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LIVIU I. NICOLAESCU

Abstract. This survey has two goals. The first is to present of a proof of the multidimen-
sional Kac-Rice formula in the Gaussian case that highlights in as clear a fashion possible
the central ideas. The second goal is to present the recent results of Gass-Stecconi and
Ancona-Letendre describing sufficient conditions guaranteeing that the nimver of zeros of a
random Gaussian map has finite p-momentum.
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Introduction

This is an expository paper and I make no claims of originality.
Given a map G : Rd → Rd and a Borel subset B ⊂ Rd we denote by ZB(G) the number

of zeros of G inside the set B. When G is random, ZB(G) is a random variable. The basic
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Kac-Rice formula states that, under certain assumptions, the expectation of ZB(G) can be
described as an integral of B of a certain explicit density called the Kac-Rice density. The
first goal of these notes is to describe some simple yet general conditions guaranteeing the
validity of the Kac-Rice formula. The second goal is to describe some sufficient conditions
guaranteeing that ZB(G) has finite moments.

There are currently many different proofs of very general versions of the Kac-Rice formula,
e.g., [1, 4, 21]. In the first section of the paper I describe in detail the recent shorter proof
by Armentao, Azäıs, León [3] with an emphasis on the Gaussian situation.

The second section is devoted to the special case G = ∇F where F is a random function. In
this case ZG(B) is the number of critical points of F in B and we are interested in describing
sufficient conditions guaranteeing that ZB(∇F ) has finite moments.

In Subsection 2.3 we show that if F is a.s. C3 and, for every u ∈ U the second jet of F at
u is a nondegenerate Gaussian vector, then ZB(∇F ) ∈ L2.

In Subsection 2.4 we investigate the p-th moments of ZB(∇F ) and we prove Theorem 2.11
stating that if F is a.s. Cp+1 and, for any u ∈ U the p-th jet of F at u is a nondegenerate
Gaussian vector, then ZB(∇F ) ∈ Lp. This was proved recently by Gass-Stecconi [10], and
Ancoma-Letendre [2]. This subsection is inspired heavily from work of Gass and Stecconi
[10].

In the final Section 3 we present another proof of Theorem 2.11 based on a simplified
version of the multijet technique introduced by Ancona and Letendre in [2].

Conventions and notations.

• In this paper the set N of natural numbers is the set of positive integers.
• We will we will denote by E

[
Y ∥X

]
the conditional expectation of Y given X.

It is a random variable. The conditional expectation a measurable function of X,
E
[
Y ∥X

]
= f(X). We will denote the value of f at x by E

[
Y
∣∣X = x]. This is a

deterministic quantity.
• We set In := {1, . . . , n}. For every set U we will think of Un as functions u : In → U .
We will often write u = (u1, . . . , un), ui = u(i). For any I ⊂ In we will denote by uI
the restriction of u to I.

• We will denote by Sn the group of permutations of In.
• Let U be a finite dimensional Euclidean space. A compact subset B ⊂ U is called a
box centered at the origin if there exist Euclidean coordinates (xi) on U and r > 0
such that B is described by

max |xi| ≤ r.

A box centered at u0 is a compact set of the form u0+B0, where B0 is a box centered
at the origin.

1. The Euclidean Kac-Rice formula

1.1. Formulation. Assume that V and U are finite-dimensional vector spaces of dimensions

D = dimV ≥ d = dimU .

Suppose that V ⊂ V is an open subset. For any Borel subset B ⊂ V, any measurable map
F : V → U and any u ∈ U we define the level set

ZB(F, u) = Zu(F,B) = F−1(u) ∩B ⊂ V.

We set
ZB(F ) = F−1(0) ∩B = ZB(F, 0).
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If F is C1 and u is a regular value of F , then Zu is a submanifold of dimension D − d of V .
We denote by Hk the k-dimensional Hausdorff measure on V .

We equip the space of X := C1(V,U) of C1-maps V → U with the topology of uniform
convergence on compacts of maps and their first order derivatives. As such, it is a Polish
space. We denote by Prob(X) the space of Borel probability measures on X.

Theorem 1.1 (Kac-Rice formula). Suppose that (Ω, S,P) is a complete probability space and

X : Ω× V → U , Ω× V ∋ (ω, v) 7→ Xω(v) ∈ U

is a U -valued random field parametrized by the open subset V ⊂ V satisfying the conditions
(A) and (B) in Theorem 1.3 and the additional condition

(R1) The random field X is a.s. C1, i.e.

P
[ {

ω; Xω : V → U is C1
} ]

= 1.

It induces a measurable map X : Ω → X and we denote by PX ∈ Prob(X) the
distribution of the process X.

(T) 0 ∈ U is a.s. a regular value of X, i.e.,

P
[
{ω; 0 is a regular value of Xω : V → U }

]
= 1.

(A0) For each v ∈ V, the distribution PX(v) of the random vector X(v) is absolutely
continuous with respect the the Lebesgue measure on U . We denote by pX(v) its
density and we assume that is continuous in u and that for any compact subset
K ⊂ V we have

sup
v∈K

sup
u∈U

pX(v)(u) < ∞.

(C) For any u0 ∈ U , v0 ∈ V, and any bounded continuous function α : X → R v0, v ∈ V

the conditional distribution Pα(X)|X(v0)=u0
is well defined as a probability measure on

R and depends continuously on u0 in the topology of weak convergence of measures.

Then, HD−d

(
ZB(X)

)
is a random variable, i.e., the map

Ω ∋ ω 7→ HD−d

(
ZB(Xω )

)
∈ [0,∞]

is measurable. Moreover,

E
[
HD−d

(
ZB(X)

) ]
=

∫
B
E
[
JX(v)

∣∣X(v) = 0
]
pX(v)(u0)dv, (KR)

where JX(v) denotes the Jacobian of X at v ∈ V and E
[
JX(v)

∣∣X(v) = u0
]
denotes the

conditional expectation of JX(v) given that X(v) = u0. When D = d the Kac-Rice formula
takes the form

E
[
#ZB(X)

]
=

∫
B
E
[
JX(v) ∥X(v) = 0

]
pX(v)(u0)dv, (KR0)

Remark 1.2. (a) Condition (T) is a transversality condition while (A0) is closely related to
the ampleness conditions in geometry. We can give a more conceptual interpretation of (C).
We can view X as a measurable map X : Ω → X. Fix v0 ∈ V and we obtain another random
map

Xv0 : X×U , ω 7→
(
Xω, Xω(v0)

)
.

The distribution ofXv0 disintegrates since X is Polish so there is a kernel Kv0 from (U ,BU )
to (X,BX),

Kv0 : U ×BX → [0, 1], (u, S) 7→ Kv0(u, S)
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For fixed u0 ∈ U the map

BX ∋ B 7→ Kv0(u0, B) ∈ [0,∞)

is a subprobability Borel measure on X. More precisely

Kv0(u0,−) = P
X
∣∣Xv0=u0

.

Condition (C) states that this measure depends continuously on u0 and v0.

(b) The random fields satisfying the conditions (R1), (T), (C) are closely related to the
z-KROK random fields introduced in [15].

(c) Let us mention that (KR) for D = d is satisfied under alternate assumptions, [1, Thm.
11.2.1]. ⊓⊔

Concerning the transversality condition (T) we have the following result.

Theorem 1.3 (Transversality). Suppose that (Ω, S,P) is a probability space and

X : Ω× V → U , Ω× V ∋ (ω, v) 7→ Xω(v) ∈ U

is a random field satisfying the following conditions.

(R2) The random field X is a.s. C2, i.e.

P
[ {

ω; Xω : V → U is C2
} ]

= 1.

(A1) The random vector

Y : V×U \ {0} → U × V , (v, u̇) 7→ (X(v), X ′(v)∗u̇)

satisfies the condition (A0). Above, X
′(u)∗ : U → V is the adjoint of the differential

X ′(v) : V → U .

Then the random field satisfies (T).

Let us observe that (A1) ⇒ (A0) and (R2) ⇒ (R1)

Theorem 1.4. Suppose that D = d, (Ω, S,P) is a probability space and

X : Ω× V → U , Ω× V ∋ (ω, v) 7→ Xω(v) ∈ U

is a random field satisfying (R1) and (A0). Then the random field satisfies (T).

1.2. Proof of the transversality theorems. If F : V → U is a C1-map then the fiber
F−1(0) is a submanifold of V of dimension D − d and it seems natural to expect that it is
highly unlikely that the equation F (v) = u0 will have no solutions inside a given dimensional
subset of V of dimension d− 1. This is true a.s. in a much more general context.

Lemma 1.5 (Bulinskaya). Suppose that X : V → U satisfies (R1) and (A0), D ≥ d. Let
K ⊂ V be a compact subset of Hausdorff dimension < d. Then

P
[
ZK(X,u0) ̸= ∅

]
= 0.

Proof. We follow the argument in the proof of [1, Lemma 11.2.10]. Fix Euclidean coordinates
(vi)1≤i≤D on V and (uj)1≤j≤d on U . We can write X as a collection of random variables

(X1, . . . , Xd). We set

Cω(v) =

d∑
j=1

(
|Xj

ω(v) |+
D∑
i=1

|∂viXj
ω |

)
.
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For every compact set S ⊂ V we set

Cω(S) := sup
v∈S

Cω(v).

Then (R1) implies that

P
[
C(S) < ∞

]
= 1.

Hence, for every ε > 0 there exists Mε = Mε(S) > 0 such that

P
[
C(S) < Mε

]
> 1− ε. (1.1)

If we choose S to be a closed ball of radius r > 0 centered at v0 and contained in V we deduce
from the mean value theorem that∣∣Xj

ω(v)−Xj
ω(v0)

∣∣ ≤ Cω(v0, r)∥v − v0∥ ≤ Cω(v0, r)r

so that

∥Xω(v)−Xω(v0)∥ ≤ Cω(v0, r)
√
d · r.

For r < dist(K, ∂V) we set

Cω(K, r) = sup
v0∈K

Cω(v0, r) ≤ Cω(Kr), Kr := {v ∈ V ; dist(v,K) ≤ r }.

For such an r we set

oscω(r) := sup
v1,v2∈K

∥v1−v2∥≤r

∥Xω(v1)−Xω(v2)∥.

Note that

oscω(r) ≤ Cω(K, r)
√
dr.

Consider the event

Eε(r) :=
{
oscω(r) ≤ Mε(Kr)

√
d r
}
.

We set Mε(r) := Mε(Kr). We deduce from (1.1) that

P
[
Eε(r)

]
> 1− ε.

Pick a sequence ℏn ↘ 0. Since K has Hausdorff dimension < d, its d-dimensional Hausdorff
measure is zero, and we deduce that there exists a sequence rn ↘ 0 and for any n there exists
a finite collection of closed balls (Bn,j)j∈Jn,r , of radii rn,j < rn, covering K, such that∑

j∈Jn,δ

(
rn,j

)d ≤ ℏn.

We denote by A the event “the equation X(v) = u0 has a solution v ∈ K” and we set

An,j = A ∩Bn,j .

Fix ε > 0 and r > 0 sufficiently small. Then

P
[
A
]
≤
∑
j

P
[
An,j ∩ Eε(rn)

]
+ P

[
Eε(rn)

c
]
≤
∑
j

P
[
An,j ∩ Eε(rn)

]
+ ε. (1.2)

Denote by vn,j the center of Bn,j . Observe that An,j ̸= ∅ iff there exists v such that ∥v−vnj∥ ≤
rn,j and X(v) = u0. On Eε(rn) we have∣∣X(vn,j)− u0

∣∣ = ∣∣X(vn,j)−X(v)
∣∣ ≤ Mε(rn)

√
d rn,j .

This shows that

An,j ∩ Eε(rn) ⊂
{ ∣∣X(vn,j)− u0

∣∣ < Mε(rn)
√
d rn,j

}
.
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We denote by ωd the volume of the unit d-dimensional ball and we set

L := sup
v∈Kr1

sup
u∈U

pX(v)(u).

Assumption (A0) implies L < ∞. We deduce

P
[ { ∣∣X(vn,j)− u0

∣∣ < Mε(rn)
√
d rn,j

} ]
≤ LωdMε(rn)

ddd/2︸ ︷︷ ︸
Ξε(rn)

rdn,j ,

and ∑
j

P
[
An,j ∩ Eε(rn)

]
≤ Ξε(rn)

∑
j

rdn,j ≤ Ξε(rn)ℏn ≤ Ξε(r1)ℏn.

Now choose n such that Ξε(r1)ℏn ≤ ε to conclude from (1.2) that

P
[
A
]
≤ 2ε, ∀ε > 0.

⊓⊔

Proof of Theorem 1.3 Consider the random field

Y : V×U → U × V , Y (v, u̇) 7→
(
X(v), X ′(v)∗u̇

)
.

Fix a box B ⊂ V and denote by S(U) the unit sphere in U . Let us show that a.s., 0 is a
regular value of X|B. This means that for any solution v ∈ B of X = 0 the transpose of the
differential X ′(c)⊤ is one-to-one, i.e., the equations

Y (v, u̇) = 0⇐⇒X(v) = 0, X ′(v)∗u̇ = 0,

has no solution (v, u̇) ∈ B × S(U). Since dimB × S(U) ≤ dim(U × V ) we deduce from
Lemma 1.5 that this happens a.s.. ⊓⊔

Remark 1.6. Sard’s transversality theorem requires a bit of regularity. Suppose that

F : V → U

is a Ck map. In [9, Thm. 3.4.3] it is shown that if k ≥ D − d + 1, then the set of critical
values of F is negligible in U . However, if k ≤ D − d there exist Ck-maps V → U for which
the set of critical values is not negligible in U ; see [9, Sec. 3.4.4].

