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1. MULTILINEAR FORMS AND DETERMINANTS

In this section, we will deal exclusively with finite dimensional vector spaces over the field F =
R,C. If U1,U2 are two F-vector spaces, we will denote by Hom(U1,U2) the space of F-linear
maps U1 → U2.

1.1. Mutilinear maps.

Definition 1.1. Suppose that U1, . . . ,Uk,V are F-vector spaces. A map

Φ : U1 × · · · ×Uk → V

is called k-linear if for any 1 ≤ i ≤ k, any vectors ui,vi ∈ U i, vectors uj ∈ U j , j ̸= i, and any
scalar λ ∈ F we have

Φ(u1, . . . ,ui−1,ui + vi,ui+1, . . . ,uk)

= Φ(u1, . . . ,ui−1,ui,ui+1, . . . ,uk) + Φ(u1, . . . ,ui−1,vi,ui+1, . . . ,uk),

Φ(u1, . . . ,ui−1, λui,ui+1, . . . ,uk) = λΦ(u1, . . . ,ui−1,ui,ui+1, . . . ,uk).

In the special case U1 = U2 = · · · = Uk = U and V = F, the resulting map

Φ : U × · · · ×U︸ ︷︷ ︸
k

→ F

is called a k-linear form on U . When k = 2, we will refer to 2-linear forms as bilinear forms. We
will denote by Tk(U∗) the space of k-linear forms on U . ⊓⊔

Example 1.2. Suppose that U is an F-vector space and U∗ is its dual, U∗ := Hom(U ,F). We have
a natural bilinear map

⟨−,−⟩ : U∗ ×U → F, U∗ ×U ∋ (α,u) 7→ ⟨α,u⟩ := α(u).

The bilinear map is called the canonical pairing between the vector space U and its dual. ⊓⊔

Example 1.3. Suppose that A = (aij)1≤i,j≤n is an n× n matrix with real entries. Define

ΦA : Rn × Rn → R, Φ(x,y) =
∑
i,j

aijxiyj ,

x =

 x1
...
xn

 , y =

 y1
...
yn

 .
To show that Φ is indeed a bilinear form we need to prove that for any x,y, z ∈ Rn and any λ ∈ R
we have

ΦA(x+ z,y) = ΦA(x,y) + ΦA(z,y), (1.1a)

ΦA(x,y + z) = ΦA(x,y) + ΦA(x, z), (1.1b)

ΦA(λx,y) = ΦA(x, λy) = λΦA(x, by). (1.1c)

To verify (1.1a) we observe that

ΦA(x+ z,y) =
∑
i,j

aij(xi + zi), yj =
∑
i,j

(aijxiyj + aijziyj) =
∑
i,j

aijxiyj +
∑
ij

aijziyj

= ΦA(x,y) + ΦA(z,y).
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The equalities (1.1b) and (1.1c) are proved in a similar fashion. Observe that if e1, . . . , en is the
natural basis of Rn, then

ΦA(ei, ej) = aij .

This shows that ΦA is completely determined by its action on the basic vectors e1, . . . en. ⊓⊔

Proposition 1.4. For any bilinear form Φ ∈ T2(Rn) there exists an n × n real matrix A such that
Φ = ΦA, where ΦA is defined as in Example 1.3. ⊓⊔

The proof is left as an exercise.

1.2. The symmetric group. For any finite sets A,B we denote Bij(A,B) the collection of bijective
maps φ : A → B. We set S(A) := Bij(A,A). We will refer to S(A) as the symmetric group on A
and to its elements as permutations of A. Note that if φ, σ ∈ S(A) then

φ ◦ σ, φ−1 ∈ S(A).

The composition of two permutations is often referred to as the product of the permutations. We
denote by 1, or 1A the identity permutation that does not permute anything, i.e., 1A(a) = a, ∀a ∈ A.

For any finite set S we denote by |S| its cardinality, i.e., the number of elements of S. Observe that

Bij(A,B) ̸= ∅⇐⇒|A| = |B|.
In the special case when A is the discrete interval A = In = {1, . . . , n} we set

Sn := S(In).

The collection Sn is called the symmetric group on n objects. We will indicate the elements φ ∈ Sn
by diagrams of the form (

1 2 . . . n
φ1 φ2 . . . φn

)
.

For any finite set S we denote by |S| its cardinality, i.e., the number of elements of S.

Proposition 1.5. (a) If A,B are finite sets and |A| = |B|, then

|Bij(A,B)| = |Bij(B,A)| = |S(A)| = |S(B)|.
(b) For any positive integer n we have |Sn| = n! := 1 · 2 · 3 · · ·n.

Proof. (a) Observe that we have a bijective correspondence

Bij(A,B) ∋ φ 7→ φ−1 ∈ Bij(B,A)

so that
|Bij(A,B)| = |Bij(B,A)|.

Next, fix a bijection ψ : A→ B. We get a correspondence

Fψ : Bij(A,A) → Bij(A,B), φ 7→ Fψ(φ) = ψ ◦ φ.
This correspondence is injective because

Fψ(φ1) = Fψ(φ2) ⇒ ψ ◦ φ1 = ψ ◦ φ2 ⇒ ψ−1 ◦ (ψ ◦ φ1) = ψ−1 ◦ (ψ ◦ φ2) ⇒ φ1 = φ2.

This correspondence is also surjective. Indeed, if ϕ ∈ Bij(A,B) then ψ−1 ◦ ϕ ∈ Bij(A,A) and

Fψ(ψ
−1 ◦ ϕ) = ψ ◦ (ψ−1 ◦ ϕ) = ϕ.

Thus, Fψ is a bijection so that
|S(A)| = |Bij(A,B)|.
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Finally we observe that

|S(B)| = |Bij(B,A)| = |Bij(A,B)| = |S(A)|.
This takes care of (a).

To prove (b) we argue by induction. Observe that |S1| = 1 because there exists a single bijection
{1} → {1}. We assume that |Sn−1| = (n− 1)! and we prove that |Sn| = n!. For each k ∈ In we set

Skn :=
{
φ ∈ Sn; φ(n) = k

}
.

A permutation φ ∈ Skn is uniquely detetrimined by its restriction to In \ {n} = In−1 and this
restriction is a bijection In−1 → In \ {k}. Hence

|Skn| = |Bij(In−1, In \ {k})| = |Sn−1|,
where at the last equality we used part(a). We deduce

|Sn| = |S1n|+ · · ·+ |Snn| = |Sn−1|+ · · ·+ |Sn−1|︸ ︷︷ ︸
n

= n|Sn−1| = n(n− 1)!,

where at the last step we invoked the inductive assumption. ⊓⊔

Definition 1.6. An inversion of a permutation σ ∈ Sn is a pair (i, j) ∈ In × In with the following
properties.

• i < j.
• σ(i) > σ(j).

