pn[[=L(€), L(e)] ] < pn [R] = pin[ fre)] <&

| ™
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For each k =1,...,N(e), choose Li(g) > 0 such that
pp[R] = p [ [=Li(e), Li(e)]] <e.

If we set
L*(g) = max { Ll(g)a cee 7LN(8)(€)7L(€) }a
then we deduce that for any n € N and any L > L,(¢) we have
pn[R] = pn[[-L, L]] <e.
O

Proposition 2.2.24. Suppose that (Xy)nenufoo} 45 @ family of random variables with the
following properties
(i) For any k € N, and any n € NU {oo}, E[|X,|*] < cc.
(ii) For any k € N
. k1l _ k
(iii) The probability distribution of X is uniquely determined by its momenta. E.g.,
this happens if 3T > 0 such that

E[eX=] < oo, V|t| <T.

Then X,, converges in distribution to Xoo.

Proof. Set u, := Px,. Observe that the family (u,) is tight. Indeed, if
M := sup IE[X,%],
keNU{oco}

then we deduce from Chebyshev’s inequality that for any L > 0 and any n € N we have

pn[{lz] > L}] < %

We will first prove that that the whole sequence u, converges vaguely to a finite measure
Hoo-

Helly’s Selection Theorem implies that any subsequence of u, has vaguely convergent
sub-subsequences. Thus it suffices to show that all the vaguely convergent subsequence of
(i) have the same limit.

Suppose that pe is the vague limit of a subsequence. To ease the presentation assume
that the subsequence is (). Since the sequence (i) is tight the convergence is weak and
lioo 18 a probability measure. We will prove that pi, has finite moments and, more precisely

/xk,uoo[dx] =E[XE], VkeN.
R

Since the distribution of X is assumed to be uniquely determined by its moments we deduce
that poo = Px_,.
Fix k € N. Define the finite measures
I/n[dx] = mG[dl‘} =(1 —f—x%)un[daz].

We set v [dx} =(1+ :c%),uoo[dx]. Let us first show that vy is a finite measure.
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To see this choose for any L > 0 a compactly supported functions such that
I <epr<1
Since ¢y, (x)(1 + 22¥) is compactly supported we deduce that

(L. 1)) < veln] = [ (@)1 + 2o d )

= lim [ ¢r()(1+2%)u,[de] < lim [ (1+2®)u,[de] = (1 +E[X2]).
R

n—oo n—oo R
Hence
Voo [R] = lim voo[[-L,L]] <1+ E[X%] < .

L—oo
Since p,, converges vaguely to s and ¢(z)(1+2%*) has compact support for any compactl;y
supported ¢ we deduce that v, converges vaguely to the finite measure v,. We will show
that in fact that the sequence (v,) is tight so that it converges weakly to V.

For any L > 0 we have

L, [ {le] > L}] < /

?* v, [dr] < / (1 + 2 [ da ] < Moy, + My,
lz|>L

R

where

M; = ZE[an|j], Vj e N.

Hence

Moy, + My,
proving that the sequence (v,) is tight.
Consider now the bounded continuous function f(z) = % Then
k . k . k
B[XE]) = lim B[X8) = lim v £] = vl £] = [ abuc[d].
Thus g has finite moments of any order all equal to the moments of Px__ . O

2.2.2. The characteristic function. Suppose that E is a finite dimensional real Eu-

clidean space with inner product (—,—) and associated norm. Denote by E* the dual of
V, V* =Hom(V,R). For £ € E* and = € E we set
(& @) = &(x).

The inner product on E induces by duality an inner product and Euclidean norm on E*
denoted by the same corresponding symbols.

The key ingredient in the proof of the CLT is that of Fourier transform or characteristic
function of a finite Borel measure p € Meas(E),

w:E*— C, ﬁ(f):/ei@’@u[daz].
E

Note that 4 is a probability measure if and only if 7i(0) = 1.

From the Dominated Convergence Theorem we deduce that [ is a continuous function
E* — C. Thus, the Fourier transform is a map

Prob(E) 5 p — fi € Cy(E*,C).
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The characteristic function of a random variable X is the Fourier transform ®x (&) of its
probability distribution Px € Prob(R),

By (€) = Px(€) = E[ Y] :/Reiﬁxﬂﬂx[dx].

Note that
[Bx(6)] <1, VEeC.
Moreover, @x(0) =E[1] = 1.

Proposition 2.2.25. Let X € L?(2,8,P). Then ®x € C*(R) and
Py (0) =4E[ X ], @%(0)=-E[X?].
Proof. Denote by Px the probability distribution of X so Px € Prob(R). Then
Dy (§) —/ei“’f}P’X[daj].
R

Note that since X € L? we have

/R\xHPX[dm], /RmQIPX[dx] < 00

3§ei$£ = jzet™t ¢ LI(R, Px ),
8526”5 = —g2et ¢ Ll(R,IF’X )
This shows (see Exercise 1.8) that the integral

/ P [dm}
R

is twice differentiable with respect to the parameter £ and we have
By () =i [ acPy[do], V5(e) = [ PPy [da].
R R
Using the Dominated Convergence Theorem we deduce that the function

ga/ e Px [dx].

is continuous so ®x € C%(R). O

SO

For v > 0 we denote I';, € Meas(E) the measure

1 _l=)?
Lyldz] =~,(x)Adz ], v,(z) = ——5=5€¢ 2, (2.2.6)
(2mv) 2
where A is the Lebesgue measure on F.
Suppose that m = dim E. Choose Euclidean coordinates (z1,...,zm), m = 1,...,m.

Then we observe I';, is the product of m Gaussian measures on R with mean 0 and variance
v

e 2 da:k (2.2.7)

||®3

Thus I', is a Borel probability measure on E
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Proposition 2.2.26. Let m :=dim E. Then

/ |#]]’T, [ dz | = mw, (2.2.8)
E

= _olel? 2\ 2

Fv(f) = e 2 = (U> 71/’0(5)7 Yv > 0. (229)
Proof. We choose an orthonormal frame of E with Euclidean coordinates (z1, ..., zpm). Then

’r,[d :m/ 2, [ | 220§ L /2’5361.
[ llel?r, [a] O A e R

=v

~ 1 m 2

k=1

s 1 ity Tk 1 ier—2® N
= e’ R T dy | = e wdy .
,H(\/ZWU/R > <\/27rv R >

Thus, it suffices to consider only the case V' = R.We have

N 1 2 1 2 N
(¢ = e 20 ¥y = /6_26“/5&4(1 =T1(\/vn).

Hence only need to determine

F©) =T = jg /R 5 e .

The imaginary part of the above integrand is odd function (in x) so f(&) is real , V¢, i.e.,

16) = o= [ % cosléapts
The function
(% costea) ) = e sin(en)

is integrable (in the x variable). This shows that f(§) is differentiable (see Exercise 1.8) and

GE —jz; /Rx_ sin(€z)dz = \/12? /IR (% )sin(ea)de

(integrate by parts)
:_\/ﬂ/ “7co s(éx)dr = £ f(§).
Thus

so that p
d—é(efzﬂf(f)) =0 f(£) = Ce™

Since f(0) =1 we deduce C' =1 and thus f‘l(ﬁ) =e 2. 0

2
2
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Theorem 2.2.27. A probability measure u € Prob(E) is uniquely determined by its charac-
teristic function, i.e., the map

Prob(E) 5> p+— p € Cy(E*,C).
18 1njective.
Proof. For any v > 0 and u € Prob(E) we set p, := I'y * u.We have

Mo [dx} = po(z)dz, py(z) = /E,YU({L. —y) M[dy] .
The theorem follows from the following two facts.

Fact 1. The family (1y)y>0 is completely determined by 7.
Fact 2. The family (u,),~0 converges weakly to p as v \ 0, i.e.,

gi{‘%,uv[f] =ulf], VfeC(R).

Proof of Fact 1. The idea behind this fact is that the Fourier transform and the convolution
interact in a nice way. More precisely we will show that

1 ; ~
pu@) = e [y (-6 (2.2.10)
(2mv)=2 JE
Using (2.2.9) with the roles of x and & reversed (i.e., we think of E as the dual of E*) we

deduce

22

(2m0) F yy(2) = e 5 = /E ey (€)dE.

o) = o [ (Lo nuterie) nla
(use Fubini)

= (2;)),; /*emf’yl/v(f) (/E e_iyg,u[dyo d§ = \/217[_7/]1{67:96&71/11({),&(_{)616

Proof of Fact 2. Let f € Cp(E). Using Fubini’s theorem we deduce that

/f ) pho | da | /f </%x— )u[dy}>dw
:/E </E%(ﬂf—y)f(ﬂf)dw)u[dy]

Hence

=:fu(y)
The function y — f,(y) is obviously continuous. If C := sup,cg|f(x)|, then
| foly) <M/'yvx— m_>—z+yC/’yU(z)dz—C, Yy e E, v>0.
R

On the other hand
fuly) = /E oy — D) f (t)dt = /E ot — ) f(E)dt = /E o)z + y)dz = Ty [ T,f].
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where Ty, f(2) := f(2 +y). Fix y, ¢ >0 and a 6 = (e, y) > 0 such that
€
swp | f(z+y) = fly) | <35
llzll<d
Then
[ £oo) = 1) | = [T [T0) = 50 | = | [ (14 9) = )Tl
<[5t - W) Tld 4 [ [ - F)| Tl
ll2ll<d ll2]1=0
< sup | fz+y)— fly)| +2C T, [dz]
ll2ll<é ll2]1=6
2C (228) ¢ 2Cmw
<sup | fz+9)~ )|+ 55 [ alPEulas) ST S 4 2
\z|<6| I+ B 2 &
Hence c
Ve > 0, limsup‘fv(y) — fly) | < 2 Ve >0, Vy € R,
v\0
so that
}}I{%fv(y) = f(y), Yy €R.
The Dominated Convergence Theorem implies
}JI{%MU[}C] = }}{%M[fv] = ,LL[ i{(%fv] = N[f]
(|

Remark 2.2.28. (a) In the above proof set

oscy (y,é) = sup }f(y—i—z) — f(z) |, oscs(d) = suposcy (y,é).
ll=ll<d yeE

We proved that

| £u0) — F) | < oses (.0) + 22U < e ) 4 20 et

In particular, if f is uniformly continuous, i.e., lims_,o wy(d) = 0, we deduce that f, converges

uniformly to f. More precisely, if we set § = v'/* we deduce

1o — Flloo < oscp (0174 + 2m]| fllov'/2.

(2.2.11)

(b) The above theorem can be rephrased as stating that the collection of trigonometric

functions
{R >z cos(éx),sin(éx); £€R}

is separating. However, the smaller family

{R >z cos(&x),sin(éx); [¢] <1},

is not separating! More precisely, there exists two distinct probability measures pg, 41 such

that
1o (§) = 11 (§), Vg < 1.
We refer to [115, Chap. IV, Sec. 15, p.231] for more details.
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(b) The range of the Fourier transform
Prob(R) > p+— 1 € Cy(R)
can also be characterized. Note first that Vu € Prob(R)
p(0) = p[R] =1, f(=¢) = a(s), vEeR.

Additionally, the function fi is positive definite. This means that, for any n € N and any
&1,...,&, € R, the hermitian matrix

(A& = &) )1<ijen

is positive semidefinite, i.e., for any z1, ..., z, we have
> G — &)zz; = 0.
1<i,j<n

This follows by observing that

> A& - &)uz = /R‘ gzkeiﬁkx

1<i,j<n

Q,u[d:c].

It turns out that these above necessary conditions characterize the range of the Fourier
transform: it consists of continuous positive semidefinite functions ¢ : R — C such that
0(0) = 1. This is the content of the celebrated Bochner theorem. For various proofs we
refer to [65, Sec. XIX.2], [74, §I1.3], [148, 1.24], [149, Sec. 1.4], [156, Thm. 9.17], or [177,
Chap.6]. O

Corollary 2.2.29. Suppose that X1, ..., Xy, are real random variables. Denote by P € Prob(R™)
the distribution of the random vector X = (X1,...,Xm). Then the following are equivalent

(i) The random variables X1, ..., X, are independent.
(ii) For any &1,...,&m €R

Pe(ér . mm) = [ [ ®x, (&)
k=1

Proof. Note that
Pi(fl,...,gm):/mez(&x)[p)?[dx]‘
We denote by Q¢ the product measure

m
Qg = ®ka-
k=1

Note that m
Qlere o) = [ 6By By [do] = [] (60
" k=1
The random variables X1,..., Xy, are independent iff P¢ = Q. The corollary now follows
from Theorem 2.2.27. O

Theorem 2.2.30 (Lévy’s Continuity Theorem). Let (in)nen be a sequence in Prob(R) and
u € Prob(R). The following statements are equivalent.
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(i) The sequence (pin)nen converges weakly to p.
(ii) For any £ € R
lim 7in(§) = H(§)-

n—o0

Proof. Our presentation is influenced by Le Gall’s course notes [109].

(i) = (ii) Since p,, = p we deduce that for any £ € R we have

lim Rcos(&x)un[da:] :/Rcos(ﬁx)u[da:],

n—oo

lim / sin({x),un[d:r] = /R sin(éx)p[dz].

(ii) = (i) For any v > 0 and any f € Cy(R) we define f, : R = R

N

It is easy to see that f, € Cp(R). We set
F = {fv; f € Cp(R), v> 0}.
We will prove that the closure of F in Cp(R) contains Cept(R) and then
nlingoun[fv] =pnlfo], Yo >0, Vf € Cep(R). (2.2.12)

Let f € Cept(R). Observe that

— / F(@ =y (y)dy = / F@) v — 2)dz
R R

Since f has compact support f is uniformly continuous and according to Remark 2.2.28 (a),
the function f, converges uniformly to f. Thus the closure of F in Cp(R) contains Cept(R).

Let v € Prob(R). Then

/</f %ZfEdZ)Vdfv /f (/%zx)) [dx]>dz

~~

pv(2)
20 ([ ne©nt-gae ) flayas
_ 1 1xé S(— _ 1 ~ S
= Voo e < /Re f<$>d€> Y P(-€)dE = —o— /R F(&myn(©(=€)de.
=:1(€)

The function f(f) is well defined since f € C¢pt(R). The Dominated Convergence theorem

< /R f ()| da.

1 ~ ~
- —— [ Fom (-6

shows that f is continuous. Moreover

We deduce that, Vn € N,
pin | fo]
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Note that for any v € Prob(R)

~

| F(©)71/0(6)

<)

(=) | < (sup| f(@)]) - v10(6) € L' (R, ).

zeR

The Dominated Convergence theorem shows that

T [ F€rm @m0 = [ Femp©m-ed = ul £,
As explained in Remark 2.2.28(a), if f € Cy(R) is uniformly continuous, then f, converges to
f uniformly as v \( 0. In particular, if f has compact support, then f, converges uniformly
to f as v — 0. We deduce that the family

F .= {(pv; v>0, pe Ccpt(R)}

contains Cept(R) in its closure and ,un[ f ] — M[ f } for any f € F. The conclusion follows
from Theorem 2.2.14. O

Remark 2.2.31. (a) One can show that if a sequence p,, € Prob(R) converges weakly to
a probability measure pu, then 71, (§) converges to 11(§) uniformly on compacts; see Exercise
2.44.

(b) In Theorem 2.2.30 we assumed that the pointwise limit of the sequence of characteristic
functions (ﬁn )n en I8 the characteristic function of a probability measure . This assumption
is not necessary. A lot less suffices.

More precisely, the general version of Lévy’s continuity theorem states the following.

If the characteristic functions of probability measures p, € Prob(R) con-
verge pointwisely to a function that is continuous at the origin, then the
limit itself is the characteristic function of a probability measure u € Prob(R)
and [y = |4 aS N — 00.

This is not obvious and requires additional effort. In Exercise 2.43 we describe the main
steps of a proof of this fact. In fact, as shown in [65, Sec. XIX.2] or [163, Thm. 1.1.10], one
can used this stronger version of the continuity theorem to prove Bochner’s theorem. a

Remark 2.2.32. P. Lévy, [112, §17, p.47], introduced a metric d;, on Prob(R). More
precisely, given puyg, 1; € Prob(R) with cumulative distribution functions

Fi(z) = pi[ (—o0,2]], = €R, i=0,1,

then the Lévy metric is the length of the largest segment cut-out by the graphs I'g,I'; of
Fy, Fy along a line of the form  + y = a. The graphs are made continuous by adding
vertical segments connecting F;(z — 0) to Fj(z) at the points of discontinuity. Intuitively,
the distance is the diagonal if the largest square with sides parallel to the axes that can be
squeezed between the curves I'g and I';.

More precisely

dr(po, 1) = sup distgz (po(a),pi(a)),
ac
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where p;(a) is the intersection of the graph I'; with the line x +y = a. Note that if we write
pi(a) = (i, yi), then y; = F(x;),® then

dr(po, 1) = sup { V2|zo — z1|; 0 + Fo(zo) = 21 + Fi(z1) }.

Lévy refers to the convergence with respect to the metric dy, as “convergence from the point
of view of Bernoulli”. He shows (see [112, §17]) that a sequence of probability measures
ln converges in the metric dy, to a probability measure g if and only if the characteristic
functions i, converge to the characteristic function pu. Hence, the convergence in the metric
dy, is the weak convergence so that djy metrizes the weak convergence. O

2.2.3. The Central Limit Theorem. We can now state and prove the main result of this
section.

Theorem 2.2.33 (Central Limit Theorem). Suppose that X,, € L*(Q,8,P) is a sequence of
ii.d. with common mean p and common variance v. Set

n

_ - 1 - 1 "
Xn = Xp — i, STL:Z(X]C_,U)) Zp = Sn:(ZXk_n:u>
1 v nu \/ v el

Then Z, = N(0,1).
Proof. According to Lévy’s continuity theorem it suffices to show that

lim <I>Zn(£) = <I>p1(§) =€

n—o0

&2
T2

Observe that X,, are i.i.d. with mean 0 and variance v, while Z,, has mean 0 and variance 1.
Denote by ®(£) their common characteristic function, ®(¢) = E[e*X* |. We have

vl

02,(6) = g, msl€) = B, (§/viw) = E| [T e (i

the variables exp (2 § )_(k , 1 < k <n are independent
Vo

n

:}f[lE[exp(w%xk)} ~a(¢/vm)

Proposition 2.2.25 shows that the function ®(n) is C?, so as n — 0 we have
(1) = ®(0) + '(0)n + %@”(W +o() = 1 +4E[X; ]n - %EP?? Jn* +o(n’)
(E[X1] =0, E[X;] = Var [X;] =)
=1- gnz + o(n?).
Now let n = &/y/nv, n > 0. We deduce

@(,5/\/7%)" - <1 € +0(1/n))n.

2n

At this point we want to invoke the following result.

8At a point of discontinuity this reads y; € (Fi (z; — 0), Fi(x;) )
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Lemma 2.2.34. Suppose that (cp)n>1 is a convergent sequence of complex numbers and

c= lim c,.
n—oo

Then on
lim (1 + i) = e°.
n

n—o0

Assuming Lemma 2.2.34 we deduce that, for any £ € R we have

lim & (£) = lim (1 - 5; +o(1/n)> — e 5 =, ().

n—o0 n—oo

Proof of Lemma 2.2.34. Set ¢ = a + bi, ¢, = an + bnt, so that an — a, b, — b. We set

b
oy =14y O 0y
n n n

On

For large n z, = rpe®n, where

o = \/(1 + an/n)?2 + b2 /n? = (1 +2a/n+o(1/n))l/27

s 1 bn
On| < —, tan6, = — .
[0n] 2 anvn nl+an/n

Thus

1 by b
0, = arct — =— 1 — 00.
arcan(n1+an/n) n—l—o( /n) asn — oo
We deduce that as n — co we have
/2 ; X
2= (1 + 2a/n+0(1/n))" eibro(1) Ly ga . ib _ e

O

2.2.4. Semigroup approach to CLT. We want to describe an alternate approach to the
Central Limit Theorem that bypasses the usage of Fourier transform. The presentation is
heavily inspired from [65, Chap. VIII].

Denote by Cy(R) the space of continuous functions f : R — R such that
A S =0
This is a Banach space with respect to the sup-norm
IfIl = sup | f(z) |.
z€R
Denote by B the Banach space of bounded linear operators

For any Borel probability measure 1 € Prob(R) and f € Cy(R) we denote by 2,[f] the
function R — R given by

1)) = [ f+unldy].
The Dominated Convergence Theorem implies that 2,[f] € Co(R). Note that
2,00 | < [ | £ +uuldy] <6, Vo e R

so 2, is a bounded operator Cy(R) — Cy(R) of norm < 1. We thus have a correspondence
Prob(R) > p— 2, € B.
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Clearly s, = 1. Observe that if Y is a random variable with distribution p then
Au[fl(z) =E[ f(z+Y)], VzeR.
For this reason, for any random variable Y we set
Ay = Ap,.
Proposition 2.2.35. Suppose that p1, p2 € Prob(R). Then
Apiapn = Ay Ao

where x denotes the convolution of probability measures on R.

Proof. Let Y7,Y5 be independent random variables such that Py, = p;, ¢ = 1,2. Fix
f € Co(R). For any = € R we have

Wy [f1(2) =E[ fx+ Y1+ Ya) | = /R2 f@+y1+y2) @ pa[ dyidys |

:/R(/Rf(ﬂ:+y1+y2)ﬂ[dy2]>,u[dy1] :/IRQL“Q[f]($+y1)M[dy1]
= Ay, [ Ao [£]] ().

Thus the map
Prob(R) > p— 2, € B

is a morphism of semigroups.

Proposition 2.2.36. Let n € N and suppose that p1;,v; € Prob(R), 1 <14,j < n. Then, for
any f € Cop(R) we have

1280y wvspin | = Rsr FIL <D 1R f = 2 f - (2.2.13)
i=1
Proof. For n = 2 we have
Hmmmuzf - Qllqmugf” < Hmm (Q[/m - Q[V2)fH =+ H%ulmwf - Qll/lmmf”
= ||Q[u1 (le - le/z)f” + ||Q[,,2 (Q[m - leq)f”
< @Ry = Auo) FII 4 (R — 20 fl

since ||, ||, |2, ]| < 1. The general case follows inductively using the inequality

1R psreospin = R, < Ry (R = ) I+ (1o [ = FAgevcsar f-

Define inductively inductively
CER)={feC'R)NCEF'R); feCi ' (R)}.

Theorem 2.2.37. Let (un)nen be a sequence in Prob(R) and p € Prob(R). The following
statements are equivalent.

(i) The sequence (un) converges weakly to .
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(ii) For any f € Cp(R)
nh_{go 1A, S — A f]| = 0.
(iii) There exists k € Ny such that any f € C§(R)
nlgrolo [0, f — A f ] = 0.

Proof. Clearly (ii) = (iii). To prove that (iii) = (i) note that for any smooth compactly
supported function f € C§(R) we have

pn [ f] =2, [£1(0)] = Au[£1(0) = p[ £].
Now conclude using Theorem 2.2.14.
(i) = (ii) Let f € Cp(R). For each x € R we define
fo :R= R, foly) = flz+y), VyeR.
Then
U, f(2) = pin [ fo]-
Since f is uniformly continuous the map

Rz f, € Ch(R)

is also uniformly continuous with respect to the sup-norm.
Fix € > 0. Since pu, = p there exists M > 0 such that

[ {lyl > M}Y], [ {lyl > M} ] <e, ¥n €N

We can assume that
pn [ {lY[ < MY = p[{]Y] < M}].

We have
n x| = x nd - x d
lpn [ fe] = f]] < /[M’M]f () pn[dy] /[M’M}f (y) puldy]
nld d
" /y|>M!f\u dy] + /|y>M\f|u[ y
x nldy] — - nld .
<y 0l = [ tpaldy] + 2211
Hence
suplna[£2] = u[f) <swp| [ fe@alds) = [ felyald] + 2601
z€R zeR [J[—M,M] [— M, M]
Since f € Cy(R), Ve > 0 there exists K > 0 such that
sup | fz(y)| <e, V|z[ > K.
y€[—M,M]
Hence
‘/ fo () pen [dy] —/ fe W) pnldyl| < 2¢, V|z| > K, Vn € N. (2.2.14)
[=M,M] [—M,M]
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We deduce from (2.2.14) that
sup [jin [ fo] = [ £]] < 22 + 2¢I| 1. (2.2.15)
|z|>K

Consider now the continuous functions

9, 9n : [-K, K] = R, gn(x) —/
[_MvM}

fe(Ypnldyl, g(z) = / fa(y) pn[dy].