In geometry the generic transversality is traditionally obtained as follows. Fix k ≥ D−d+1.
Suppose that N is a positive integer and

F : RN × V → U , (λ, v) → Fx(v)

is a Ck-map. We view it as a family in Ck(V,U) parametrized by λ ∈ RN . We assume that
the family is sufficiently large, i.e., satisfies the ampleness condition

0 is a regular value F . (∗)
Then

Z =
{
(λ, v) ∈ RN × V; Fλ(v) = 0

}
is a Ck manifold and the natural projection π : Z → RN , (λ, v) → λ is a Ck map. Since
dimZ−N = D − d we deduce from Sard’s theorem that most λ ∈ RN are regular values of
π. One can show that for such λ, 0 is a regular value of Fλ. Thus, a regularity assumption
together with an ampleness condition on the family guarantee that 0 is generically a regular
value of Fλ.
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We approached generic regularity using a different approach. Let N be a (large) positive
integer and suppose that, for each v ∈ V the collection of C2-maps{

Fk(v), F
′(v)⊤k

}
1≤k≤N

spans the vector space U ×Hom(U ,V ). If we define

Fλ :=
N∑
k=1

λkFk, λ = (λ1, . . . , λN ) ∈ RN ,

then we see that the family (Fλ)λ∈RN satisfies (∗). It is however less regular if D − d > 1.
Fix independent standard normal random variables Λ1, . . . ,ΛN and form the random

Gaussian map

Fω =
∑
k

Λk(ω)Fk.

Equivalently, consider the standard Gaussian measure on RN and think of F as a random
map. This random map satisfies (R2) and (A1) and thus 0 is a.s. a regular value of F . This
implies 0 a regular value of Fλ for λ in a set of Gaussian probability 1. for generic x. We
have thus obtained generic transversality with reduced regularity, C2 instead of CD−d+1, but
the price we had to pay was stronger ampleness assumptions. ⊓⊔

In the remainder of this section we fix Euclidean coordinates (vi)1≤i≤d and (uj)1≤j≤d on

V and respectively on U . A box in V is a compact set of the form
∏d

i=1[ai, bi]. The box is
called nondegenerate if it has nonempty interior.

Proof of Theorem 1.4 We follow the approach in [3, Sec. 4]. Fix a box B ⊂ V. Consider
the quantities

T = lim inf
r↘0

Tr, Tr(ω) :=
1

ωdrd
Hd

[
{v ∈ B; ∥X(v)∥ ≤ r}

]
,

where Hd denotes the d-dimensional Hausdorff measure on V . In this case it coincides with
the Lebesgue measure.

Assumption (A0) implies that T is a.s. finite. We set

Zs :=
{
v ∈ B; X(v) = 0, Jv = 0}.

We will show that P
[
Zs ̸= ∅

]
= 0. Set

M := sup
v∈B

∥X ′(v)∥,

N(ε) = sup
v∈B, 0<∥v̇∥<ε

∥X(v0 + v̇)−X(v0)−X ′(v0)v̇∥
∥v̇∥

.

Both random variables M and N(ε) and N(ε) → 0, a.s., as ε ↘ 0.
Let v0 ∈ Zs. Lemma 1.5 shows that v0 ∈ intB a.s.. Set

K0 = kerX ′(v0) ⊂ V , k = dimK⊥
0 .

Since Jv0 = 0 we deduce that k ≤ (n− 1). Any vector v̇ ∈ V decoposes as

v̇ = v̇0 + v̇⊥, v̇0 ∈ K0, v̇⊥ ∈ K⊥
0 .

Then
∥X(v0 + v̇)∥ ≤ ∥X(v0 + v̇0 + v̇⊥)−X(v0 + v̇0)∥+ ∥X(v0 + v̇0)∥

≤ M∥v̇⊥∥+ ∥v̇0∥N
(
∥v̇0∥

)
.
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Let ε > 0 such that N(ε) < 1 and suppose that

∥v̇0∥ ≤ ε, ∥v̇⊥∥ ≤ εN(ε). (1.3)

We deduce that
∥X(v0 + v̇0 + v̇⊥)∥ ≤ r(ε) := (M + 1)εN(ε).

The polydisk
Pε :=

{
v ∈ B; v = v0 + v̇, v̇ satisfies (1.3)

}
is a.s. contained in B for ε > 0 sufficiently small. Thus

Tr(ε) =
1

ωdr(ε)d
Hd

[
{v ∈ B; ∥X(v)∥ ≤ r(ε)}

]
≥ 1

ωdr(ε)d
Hd

[
Pε

]
=

const.× εdN(ε)k

ωdεdN(ε)d
= constN(ε)k−d → ∞ as ε ↘ 0.

Hence
Zs ̸= ∅ ⊂ {T = ∞},

so P
[
Zs = ∅

]
= 1. ⊓⊔

Remark 1.7. To better understand the idea behind the above proof it helps to have in mind
the following suggestive example. Consider the map

F : R2 → R2, F (x, y) = (x, y2).

Then

Tr :=
{
∥F∥ ≤ r

}
=
{
x2 + y4 ≤ r2

}
⊃ Sr :=

{
|x| ≤ 2−1/2r, |y| ≤ 2−1/4√r

}
,

and
H2 (Sr) = 2−3/4r3/2.

Hence
H2(Tr)

πr2
≥ 2−3/4r−1/2 ↗ ∞ as r ↘ 0.

⊓⊔

1.3. Proof of the Kac-Rice formula when D = d. We set

ZB = ZB(X) = #ZB(X).

Lemma 1.8 (Kac’s counting formula). Suppose that F : V → U is a C1-map. Let B ⊂ V be
a nondegenerate box. Suppose

(i) that 0 is a regular value of F and
(ii)

F−1(0) ∩ ∂B = ∅.
Denote by N(F,B) the number of solutions of the equation F (v) = 0, v ∈ B. Then, for r > 0
sufficiently small we have

N0(F,B) = Nr(F,B) =
1

ωdrd

∫
B
I{|F |<r}JF (v)dv,

where JF denotes the Jacobian of F .

Proof. Since 0 is a regular value and F−1(0) ∩ ∂B = ∅ we deduce from the inverse function
theorem function that F has a finite number of zeros in B, v1, v2, . . . , vn, n = N0(F,B), none
of them located on ∂B. Choose δ > 0 sufficiently small such that
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• The open ball Bδ(vi) is contained
• the closure of the balls Bδ(vi) are disjoint, and
• the restriction of F to each of the open balls Bδ(vi) is a diffeomorphism onto its
image.

Set

r0 := min
v∈B\∪n

i=1Bδ(vi)
∥F∥.

Fix r ∈ (0, r0). If ∥u∥ < r then the equation F (v) = r, u ∈ B has exactly n solutions

vi(u) ∈ Bδ(vi), i = 1, . . . , n.

We will use the coarea formula (A.2) where

α = IB, β(u) = I{|u|<r}

We deduce that ∫
B∩{∥F∥<r}

JF (v)dv =

∫
{∥u∥<r}

#F−1(u)du = nωdr
d.

⊓⊔

Lemma 1.9 (Continuity of roots). Fix a box B ⊂ V. Suppose that Fν : V → U , ν ∈ N is a
sequence of C1 converging in X = C1(V,U) to a map F that satisfies the conditions (i) and
(ii) in Kac’s counting formula with respect to the box B. Then

lim
ν→∞

N0(Fν , B) = N0(F,B).

Proof. Set

Z = F−1(0) ∩B = {v1, . . . , vn}, n = #Z, Zν = F−1
ν (0) ∩B.

Choose open balls Bδ(vi), i = 1, . . . , n, as in the proof of Kac’s counting formula. Set

C := B \
n⋃

i=1

Bδ(vi),

r0 := inf
v∈C

∥F (v)∥.

Since Fν converges uniformly to F on the compact set C we deduce that there exists ν0 > 0
such that

∀ν ≥ ν0, inf
v∈C

∥Fν(v)∥ > r0/2 > 0.

Thus, for ν ≥ ν0

Zν ⊂
n⋃

i=1

Bδ(vi).

Set

Zν,i := Zν ∩Bδ(vi).

We claim that for each i = 1, . . . , n, there exists νi > 0 such that #Zν,i = 1, ∀ν ≥ νi. We
argue by contradiction.

Suppose that there exists a subsequence Zνk,i such that #Zνk,i ≥ 2. To ease the notation
we will write Zk,i instead of Zνk,i.
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Let v0,k, v1,k ∈ Zk,i, v0,k ̸= v1,k. Upon extracting subsequences we can assume that v0,k
and v1,k converge to v0,∞, v1,∞ ∈ clBδ(vi). Clearly F (v0,∞) = F (v1,∞) = 0 and, since F a
single zero, vi, in clBδ(vi) we deduce

v0,k, v1,k → vi as k → ∞.

Consider the unit vectors

wk :=
1

∥v1,k − v0,k∥
(
v1,k − v0,k

)
.

Upon extracting a subsequence we can assume that wk converges to the unit vector w. Since
the differential F ′(vi) is invertible we deduce that F ′(vi)w ̸= 0. Choose a linear functional
ξ : U → R such that

ξ
(
F ′(vi)w

)
= 1. (1.4)

Consider now the scalar functions fk(v) = ξ
(
Fνk(v)

)
. From the mean value theorem we

deduce that there exists a point pk on the line segment [vo,k, v1,k] such that

0 = fk(v1,k)− fk(v0,k) = ∥v1,k − v0,k∥dfk(pk)
(
wk

)
= ∥v1,k − v0,k∥ξ

(
F ′
νk
(pk)wk

)
.

In other words

ξ
(
F ′
νk
(pk)wk

)
= 0, ∀k.

Note that pk → vi. Letting k → ∞ we deduce ξ
(
F ′(vi)w

)
= 0. This contradicts (1.4). ⊓⊔

Corollary 1.10. Suppose that (Ω, S,P) is a complete probability space. Then the map

Ω ∋ ω 7→ ZB(Xω) ∈ [0,∞]

is measurable.

Proof. Lemma 1.5 shows that there exists a PX -negligible Borel subset N ⊂ X such that any
F ∈ X∗ = X \ N satisfies the assumptions (i) and (ii) Lemma 1.8. It follows that the map
ZB : X∗ → [0,∞) is continuous. Set Z0

B = IX∗ZB. Hence Z
0
B : X → [0,∞) is measurable and

so is Z0
B(X). Since ZB(X) = Z0

B(X) a.s. and S is P-complete we deduce that ZB(X) is also
measurable. ⊓⊔

Corollary 1.11. Fix a box B ⊂ V. Suppose that Xn : Ω×V → U is a sequence of C1-random
fields such that

• Xn → X a.s. in C1(B,U) and
• they satisfy a.s. the conditions (i) and (ii) in Lemma 1.8.

Then

N0(Xn, B) → N0(X,B) a.s..

⊓⊔

We can finally prove (KR) in the case D = d. We follow the approach in [3, Sec. 5].
Let F : [0,∞) → [0, 1] be the continuous piecewise linear function such that

F (x) =

{
0, x ≤ 1/2,

1, x ≥ 1.

For n ∈ N we set Fn(x) = F (nx) and Gn(x) = 1− F (x/(2n)). The functions Fn and Gn are
depicted in Figure 1.
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1

n 2n

1

1/n1/(2n)

Figure 1. The graphs of Fn (top) and the graph of Gn (bottom).

For v ∈ V we set Jv := JX(v), i.e., Jv is the Jacobian of X at v. Recall that

Jv =
√
det
(
X ′(v)X(v)⊤

)
= det |X ′(v)|,

where detX ′(v) is computed by identifying X ′(v) with a d × d matrix using the Euclidean
coordinates (vi) and (ui).

Fix a box B ⊂ V. For u ∈ U and n ∈ N and Φ ∈ X we set

Cn
u (Φ, B) :=

∑
v∈Φ−1(u)∩B

Fn

(
JΦ(v)

)
Gn

(
JΦ(v)

)
Fn

(
dist(v, ∂B)

)
.

Lemma 1.12. The functions

X ∋ Φ 7→ Cn
u (Φ, B)

and u 7→ Cn
u (B,Φ) are continuous. ⊓⊔

We proceed assuming the validity of the above lemma. We set

Cn
u (B) := Cn

u (B,X) =
∑

v∈X−1(u)∩B

Fn

(
Jv
)
Gn

(
Jv
)
Fn

(
dist(v, ∂B)

)
,

Qn
u(B) := Cn

u (B)Gn

(
Cn
u (B)

)
.

These are measurable as compositions of continuous functions X → R with X : Ω → X.
Note that Cn

u (B) is the number of solutions v of the equation X = u in the compact
(random) set

Kn :=
{
v ∈ B : Jv, δv ≥ 1

2n
, Jv ≤ 2n

}
.

Intuitively, Cn
u (B) counts the solutions v of F (v) = u located in B for which that Jacobian Jv

is not too small, not too large and they are not too close to the boundary of B. The quantity
Qn

u(B) is a sort of truncation of Cn
u (B). Note that Qn

u(B) = 0 whenever Cn
u (B) > n. For

simplicity we will write

δv := dist(v, ∂B).
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Let g : U → [0,∞) be a continuous, compactly supported function. The Coarea formula
(A.2) implies that∫

U
g(u)Qn

u(B)du =

∫
B
JvFn(Jv)Gn(Jv)Fn(δv)Gn

(
Cn
X(v)(B)

)
g
(
X(v)

)
dv.