We denote by |σ| the number of inversions of the permutation σ. The signature of σ is then the
quantity

sign(σ) := (−1)|σ| ∈ {−1, 1}.
A permutation σ is called even/odd if sign(σ) = ±1. We denote by S±n the collection of even/odd
permulations. ⊓⊔

Example 1.7. (a) Consider the permutation σ ∈ S5 given by

σ =

(
1 2 3 4 5
5 4 3 2 1

)
.

The inversions of σ are
(1, 2), (1, 3), (1, 4), (1, 5),

(2, 3), (2, 4), (2, 5),

(3, 4), (3, 5), (4, 5),

so that |σ| = 4 + 3 + 2 + 1 = 10, sign(σ) = 1.
(b) For any i ̸= j in In we denote by τij the permutation defined by the equalities

τij(k) =


k, k ̸= i, j

j, k = i

i, k = j.

A transposition is defined to be a permutation of the form τij for some i < j. Observe that

|τij | = 2|j − i| − 1,

so that
sign(τij) = −1, ∀i ̸= j. (1.2)
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⊓⊔

Proposition 1.8. (a) For any σ ∈ Sn we have

sign(σ) =
∏

1≤i<j≤n

σ(j)− σ(i)

j − i
. (1.3)

(b) For any φ, σ ∈ Sn we have

sign(φ ◦ σ) = sign(φ) · sign(σ). (1.4)

(c) sign(σ−1) = sign(σ)

Proof. (a) Observe that the ratio σ(j)−σ(i)
j−i negative if and only if (i, j) is inversion. Thus the number

of negative ratios σ(j)−σ(i)
j−i , i < j, is equal to the number of inversions of σ so that the product∏

1≤i<j≤n

σ(j)− σ(i)

j − i

has the same sign as the signature of σ. Hence, to prove (1.3) it suffices to show that∣∣∣∣∣∣
∏

1≤i<j≤n

σ(j)− σ(i)

j − i

∣∣∣∣∣∣ = | sign(σ)| = 1,

i.e., ∏
i<j

|σ(j)− σ(i)| =
∏
i<j

|j − i|. (1.5)

This is now obvious because the factors in the left-hand side are exactly the factors in the right-hand
side multiplied in a different order. Indeed, for any i < j we can find a unique pair i′ < j′ such that

σ(j′)− σ(i′) = ±(j − i).

(b) Observe that

sign(φ) =
∏
i<j

φ(j)− φ(i)

j − i
=
∏
i<j

φ(σ(j))− φ(σ(i)

σ(j)− σ(i)

and we deduce

sign(φ) · sign(σ) =

∏
i<j

φ(σ(j))− φ(σ(i))

σ(j)− σ(i)

∏
i<j

σ(j)− σ(i)

j − i


∏
i<j

φ(σ(j))− φ(σ(i))

j − i
= sign(φ ◦ σ).

To prove (c) we observe that

1 = sign(1) = sign(σ−1 ◦ σ) = sign(σ−1) sign(σ).

⊓⊔
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1.3. Symmetric and skew-symmetric forms.

Definition 1.9. Let U be an F-vector space, F = R or F = C.
(a) A k-linear form Φ ∈ Tk(U∗) is called symmetric if for any u1, . . . ,uk ∈ U , and any permutation
σ ∈ Sk we have

Φ(uσ(1), . . . ,uσ(k)) = Φ(u1, . . . ,uk).

We denote by SkU∗ the collection of symmetric k-linear forms on U .
(b) A k-linear form Φ ∈ Tk(U∗) is called skew-symmetric if for any u1, . . . ,uk ∈ U , and any
permutation σ ∈ Sk we have

Φ(uσ(1), . . . ,uσ(k)) = sign(σ)Φ(u1, . . . ,uk).

We denote by ΛkU∗ the space of skew-symmetric k-linear forms on U . ⊓⊔

Example 1.10. Suppose that Φ ∈ ΛnU∗, and u1, . . . ,un ∈ U . The skew-linearity implies that for
any i < j we have

Φ(u1, . . . ,ui−1,ui,ui+1, . . . ,uj−1,uj ,uj+1, . . . ,un)

= −Φ(u1, . . . ,ui−1,uj ,ui+1, . . . ,uj−1,ui,uj+1, . . . ,un).

Indeed, we have
Φ(u1, . . . ,ui−1,uj ,ui+1, . . . ,uj−1,ui,uj+1, . . . ,un)

= Φ(uτij(1), . . . ,uτij(k), . . . ,uτij(n))

and sign(τij) = −1. In particular, this implies that if i ̸= j, but ui = uj then

Φ(u1, . . . ,un) = 0. ⊓⊔

Proposition 1.11. Suppose that U is an n-dimensional F-vector space and e1, . . . , en is a basis of
U . Then for any scalar c ∈ F there exists a unique skew-symmetric n-linear form Φ ∈ ΛnU∗ such
that

Φ(e1, . . . , en) = c.

Proof. To understand what is happening we consider first the special case n = 2. Thus dimU = 2.
If Φ ∈ Λ2U∗ and u1,u2 ∈ U we can write

u1 = a11e1 + a21e2, u2 = a12e1 + a22e2,

for some scalars aij ∈ F, i, j ∈ {1, 2}. We have

Φ(u1,u2) = Φ(a11e1 + a21e2, a12e1 + a22e2)

= a11Φ(e1, a12e1 + a22e2) + a21Φ(e2, a12e1 + a22e2)

= a11a12Φ(e1, e1) + a11a22Φ(e1, e2) + a21a12Φ(e2, e1) + a21a22Φ(e2, e2).

The skew-symmetry of Φ implies that

Φ(e1, e1) = Φ(e2, e2) = 0, Φ(e2, e1) = −Φ(e1, e2).

Hence
Φ(u1,u2) = (a11a22 − a21a12)Φ(e1, e2).

If dimU = n and u1, . . . ,un ∈ U , then we can write

u1 =

n∑
i1=1

ai11ei1 , . . . ,uk =

n∑
ik=1

aikkeik
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Φ(u1, . . . ,un) = Φ

(
n∑

i1=1

ai11ei1 , . . . ,
n∑

in=1

ainnein

)

=
n∑

i1,...,in=1

ai11 · · · ainnΦ(ei1 , . . . , ein).

Observe that if the indices i1, . . . , in are not pairwise distinct then

Φ(ei1 , . . . , ein) = 0.

Thus, in the above sum we get contributions only from pairwise distinct choices of indices i1, . . . , in,
Such a choice corresponds to a permutation σ ∈ Sn, σ(k) = ik. We deduce that

Φ(u1, . . . ,un) =
∑
σ∈Sn

aσ(1)1 · · · aσ(n)nΦ(eσ(1), . . . , eσ(n)).