[—M,M]
We deduce
gn(x) = g(z), Vre|-K, K]
The sequence (g,,) is equicontinuous since x +— f,, is uniformly continuous with respect to the
sup-norm. Hence g, converges uniformly to g on [—K, K], i.e.,

lim sup |gn(z) — g(x)| = 0.

We have

sup |pn[ fo] —p[f]] < sup [gn(z) — g()] + 2¢] f].
lz|<K |z|<K

Hence
limsup sup |pn[fo] — p[f]] < 2¢lIf].

n—o0 |$\§K

Using (2.2.15) we deduce that Ve > 0 we have
lim sup sup \un [ fe] = n[ f]] < 2+ 22| £].

n—,oo e

This proves (ii). 0

Proposition 2.2.38. Suppose that Y is a random variable such that

E[Y?] =0¢*>0, E[Y]=0. (2.2.16)
Then for any f € C3(R), t >0 and r > 0 we have
t’a* , 1 2, 42 2
(v f—f) — Tf < §r(t0) +1 v uly] | I1fllcs (2.2.17)
ly|>r/t

Proof. Set p:=Py . Let f € C3(R). Using (2.2.16) we deduce that

(A = 1)f@) = [ (£(o+ty) = 1) = tu'(@) Juldy].

2 2
(A = 1)) = @) = [ ($a ) = 1) = Pty = 31w ) ulay].
=Ut(z,y)
Using Taylor’s formula with Lagrange remainder 2/
Fla+ty) = f@) — F@)y = S €t

for some & =&, € (z,2 + ty). Hence

[ F(atty) = f@) - f @ty -5
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) 1
< min (2] fllcely, 5 fllostlf* )

< t|f||c3 min ( ly|%, %t|y|3), vVt >0, z,y € R.
Hence
0.< Ui(e,y) < 2l 7l min (P, 2ilyl?), 9> 0, 2,y €
For any R > 0 we have

[C

. 1
<l les [ min (Il 5l )l dy]

1 31,13 2 2 ,
< <2/|y|<Rt P uldy] +1 /y|>R|y u[d;,]) Il
1
= (fR/RyQ“[dy] " /bey?M[y]) I £lles

1
= | =tR(to)? 2 2 3.
<2t (to)* +t /|y|> Y ,u[y]) 1 fllc

Now set R :=r/t. O

Corollary 2.2.39. Suppose that X is a random variable such that
E[X?] =0% E[X]=0.

Then for any f € C3(R) we have
=0.

lim 1(Qllz f—f)—izf,/
o || X 2

Theorem 2.2.40 (Lindeberg). Suppose that (X, )n>1 be a sequence of independent random
variables with mean zero and variances

E[X2] =o?.

n

Set
n
=30t
k=1
and assume that the variables (X,) satisfy the Lindeberg condition

1
Ve>0 lim — / |z|*Py, [dx]. (2.2.18)
n—oo S2 ; || >eSn g [ ]

Then the random variables )

Sn
converge weakly to a standard normal random variable.

Xp=5(X1++Xp)

Proof. We set
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Lemma 2.2.41.
lim v, = 0. (2.2.19)

n—oo

Proof. Observe that Lindeberg condition can be rewritten as

1 / d =0
n:H;OZ o B[]

Observe that for any € > 0 and any 1 < k < n we have

2
Tk _ Var [ 571X = / 2Py [dr] + / 2Py [do]
S EE EE

n

§52+/ z2IP’Sg1Xk[dm] SEQ""Z/ ZQPSﬁle[dx]'
|z|>e k=1

|z|>e

Thus, for any € > 0 and any n € N we have

n

vi§52+2/ zQIPS;1Xk[d:L’].

1 ” l2I>€

The equality (2.2.19) now follows from the Lindeberg condition. O

Indeed, for any 1 < k < n and any € > 0 we have Let (Y,),en be independent normal
variables with mean zero and variances

Var [YnQ] =02

n

Then
— 1
is a standard normal random variable. It suffices to show that
Jim 2 =2 fl| =0, Vf e C3(R). (2.2.20)

Fix f € C3(R) and € > 0. Using (2.2.13) we deduce

- 2117 M < Z ||Q[5,;1Xk - leglyk)fn
" k=1
Using (2.2.17) with r = ¢ and ¢t = S;;! we deduce that

g1y, = Ag-1y )l < H(%ﬂxk -Df - 252 f”

H( sitve ~ DI - 232f”
< eop 1 22y, [da] | |1 fllcs
252 S2 Jiz|>es, »

eay / Y2
+ | —= + — F 2 dy f 3,
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where I > denotes the normal distribution with mean zero and variance o2. Hence

— 25 )/ < ( ”’f) £l
k=1

:5Hf||c;3

<Z /’”>€Sn vl +Z /|>€ y'T 2 dy]) 1fllce

=<l flles + (Z g/ . el dm}) Flles

-~

=:Anp

+ E Q2 Yy FU dy f
(k:l S5 Jiyl>es. '%[ }> I7lles

=:B,
The Lindeberg condition implies that 4, — 0 as n — oco. To deal with B,, note that

1 o 2 o 2
S |y\>65ny ’Yok[dy] S |z|>sSnoky Fl[dZ] = S%/|>s/vny Fl[dZ]
Hence
B, §/ y21"1[dz].
|z|>e/vn
The equality (2.2.19) implies B,, — 0. O

Remark 2.2.42. (a) The above argument is due to H. F. Trotter [169]. The correspondence
Prob(R) > p+— 2, € B

used in the above proof has a wider range of applications and we refer to [65] for more
information.

(b) Note that if the random variables X,, are also identically distributed with common vari-
ances o2, then S2 = no?. then

n

1 1
? ZE[I“Xkthn}X’z] = ?E[I{\)ﬁbta\/ﬁ}X%] —0
" k=1

as n — oo. Hence the Lindeberg’s condition is satisfied when the random variables are i.i.d..

If p > 2, then Holder’s inequality implies

_2 2
E[I{x, 551 X2] <P[{IX5| > S} ] " PE[| X4 P ]

1—2
E[|x,]\ 7 ) |
< (E%‘?) E[[|Xk[P]» :WE“XMP]
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This shows that Lindeberg condition is also satisfied if the sequence satisfied Lyapunov’s
condition of order p

n—oo

1
lim & ZE“XHP] =0.
k=1
For even more general versions of the CLT we refer to [78, 139]. 0

2.3. Concentration inequalities

Suppose that (X, )nen is a sequence of i.i.d. random variables with mean 0. Let
Spni=X14+- -+ X,

The Strong Law of Large of Numbers shows that %Sn — 0 a.s. A concentration inequality
offers a quantitative information on the probability that %Sn deviates from 0 by a given
amount €. More concretely, it gives an upper bound for the probability that %|Sn| > e. If the
random variables X,, have finite second moments, ¢2 = Var [Xl ], then we have seen that
Chebyshev’s inequality yields the estimate
Var [S ] o?
_ 2 2.2 n] _
In the proof of Theorem 2.1.8 we have shown that if the variables X,, have a stronger inte-
grability property namely E [Xf;] < 00, then there exists a constant C' > 0 such that for any
g > 0 and any £ > 0 we have
C
showing that %Sn is even more concentrated around its mean. Loosely speaking, we expect
higher concentration around if X,, have lighter tails, i.e., the probabilities

IP’[|Xn| > a:]
decay fast as r — oo.

In this section we want to describe some quantitative results stating that, under appropri-
ate light-tail assumptions, for any € > 0 the probability IP’[ |Sp| > ne] decays exponentially
fast to 0 as n — oo. The subject of concentration inequalities has witnessed and explosive
growth in the last three decades so we will only be able to scratch the surface. For more on
this subject we refer to [19].

2.3.1. The Chernoff bound. Many useful concentration inequalities are based on the
Chernoff method. Let us describe its basics.

Suppose that X is a centered, i.e., mean zero, random variable such that
My (A) := E[e’\X] < oo, VYA€ J,
where J is an open interval containing the origin. We set
Jy = {/\EI; :I:)\>O}.

Note that this implies that X has moments of any order and thus it imposes severe restrictions
on the tail of X. We define the cumulant of X to be the function,

Ux:J =R, Ux(\):=logMx())].
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The function x — €'* is convex and Jensen’s inequality shows
so Ux(A) > 0.
Here is the key idea of Chernoff’s method. For x > 0 we have

LE[&X], VA e Jg,

P[X >z] =P[eM > eM] < o

where at the last step we used Markov’s inequality. Hence

P[X >z] < e_(z)‘_\IJX()‘)), VA€ Jy.

Set
Ii(z) := sup (zA—Ux(N)).
AEJ 4
We obtain in this fashion the Chernoff bound
P[X >z] < e @1 (2) = sup (zA—¥x(\)), Vz>0. (2.3.1)
A€(0,r)

Note that I (x) > 0 since Ux(\) > 0. Arguing in a similar fashion we deduce
P[X <z]< e =@ T (2):= sup (zA—¥x(N)), Yz <O. (2.3.2)
AeJ

More generally, if X has a nonzero mean pu, then X=X-— W is centered. If E[eAX ] exists
for A € J, then
Ug(A) = Tx(A) — An,

and we deduce

P[X >a+pu] <e ™) I (x):=sup ((z+p)A—Tx(N\)), Vo> 0. (2.3.3)
AEJ 4
and
P[X<z+p] < e =@ T (2):= sup ((z4+p)A—=Tx(N)), Yz <O. (2.3.4)
e

Suppose that (X, )nen is a sequence of i.i.d. random variables such that
M(M) = Mx, (A) < oo,
for any A in an open interval J containing 0. Set
I ::E[Xk}, Sn=X14+ -+ X,

Then

E[Sn} =np, Mg, (A) =MW", ¥g, () =n¥(A).
We deduce that

sup ((nz 4+ np)A — ¥g, (\)) = nl(z), Va >0,

AEJ L

and
sup ((nz 4+ np)A — ¥g, (N)) =nl_(z), Yz <O0.
AeJ-

We deduce

P[%Sn — > :1:] = P[Sn —np > nw] < e_"1+(x), Vo > 0, (2.3.5a)
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1
IP[ESH —u< x} = IP’[Sn —np < nx] <e M- vy <o. (2.3.5Db)
In particular
1
IP’[ ’ —Sp —p| > a:} < e @) o enl-(=2) gy s . (2.3.6)
n

We have reached a remarkable conclusion. The assumption M(A\) < oo for A in an open
neighborhood of the origin implies that the probability that the empirical mean %Sn deviates
from the theoretical mean u by a fixed amount x decays exponentially to 0 as n — oo. In
other words, %Sn is highly concentrated around its mean and the above inequalities quantify
this fact.

To gain some more insight on the above estimates it is useful to list a few properties of
the function Iy (z)

Proposition 2.3.1. Suppose that the centered random variable X satisfies
My(\) =E[eM] <00, VA€,
where J C R is an open interval containing 0. Set
Jr:={XeJ; £A>0}, Ux()) :=logMx(\).
Then the following hold.
(i) Mx(0) =1, M/y(0) = 0, M%(0) = Var [ X |.
(i) The function J 3 X — Wx(A) € R is convex and nonnegative. Moreover ¥ (0) > 0.

(iii) The function

I:R—[0,00], I(x) zilelg()\:p—\llx()\))

1s conver. If

then Iy (z) = I(x) for £z > 0.
(iv) I(z) >0 ifx #0.

Proof. (i) Proposition 1.3.17 implies that Mg];)(()) = E[Xk ], Vk=0,1,2,....1

(ii) To prove that Wx(A) is convex let t1,t3 € (0,1) such that ¢; + to = 1. Then, using
Holder’s inequality with p = % and ¢ = % we deduce that for any A, Aa € R we have

E[etl)\lx-f—tg)\gX] S E[ (etl)\lX )1/t1 ]tlE[ (et2>\2X )l/tQ :|t2 _ E[e)\lX ]tl]E[e/\QX :|t2'

Taking the logarithm of both sides of the above inequality we obtain the convexity of Ux (A).

Next observe that

_ My (0)
My (0)

Since Wx () is convex is graph sits above the tangent at A =0 so Ux(\) >0, VA € J.

'y (0) =
(iii) For t1,t2 € (0,1) such that ¢; + t2 = 1 and for x1,x9 > 0 we have

I+(t1$1 + tl.%'g) = Sl(lp) ( (tll‘g + tQ.%'Q) — \I/)(()\))
Ae(0,r
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= )\s{(lop) (tl({L‘l — \Ifx()\)) — (tQ.%'g — \I/)((/\))) < t1[+($1) + t2[+($2).

Observe that for £ > 0 we have
Ar —Ux(A) <0, VA<O

proving that
I(z) =sup (Az— Ux(A)) = sup (Az— ¥x(})).
AEJ A
(iv) Observe that
_ ME(MMx (M) — My (A)?

U5 (N = 2.3.7
so U (0) = M%(0) = Var [ X | > 0. This proves that Az — ¥y (\) > 0 for |A| small and = # 0
so I(z)>0if z #0. 0

Remark 2.3.2. As explained in [147, §12], to any convex lower semicontinuous function
f:R™ — (0, 00| we can associate a conjugate
f* :R" — (_00700]7 f*(p) = Su[é) ((p,:c) - f('m))v
TER™
where (—, —) denotes the canonical inner product in R™. One can show that f* is also
convex and lower semicontinuos and f = (f*)*. The conjugate f* is sometimes called the

Fenchel-Legendre conjugate of f. Observe that I(z) is the conjugate of the convex function
v X()\) O

Example 2.3.3. Suppose that X ~ Bin(p). Then E[X] =p, Mx_,(\) = (q + pet )e_p’\.
For x € R we set

fo(A) = aX = Ux_p(A) = (z + p)A — log(q + pe*), I(z)= sup fe(N).

We will show that
z+p _ qa-r _
1) = (z +p)log = + (¢ —x)log =,z € [—q,p],
o0, xz ¢ [_qap]

Observe that \
d pe
/ o _ .

and f.(\) =0 if

T+p

q—

This shows that if g_ig <0, ie, z € R\ (=p,q), then f.(A\) > 0, YA and I(z) = 00.? If
x € (—p,q), then fy(\) =0 iff

p(x +p—1)e* = —q(z +p), ie, pe* =¢

x + -
A =logq — logp + log(x + p) —log(q — x) = log p—logq .
xr + —x —x
I(z) = (z + p)log p—(x—i—p)logq —i—logqq
r+p q—
= (z +p)log + (g — z)log ; x € (=p,q).

9Can you think of a simple reason why this happens?
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One can verify that I(q) = —logp and I(—p) = —loggq. O

Remark 2.3.4. Suppose that P, Q are two Borel probability measures on R that are mutually
absolutely continuous,

P<@Q and Q <« P.
We denote by pp|g := % the density of P with respect to Q. We define the Kullback-Leibler
divergence

DiL[P| Q] ::/Rlog:llgﬂ”[dx] (2.3.8)

(a) Suppose that P is the probability distribution Bin(p),
P = qdp + po;.
For z € (—p, q) consider the probability distribution
Q: = (¢g—x)do + (p+ )d1.
Then

x + -
p—i—(q—x)logq

]D)KL [Qa: H P] = (.I' —I-p) log
This is the rate I(z) we found in Example 2.3.3.
(b) Let X be a random variable with probability distribution Q and set Z := pp)p(X). Then

E[Z}:/R;ng:/RdIP:L

dP dP dP
E[Zlog Z | :/Rd(@longdQ:/RlongdP:DKL[P\Q].

Thus

E[ZlogZ]| —E[Z]logE[Z]| =Dgr[P| Q]
showing that Kullback-Leibler divergence is a special case of ¢-entropy (1.3.13). More pre-
cisely, the above equality shows that

Dir[P|Q] =H,[Z], ¢(2) =zlogz, z>0.
In particular this yields Gibbs’ inequality
Dir[P||Q] > 0. (2.3.9)

Above, we could have used instead of the natural logarithm any logarithm in a base > 1 and
reach the same conclusion. In particular, if we work with logy, and we set

Dy [P|Q] = /RlogQ ‘;%P[dx].
Then Gibbs’ inequality continues to hold in this case as well
Dy [P[Q] >0. (2.3.10)
Let 2" be a finite subset of R. Assume that we are given a function p : 2~ — (0, 1] such that

> pla)=1

X
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so p defines the probability measure

P, = Z p(z)d; € Prob(R).
zed
Recall that its Shannon entropy is (see (2.1.19) is the quantity
Enty [p] =— > p(x)log, p(z).
zed
The uniform probability measure on 2~ is
Py = Z po(2)ds > b
’%| zeX
Note that P, and Py are mutually absolutely continuous. Gibbs’ inequality shows that
DQ[PHPO] > 0.
On the other hand

Do[PPo] =Y logy (|27] - p(x) )p(x) =logy | 27| + Y p(x)logy p(x) > 0.
zed zeZ

We have obtained again the inequality (2.1.20).

Ents [p] <logy |2'| = Enty [po]. (2.3.11)

Example 2.3.5. Suppose that X ~ N(0,1). Then, for any A € R,

1 2 1 2 2 2 2
M (\) — Mg /2, /e—(x SN EAD) /2022 0, _ M2/2
x(3) \/27r/R V2m Jr
Note that Y = 0X ~ N(0,0) and

242
My (A) = Mx(0X) = e” ¥/2, Wy ()) = %
The supremum
2)\2
I(xz) :=su A———
(2) = sup (@ ( 2 )

is achieved for A = A, = -5 and it is equal to

In other words, if X ~ N(0,02), then

2

P[X|>e] <2max (P[X < —z], P[X >z]) <2 27,
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2.3.2. Some applications. Often an explicit description of ¥x(\) may either not be pos-
sible, or it could be too complicated to be useful. That is why it is more practical to have
simple ways of producing upper bounds for the moment generating function.

Definition 2.3.6. A random variable X with mean p said to be subgaussian of type o2, and
we write this X € G(o?), if E[eAX] < oo, VA € R, and

02>\2 2252

Ux (V) < Unoon = —— VAE R<=E[MX W] <=7, VAER O
Note that if X € G(¢?), and £x > 0, then
No? x?
sup (A —V¥x_,(A)) > sup (xA— = —,
i)é)o( x-u(A)) = i)é)o( 9 ) 202
and thus
962
max(IP’[X—,u<—:E],IP’[X—,u>:U])§efﬁ, Yz > 0, (2.3.12a)
P[|X — p| > 2] <2 27, Vo> 0. (2.3.12b)

Observe that if X1, X9 are independent random variables and Xj, € G(az), k =1,2, then
a1 X1+ a1Xs € G(a3o? 4 a303), Vay,as € R.

In particular, if Xi,..., X, are centered, independent random variables in G(c?), then we
have

1
E(Xl +--+X,) € G(c?/n),
and thus we obtain Hoeffding’s inequality

nz2

1 .
Pl (Xi+- o+ Xa)| > 0] < 20787, Vo >0, (2.3.13)
n

Example 2.3.7. Suppose that R is a Rademacher random variable, i.e., it takes only the
values +1 with equal probabilities. Then

E[eAR] =cosh A < e/\2/2,

where the last inequality is obtained by inspecting the Taylor series of the two terms and
using the inequality 2"n! < (2n)!. Hence R € G(1). Similarly, cR € G(1), Vc € [0, 1]. 0

For these estimates to be useful we need to have some simple ways of recognizing sub-
gaussian random variables.

Proposition 2.3.8. Suppose that X is a centered random variable, i.e., E[X] = 0. If there
exists C > 0 such that

E[X?*] < kIC*, Vk €N,
then X € G(4C).

Proof. We rely on a very useful symmetrization trick. Choose a random variable X’ inde-
pendent of X but with the same distribution as X. Then the random variable Y = X — X is
symmetric, i.e., Y and —Y have the same probability distributions. Observe next that since
— X' is centered we have

E[e_)‘X/] > e AEXT = 1, VAXeR.
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We deduce
00 \2%k
E[*] <E[e*X] E[e™X'] = E[}X~X) Z >\ E[(X — X)**].
parl

2k is convex we have

(z +y)? <2271 (2?42, v,y eR

Since the function x

% (2k)!

WW < oot

E[(X — X")?*] <2%E[ x?*] < 2%%kIC* = T

Hence
> 20}\ 62C>\2

k=0
Hence X € G(4C). O

Example 2.3.9. Suppose that R is a Rademacher random variable. Clearly
E[R*] =1<kl* VkeN
so that R € G(4). We see that this estimate is not as good as the one in Example 2.3.7. O

The next result offers a sharper estimate under certain conditions.

Proposition 2.3.10 (Hoeffding’s lemma). Suppose that X is a random variable such that

X € la,b] a.s.. Then X € G(O’Q), where o = b_Ta, i.e.,

A2 (b—a)2

E[*X M) <e™5 —, VAeR (2.3.14)

Proof. Let us first observe that that any random variable Y such that Y € [a, b] a.s. satisfies
bh— 2
Var [Y] < ( 4@) .
Indeed, if p :E[Y], then Y — € [a—u,b—u]. If

_la—p)+(b—p)
2

is the midpoint of [a — u,b— u}, then

and

Var [Y] <E[(Y = )] +m* =E[((Y =) =m)’] < (b_4a)2.

Observe next that we can assume that X is centered. Indeed, if u = E [ X ] , then the centered
variable X — i satisfies X —p € [a —p,b—p] and (b—a) = (b—p) — (a — p).

Denote by P the probability distribution of X. For any A € R we denote by P, the
probability measure on R given by

Py[dz] = P[dz | (2.3.15)
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Note that Py is also supported on [a,b]. Since E[ X | = 0 we have ¥ (0) = 0. We deduce
from (2.3.7) that

AXT\ 2

:/Rﬁmdx} _ (/Rxmdx]>2.

The last term is the variance of a random variable Z with probability distribution Py. Since
Py is supported in [a, b] we have Z € [a,b] and we deduce

(b—a)®
Y

Using the Taylor approximation with Lagrange remainder we deduce that for some £ € [0, A]
we have

U5 (N) =Var [ Z] < (2.3.16)

N2(b—a)?
—

Ux(A) = ¥x(0) + AW (0) %\113'((@% <
5
Hence X € G((b—a)?/4). O

Hoeffding’s Lemma shows that if R is a Rademacher random variable, then R € G(1) as
in Example 2.3.7. which is an improvement over Proposition 2.3.8.

If Ry,..., R, are independent Rademacher random variables, then for any ¢y, ..., ¢, € [—1,1]
we have ¢y Ry, € G(1) and we deduce from Hoeffding’s inequality that

n’r2

|
P[g‘clR1+-~~+can >r} <2e % (2.3.17)

Example 2.3.11 (The Poincaré phenomenon). Suppose that X is a standard normal random
variable and Y = X2

My () = E[eAXQ] = \/12?/1[{6(2/\_21):626#.
This integral converges only for A < % and in this case it is equal to
1
V12X

In particular, X2 is not subgaussian since its moment generating function is not defined vor
all A € R. Note that IE[Y] = E[XQ] = 1. Hence

My (\) =

e~

V1=2\

Since Y > 0 we have IP‘[Y -1< y] =0 for y < —1. For y € (—1,00) the supremum

I(y):== sup (Ay—TUy_1(N))
A<1/2)

My (A) = Ty 1(3) = A log(1 - 22,

is achieved when

d 1
dA(Ay v-1(\)) =y + oy =0
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Solving this equation for A we get

1 Y
1—2)\:m<:>)\:m.
and
Y y 1 y 1 Y
I(y) = 2+ 1) +2(y+1) —§log(1+y):§—§log(y+1) > R Yy > —1.
Hence

2

P[IY 1] >y] <277, Ve (0,1).
Suppose now that

—

X = (le"'7Xn)
is a Gaussian random vector, where X}, are independent standard normal random variables.
The square of its Euclidean norm is the chi-squared random variable

n
Zn = |1XIP = X
k=1

We deduce that . )
IP)H—Zn—l\ >y} <2, Vo<y<l.
n
Thus, for large n the random vector ﬁ)_(' is highly concentrated around the unit sphere in

R™. This is one facet of the so called Poincaré phenomenon. In Exercise 2.62 we describe
another facet of this phenomenon. a

We conclude this section with a remarkable application of the Poincaré phenomenon.
Consider a Gaussian random vector in RV

—

X =(X1,...,Xn),

where the components X}, are independent standard normal random variables. Note that for
any unit vector @ = (uy,...,uy) the inner product

(@, X) =u1 X1 4 +unyXn
is a mean zero Gaussian random random variable. Moreover
Var [(7,X)] = E[ (@, X)[*] =1 = ||a]*
Suppose that we are now given d such independent!® random vectors
X;= (X1 Xnj), 1<5<d
We obtain a random map
ARN 5 RY RY 5@ (W,.., Va) i= (@, X0), .., (@, Xa) ). (2.3.18)

If ||@]] = 1 components of A# are independent standard normal random variables so that
|| Aii||? is a chi-squared random variable. We set B := ﬁA. We deduce from Example 2.3.11
that for any € € (0,1) and any unit vector @ we have

de?