The above random variables are bounded since the various integrands are bounded. E.g.,
Qn

u(B) ≤ 2n. Taking expectations we deduce∫
U
g(u)E

[
Qn

u(B)
]
du =

∫
B
E
[
JvFn(Jv)Gn(Jv)Fn(δv)Gn

(
Cn
X(v)(B)

)
g
(
X(v)

) ]
dv

=

∫
U
g(u)

(∫
B
E
[
JvFn(Jv)Gn(Jv)Fn(δv)Gn

(
Cn
X(v)(B)

)
∥X(v) = u

]
dv

)
pX(v)(u)du

Since the above equality holds for any continuous compactly supported function g we deduce

E
[
Qn

u(B)
]
=

∫
B
E
[
JvFn(Jv)Gn(Jv)Fn(δv)Gn

(
Cn
X(v)(B)

)
∥X(v) = u

]
pX(v)(u)dv (1.5)

for almost every u ∈ U . To prove that the above equality holds for any u we will show that
both sides of (1.5) depend continuously on u.

The random function u 7→ Cn
u (B) = Cn

u (B,X) is a.s. continuous since

u 7→ Cn
u (B,Φ)

is continuous for any Φ ∈ X. Consider

αn
v : X → R, αv(Φ) := JΦ(v)Fn(JΦ(v))Gn(JΦ(v))︸ ︷︷ ︸

≤2n

Fn(δ(v))Gn

(
Cn
Φ(v)

)
.

For fixed v it depends continuously with respect to Φ in the topology of X. We can rewrite
the right-hand-side of (1.5) as∫

B
E
[
αn
v (X)

∣∣X(v) = u
]
pX(v)(u)dv.

Conditions (A0) and (C) show that the integrand depends continuously on u. Clearly it
is bounded uniformly in u. The Dominated Convergence Theorem shows that the above
integral depends continuously on u. Hence

E
[
Qn

u(B)
]
=

∫
B
E
[
JvFn(Jv)Gn(Jv)Fn(δv)Gn

(
Cn
X(v)(B)

)∣∣X(v) = u
]
pX(v)(u)dv (1.6)

for every u ∈ U . In particular, for u = 0 we deduce

E
[
Qn

0 (B)
]
=

∫
B
E
[
JvFn(Jv)Gn(Jv)Fn(δv)Gn

(
Cn
X(v)(B)

)∣∣X(v) = 0
]
pX(v)(0)dv. (1.7)

The transversality condition (T) and Lemma 1.5 imply that a.s. 0 is a regular value of X
and the equation X(v) = 0 has no solutions on ∂B. We deduce that

Qn
0 (B) ↗ ZB(X) as n → ∞.

Since Fn, Gn ↗ 1 we can use the Monotone Convergence Theorem in (1.7) as n → ∞ and
deduce (KR) for D = d assuming the validity of Lemma 1.12.
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Proof of Lemma 1.12. The proof is similar to the proof of Lemma 1.9. Fix Φ0 ∈ X and
u0 ∈ U . For each n ∈ N we consider the compact set

Kn :=

{
v ∈ B; dist(v, ∂B) ≥ 1/n,

1

2n
≤ JΦ0(v) ≤ 2n

}
.

Note that Kn ⊂ int(Kn+1), ∀n. Let

Zn(Φ0) = Φ−1
0 (u0) ∩Kn.

The inverse function theorem implies that Zn(Φ0) is finite.

Zn(Φ0) :=
{
v1, . . . , vn}

Invoking the inverse function theorem we deduce that there exist r > 0 and pairwise disjoint
open sets O1, . . . ,On with the following properties.

• vk ∈ Ok ⊂ intKn+1, ∀k = 1, . . . , n. We set

O :=

n⋃
k=1

Ok.

• The restriction of Φ0 to Ok is a diffeomorphism onto the open ball Br(u0) ⊂ U .

Suppose that ∥Φν − Φ0∥C1(B) → 0 as ν → ∞. We claim that

∃N > 0 : ∀ν ≥ N, Φ−1
ν (u0) ∩Kn ⊂ O.

We argue by contradiction. Suppose that there exists a subsequence νm ↗ ∞ and and

wνm ∈ Φ−1
νm(u0) ∩Kn \ O, ∀m (1.8)

Upon extracting a subsequence we can assume that wνm converges to w∗ ∈ Kn. Letting
m → ∞ in the equality Φνm(wνm) = u0 we deduce Φ0(w∗) = u0 ∈ O. This contradicts (1.8).

Arguing as in the proof of Lemma 1.9 we conclude that there exists N > 0 such that for
any ν ≥ N and any k = 1, . . . , ν the equation Φν(v) = u0 has at most one solution v ∈ Ok.

Let us now observe that for ν sufficiently large the equation Φν(v) = u0 has one solution
v ∈ Ok. Indeed this is an immediate consequence of the theory of degree of a continuous
map; see e.g. [19, Chap.1].

This proves that for any continuous function φ : B → R such that suppφ ⊂ Kn we have

lim
ν→∞

∑
v∈Φ−1

ν (u0)

φ(v) =
∑

v∈Φ−1
0 (u0)

φ(v).

This takes care of the first part of Lemma 1.12. The second part of this lemma follows from
the first part applied to the maps Φν = Φ0 − (uν − u0), where uν → u0. ⊓⊔

Remark 1.13. For a wide ranging generalization of this result we refer to [21]. ⊓⊔

The case D > d is dealt with in a similar fashion. We will not discuss it here since we will
not need it in the applications we have in mind. For details we refer to [4, Chap. 11].
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1.4. Gaussian measures and fields. The assumption (C) is trickiest to verify in prac-
tice. In this subsection we will describe a simple yet sufficiently general case when this is
satisfied. We need to introduce some Gaussian terminology in a form suitable for geometric
applications.

Suppose that X is a finite dimensional vector space. We denote by X∗ its dual space and
we denote by ⟨−,−⟩ : X∗ ×X → R the natural pairing

(ξ, x) 7→ ⟨ξ, x⟩ := ξ(x).

A probability measure Γ on X is called Gaussian if for any linear functional ξ ∈ X∗ the
random variable ξ : X → R is Gaussian with mean m(ξ) and variance v(ξ). A random vector
X : (Ω, S,P) → X is called Gaussian if its distribution is is a Gaussian measure on X.

Note that the maps X∗ ∋ ξ → m(ξ) ∈ R is linear so m(ξ) ∈ X∗∗ ∼= X. The mean of X is
the unique vector m(X) ∈ X such that

⟨ξ,m(X)⟩ = E
[
⟨ξ,X⟩

)
,

i.e,

m(X) = E
[
X
]
=

∫
Ω
X(ω)P

[
dω
]
.

The covariance form of X is the nonnegative definite symmetric bilinear form

CX = Cov
[
X
]
: X∗ ×X∗ → R

given by

Cov
[
X
]
(ξi, ξ2) = Cov

[
⟨ξ1, X⟩, ⟨ξ2, X⟩

) ]
= E

[ (
⟨ξ1, X⟩ −m(ξ1)

)(
⟨ξ2, X⟩ −m(ξ2)

) ]
.

Note that the space of bilinear forms on X∗ can be identified with X ⊗ X. Viewed as an
element of X ⊗X the covariance form has the simple description

CX = E
[ (

X −m(X)
)
⊗
(
X −m(X)

) ]
.

The Gaussian vector X is called nondegenerate if Cov
[
X
]
is positive definite. It is called

centered if m(X) = 0
Let us observe that a choice of an inner product on X produces a canonical identification

of X∗ with X and in this case we can identify Cov
[
X
]
either with a symmetric bilinear

form on X, or with a symmetric operator X → X that we denote by Var
[
X
]
. The Gaussian

vector X is nondegenerate iff Var
[
X
]
is invertible. In this case the distribution of X is

PX

[
dx
]
=

1√
det
(
2πVar

[
X
] )e− (Var[X]−1x,x)

2

︸ ︷︷ ︸
pX(x)

λ
[
dx
]

where (−,−) denotes the inner product on X and λ denotes the Lebesgue measure on X.
If A : X0 → X1 is a linear operator and X : (Ω, S,P) → X0 is a Gaussian vector with

mean m(X) and covariance form CX , then AX is also Gaussian with mean AX and variance
operator form

Cov
[
AX

]
(ξ, η) = Cov

[
X
]
(A⊤ξ, A⊤η),

where A⊤ : X∗
1 → X∗

0 is the dual map. If we equip X0 and X1 with inner products, then
the variance operator of AX is given by

Var
[
AX

]
= AVar

[
X
]
A∗ : X1 → X1,

where A∗ : X1 → X1 is the adjoint of A determined by the chosen metrics.
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Suppose that X and Y are finite dimensional vector spaces. Given random vectors

X : (Ω, S,P) → X, Y : (Ω, S,P) → Y

we define the covariance form of Y and X to be the bilinear form

Cov
[
Y,X

]
: Y ∗ ×X∗ → R

given by
Cov

[
Y,X

]
(η, ξ) = Cov

[
⟨η, Y ⟩, ⟨ξ,X⟩

]
, ∀η ∈ Y ∗, ξ ∈ X∗.

If X and Y are equipped with inner products (−,−)X and respectively (−,−)Y , then we
can identify Cov

[
Y,X

]
as a linear operator CY,X : X → Y uniquely determined by the

condition (
y, CY,Xx

)
Y
= Cov

[
(y, Y )Y (x,X)X

]
, ∀x ∈ X, y ∈ Y .

Concretely, if (ei)i∈I and (f j)j∈J are orthonormal bases of X and respectively Y , and we set
Xi := (ei, X)X , Yj := (f j , Y )Y , then in these bases the operator CY,X is describe by matrix

(cji)(j,i)∈J×I , where cji := Cov
[
YjXi

]
. Hence

CY,Xei =
∑
j

cjif j .

Let us observe that CX,Y : X → Y is the adjoint/transpose of CY,X . Note that if T : X → U
is a linear map between Euclidean spaces, then

CY,TX = CY,X ◦ T ∗ : U → Y .

The random vectors are said to be jointly Gaussian if the random vector

X ⊕ Y : (Ω, S,P) → X ⊕ Y

is Gaussian. If X and Y are equipped with inner products, then X ⊕ Y is equipped th the
direct sum of these inner products and in this case Var

[
X ⊕ Y

]
: X ⊕ Y → X ⊕ Y admits

the bloc decomposition

Var
[
X ⊕ Y

]
=

[
Var

[
X
]

CX,Y

CY,X Var
[
Y
] ] .

Proposition 1.14 (Gaussian regression formula). Suppose that X,Y are Gaussian vectors
valued in the Euclidean spaces X and respectively Y . Assume additionally that

(i) the random vectors X,Y are jointly Gaussian and,
(ii) X is nondegenerate.

Define the regression operator

RY,X : X → Y , RY,X := CY,X Var[X]−1

Then the following hold.

(a) The conditional expectation E
[
Y ∥X

]
is the Gaussian vector described by the linear

regression formula
E
[
Y ∥X

]
= m(Y )−RY,Xm(X) +RY,XX (1.9)

(b) For any x ∈ X
E
[
Y
∣∣X = x

]
= m(Y )−RY,Xm(X) +RY,Xx.

(c) The random vector vector Z = Y − E
[
Y ∥X

]
is Gaussian and independent of X. It has

mean 0 and variance operator

∆Y,X = Var
[
Y
]
−DY,X : Y → Y , DY,X = CY,X Var[X]−1CX,Y . (1.10)
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Moreover, for any bounded measurable function f : Y → R and any x ∈ X we have

E
[
f(Y )

∣∣X = x
]
= E

[
f
(
Z +m(Y )−RY,Xm(X) +RY,Xx

) ]
. (1.11)

⊓⊔

For a proof we refer to Appendix B. We will refer to the distribution of the centered
Gaussian vector Z as the regression Gaussian measure.

A random field X : Ω × V → U is called Gaussian if for any finite subset S ⊂ V the
randdom vector

X|S : Ω → US , ω 7→
(
Xω(s)

)
s∈S

is Gaussian.

1.5. The Gaussian Kac-Rice formula. We now return to the setup of Theorem 1.1.

Proposition 1.15 (Azäıs-Wschebor). Suppose that the random field

X : Ω× V → U , (ω, v) 7→ Xω(v)

is Gaussian, it is a.s. C1 and,

for any v ∈ V the Gaussian random vector X(v) : Ω → U is nondegenerate. (N0)

Then X satisfies all the conditions of (R1), (A0 ) and (C) in Theorem 1.1.

Proof. The condition (R1) is tautologically satisfied while (A0) follows from the nondegen-
eracy of X(v) for any v.

To prove (C) we will use the regression trick in [4, Eq. (6.11)]. For simplicity we assume
that X is centered and Xω ∈ X, ∀ω ∈ Ω.

Fix u0 ∈ U and v0 ∈ V. From the regression formula we deduce that any v ∈ V we have

X(v) = RX(v),X(v0)X(v0) + Z(v, v0), Z(v, v0) ⊥⊥ X(v0).

and we have
∂vXω(v) =

(
∂vRX(v),X(v0)

)
Xω(v0) + ∂vZω(v, v0).

Hence, for any ω the map
v 7→ Zω(v, v0)

is also C1. The resulting map V ∋ v0 7→ Zω(−, v0) ∈ X is continuous for any ω.
Fix a continuous and bounded function α : X → R. Then the real number

α(Xω) = α
(
RXω(−),Xω(v0)u0 + Zω(−, v0)

)
depends continuously on (u0, v0) for any ω and since α is bounded we deduce from the
Dominated Convergence Theorem that

E
[
α(X)

∣∣X(v0) = u0
]
= E

[
α
(
RX,X(v0)u0 + Z(−, v0)

) ]
depends continuously on (u0, v0). ⊓⊔

We can now formulate the Gaussian Kac-Rice formula in the case D = d.

Theorem 1.16. Suppose that U , V are Euclidean spaces of the same dimension d, V ⊂ V
is an open set and G : V → U is a Gaussian random field that is a.s. C1 and satisfies (N0).
For any v ∈ V we denote by pG(v) the probability density of the Gaussian vector G(v). For

any S ⊂ U we set ZS(G) = #G−1(0) ∩ S. Then for any Borel subset S ⊂ V we have

E
[
ZS(G)

]
=

∫
S
ρG(v)dv,
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where
ρG(u) := E

[
JG(u)

∣∣G(v) = 0
]
pF (v)(0).