=

∑
σ∈Sn

sign(σ)aσ(1)1 · · · aσ(n)n

Φ(e1, . . . , en).

Thus, Φ ∈ ΛnU∗ is uniquely determined by its value on (e1, . . . , en).
Conversely, the map

(u1, . . . ,un) → c
∑
σ∈Sn

sign(σ)aσ(1)1 · · · aσ(n)n, uk =
n∑
i=1

aikei,

is indeed n-linear, and skew-symmetric. The proof is notationally bushy, but it does not involve any
subtle idea so I will skip it. Instead, I’ll leave the proof in the case n = 2 as an exercise.

⊓⊔

1.4. The determinant of a square matrix. Consider the vector space Fn with canonical basis

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1

 .
According to Proposition 1.11 there exists a unique, n-linear skew-symmetric form Φ on Fn such that

Φ(e1, . . . , en) = 1.

We will denote this form by det and we will refer to it as the determinant form on Fn. The proof of
Proposition 1.11 shows that if u1, . . . ,un ∈ Fn,

uk =


u1k
u2k

...
unk

 , k = 1, . . . , n,

then
det(u1, . . .un) =

∑
σ∈Sn

sign(σ)uσ(1)1uσ(2)2 · · ·uσ(n)n. (1.6)

Note that
det(u1, . . .un) =

∑
φ∈Sn

sign(φ)u1φ(1)u2φ(2) · · ·unφ(n). (1.7)
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Definition 1.12. Suppose that A = (aij)1≤i,j≤n is an n×n-matrix with entries in F which we regard
as a linear operator A : Fn → Fn. The determinant of A is the scalar

detA := det(Ae1, . . . , Aen)

where e1, . . . , en is the canonical basis of Fn, and Aek is the k-th column of A,

Aek =


a1k
a2k

...
ank

 , k = 1, . . . , n.

⊓⊔

Thus, according to (1.6) we have

detA =
∑
σ∈Sn

sign(σ)aσ(1)1 · · · aσ(n)n
(1.7)
=

∑
σ∈Sn

sign(σ)a1σ(1) · · · anσ(n). (1.8)

Remark 1.13. Consider a typical summand in the first sum in (1.8), aσ(1)1 · · · aσ(n)n. Observe that
the n entries

aσ(1)1, aσ(2)2, . . . , aσ(n)n

lie on different columns of A and thus occupy all the n columns of A. Similarly, these entries lie on
different rows of A.

A collection of n entries so that no two lie on the same row or the same column is called a rook
placement.1 Observe that in order to describe a rook placement, you need to indicate the position of
the entry on the first column, by indicating the row σ(1) on which it lies, then you need to indicate
the position of the entry on the second column etc. Thus, the sum in (1.8) has one term for each rook
placement. ⊓⊔

If A† denotes the transpose of the n× n-matrix A with entries

a†ij = aji

we deduce that

detA† =
∑
σ∈Sn

sign(σ)a†σ(1)1 · · · a
†
σ(n)n =

∑
σ∈Sn

sign(σ)a1σ(1) · · · anσ(n) = detA. (1.9)

Example 1.14. Suppose that A is a 2× 2 matrix

A =

[
a11 a12
a21 a22

]
Then

detA = a11a22 − a12a21. ⊓⊔

Proposition 1.15. If A is an upper triangular n×n-matrix, then detA is the product of the diagonal
entries. A similar result holds if A is lower triangular.

1If you are familiar with chess, a rook controls the row and the column at whose intersection it is situated.
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Proof. To keep the ideas as transparent as possible, we carry the proof in the special case n = 3.
Suppose first that A is upper tringular, Then

A =

 a11 a12 a13
0 a22 a23
0 0 a33


so that

Ae1 = a11e1, Ae2 = a12e1 + a22e2, Ae3 = a13e1 + a23e2 + a33e3
Then

detA = det(Ae1, Ae2, Ae3)

= det(a11e1, a12e1 + a22e2, a13e1 + a23e2 + a33e3)

= det(a11e1, a12e1, a13e1 + a23e2 + a33e3) + det(a11e1, a22e2, a13e1 + a23e2 + a33e3)

= a11a12 det(e1, e1, a13e1 + a23e2 + a33e3)︸ ︷︷ ︸
=0

+a11a22 det(e1, e2, a13e1 + a23e2 + a33e3)

= a11a22

(
det(e1, e2, a13e1)︸ ︷︷ ︸

=0

+det(e1, e2, a23e2)︸ ︷︷ ︸
=0

+det(e1, e2, a33e3)
)

= a11a22a33 det(e1, e2, e3) = a11a22a33.

This proves the proposition when A is upper triangular. If A is lower triangular, then its transpose A†

is upper triangular and we deduce

detA = detA† = a†11a
†
22a

†
33 = a11a22a33.

⊓⊔

Recall that we have a collection of elementary column (row) operations on a matrix. The next
result explains the effect of these operations on the determinant of a matrix.

Proposition 1.16. Suppose that A is an n× n-matrix. The following hold.
(a) If the matrix B is obtained from A by multiplying the elements of the i-th column of A by the

same nonzero scalar λ, then
detB = λ detA.

(b) If the matrix B is obtained from A by switching the order of the columns i and j, i ̸= j then

detB = −detA.

(c) If the matrix B is obtained from A by adding to the i-th column, the j-th column, j ̸= i then

detB = detA.

(d) Similar results hold if we perform row operations of the same type.

Proof. (a) We have

detB = det(Be1, . . . , Ben) = det(Ae1, . . . , λAei, Aen)

= λ det(Ae1, . . . , Aei, Aen) = λ detA.

(b) Observe that for any σ ∈ Sn we have

det(Aeσ(1), . . . , Aeσ(n)) = sign(σ) det(Ae1, . . . , Aeσ(n)) = sign(σ) detA.

Now observe that the columns of B are

Be1 = Aeτij(1), . . . , Ben = Aeτij(n)

and sign(τij) = 1.



10 LIVIU I. NICOLAESCU

For (c) we observe that

detB = det(Ae1, . . . , Aei−1, Aei +Aej , Aei+1, . . . , Aej , . . . , Aen)

= det(Ae1, . . . , Aei−1, Aei, Aei+1, . . . , Aej , . . . , Aen)

+det(Ae1, . . . , Aei−1, Aej , Aei+1, . . . , Aej , . . . , Aen)︸ ︷︷ ︸
=0

= detA.

Part (d) follows by applying (a), (b), (c) to the transpose of A, observing that the rows of A are the
columns of A† and then using the equality detC = detC† .

⊓⊔

The above results represents one efficient method for computing determinants because we know
that by performing elementary row operations on a square matrix we can reduce it to upper triangular
form.

Here is a first application of determinants.

Proposition 1.17. Suppose thatA is an n×n-matrix with entries in F. Then the following statements
are equivalent.