P“HBﬁH? —1] > 5] < 2e~ T

1OIndependence is meant in probabilistic sense, not linear independence.
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Suppose now that we have a cloud of points in a large dimensional Euclidean space
C= {xl,...,xm} cRY, N>1.

For 1 <i < j < m we write v;; = x; — ;. We deduce that

B .. 52 52
P[1 e IBull v cic < m] < 2<m>e_d4 <m2e 5.
vl 2
Now fix a confidence level 0 < pg < 1 and observe that
e2 4
m2e % < po <= de? > 4logﬁ<:>d > —Zlogﬁ.
Do € Po

We have thus proved the following remarkable result.

Theorem 2.3.12 (Lindenstrauss-Johnson). Fize > 0 and py € (0,1) and a cloud of C of m
points in RN . If

4
d=d(m,e,pg) := [ log m_‘ , (2.3.19)

then, with probability at least 1 — py, the random Gaussian map B = ﬁA, where A s

described by (2.5.18), distorts very little the relative distances between the points in C, i.e.,
with probability at least 1 — pg

(1 =¢)l[Bz — By|| < ||z —yll < (1 +¢&)|| Bz — Byl|, Vz,y € C.
O

Remark 2.3.13. Let us highlight some remarkable features of the above result. Note first
that the dimension d(m,e,pg) is independent of the dimension of the ambient space R
where the cloud C resides. Moreover, d(m,¢,pg) is substantially smaller than the size N of
the cloud.

For example, if we choose the confidence level py = 1073, the distortion factor ¢ = 107!
and the size of the cloud m = 10'2, then

4. N
— log — =60-10%log 10 < 14 - 10> < 10",
€ Po

The cloud C could even be chosen in an infinite dimensional Hilbert space and we can choose
as ambient space the subspace span(C) that has dimension N < m. In this case the vectors
Y, = \/LNX;Q, k=1,...,d, have with high confidence norm 1.
m 2
P[||[Vi| 1| >4, VI<k<d]<2de ™, d~Clogm.

The vectors Y are also, with high confidence, mutually orthogonal. Indeed, Exercise 2.59
shows that for |r| < 3

Nr2

P[|(Y;,Y))| >r, Vi<j] §2<;l>e_ iz, d~ClogN.

This shows that the operator ﬁA is, with high confidence, very close to the orthogonal

111

projection PX~1 .., onto the random d-dimensional”* subspace Span{f Tyeves fd}. This shows

111t is not hard to see that dim span{il, R )Ed} =d a.s.
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that, with high confidence, the operator

N
\V 7 P X

distorts very little the distances between the points in C'. The projected cloud has identical
size, similar geometry but lives in a subspace of much smaller dimension. a

2.4. Uniform laws of large numbers

Fix a Borel probability measure p on R. Suppose that
Xn: (2,8,P) >R, neN

is a sequence of i.i.d. random variables with common probability distribution p. For any
Borel set B C R the random variables I5(X,,) are i.i.d. and have have finite means

mpg ::P[Xl S B] IM[B].
The Strong Law of Large Numbers shows that the empirical means

_#{1<k<n; Xy€B}
n

Mn[B] = %(IB(X1)+"'+IB(Xn))

converge a.s. to M[B]. In particular, this provides an asymptotic confirmation of the “fre-
quentist” interpretation of probability as the ratio of favorable cases to the number of possible
cases.

If we choose B of the form (—oo, x], then we obtain the empirical cdf

Fula) = My [ (—o0,]] = LISk Sm X<}

n n
This is a random quantity (variable), F,,(x) = F,(z,w), w € Q. For each n € N, the collection
(Fn(x) ):CeR is an example of empirical process.

For any x € R, the random variable F},(z) converges a.s. to F'(x), where F' is the cdf of
L

F(z) = p[(~o0,a]].
For z € € the set N; C 2 such that F,(z,w) does not converge to F(x) is negligible but,
since R is not countable, the union
N=|JN

zeR

need not be negligible. In other words, the set of w’s such that the functions F,,(—,w) do not
converge pointwisely to the function F'(—) need not by negligible. We will show that this is
not the case.

2.4.1. The Glivenko-Cantelli theorem. Define

D, =D :Q—1[0,00), Dyp(w):=sup ’ Fo(z,w) — F(z) ’ (2.4.1)
z€R

For a fixed w € 2 the sequence of functions (F,(—,w) )n cq converges uniformly to F/(—) if
and only if D, (w) — 0. We will show that this is the case for almost all w.
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Denote by U(y) the cdf of the uniform distribution on [0, 1],

0, y<0,
Uly) =1y, yelo1],
1, y>1,

and by @ the quantile of F' defined in (1.2.5), @ : [0, 1] —R
Q) :==inf{z: (< F(z)} =inf F7'([¢,00]) =inf F7'([(,1]).

Lemma 2.4.1. The function DL is measurable and DY < DY, with equality if F is contin-

n»
UoOUS.

Proof. Let us first show that D,, is indeed measurable. We will show that
DF = sup | Fu(z) — F(z) | (2.4.2)
zeQ

According to Proposition 1.1.18(iii) the quantity in the right-hand-side is measurable.

Fix w € Q. There exists then a sequence of real numbers (zj)ken such that
lim | Fy (2, w) — F(z) | = Dp(w).
k—o00

Now observe that the functions x — F,(z,w), F(z) are right-continuous so there exists a
sequence of rational numbers (g )ren such that gp > zx and

1
|| Paisw) = F@i)| = | Fulanw) = Fla) || < 1
Hence
lim ’Fn(qk,w) — F(qx) ‘ = lim ‘Fn(a:k,w) — F(xyp) ’
k—o0 k—o00
thus proving that the functions (2.4.2) are measurable.

Consider now a sequence of i.i.d. random variables (Y;,)nen uniformly distributed on
[0,1]. Denote by U, the associated empirical c.d.f.-s,

1 n
k=1
Then X,, = Q(Y,,) are i.i.d. with common cdf F. Note that

Un(F(z)) — F(z) = % Y Ii<r@y — F@)
k=1

12.6) 1
U293 o - F@) = Fal@) - Fla).

Thus o
D} = sup | Fu(z) — F(z) | = sup | Un(F(z)) — U(F(z)) |
SSEE‘Un(y)_U(y)‘ =Dy

Observe that if F' is continuous, then Yy € (0,1), 3z € R, such that F(z) =y so

> | U(Fu(z) - UF(2) | = sup | Un(y) = U(y) |
z€R ye
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O

Theorem 2.4.2 (Glivenko-Cantelli). Suppose that (X,)nen i a sequence of i.i.d. random
variables with common distribution p and cdf F'. Denote by F,(z) the empirical cdf-s

1
k=1

Then, almost surely, F,(x) converges uniformly to F(x), i.e.,
D5—>O a.s. asm — 00,
where D, is defined by (2.4.1).

Proof. Lemma 2.4.1 shows that it suffices to prove the theorem only in the special case
when that random variables are uniformly distributed. Thus we assume F' = U. Note that
Un(z) = U(z) for z € R\ [0,1]. Thus is suffices to prove that U, (xz) — U(x) a.s. uniformly
on [0,1]. This is a manifestation of a more general phenomenon.

Lemma 2.4.3. Suppose that f, : [0,1] — R is a sequence nondecreasing functions that
converges pointwisely to a function f :[0,1] — R. If the limit function f is continuous, then
fn converges uniformly to f.

Proof of Lemma 2.4.3. Set

D} == sup | ful(@) = f(z)].
z€[0,1]

we will show that D,{ — 0 as n — oo.
Fix a partition P of [0,1], P={0 =20 <21 <22 < --- <y, = 1}. Set

91 := max (e — i), [Pl = max (£l = flai)).

For x € [xg_1, 2] and n € N we have
Fax) — fuln) < (Flan) — @) + (F@) = Fule)) < IP1s + (F(2) — fule)),
f@) = fulx) < f(@) = flap—1) + flar-1) = fal@r-1) < (Pl + f(@r-1) = ful@e-1),
Hence
flar) = fulzr) = [1Plly < fl2) = falz) <Pl + fl@p-1) = falzr-1),
Ja(@e—1) = f(@r—1) = [IPlly < falz) = f(@) < (|Pllf + falze) = f (@)

If we set

D (P) == max (f(zx) = falzr)), D, (P):= max (fulze)— f(an)),

0<k<m 0<k<m
Dy (P) := max ( D;} (P), D;, (P))

we deduce that for any partition P of [0, 1] we have

Dy (P) = omax | fzk) = fulzr) |,

and
0 < DI < Du(P) + ||| 4- (2.4.3)
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Since f is uniformly continuous, there exists a sequence Py of partitions of [0, 1] such that

1
1Pl < o Vk € N.

Since f, converges pointwisely to f we deduce

Vk € N, le Dy (Pr) =0 as..

Hence )
0 < liminf DI < limsup Df < ||Py||lf < -, Vk€N.
n—0o0 n—00 k
Letting £ — oo we deduce the desired conclusion. O

The Strong Law of Large Numbers implies that, for any x € [0, 1],
Un(z) - U(x) as. as n — oo.

Thus, for every partition P = {0 = z9p < --- < x,, = 1} of [0,1] there exists a negligible
subset Ny C €2 such that, Vw € Q \ Ny we have

D, (P, w) = sup ‘ Un(z,w) —U(x) } — 0 as n — oo.
x€P

We deduce from (2.4.3) with f(z) = U(x) =z and f,(z) = Up(z,w)
Vw e Q\Np, 0< lirginng(w) < limsup DY(w) < ||P|lv = ||IP]I.
n—oo n—00

Now choose a sequence of partitions Py, such that ||Px|| — 0 as k — oco. If we set
N =[Ny,
k
then we deduce that for any w € Q \ N we have

lim inf DY (w) = limsup DY (w) = 0.
=00 n—o00

O

Remark 2.4.4. (a) Lemma 2.4.3 resembles Dini’s theorem and seems to be rather old. The
earliest reference to this result that I could find is the 1908 paper [27] by H. E. Buchanan
and T. H. Hildebrandt. For two different proofs of this lemma I refer to [145, Sec.0.1].

(b) Suppose that (X,)nen is a sequence of i.i.d. random variables with common cdf F(z).
Form the empirical (cumulative) distribution function

1
k=1

and the corresponding deviation D,, := sup,cr | Fo(z) — F(x) ’ The Glivenko-Cantelli theo-
rem shows that D,, — 0 a.s..
On the other hand, observe that for each x € R the random variables I _., ,(X,) are

i.i.d. random Bernoulli random variables with success probability F(z). The central limit
theorem shows

Vn(Fy(z) — F(z)) = N(0,F(z)(1 - F(z))).
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The Kolmogorov-Smirnov theorem states that

VDy = D, P[ Do >c] =2 (—1)mte 2,

m>1

For an “elementary” proof of this fact we refer to [63]. For a more sophisticated proof that
reveals the significance of the strange series above we refer to [14] or [57]. O

2.4.2. VC-theory. We want to present a generalization of the Glivenko-Cantelli theorem
based on ideas pioneered by V. N. Vapnik and A. Ja. Cervonenkis [171] that turned out
to be very useful in machine learning. Our presentation follows [141, Chap. II]. For more
recent developments we refer to [57, 76, 170, 176].

Fix a Borel probability measure p on 2 := RY. Any sequence of i.i.d. random vectors
X, :(Q,8,P) -2 =RN

with common distribution u defines empirical probabilities

1 n

The empirical probabilities are random measures on ( 2, By ) More precisely, for any Borel
subset B C 2, Pn[B ] is the random variable

P[B] = - 150X,
k=1

Suppose we are given a family F := (B;);er of Borel subsets of 2~ = RV, N > 1, parametrized
by a set T. We assume T is a Borel subset of another Euclidean space RP and we denote by
Br its Borel algebra. For example, we can choose 2~ = R,

By =(-o00,t], teT=R.

For each n € N we obtain a stochastic process parametrized by T,
1 n
P :TxQ—[0,1], Py(t,w)=P,[B](w) = ;ZIBt(Xk(w)).
k=1

For ech n € N we obtain a random variable
P.(t) : Q2 —1[0,1], w— P,(t,w).
The collection of random variables (P, (—)):er is an example of empirical process. Note that

(%7

E[Put)] = n[ B, Var [P0)] = Var[Pr(5)] = 2,

where
vim [ B(1-u[B]) <
The Strong Law of Large Numbers implies that

Zn(t) = Py(t) — p| B ] = %Z (Ye(t) —E[Yi(t)]) = 0 as. asn — oo.
k=1

| =
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Moreover, Chebyshev’s inequality shows that

P[|Za(0)] > ] < 2 <

< (2.4.4)

Can we conclude that Z,(t) — 0 uniformly a.s. in the precise sense described in Glivenko-
Cantelli’s theorem?

To proceed further we will need to make some further assumptions on the family (By)ier.
Later we will have a few things to say about their feasability. Set
D,, :=sup|Z,(t)| : Q@ — [0,1].
teT

Here is our first measure theoretic assumption.
M. The function D,, is measurable

To prove that D,, — 0 a.s. we will employ a different strategy than before. More precisely
we intend to show that, under certain assumptions on the family (By)icr, the probability
IP’[Dn > 5] decays very fast as n — oo, for any € > 0. This will guarantee that the series

> P[D, >¢]

is convergent for any € > 0 and thus, according to Corollary 1.3.54, the sequence D,, converges
a.s. to 0. To obtain these tail estimates we will rely on some clever symmetrization tricks.

To state the first symmetrization result choose another sequence X/ : Q@ — 27, n € N, of
i.i.d. random variables, independent of (X}, ),en, but with the same distribution. Set

YUt = T, (X)), Zalt) = -3 (0~ u[Y{(0)]), vneN, teT,
k=1
Dy i=sup | Z,(t) — Zn(t) |- (2.4.5)
teT
Equivalently,

nn—Sup*’Z Yoyi(t k())‘-

teT N
Here are our next measure theoretic assumption.
M. The function Dy, , is measurable
M. For any n > 0 and any € > 0 there exists a measurable map

7 (Qo(Xy,...,X,)) = (T, Br)
such that |Z,(T)| > e on {D,, > ¢}, i.e.,
Dp(w)>e = | Zn(7(w) ]| >e. (2.4.6)

Lemma 2.4.5 (First symmetrization lemma).

P[ Dy, >¢e] <2P[ Dy, >¢/2], Ve >0, Vn>$. (2.4.7)
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Proof. Choose a measurable map 7 : (Q, o(Xy,... ,Xn)) — (T, BT) satisfying Ms. Then
7 is independent of Z] and we deduce

(2..4) 1

E[ Tz 1</ | oK1, X)) = B[ 4 r(or iy 1oy ] 2 1= 5,

P[] Z,(r) | < /21| Du] = E[E[ T 00y 1e/2) | 0(X1,- ... X0) ] || D
1
21
Integrating over {D,, > ¢} we deduce
1
(1-— )P[Du>c] <P[|Z)(7)| </2, Du>¢]
(2.4.6) ) )
< Pl Z(1)| <e/2, | Zu(r) | > €] <SP[|Z(7) = Zn(7) | > /2]
<P[sup|Z,(t) — Zu(t) | > £/2].
teT
The inequality (2.4.7) follows by observing that for n > % we have 1 — =5 > % a

1
ne

Note that the variables (Y}, (t))nen are independent Bernoulli random variables with suc-
cess probability ps = [ By ]. The random variables (Y,(t)) are also of the same kind and
also independent of the Y’s. The key gain is that the random variables

En = Y[(t) — Yi(t)
are symmetric, i.e., =, and —Z,, have the same distributions. They take only the values
—1,0,1 with distributions
P[Z==%1] =pi(1—p), P[E=0] =1-2p(1—py).
The advantage of working with symmetric random variables will become apparent after de-
scribe our second symmetrization trick known as Rademacher symmetrization.

Recall that a Rademacher random variable is a random variable that takes the only
the values +1, with equal probabilities. Suppose that (R, ),en is sequence of independent
Rademacher random variables!? that are also independent of the variables X,, and X/,.

Observe that the random variables )_/n := R, Y, are also symmetric.

Lemma 2.4.6 (Rademacher symmetrization). For any n € N we have

P[supl( i(y,;(t) —Yi(t) ) > g} < QIP[ iuﬂgi‘ i}_fk(t)‘ > i} (2.4.8)
€ k=1

Proof. The key observation is that, because = (t) = Y/ (t) — Yi(t) is symmetric, it has the
same distribution as RiZj(t). Set

Su(t) =~ ST RV(), Sh(t) = - S0 RV,
k=1 k=1

12Here we are making a tacit assumption that there exists such a sequence random variables R, defined on .
For example if we can choose 2 to be the probability space (2, u®Y) ® (27, u®V) ® {—1,1}®N all the above choices are
possible. The choice of  is irrelevant because the Glivenko-Cantelli theorem is a result about (27, u®V).
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n

€ , €
sup—’ Y ’>f} P[sup—S — S, (t >f}
[teRnZ k ) 2 teRn} ()| 2
<]P’{sup—‘5(t)‘>f}—i—]P’{supl S’(t)’>§} QIP’[sup—‘S )| > E}
= Liernl ™" 4 ter Nl " 4 teR M 41
where we used the fact that R;Y/(t) and RYj(t) have the same distributions. 0
Putting together all of the above we deduce
1
P[D, <4IP[ 7‘ Y, ‘ 7}, — 2.4.
(D, > ¢ igﬂgn ZRkk’ Ve > 0, n>262 (2.4.9)

To make further progress we condition on the variables (X,,) and we deduce

]SS mico] > ]

teR T
_ - ®n
—/n [ig]g ‘ZRkyktx‘ Au [day - dzy ],
=:5¢(Z)
where 7 := (z1,...,2,) € 2™ and

yp(t, @) = I, (zx) € {0,1}, Vk=1,...,n, teT.
Hence

}P’[Dn >5] < 4/ IP’[ sup S¢(Z) > E}u@)”[dwl"‘dxn]. (2.4.10)
teR 4

For eachn € Nt € T and ¥ € 2™ we set [, := {1,...,n},
Cy(Z —{ke]ln,yk(t:n—l} {kE]In, :vkeBt}
Roughly speaking, Cy(Z) = By N {z1,...,2,}.
Cu(@):={CCl,; HeT, C=Cya)}.

n

For every C C I, we set

-2l Tl

so that Sy(¥) = S¢,(z). Hence

P sup Sy(&) > /4] =P[ sup Sc>e/4] < Y P[Sc>e/4].
teT Cetn (@) CECn(z)

We can now finally understand the role of the Rademacher symmetrization. The sums

k=1

are of the type appearing in Hoeffding’s inequality (2.3.13), where Rpyx(t,Z) € G(1) by the
computation in Example 2.3.7. We deduce

P[Sc > e/4] < 2e7"/32, VO C L,
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We deduce
P[ sup Si(%) > e/4] < 2/€,(F)]e"=/32. (2.4.11)
teT

Using this in (2.4.10) we deduce

P[D,>¢] < 86—n52/32/ |C (D) ™ [day -+ - dayy |. (2.4.12)

Zn

We have a rough bound |C,,(Z)| < 2™ but it is not helpful. At this point we add our last and
crucial assumption.

VC. The family F = (By)er satisfies VC-condition.'® This means that there exists d € N
such that

sup |Cn(Z)| = O(n?) as n — occ.
rezm

With this assumption in place we deduce that there exists K > 0 such that
21C.(Z)| < K(n?+1), VneN, VZe 2™
so that
P[D, >e] <8Ke ™ /3(nd 4 1). (2.4.13)
In the above estimate the constant K is independent of the distribution p. Since the series
Z e_m?/gz(nd +1) < oo, Ve>0,
neN
we deduce that D, — 0 a.s.. We have thus proved the following wide ranging generalization

of the Glivenko-Cantelli theorem.

Theorem 2.4.7 (Vapnik-Chervonenkis). Suppose that F = (By)ier is a family of Borel
subsets of 2 = RN parametrized by a Borel subset T of some Euclidean space, and i is a a
Borel probability measure on Z . Assume that p, F satisfy the conditions My, My,, Mas.

Fiz a sequence of independent random vectors X, : Q@ — 2~ with common distribution w.
Form the empirical measures

[ Q2 x Bx — [0,00], wi[B] :%ZIB[X]C(W)}.
k=1

If F satisfies the V C-condition, then, almost surely,
Mn[B] — ,u[B] as n — 0o
uniformly in B € F, i.e.,

lim sup‘,un[B] —,u[B] ‘ =0 a.s..
n~>ooB€3r

O

Remark 2.4.8. (a) The technical assumptions My, M), My are measure-theoretic in nature
and are automatically satisfied if the space of parameters T is countable. There are quite
general (and very technical) results that guarantee that these results hold in a rather broad
range of situations, [141, Appendix C].

Byco = Vapnik-Chervonenkis
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There are more sophisticated ways of bypassing My and M) and we refer to [57], [76] or
[170] for details. Section 1.1 in [170] does a particularly clear and efficient job of describing
these measurability issues and the methods that were proposed over the years to circumvent
them.

If one assumes the condition VC, one can bypass assumption Mz by using a weaker form
of the first symmetrization trick. Observe first that

E[Dn] <E[Dnn]. (2.4.14)
Indeed
i/E:OﬂwEDﬂﬂ”‘:iE{ZﬁﬂﬂEDﬂ@MH@lgkgnH
k=1 k=1
— % IE[ Z(Yk(t)—Yk’(t)) | Vi, 1 <k gn] ‘
k=1
SEH uﬁw—n@n)m%1gkgn}gEUMﬂuL1§k§ﬂ

Hence .

Ddﬂ:&m% S (Vi) — E[Yi(®)] | S E[Don | Yio 1<k < ).

k=1

By taking the expectations of both sides of the above inequality we obtain (2.4.14). A similar
argument as in the proof of the Rademacher symmetrization lemma yields

E[Dnm] <2 E{iggil ki)_/k(t) H )
=1

=:Rn(T)
The sequence R,,(T) is called the Rademacher complexity of the family (By)er.

McDiarmid’s inequality (3.1.21), a refined concentration inequality, shows that D,, is
highly concentrated around its mean. The VC condition can be used to show that the
Rademacher complexity goes to 0 as n — oo. Thus the mean of D, goes to 0 as n — oo.
Combining these facts one can obtain an inequality very similar to (2.4.12). For details we
refer to [176, Sec. 4.2] or Subsection 3.1.7

(b) One can obtain bounds for the tails of D,, by a Chernoff-like technique, by obtaining
bounds for E[ ®(Dy,) |, where ® : [0,00) — R is a convex increasing function; see Exercise
2.64. We refer to [142] or[170] for details. 0

The key assumption is VC and we want to discuss it in some detail and describe several
nontrivial examples of families of sets satisfying this condition.
Fix an ambient space 2 and F C 2% a family of subsets of 2". The shadow of F on a
subset A is the family
Fa={FNA Feg}cat
Note that for a finite set A we have
|F 4] < 2141,



214 2. Limit theorems

When we have equality above we say that A is shatterred by F. Thus, A is shattered by F if
any subset of A is in the shadow of F. We set

sy(n) := max { |Fal; |4l =n}.
Thus sg(n) is the size of the largest shadow on a subset of 2" of cardinality n. Note that
sg(n) < 2™,
For a nonempty F we define its VC-dimension to be
dimyc(F) :=max{n eN; sg(n)=2"}.
Thus, any subset A such that |A] < dimy¢(F) is shattered by F. In other words, if
k = dimy (), then for any n < k we have
min(n,k) n
w2 = "3 (1),
=1 N
We have the following remarkable dichotomy. For proof we refer to [57, Thm. 4.1.2] or [76,
Thm. 3.6.3].

Theorem 2.4.9 (Sauer Lemma). If dimy¢o(F) = k < oo, then

¥n>k: sy(n) < Py(n) = mig%k) (”)

=0 M

Note that Px(n) is a polynomial of degree k in n. O

Define the density of F to be
dens(F) = inf{r > 0; sy(n) =O0(n"), asn — oo }.