Moreover, E
[
ZS(G)

]
< ∞ if S is compact.

Proof. We proved the equality when S is a box. In this case the right-hand-side of the above
equality is finite. Both sides of the above equality are σ-finite Borel measures on U that agree
on boxes and thus they must agree for any S. ⊓⊔

Remark 1.17. (a) Note that in the special case U = V , we have

JG(u) = | detG′(u)|,
where detA denotes the determinant of a linear map A : U → U . In particular, if G is the
gradient of a function F , G = ∇F , then

JG(u) = |detHF (u)|,
where HF (u) is the Hessian of the function F at u viewed as a symmetric operator HF (u) :
U → U .

(b) Let G be as in Theorem 1.16. For any continuous compactly supported function φ ∈
C0
cpt(V) we set

Zφ(G) :=
∑

G(u):=0

φ(0).

The above arguments can be modified to yield the weighted Kac-Rice formula

E
[
Zφ(G)

]
=

∫
U

φ(u)ρG(u)du (1.12)

⊓⊔

1.6. Zeros of random sections. Suppose that U is a smooth d-dimensional manifold and
πE : E → U is a smooth, rank d, real vector bundle over U. Fix a smooth metric g on U.

There is a high-brow method of defining a random Gaussian section of E (see [17]), but
we want avoid technicalities and we take a more pedestrian approach. A Gaussian section is
a random map G : U → E such that

• πE ◦ F = 1M and,
• for any p ∈ N, u1, . . . , up ∈ U the random vector

(
G(u1), . . . , G(up)

)
is a Gaussian

vector valued in Eu1 × · · · × Eup .

We can locally view G as a Gaussian random map G : U → Rd. We will make the following
standing assumption

We assume that G is a.s. C1 and, ∀u ∈ U, the random vector G(0) is a centered
nondegenerate Eu-valued Gaussian vector.

This assumption guarantees that G intersects the zero section transversally a.s.. Thus, the
zero set of G is a.s. locally finite set. We denote by pG(u) the probability density of F (u) so
that

pG(u)(0) =
1√

det
(
2πVar

[
G(u)

] ) .
Fix a metric h and connection ∇ on E. Note that for any C1 -section s of E and any u ∈ U

we have
∇s(u) ∈ T ∗

uU⊗ Eu
∼= Hom

(
TuU, Eu

)
.
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We denote by adjs(u) the linear map ∇s(u) : T ∗
uU → Eu. It depends on the choice of the

connection ∇ but, if s(u) = 0, it is independent of the connection. In this case it is the
differential-geometric cousin of the adjunction map in algebraic geometry.

We define the Jacobian of s at u to be the Jacobian of the map linear map adjs(u) between
two Euclidean spaces

Js(u) =
√

det
(
adjs(u) ◦ (adjs(u))∗

)
.

For any continuous, compactly supported function φ ∈ C0
cpt(U) we define the a.s. finite

random variable

Zφ(G) :=
∑

G(u):=0

φ(0).

Then, in this case, the Kac-Rice formula reads

E
[
Zφ(G)

]
=

∫
U

φ(u)ρG(u) |dVg(u)|, (1.13)

where

ρG(u) = E
[
JG(u)

∣∣G(u) = 0
]
pG(u)(0). (1.14)

When E is the trivial vector bundle V U := U×V → U equipped with the trivial metric and
connection we obtain the usual Kac-Rice formula.

Remark 1.18. A priori, the function E
[
JG(u)

∣∣G(u) = 0
]
pG(0) depends on the choice of

metrics on U and E and the connection ∇ needed to define JG(u). However, the dependence
of ∇ disappears when we condition G(u) = 0.

It is not hard to verify that the Kac-Rice measure (or 1-density in differential-geometric
sense, [18, Sec. 3.4.1]) on U

KRG := ρG(u) |dVg(u)| (1.15)

is independent of the choice of metric on U. Indeed, the Jacobian admits the alternate
description via the equality

JG(u)|dVTuU| = adjs(u)
∗|dVEu |

Above, adju(s)
∗ denotes the pullback between spaces of 1-densities. The 1-density KRG is

also independent of the choice of metric on E since the quantity

JG(u)pG(u)(0) =
JG(u)√

det
(
2πVar[G(u)]

)
is independent of the metric on Eu.

The Kac-Rice measure is Radon in the sense that it is finite on compact sets when G(u)
is nondegenerate. ⊓⊔

2. Critical points of Gaussian random functions

Let U be a d-dimensional Euclidean space and U ⊂ U . Suppose that F : U → R is a
Gaussian random function. This means that, for any u ∈ U the value F (u) is a Gaussian
random variable. For simplicity we assume that its mean is zero

E
[
F (u)

]
= 0, ∀u ∈ U.

Let K : U× U → R be the covariance kernel of F ,i.e.,

K(u0, u1) = E
[
F (u0)F (u1)

]
, ∀u0, u1 ∈ U .
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We assume that F is a.s. C2. Throughout this section we fix Euclidean coordinates (ui)1≤i≤f

on U . Fix box B ⊂ U and denote by ZB the number of critical points of F in B, i.e.,

ZB := ZB(∇F ) = #
{
u ∈ B; ∇F (u) = 0

}
.

We want to investigate two basic invariants of this random variable: its mean and its variance.

2.1. Expectation. We assume that ∀u ∈ U

the Gaussian vector G(u) = ∇F (u) is nondegenerate. (N1)

We denote by pF (u) the probability density of the Gaussian vector ∇F (u) and by HF (u) the
Hessian of F at u. The Gaussian Kac-Rice formula. implies that

E
[
ZB(F )

]
=

∫
B
ρF (u)du,

where

ρF (u) = E
[ ∣∣ detHF (u)

∣∣ ∣∣∇F (u) = 0
]
p∇F (0)(0)

p∇F (u)(0) =
1√

2π detVar
[
∇F (u)

] .
2.2. An analytic digression: Kergin interpolation. The one-dimensional case of this
technique goes back to Newton. Suppose that f : R → R is a continuous function and
x1, . . . , xp are distinct points on the real axis, We define inductively the divided differences
f [x1], f [x1, x2], . . . , f [x1, . . . , xp] by setting

f [x] = f(x), ∀x ∈ R,

f [x1, x2] =
f [x1]− f [x2]

x1 − x2

f [x1, x2, x3] =
f [x1, x2]− f [x2, x3]

x1 − x3

f [x1, x2, . . . , xk, xk+1] =
f [x1, . . . , xk]− f [x2, . . . , xk+1]

x1 − xk+1
. . .

For simplicity we will write f [x] = f [x1, . . . , xp]. For distinct x1, . . . , xn we have the following
more explicit description (see [14, Sec. 1.3])

f [x1, . . . , xn] =
n∑

j=1

f(xj)∏
k ̸=j(xj − xk)

.

If f ∈ Cp, then we have an alternate integral representation of f [x0, . . . , xp] called Hermite-
Genocchi formula

f [z0, x1, . . . , xp] =

∫ 1

0
ds1

∫ s2

0
ds3 · · ·

∫ sp−1

0
f (p)(yp)dsp, (2.1)

where

yp = pp(s1, . . . , sp) = (1− s1)x0 + (s1 − s2)x1 + · · ·+ (sp−1 − sp)xp,

1 ≥ s1 ≥ · · · ≥ sp ≥ 0.
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We refer to [14, Sec. 16] or [7, Thm. 1.9] for a proof. Note that this formula assumes that f
is p-times differentiable. We can rephrase in more revealing terms as follows. Consider the
simplex

∆p =
{
(t0, t1, . . . , tp) ∈ [0, 1]p+1;

p∑
k=0

tk = 1
}
.

It is equipped with an Euclidean volume element µp

[
dt
]
normalized so that µp

[
∆p

]
= 1

p! .

Given x = (x0, x1, . . . , xp) ∈ Rp+1 we define

σx : ∆p → R, σx(t) :=

p∑
k=0

tkxk.

Then (2.1) can be rewritten as

f [x] =

∫
∆p

f (p)
(
σx(t)

)
µp

[
dt
]
. (2.2)

The righ-hand-side of the above equality is symmetric in the variables x0, . . . , xp, depends
continuosly on them and it is well defined even if some of them coincide. This allows us to
define f [x0, x1, . . . , xp] even if the numbers x0, . . . , xp are not pairwise distinct provided that
f ∈ Cp. For example

f [x1, x1] = lim
x2→x1

f [x1, x2] = f ′(x1),

f [x1, x1, x2] =
f [x2, x1]− f ′(x1)

x2 − x1

More generally, if the function f(x) is Ck, then the function g(x) = f [x, x2] is C
k−1 and

f [x1, x2, x3] = g[x1, x3].

In general, for distinct x, x1, . . . , xp, we have the equality (see [14, Sec. 1.1])

f(x) = f(x1) +

p−1∑
j=1

(x− x1) · · · (x− xj)f [x1, · · · , xj+1]︸ ︷︷ ︸
=:P x1,...,xpf(x)

+(x− x1) · · · (x− xp)f [x, x1, . . . , xp].

(2.3)

The term P x1,...,xpf(x) is a polynomial of degree ≤ (p − 1) in x and the above formula is
called Newton’s interpolation formula. The above equality shows that

P x1,...,xpf(xi) = f(xi), ∀i = 1, . . . , p.

The divided difference f [x1, . . . , xp] is well defined even if the numbers x1, . . . , xp are not
pairwise distinct and thus (2.3) holds for any x, x1, . . . , xp ∈ R, provided that f ∈ Cp. Note
that if x1 = · · · = xm, then (2.3) implies that

∂k
xP x1,...,xmf(x1) =

1

k!
∂k
xf(x1) ∀0 ≤ k < m.

If we set

[x]m := x0, . . . x0︸ ︷︷ ︸
m

,
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then

P [x0]m(x) =
m∑
j=1

1

(j − 1)!
f (j−1)(x− x0)

j−1.

is the degree m− 1 Taylor polynomial of f at x0.
Let us observe that for f continuous and injective x : Ip → R the polynomial Q = P xf is

the Lagrange interpolation polynomial, i.e., the unique polynomial Q of degree ≤ p− 1 such
that

Q(xi) = f(xi), ∀i = 1, . . . , p.

This proves that Px is a projector, i.e.,

P 2
xf = P xf, ∀f ∈ C(R),

and that P x is invariant under the action of Sp on Rp. Moreover, for any I ⊂ Ip we have

P xf(xI) = f(xI).

The continuous dependence x → P x shows that, for any x ∈ Rp and any I ⊂ Ip, is a
symmetric projector of Cp−1(R) i.e., for any permutation φ ∈ Sp

P 2
xf = P xf = P x·φf, ∀f ∈ Cp−1(R), (2.4)

and
P x = P xI

. (2.5)

Formula (2.2) is the basis of the higher dimensional generalization of the above classical
facts, [11, 13].

Fix a d-dimensional Euclidean space U and U ⊂ U an open convex subset. Given a
function f : Cp(U) and 1 ≤ k ≤ p, the k-th differential of f at u ∈ U, denoted by Dkf(u), is
a symmetric k-linear form on U ,

Dkf(u) ∈ Symk(U).

Given u = (u0, u1, . . . , uk) ∈ Uk+1 we define

σu = σk
u : ∆k → U, σu(t) :=

k∑
i=1

tiui,

and

f [u] =

∫
∆k

Dkf
(
σu(t)

)
µk

[
dt
]
∈ Symk(U).

Given u0, u1, . . . , up ∈ U we define the Kergin interpolator of f to be the polynomial of degree
≤ p in u,

P u0,u1,...,upf(u) = f(u0) +

p∑
k=1

f [u0, . . . , uk](u− u0, . . . , u− uk−1)

Suppose that f is a ridge function, i.e., there exists a Cp-function g : R → R and a linear
form ξ ∈ U∗ such that f(u) = g

(
ξ(u)

)
. Then

f
[
u0, . . . , uk

]
= g
[
ξ0, . . . , ξk

]
, ξk = ξ(uk), 0 ≤ k ≤ p.

In particular
P u0,u1,...,upf(u) = P ξ0,...,ξpg(x), x = ξ(u)

Thus
P u0,...,upf(uk) = f(uk), ∀0 ≤ k ≤ p, (2.6)
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for any function f that is a linear combination of ridge functions. The linear span of ridge
functions contains the space of polynomials (see [7, Lemma 9.11]) which is dense in CP (U,R)
so (2.6) holds for any f ∈ Cp(U).

A similar argument shows that P u0,...,upf is symmetric in the variables u0, u1, . . . , up.

Given q ≤ p and u = (u0, u1, . . . , up) ∈ Up+1, we set [u]q := (u0, . . . , uq). We have

P [u]qP u = P [u]q . (2.7)

Indeed, this is true when d = 1 and thus it is true for arbitrary d and f a ridge function.
The conclusion follows by linearity and density. In particular, when q = p the above equality
shows that P u is a projector. For this reason we will also refer to P u as Kergin projector.

Let p ≥ 1. We denote by Rp

[
U
]
the vector space of polynomials of degree ≤ p in

u = (u1, . . . , ud). Define

mi : U
p+1 → N, mi(u0, u1, . . . , up) = #

{
k; uk = ui

}
.

We refer to mi(u) the multiplicity of ui in u = (u0, . . . , up), i.e., the number of terms in the
sequence of points u0, . . . , up equal to ui. We have the following result, [11, 13].