(a) The matrix A is invertible.
(b) detA ̸= 0.

Proof. A matrixA is invertible if and only if by performing elementary row operations we can reduce
to an upper triangular matrix B whose diagonal entries are nonzero, i.e., detB ̸= 0. By performing
elementary row operation the determinant changes by a nonzero factor so that

detA ̸= 0⇐⇒ detB ̸= 0.

⊓⊔

Corollary 1.18. Suppose that u1, . . . ,un ∈ Fn. The following statements are equivalent.
(a) The vectors u1, . . . ,un are linearly independent.
(b) det(u1, . . . ,un) ̸= 0.

Proof. Consider the linear operator A : Fn → Fn given by Aei = ui, i = 1, . . . , n. We can
tautologically identify it with a matrix and we have

det(u1, . . . ,un) = detA.

Now observe that (u1, . . . ,un) are linearly independent if and only if A is invertible and according
to the previous propostion, this happens if and only if detA ̸= 0.

⊓⊔

1.5. Additional properties of determinants.

Proposition 1.19. If A,B are two n× n-matrices , then

detAB = detAdetB. (1.10)

Proof. We have

detAB = det(ABe1, . . . , ABen) = det(

n∑
i1=1

bi11Aei1 , . . .

n∑
in=1

binnAein)
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=
b∑

i1,...,in=1

bi11 · · · binn det(Aei1 , . . . Aein)

In the above sum, the only nontrivial terms correspond to choices of pairwise distinct indices i1, . . . , in.
For such a choice, the sequence i1, . . . , in describes a permutation of In. We deduce

detAB =
∑
σ∈Sn

bσ(1)1 · · · bσ(n)n det(Aeσ(1), . . . , Aeσ(n))︸ ︷︷ ︸
=sign(σ) detA

= detA
∑
σ∈Sn

sign(σ)bσ(1)1 · · · bσ(n)n = detAdetB.

⊓⊔

Corollary 1.20. If A is an invertible matrix, then

detA−1 =
1

detA
.

Proof. Indeed, we have
A ·A−1 = 1

so that
detAdetA−1 = det1 = 1.

⊓⊔

Proposition 1.21. Suppose that m,n are positive integers and S is an (m + n) × (m + n)-matrix
that has the block form

S =

[
A C
0 B

]
,

where A is an m×m-matrix, B is an n× n-matrix and C is an m× n-matrix. Then

detS = detA · detB.

Proof. We denote by sij the (i, j)-entry of S, i, j ∈ Im+n. From the block description of S we
deduce that

j ≤ m and i > n⇒ sij = 0. (1.11)
We have

detS =
∑

σ∈Sm+n

sign(σ)

m+n∏
i=1

sσ(i)i.

From (1.11) we deduce that in the above sum the nonzero terms correspond to permutations σ ∈ Sm+n

such that
σ(i) ≤ m, ∀i ≤ m. (1.12)

If σ is such a permutation, then its restriction to Im is a permutation α of Im and its restriction to
Im+n \ Im is a permutation of this set, which we regard as a permutation β of In. Conversely, given
α ∈ Sm and β ∈ Sn we obtain a permutation σ = α ∗ β ∈ Smn satisfying (1.12) given by

α ∗ β(i) =

{
α(i), i ≤ m,

m+ β(i−m), i > m.



12 LIVIU I. NICOLAESCU

Observe that
sign(α ∗ β) = sign(α) sign(β),

and we deduce

detS =
∑

α∈Sm, β∈Sn

sign(α ∗ β)
m+n∏
i=1

sα∗β(i)i

=

∑
α∈Sm

sign(α)

m∏
i=1

sα(i)i

∑
β∈Sn

sign(β)

n∏
j=1

sm+β(j),j+m

 = detAdetB.

⊓⊔

Definition 1.22. IfA is an n×n-matrix and i, j ∈ In, we denote byA(i, j) the matrix obtained from
A by removing the i-th row and the j-th column. ⊓⊔

Corollary 1.23. Suppose that the j-th column of an n × n-matrix A is sparse, i.e., all the elements
on the j-th column, with the possible exception of the element on the i-th row, are equal to zero. Then

detA = (−1)i+jaij detA(i, j).

Proof. Observe that if i = j = 1 then A has the block form

A =

[
a11 ∗
0 A(1, 1)

]
and the result follows from Proposition 1.21.

We can reduce the general case to this special case by permuting rows and columns of A. If we
switch the j-th column with (j−1)-th column we can arrange that the (j−1)-th column is the sparse
column. Iterating this procedure we deduce after (j − 1) such switches that the first column is the
sparse column.

By performing (i − 1) row-switches we can arrange that the nontrivial element on this sparse
column is situated on the first row. Thus, after a total of i+ j− 2 row and column switches we obtain
a new matrix A′ with the block form

A′ =

[
aij ∗
0 A(i, j)

]
We have

(−1)i+j detA = detA′ = aij detA(i, j).

⊓⊔

Corollary 1.24 (Row and column expansion). Fix j ∈ In. Then for any n× n-matrix we have

detA =
n∑
i=1

(−1)i+jaij detA(i, j) =

n∑
k=1

(−1)i+kajkA(j, k).

The first equality is referred to as the j-th column expansion of detA, while the second equality is
referred to as the j-th row expansion of detA.

Proof. We prove only the column expansion. The row expansion is obtained by applying to column
expansion to the transpose matrix. For simplicity we assume that j = 1. We have

detA = det(Ae1, Ae2, . . . , Aen) = det
( n∑
i−1

ai1ei, Ae2, . . . , Aen

)
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=
n∑
i−1

ai1 det
(
ei, Ae2, . . . , Aen

)
.

Denote by Ai the matrix whose first column is the column basic vector ei, and the other columns are
the corresponding columns of A, Ae2, . . . , Aen. We can rewrite the last equality as

detA =
n∑
i=1

ai1 detAi.

The first column of Ai is sparse, and the submatrix Ai(i, 1) is equal to the submatrix A(i, 1). We
deduce from the previous corollary that

detAi = (−1)i+1 detAi(i, 1) = (−1)i+1 detA(i, 1).

This completes the proof of the column expansion formula. ⊓⊔

Corollary 1.25. If k ̸= j then
n∑
i=1

(−1)i+jaik detA(i, j) = 0.

Proof. Denote by A′ the matrix obtained from A by removing the j-th column and replacing with
the k-th column of A. Thus, in the new matrix A′ the j-th and the k-th columns are identical so that
detA′ = 0. On the other hand A′(i, j) = A(i, j) Expanding detA′ along the j-th column we deduce

0 = detA′ =
n∑
i=1

(−1)i+ja′ij detA(i, j) =
n∑
i=1

(−1)ijaik detA(i, j).