We see that the family F satisfies the condition VC if and only if dens(F) < co. Sauer’s
lemma implies that dens(¥) = dimyc(F) so that

dens(JF) < 0o <= dimy¢(F) < oo.

We see that a family F satisfies the condition VC if and only if its VC-dimension is finite.
A family with finite VC-dimension is called a VC-family.

Note that dimy¢(F) < k if and only if any set A C 2 of cardinality k& contains a subset
Ap with the property that any set in F that contains A also contains an element in A\ Ap.
Intuitively, the sets in F cannot separate Ag from its complement in A. Let us give some
examples of VC families.

(i) Suppose that F consists of all the lower half-lines (—o0,t] C R, ¢t € R. Note that if
A = {a1,a2}, a1 < ag, then any half-line that contains as must also contain a; so
that dimy¢(F) < 1.

(ii) Suppose that F consists of all the open-half spaces of the vector space R™. A
classical theorem of Radon [123, Thm. 1.3.1] shows that any subset A C R™ of
cardinality n+2 contains a subset Ag that cannot be separated from its complement
A\ Ap by a hyperplane. Thus dimy¢(F) < n+ 1. With a bit more work one can
show that in fact we have equality.

(iii) The above example is a special case of the following general result, [57, Thm. 4.2.1].
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Theorem 2.4.10. Let 2" be a set. Suppose that V is a finite dimensional dimen-
sitonal vector space of functions f : & — R. The space V defines two families of
subsets of X,

50 ={{f>0} fevl 7 ={{r=z0 fevy.
Then
dimye (97°) = dimye (F5°) = dim V.
(iv) If Fp, F1 are two VC-families of subsets of a set 2", then FyUF; is also a VC family.
Moreover (see [57, Thm. 4.5.1])
dens(Fo U F1) = max ( dens(Fp), dens(F7) ),
and (see [57, Prop. 4.5.2])
dimye (FoUF1) < dimFo + dim Fy + 1.
The above equality is optimal.
(v) If Fp,F; are two VC-families of subsets of a set 2" and we set

FonFr:={FoNF; FreF, k=0,1},
then (see [57, Thm. 4.5.3])
dens (Fo M F1) < dens(Fp) + dens(F1).
(vi) If F is a VC family of subsets of 2%, k = 0,1, and we define
Fo@F:={Fyx Fi; F, €Fy, k=0,1},
then Fy ® F; is a VC family of 2y x Z27; see [57, Thm. 4.5.3]. Moreover
dens(Fy ® F1) < dens(Fp) + dens(F1).

2.4.3. PAC learning. Let us explain why the above results are relevant in machine learning.
Suppose that we are dealing with a 0-1 good/bad decision/classification problem.

More precisely we want to determine when a parameter z € RY is “good”, i.e., determine
the set G of “good” parameters. For example, we know from other considerations that a
parameter x € R is good if and only if x < ¢y, but we do not know the precise value of #.
However, we have some information about the “good” set: it is of the form (—o0,t], t € R.

More generally, for one reason or another we are lead to believe that the set G belongs
to a family (Bj)ier, where T C RP and B; is a Borel subset of RY. The family is (B;)ser
called a hypothesis class. Thus we seek tg € T such that By, = G. On the the simplest
hypothesis classes is that of perceptrons, i.e., the collection of open half-spaces in a given
Euclidean space.

Consider a silly but suggestive example. Suppose that we want to decide when a banana is
good. The goodness of a banana is decided by say, three parameters: Color, Flavor, Softness,
or CFS. Hence the good bananas are defined by some measurable subset in the CFS space.
Suppose we have a collection F of categories of bananas, each category being defined by
constraints in the CFS.

We are allowed to ask an Oracle to pick banana at random and answer then following
yes/no questions. Does the chosen banana belong to a given category B;? Is the chosen
banana a good banana? However, the Oracle won’t tell us which of the categories of bananas



216 2. Limit theorems

is the good category. Saying that a banana is good and it belongs to a category B; only
says that the banana belongs to B; N G. We are suppose to learn the good category G by
repeating the above experiment many, many times and recording the answers.

Technically, the Oracle puts at our disposal a sequence of i.i.d. R"V-valued random vectors
(RY plays the role of the CFS space)

Xn: (8,P) RN, neN,
and the values Y, = I G(Xn), n € N. However, we do not know the common probability
distribution p of these random vectors.

If we knew this probability distribution, then we could find G = By, as a minimizer of
the deterministic functional L, : T'— [0, 1]

Lut) = - S B[ In (Xe) £ V] = S B[ I5,(Xe) # Ig(X)]
k=1 k=1

1 n
= Y P[Ipnac(Xy)=1]=u[BAG].
k=1
In fact L,(tp) = 0. Note that
,U,[BtAG] = E[IBtAG] = E[IBt +Ig— QIBtﬁG}-

The law of large numbers shows that P-a.s. we have

RS

lim — " (Ip,(Xk) + Ta(Xx) — 2L 5,na(Xk))

n—oo n
k=1

=E[Ip, +1Ig—2IpIc] =Lyt
Thus, even if we do not know p we can estimate L, (t) using the random functionals

(Ip,(Xy) +Ic(Xy) — 2Ip,nc(Xk))

Il
MH:

(IB,(Xk) + Y — 2V I, (X}) ).

k=1
If (Bi)ten, is a VC-family, then so is the family (B; N G)ier and (2.4.12) shows that there
exist constants K, ¢ > 0, independent of the mysterious u, such that

P[ sup | Ln(t) — Lu(t)| > ] < Ke " vn.
teT

Thus, if we ask the oracle to give us a large sample (z1,41) .. ., (Tn, yn) of (X1,Y1),..., (Xpn,Yn)
we obtain a deterministic functional
1 n
Ln(t; Liyew- 7-7;77,) = E Z (IBt(xk) + Yk — 2IBt(ack)yk )
k=1

If we find t,, such that L, (t,;21,...,2,) < §, then
P[Lu(tn) > ] S P[|Ln(ta) = Lu(ta)| > /2] < Kemen/4

Thus, for large n, Ly (t,) is, with high confidence, within ¢ of the absolute minimum Lp(¢y) = 0.
Hopefully, this signifies that ¢, is close to t3. In the language of machine learning, we
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say that the hypothesis class (By;)ier is PAC learnable, where PAC stands for Probably
Approximatively Correct. For more details we refer to [154, 128, 172].

Remark 2.4.11. The results in this section only scratch the surface of the vast subject
concerned with the limits of empirical processes. We have limited our presentation to 0-1-
functions. The theory is more general than that.

Suppose that (U,U) is a measurable space and
Xp: (,8,1) — (U, W)

is a sequence of i.i.d. measurable maps with common distribution P = (X,,)xpu, Vn. Fix a
family F of bounded measurable functions U — R. We obtain a random measure

1 n
P, = n;éxn

We obtain a stochastic process parametrized by f € F

NE

(Ba—B)[F] = -3 (F(X0) ~E[£(X)]) € L¥(28,), [ €.

>
Il

1

When F consists of indicator functions of measurable sets we obtain the situation described
in this section.

For each f the SLLN shows that
(Pn—IP’)[f] — 0 as.
while the CLT shows that

\/E(Pn _P) [f] = N(O,v(f)), v(f) = Var [f(Xn)L vn.
What can be said about the limit of the process P,, — P?

Just like there are different flavors of convergence of random variables, there are many
ways in which stochastic processes can converge. Various measurability issues make empirical
processes trickier to handle. We refer to [4, 57, 76, 141, 170, 176] for more details about
this problem. O

2.5. The Brownian motion

The Brownian motion bears the name of its discoverer, the botanist R. Brown who observed
in 1827 the chaotic motion of a particle of pollen in a fluid. Its study took off at the beginning
of the 20th century and has since witnessed dramatic growth. It popped up in many branches
of sciences and has lead to the development of many new branches of mathematics. In the
theory of stochastic processes it plays a role similar to the role of Gaussian random variables
in classical probability. It is such a fundamental and rich object that I believe any student
learning the basic principles of probability needs to have a minimal introduction to it.

I drew my inspiration from many sources and I want to mention a few that I used more
extensively, [14, 59, 110, 113, 151, 161]. My approach is not the most “efficient” one since
I wanted to use the discussion of the Brownian motion as an opportunity to introduce the
reader to other several important concepts concerning stochastic processes.
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2.5.1. Heuristics. To get a grasp on the Brownian motion on a line, we consider first a
discretization. We assume that the pollen particle performs a random walk along the line
starting at the origin. Every unit of time 7 it moves to the right or to the left, with equal
probabilities, a distance §. We denote by Sg’T its location after n steps, or equivalently, its
location at time n7, assuming we start the clock when the motion begins.

When § = 7 = 1 we obtain the standard random walk on Z
n
St =8, =Y Xy,
k=1

where (X,,)n>1 is a sequence of independent Rademacher variables, i.e., random variables
taking the values +1 with equal probabilities.

We assume that during the (n + 1)-th jump the particle travels with constant speed 1 so
we can assume that its location at time ¢ € [n,n + 1) is

WH(t) = Sp+ (t = n) Xn1 = Spyy + (¢ = [£]) X (1) 41-

If we sample the random variables (X,,), then of W(¢) is a piecewise linear function with
linear pieces of slopes +1. Its graph is a zig-zag of the type depicted in Figure 2.3

AN

N
,4.

Figure 2.3. The zig-zag depicting a random walk.

Suppose now that the pollen particle performs these random jumps at a much faster rate
say v-jumps per second and the size (in absolute value) of the jump is § meters. We choose
0 to depend on the frequency v and we intend to let v — co. Assuming that during a jump
its speed is constant we deduce that this speed is dv meters per second and its location at
time ¢ will be

WYO(t) = 68 + 0(vt — [vt] ) X iy -

::Rl/,é(t)

To understand this formula observe that in the time interval [0, ¢] the particle performed |vt]
v

t]

complete jumps of size . It completed the last one at time ~~. From this moment to ¢ it
travels in the direction X |44, with speed dv for a duration of time ¢ — %

Assuming that in finite time the particle will stay within a bounded region it is reasonable
to assume that

vt, supE[W"(1)?] < 0. (2.5.1)
Now observe that 6.5|,;) and R, s are mean zero independent random variables so that

E[W" ()] = °E[ ST, ] + E[Rus(t)*] = 8% [vt] + E[ Ry s5(t)*].
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Clearly E[ R, 5(t)?] € [0,0] so for (2.5.1) to hold we need

sup 6%v < oo.
14

We achieve this by setting § = v~1/2 and we set
WY () = W (1) = vTV2S Ly + Ru(t),
R,(t) == Vﬁl/Q(l/t — [vt] ) X |e)+1-

For each v, the collection (W¥(t))¢>0 is a real valued random process parametrized by [0, 00).
Think of it as a random real valued function defined on [0, 00). It turns out that the random
processes (IW¥(t)):>0 have a sort of limit as as ¥ — co. The next result states this in a more
precise form.

(2.5.2)

Proposition 2.5.1. Let 0 < s < t. Then as v — oo the random variable W (t) — WY (s)
converges in distribution to a Gaussian random variable with mean zero and variance t — s.
In particular, since W"(0) = 0 we deduce that the limit

W(t) = lim W"(t)
1%
exists in distribution and it is a Gaussian random variable with mean zero and wvariance t.

Moreover, if
0<s0<typ<s1 <ty <---<s <tg, k>1,

then the increments
W(to) — W(so), W(t1) — W(s1), ..., W(tx) — W(sg)

are independent.

Proof. Fix 0 < s < t. For v sufficiently large we have |vs| < |vt| and
Wy(t) - WV(S) = V_I(SLth - SLusj ) + ((Ru(t) - Rl/(s)) :

~~

e
Y, Zy

Observe first that
lim E[Z7] = 0.
n—oo

In particular, this shows that Z,, converges in probability to 0. On the other hand

v — lvt] —|vs| 1 % x
Y T P

Y,

The Central Limit Theorem shows that Y, converges in distribution to a standard normal
random variable. Since

lim Y —s]

V—r00 \/]7
we deduce that Y, converges in distribution to a Gaussian random variable with mean zero
and variance t — s. Invoking Slutsky’s theorem (Theorem 2.2.13) we deduce that Y, + Z,
converges in distribution to a Gaussian random variable with mean zero and variance t — s.

Now let
0<sp<tp<si <ty <---<sp<tg, k>1.
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For large v the random variables
14 / (Sl_th _SLSjJ ), J :0,1,...,k
are independent and the above argument shows that they converge in law to the Gaussian
W(t;) —W(s;), 7=0,1,... k.

Corollary 2.2.12 implies that these increments are also independent. a

Definition 2.5.2 (Pre-Brownian motion). A pre-Brownian motion on [0,00) is a collection
of real valued random variables (W(t) ) with the following properties.

(i) W(0) = 0.

(ii) For any 0 < s < t the increment W (t) — W (s) is a Gaussian random variable with
mean zero and variance t — s.

£>0

(iii) For any
0<s9<tyg<s1 <ty <---<sp <tp, E>1,

increments
W (tog) — W(so), W(t1) — W(s1), ..., W(tx) — W(sk)
are independent.

A pre-Brownian motion on [0,1] is a collection of real valued random variables (W (t) ), clo.1]
satisfying (i)-(iii) above with the s’s and ¢’s in [0, 1] O

We have thus proved that a suitable rescaling of the standard random walk on Z converges
to a pre-Browning motion. In Figure 2.4 we have depicted the graph of a sample of W"(t)
for v = 100. Its graph is also a piecewise linear curve, but its linear pieces are much steeper,
of slopes +v1/2.

2.5.2. Gaussian measures and processes. Suppose that (W(t)) is a pre-Brownian

>0
motion on [0,00). As explained in Subsection 1.5.1, this process defines a probability measure
on R0) equipped with the product sigma-algebra TB%? ) called the distribution of the
process. We want to show that any two pre-Brownian motions have the same distributions.
This requires a small digression in the world of Gaussian measures and processes. In this
subsection we survey some basic facts concerning these concepts. In Exercise 2.67 we ask the
reader to fill in some of the details of this digression. We refer to [163] for a more in depth
presentation of these topics.

Let V' be an n-dimensional real vector space. We denote by V* its dual, V* = Hom(V,R).
We have a natural pairing

(—, =) VXV SR, (62):=¢&@), VE€V*, zeV.

A Borel probability measure u € Prob(V) is called Gaussian if for every linear functional
¢ € V*, the resulting random variable & : (V, By, u) — R is Gaussian with mean m[f] and
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Figure 2.4. Approximating the Brownian motion.

variance v[ﬁ], i.e., (see Example 1.3.34)

_ (a=m[e)?
2 d, f€] # 0,

e
Peldr] =T [da] =

Equivalently, this means that the characteristic function of P is

= ité — UG ]
Pe(t) =E[e" ] = 2 :

A random vector X : (Q,8,P) — V is called Gaussian if its probability distribution is a
Gaussian measure on V. The random variables X1,..., X, : (,8,P) — R are called jointly
Gaussian if the random vector

X:Q0—=RY, X(w)=(Xi(w),..., Xnw)),
is Gaussian. This means that for any real constants &1,...,&,, the linear combination
ngl + 4+ ann

is a Gaussian random variable.

For any Gaussian measure 4 on the finite dimensional vector space V' with mean m,, [f ]
and variance vu[f ] we define its covariance form to be

C=Cu,:V"xV*" =R,

(vul€+n] =vu[€=n]) =Eu[ (€ =mu[€]) (n=mpu[n])].

B~

C(&n) =
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Then (see Exercise 2.67(ii) +(iii)) the mean m,, is a linear functional m, : V* — R and the
covariance C), is a symmetric and positive semidefinite bilinear form on V*. Equivalently, we
can view the covariance as an element in the tensor product V @ V.

Proposition 2.5.3. A Gaussian measure on a vector space is uniquely determined by its
mean and covariance form. O

The proof of the above result is based on the Fourier transform and its main steps are
described in Exercise 2.67. In the sequel we will refer to the mean zero Gaussian measures
as centered.

Example 2.5.4. (a) If X;,...,X,, are independent Gaussian random variables, then any
linear combination

§1X1 + e +§an
is also Gaussian, with mean Y, £){E[ X;]| and variance >, &? Var [ X;]. In particular, if

X1,...,X, are independent standard normal random variables, then the random vector
X = (Xy,...,X,) is Gaussian and its distribution is the standard Gaussian measure on
Rn
Iy[de] = ! e 2llel gy
! (27)n/2 '
(b) If X = (X1,...,X,) is a Gaussian random vector, then the mean of its distribution is
the vector

m[X]:=(E[X1],....E[ X»])

and the covariance form of its distribution is the n x n matrix C' with entries the covariances
of the components, i.e.,

Cij = Cov [ Xi, X;] =E[ (X, ~E[X:])(X; ~E[X;]) ], 1<ij<n.

(c) If v is Gaussian measure on a finite dimensional vector space and A : U — V is a linear
map to another vector space then the pushforward A4pu is also a Gaussian measure on V. In
particular if

X = (Xla"an)
is a Gaussian vector and A is an m X m matrix, then the vector Y = AX is also Gaussian.
Note that

—

Y=,....Yy), Vi=> a;X;, i=1,...,m.
j=1

(d) Suppose (—,—) is an inner product on the vector space V with associated norm || — ||.
We can then identify V* with V and the symmetric bilinear forms on V* with symmetric
operators. The centered Gaussian measure on V' whose covariance form is given by the inner
product is

If A:V — V is a symmetric linear operator, then pushforward A4I'y is the Gaussian mesure
with covariance form C' = A?. More precisely,

C(v1,v9) = (Avy, Avg) = (A%v1, v9).
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If, additionally A is invertible, then
1
det(2mA?)
We deduce that for any bilinear, symmetric positive semidefinite form
C:V*xV*—=>R
there exists a centered Gaussian measure admitting C' as covariance form. Indeed, if we fix a

metric on V then we can identify C' with a symmetric, positive semidefinite operator C' — V.
If A=+/C, then the Gaussian measure AT is centered and has covariance form C'. O

AyTy[da] = e~ 2147 g

Definition 2.5.5 (Gaussian processes). A Gaussian process parametrized by a set T is a
collection of random variables ( X (t)) +ep defined on the same probability space (2,8, P’) such
that, for any finite subset I = {t1,...,t,} C T, the random vector X; := ( X(t1),..., X (tn))
is Gaussian. We denote by I'; its distribution. The process is called centered if E [X (t)] =0,
vteT. O

Suppose that (X (t) )teT
on RT uniquely determined by the Gaussian measures I'7, I finite subset of 7. In turn, these
probability measures are uniquely determined by the mean function

m:T =R, m(t)=E[X()]

is a Gaussian process. Its distribution is a probability measure

and the covariance kernel
K:TxT—R, K(s,t) = Cov [X(s), X(t)].
Example 2.5.6. Suppose that ( W(t))

the random vector
(X1,..., Xy ) = (W), W(ta) = W(t1), ..., W(tn) — W(tn—1)
is Gaussian since its components are independent Gaussian random variables; see Example
2.5.4(a). Observing that
(W), W(tn)) = (X1, X1+ Xo, ..., X1+ -+ Xp)

we deduce from Example 2.5.4(c) that the vector ((W(t1),...,W(t,)) is also Gaussian as
linear image of a Gaussian vector. Thus, any pre-Brownian motion is a Gaussian process. It is
centered since all the random variables W (¢) have mean zero. Its distribution is a probability
measure on then path space R0 uniquely determined by the covariance kernel

K :[0,00) x [0,00) = R, K(s,t) =E[W(s)W(t)].

>0 is a pre-Brownian motion. Forany 0 <t} < --- <,

We claim that
K(s,t) = min(s,t), Vs,t>0. (2.5.3)
Indeed, assume without any loss of generality that s <¢. Then
E[W(s)W ()] =E[W(s)?] + E[W(s)(W(t) — W(s))].
The first summand is equal to s according to property (ii) of a pre-Brownian motion. Property
(iii) implies
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Hence
E[W(s)W(t)] = s = min(s, t).

We see that all pre-Brownian motions have the same covariance form and thus they all have
the same distribution.

Conversely, suppose that (X (t) ) is a centered Gaussian process whose covariance form

>0
is given by (2.5.3). Then this process is a pre-Brownian motion. Indeed,

E[X(0)*] = K(0,0) =0
so X(0) =0 a.s.. Next, observe that
E[X ()] = K(t,t) =t.
Each increment X (¢) — X(s), s < t, is Gaussian and
Var [ X(t) — X(s) | = K(t,t) — 2K(s,t) + K(s,s) =t — s.

Finally suppose that 0 < s1 <t; <--- <s, < t,. Then the n-dimensional random vector of
increments

V= (X(0) = X(s1)s o X(t) — X(s0) )
is centered Gaussian. The equality (2.5.3) implies that
Cov [Y;,Y;] =0, Vi#j

and we deduce from Exercise 2.68 that the components of Y are independent. This proves

that ( X (¢) )1;>0 is a pre-Brownian motion. 0

Remark 2.5.7 (Brownian events). Consider an arbitrary pre-Brownian motion
B, : (Q,F,P) >R, t>0.

We define the o-algebra of Brownian events to be the o-subalgebra of J generated by the
family of random variables By, t > 0. Concretely, any Brownian event F has the form

(Brn) ) pen € 55

where S C [0,00)" is a measurable subset and 7 : N — [0, 00) is an injection.

The restriction of P to the g-algebra of Brownian events is uniquely determined by the
distributions of the Gaussian random vectors

(Btl,...,Btn), nec N, tl,...,tn.
In turn, the distribution of such a vector is uniquely determined by the covariances
E[BsB;] = E[By(Bs + B, — B;)| = E[ BZ] = s = min(s, t).

We see that these distributions are independent of the choice of pre-Brownian motion B.
This shows that if

BU:(QLF P SR, i=1,2,
are two pre-Brownian motions, then for any measurable set S C [0,00) and any injection
7:N — [0,00) we have

P'[( Brny )nen € 51 =P?[(BZ(n) ) per € 5] O
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Example 2.5.8 (Gaussian random functions). Suppose that f, : T — R, n € N, is a
sequence of functions defined on a set T and (X,,)nen is a sequence of independent standard
normal random variables defined on a probability space (€2, 8,P). For each t € T' we have a
series of random variables

F(t) = Xnfalt).

neN
We want to emphasize that F'(t) also depends on the random parameter w € €2,
F(t) = F(tvw) = Z Xn(w)fn(t) (2'5'4)
neN
The above is a series of real numbers.
Observe that if the sequence of functions f,, satisfies the condition

D falt)? < oo, VHET, (2.5.5)

neN

then the series defining F'(¢) converges in LZ(Q,S,P), for any t € T. To see this, consider
the partial sums

Fu(t) =Y Xifi(t).
k=1

Then, for m < n, we have

E[(Fa(t) = Fn®)?] = Y AREPE[XE] = Y fu(t)?

This proves that the sequence ( F, (¢) )neN is Cauchy in L?(,8,P). The family F = ( F(t) )teT
is a centered Gaussian random process. It is convenient to think of F' as a random function.
Its value F'(t) at t is not a deterministic quantity, it is random.

The covariance kernel is
K(s,t) = Kp(s,t) =E[F(s)F(t)] = _ fu(s)f(t).
neN

The above series is absolutely convergent since

2/fa(s) (D] < fal(s)? + fult)?, Vn,s,t.

Note that since the random vector (F'(s), F'(t)) is Gaussian, the random variables are inde-
pendent iff they are not correlated, i.e., E[F(S)F (t)] = 0. Thus the covariance kernel can
be viewed as a measure of dependency between the values of F' at different points s,¢ > 0.

Using Kolmogorov’s one series theorem we deduce from the L? convergence that for any
t € T there exists a measurable subset N; C 2 such that P[Nt] =0 and, for any w € Q\ Ny
the series F'(t,w) in (2.5.4) converges. We will denote by F(t,w) its sum. Set

N = U N;.
teT

For w € Q\ N we obtain a genuine function

F,:T—>R, F,(t)=F(t,w).
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The function F, is referred to as a path of the stochastic process. We encounter here one of
the recurring headaches in the theory of stochastic processes. Namely, if T" is not countable,
the set N may not negligible so the paths may not exists a.s..