Theorem 2.1. Let u ∈ Up. The map

P u : Cp(U) → Rp

[
U
]
⊂ Cp(U), f 7→ P uf,

is a linear continuous projector, i.e., P 2
u = P u. It depends continuously on u. Moreover, for

any i = 0, 1, . . . , p and any multi-index α ∈ Nd
0 such that |α| < mi(u) we have

∂αP uf(ui) = ∂αf(ui). (2.8)

⊓⊔

The Kergin interpolator extends in an obvious way to maps G := Cp(O,U). More precisely,
for any u ∈ Up+1 the interpolator P uG is the unique polynomial map U → U of degree ≤ p
such that, for any linear functional ξ ∈ U∗ we have

ξ
(
P uG

)
= P uξ(G).

Even more explicitly, using the Euclidean coordinates (u1, . . . , ud) on U we can view G is a
d-tuple of functions

G =

 G1

...
Gd

 ,

and then

P uG :=

 P uG
1

...
P uG

d

 .

In the investigation of the finite of the variance of ZB we will need the following result of
Gass and Stecconi [10, Lemma 2.5].

Lemma 2.2. Let u∗ = (u∗0, u1, . . . , u
∗
p) ∈ Up and f ∈ Cp+1(U). Then for any k = 0, 1, . . . , p

and any i, j ∈ {1, . . . , d} we have

∂uj

(
P u∗∂uif

)
= ∂ui

(
P u∗∂ujf

)
.

In other words the polynomial vector field

(V1, . . . , Vn) = P u∗∇f =
(
P u∗∂u1f, . . . ,P u∗∂unf

)
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is a gradient vector field, i.e., there exists a polynomial h ∈ Rp+1

[
U
]
such that ∇h = P u∗∇f .

Proof. We first prove that the lemma is true for ridge functions. By choosing the Euclidean
coordinates (u1, . . . , ud) carefully this means that f(u) has the form f(u1, . . . , ud) = f(u1).
In this case the Lemma is obvious since P uf it is a polynomial of degree p in u1. The general
case follows from the density in Cp+1(U) of the linear span of ridge functions. ⊓⊔

2.3. Variance. We now have all the background material needed for proving a sufficient
condition for the finiteness of Var

[
ZB

]
. We use an ad-hoc method that works only for the

2-momentum of ZB. For different approaches that work arbitrary moments of ZB but related
approach we refer to [2, 10].

Let F : U → R be a Gaussian random function that is a.s. C3. Let

U2
∗ := U2 \∆,

where ∆ is the diagonal
∆ :=

{
(u0, u1) ∈ U2; u0 = u1

}
.

Define B2
∗ in a similar fashion. Consider the random field

Ĝ = ĜF : U2
∗ → U ⊕U , Ĝ(u0, u1) = ∇F (u0)⊕∇F (u1)

For S ⊂ U2∗ we denote by ZS(Ĝ) the number of solution of the equation

Ĝ(u0, u1) = (0, 0), (u0, u1) ∈ S.

Note that
ZB2

∗
(Ĝ) = ZB(F )

(
ZB(F )− 1

)
.

We need to impose some conditions in order to apply the Kac-Rice formula. For any u ∈ U

we denote by T2[F, u] ∈ R2

[
U
]
the degree 2 Taylor polynomial of F at u. We will assume

that for any u ∈ U

the Gaussian vector T2[F, u] is nondegenerate, (N2)

We will identify the second differential D2F (u) of F at u with the Hessian of F at u denoted
by HF (u). Observe that (N2) implies (N1).

The fact that T2F (u) is nondegenerate has the following immediate consequence.

Lemma 2.3. For any compact subset K ⊂ U the random variable

C(K) :=
∑
|α|≤2

sup
u∈K

∣∣ ∂α
uF (u)

]
is p-integrable for any p ∈ [1,∞). ⊓⊔

The differential of Ĝ at (u0, u1) is the direct sum of the differentials of G′ at u0 and u1.
These coincide with the Hessians of F at u0 and u1,

Ĝ′(u0, u1) = G′(u0)⊕G′(u1).

The Gaussian random field G is a.s. C2. To apply the Kac-Rice formula we need to assume
that for any (u0, u1) ∈ U2

∗

the Gaussian vector Ĝ(u0, u1) is nondegenerate. (N×N)

We will see soon that (N2) implies (N×N), at least if u0 and u1 are not too far apart.
Set

W = ∇C3(U), V := ∇
(
R3

[
U
] )

, V0 = ∇
(
R2

[
U
] )

.
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Proposition 2.4. Let F : U → R be a Gaussian random function that is a.s. C3 and satisfies
(N2). Then, for any u ∈ U there exists an open neighborhood Ou = Ou,F of u in U such that,
for any u0, u1 ∈ Ou the V0-valued Gaussian vector P u0,u1(GF ) is nondegenerate.

Proof. For u0, u1 ∈ U consider the V0-valued Gaussian random vector P u0,u1(GF ). Note
that P u,u(f) is the degree 1-Taylor polynomial of GF at u. Its description involves only
the derivatives of F of order 1 and 2. The nondegeneracy condition (N2) implies that the
Gaussian vector P u,u(GF ) is nondegenerate. Since the projectors P u depend continuously
on u ∈ U2 we deduce that there exists an open neighborhood Ou of u in U such that for any
u0, u1 ∈ Ou the Gaussian vector P u0,u1(∇f) is nondegenerate. ⊓⊔

For any u ∈ U and any u0, u1 ∈ U, such that u0 ̸= u1, the map

Evu0,u1 : V0 → U2, G 7→
(
G(u0), G(u1)

)
is onto for any (u0, u1) ∈ U2

∗.
Indeed, given g1, g2 ∈ U , there exists f ∈ C3(U) such that ∇f(ui) = gi, and Evu0,u1(∇) =

(g1, g2). Next observe that

Evu0,u1(G) = Evu0,u1

(
P u0,u1G

)
so the restriction of Evu0,u1 to V0 is onto,

Proposition 2.5. Fix a box B ⊂ U such that B ⊂ Ou, for some u ∈ U. Then

E
[
ZB(G)

(
ZB(G)− 1

) ]
< ∞.

Proof. Our approach is a slight modification of the arguments in [5, Sec. 4.2]. For any
u0, u1 ∈ Ou , u0 ̸= u1, the Gaussian vector

Ĝ(u0, u1) = G(u0)⊕G(u1) = Evu0,u1

(
P u0,u1(G)

)
is nondegenerate since the V0-valued vector is nondegenerate, and the restriction of Evu0,u1

to V0 is onto. We denote by pG(u0),G(u1) the probability density of Ĝ(u0, u1).
We deduce from Theorem 1.16 that

E
[
ZB(G)

(
ZB(G− 1

) ]
=

∫
B2

∗

ρ
(2)
G (u0, u1)du0du1,

where ρ
(2)
F is the Kac-Rice density

ρ
(2)
G (u0, u1) := E

[
|detG′

(u0) detG
′(u1)|

∣∣G(u0) = G(u1) = 0
]
pG(u0),G(u1)(0). (2.9)

Note that

pG(u0,u1)(0) =
1√

det
(
2πVar[G(u0)⊕G(u1)]

) ,
so pG(u0,u1)(0) explodes as (u0, u1) approaches the diagonal since G(u0) ⊕ G(u0) is concen-
trated on the diagonal of U ×U .

We set

r(u) = ∥u1 − u0∥, Ξ(u) =
1

r(u)

(
G(u1)−G(u0)

)
.

Note that

Ĝ(u) = 0⇐⇒G(u0) = Ξ(u) = 0.
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Denote by A(u) the linear map U2 → U2 given by

A(u)

[
v0
v1

]
=

[
v0

v0 + r(u)v1

]
=

[
1U 0
1U r(u)1U

]
·
[

v0
v0 + r(u)v1

]
.

Thus [
G(u0)
G(u1)

]
= A(u)

[
G(u0)
Ξ(u)

]
.

We deduce

pG(u0),G(u1) =
1√

det
(
2πVar[G(u0), G(u1)]

) =
1

| detA|
√

det
(
2πVar[G(u0),Ξ(u))])

= t(u)−dpG(u0),Ξ(u)(0).

We deduce that for any u ∈ B2
∗ we have

ρ
(2)
F (u0, u1) := r(u)−dE

[
| detG′

F (u0) detG
′
F (u1)|

∣∣GF (u0) = Ξ(u) = 0
]
pG(u0),Ξ(u)(0). (2.10)

Lemma 2.6. There exists a constant C = C(B) > 0 such that∣∣E[ |detG′
F (ui)|2

∣∣GF (u0) = Ξ(u) = 0
] ∣∣ ≤ Cr(u)2, i = 0, 1.

Proof. We argue by contradiction. Suppose that there exists a sequence un = (un0 , u1)
n in

B2
∗ converging to v ∈ B2

∗ such that

1

r(un)2
∣∣E[ | detG′

F (u
n
i )|2

∣∣GF (u
n
0 ) = Ξ(un) = 0

] ∣∣→ ∞. (2.11)

Note that E
[
|detG′

F (ui)|2
∣∣GF (u0) = Ξ(u) = 0

]
depends continuously on u ∈ B2

∗ . This
shows that the limit point v must live on the diagonal v = (v, v). Upon extracting a subse-
quence we can assume that

νn :=
1

r(un)

(
u1n − un0

)
converges to a unit vector e. Extend e to an orthonormal basis (ek) of U such that e = e1
Note that

lim
n→∞

Ξ(un) = ∂eG(v).

Moreover, the Gaussian random vector G(v)⊕ ∂eG(v) is also nondegenerate. The regression
formula shows that for any continuous and homogeneous function f = f

(
G′(u0), G

′(u1)
)
we

have

lim
n→∞

E
[
f
(
G′(un0 ), G

′(un1 )
) ∣∣G(un0 ) = Ξ(un) = 0

]
= E

[
f(G′(v), G′(v)

) ∣∣G(v) = ∂eG
′(v) = 0

]
.

Since G(u) is a.s. C2 we deduce∣∣G(un1 )−G(un0 )− r(un)∂νnG(un0 )
∣∣ ≤ K(B)r(u)2

where, according to Lemma 2.3 the quantity K(B) is a nonnegative random variable that is
p-integrable ∀p ∈ [1,∞). Thus, ∀p ∈ [1,∞) there exists a positive constant Cp(B) such that
∀n we have

E
[ ∣∣ r(un)∂νnG(un0 )

∣∣p ∣∣G(un0 ) = Ξ(un) = 0
]

= E
[ ∣∣G(un1 )−G(un0 )− r(un)∂νnG(un0 )

∣∣p ∣∣G(un0 ) = Ξ(un) = 0
]
≤ Cp(B)r(u)2p.

Hence

E
[ ∣∣ ∂νnG(un0 )

∣∣p ∣∣G(un0 ) = Ξ(un) = 0
]
≤ Cp(B)r(u)p. (2.12)
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Extend (νn) to an orthonormal basis (enk) of U such that νn = en1 and

lim
n→∞

enk = ek.

Then∣∣ detG′(un0 )
∣∣ = ∣∣ det ( ∂en1G(un0 ), ∂en2G(u0)

n, . . . , ∂end
) ∣∣ ≤ ∣∣ ∂en1G(un0 )

∣∣ d∏
k=2

∣∣ ∂enkG(uk0)
∣∣.

Hence

E
[ ∣∣ detG′(un0 )

∣∣2 ∣∣G(un0 ) = Ξ(un) = 0
]
≤

d∏
k=1

E
[ ∣∣ ∂enkG(un0 )

∣∣2d ∣∣ ∣∣G(un0 ) = Ξ(un) = 0
] ] 1

d

For k = 2, . . . , d we have

E
[ ∣∣ ∂enkG(un0 )

∣∣2d ∣∣ ∣∣G(un0 ) = Ξ(un) = 0
] 1
d = O(1), as n → ∞,

since

lim
n→∞

E
[ ∣∣ ∂enkG(un0 )

∣∣2d ∣∣ ∣∣G(un0 ) = Ξ(un) = 0
]

= lim
n→∞

E
[ ∣∣ ∂enkG(un0 )

∣∣2d ∣∣ ∣∣G(un0 ) = Ξ(un) = 0
]

= E
[ ∣∣ ∂ekG(u)

∣∣2d ∣∣ ∣∣G(v) = ∂eG(v) = 0
]
< ∞.

The last equality follows from the regression formula which is valid also in the limit since the
limiting condition is also nondegenerate. On the other hand (2.12), shows that

E
[ ∣∣ ∂enkG(un0 )

∣∣2d ∣∣ ∣∣G(un1 ) = G(un0 ) = 0
] 1
d = O

(
r(un)2

)
, as n → ∞.

E
[ ∣∣ detG′(un0 )

∣∣2 ∣∣ G(un1 ) = G(un0 ) = 0
]
= O

(
r(un)2

)
, as n → ∞.

This contradicts (2.11) and thus completes the proof of Lemma 2.6. ⊓⊔

Lemma 2.6 implies

E
[
| detG′

F (u0) detG
′
F (u1)|

∣∣G(u0) = G(u1) = 0
]

≤ E
[ ∣∣ detG′(u0)

∣∣2 ∣∣ G(u0) = G(u1) = 0
] ∣∣1/2

×E
[ ∣∣ detG′(u1)

∣∣2 ∣∣ G(u0) = G(u1) = 0
] ∣∣1/2

= O
(
r(u)−2

)
Hence

ρ
(2)
F (u) = O

(
r(u)2−d

)
on B2

∗ .

This shows that ρ
(2)
F ∈ L1

(
B2

∗
)
and completes the proof of Proposition 2.5. ⊓⊔

Remark 2.7. If F is a.s. C4, then one can refine Lemma 2.6 to state that

lim
u0,u1→u

1

r(u0, u1)2
∣∣E[ |detG′

F (ui)|2
∣∣GF (u0) = Ξ(u) = 0

] ∣∣
exists and it is finite. Indeed, in this case use the equality

G(un1 ) = G(ub0) + rn∂νnG(u0) +
r2n
2
∂2
νnG(un0 ) +O(r3n)
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Hence

rn∂νnG(un0 ) = G(un1 )−G(un0 )−
r2n
2
∂2
νnG(un0 ) +O(r3n).