⊓⊔

Definition 1.26. For any n× n matrix A we define the adjoint matrix Ǎ to be the n× n-matrix with
entries

ǎij = (−1)i+j detA(j, i), ∀i, j ∈ In. ⊓⊔

Form Corollary 1.24 we deduce that for any j we have
n∑
i=1

ǎjiaij = detA,

while Corollary 1.25 implies that for any j ̸= k we have
n∑
i=1

ǎjiaik = 0.

The last two identities can be rewritten in the compact form

ǍA = (detA)1. (1.13)

If A is invertible, then from the above equality we conclude that

A−1 =
1

detA
Ǎ. (1.14)
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Example 1.27. Suppose that A is a 2× 2 matrix

A =

[
a11 a12
a21 a22

]
Then

detA = a11a22 − a12a21,

A(1, 1) = [a22], A(1, 2) = [a21], A(2, 1) = [a12], A(2, 2) = [a11],

ǎ11 = detA(1, 1) = a22, ǎ12 = −detA(2, 1) = −a12,

ǎ21 = −detA(1, 2) = −a21, ǎ22 = detA(2, 2) = a11,

so that

Ǎ =

[
a22 −a12
−a21 a11

]
and we observe that

ǍA =

[
detA 0
0 detA

]
.

Hence

A−1 =
1

detA

[
a22 −a12
−a21 a11

]
. ⊓⊔

Proposition 1.28 (Cramer’s Rule). Suppose that A is an invertible n× n-matrix and u,x ∈ Fn are
two column vectors such that

Ax = u,

i.e., x is a solution of the linear system
a11x1 + a12x2 + · · ·+ a1nxn = u1
a21x1 + a22x2 + · · ·+ a2nxn = u2

...
...

...
an1x1 + an2x2 + · · ·+ annxn = un.

Denote by Aj(u) the matrix obtained from A by replacing the j-th column with the column vector u.
Then

xj =
detAj(u)

detA
, ∀j = 1, . . . , n. (1.15)

Proof. By expanding along the j-th column of Aj(u) we deduce

detAj(u) =
n∑
k=1

(−1)j+kuk detA(k, j). (1.16)

On the other hand,
(detA)x = (ǍA)x = Ǎu.

Hence

(detA)xj =

n∑
k=1

ǎjkuk =
∑
k

(−1)k+juk detA(k, j)
(1.16)
= detAj(u).

⊓⊔
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1.6. Examples. To any list of complex numbers (x1, . . . , xn) we associate the n× n matrix

V (x1, . . . , xn) =


1 1 · · · 1
x1 x2 · · · xn
...

...
...

...
xn−1
1 xn−1

2 · · · xn−1
n

 . (1.17)

This matrix is called the Vandermonde matrix associated to the list of numbers (x1, . . . , xn). We want
to compute its determinant. Observe first that

detV (x1, . . . xn) = 0.

if the numbers z1, . . . , zn are not distinct. Observe next that

detV (x1, x2) = det

[
1 1
x1 x2

]
= (x2 − x1).

Consider now the 3× 3 situation. We have

detV (x1, x2, x3) = det

 1 1 1
x1 x2 x3
x21 x22 x23

 .
Subtract from the 3rd row the second row multiplied by x1 to deduce

detV (x1, x2, x3) = det

 1 1 1
x1 x2 x3
0 x22 − x1x2 x23 − x3x1


= det

 1 1 1
x1 x2 x3
0 x2(x2 − x1) x23 − x3x1

 .
Subtract from the 2nd row the first row multiplied by x1 to deduce

detV (x1, x2, x3) = det

 1 1 1
0 x2 − x1 x3 − x1
0 x2(x2 − x1) x3(x3 − x1)

 = det

[
x2 − x1 x3 − x1

x2(x2 − x1) x3(x3 − x1)

]

= (x2 − x1)(x3 − x1) det

[
1 1
x2 x3

]
= (x2 − x1)(x3 − x1) detV (x2, x3).

= (x2 − x1)(x3 − x1)(x3 − x1).

We can write the above equalities in a more compact form

detV (x1, x2) =
∏

1≤i<j≤2

(xj − xi), detV (x1, x2, x3) =
∏

1≤i<j≤3

(xj − xi). (1.18)

A similar row manipulation argument (left to you as an exercise) shows that

detV (x1, . . . , xn) = (x2 − x1) · · · (xn − x1) detV (x2, . . . , xn). (1.19)

We have the following general result.

Proposition 1.29. For any integer n ≥ 2 and any complex numbers x1, . . . , xn we have

detVn(x1, . . . , xn) =
∏

1≤i<j≤n
(xj − xi). (1.20)
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Proof. We will argue by induction on n. The case n = 2 is contained in (1.18). Assume now that
(1.20) is true for n− 1. This means that

detV (x2, . . . , xn) =
∏

2≤i<j≤n
(xj − xi).

Using this in (1.19) we deduce

detVn(x1, . . . , xn) = (x2 − x1) · · · (xn − x1) ·
∏

2≤i<j≤n
(xj − xi) =

∏
1≤i<j≤n

(xj − xi). ⊓⊔

Here is a simple application of the above computation.

Corollary 1.30. If x1, . . . , xn are distinct complex numbers then for any complex numbers r1, . . . , rn
there exists a polynomial of degree ≤ n− 1 uniquely determined by the conditions

P (x1) = r1, . . . , p(xn) = rn. (1.21)

Proof. The polynomial P must have the form

P (x) = a0 + a1x+ · · ·+ an−1x
n−1,

where the coefficients a0, . . . , an−1 are to be determined. We will do this using (1.21) which can be
rewritten as a system of linear equations in which the unknown are the coefficients a0, . . . , an−1,

a0 + a1x1 + · · ·+ an−1x
n−1
1 = r1

a0 + a1x2 + · · ·+ an−1x
n−1
2 = r2

...
...

...
a0 + a1xn + · · ·+ an−1x

n−1
n = rn.

We can rewrite this in matrix form
1 x1 · · · xn−1

1

1 x2 · · · xn−1
2

...
...

...
...

1 xn · · · xn−1
n


︸ ︷︷ ︸

=V (x1,...,xn)†

·


a0
a1
...

an−1

 =


r1
r2
...
rn

 .

Because the numbers x1, . . . , xn are distinct, we deduce from (1.20) that

detV (x1, . . . , xn)
† = V (x1, . . . , xn) ̸= 0.

Hence the above linear system has a unique solution a0, . . . , an−1. ⊓⊔
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1.7. Exercises.

Exercise 1.1. Prove that the map in Example 1.2 is indeed a bilinear map. ⊓⊔

Exercise 1.2. Prove Proposition 1.4. ⊓⊔

Exercise 1.3. Fix n ∈ N, n ≥ 2 and set In := {1, . . . , n}
(i) Show that for any 1 ≤ i < j ≤ n we have τij ◦ τij = 1In .