If the parameter space T has additional structure, one could ask if the paths are compat-
ible in some fashion with that structure. For example, if T" is an interval of the real axis, we
could ask if the paths are continuous functions of ¢. O

Example 2.5.9. A Gaussian white noise is a triplet (H, (Q,8,P), W), where

e H is a separable real Hilbert space,
e (2,8,P) is a probability space and,
o W:H — L*(Q,8,P), h — W(h) is an isometry of H into L*(£2,8,P) such that,
for any h € H, the random variable W}, is centered Gaussian.
Since X is an isometry we deduce that
Var [W(h) ]| =E[W(h)*] = ||hlF-

In particular, this also shows that the image image W(H) of X is a closed subspace of
L?(£2,8,P) consisting of centered Gaussian random variables. Such a subspace is called a
Gaussian Hilbert space. Obviously there is a natural bijection between Gaussian white noises
and Gaussian Hilbert spaces.

Here is how one can construct Gaussian white noises. Fix a separable Hilbert space H
with inner product (—, —). Next, fix a Hilbert basis of (e, )nen. Every element in H can then
be decomposed along this basis

h=> an(h)en, an(h):=(h,ey).
neN

Choose a sequence of independent standard normal random variables (X,,),ecn defined on a
probability space (€2, 8,P). For h € H we set

W(h)=>_ an(h)Xn.
neN
From Parseval’s identity we deduce that
> an(h)* = |1l
neN

proving that the series defining W(h) converges in L2. The collection (W(h))
Gaussian process and its covariance is

K(ho,hl) == E[W(ho)W(hl )] == Zan(ho)an(hl) == (ho,hl).
neN

heH 1S a

In particular, this proves that the correspondence h — W(h) is an isometry, and thus we
have produced a Gaussian white noise.

As a special example, suppose that H = L2( [0,00),A). Fix a Hilbert basis (fy)nen and
construct the Gaussian noise as above

L([0.00).X) 3 1 75 Wy = S auWWa an(f) = [~ F0 (01
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For each ¢ € [0, 00) we set

B(t):=W(Igy) =) (/Ot fn(s)ds> X, (2.5.6)

neN
Note that

E [ B(s)B(t) ] = /0 I[O,s] (x)I[Qt] (x)dx = min(s,t).
This shows that W (t) is a pre-Brownian motion.
Observe that if s # t and |u| < |t — s|/2, then the random variables

%(B(S—I—u)—B(s)) and %(B(TH‘U) — B(t))

are independent.

Now we need to make a leap of faith and pretend we can derivate with respect to ¢t. (We
really cannot.) Letting u — 0 we deduce that F'(t) and F'(s) are independent Gaussian
random variables. Derivating with the same abandon the equality (2.5.6) we deduce

B'(t) = falt)Xn. (2.5.7)
neN

Thus, the elusive B'(t) is a random “function” of the kind described in Example 2.5.8 with
one big difference: in this case the condition (2.5.5) is not satisfied. Observe that the “value”
of F at a point ¢ is independent of its value at a point s. Thus, the value F’ at a point carries
no information about its value at a different point so F’(t) is a completely chaotic random
“function” and it is what is commonly referred to as white noise.

As we will see in the next subsection the function B(t) cannot be derivated at any point.
Moreover, the series (2.5.7) does not converge in a classical sense. However it can be shown

to converge in the sense of distributions. For an excellent discussion of this aspect we refer
to [74, Sec. 1114 |.

For any function f € L?([0,00)) we define its Wiener integral

/0 F(8)dB(s) = W (Ipqf). (2.5.8)

In Exercise 2.74 we give an alternate definition of the this object that justifies this choice of
notation. In particular we deduce that

B(t) = /0 dB(s)

Even though B’(t) does not exist in any any meaningful way, the above intuition is neverthe-
less very important since it is what lead to the very important concepts of Ito integral and
stochastic differential equations. O

2.5.3. The Brownian motion. We have almost everything we need to define the concept
of Brownian motion and prove its existence.

Definition 2.5.10. A stochastic process ( B(t) )t>0 defined on a probability space (2,8, P)
is called a standard Brownian motion or Wiener process if the following hold.

(i) B(t) is a pre-Brownian motion.



228 2. Limit theorems

1) For any w € () the pat
i) Fi y Q th h
B, :[0,00) = R, t+— B(t,w)
is continuous.

O

To prove the existence of a standard Brownian motions we need a bit more terminology
and another fundamental result of Kolmogorov.

Definition 2.5.11. Let (€2, 8,P) be a probability space, T" a set, and (X,F) a measurable
set. Consider stochastic processes

XY TxQ-X, (tiw)— X¢(w), Vi(w).

(i) The process Y is said to be a modification or version X, and we denote this X ~Y
if for any t € T' there exists a negligible subset N; such that

Xi(w) =Y (w), Yw e Q\ Ny

(ii) The processes X,Y are said to be indistinguishable and we denote this X ~ Y if
there exists a negligible subset N such that

Xi(w) =Yi(w), VteT, Ywe Q\N.

(iii) The processes X,Y are said to be stochastically equivalent, and we denote this
X ~, Y, if for any finite subset I C T the random vectors X! and Y! have the
same distribution.

O

Note that =, ~, ~4 are equivalence relations and
XY = X~Y = X~ Y.

We have shown that any two pre-Brownian motions are stochastically equivalent. We want
to prove something stronger namely, that any pre-Brownian motion admits a version whose
paths are almost surely continuous maps [0,00) — R. We begin by proving a more general
result.

Theorem 2.5.12 (Kolmogorov’s Continuity Theorem). Suppose that T is a compact interval
of the real azis, (0, F,P) is a probability space and

X:TxQ—->R, (t,w)— Xi(w)
s a stochastic process such that, there exist constant q,r, K > 0 with the property that
E[|Xs — Xi|?] < K|s —t|'t", Vs, teT. (2.5.9)

Then, for any o € (0,7/q), the process X admits a modification Y whose paths are almost
surely Hélder continuous with exponent cv. This means, that for any o € (0,r/q) there exists
a stochastic process (Yi)ier, a negligible subset N, C Q and a measurable function

C=0Cq:0Q—[0,00),
such that
e VteT, Xy =Y; as. and,
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o for any w € Q\ Ny, and any s,t € T we have
| Vsw) - Yi(w) | < Cw)ls — 1.

Proof. We follow the presentation in [151, Sec. 10.1]. In the sequel we will denote various
evolving universal positive constants by the same symbol, K. Without loss of generality we
can assume that 7= [0, 1]. We denote by D the set of dyadic numbers in [0, 1]

D = | J D, Dn:{;ﬂ; 0<k<2"}, D =D\ {1}
n>0

For r € D} we set

;o {[r,r+1/2"), r<1-1/2",

[ -1/2m 1], r=1-1y2m
Every t € [0,1] admits a binary/dyadic decomposition

o0
(=3 e o1y,

2k 7
k=1

such that

n

Tn(t) = Z e;;(kt) 't asn — 0.
k=1

More precisely, t € I ()5, for any t € [0,1], Vn > 1. For n > 1 we set

C, = { (u,v) € Dy, X Dy |u—v| < 9~ (n=1) }

Note that
#C, < K2".
Let
0SCy, 1= Ssup ‘Xu — Xy ‘
(u,w)eCh
We deduce
Eloscd | < Y E[|Xy—X,|7] (2'%'9) (#C)2~ =D+ < fro=nr, (2.5.10)

(u,v)eCh
Let s,t € [0,1], s # t. We set
m=m(s,t):=min{k € N; e(t) # ex(s) } =min{k € N; m(¢t) # mi(s) }.

For m € N define

P i={(s,t) € [0,1]% m(s,t) =m }.
Note that if

(5,t) € Ppy=2"" < |s —t| < 271,
Let (s,t) € Py,. Then

X = Xey + 22 (Xra) = X))

n>m

Xo=Xe()+ 2 (Xrii(9) = Xus))

n>m
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Xt —Xs = Xop(t) = Xo(s) + Z (Xrpirt) = Xrovy) — Z (Xrpii(s) = Xrn(s) )-

n>m n>m

Note that

(T (t), 7m(s)) € Crm, (mn(t), Tns1(t) ), (7n(s), mt1(s)) € Cp, V> m.
Hence
!Xt—Xs‘ < 08¢y, +2 Z osc, < 3 Z 0SCy, -

n>m n>m
————
=Tm
We deduce from (2.5.10) that
Tl <K Y270 < Ko™ (2.5.11)
n>m
We have
X — X
sup M <2°™ sup | Xy — Xi | <29
(s:t)EPm ’3 - t‘a (s,t)EPM,

Invoking (2.5.11) we conclude that

sup < sz(a—g)’ vm € N.

(s)ePm |5 —t*

La

Fix a € (0,r/q). Then 2™~ ¢ < 1, ¥m € N and we deduce

sup [ X =Xel| sup
s,t€D, |s —t|* m>1
S?ét Lq

sup ——rt
(s)cPn 15—t

La

We conclude that there exists a measurable negligible subset N C €2 and a measurable function
C: Q2 — [0,00) such that

| X¢(w) — Xs(w) | < Cw)|t —s]%, Vs, teD. (2.5.12)
We can now produce the claimed modification. For every w € 2\ N the map
Dot Xi(w)
admits a unique a-Holder extension 7' > ¢ +— Y (w) € R. For tp € T and w € Q \ N we have
Yip(w) = Jim Xi().
teD

Since
: v el
tligloE“Xt Xyl?] =0
teD

we deduce that X;, = Y}, a.s.. Hence the process (Y} )teT is a modification of (Xt )
paths are a.s. a-Holder continuous.

teT whose
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Remark 2.5.13. (a) Using Exercise 2.73 one can modify the modification in Theorem 2.5.12
to be a-Hdlder continuous for any « € (0,¢q/r), not just for a fixed « in this range.

(b) The argument in the proof of Theorem 2.5.12 is an elementary incarnation of the chain-
ing technique. For a wide ranging generalization of the continuity Theorem 2.5.12 and the
chaining technique we refer to [108, Chap. 11] or [165]. 0

Corollary 2.5.14. Suppose that (Wy)i>0 is a pre-Brownian motion. Then for any o € (0,1/2)
the process (Wy) admits a modification whose paths are a.s. a-Hdélder continuous. In partic-
ular, Brownian motions exist.

Proof. Set § := % — «. Note that since W; — Wy is Gaussian with with mean 0 and variance

|t —s|. Then D := \/ﬁ(Wt — W) ~ N(0,1) so that, Vg > 1, we have

E[|W; — Wi|?] = |t — s|’E[|D|7].
If we choose ¢ > %, then we deduce that
q/2—-1 1 1

ST o>

q 2 q
and Theorem 2.5.12 implies that (W;) admits a modification (Wt)
ao-Holder continuous.

>0 whose paths are a.s.

Recall that this means that there exists a measurable negligible set N' C €2 such that
Vw € Q\ N the path ¢ — Wi(w) is continuous. Now define
W, Q\N
Bi0,00) x 0, (L) Bilw) = { V@) weQAN,
0, w € N.
Clearly (Bi):>0 is a (standard) Brownian motion. O

Remark 2.5.15. I want to say a few words about Paul Lévy’s elegant construction of the
Brownian motion, [113, Sec. 1].

He produces the Brownian motion on [0, 1] as a limit of random piecewise linear functions
L,, with nodes on the dyadic sets

k
D"::{Qn; O§k§2n}, n > 0.

They are successively better approximations of the Brownian motion. The O-th order ap-
proximation is the random linear function Lg(t) such that Lo(0) = 0 and Lo(1) is a standard
normal random variable.

The n-th order approximation L, satisfies the following conditions.
e It is linear on each of the intervals ((k —1)/2",k/2"), L,(0) = 0.
e The increments
Ly(k/2") = Lo((k—1)/2%), k=1,...,2"
are normal random variables with mean zero and variance 1/2".
o L,(t)=Lp_1(t),Vt € Dy_1.
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To explain how to produce L, (t) given L,_1(t) we only need to explain how to produce
Ln((2k —1)/2™) given that

Ln(]/Qn_l) = Ln—l(j/Qn_l ), ] =k— 1,]{.
To “guess” what Ly ((2k —1)/2") should be, we take our inspiration from the Brownian

motion that we want to approximate.

Consider two moments of time ¢ty < ¢; in [0,1]. Then B(tg) ~ N(0,t9), B(t1) ~ N(0,t1)
and B(t1) — B(tp) is a normal random variable with mean 0, variance t; — to, independent of
B(tp). Denote by t, the midpoint of [to, t1], t« = (to + t1)/2.

Consider the linear interpolation

Z = =(B(to) + B(t1) ).

N | =

The difference
1 1

A:=DB(t,) — Z = 5(B(t*) — B(ty) ) + §(B(t*) — B(t1))

is a sum of two independent normal random variables, that are also independent of B(tg).
Thus A is a normal random variable with mean 0, variance (¢; —to)/4, independent of B(ty).

We write
1 Vii —t
B(t.) = Z+A =5 (B(to) + B(h)) + %X

where X is a standard normal random variable independent of B(tp). We can now describe
Lévy’s prescription. We set
D= U D,

n>0

(2.5.13)

and consider a family (X;)scp of independent standard normal random variables. Then
Lo(t) :=tXq,

The approximation L, is obtained from L, as follows. If ¢ty < t; are two consecutive points
in D, and t, € Dy41 is the midpoint of [tg, 1], then L, 41(ts) is obtained by mimicking
(2.5.13), i.e.,

La(t) = 2 (Lalto) + Lo(t)) + Y10

On each of the intervals [to, t«] and [t,t1] the function ¢t — L,y () is linear so it is uniquely
determined by its values at endpoints.

Xi, = Ly(ty) X, .

1
+ 21+n/2

To prove that the sequence L, (t) converges uniformly a.s. it suffices to show that the
series of random variables

sup ‘ Ln-i-l(t) - Ln(t) ‘
n>0 t€(0,1]

—U,
converges a.s..
Denote by M, the set of midpoints of the 2™ intervals determined by D,,, M,, = Dy 41\ D,.
From the construction of L,, we deduce that

U, =

oty e | Xz,



2.5. The Brownian motion 233

We deduce that for any n > 0 and any ¢, > 0 we have
P(Un>cn] < > P[X,| >2" 20, ] = 2"HP[Y > 2172, ], ¥V ~ N(0,1).
TEMn
The Mills ratio inequalities (1.3.43) imply that
on/2

Py > 21+n/2. ] < —2nen,
[ n] T \V27e,
When
cn =+/rn2 "log2, r>1,
we have
o(1-r)n
P\ U, > < —.
[ " Cn] ~ V2rmnlog?2
Observing that the series
o(1-7)n
7; V2rmnlog 2
is convergent we deduce from the Borel-Cantelli lemma that
]P’[Un < cp i.o.] =0.
Hence U,, — 0 a.s. since ¢,, — 0. O

Let us observe that if (B(t)) is a standard Brownian motion, then B(0) = 0 a.s.. For this
reason, the standard Brownian motion is also referred to as the Brownian motion started at
0. For x € R we set B*(t) = x+ B(t). We will refer to B*(t) as the Brownian motion started
at x.

Remark 2.5.16 (The Wiener measure). The space € := C([0,00) ) of continuous functions
[0,00) — R is equipped with a natural metric d,

A(f,9) = 3 o min (L,da(f,9))s du(frg)i= sup |f(t) = g(t)].

neN 2r te|n—1,n]

The topology induced by this metric is the topology of uniform convergence on the compact
subsets of [0,00). One can prove (see Exercise 2.75) that the Borel algebra of this metric
space coincides with the sigma algebra generated by the functions

Ev::C— R, Ev(f) = f(t).
More generally, for any finite subset I C [0,00) we have a measurable evaluation maps
Ev;:C—= R fe flr.
Proposition 1.2.4 shows that if ug, 11 are two probability measures on € such that
(Evi)gpo = (Evi)ym

for any finite subset I C [0,00), then py = p;.

Note that if (Xt ) +>0 18 a stochastic process defined on a probability space (Q,8,P) whose
paths are continuous, then it defines a map

X: Q-0 Qo2wr X(w)el, X(w)(t) =Xt(w).
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The map X is measurable since its composition with all the evaluation maps Ev; are mea-
surable. Thus the stochastic process defines a probability measure

Py := X#P € Prob (G, B@)

called the distribution of the process.
Suppose that B%, B! are two Brownian motions defined on possibly different probability
spaces. They have distributions

Wq, Wy € Prob (G, Be )

These distributions coincide since the finite dimensional distributions m;W;, ¢ = 0,1 are
centered Gaussian with identical covariances

E[ B} B;, | =min(t,t2), Vti,t2 €1, i=0,1.

Thus, the Brownian motions determine a probability measure W on € uniquely determined
by the requirement that for any finite subset {¢1,...,t,} C [0,00) the random vector

( Eth,...,Eth )
is centered Gaussian with covariances E[ Evy, Evy; | = min(#;,¢;). This measure is known
as the Wiener measure. We denote it by W.

Note that W is unique probability measure on € such that the canonical process
B;: (G,’B@,W) =R, €3 f—=Ev(f)=f()
is itself a Brownian motion, i.e.,

Ew | BsB; | = min(s,t), Vs,t> 0. (2.5.14)

We have proved the existence of Wiener’s measure by relying on the existence of Brownian
motion. Conversely, if by some other method we can construct the Wiener measure on C,
then as a bonus we deduce the existence of Brownian motions. Here is one such alternate
method.

Consider a sequence of i.i.d. random variables (X, ),en with mean 0 and variance 1. We
set
So=0, S, =X;+---+X,, neN.
Imitating (2.5.2), for » € N and ¢ > 0 we set

WY (t) = v 28 + Ru(t), Ru(t) == v Y2(vt — [vt] ) X pejsr- (2.5.15)

For each v, the paths of the random process are continuous and piecewise linear. The above
discussion shows that it defines a Borel probability measure P, = Py on C.

Donsker’s Invariance Principle shows that the the sequence P, converges weakly to a
probability measure on Po, satisfying (2.5.14). In other words, Py is the Wiener measure.
We can view the Invariance Principle as a functional version of the Central Limit Theorem.
Its proof requires an in depth investigation of the space of probability measures on Polish
spaces'? and is beyond the scope of this text. For a most readable presentation of Donsker’s
theorem and some of its consequences we refer to [14], [21, Chap. 13]. O

1Recall that a Polish space is a complete separable metric space.
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The next result suggests that the paths of a Brownian motion are very rough, i.e., they
have poor differentiability properties.

Proposition 2.5.17 (The quadratic variation of Brownian paths). Consider a Brownian
motion By)i>o defined on the probability space (2,8,P). Fiz ¢ > 0 and let

0=ty <ty <---<ty =c¢, neN
be a sequence of subdivisions of [0,t] with mesh

pn = sup (tp —tg_y)
1<k<pn

tending to 0 as n — oo. Define the quadratic variations
Pn

Qn(c) ==Y (B — By )

k=1
Then B[ Qn(c) | = ¢, Vn and Qn(c) — c in L*(Q,8,P) as n — oo.

Proof. The Gaussian random variables X" = By — By, 1 < k < p,, are independent,
k k k—1

have mean zero and momenta

E[(X)?) =tp —tp 4, E[(X)']) =3(tp — 7 4)".

From the first equality we deduce E[Qn (c)] = ¢. Moreover

Pn Pn

S (X —e=d((x0)* - (- 1))

k=1 k=1

=Y

The random variables Y, are independent and have mean zero so

Pn 9 2 n
1> (x)P o], =S 1wz
k=1 k=1
Now observe that
Y2, = E[ (X)) -2t -t DE[(XE)?] + (t — th_y)? = 200 — 17 )2

Hence
Pn 2 Pn
Do (Xi) =l =23t —ti)’
k=1 L2 k=1
Pn
< 2,an2 (6 —tr_1) =2pnc — 0 as n — 0.
k=1

O

On a subsequence n; we have Q,;(c) — ¢ > 0 a.s.. On the other hand, if for some w €
the function ¢ — By(w) where Hélder with exponent o« > 1/2 on [0, ¢], then for some constant
C = C, > 0 independent of n we would have

0< Qu(t)(w) <2 |t —tp [ < C2p2ete — 0.
k

This prove that By is a.s. not a-Hoélder on [0, ¢, a > 1/2.
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On the other hand, we know that the paths of the Brownian motion are Hélder continuous
for any exponent < 1/2. A 1933 result of Paley, Wiener, Zygmund [136] shows that they
have very poor differentiability properties. First some historical context.

One question raised in the 19th century was whether there exist continuous functions on
an interval that are nowhere differentiable. Apparently Gauss believed that there are no such
functions. K. Weierstrass explicitly produced in 1872 such examples defined by lacunary (or
sparse) Fourier series. In 1931 S. Banach [9] and S. Mazurkewicz [124] independently showed
showed that the complement of the set of nowhere differentiable functions in the metric space
of continuous functions on a compact interval is very small, meagre in the Baire category
sense.

The 1933 result of Paley, Wiener, Zygmund that we want discuss is similar in nature.
They prove that the complement set of continuous nowhere differentiable functions f € € is
negligible with respect to the Wiener measure.

Theorem 2.5.18 (Paley, Wiener, Zygmund). The paths of a Brownian motion (By)i>0 are
a.s. nowhere differentiable.

Proof. We follow the very elegant argument of Dvoretzky, Erdos, Kakutani [60]. We will
show that for any interval I = [a,b) C [0, 00) the paths of (B;) are a.s. nowhere differentiable
on I. Assume the Brownian motion is defined on a probability space (€2, 8,P). This probabil-
ity space could be the space C equipped with the Wiener measure. For ease of presentation
we assume that I = [0,1). Consider the set

S:={weQ; the path By(w) is nowhere differentiable on [0,1) }
The set S may not be measurable'® but we will show that its complement is contained in a

measurable subset of 2 of measure zero.

Let us observe that if w € Q\ S, i.e., the path ¢ — B;(w) is differentiable at a point
to € [0, 1], then there exist M, N € N such that for any n > N there exists k € {1,...,n— 2}
with the property that

| Blio—1+i)n (W) = Bitiym(w) | < %, Vi=0,1,2.
To see this set f(t) = Bi(w), m = |f'(to)|, M = |m| + 2. Then there exists € > 0 so that if
s, t € (tp —e,tp +¢€), s <t we have
[f(s) = fO)] < M(t—s).
Now choose N such that % < ¢ and, for n > N choose k € {1,2,...,n} such that
k—1 E k+1 kE+2

n 'n n n

thp—e < <t +e. (2.5.16)

We deduce that
n 2

Q\Sc U U ﬂ U ﬂ{’B(kAH)/n—B(kH)/n‘ < M/n}

MeNNeN n>N k=11i=0

~~

=XmN

151 1936 S. Mazurkewicz proved that the set S is not a Borel subset of C.
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Clearly, the set X7 v is measurable and it suffices to show it is negligible. We have

n—2
P[Xun] < nig}cv;ﬂ”[ Dax, | Bo—1+4)jn — Bitiyjn | < M/n}- (2.5.17)

Now observe that the increments Bj,_1)/, — By, are independent Gaussians with mean zero
and variance 1/n. We deduce

n—2 3
P[Xarw] < inf S P[] Byoryjn — By | < M/n | .
- k=1

The exponent 3 above will make all the difference. It appears because of the constraint
(2.5.16) on N. Since \/ﬁ‘ B—1)/n—Bi/n ‘ is standard normal, the random variable ‘ B—1)/n—Bi/n ‘
is normal with variance % and we have

n M/n —x2n/2
P[| Be—1)/n — Brn | < M/n] :2,/%/0 e dx

(x = My/n) X
)
2 "M/ e B ay < 2 Mnlr2,
2r n 0 m
=:C
Hence

n—2
S P[| By — Bign | < M/n]® < nC3MPn~%?% = COMPn~Y2, o > N,
k=1
and (2.5.17) implies that ]P’[XM,N] =0. O
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2.6. Exercises

Exercise 2.1 (Ottaviani-Skorokhod). Suppose that Xj,..., X, are independent random
variables. We set So =0, Sy = X1 +---+ X, k=1,...n. Let a > 0 and set

c:= sup P[|S,—S;| >a], M,:= sup |5j|.
0<j<n 1<j<n

Prove that if ¢ < 1, then'®

Cc

1
P[ M, > 2a] < 1—_CIP>[|Sn| >al < —

—_

Hint. Denote by J the first j such that |S;| > 2. Note that P[ M,, > 2a] =P

—

JSTL]

P[|Snl > a] > P[|Sn| > a, Mp>2a]=> P[|Sp|>a, J=5]>> P[|Sy—S;|<a, J=7].
j=1 j=1

3

Observe that the event {J = j} is independent of S, — S; and P[|S, — Sj| <a] >1—c. O
Exercise 2.2. Suppose that (X,,),>1 is a sequence of independent random variables. Prove
that the following statements are equivalent.