Similarly

rn∂νnG(un1 ) = G(un1 )−G(un0 ) +
r2n
2
∂2
νnG(un1 ) +O(r3n).

Extend νn to an orthonormal basis (en1 , e
n
2 , . . . , e

n
d ) of U that converges to an orthonormal

basis of U and en1 = νn. Note that detG′(un0 ) is the determinant of the d × d matrix with
columns

∂n
ek
G(un0 ), k = 1, 2, . . . , d, G =

 ∂en1F
...

∂endF

 .

Note next that, when conditioned on G(un0 ) = 0, the first column satisfies

∂en1G(un0 ) = −rn
2
∂2
en1
G(un0 ) +O(rn).

The (random) error O(rn) can be controlled by the the C3 norm of G = ∇F .
Let observe that Ξ(u) is closely related to the divided difference G[u0, u1]. Let u0 ̸= u1

and set

ν :=
1

∥u1 − u0∥
(
u1 − u0

)
.

Denote by P the Kergin interpolator

P (u) = G(u0) +G[u0, u1](u− u0).

Then

G(u1)−G(u0) = P (u1)− P (u0) = G[u0, u1](u1 − u0)

Hence

Ξ(u) = G[u0, u1]
(
ν
)
.

⊓⊔

Consider now an arbitrary box B and cover it by finitely many open sets of the form Ou.
Consider a subdivision of B into finitely many boxes (Bi)i∈I with diameters smaller than the
Lebesgue number of the above open cover. Lemma 1.5 shows that a.s.

ZB(F ) =
∑
i∈I

ZBi(F ).

Proposition 2.5 shows that each of the random variables ZBi is L
2 so that ZB is also L2. We

have thus proved the following result.

Theorem 2.8. Suppose that F : U → R is a Gaussian function that is a.s. C2 and satisfies
the nondegeneracy condition (N2). Then, for any box B ⊂ U, the random variable ZB(F )
has finite mean and variance. ⊓⊔
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2.4. Higher moments. We want to describe conditions guaranteeing that the p-momentum
of ZB(G) is finite. We follow the approach of Gass and Stecconi [10]. In Section 3 we will
present the alternate approach in [2].

Let p ≥ 2. The fat diagonal ∆ ⊂ Up consists of the of points u = (u1, . . . , up) ∈ Up such
that there ui = uj for some i ̸= j. We set Up

∗ = Up \∆.
For any q ≥ 0 we introduce the condition Nq

F is a.s. Cq+1 and ∀u ∈ U the Gaussian vector Tq

[
F, u

]
is nondegenerate, (Nq)

where Tq[F, u] denotes the degree q Taylor polynomial of F at u. Note that Nq1 ⇒ Nq0 if
q1 ≥ q0. We set G := ∇F . Assume that F satisfies Nq for some q ≥ p.

For q,m ≥ 1 we set

W := ∇Cq+1(U), Vm =: ∇Rm+1

[
U
]
.

For each u ∈ U
p
∗ we have surjections

Evu : W → Up, EvuG =
(
G(u1), . . . , G(up)

)
,

and

E = Eu = V2p → Up, Eu(G) =
(
(G(u1), . . . , G(up)

)
.

The operator Eu is onto is onto since Evu is onto, P u : W → Vp−1 ⊂ V2p is onto and

Eu

(
P uG

)
= Evu(G), ∀G ∈ W .

Fix once and for all an inner product on V2p. This induces inner products in all the subspaces
Vq, q ≤ 2p.

Using (Nq) with q ≥ p we deduce that for any u ∈ U that there exists an open neighborhood
Ou ⊂ U of u such that, ∀u1 . . . , uq ∈ Ou, the Vq−1-valued Gaussian vector P u1,...uqG is
nondegenerate. In particular, the vector

P u1,...,up(G) = P u1,...,up

(
P u1,...uqG

)
is nondegenerate.

Fix a small box B, i.e., a box B contained in a neighborhood Ou for some u ∈ U. For
any u ∈ Bp

∗ the Gaussian vector Eu

(
PuG

)
is nondegenerate and we denote by pEu(G) its

probability density. Note that Eu

(
P uG

)
) Evu(G) and have the same distribution.

Set

B = Bu := EuE
∗
u : Up → Up.

The operator Bu is symmetric and positive definite. We set

Lu = B−1/2Eu.

Note that kerLu = kerEu and since B1/2 commutes with EE∗ we have

LuL
∗
u = 1Up

This proves that the map L∗
u : Up → V2p is an isometry.

The Gaussian vector Lu(Gu) is also nondegenerate and since B1/2 commutes with EE∗ we
deduce that variance operator is

Var
[
Lu(Gu)

]
= B−1/2

u EuE
∗
uB

−1/2
u = LuL

∗
u = 1.

We denote by pLu(G) its probability density. We have

Var
[
Eu(G)

]
= B1/2Var

[
Lu(G)

]
B1/2,
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so that

pEu(G)(0) =
1

detB
1/2
u

pLu(G⃗)(0)

We have

E
[ [

ZB(F )
]
p

]
=

∫
Bp+1∗

ρ
(p)
F (u)|du1 · · · dup|

where, [x]p denotes the falling factorial [x]p := x(x− 1) · · · (x− p+ 1) and

ρ
(p)
F (u) = E

[ p∏
i=1

∣∣ detG′(ui)
] ∣∣∣ Evu(G) = 0

]
pEvu(G)(0)

Define

Φu : W → R, Φu(G) =

p∏
i=1

|Φui(G)
∣∣, Φui(G) = detG′(ui),

ϕu := Φu |V2p .

The function ϕui is a degree-d homogeneous polynomial function on V2p

Lemma 2.9. For any u ∈ U
p
∗ and any i = 1, . . . , p the restriction of Φui to Vp ∩ kerEu is

nonzero.

Proof. To prove that the restriction of ϕu to kerEu is nontrivial observe that given any
symmetric operators A1, . . . , Ap : U → U there exists a function F ∈ Cp(U) such that

∇F (ui) = 0, HF (ui) = Ai.

Then Gu := P u,u∇F ∈ V2p ∩ kerEvu and G′
u(ui) = Ai. ⊓⊔

We set
λi(u) := sup

{ ∣∣Φui(G)
∣∣, G ∈ V2p, ∥G∥ = 1, Eu(G) = 0

}
,

λ(u) :=

p∏
i=1

λi(u)

Above ∥ − ∥ denotes the norm on V2p induced by our chosen inner product. Lemma 2.9
implies that λ(u) > 0. We set

Φ̄ui :=
1

λ(ui)
Φui , Φ̄u =

p∏
i=1

Φ̄ui .

Observe that for any u ∈ Bp
∗ and any 1 = 1, . . . , p we have

sup
{ ∣∣ Φ̄ui(G)

∣∣, G ∈ Vp, ∥G∥ = 1, Eu(G) = 0
}

≤ sup
{ ∣∣ Φ̄ui(G)

∣∣, G ∈ V2p, ∥G∥ = 1, Eu(G) = 0
}
= 1.

(2.13)

We deduce that
ρ
(p)
F (u) = E

[
|Φu

(
G
)
|
∣∣ Evu(G) = 0

]
pEvu(G)(0)

=
1

detB
1/2
u

· E
[
|Φu

(
G
)
|
∣∣ Evu(G) = 0

]
pLu(G)(0)

=
λ(u)

detB
1/2
u︸ ︷︷ ︸

=:wF (u)

· E
[
|Φ̄u

(
G
)
|
∣∣ Evu(G) = 0

]
pLu(G)(0)︸ ︷︷ ︸

=:σF (u)

.

Note that wF is independent of F !



30 LIVIU I. NICOLAESCU

Lemma 2.10 (Gass-Stecconi). Suppose that F satisfies (Nq) for some q ≥ p. Fix a small box
B, i.e., a box such that P u1,...,uq(∇F ) is a nondegenerate Gaussian vector for any u1, . . . , uq ∈
B.

(i) There exists CF > 0 that depends only on the distribution of F and B such that

σF (u) < CF , ∀u ∈ Bp
∗ .

(ii) If q ≥ 2p, then there exists cF > 0 such that that depends only on the distribution of
F and B

σF (u) > cF , ∀u ∈ Bp
∗ .

Proof. (i) For u ∈ Bp define

Au : W → V̂p := V p
p , G 7→

(
P u,uiG

)
1≤i≤p

.

Its image is contained in the subspace

V̂p(u) =
{
(G1, . . . , Gp) ∈ V̂p; P uG1 = · · · = P uGp

}
.

Observe that since P u : Vp → Vp−1 is onto, the subspace V̂p(u) has codimension equal
(p − 1) dimVp−1, i.e., the codimension of the diagonal in V p

p−1 in V p
p−1. Since P u depends

continuously on u, the subspace V̂p(u) varies continuously with u in the Grassmannian of
subspaces of V p

p of appropriate codimension.
Note that

Au

(
G) = Au

(
P u,uG

)
, P u,u

(
W
)
= V2p

so that
Au

(
W
)
= Au

(
V2p

)
.

We have a map

Êvu : V̂p(u) → Up, Êvu(G1, . . . , Gp) =
(
G1(u1), . . . , Gp(up)

)
.

Note that
Êvu ◦Au = Evu .

We have a natural surjection P u : V̂p → Vp−1 and we set

L̂u : V̂p → Up = Lu ◦ P u = BuÊvu.

Moreover,

ker Êvu = ker L̂u.

Define
Φ̂ui : V̂p → R, Φ̂ui(G1, . . . , Gp) = ϕ̄ui(Gi), Φu =

∏
i

Φ̂ui .

We set
Ĝu := Au(G).

and we observe that
Φ̄u

(
G) = Φ̂u

(
Ĝu

)
.

The function Φ̂u is supported on Au

(
V2p

)
and

Au(V2p) ∩ ker Êvu = Au(V2p ∩ kerEvu

)
.

We deduce that from (2.13) the restriction of the homogeneous function |Φ̂u| to the unit ball
of

Au(V2p) ∩ ker Êvu = Au(V2p) ∩ ker L̂u
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is bounded above by a constant M independent of u ∈ Bp
∗ .

The Gaussian measure on W induces via Au a Gaussian measure on V̂p. Thus we can regard

V̂p as a probability space and regard Φ̂u as a random variable defined on this probability space.

The Gaussian vectors Lu(G) and L̂u(Ĝu) have the same distribution. We deduce

σF (u) = E
[ ∣∣ Φ̂u

(
Ĝu

) ∣∣ ∣∣ L̂u

(
Ĝu

)
= 0

]
pL̂u(Ĝu)

(0).

The Gaussian regression formula (B.1) implies

σF (u) =
( ∫

ker L̂u

∣∣ Φ̂u|
∣∣dΓu

)
pL̂u(Ĝu)

(0),

where Γu is a Gaussian measure on ker L̂u that depends continuously on surjection

Lu : V2p(u) → Up.

Note that this surjection has the property that its adjoint L∗
u : Up → V2p is an isometry since

L∗
uLu = 1.

We argue by contradiction. Suppose that there exists a sequence (un) in Bp
∗ such that

lim
n→∞

σF
(
un) = ∞.

Upon extracting a subsequence we can assume that as n → ∞ the following hold.

• un → u∞ ∈ Bp.
• The isometries L∗

un converges to an isometry L∗
u∞ .

• Φ̂un |ker L̂un
converges to a homogeneous polynomial Φ̂∞ function on ker L̂u∞ .

From Proposition B.1 we deduce that the Gaussian measures Γun on ker L̂un converge to

the regression Gaussian measure on ker L̂u∞ determined by the distribution of Gu on V and
the operator L∞. We deduce that

lim
n→∞

σF (u
n) =

∫
ker L̂∞

Φ̂∞
(
Ĝu∞

)
dΓ∞ ̸= ∞.

(ii) We assume that F satisfies (Nq) with q = 2p. For any u ∈ Up define

Au : W → V2p, Au(G) = P u,u(G).

We set
Êvu = Evu |V2p= Eu, Φ̂u = Φ̄u |V2p= ϕ̄u.

We deduce from (N2p) that if B is a sufficiently small box, then for any u ∈ Bp, the projection
Au induces a nondegenerate Gaussian measure on V2p and thus the V2p-valued vector the

Gaussian vector Ĝu = Au(G) is nondegenerate.
We have

σF (u) =
( ∫

ker L̂u

|Φ̂u|dΓu

)
pL̂u(Gu)

(0),

where Γu is a Gaussian measure on ker L̂u that depends continuously on surjection

Lu : Vp(u) → Up.

By construction, the supremum of the restriction of |Φ̂ui | to the unit ball of

ker L̂u = V2p ∩ kerEvu

is equal to 1.
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We argue again by contradiction. Suppose that there exists a sequence (un) in Bp
∗ such

that

lim
n→∞

σF
(
un) = 0.

Upon extracting a subsequence we can assume that as n → ∞ the following hold.

• un → u∞ ∈ Bp.
• The isometries L∗

un converges to and isometry L∗
u∞ .

• Φ̂ui |ker L̂un
converges to a nonzero continuous homogeneous polynomial Φ̂i,∞ function

on ker L̂u∞ .

We deduce that the polynomials Φ̂uν converge to the polynomial

Φ̂∞ =
∏
i

Φ̂i,∞.

The polynomial Φ̂∞ is also nonzero since the rings of polynonmials in any number of variables
are integral domains.

From Proposition B.1 we deduce that the Gaussian measures Γun on ker L̂un converge to

the nondegenerate regression Gaussian measure on ker L̂u∞ determined by the nondegenerate

distribution of Ĝu∞ on V2p and the operator L̂∞. We deduce that

lim
n→∞

σF (u
n) =

∫
ker L̂∞

Φ̂∞
(
Ĝu∞

)
dΓ∞ ̸= ∞.