(ii) Prove that for any permutation σ ∈ Sn there exists a sequence of transpositions τi1j1 , . . . , τimjm ,
m < n, such that

σ ◦ τimjm ◦ · · · ◦ τi1j1 = 1In .

Conclude that any permutation is a product of transpositions. Hint. Define k1 = k1(σ) as the unique

element of σn such that σ(k) = 1. If k1(σ) ̸= 1 compute k1
(
σ ◦ τ1k

)
.

⊓⊔

Exercise 1.4. Decompose the permutation(
1 2 3 4 5
5 4 3 2 1

)
as a composition of transpositions. ⊓⊔

Exercise 1.5. Suppose that Φ ∈ T2(U) is a symmetric bilinear map. Define Q : U → F by setting

Q(u) = Φ(u,u), ∀u ∈ U .

Show that for any u,v ∈ U we have

Φ(u,v) =
1

4

(
Q(u+ v)−Q(u− v)

)
. ⊓⊔

Exercise 1.6. Prove that the map

Φ : R2 × R2 → R, Φ(u,v) = u1v2 − u2v1,

is bilinear, and skew-symmetric. ⊓⊔

Exercise 1.7. (a) Show that a bilinear form Φ : U × U → F is skew-symmetric if and only if
Φ(u,u) = 0, ∀u ∈ U .
Hint: Expand Φ(u+ v,u+ v) using the bilinearity of Φ.
(b) Prove that an n-linear form Φ ∈ Tn(U) is skew-symmetric if and only if for any i ̸= j and any
vectors u1, . . . ,un ∈ U such that ui = uj we have

Φ(u1, . . . ,un) = 0.

Hint. Use the trick in part (a) and Exercise 1.3. ⊓⊔

Exercise 1.8. Compute the determinant of the following 5× 5-matrix
1 2 3 4 5
2 1 2 3 4
3 2 1 2 3
4 3 2 1 2
5 4 3 2 1

 .
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Exercise 1.9. Fix complex numbers x and h. Compute the determinant of the matrix
1 −1 0 0
x h −1 0
x2 hx h −1
x3 hx2 hx h

 .
Can you generalize thus example? ⊓⊔

Exercise 1.10. Prove the equality (1.19). ⊓⊔

Exercise 1.11. (a) Consider a degree (n− 1) polynomial

P (x) = an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0, an−1 ̸= 0.

Compute the determinant of the following matrix.

V =


1 1 · · · 1
x1 x2 · · · xn
...

...
...

...
xn−2
1 xn−2

2 · · · xn−2
n

P (x1) P (x2) · · · P (xn)

 .
(b) Compute the determinants of the following n× n matrices

A =


1 1 · · · 1
x1 x2 · · · xn
...

...
...

...
xn−2
1 xn−2

2 · · · xn−2
n

x2x3 · · ·xn x1x3x4 · · ·xn · · · x1x2 · · ·xn−1

 ,
and

B =


1 1 · · · 1
x1 x2 · · · xn
...

...
...

...
xn−2
1 xn−2

2 · · · xn−2
n

(x2 + x3 + · · ·+ xn)
n−1 (x1 + x3 + x4 + · · ·+ xn)

n−1 · · · (x1 + x2 + · · ·+ xn−1)
n−1

 .
Hint. To compute detB it is wise to write S = x1 + · · ·+xn so that x2 +x3 + · · ·+xn = (S−x1), x1 +x3 + · · ·+xn = S−x2

etc. Next observe that (S − x)k is a polynomial of degree k in x. ⊓⊔

Exercise 1.12. Suppose that A is skew-symmetric n× n matrix, i.e.,

A† = −A.
Show that detA = 0 if n is odd. ⊓⊔

Exercise 1.13. Suppose that A = (aij)1≤i,j≤n is an n× n matrix with complex entries.
(i) Fix complex numbers x1, . . . , xn, y1, . . . , yn and consider the n× n matrix B with entries

bij = xiyjaij .

Show that
detB = (x1y1 · · ·xnyn) detA.
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(ii) Suppose that C is the n× n matrix with entries

cij = (−1)i+jaij .

Show that detC = detA.
⊓⊔

Exercise 1.14. Suppose we are given three sequences of numbers a = (ak)k≥1, b = (bk)k≥1 and
c = (ck)k≥1. To these sequences we associate a sequence of Jacobi matrices

Jn =


a1 b1 0 0 · · · 0 0
c1 a2 b2 0 · · · 0 0
0 c2 a3 b3 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · cn−1 an

 . (J )

(i) Show that
det Jn = an det Jn−1 − bn−1cn−1 det Jn−2. (1.22)

Hint: Expand along the last row.

(ii) Suppose that above we have

ck = 1, bk = 2, ak = 3, ∀k ≥ 1.

Compute det J1,det J2. Using (1.22) determine det J3,det J4, det J5, det J6,det J7. Can
you detect a pattern?

⊓⊔

Exercise 1.15. Suppose we are given a sequence of polynomials with complex coefficients (Pn(x))n≥0,
degPn = n, for all n ≥ 0,

Pn(x) = anx
n + · · · , an ̸= 0.

Denote by V n the space of polynomials with complex coefficients and degree ≤ n.
(i) Show that the collection {P0(x), . . . , Pn(x)} is a basis of V n.

(ii) Show that for any x1, . . . , xn ∈ C we have

det


P0(x1) P0(x2) · · · P0(xn)
P1(x1) P1(x2) · · · P1(xn)

...
...

...
...

Pn−1(x1) Pn−1(x2) · · · Pn−1(xn)

 = a0a1 · · · an−1

∏
i<j

(xj − xi).

Hint. Factor out a0 from the first row, a1 from the second row etc. Then use row operations to compute the determinant.

⊓⊔

Exercise 1.16. To any polynomial P (x) = c0 + c1x + . . . + cn−1x
n−1 of degree ≤ n − 1 with

complex coefficients we associate the n× n circulant matrix

CP =


c0 c1 c2 · · · cn−2 cn−1

cn−1 c0 c1 · · · cn−3 cn−2

cn−2 cn−1 c0 · · · cn−4 cn−3

· · · · · · · · · · · · · · · · · ·
c1 c2 c3 · · · cn−1 c0

 ,
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Set
ρ = e

2πi
n , i =

√
−1,

so that ρn = 1. Consider the n×n Vandermonde matrix Vρ = V (1, ρ, . . . , ρn−1) defined as in (1.17)
(i) Show that for any j = 1, . . . , n− 1 we have

1 + ρj + ρ2j + · · ·+ ρ(n−1)j = 0.