(i) The series >, X,, converges in probability.

(ii) The series ), -, X, converges a.s.
Hint. Use Exercises 2.1 and 1.48. O
Exercise 2.3. A random variable X is called symmetric if X and —X have identical dis-

tributions. Suppose that Xi,..., X, are independent, symmetric random variable. We set
Spn=X1+4+-+ X,.

1

51["[ 1r£kagxn|Xk| >u] <P[|Sy] > u].

Hint. Set T =min{k; 1<j<n, |X;|=maxi<k<n|Xk|}, Rr = Sn — X71. O

Exercise 2.4. Let X be a real valued random variable. The median set of X is the collection
med(X):={ceR; P[X <c¢] <1/2<P[X <c]}.

The numbers in med(X) are called medians of X.

(i) Prove that med(X) # (.

(ii) Let Z € med(X). Suppose that X’ is an independent copy of X, ie., X, X’ are
ii.d. and set X* = X — X’. Prove that for any € > 0, and any a € R

1
§IP’[X—§;\ >e| <P[|X*>e] <2P[|X —a| >€/2].
(iii) Let £ € med(X) Prove that for any a € R and any p € [1, 00)
1
5]E[\X —z|P] <E[|X*]P] < 2PE[|X —alP].
Hint. For (iii) you need to use Proposition 1.3.40 and the integration by parts formula (1.3.50). O

16The weaker inequality, IP[Mn > Qa] < %C, is also known as Lévy’s inequality.

1
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Exercise 2.5. Suppose that (X,,),>1 is a sequence of independent random variables. Fix
another sequence (X/),>1 of independent random variables, independent of (X,,),>1, and
such that X,, and X/ have the same distributions for any n. Form the symmetrizations
X =X, — X]. Prove that the following statements are equivalent.

(i) The series, and set
n
Sp=2_%n
n>
is a.s. convergent.
(ii) There exists a sequence of real numbers (ay),>1 such that the series
D_(Xn —an)
n>1
is a.s. convergent.

Hint. Use Kolmogorov’s three series theorem and Exercise 2.4. a

Exercise 2.6. Consider an infinite array of nonnegative numbers P = (py, k)kn>1 satisfying
the following conditions.
(i) The array is lower triangular, i.e., p,r =0, Vk > n.

(ii) For every n, the n-th row of P defines a probability distribution onI,, = {1,2,...,n},
ie.,

n
an,k =1, Vn>1.
k=1
(iii) The sequence determined by each column of P converges to 0, i.e.,

lim p, =0, Vk > 1.
n—oo

Show that if (x,) is a sequence of real numbers that converges to a number z, then the
sequence of weighted averages
n
Yn = an,kfﬂk
k=1

converges to the same number x. O

Exercise 2.7 (J. von Neumann). In this exercise we describe the acceptance-rejection method
frequently used in Monte-Carlo simulations. For any nonnegative function f : R — [0, 00) we
denote by Gy the region bellow its graph

Gp={(z.y) eR* 0<y < fla((x) }.
(i) Suppose that we are given a probability density p: R — [0, c0)

/R p(z)dz = 1.

For any positive constant ¢ we set

c_1

1y = —Ig,,(z,y)dzdy.

c
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(i)

(iii)

(iv)

Since area(Gp) = ¢ we deduce that yg, defines a Borel probability measure on R2.
The natural projection R? 3 (z,y) — = € R is a random variable X defined on
the probability space (R?, Bge, ,u;;). Prove that the probability distribution of X is
p(z)dz.
Suppose that X is a random variable with probability distribution p(z)dz. Let U
be a random variable independent of X and uniformly distributed over [0, 1]. Prove
that the probability distribution of the random vector (X, cp(X)U) is ps,.
Let ¢ : R — [0, 00) be another probability density such that, there exists ¢ > 0 with
the property that

q(x) < ep(x), Yz eR.
Suppose that (Up)nen is a sequence of i.i.d. random variables uniformly distributed
on [0,1] and (X,)nen is a sequence of ii.d., independent of the U,’s and with
common distribution p(z)dz. Denote by N the random variable

N =inf {n eN: ep(Xn)U, < q(Xy) }

Prove that
E [ N ] =c.
Hint. Consider the random vector Vs, = ( Xn,ep(Xn)Uy ), observe that
N=inf{neN; V, €Gq},
and use part (i) to show that N is a geometric random variable.
Define Y = Xy, i.e.,
Y(w) = Xnw)(w).

From (iii) we know that P[ N < co] =1 so Y is defined outside a probability zero
set. Prove that the probability distribution of the random variable Yis ¢(y)dy.

O

Remark 2.6.1 (Acceptance-Rejection method). Suppose that a computer can sample the
distribution Unif(0,1) and it can sample the distribution p(x)dz. We can then sample the
distribution ¢(y)dy as follows. Sample succesively and independently Unif(0,1) and p(z)dz
and denote by U, and respectively X,, the samples obtained at the n-th trial. Stop at the
first trial N when the inequality cU, < 4Xn) s observed. Set Y = X ~- The results in the

p(Xn)

above exercise show that the expected waiting time to observe this inequality is ¢ and the
random number Y samples the distribution ¢(y)dy. 0

Exercise 2.8 (Bernstein). For each « € [0,1] we consider a sequence (B} )gen of i.i.d.
Bernoulli random variables with probability of success x. We set

Sr=> Bj.
k=1

Note that S¥/n € [0,1] and the SLLN shows that

Sy/n — x a.s. asn — oo.

The dominated converges theorem implies that for any continuous function f : [0,1] — R we

have

lim E[ £(S5/n)] = f(x).

n—oo
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Set
Bl (x) :=E[f(Si/n)].
(i) Show that
n
n
Blta) =Y (1 )a* - ) /).
k=0

(ii) Prove that as n — oo the polynomials B () converge uniformly on [0,1] to f(x).

Hint. For (ii) imitate the argument in Step 2 of the proof of Theorem 2.2.30. O

0.51

—-0.54

—14

Figure 2.5. The graph of f(x) = sin(4nwz) (the continuous blue curve) and of the degree
50 Bernstein polynomial Bi,(z) (the dotted red curve).

Exercise 2.9. Suppose that X,, € L?(Q,8,P) is a sequence of random variables with mean
zero and variance one such that

lim E[Xme+k] =0, uniformly in m.
k—o0

Prove that 1
—(X1+~~+Xn)i>0 as n — oo. O
n

Exercise 2.10. Suppose that a player rolls a die an indefinite amount of times. More for-
mally, we are given a sequence independent random variables (X}, )nen, uniformly distributed
on Ig:={1,2,...,6}. For k € N, we say that a k-run occurred at time n if n > k and

Xn=Xp1=-=Xpn—g4+1=6.
For n € N we set
R, = RfL = #{ m < n; a k-run occurred at time m },
T:Tk:min{nZk; Rn>0}.
Thus 7' is the moment when the first k-run occurs. As shown in Example 1.4.13, E[T] < 00.
(i) Compute E[T].
(ii) Prove that % converges in probability to 6%. Hint. For n > k set
Yoi=Iix,=6) - Ix;, _, =6}

Observe that Ry, = Y, + -+ + Yn.
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O

Exercise 2.11 (A. Renyi). Suppose that (A, ),>0 is a sequence of events in the sample space
(©,8,P) with the following properties.

L AO = Q.
e P[A,] #0,Vn >0.
e There exists p € (0, 1] satisfying
lim P[A,|Ar] =p, VEk>0. (2.6.1)
n—oo
Set X, :=1T4, —p.
(i) Prove that
lim E[ X, X, | =0, VkeN.
n—oo
(ii) Prove that for any X € L?(€2,8,P) we have
lim E[ X, X | =0.
n—oo
(iii) Conclude that the sequence (A,,) satisfies the mizing condition with density p
7}1_}1{)1019’[14”014} =pP[A], VA€eS. (2.6.2)
Thus, in the long run, the set A,, occupies the same proportion p of any measurable

set A.
O

Exercise 2.12 (A. Renyi). Suppose that (X,)nen is a sequence of i.i.d., almost surely finite

random variables. Set
Xi+---+ X,
M, = ——— ——.
n

Assume that the empirical means M,, converge in probability to a random variable M. The
goal of the exercise is to prove that M is a.s. constant. We argue by contradiction. Assume
M is not a.s. constant. Let F : R — [0,1] the cdf of M, F(m) =P[ M < m].

(i) Prove that there exist two continuity points a < b of F'(z) such that
po :=F(b) — F(a) =P[a < M <b] €(0,1).
(ii) Prove that there exists vy € N such that
Pla < M, <b] >0, Vn> w.
(iii) Set Ap = 2 and
A, = {a<M,,0+n < b}, n > 1.
Prove that the sequence (A,,) satisfies the condition (2.6.1) with p = py.

(iv) Set B:={a < M <b}. Prove that the restriction of M, to (B,8|z, P[ —|B])
converges in probability to M|p. Here

Slp={SnB; Ses}.
(v) Deduce that pg = 1, thus contradicting (i).
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Exercise 2.13 (Vitali-Hahn-Saks). Suppose that (2,8, 1) is a probability space. Define an
equivalence relation ~, on 8 by setting S ~, S’ if M[SAS’ ] = 0, where A denotes the
symmetric difference SAS' = (S\8)U (S'US). Define d =d, : § x 8§ — [0, 00)
d(S@,Sl) = ,UJ[S()ASl].
(i) Prove that VSy, S1,S2 € 8 we have
d(So,S1) =d(51,50), d(So0,52) <d(So,S1)+d(51,52)
and d(S(),Sl) =0 iff S() ~u Sl.
(ii) Prove that d defines a complete metric d on 8 := 8/ ~u-

(iii) Suppose that A : 8§ — [0,00) is a finite measure that is absolutely continuous with
respect to p. Hence )\[So] = /\[Sl] = 0 if Sy ~, S1. Prove that the induced
function B

A:8§— R
is continuous with respect to the metric d.

(iv) Suppose that (\,) is a sequence of finite measure such that A, < p for any n € N
and, V.S € § , the sequence )\n[S] has a finite limit A[S]. Prove that A : 8 — R is
finitely additive and )\[S] =0 if ,u[S] =0.

(v) For any € > 0 and k € N we set

Sre:={S €S su%])\k[S} —Nem [ S]] <€)
me

Prove that the sets é,m C 8 are closed with respect to the metric d and
é: ng,e’ Ve > 0.
keN

(vi) Prove that X\ : 8 — [0, 00] is continuous and deduce that X is a finite measure. Hint.
It suffice to show that for any decreasing sequence sequence (Sp) in 8§ with empty intersection we have

lim A[ Sp ] = 0. Deduce this from (v) and Baire’s theorem.

O

Exercise 2.14 (A. Renyi). Let (£2,8,P) be a probability space and suppose that (4,) is a
stable sequence of events, i.e., for any B € § the sequence P[An N B] has a finite limit /\[B]
and A[Q] € (0,1). Prove that A : § — [0,1] is a finite measure absolutely continuous with
respect to P, A < IP. Denote by p the density of A\ with respect to P, p = %. The function p
is called the density of the stable sequence of events. Hint. Use Exercise 2.13. O

Exercise 2.15 (A. Renyi). Let (Q,8,P) be a probability space and suppose that (Ap)nen is
a sequence of events such that the limits

Ao = lim P[A,], A= lim P[4, NA,], keN
n—oo n—o0
exist and A\g € (0,1). Denote by X linear span of the indicators I 4, and by X its closure in
L2,
(i) Prove that V& € X there exists a limit
L(¢) := lim E[£14,] = E[ pt].
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(ii) Prove that V¢ € L%(Q, 8,P) there exists a limit
L(¢) = lim E[¢1a, | =E[p¢].
(iii) Show that X = L2(2,8,P) and 3p € L3(, 8, P) such that L(£) = E[p¢], V¢ € L*(Q,8,P).

(iv) Show that (A,)nen is a stable sequence with density p. (Note that when p is
constant the sequence satisfies the mixing condition (2.6.1) with density p = Ag.)

O

Exercise 2.16. Suppose that f : [0,1] — [0, 1] is a continuous function that is not identically
0 or 1. For n € N we set

n—1
An = [B/n.k/n+ f(k/n)].
k=0
Show that (A,)n,>1 is a stable sequence of events and compute its density. a

Exercise 2.17. Let (X,),>1 be a sequence of i.i.d. random variables such E[|X;|"] < oo
that for some r € (0,2). Set

Yo o= X {x, 1<nr)
Prove that

1
vaar [Yn] < 0.
n>1

Hint. Have a look at the proof of (2.1.15). O

Exercise 2.18 (Marcinkiewicz-Zygmund). Let (X,,),>1 be a sequence of i.i.d. random vari-
ables such E[[X;|"] < oo that for some 7 € (0,1). Set

n n
Yoi= XLy jcniiryy Sn= 2 Xi Ta=) Vi
k=1 k=1

(i) Show that P[ X, # Y, io.| =0.

(ii) Show that

lim L(Tn —E[T.]) =0, as.

n—00 nl/r

(iii) Prove that
(iv) Prove that

Hint. Use the proof of the SLLN as inspiration. To prove (ii) use Exercise 2.17. Part (iii) requires a bit more ingenuity.
Note that

n
1—r T —
|E[Tn]] S};E“Xk' X <rrmys Txggantry = ok xp<riny

I a1
{IXk|<k2r}
and for any o > 0

Z E* = 0%t as n — oo
k=1
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Exercise 2.19. Suppose that 7 is a probability measure on I, = { 1,2,....n }, pi=T [ {i} ]
Consider a sequence (X, )nen of i.i.d. random variables uniformly distributed on [0,1]. For
7 €1, and m € N we set

Jj—1 J n
1
Zm,j = #{1 <k< m; sz' < X < sz}, Hy, = EZZm,j 10g2pj'

i=0 i=0 j=1

Prove that

n
Tr%i_r)noon = — Enty [7‘(] = lej log, pj, a.s..
]:

O

Exercise 2.20. Let (X,,)nen be a sequence of i.i.d. Bernoulli random variables with suc-
cess probability % and (Y, )nen a sequence of i.i.d. Bernoulli random variables with success
probability 3. (The sequences (X,) and (Y,) may not be independent of each other.) Set
B = {0,1} and denote by F, the sigma-algebra of BY generated by the cylinders

Cf::{g:(:cl,:c%...)EBN; a:k:e}, k=1,2,...,n, e=0,1.

We set

F .= Uff"n.

neN

The sequence (X,) (resp. Y;) define a probability measures P = Ber(1/2)®N (resp Q
= Ber(1/3)®N) on BN; see Subsection 1.5.1. Denote by P, (resp. Q,) the restrictions of P

(resp. Q) to Fy,.

(i) Prove that for any n € N the measure Q,, is absolutely continuous with respect to

P,,. Compute the density ‘fl%’ of Q,, with respect to P,.

(ii) Prove that Q is not absolutely continuous with respect to IP. Hint. Use the Law of Large

Numbers.

O

Exercise 2.21. Suppose that (pn,)nen is a sequence in Meas(R>q). Denote by £,, the Laplace
transform of p,

Ln(r) = / e_Ttun[dt], T >0.
RZO
(1) If (ptn)n>0 converges vaguely to pio € Meas(R>g) if and only if
VT >0, 1i_>m L (1) = Loo(T),

where L, is the Laplace transform of pio.

(ii) If (pn)n>0 converges weakly to fi if and only if
Vr >0, lim £,(7)=Ls(7).
n—oo
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Exercise 2.22. For a > 0 we denote by Meas,(R>0) the set of Borel probability measures
on [0,00) such that

/ e_Ttu[dt] < oo, V7> a.
RZO

The Laplace transform of p € Meas,(R>¢) is the nonincreasing function
L, (a,00) = [0,00), L,(1) = / e Ttuldt].
RZO
(i) Prove that a measure in Meas,(R>¢) is uniquely determined by its Laplace trans-
form.

(ii) Suppose that if (,)nen is a sequence in Meas,(R>g) such that their Laplace trans-
forms converge pointwisely to a function £ : (a,00) — R. Then L is the Laplace
transform of a measure ioo € Meas,(R>p) and the measures p, converge vaguely
t0 loo, 1-€.

lim f(t)ﬂn[dt] = QT [dtL Vf € Copt(R>0).
n—00 R0 R>q
(iii) Suppose that (un)nen is a sequence in Meas,(R>g) that converges vaguely to a

measure fioo € Measg(R>0). Prove that if

supsup £, (1) < oo,

n T>a

then £, converges pointwisely to £, on (a,c0). O

Exercise 2.23. For any Borel probability measure p € Prob(R) we denote by F), its cdf and
by @, its quantile; see Example 1.2.22. Prove that a sequence of Borel probability measures
fn, converges weakly to p € Prob(R) if and only if the sequence of quantiles @, : [0,1] = R
converges almost everywhere to Q. O

Exercise 2.24. We say that Borel probability measure on R is discrete if u[F ] = for some
finite subset of R. Let p € C,(R) be a nonnegative continuous function such that

/R p(z)dz = 1.

Denote by A, the measure given by A, [ dx] = p(x)A [ d:v] . Prove that there exists a sequence
of discrete probability measures converging weakly to A,. O

Exercise 2.25. Suppose that p € Cp(R) is nonnegative and

/]R p(z)dz = 1.

For € > 0 we set p:(z) = e 'p(z/e) and define as in Exercise 2.24
. [dz ] = pe(z)A[dz].
Fix pu € Prob(R).
(i) Prove that the convolutions X,_ * p converge weakly to p as € 0. in

(ii) Prove that there exists a sequence of discrete probability measures on R that con-
verge weakly to p.
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O

Exercise 2.26. Let (X,,) be a sequence of geometric random variables X,, ~ Geom(1/n).
Prove that

1
Y, = —-X, = X ~ Exp(1).
n

Hint. Show that P[Y, >y]| — e~ ¥ as n — oo, Vy € R. a

Remark 2.6.2. Let X be a geometric random variable with success probability p. In other
words, X is the number of independent Bernoulli trials with success probability p until we
record the first success. Suppose that we perform one trial per unit of time 7, where 7
is measured in seconds. Then 7X is the waiting time until we observe the first success.
Suppose that p = % we perform n trials per second so 7 = % Then 7X = %Xn. This
exercise shows that, for n large, the distribution of the random time %Xn is close to an
exponential distribution. This partially explains the interpretation of exponential random
variables as waiting times of rare (unlikely) events. O

Exercise 2.27. Fix A > 0. Show that as n — oo we have Bin(n, \/n) = Poi(\), where
Bin(n, A/n) denotes the binomial probability distribution corresponding to n independent
trials with success probability A/n and Poi(A) denotes the Poisson distribution with parameter
A O

Exercise 2.28. When Bob gets bored, he goes to a nearby bus station with an urn containing
balls of ¢ colors in proportions p1,p2,...,pe, P1+ -+ + pe = 1.

Each time a bus arrives at the bus station, Bob draws a ball at random from the urn,
records its color, puts it back in the urn and waits for the next arrival. It is known that the
waiting time for the next bus to arrive is exponential with rate A > 0.

For each i = 1,...,c and ¢t > 0 denote by N;(t) the number of balls of color i the person
has drawn from the urn during the interval [0,¢]. Set N(¢) = Ni(t) + - -+ + N(t) so N(t) is
a Poisson process with parameter \; see Example 1.3.7.

(i) Prove that, for any ¢ > 0, N;(t) = Poi(Ap;t) Hint. Condition on N(t).
(ii) Prove that for any 0 < s < t, N;(t) — N;(s) has the same distribution as N;(t — s).

Hint. Use the memoriless property of the exponential distribution.

(iii) Prove that for any 0 < t; < t9--- < t,, the increments
Ni(t1), Ni(t2) — Ni(t1),..., Ni(tn) — Ni(tn-1)

are independent.

(iv) Denote by T; the waiting time until the first ball of color i extracted. Prove that
T ~ EXp()\pi). Hint. Use (i), (ii) and Exercises 2.26.

O

Exercise 2.29 (P. Diaconis). Suppose that (A;),>1 is a sequence of independent events of
a probability space (Q, 8,P). Set p, := IP’[An ]
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(i) Prove that if ) - pnpnt1 < oo, then the random series

> Iana

n>1
converges a.s..

(ii) Prove that if p, = %, Vn, then the sum S of the above series is a Poisson random
variable, S ~ Poi(1).

O

Exercise 2.30 (Occupancy Problem). Suppose that b balls are successively and randomly
placed in u urns, i.e., all urns are equally likely to be the destination of a given ball. Let
Xy = Ny the number of empty boxes after all balls have been distributed.

(i) Compute the expectation and variance of X,. Hint. X, = SU_ I, ., Ug. = “boz k is

empty after all the b balls have been randomly placed in the u urns.
(ii) Show that if b/u — ¢ > 0 as r — oo, then % — €~ ¢ in probability.
(iii) Compute P[X%b = m] . Hint. Use the inclusion-exclusion equality (1.3.27).

(iv) Show that if ue™®* — X as b — oo, then X, ; converges in distribution to Poi(\).
Hint. Use the technique in Example 1.3.31. O

Remark 2.6.3. Let me comment why the result in Exercise 2.30 is surprising. Consider the
following concrete situation.

Assume b = 2u and suppose that we want to distribute 2u gifts to u children. We want to
do this in the “fairest” possible way since the gifts, of equal value, are different, and several
kids may desire the same gift. To remove any bias, “common sense” suggests that each gift
should be given to a child chosen uniformly at random. There are twice as many gifts as
children so what can go wrong? Part (ii) of this exercise shows that for u large nearly surely
e 2u ~ 0.13r children will receive no gifts! a

Exercise 2.31 (Coupon collector problem). For n € N denote by N,, the number of boxes of
cereals one has to purchase in order to obtain all the n coupons of a collection; see Example
1.3.25. Recall that E[Nn] ~ nlogn as n — co. Prove that!'”

nli—{goP[N" —nlogn < nw] = exp ( — e_x).

Hint. Reduce to Exercise 2.30(iv). O

Exercise 2.32. For N € N denote by By the birthday random variable defined in Exercise
1.28. Its range is {2,3,..., N +1}. Prove that as N — oo, the sequence of random variables

1
XN = ﬁBN

converges in law to a Raleigh random variable, i.e., a random variable X with probability
distribution

22
Px|[dz] = ze™ 2 I}y o0)(2)da.

17The distribution with cdf F(z) = exp ( —e 7 ) is called a Gumbel distribution.
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22
Hint. Observe that ]P[X > x] = e~ 2. Show that

T
lim loglP| Xy > =——, Vz>0.
im logP[ Xy > 2] ===, Ve
Note. With considerably more effort one can prove that

. ™
Jim E[Xy] =E[X] = /7.

O

Exercise 2.33 (P. Lévy). Consider the random variables L,, defined in Exercise 1.24. Prove
that as n — oo the random variables % converge in distribution to the arcsine distribution
Beta(1/2, 1/2), see Example 1.3.36. Hint. You need to use Stirling formula (A.1.8) with error estimate
(A.1.9). g

Exercise 2.34. Suppose that (X,),en is a sequence of i.i.d. random variables uniformly
distributed in [0, L], L > 0. For n € N we set

Xn) = maX(Xl,Xg,...,Xn).

Prove that hmn_mo E [X(n) ] =L and X(n) — L in probability. Hint. Have a look at Exercise 1.54.[]

Exercise 2.35. Suppose that (X,,)nen is a sequence of i.i.d. random variables uniformly dis-

tributed in [0, 1]. Denote by X("l),X("Z)7 o ,X&) the order statistics of the first n of them; see

Exercise 1.54. Prove that for any k € N the random variable nX &) converges in distribution
to Gammal(k, 1). 0

Exercise 2.36. Suppose that (X,)neny and (Y),)nen are two sequences of random vectors
such that X,, — X and |X,, — Y,,| — 0 in distribution. Then Y;, — X in distribution. O

Exercise 2.37. Suppose that (X;,)nen and (Y, )nen are two sequences of random variables
such that X,, converges in distribution to X and Y converges in probability to the constant
c. Prove that the random vector (X,,,Y,,) converges in distribution to (X, c). Hint. Prove that
(Xn, c) converges in probability to (X, c) and then use Exercise 2.36. d

Exercise 2.38. Suppose that (X,,)nen and (Yy,)nen are two sequences of random variables
such that

e X, converges in distribution X.
e Y, converges in distribution to Y.

e X, is independent of Y,, for every n and X is independent of Y.
Prove the following.