⊓⊔

Theorem 2.11. Suppose that the Gaussian function F : U → R satisfies (Nq) with q ≥ p.
For any box B ⊂ U we denote by ZB(∇F ) the number of critical points of F in B. Then
ZB(∇F ) ∈ Lp.

Proof. Fix a innerg product on V2p. This determines a Gaussian measure Γ on V2p with
variance operator 1. We have a linear bijection

Ω: = R2p

[
U
]
→ R× V , R2p

[
U
]
∋ ω 7→

(
ω(0),∇ω

)
.

We have nondegenerate Gaussian measure Γ̂ = γ1 × Γ, where γ1 is the standard Gaussian
measure on R, mean 0, variance 1. This induces a nondegenerate Gaussian measure on Ω.
We obtain a Gaussian random function

E : Ω× U → R, Fω(u) = ω(u).

This satisfies the nondegeneracy condition (Nq) with q = 2p.
For every u ∈ U there exists an open neighborhood Ou of u such that, forall u1, . . . , u2p ∈

Ou, the Gaussian vectors

P u1,...,up(∇F ) and P u1,...u2p(∇E)

are nongenenerate. Suppose that B ⊂ U is a small box, i.e., contained in an open set Ou for
some u ∈ U.

Bézout’s theorem [6, Lemma 11.5.1] implies that ZB(∇E) ∈ L∞. Thus ρ
(p)
E is integrable

on Bp
∗ . We have

ρ
(p)
E = w · σE,
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and Lemma 2.10 implies∫
Bp

∗

ρ
(p)
F (u) |du1 · · · dup| =

∫
Bp

∗

w(u)σF (u) |du1 · · · dup|

( σF
CF

≤ 1 ≤ σE

cE
)

≤ CF

cE

∫
Bp

∗

w(u)σE(u) |du1 · · · dup| =
CF

cE

∫
Bp

∗

ρ
(p)
E (u) |du1 · · · dup| < ∞.

We deduce that E
[
Zp
P (∇F )

]
< ∞ for any small box.

If B ⊂ U is an arbitrary box, then it can be decomposed as a finite union of boxes

B =
N⋃
i=1

Bi

where the boxes Bi are small and have disjoint interiors. Then

ZB(F ) =
N∑
i=1

ZBi(∇F ) ∈ Lp.

⊓⊔

3. Multijets

In this section we want the present the ideas of Ancona and Letendre [2]. We will stick to
the simplest context and will skip some technical details.

3.1. The setup. Suppose that U ,V are d-dimensional Euclidean spaces, U ⊂ U is an open
set and G : U → V is a Gaussian random map. We denote by ZB(G) the number of zeros of
G inside the Borel set B ⊂ U.

Fix p ≥ 2. The “fat” diagonal in Up, denoted by ∆p, consists of noninjective maps

Ip → U .

We set U∗ := U \∆p. We have a map

Ĝ : Up → V p, U
p
+ ∋ u 7→

(
G(u1), . . . , G(up)

)
.

Note that

ZBp
∗

(
Ĝ
)
=
[
ZB(G)

]
p
, [x]p :=

p−1∏
j=0

(x− j).

We set Wk = Ck(U,V ) and we define

Ev : W0 × Up → V p, (F, u) 7→ Evu(F ) =
(
F (u1), · · · , F (up)

)
.

Assume that for any u ∈ U
p
∗ the Gaussian vector Evu(G) is nondegenerate. Then,

E
[
ZBp

∗

]
=

∫
Bp

∗

ρ
(p)
G (u) |du|,

where

ρ
(p)
G (u) = E

[
JG(u)

∣∣Evu(G) = 0
] 1(

det 2πVar[Evu(G) ]
)1/2 ,
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and

JG(u) :=

p∏
K=1

|detG′(uk)G
′(uk)

∗|1/2.

3.2. Renormalizing the diagonal singularities. The integrand ρ
(p)
G (u) might not be inte-

grable because detVar
[
Evu(G)

]
→ 0 as u → ∆p. In Subsections 2.3 and 2.4 we use related

approaches to get a handle of the degeneration of ρĜ near the diagonal. In both cases, the
first step was a appropriate renormalization.

This renormalization is a gauge transformation T : Up
∗ → GL

(
V p
)
. The renormalized

random field Ḡ(u) := Tu

(
Ĝ(u)

)
has the same zero set as Ĝ(u), so counting the zeros of Ĝ is

equivalent to counting the zeros of Ḡ. The new field Ḡ has a different Kac-Rice density ρḠ
which could be more manageable if the renormalization Tu is chosen judiciously.

For example, in Subsection 2.3 we discussed the case p = 2 and we used the renormalization

Tu1,u2 : U2
∗ → GL(V 2), Tu1,u2

[
v1
v2

]
=

[
v1

1
∥u2−u1∥(v2 − v1)

]
.

Related renormalization are used in [5, Lemma 4.8] to investigate the 3-moments.
In Subsection 2.4 we used different renormalizations. Denote by Polyk(U ,V ) the space of

maps U → V that are polynomial of degree ≤ k in the variable u ∈ U . For any u ∈ U
p
∗ we

have an evaluation map

Eu : Poly2p−1(U ,V ) → V p, Eu(P ) =
(
P (u1), . . . , P (up)

)
.

Then, as gauge renormalization we used map Tu =
(
EuE

∗
u

)−1/2
, where the adjoint E∗

u is

defined in terms of suitable inner product on on Poly2p−1(U , V ).
Ancona and Letendre [2] propose a different way of dealing with the diagonal singularites.

It involves clever renormalizations hidden in a geometric cloak. Let us describe a baby
example to give a taste of this principle.

Think of a function f : U → R not as a function, but as a section of the trivial vector
bundle RU = R×U → U . We can trivialize this bundle over the punctured space U∗ using
the frame

e : U∗ → RU∗ , u 7→ e(u) = ∥u∥
Over the unit ball B(U) of U we use the canonical frame e0(u) = 1. A function f : U → R
can be viewed as a section of RU . Using the above trivializations we can view it as a pair of
functions

s : U∗ → R, s0 : B(U) → R
satisfying the compatibility equation

s0 = ∥u∥s(u), ∀0 < ∥u∥ < 1.

The perfectly nice constant function f = 1 is then represented by the pair of functiosn

s0 = 1, s(u) =
1

∥u∥
.

Note that s(u) a singularity at the origin although is hides a nicely behaved object. It can
me resolved by an approriate change of gauge, or renormalization.

The Kac-Rice density ρ
(p)
G (u)|dVUp | is also a section of real line bundle. This section

depends only on G; see Remark 1.18. Ancona and Letendre showed in [2] that its singularities
along the diagonal singularities are only “apparent” and are due to a similar, but much
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more complicated gauge renormalization phenomenon. In the next subsection we describe a
simplified version of their approach. We will omit some technical details that can be found
in [2].

3.3. Multijet desingularization. We need to introduce some notations. For a finite set I
we have a space U I of functions u : I → U and a configuration space 1

CI := CI(U) ⊂ U I

consisting of injective maps I → U . For I = Ip := {1, . . . , p} we write

Cp = CIp = Up
∗.

We denote by Fp the space of polynomial maps f : U → R of degree p − 1. Each u ∈ Cp

defines a surjective map

Evu : Fp → Rp, f 7→
(
f(u1), . . . , f(up)

)
.

We denote its kernel by Ku. It is a codimension-p subspace of Fp. We denote by Grp the
Grassmannian of codimension p subspaces of Fp. We have thus have a smooth map

K : Cp → Grp .

We denote by Σ the graph of K, Σ ⊂ Cp ×Grp. We have a natural projection

π : Σ → Cp ⊂ Up, Π : Σ → Grp .

We denote by Σ the closure of Σ in Up ×Grp. We have a natural projections

π : Σ→ Up

which is proper, and surjective. We can be more precise [2, Sec. 5.1].

Proposition 3.1. The following hold.

(i) Σ is a smooth real algebraic manifold and the projection π : Σ → Cp is a diffeomor-
phism.

(ii) Σ is a real algebraic variety and the map π : Σ→ Up is proper and surjecfive.

(iii) The singular locus of Σ is contained in ∆̄ : π−1(∆) =Σ\ Σ.
⊓⊔

Invoking Hironaka’s (embedded) resolution of singularities theorem one can prove the
following result, [2, Sec. 5.1].

Theorem 3.2. There exists a smooth manifold Σ̂ and a proper smooth map

R : Σ̂ → Up ×Grp

with the following properties.

(i) dim Σ̂ = dimCp = p dimU .

(ii) R
(
Σ̂
)
= Σ̄.

(iii) The set R−1
(
Σ
)
is open and dense in Σ̂ and the restriction of R to R−1

(
Σ
)
→ Σ

is a diffeomorphism onto Σ.
(iv) The map π̂ := π ◦ R : Σ̂ → Up is smooth and proper. Set ∆̂ := π̂−1(∆)

1Configuration of distinct points in U labelled by I.
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(v) The map

K ◦ π̂ : Σ̂ \ ∆̂ → Up ×Grp
Π−→ Grp

admits a smooth extensions to maps K̂ : Σ̂ → Grp. The extension K̂ is the compo-

sition Σ̂
R−→ Gp

Π−→ Grp.

⊓⊔

The pair (Σ̂,R) with the above properties is not unique. Fix a choice that we denote by

(Ĉp,R). We set π̂ = π ◦ R,
Ĉ ∗
p = Ĉp \ ∆̂

and we can identify Ĉ ∗
p with Cp using the diffeomeorphism π̂ : Ĉ ∗

p → Cp. For any u ∈ Up we

will denote by û a point in π̂−1(u) ∈ Ĉp. If u ∈ Cp, there is only one such û.

The map K̂ determines by pullback a smooth subbundle K p of codimension p of the trivial

bundlle with fiber Fp over Ĉp

Fp
Ĉp

= Fp × Ĉp → Ĉp.

We denote by Mp the quotient bundle

Mp := Fp
Ĉp
/K p → Ĉp.

The vector bundle Mp is the bundle of p-multijets.
To a function a function f ∈ Cp(U) we can associate a C1-section of Fp

Ĉp
namely

Ĉp ∋ û 7→ P π̂(û)f ∈ Fp.

This projects to a C1 section µp[f ] of the bundle of multijets Mp. Note that for any u ∈ Cp

we have

Evu(f) = 0⇐⇒µp[f ]
(
û
)
= 0

The multijet µp[f ] achieves the renormalization alluded to in the previous subsection, and it
comes with many other “gifts”.

More generally given a finite dimensional Euclidean space V we can define a bundle of
multijets

Mp(V ) = Mp ⊗ V → Ĉp,

and a Cp-map F : U → V a multijet µp[F ]; this is a section of the multijetbundle. ote that

dimCp = p× dimU , rankMp(V ) = p dimV .

The map F defines a map

F×p : Cp → V p, F×p(u1, . . . , up) =
(
F (u1, . . . , F (up)

)
,

and π̂ defines a bijection

{µp[F ] = 0} ∩ Ĉ ∗
p →

{
F×p = 0

}
.

In particular, if dimV = dimU and B ⊂ U is a box, then

#ZBp
∗

(
F×p

)
≤ #Zπ̂−1(Bp)

(
µp(F )

)
.
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3.4. Higher moments again. Fix an open subset U ⊂ U and an Euclidean space V of the
same dimension as U .

Suppose that G : U → V is a Gaussian random map such that

• G is a.s. Cp and,
• for every u ∈ U the Gaussian vector Tp−1

(
G, u

)
is a nondegenerate Gaussian vector.

Here Tq

(
G, u

)
denotes the degree q Taylor polynomial of G at u.

Equivalently, if we set

[u]p = (u, . . . , u︸ ︷︷ ︸
p

) ∈ Up,

then the Gaussian vector described by the Kergin projector P [u]p(G) is nondegenerate. In
particular, this means that there exists an open neighborhood Ou of u in U such that, for
any u ∈ O

p
u, the Gaussian vector P u(F ) is nondegenerate.

The thin diagonal of Up, denoted by ∆0 is the subset

∆0 :=
{
u ∈ Up; u1 = · · · = up

}
.

Equivalently, ∆0 is the image of U in Up via the diagonal map u 7→ [u]p .Set

O :=
⋃
u∈U

Op
u

The set O is an open neighborhood of the thin diagonal and, for any u ∈ O, the Gaussian
vector P u(G) is nondegenerate.

The multijet random section µp[G] is a.s. C1. The above discussion shows that for any ũ ∈
Ô := π̂−1(O) the Gaussian vector µp[G](ũ) is nondegenerate as the image of the nondegenerate
vector P u(G), u = π̂(u), via the linear projection Fp ⊗ V →

(
Fp/K

p
u

)
⊗ V .

Using the Kac-Rice formula for the number of zeros of random sections (Subsection 1.6)

we deduce that for any compact set K ⊂ Ô := π̂−1(O), the number of zeros of µp

[
G
]
in K

has finite mean, i.e.,

E
[
ZK

(
µp[G]

) ]
< ∞.

Suppose that B is a small box, i.e., a box contained in some Ou. Then Bp ⊂ O and the set

B̂p := π̂−1
(
Bp
)
⊂ Ô

is compact. We deduce

E
[
[ZB(G)]p

]
= E

[
ZBp

∗
(F×p)

]
= E

[
Zπ̂−1(Bp

∗)
(µp[G])

]
≤ E

[
Z
B̂p(µp[G])

]
< ∞.

As argued at the end of Subsection 2.3 , for any box B ⊂ U we can find a finite collection of
small boxes (Bi)i∈I such that

ZB(G) =
∑
i∈I

ZBi(G)

and we conclude that ZB ∈ Lp for any box B ⊂ U.