(ii) Show that
CP · Vρ = Vρ ·Diag

(
P (1), P (ρ), . . . , P (ρn−1)

)
,

where Diag(a1, . . . , an) denotes the diagonal n×n-matrix with diagonal entries a1, . . . , an.
(iii) Show that

detCP = P (1)P (ρ) · · ·P (ρn−1). ⊓⊔
(iv) Suppose that P (x) = 1 + 2x+ 3x2 + 4x3 so that CP is a 4× 4-matrix with integer entries

and thus detCP is an integer. Find this integer.
(v) Generalize the computation at (iv).

Exercise 1.17. Consider the n× n-matrix

A =


0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 0


(i) Find the matrices

A2, A3, . . . , An.

(ii) Compute (I −A)(I +A+ · · ·+An−1).
(iii) Find the inverse of (I −A).

⊓⊔

Exercise 1.18. Let
P (x) = xd + ad−1x

d−1 + · · ·+ a1x+ a0

be a polynomial of degree d with complex coefficients. We denote by S the collection of sequences
of complex numbers, i.e., functions

f :
{
0, 1, 2, . . .

}
→ C, n 7→ f(n).

This is a complex vector space in a standard fashion. We denote by SP the subcollection of sequences
f ∈ S satisfying the recurrence relation

f(n+ d) + ad−1f(n+ d− 1) + · · · a1f(n+ 1) + a0f(n) = 0, ∀n ≥ 0. (RP )

(a) Show that SP is a vector subspace of S.
(b) Show that the map I : SP → Cd which associates to f ∈ SP its initial values If ,

If =


f(0)
f(1)

...
f(d− 1)

 ∈ Cd

is an isomorphism of vector spaces.
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(c) For any λ ∈ C we consider the sequence fλ defined by

fλ(n) = λn, ∀n ≥ 0.

(Above it is understood that λ0 = 1.) Show that fλ ∈ SP if and only if P (λ) = 0, i.e., λ is a root of
P .
(d) Suppose P has d distinct roots λ1, . . . , λd ∈ C. Show that the collection of sequences fλ1 , . . . , fλd
is a basis of SP .
(e) Consider the Fibonacci sequence

(
f(n)

)
n≥0

defined by

f(0) = f(1) = 1, f(n+ 2) = f(n+ 1) + f(n), ∀n ≥ 0.

Thus,
f(2) = 2, f(3) = 3, f(4) = 5, f(5) = 8, f(6) = 13, . . . .

Use the results (a)–(d) above to find a short formula describing f(n). ⊓⊔

Exercise 1.19. Let b, c be two distinct complex numbers. Consider the n× n Jacobi matrix

Jn =



b+ c b 0 0 · · · 0 0
c b+ c b 0 · · · 0 0
0 c b+ c b · · · 0 0
...

...
...

...
...

...
...

0 0 · · · 0 c b+ c b
0 0 0 0 · · · c b+ c


.

Find a short formula for det Jn.
Hint: Use the results in Exercises 1.14 and 1.18. ⊓⊔



22 LIVIU I. NICOLAESCU

2. SPECTRAL DECOMPOSITION OF LINEAR OPERATORS

2.1. Invariants of linear operators. Suppose that U is an n-dimensional F-vector space. We denote
by L(U) the space of linear operators (maps) T : U → U . We already know that once we choose a
basis e = (e1, . . . , en) of U we can represent T by a matrix

A = M(e, T ) = (aij)1≤i,j≤n,

where the elements of the k-th column of A describe the coordinates of Tek in the basis e, i.e.,

Tek = a1ke1 + · · ·+ anken =

n∑
j=1

ajkej .

A priori, there is no good reason of choosing the basis e = (e1, . . . , en) over another f = (f1, . . . ,fn).
With respect to this new basis the operator T is represented by another matrix

B = M(f , T ) = (bij)1≤i,j≤n, Tfk =

n∑
j=1

bjkf j .

The basis f is related to the basis e by a transition matrix

C = (cij)1≤i,j≤n, fk =

n∑
j=1

cjkej .

Thus the, k-th column of C describes the coordinates of the vector fk in the basis e. Then C is
invertible and

B = C−1AC. (2.1)

The space U has lots of bases, so the same operator T can be represented by many different matrices.
The question we want to address in this section can be loosely stated as follows.

Find bases of U so that, in these bases, the operator T represented by ”very simple” matrices.

We will not define what a ”very simple” matrix is, but we will agree that the more zeros a matrix
has, the simpler it is. The above question is closely related to the concept of invariant of a linear
operator. An invariant is roughly speaking a quantity naturally associated to the operator that does
not change when we change bases.

Definition 2.1. (a) A subspace V ⊂ U is called an invariant subspace of the linear operator T ∈
L(U) if

Tv ∈ V , ∀v ∈ V .

(b) A nonzero vector u0 ∈ U is called an eigenvector of the linear operator T if and only if the linear
subspace spanned by u0 is an invariant subspace of T . ⊓⊔

Example 2.2. (a) Suppose that T : U → U is a linear operator. Its null space or kernel

kerT :=
{
u ∈ U ; Tu = 0

}
,

is an invariant subspace of T . Its dimension, dimkerT , is an invariant of T because in its definition
we have not mentioned any particular basis. We have already encountered this dimension under a
different guise.
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If we choose a basis e = (e1, . . . , en) of U and use it to represent T as an n × n matrix A =
(aij)1≤i,j≤n, then dimkerT is equal to the nullity of A, i.e., the dimension of the vector space of
solutions of the linear system

Ax = 0, x =

 x1
...
xn

 ∈ Fn.

The range
R(T ) =

{
Tu; u ∈ U

}
is also an invariant subspace of T . Its dimension dimR(T ) can be identified with the rank of the
matrix A above. The rank nullity theorem implies that

dimkerT + dimR(T ) = dimU . (2.2)

(b) Suppose that u0 ∈ U is an eigenvector of T . Then Tu0 ∈ span(u0) so that there exists λ ∈ F
such that

Tu0 = λu0. ⊓⊔

2.2. The determinant and the characteristic polynomial of an operator. Assume again that U is
an n-dimensional F-vector space. A more subtle invariant of an operator T ∈ L(U) is its determinant.
This is a scalar detT ∈ F. Its definition requires a choice of a basis of U , but the end result is
independent of any choice of basis. Here are the details.

Fix a basis
e = {e1, . . . , en}

of U . We use it to represent T as an n× n real matrix A = (aij)1≤i,j≤n. More precisely, this means
that

Tej =
n∑
i=1

aijei, ∀j = 1, . . . , n.

If we choose another basis of U ,
f = (f1, . . . ,fn),

then we can represent T by another n× n matrix B = (bij)1≤i,j≤n, i.e.,

Tf j =

n∑
i=1

bijf i, j = 1, . . . , n.

As we have discussed above the basis f is obtained from e via a change-of-basis matrix C =
(cij)1≤i,j≤n, i.e.,

f j =

n∑
i=1

cijej , j = 1, . . . , n.