(i) The random vector (X,,Y,) converges in distribution to (X,Y).
(ii) The sum X,, + Y, converges in distribution to X + Y.

O

Exercise 2.39. Suppose that (X, )nen and (Y, )nen are sequences of random variables with
the following properties.
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(i) The random variables (X,,)nen are identically distributed.
(ii) The sequence of random vectors (X, Y, ) converges in distribution to the random
vector (X,Y).

Prove that for any Borel measurable function f : R — R the sequence of random vectors

( f(Xn), Yn) converges in distribution to ( f(X), Y) Hint. Fix a Borel measurable function f. It suffices
to show that for any continuous and bounded functions u,v : R — R we have

nleOO]E[u(f(Xn))v(Yn)] =E[u( f(X))v(Y)].

Consider the Borel measurable functions vy, defined by vy (Xn) = E[v(Yn) || Xn ]. O

Exercise 2.40. Suppose that (X,)nen is a sequence of i.i.d. L? random variables with
w= E[Xn], 0% = Var [Xn] Set

n—1

= 1 1 _ .2
Xn:E(Xl‘f'"'—i_Xn)’ Yn:n_I;(Xk—Xn) )

Prove that ]E[Yn] = ¢? and Y,, — o2 in probability. O

Exercise 2.41. Suppose that (X, )nen is a sequence of i.i.d. Bernoulli random variables with
success probability p = % For each n € N we set

b
Sy = Z Q%X k-
k=1
(i) Find the probability distribution of S,.
(ii) Prove that for any p € [1, 00| the sequence S, converges a.s. and LP to a random
variable S uniformly distributed on [0, 1].

(iii) Compute the characteristic functions F,(§) = E[ exp(i£S,)] and deduce Viéte’s
formula

siz& = gcos (&/2m).

(iv) Suppose that p is a Borel probability measure on R with quantile @ : [0, 1] — R,
Q(p) =inf {z € R; p[(—o0,2]) >p}.

Prove that the sequence Q(S,,) converges a.s. to a random variable with distribution
M. Have a look at Example 1.2.22.

O

Remark 2.6.4. Part (iv) of the above exercise is essentially a universality property of the
simplest random experiment: tossing a fair coin. If we are able to perform this experiment
repeatedly and independently, then we can approximate any probability distribution. In other
words, we can approximatively sample any probability distribution by flipping fair coins. O

Exercise 2.42. Let u € Prob(R) be a Borel probability measure with characteristic function
1. Prove that for any r» > 1 we have

1 /! N . sinx
,u[{|:1:|>r}]§c/0 1 - Refi(t/r) |dt. 0:2‘9161'1;(1— ney,
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Hint. Set h(z) =1 — Si%, z €R, so, h(z) >0 for & # 0, and Cp[{|z| > r}] < f‘wprh(ac/r)u[da:]. (|

Exercise 2.43. This exercise describes a strengthening of Levy’s continuity theorem. Sup-
pose that (i) is a sequence of Borel probability measures on R with characteristic functions
n(§). Assume that the functions i, (§) converge pointwisely to a function f : R — C that
is continuous at 0.

(i) Prove that the sequence (p,)nen is tight, i.e.,
Jim supl (] > )] =0
Hint. Use Exercise 2.42.

(ii) Show that f is the characteristic function of a Borel probability measure u. Hint.
Use Helly’s Selection Theorem 2.2.22 and Proposition 2.2.23.

(iii) Prove that p, converges weakly to u.

O

Exercise 2.44. Suppose that (u,) is a sequence of Borel probability measures on R that
converges weakly to a probability measure u. Prove that the characteristic functions i,
converge to i uniformly on the compacts of R. O

Exercise 2.45. Suppose that X is a random variable and (&) is its characteristic function
p(€) =E[e*X].
Prove that the following are equivalent.

(i) X is a.s. constant.
(ii) There exists r > 0 such that |p(§)| =1, V€ € [—r,7].

Hint. Use an independent copy X’ of X. g

Exercise 2.46. A probability measure p € Prob(R) is said to be an infinitely divisible
distribution if for any n € N, there exists u,, € N such that

J= =k
N——
n

We denote by Probs,(R) the collection of infinitely divisible distributions. A random variable
is called infinitely divisible if its distribution is such.

(i) Prove that the Poi(\), N(0,0%) € Probs, YA, 0 > 0.

(ii) Prove that any linear combination of independent infinitely divisible random vari-
ables is an infinitely divisible random variable. In particular, the convolution of
two infinitely divisible distributions is infinitely divisible.

(iii) Suppose that (X,,)nen is a sequence of i.i.d. random variables with common distri-
bution v € Prob(R). Denote by N(t), t > 0 a Poisson process with intensity A > 0;
see Example 1.3.7. For t > 0 we set

N(t)

Y(t) =) X
k=1
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The distribution of Y (¢) denoted by @y, is called a compound Poisson distribution.
The distribution v is called the compounding distribution. Show that

and deduce that Q; * Qs = Q¢4s, Vi, s > 0. In particular, Q; is infinitely divisible.
We will denote Q¢ by Poi, (At).

(iv) Compute the characteristic function of Q.

O
Exercise 2.47. For any p € Prob(]R) we denote by u— the measure defined by
,u_[B] :u[ —B], VB € Bg,
where —B := {yER; —yEB} and we set pg 1= o p_.
2/n

(i) Prove that fis(¢) = | u(€) ? V¢, Deduce that for any n € N the function |7 |
is the characteristic function of a measure p, € Prob(R) such that p'" = ps.

(ii) Prove that ﬁ({) = 0, V&€ £ 0. Hint. Show that | (&) |2/n converges as n — oo and the conclude

using Exercise 2.43.

(iii) Deduce that there exists a continuous function v : R — C uniquely determined by
the conditions ¥(0) = 0 and fi(¢) = e¥©), V¢ € R.

(iv) Prove that for any n € N there exists a unique measure v € Prob(R) such that

v*" = 1. We will use the notation v := p*1/™.

(v) Prove that any weak limit of infinitely divisible distributions is also an infinitesimal
distribution.

O

Exercise 2.48. Give an example of a sequence of random variables X,, € L'(2,8,P) such
that X,, converge in distribution to 0 but

lim E[Xn}:oo. O

n—o0

Exercise 2.49 (Skhorokhod). Suppose that u, € Prob(R), n € N, is a sequence converging
weakly to pu. Denote by F,, : R — [0, 1] the distribution function of i,

F,(x) = ,un[(—oo,:c] },
and by @, the associated quantile function (see (1.2.5))
Qn : [07 1] — R, Qn(t) = inf{l‘; t < Fn(x) }
We can regard (), as random variables defined on the probability space
([Oa 1]7 B[[),l]a A[0,1])7
where Ajg ;] denotes the Lebesgue measure on [0, 1]. As shown in Example 1.2.21,
Hn = (Qn)#A[O,I]a

so that u, is the probability distribution of @,. Prove that the sequence @, converges a.s.
on [0,1] to a random variable with probability distribution pu.
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In other words, given any sequence p,, € Prob(R) that converges weakly to p € Prob(R),
we can find a sequence of random variables X,,, defined on the same probability space with
Px, = pn and such that X,, converges a.s. to a random variable X with distribution p. O

Exercise 2.50. Suppose that the sequence of random variables X, : (2,8,P) - R, n € N,
converges in distribution to the random variable X. Prove that for any continuous function
f R — R the random variables f(X,) converge in distribution to f(X). Hint. Use Exercise
2.49. O

Exercise 2.51. Fix n € R and denote by C,(R™,C) the space of continuous, bounded
functions R™ — C. Denote by T,, the complex subspace of Cj,(R", C) spanned by the functions

{ee(@) =D} g,

where (—, —) denotes the canonical inner product in RY.

(i) Prove that T, is a C-algebra of functions.

(ii) Consider the continuous cut-off function 7 : R — [0, 00) defined by

07 |x’ 2 27
n(x) =41, ] <1,
linear, 1< |z| < 2.
For L > 0 define pr, : R" = R pr(1,...,2,) = [[j_; n(x;/L). Note that py is
supported in the cube Cp = [-2L,2L]". Let f € Cp(R,C). Prove that for any
€ > 0 and any L > 0 there exists a trigonometric polynomial 7' = T j, such that

Sup |pr(2)f(2) = T(x)| <e and [T <[ f]|+1.

(iii) Prove that for any f € Cp(R, C) there exists a sequence (T},),en in T, such that T,
converges to F' uniformly on compacts and ||T,|| < ||f]| + 1, Vv.

(iv) Use (iii) to give a new proof that a probability measure on R" is uniquely determined
by its characteristic function.

O

Exercise 2.52. Let yu be a Borel probability measure on R satisfying
Jrog>0: /etm,u[dm] < oo, V|t| < ro.
R
(i) Let p € [1,00). Prove that the map

D(®.p) > > Tf € GR.O), (TN = [ oyl de]

R
is injective. Hint. Reduce to Theorem 2.2.27 by writing f = fy — f—.

(i) Let f € L?(R, 1). Prove that there exists r; > 0 such that for any complex number
such that |[Imz| < r; the complex valued function R 3 z — e”**f(x) € Cis p
integrable and the resulting function

~

2o Je) = [ e pulde]
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is holomorphic in the strip { [Im z| < r}.
(iii) Prove that R [ l‘] , the space of polynomials with real coefficients, is dense in L?(R, x).
Hint. You have to show that if f € L2(R,v) satisfies

/f(z)x",u[da:] =0, Vn>0,
R

the f = 0 p-a.s. Prove that f(") (0)=0,Vn=0,1,2,....
(iv) Consider the Hermite polynomials ( Hy,(z) )n>0 described in Exercise 1.31. Prove
that the collection )
ﬁHm n=>0
is a complete orthonormal basis of the Hilbert space L?(R,7;), where 7, is the
standard Gaussian measure on R.

O

Exercise 2.53. Suppose that g, 11 are two Borel probability measures such that Jty > 0

/em,uo[dx} :/emm[da@}, Y|t < to.
R R

Fix r > 0 as in Exercise 2.52(ii) such that for any complex number the functions

z»—)Fk(z):/Rei”f(w)uk[daj], kE=0,1,

are well defined and holomorphic in the strip { [Im z| < r }. Show that Fy = F} and deduce
that o = 1. Hint. Set FF = Fy — Fy. Use the Cauchy-Riemann equations to prove that % ser =0, VR eEN,

vt € (—r,T). O

Exercise 2.54. Suppose that (X, )nenuco is a family of random variables such that there
exists T' > 0 with the following properties
(i)
sup E[etX"] < oo, V|t| <T.
neNUoco

(i)
lim E[e*] =E[e*>], Vt|<T.

n—o0

Prove that X,, converge in distribution to X.,. Hint. Fix ty € (0,7) and consider the measures
Un [da:] = cosh(toz)Px,, [d;v] and argue as in the proof of Proposition 2.2.24 that v, = veo. O

Exercise 2.55. A function F : RN — C is called nonnegative definite if it is continuous and
for any n € N, any &1,...,&, € RY and any zq,...,2, € C we have

n
> F(& - &)z = 0. (2.6.3)
ij=1
It is called positive definite if it is nonnegative definite and in (2.6.3) we have equality iff

z1 =+ =2z, = 0. Denote by C’Cpt(RN ,C) the space of compactly supported continuous
functions RY — C

(i) Let u € Prob(R™). Prove that its Fourier transform fi is a positive definite function.
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(ii) Suppose F : RV — X is nonnegative definite. Then the following hold.
(a) F(0) € [0, 00).
(b) F(—x) = F(x).
(c) For any ¢ : Cept(RY, C).

/ F(& —n)p(€)plmdedn > 0. (2.6.4)
RN xRN

(iii) Conversely, prove that if the continuous function F : RV — C satisfies (i)(c) then
it is nonnegative definite.

Hint. (i)(c) Use Riemann sums to approximate the integral in (2.6.4). Fix a nonnegative continuous function
p: RN — R supported inside the unit ball of RN and such that Jan p(E)dE = 1. For t > 0 we set pi(§) = t=Np(g/t)
(ii). In (2.6.4) choose ¢ of the form

P(&) =D 2zjp= (6 — &),
j=1

and then let € N\, 0. O

Exercise 2.56 (De Moivre). Let X, ~ Bin(n,1/2) and Y ~ N(0,1). Prove that

hmpun—mmggwﬂ

=1, Vr>0. O
n=y00 P[|Y]|<r]

Exercise 2.57 (t-statistic). Suppose that (X,)nen is a sequence of i.i.d. random variables
such that E[Xn] =0, E[Xﬂ = 02 < 00, Vn. We set

n

_1y _ 1 IR VAR L)

(i) Prove that V;, converges in probability to o?.

(ii) Prove that T}, converges in distribution to a standard normal random variable. Hint.
Use CLT and Slutsky’s theorem. a

Exercise 2.58. Suppose that X = X, is a Gamma(1l,\) random variable (see Example
1.3.35) and Y =Y, is a random variable such that

n

P[Y:nHX] :X—e_”X, vn=0,1,2,...
n!

In other words, conditioned on X = x the random variable Y is Poi(x).

(i) Compute the characteristic function of Y.
(ii) Show that the random variable

1

(VY —E[W])
Var[Y,\}

converges in distribution to N(0,1) as A — oc.

O

Exercise 2.59. Suppose that X, Y are independent random normal variables. Set Z = XY'.
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(i) Show that

1
Mz(A) = T Al <1,
and deduce that
)\2
< — .
\Pz()\) < 2(1 _)\2), VA € ( 1,1)

(ii) Prove that I, (see Proposition 2.3.1) satisfies

1 1
Iz(2) > g(simz)2 > ﬁzQ, V|z| < %

O

Exercise 2.60. Let 2" be a finite set. The entropy of a random variable X : (Q,8,P) —» 2~
is
Entg[X] = Ento IP’X = pr ) logs p(x), pX(x):IP)[{X:x}].
zeX

Given two random variables X; : (Q,8,P) — 25, i = 1,2, we define their relative entropy to
be

Ento [XQ‘ Xl] = Z le,Xz(xlaxQ) 10g2 (

XX, (%1, 72) >
b
(ml,mg)Evg{l X o

px, ($1)
where le,XQ(:L’l, :IZQ) = P[{Xl =, X2 = .CEQ}]
(i) Show that if X; : (Q,8,P) — 2;, i = 1,2, are random variables, then
Enty [ Xo ] — Enty [ Xa| X1 | = Drr[Px,,x,), Px, ®Px, |,
where Dy, is the Kullback-Leibler divergence defined in (2.3.8).
(ii) Suppose that we are given n finite sets 2, i = 1,...,n and n maps
X : (Q,S,P) — 2.
We denote by Enta (X7, ..., X,) the entropy of the product random variable
(X1,...,X,): Q= 21 x - x 2.
Prove that
n
Entg[Xl,...,Xn]:ZEntg[Xk|(Xk,1,...,X1)]. O
k=1
Exercise 2.61 (Herbst). Let ¢ : [0,00) — R, ¢(x) = zlogz, where 0 -log0 := 0. For any
nonnegative random variable Z we set
H{ 7] = Bndy [ 2] = E[0(2)] - (E[ 2]).
Suppose that X is a random variable such that Mx(\) = E[e’\X] < 00, for all A is an open
interval J containing 0. We set Hx (A) := H[e*" |. Prove that if

then X € G(o?). O
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Exercise 2.62 (Poincaré phenomenon). Denote by S™ the unit sphere in R"*1,

n
S = {(xg,xl,...,mn); Zx% = 1}.
k=0

Suppose that (Xo,...,X,) is a random point uniformly distributed on S™ with respect to
the canonical Euclidean volume on S™.

(i) Prove that there exists C' > 0 such that

n7‘2

vneN, re(0,1]; P[|Xo|>r] <Ce z.
Thus, for spheres of large dimension n most of the volume is concentrated near the
Equator {zo = 0}!
(ii) Prove that /nX( converges a.s. to a standard normal random variable.

Hint. Choose independent standard normal random variables Yp,...,Yn set Z, = YO2 + -+ Yg. Show that the
random vector

(Xo,--, Xn) = —= (Yo, Ya
VZ
is uniformly distributed on S™. You can take for granted the fact that any finite Borel measure on S™ that is invariant
under the action of SO(n + 1) on S™ is a multiple of the Euclidean volume measure.'® For (i) use Exercise 1.46 and

Appendix A.1. Reduce (ii) to the SLLN. O

Exercise 2.63. Let X be a random variable such that ‘X| < 1, a.s.. Assume E[X] =0
and o2 := Var [X] < 00.

(i) Prove that
E{e’\x} Sexp(o2(6)‘—1—)\)), VA > 0.

(ii) Prove that
1'2
P[ X < < _ 7)
X >a] e = 5m 57

O

Exercise 2.64. Suppose that ¢ : [0,00) — [0,00) is an Young function, i.e., it is convex,
increasing, ¥(0) = 0, and ¢ (z)/z — oo as © — oo. Fix a probability space (2,8, P). For any
Young function 1 and any random variable X € £%(Q, 8, P) we set

Xy =inf{t>0; E[v(X/t)] <1},
where inf () := co. We set
Ly(2,8,P) = { X € L2(Q,8,P); || X[y < o0}
and we denote by Ly the quotient of £, modulo the a.s. equality.

(i) Prove that Ly (2, 8,P) is a normed space, called the Orlicz space determined by the
young function .

(ii) Show that when v (z) = 2P, p € [1,00) we have L, = LP.
(iii) Let W(x) = e*" — 1. Prove that X is subgaussian if and only if X € Ly. 0

18Can you prove this?
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Exercise 2.65. Suppose that Y7,Ys are independent and uniformly distributed on [0, 1].
Prove that

X1 =+/—2log(Y7) -cos (2nY2), Xy =+/—2log(Y;) -sin(27Y3)
are independent standard normal random variables. O
Exercise 2.66 (Cramér-Wold Device). Let V' be a finite dimensional vector space. Fix a

sequence of probability measure u, € Prob(V). Prove that the following statements are
equaivalent.

(i) The sequence (u,) converges weakly to p € Prob(V).

(i) For any € € V*, fim(€) = A(6).
(iii) For any & € V*, &4 (un) = &x(1), where we recall that for any v € Prob(V) and
any £ € V* we denote by £4(v) the pushforward of v via the function { : V' — R.

O

Exercise 2.67. Let V be an n-dimensional real vector space. We denote by V* its dual,
V* = Hom(V,R). We have a natural pairing

(—, =) VXV >R, ({z):=¢&x), YEeV*, zeV.

A Borel probability measure p € Prob(V) is called Gaussian if for every linear functional
& € V*, the resulting random variable

€1 (V,By, i) > R
is Gaussian with mean m[f} and variance u[g], i.e., (see Example 1.3.34)

1 _ (z—mg])?
—— e [ dgx.
(271')"/2

Pe[dz ] = Typpe opg [ da] =

A random vector X : (Q,8,P) — V is called Gaussian if its probability distribution is a
Gaussian measure on V'

(i) Show that the map V* 3 & — m[{] € R is linear and thus defines an element
m = my, € (V*)* called the mean of the Gaussian measure. Moreover, using the
natural isomorphism'®.J : V' — V** we have

J_l(mu) :/ a:,u[dx] eV.
\%4
(ii) Define C =C, : V* xV* = R

C&,mn) = %(v[éﬂﬂ —v[&—n]) =E.[(&—m[E])(n—mn)].

Show that C' is a bilinear form, it is symmetric and positive semidefinite. It is called
the covariance form of the Gaussian measure y.

OFor a vector v € V, J(u) is the linear functional on V* that associated to & € V* the number (&, v),, i.e.
J(v)(€) = (&, v). The map J is an isomorphism when V' is finite dimensional.
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(iii)

(iv)

(vi)

(vii)

(viii)

Show that if ug,u; are Gaussian measures on Vj and respectively Vj, then the
product po ® w1 is a Gaussian measure on Vy @ Vi. Moreover,

m[MO o2y ,Ul] =My, O my,, C#O@#l = Cﬂo ¥ 0#1'

We set
I‘jln =I'1® - --I.
\—nf_/
I';, is called the canonical Gaussian measure on R"”. More explicitly
'y, [dx] = ;6_#(11'
" (2m)n/2 ’

where |z| denotes the Euclidean norm of the vector x € R™.

Suppose that Vj, V1 are real finite dimensional vector spaces, p is a Gaussian mea-
sure on Vp and A : Vj — V7 is a linear map. Denote by pa the pushforward of p
via the map A, pa := Aup. Prove that p14 is a Gaussian measure on V; with mean
my, = Am,, and covariance form

CA : ‘/1* X ‘/1* — R? CA(flﬂh) = C,U«(A*flvA*nl)v Vglﬂh € Vl*‘

Above, A* : V; — V{ is the dual (transpose) of the linear map A.

Fix a basis {e1,...,e,} of V so we can identify V and V* with R" and C with a
symmetric positive semidefinite matrix. Denote by A its unique positive semidefi-
nite square root. Show that the pushforward AxI';, is a Gaussian measure on R"
with mean zero and covariance form C' = A2.

Show that if p is a Gaussian measure on V with mean m covariance form C, then
its Fourier transform is

(€)= emldlem3CE0 e e v,
Show that a Gaussian measure is uniquely determined by its mean and covariance
form. We denote by I'y, ¢ the Gaussian measure with mean m and covariance C.

Suppose that C is a symmetric positive definite n x n matrix. Prove that the
Gaussian measure on R"™ with mean 0 and covariance form C is

1 (" laa)

Iy C[daz] = e dx
, 2
( det(2mC) )n/
where (—, —) denotes the canonical inner product on R™. Hint. Analyze first the case
when C is a diagonal matrix. a

Exercise 2.68. Let (£2,8,P) be a probability space and E a finite dimensional real vector
space. Recall that a Borel measurable map X : (Q,8,P) — E is called a Gaussian random

vector if its distribution Px = X4P is a Gaussian measure on E; see Exercise 2.67.

Suppose that Xi,...,X, € £9(Q,8,P) are jointly Gaussian random variables, i.e., the
random vector X = (X1,...,Xy) : @ = R" is Gaussian.
(i) Prove that each of the variables X1, ..., X,, is Gaussian and the covariance form

C:R"xR" >R
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of the Gaussian measure IP¢ € Prob(R") is given by the matrix (ci;)1<ij<n
Cij = Cov [Xi,Xj], V1 < i,j <n.

(ii) Prove that Xi,...,X, are independent if and only if the matrix (c;;)i<ij<n is
diagonal, i.e.,
E[X;X;] =E[ X |E[X;], Vi#j.

Hint. Use the results in Exercise 2.67. O

Exercise 2.69 (Gaussian regression). Suppose that Xo, X1, ..., X, are jointly Gaussian ran-

dom variables with zero means. Let Xo denote the orthogonal projection of Xo € L?(€, 8, P)
onto the finite dimensional subspace

span { X1,..., X, } C L*(Q,8,P).
(i) Prove that Xo = E[ Xo || X1,..., X ] and Y := Xo — Xo L (X1,...,X,).

(ii) Suppose that the covariance matrix C' of the Gaussian vector (Xi,..., X)) is in-
vertible. Denote by L = [¢1,...,£,] the 1 X n matrix

&:E[X()Xl], izl,...,n.

Prove that
Xi

Xo=L-C" X, X:=| : |,
Xn
E[Y]=0, Var[Y]=Var[Xo] -L-C~'-LT,
where LT is the transpose of the 1 x n matrix L.

(iii) Suppose that f: R — R is bounded and measurable. Then
E[f(XO)‘ Xi=z1,...,X, = mﬂ =g(x1,...,2n),

where for
x1
T = ;
:Z:n
we have
o( %) :/Rf(y+Lc—1(f>)]p>y[dy].
Hint. For (i) use Exercise 2.68(ii) and (1.4.10). a

Remark 2.6.5. The result in Exercise 2.69 is remarkable. Let us explain its typical use in
statistics.

Suppose we want to understand the random quantity X and all we truly understand
are the random variables Xi,..., X,,. A quantity of the form f(Xi,...,X,) is called a pre-
dictor, and the simplest predictors are of the form Ccpy + 1 X1 + --- + ¢, X;,. These are
called linear predictors. The conditional expectation E[XO Il X1,... ,Xn} is the predictor
closest to Xg. The linear predictor closest to Xg is called the linear regression. The coeffi-
cients Cept, €1, - . ., ¢, corresponding to the linear regression are obtained via the least squares
approximation.
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The result in the above exercise shows that, when the random variables Xy, X1,..., X3
are jointly Gaussian, the best predictor of Xg, given Xi,..., X, is the linear predictor.
This is another reason why the Gaussian variables are extremely convenient to work with in
practice. O

Exercise 2.70 (Maxwell). Suppose that (X, )nen is a sequence of mean zero i.i.d. random
variables. For each n € N we denote by V;, the random vector V,, := (Xi,...,X,). Prove
that the following are equivalent.