Remark 3.3. (a) The multijet bundle described in this section is a simplified version of the
construction of Ancona and Letendre but it is based on the same technique they introduced
in [2].

The random multijet µp[G] we described above is nondegenerate only on an open neighbor-

hood Ô of π̂−1(∆0). It is very likely that this neighborhood does not contain the “exceptional
divisor” π̂−1(∆p).
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The more sophisticated multijet constructed in [2] is nondegenerate over an open neighbor-
hood of this exceptional divisor. This allowed the authors to prove the more refined result,
namely, that the expectation of p-th combinatorial momentum of the random measure

νG =
∑

G(u)=0

δu

(see [2, Sec. 6.3]) is a Radon measure measure over Up.
The small box localization trick has allowed us to bypass that more sophisticated multijet

construction but we proved an apparently weaker result, namely, for any compactly supported
continuous function φ on U the random variable

Zφ(G) =

∫
U

φ(u)νG
[
du
]

is p-integrable. However, as shown in [2, Prop. 6.25], these properties are equivalent.

(b) I want to comment on the renormalization implicit in the multijet approach versus the
renormalizations used in Subsections 2.3 and 2.4.

As indicate earlier, the source of headaches is the degeneration of the Gaussian vectors
Evu(G) as u → ∆p. The renormalizations used in Subsections 2.3 and 2.4 take care only

of singularity of Var
[
Evu(G)

]
as u → ∆p. Moreover these renormalizations are dependent

on the way u approaches ∆p. In terms of the resolution constructed above, these renormal-

izations depend on the limit points of ûν ∈ ∆̂p as uν → ∆p. The Gass-Stecconi technique
described in Subsection 2.4 uses the Grassmannian of codimension p-subspaces of Fp in
disguised as the subspaces ker

(
Evu : V → Up

)
.

The multijet method shows that on small boxes B the Kac-Rice 1-density KRG×p on Bp
∗

(see (1.15)) is the restriction of a Radon 1-density/measure over a smooth manifold Ĉp where
Bp

∗ embeds and the image of this embedding is contained in a compact subset of this manifold.
Its singularities are due to a “wrong” choice of trivialization over Bp

∗ of the line bundle of

1-densities over Ĉp.
A good analogy to keep in mind is the description in polar coordinates of the Euclidean

area density |dA| = r|drdθ|. This makes no sense at r = 0. This is because the trivialization
of TR2 given by ∂r,

1
r∂θ does not extend over the origin. The deficiency is addressed by a

renormalization: pass from polar to Euclidean coordinates.

∂r = (cos θ)∂x + (sin θ)∂ − Y, ∂θ = −(r sin θ)∂x + (r cos θ)∂y.

⊓⊔

Appendix A. Jacobians and the Coarea formula

.
Suppose that U, Y are smooth manifolds such that dimU ≥ dimY and Φ : U → Y is a

C1-map. For u ∈ U we denote by Φ′(u) the differential of F at u. This is a linear map

Φ′(u) : TuU → TF (u)Y.

If we fix Riemann metrics gU , gY on U and respectively Y we can associate a Jacobian to
the map Φ. This is a function

JΦ : U → [0,∞), JΦ(u) = det
(
Φ′(u)Φ′(u)∗

)
,
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where Φ′(u) : TF (u)Y → TuU is the adjoint of Φ′(u) determined by the inner products gUu on

TuU and gYF (u) on TF (u)Y . Note that Φ′(u) is surjective if and only if JΦ(u) ̸= 0.

A Riemann metric gU on U determines a family of Borel measures on U ,
(
Hs

)
0≤s≤dimU

.

The measure Hs = HU
s is usually referred to as the s-dimensional Hausdorff measure on U .

When s = n = dimU this coincides with the Borel measure dVgUdetermined by the metric
gU . In local coordinates, if

gU =
∑
i,j

gijdu
iduj ,

then

dVgU
[
du
]
=
√

det(gij) |du1 · · · dun|.
If X ⊂ U is a d-dimensional submanifold, and gX is the metric on X induced by gU , then
the restriction to X of HU

d coincides with the (volume measure) measure HX
d induced gX .

We refer for more details to [9, Sec. 3.2.46].
We have to following useful result. For a proof we refer to [16, Sec. 3]

Theorem A.1 (Coarea formula). Suppose that (U, gU ) and (Y, gY ) are smooth Riemann
manifolds, dimU = n ≥ dimY = m. Let Φ : U → Y be a C1-map. Then for any nonnegative
Borel measurable functions α : U → R and β : Y → R such that α has compact support we
have∫

U
JΦ(u)α(u)Φ

∗β(u)Hn

[
du
]
=

∫
Y

(∫
Φ−1(y)

α(u)Hn−m

[
du
])

β(y)dHm

[
dy
]
. (A.1)

The two sides of the above equality are simultaneously finite or infinite. If dimU = dimY =
n, then the above equality reads∫

U
JΦ(u)α(u)Φ

∗β(u)Hn

[
du
]
=

∫
Y

 ∑
Φ(u)=y

α(u)

β(y)Hn

[
dy
]

(A.2)

Remark A.2. If set denote by UΦ the set of regular points of Φ, UΦ = U \ΣΦ, then equality
[16, Lemma 4.2] shows that∫

U
JΦ(u)α(u)Φ

∗β(u)Hn

[
du
]
=

∫
UΦ

JΦ(u)α(u)Φ
∗β(u)Hn

[
du
]

and ∫
Y

 ∑
Φ(u)=y

α(u)

β(y)Hn

[
dy
]
=

∫
Y \∆Φ

 ∑
Φ(u)=y

α(u)

β(y)Hn

[
dy
]

Appendix B. Gaussian regression

Let us first present the proof of the regression formula.

Proof of Proposition 1.14. Assume first that both X and Y are centered. Set

Z = Y −RY,XX, RY,X = CY,X Var
[
X
]−1

.

Assumption (i) implies that Z is also a centered Gaussian vector.
Let (ei)i∈I and (fα)α∈A are orthonormal bases of X and respectively Y , and we set

Xi := (ei, X)X , Yα := (fα, Y )Y , Zα := (fα, Z)Y . We set

V (X)ij := E
[
XiXj

]
, Cαi := E

[
YαXi

]
= Ciα, V (Y )αβ := E

[
YαYβ

]
.
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The matrix
(
V (X)ij

)
i,j∈I describes the variance operator of X, the matrix

(
V (Y )αβ

)
α,β∈A

describes the variance operator of Y and the matrix
(
Cαi

)
α∈A,i∈I defines the covariance

operator CovY,X . We denote by V (X)−1
ij the entries of Var

[
X
]−1

and by Dαβ the entries of

DY,X = CY,X Var[X]−1CX,Y . We have

RX,Y X =
∑
α

( ∑
i

RαiXi

)
Xi

)
fα,

where
Rαi =

∑
j

CαjV (X)−1
ji .

Hence
Zα = Yα −

∑
i

RαiXi, Zβ = Yβ −
∑
j

RβjXj ,

E
[
ZαZβ

]
= V (Y )αβ −

∑
j

RβjCαj −
∑
i

RαiCiβ +
∑
i,j

RαiVijRβj .

We have ∑
i

∑
j

RαiVijRβj =
∑
i

∑
j

( ∑
k

CαkV (X)−1
ki Vij

)
Rβj

=
∑
j

( ∑
k

Cαkδkj

)
Rβj =

∑
k

CαkRβk
=
∑
k

Rβk
Ckα = Dβα = Dαβ.

A similar but simpler computation shows that∑
j

RβjCαj = Dβα = Dαβ =
∑
i

RαiCiβ.

Thus ∆Y,X = Var
[
Y
]
−DY,X is the covariance operator of Z.

An elementary computation shows that.

E
[
ZαXi

]
= 0, ∀α, i

and assumption (i) implies that X and Z are independent centered Gaussian vectors. Clearly
Z is an X-measurable random vector. If S is and X-measurable event, then

E
[
ZIF

]
= E

[
Z
]
P
[
F
]
= 0.

Hence
E
[
Y IF

]
− E

[
RY,XSIF

]
= E

[
ZIF

]
= 0

so that
RY,XX = E

[
Y ∥X

]
and

E
[
Y
∣∣X = x

]
= RY,Xx.

Now let f : Y → R be a bounded measurable function. Then Y = E
[
Y ∥X

]
+ Z, with

E
[
Y ∥X

]
, Z independent. Then

E
[
f(Y ) ∥X = x

]
= E

[
f
(
Z + E[Y ∥X]

)
∥X = x

]
= E

[
f(Z + E[Y ∥X = x])

]
= E

[
f(Z +RY,Xx)

]
.

This proves the Proposition 1.14 when both X and Y are centered.
We now reduce the general case to the centered case. Consider the centered vectors

X̄ := X −m(X), Ȳ = Y −m(Y ).
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Then

RY,X = RȲ ,X̄ ,

E
[
Y ∥X

]
= m(Y ) + E

[
Ȳ ∥X

]
= m(Y ) + E

[
Ȳ ∥ X̄

]
= m(Y ) +RY,XX̄ = m(Y )−RY,Xm(X) +RY,XX.

If we set

Z̄ = Ȳ −RY,XX̄ = Y −m(Y ) +RY,Xm(X)−RY,XX = Y − E
[
Y ∥X

]
,

then Z̄ is independent of X̄ and thus also of X. ⊓⊔

Proposition B.1. Suppose that V ,U are finite dimensional Euclidean spaces, V is a cen-
tered, V -valued Gaussian vector, and E : V → U a linear surjection. Assume that the
U -valued Gaussian vector E(V ) is nondegenerate. Define Y = kerE, X = Y ⊥. Set

L = (EE∗)−1/2E.

Denote by X and respectively Y the components of V along X and respectively Y . Then the
following hold

(i) The Gaussian vectors LV and X are nondegenerate.
(ii) The Gaussian vectors Y −E

[
Y ∥X

]
and Y −E

[
Y ∥LX

]
have the same distribution

and their common variance operator is ∆Y,X : Y → Y described in (1.10) . They
are nondegenerate if and only if V is nondegenerate. Denote by Γ∆Y,X

the regression
Gaussian measure, i.e., the centered Gaussian measure on Y with variance operator
∆Y,X .

(iii) If f : V → R is integrable with respect to the distribution of V , then

E
[
f(V )

∣∣EV = 0
]
=

∫
Y
f(y)Γ∆Y,X

[
dy
]
=

∫
kerE

f(y)Γ∆Y,X

[
dy
]
. (B.1)

In particular, if the Gaussian vector V is nondegenerate. and f : V → (0,∞) is a nonnegative,
continuous homogeneous function whose restriction to kerE = Y is nonzero, then

E
[
f(V )

∣∣L(V ) =

∫
kerE

f(y)Γ∆Y,X

[
dy
]
= 0

]
> 0. (B.2)

Proof. The vectors L(V ) = (EE∗)−1/2E(V ), (EE∗)−1/2 is surjective, E |X : X → U is an
isomorphism and E |X (X) = E(V ).

Denote by P the orthogonal projection onto X.Then X = P (V ), Y = V −X and

E(V ) = E(PV ) = E(X).

Note that E∗s(U) = X. Set B := EE∗ : U → U . The operator B is symmetric and positive

definite. Observe that L := B−1/2E.

Lemma B.2. The operator of L∗ induces an isometry U ↪→ V . Note that L∗(U) =
(kerL)⊥ = (kerE)⊥ = X. Moreover LL∗ = 1U .

Proof. Let u1, u2 ∈ U . We have

(L∗u1, L
∗u2) = (E∗B−1/2u1, E

∗B−1/2u2)

= (EE∗B−1/2u1, B
−1/2u2) = (B1/2u1, B

−1/2u2) = (u1, u2).

Note that LL∗ = B−1/2LL∗B−1/2 = 1. ⊓⊔
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If A denotes the variance operator of X then the variance operator of L(V ) = L(X) is
LAL∗,

Var
[
L(X)

]
= LVar

[
X
]
L∗.

Moreover, CY,L(X) = CY,XL∗.
Denote by Q the variance operator of V . With respect to the decomposition V = X ⊕ Y

Q has the block form

Q =

[
A C⊤

C B

]
,

where C = CY,X , and B is the variance operator of Y . Since X is nondegenerate, the operator
A is invertible. Form the operator

∆Y,X := Var
[
Y
]
− CY,X Var

[
X
]−1

CY,X = B − CA−1C∗

Then Schur’s complement formula [20, Prop. 3.9] shows that detQ = detA · det∆Y,X , so
that det∆Y,X ̸= 0 if and only if detQ ̸= 0, i.e., V is nondegenerate. Similarly

∆Y,LX = Var
[
Y
]
− CY,LX Var

[
LX

]−1
CLX,Y

= B − CL∗(LAL∗ )−1
LC∗ = B − CA−1C = ∆Y,X .

since LL∗ = 1U . This proves (ii).
From the equality

E
[
V ∥X

]
= E

[
X + Y ∥X

]
= E

[
Y ∥X

]
+X,

we deduce
Z = V − E

[
V ∥X

]
= Y − E

[
Y ∥X

]
so Z is Y -valued and its distribution is the centered Gaussian measure on Y with variance
operator ∆Y,X . The equality (B.1) now follows from the regression formula (1.11).

To prove (B.2) observe that, since Γ∆X,Y
is nondegenerate, we have Γ∆X,Y

[
O
]
> 0, for

any open subset O of kerL. Choose c > 0 such that the open set
{
f |kerL> c

}
is nonempty.

Then ∫
kerL

f(y)Γ∆Y,X

[
dy
]
> cΓ∆X,Y

[
{f > c} ∩ kerL

]
> 0.

⊓⊔

Remark B.3. The nondegeneracy of Γ∆Y,X
is important. If Γ∆Y,X

were concentrated on a
proper subspace S ⊂ kerL it would still be possible that f is nontrivial yet f |S= 0. ⊓⊔
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