(i) The random variables X,, are Gaussian.

(ii) For any n € N and for any orthogonal map T : R” — R™ the random vectors V,,
and RV,, have identical distributions.

O

Exercise 2.71. Suppose that X1, ..., X, are independent standard normal random variables.
Set

n

— 1 1 —.\2

(i) Let R = (74j)1<i,j<n be an n x n orthogonal matrix such that
1

Rli: %, szl,,n
and set
n
Yi= 2 riX;

j=1
(ii) Prove that Y7,...,Y,, are independent standard normal random variables.
(iii) Prove that (n — 1)S?2 =YZ + -+ V.2 ~ x%(n - 1).
(iv) Set

T, =

nll |

Prove that \/nT),, ~ Stud,_1, where Stud,, denotes the Student t-distribution with
p degrees of freedom

1 (e 1
VIT L(5) (14 2/p)PHD/?

Hint. Note that v/nX = Y7 and S are independent. Conclude using (ii)

dt, teR, p>0.

O

Exercise 2.72. Suppose that X is a standard normal random variable and Z is a Bernoulli
random variable, independent of X, with success probability p = %

(i) Prove that Y = X Z is also a standard normal random variable.
(ii) Prove that X 4+ Y is not Gaussian.
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Exercise 2.73. Suppose that T is a compact interval of the real axis, and (Xy)er, (Y2)teT,
(Zi)ter are real valued stochastic processes such that (Y;) and (Z;) are modifications of (X})
with a.s. continuous paths. Prove that the processes (Y;) and (Z;) are indistinguishable. O

Exercise 2.74. Fix a Brownian motion (B;);>0 defined on a probability space (€2, 8,P).
Denote by € the vector subspace of L2( [0, 1], )\) spanned by the functions I, 4,0 < s <t < 1.

(i) Prove that any function f € € admits a convenient representation, i.e., a represen-
tation of the form .
F=Y el (g ok €R,
k=1
where the intervals (s;,t;] , (sk,t] are disjoint for j # k.

(ii) Let f € € and consider two convenient representations of f

n

Z Rl (sp 0 == Z C;cI(sgc,tﬂ‘
=1

k=1
Show that

n m

> cx(By, — Bs,) Zc By — By ) = W(f).

k=1 =
(iii) Show that for any f € € we have W(f) € L*(Q,8,P) and [|[W(f)|l z2() = Ilf Il £2(0,1])-

(iv) Prove that the map W : & — L?($, 8,P) is linear and extends to a linear isometry
W L2([0,1]X\) — L%*(€, 8,P) whose image consists of Gaussian random variables.
In other words, this isometry is a Gaussian white noise. The map W is called the
Wiener integral. 1t is customary to write

= /01 f(s)dBs. O

Exercise 2.75. The space F := C’( [0, 00) ) of continuous functions [0,00) — R is equipped
with a natural metric d,

Af,0) = Y gamin (1du(f,9)), dulfi9) = swp |f(0) ~ 9]
neN te[n—1,n]

Denote by B the Borel algebra of F'. For each ¢ > 0 we define E; : FF — R, E(f) = f().
We set
S =E; " (Br), vt>0, $=J8.
>0

(i) Prove that E; is a continuous function on F', V¢ > 0.
(ii) Prove that Br = 8. Hint. Use Exercise 1.4.
(iii) Suppose that (2, A) is a measurable space and W :  — F' is a map
Qew—W,eF.
Prove that W is (A, Bp)-measurable if and only if for any ¢ > 0 the function
W (QA) =R, w W,(t)

is measurable.Hint. Use (ii). O



Chapter 3

Martingales

The usefulness of the martingale property was recognized by P. Lévy (condition (C) in [112,
Chap. VIII]), but it was J. L. Doob [53] who realized its full potential by discovering its most
important properties: optional stopping/sampling, existence of asymptotic limits, maximal
inequalities.

I have to admit that when I was first introduced to martingales they looked alien to me.
Why would anyone be interested in such things? What are really these martingales?

I can easily answer the first question. Martingales are ubiquitous, they appear in the most
unexpected of situations, though not always in an obvious way, and they are “well behaved”.
Since their appearance on the probabilistic scene these stochastic processes have found many
applications.

As for the true meaning of this concept let me first remark that the name “martingale”
itself is a bit unusual. It is a French word that has an equestrian meaning (harness) but,
according to [122], the term was used among the French gamblers when referring to a gam-
bling system. I personally cannot communicate clearly, beyond a formal definition, what is
the true meaning of this concept. I believe it is a fundamental concept of probability theory
and I subscribe to R. Feynman’s attitude: it is more useful to know how the electromagnetic
waves behave than knowing what they look like. The same could be said about the concept
of martingale and, why not, about the concept of probability. I hope that the large selection
of examples discussed in this chapter will give the reader a sense of this concept.

This chapter is divided into two parts. The first and bigger part is devoted to discrete
time martingales. The second and smaller part is devoted to continuous time martingales.
I have included many and varied applications of martingales with the hope that they will
allow the reader to see the many facets of this concept and convince him/her of its power
and versatility. My presentation was inspired by many sources and I want to single out
(81, 37, 53, 59, 109, 110, 148, 181] that influenced me the most.

3.1. Basic facts about martingales

We need to introduce some basic terminology.

263
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3.1.1. Definition and examples. Suppose that (2, 8, P) is a probability space and T C R.
Recall that a random or stochastic process with parameter space T is a family of random
variables

X : (2,8,P) =R, teT.
A T-filtration of the probability space (€2,8,P) is a family Fo = (F;)ser of sub-o-algebras of
8 such that

F, C F, Vs <.
We set
?oo = \/ ?t-
teT

A family of random variables X; : (Q, S, ]P’) — R, t € T, is said to be adapted to the filtration
Fo = (Ft )ter, if Xy is Fi-measurable for any t.

Remark 3.1.1. If we think of a o-algebra as encoding all the measurable information in
a given random experiment, then we can think of a T-filtration as an increasing flow of
information. For example, if T = Ny, and (X, ),>0 is a sequence of random variables, then
the collection

F, = O'(Xo,Xl,...,Xn), n € Ny,
is a filtration of o-algebras. At epoch n, information about X, becomes available to us, on
top of the information about Xy, X1,...,X,_1 that we have collected along the way. O

Definition 3.1.2. Suppose that (2,8,P) equipped with a filtration Fo = (F;)ier. An Fo-
martingale is a family of random variables X; : (Q2,8,P) — R, t € T, satisfying the following
two conditions.

(i) The family is adapted to the filtration F, and X, is integrable for any ¢ € T.

(ii) For all s,t € T, s < t, we have E[ X; [|F | = X;.

The family of integrable random variables (Xi)ier is called a Fo-submartingale (resp.
supermartingale) if it is adapted to the filtration and for any s,t € T, s < t, we have
Xy <E[X4]|Fs] (resp. Xs > E[ X¢[|Fs]).

When T is a discrete subset of R we say that the (sub- or super-)martingale is a discrete
time (sub/super)martingale. 0

Note that a sequence of integrable random variables (X,)nen, is a discrete time sub-
martingale (resp. martingale) with respect to a filtration (F,)pen, of F if

E[ Xns1|Fn] = X, (vesp. E[ Xpi1||Fn ] = Xn), VneNo|

Note that if (X, )nen, is a martingale with respect to a filtration (F,)nen,,
E[Xpi1] = E{E[Xnﬂ ES ] =E[X,], ¥n>0.
Remark 3.1.3. Suppose that (X,,)n>0 is a sequence of integrable random variables and
Fn=0(X1,...,X,).
Then E[XnH I H’n] is a measurable function of the variables X, ..., X,
E[ Xpi1 | Fn] = fas1(Xos X1, o, Xp), o1 : R™TH R
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If the joint distribution of (Xo, ..., X,) is described by a density p,(xo,...,zy), then

Pn+1{T0,5 -, Tn, Tnt1
fn+1(l’0, ey .’L'n) = / Tn+1 nt ( n nt )d$n+1.
R Pn(T0; - -+ Tn)
The sequence (X,)n,>0 is a martingale if and only if f,11(xo,21,...,2n) = Zn, Vo > 0,
Vzo,...,Tn, € R. O

Example 3.1.4 (Closed martingales). Suppose that Fo = (Fy,)nen, is a filtration of § and
X € L'(9,8,P). Then the sequence of random variables

X, =E[X|7F,] € L*(9Q,F,,P), ne Ny,
is a martingale since
E[ Xos11F0] =E[E[X || For1 || =E[X 0] = X
Such a martingale is called closed or Doob martingale. O

Example 3.1.5 (Unbiased random walk). Suppose that (X, ),en is a sequence of indepen-
dent integrable random variables such that E[Xn] =0, Vn € Ng.

One should think that X, is the size of the n-th step so that the location after n steps is
Sn=X14+ -+ Xn.

Set &y, := 0(X1,...,Xy), So := 0. Then the sequence (Sy)nen, is a martingale adapted to
the filtration F,,. Indeed,

E[Spi1llFn] = E[ Xpt1 | X1y oo, Xn ] + E[ X1 + - + X[ X1, .0, Xon |
=E[Xpt1] + X1+ 4+ X, = Sp. O

Example 3.1.6 (Random products). Suppose that (Y;,)n,en are positive i.i.d. random vari-
ables such that E[Yl] = 1. Then the sequence of products

Zn =YYy Yy, neN,
is a martingale adapted to the filtration F,, = o(Y1,...Y},). Indeed
E[Zns1i | Vi, ., Y| =E[ V1 V.Y [V, . Yo | =E[You V1 Y, =2,. O

Example 3.1.7 (Biased random walk). Suppose that (X,,),en are i.i.d. random variables
such that the moment generating function

w(A) = E[e)‘X"]
is well defined for A in some interval A. We set
Spi=X1 44+ Xn, My=M,(\):=eM"puN)", F,:=0(X1,...,X,).
If we define

then we deduce that
E[YV,]=1, M,=Y;---Y,.

From the previous example we deduce that (Mn()\) ) is a martingale.

neN
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As a concrete example, suppose that the random variables X, are all binomial type
P[anl] =p, P[Xn:—l] =q=1-—p.

In this case u(\) = pe* + ge~*. Note that if e* = 1%’ then p(A) = 1 and we deduce that

q bn
n=(3)
4

is a martingale. This is sometimes referred to as the De Moivre’s martingale. O

Example 3.1.8 (Galton-Watson/branching processes). Fix a probability measure p on Ny
such that

m = Z kulk] <oo, plk] :=pn[{k}],

keNp

and ,u[k:o] > 0 for some kg > 0. Consider next a sequence (X, ;)jnen, of i.i.d. Np-valued
random variables with common probability distribution p. Fix £ € N | set Zy := ¢, and for
any n € Ny define

Zn
Lpyl = ZXn’j’ Fn = O'(Xkﬂ‘; ke Ny k< n)
j=1

The random variable Z,, can be interpreted as the population of the n-th generation of
a species that had ¢ individuals at n = 0 and such that the number of offsprings of a
given individuals is a random variable with distribution g. The j-th individual of the n-th
generators has X, ; offsprings. We will refer to u as the reproduction law.

The sequence (Zy,)n>0 is known as the Galton-Watson process or the branching process
with reproduction law pu.

Figure 3.1. Three generations of a Galton-Watson (random) tree. Here Z1 = 3,
Zy=24143=6,23=34+2+1+24+3=11.

When ¢ = 1 this process can be visualized as a random rooted tree. The root vy has
Z1 = Xo, successor vertices. wvi1,...,v1,7. The vertex vi; has Xi; successors etc.; see
Figure 3.1. For any n € Ny we have

00 k

Tni1 = (Z Xw‘) Li7,=k)

k=1 j=1
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SO

(Xn,j 4 ffna Vn,])

[oe] k 00
- <Z E[X”J]) I{Zn:k:} = mZkI{Zn:k} =mJ,,.

k=0

This proves that the sequence Y,, = m™"Z,,, n € Ny defines a martingale.

The intuition behind the above algebraic manipulation can be easily explained: if on
average an individual of this species has m successors, and the n-th generation consists of Z,,
individuals, we expect that the population of the next generation to change by a factor of m,
E[Zn+1 I Zn} =my,. O

Example 3.1.9 (Polya’s urn). An urn contains r > 0 red balls and g > 0 green balls. At
each moment of time we draw a ball uniformly likely from the balls existing at that moment,
we replace it by ¢+ 1 balls of the same color, ¢ > 0. Denote by R, and GG, the number of red
and respectively green balls in the urn after the n-th draw. Note that R, + G, = r+ g+ cn.
We denote by X, the ratio of red balls after n draws, i.e.,

R, R,
R,+G, r+g+cn
Note that when ¢ = 1, the scheme can be alternatively described as randomly adding at each

moment of time a red/green ball with probability equal to the fraction of red/green balls that
exist at that moment in the urn.

We set

n -

Stn = U(RO;GO7 t 7RnaGn) = U(X07X17 cee 7Xn)
We will show that (X,) is an Fe-martingale. To see this observe that

1
Xn = Z z'_i_jI{Rn:i,Gn:j}

S0
i
i+

B[ Xp1l|Fn] = Z

i,5>0

E { I{Rn+1=ijn+1=J'} H SF”} :

Now observe that
E |: I{Rn+1:iaGn+1:j} H ?n ]

= Z P[Rnt1 =14 Gny1 = jl|Rn = k, G = | I (g, —j o=t}
k,0>0
1—cC j—c

= ——I(R—i—cGo=j—c} + itj—c

itj—c Tipn=iGumie)
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We deduce

) 1—¢C
B[ Xniil 9n] = Zi—l—j it trn=i-e =)
ij

7 j—c
Iip i i
+Zj i+ i—i—j — e {Rn=1,Gn=j—c}

Z u+c U +Z U S 7
- U+U+C u—+v {Rn:“’Gn:v} — u+v4+ec u+w {Rn:u,Gn:U}

(u + v+c) u
= E Itp o=y = E Itp —uG—ot = Xn. a
(u+v)(u+v+c) {Rn=u,Gn=v} R {Rn=u,Gp=0v} n

Example 3.1.10 (Random walks on graphs). Suppose that I' is a connected simple graph
with vertex set Vr and edges Er. Assume that there are no multiple edges between two
vertices u,v € V. Assume that ' is locally finite i.e., for any vertex u € V', its set of
neighbors N(u) is finite. We set deg(u) := |N(u)|.

A function F' : Vi — R is called harmonic if

F)=—— 3 F).

deg(u) vEN(u)

Consider the simple random walk on I' that starts at a given vertex vg and the probability
of transitioning from a vertex u to a neighbor v is equal to g( - Denote by V,, the location
after n steps of the walk. Suppose that F' : Vr — R is a harmonic function. Then the
sequence of random variables
X, = F(Vn), n € Ny,
is a martingale with respect to the filtration &, = o(Vy, V1, ..., V,). Moreover
E[Xn] :F(’UQ), Vn € Np. O

Example 3.1.11 (New (sub)martingales from old). Suppose that (€2, 8,P) is equipped with
a filtration Fo = (Fy)nen, and X,, € LY(Q, F,,P) is a sequence of random variables adapted
to the above filtration.

(i) If (Xn)nen, is a martingale and ¢ : R — R is a convex function such that ¢(X,,) is
integrable Vn € Np, then the conditional Jensen inequality implies that the sequence
©(X,,) is a submartingale. Indeed, Jensen’s inequality implies

E[¢(Xn11) 1F0] > ¢ (B[ X1 |F0] ) = 9(Xn).

(ii) If (Xp)nen, is a submartingale and ¢ : R — R is a nondecreasing convex function
such that ¢(X,,) is integrable Vn € Ny, then the sequence p(X,,) is a submartingale.
Indeed, folllow the same argument as above where at the last step use the fact that
¢ is nondecreasing. In particular if (X,,),>0 is a submartingale, then so is (X;}),>0,
zt = max(0, z).

(iii) If (X5 )nen, is a supermartingale and ¢ : R — R is a nondecreasing concave function
such that ¢(X,,) is integrable Vn € Ny, then the sequence ¢(X,,) is a supermartin-
gale. Indeed

E[‘P(Xn+1) ||3rn] < @(E[erl I Srn] > < p(Xn).
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In particular, if (X, )nen, is @ supermartingale, then so is (min(Xy, ¢) )n>0, Ve € R.

O

3.1.2. Doob decomposition. Fix a probability space (£2,8,P) and an Ny-filtration F, of
8. If C, is an increasing Fo-adapted process, then obviously C, is a submartingale. If we add
to this process a martingale M,, then the resulting process X, = M, + C, is a submartingale.

It turns out that all submartingales can be obtained in this fashion. In fact, the increasing
process C), can be chosen to be of a special type: the random variable C),+; can be chosen
to be F,-measurable, i.e., the value of C, at time n + 1 is predictable at time n, i.e., can be
determined from the information available to us at time n encoded in the o-algebra F,.

Definition 3.1.12. A sequence of random variable {H,, : Q@ — R, n € Ny} is called JF,-
previsible or predictable if Hy is Fp-measurable, and H,, is F,,_i1-measurable Vn € N. O

The next result formalizes the discussion at the beginning of this subsection.

Proposition 3.1.13 (Doob decomposition of discrete submartingales). Let Xo = (X;,)nen,
be an (F,)nen, -adapted process such that X,, € L', ¥n € Ny. Then the following statements
are equivalent.

(i) The process Xo is a submartingale.

(ii) There exists an Fo-martingale My and an Fo-predictable nondecreasing process Ce
such that

My =0=Cepi, Xn=Xo+M,+C,, ¥n>0.

Moreover, when Xo is a submartingale, then the martingale Mo and the nondecreasing
predictable process are uniquely determined by Xeo up to indistinguishability; see Definition
2.5.11(#). In this case M,y is called the martingale component of the submartingale X,
and C, is called the compensator of Xo. We denote it by C(Xa). The decomposition
X, = Xo+ M, + C, is called the Doob decomposition of the submartingale X,.

Proof. Ezistence. We describe M,, and C), in terms of their increments. More precisely
Cn-‘rl - Cn = E[Xn+1 - XnH EFn] +E[Mn+1 - MnH S:n]
= E[Xn—HH SFn] - X’na Vn € N07
M1 — My = (Xns1— X ) — (Cnp1 — Gy ), Vn € Ny. (3.1.1b)

Note that C,4+1 — C), is F,, measurable so (C,) is predictable. By construction M, is an
Fo-martingale. Clearly, if X, is a submartingale then, tautologically, C,, is increasing.

(3.1.1a)

Uniqueness. Suppose that X, is a submartingale, M, is a martingale, and C, is a nonde-
creasing predictable process such that

My :Ccpt ZO, XnZXQ—FM,/l-l-C;L, VTZEN().
We deduce
B[ Xoi | Fa] X0 = E[M) .| 5] - My +E[Ch ]| 5] ~ O

=0 =Cr41—C1
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This shows that the increments of C/, are given by (3.1.1a) so C] = C,. In particular,
M) = M,, Vn € N. O

Example 3.1.14. Suppose that (X,),>0 is a sequence of nonnegative integrable random
variables and Xy = 0. Then

is a submartingale with respect to the filtration ¥, = o(Xo, X1,...,X,), n > 0. Indeed , for
n>1

E[Sn || :’fn—l] = E[Xn || EFn—l] + Sn—l > Sn—l'
Consider the Doob decomposition .S,, = M,, + C},. The compensator C), satisfies
Cn - Cn—l = E[Sn H Stn—l] - Sn—l = E[Xn H EFn—l]

SO
k=1
and
My =8,-Y E[Xp|Focr] =) (Xe —E[ X5 | Fr1]).
k=1 k=1

If the variables X, are independent, then

My =3 (X —E[X0]).
O

Definition 3.1.15 (Quadratic variation). Suppose that (X,,),>0 is a martingale adapted to
the filtration (F,,)n>0 such that E[ X2 ] < oo, Vn > 0. The compensator of the submartingale
(X2),>0 is called the quadratic variation and it is denoted by (X,). O

Example 3.1.16. Suppose that (X,,),>1 are independent random variables with zero means
and finite variances. We set Sp = 0,

S, =X1+---+X,.
Then

E[S2] =Y E[X}] <oo, Vn>1.
k=1

Thus (S,) is an L2%-martingale. From the computations in Example 3.1.14 we deduce

(Seyn =D E[XF] = E[(Sk— S-1)?].
k=1 k=1

This explains why we refer to (Se) as quadratic quadratic variation. O
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3.1.3. Discrete stochastic integrals. A very important method of producing a large sup-
ply of martingales discrete stochastic integration.

Theorem 3.1.17 (Discrete Stochastic Integral). Suppose that (Xp)nen, be an Fo-adapted
process and (Hp)nen is a bounded predictable process. Define the process (H - X )o by setting

(H . X)O =0, (H . X)n = Hl(Xl — Xo) + -+ Hn(Xn — anl), Vn € N. (312)
Then the following hold.

(1) If (Xn)nen, is a martingale, then the process (H-X)n, n € Ny is also an Fe-adapted
martingale.

(il) If (Xpn)nen, is a submartingale and H,, > 0, Vn € N, then the process (H-X),, n € Ny
s also an Fe-adapted submartingale.

Proof. (i) Clearly (H - X), € L'(Q,%,). We have
E[(H ) X)nJrlefn] = ]E[HnJrl(XnJrl - Xn)ngn] + (H - X)n
(Hy41 is F-measurable)
= n+1E[(Xn+1_Xn)H3~n]+(HX)n: n+1(E[Xn+1”Hjn]_Xn)+(HX)n

( (Xp) is a martingale)
=(H-X)n.
The proof of (ii) is similar. 0

Remark 3.1.18. (a) When X, is a martingale the process (H - X), is called the discrete
stochastic integral of H with respect to X and it is alternatively denoted

/n HdX = (H - X),.

One should think of X, as a random signed measure assigning mass X,, — X,,—1 to the point
n.

(b) The discrete stochastic integral has a stock-trading interpretation. Suppose that X,
represents the price of a stock at the end of the n-th trading day. A day trader buys H,
shares at the beginning of the n-th trading day, based on the information collected during
the previous (n — 1) trading days. This information is encoded by the sigma-algebra F,,_1
and the price of a share at the beginning of the n-th trading day is X,,_1. He sells these H,
shares at the end of the n-the trading day. The resulting profit at the end of day n is then
Hn(Xn - X0 ) We deduce that (H e X), is represents the profit of the day trader after
n trading days.

(c) The special case Theorem 3.1.17 when the variables H,, are Bernoulli random variables
was discovered by P. Halmos and is classically known as the impossibility of systems theorem.
In this case H, represents the decision of a gambler to play or not the next game based on
the information gathered during the games he observed so far. O

The applicability of Theorem 3.1.17 depends on our ability of producing interesting pre-
dictable processes. We describe one very useful class of examples.
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Example 3.1.19. Observe first that a discrete time process (Y )neny on (£2,8,P) can be
viewed as a map
Y:NxQ =R, (nw)— Y, (w).
We equip N x 2 with the product o-algebra. A measurable set 2~ C Nx 2 defines a stochastic
process
I%:NXQ%{O,l}, (I%')n:I%nv Zn ::{OJEQ; (n,w)e%}.

The set 2 is called Fo-predictable if the process I o is such. More precisely, this means that
Zo € Fo and, for any n € N, the set 2, is F,,_1-measurable. O

3.1.4. Stopping and sampling: discrete time. We want to describe one technique that
makes the martingales extremely useful in applications. Fix a probability space (2,8, P).

Definition 3.1.20. A random variable T : (Q,8,P) — Ny U {oc} is called a stopping time
adapted to the filtration Fo = (F,)n>0, or an Fe-stopping time if,
{T' <n} e, VneNyU{oo}.

If (Xp)nen is an Fe-adapted process, and T' is an Fe-stopping time, then the T-sample of the
process is the random variable

Xpi= > XnI(r_n}. (3.1.3)
n€eNy

Observe that X7 = 0 on the set {T" = oc}. 0

Example 3.1.21. (a) For each n € Ny the constant random variable equal to n is a stopping
time.

(b) Suppose that (Xy)nen, is Fe-adapted and C' C R is a Borel set. We define the hitting
time of C' to be the random variable
He : Q= 