Moreover the matrices A,B are related by the transition rule (2.1),

B = C−1AC.

We say that two n×n matrices A,B are similar if there exists an invertible n×n matrix C such that
B = C−1AC. Similar matrices represent the same linear operator, but in different bases.

If A,B are similar, then

detB = det(C−1AC) = detC−1 detAdetC = detA.

The upshot is that the similar matrices A and B have the same determinant. Thus, no mater what
basis of U we choose to represent T as an n×nmatrix, the determinant of that matrix is independent
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of the basis used. This number, denoted by detT is an invariant of T called the determinant of the
operator T . Here is a simple application of this concept.

Corollary 2.3.
kerT ̸= 0⇐⇒ detT = 0. ⊓⊔

More generally, for any x ∈ F consider the operator

x1− T : U → U ,

defined by

(x1− T )u = xu− Tu, ∀u ∈ U .

Note that ifA,B are matrices representing T in different bases, thenB = C−1AC for some invertible
matrix C. We deduce that

x1−B = C−1x1C − C−1AC = C−1(x1−A)C.

Thus, the matrices x1 − A and x1 − B are similar for any x ∈ F and thus they have the same
determinant. We set

PT (x) := det(x1−A) = det(x1−B)

The function PT (x) is an invariant of T .

Proposition 2.4. The quantity PT (x) is a polynomial of degree n = dimU in the variable x.

Proof. Choose a basis e = (e1, . . . , en). In this basis the operator T is represented by an n × n
matrix A = (aij)1≤i,j≤n and the operator x1− T is represented by the matrix

xI −A =


x− a11 −a12 −a13 · · · −a1n
−a21 x− a22 −a23 · · · −a2n

...
...

...
...

...
−an1 −an2 −an3 · · · x− ann

 .
As explained in Remark 1.13, the determinant of this matrix is a sum of products of certain choices
of n entries of this matrix, namely the entries that form a rook placement. Since there are exactly
n entries in this matrix that contain the variable x, we see that each product associated to a rook
placement of entries is a polynomial in x of degree ≤ n. There exists exactly one rook placement
so that each of the entries of this placement contain the term x. This placement is easily described,
it consists of the terms situated on the diagonal of this matrix, and the product associated to these
entries is

(x− a11) · · · (x− ann).

Any other rook placement contains at most (n−1) entries that involve the term x, so the corresponding
product of these entries is a polynomial of degree at most n− 1. Hence

det(xI −A) = (x− a11) · · · (x− ann) + polynomial of degree ≤ n− 1.

Hence PT (x) = det(xI −A) is a polynomial of degree n in x. ⊓⊔

Definition 2.5. The polynomial PT (x) is called the characteristic polynomial of the operator T . ⊓⊔
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Recall that a number λ ∈ F is called an eigenvalue of the operator T if and only if there exists
u ∈ U \ 0 such that Tu = λu, i.e.,

(λ1− T )u = 0.

Thus λ is an eigenvalue of T if and only if ker(λI − T ) ̸= 0. Invoking Corollary 2.3 we obtain the
following important result.

Corollary 2.6. A scalar λ ∈ F is an eigenvalue of T if and only if it is a root of the characteristic
polynomial of T , i.e., PT (λ) = 0. ⊓⊔

The collection of eigenvalues of an operator T is called the spectrum of T and it is denoted by
spec(T ). If λ ∈ spec(T ), then the subspace ker(λ1−T ) ⊂ U is called the eigenspace corresponding
to the eigenvalue λ.

From the above corollary and the fundamental theorem of algebra we obtain the following impor-
tant consequence.

Corollary 2.7. If T : U → U is a linear operator on a complex vector space U , then spec(T ) ̸= ∅.⊓⊔

We say that a linear operator T : U → U is triangulable if there exists a basis e = (e1, . . . , en)
of U such that the matrix A representing T in this basis is upper triangular. We will refer to A as
a triangular representation of T . Such a triangular representation need not be unique. The linear
operators over complex vector spaces are triangulable.

Theorem 2.8 (Schur). Suppose that U is an n-dimensional complex vector space and T ∈ L(U) is
a linear operator. Then T is triangulable.

Proof. We argue by induction on n. The result is trivially true when n = 1. So we assume it is true
for operators on complex vectors spaces of dimension n − 1 and we prove it for a linear operator T
on a complex n-dimensional vector space U . In this case spec(T ) ̸= ∅. Fix an eigenvalue λ of T and
choose a nonzero eigenvector u1, Tu1 = λu1. Complete u1 to a basis {u1, u2, . . . , un} of U . The
matrix representing T in this basis has the block decomposition

A =


λ ∗ ∗ ∗
0
... A1

0

 .
Above, the blockA1 is an (n−1)×(n−1) matrix defining a linear operator on the (n−1)-dimensional
space

V = span{u2, . . . , un}.
More concretely, any vector u is described uniquely as a linear combination u = c1u1 + v, c1 ∈ C,
v ∈ V and then

Tvk = cku1 +A1vk, k = 2, . . . , n.

By induction, we can find a basis v2, . . . , vn of V such that, in this basis, the operator A1 is rep-
resented by the upper triangular matrix B1. In the basis {u1, v2, . . . , vn} of U the operator T is
represented by the upper triangular matrix

λ ∗ ∗ ∗
0
... B1

0

 .
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⊓⊔

Corollary 2.9. Suppose that T : U → U is a triangulable operator. Then for any basis e =
(e1, . . . , en) of U such that the matrix A = (aij)1≤i,j≤n representing T in this basis is upper trian-
gular, we have

PT (x) = (x− a11) · · · (x− ann).

Thus, the eigenvalues of T are the elements along the diagonal of any triangular representation of T .
⊓⊔

Suppose that T is a complex linear operator. If A and B are two triangular representations of T ,
then

(x− a11) · · · (x− ann) = PT (x) = (x− b11) · · · (x− bnn) (2.3)

We have the following result whose proof is left to you as an exercise.
We say that two lists of numbers λ⃗ = (λ1, . . . , λn) and µ⃗ = (µ1, . . . , µn) coincide up to a permu-

tation, and we write this λ⃗ =p µ⃗, if there exists a permutation σ ∈ Sn such that

µk = λσ(k), ∀k = 1, . . . , n.

Example 2.10. (a) Note that (3, 1, 1, 2) =p (1, 3, 2, 1) =p (3, 2, 1, 1)

(b) Two lists of numbers coincide up to a permutation if one list can be obtained from another by a
succession of switches of location of pairs of elements. For example

( 3 , 1, 1 , 2) =p ( 1 , 1, 3 , 2), (1, 1 , 3 , 2) =p (1, 3 , 1 , 2).

⊓⊔

Proposition 2.11. Suppose λ⃗ = (λ1, . . . , λn) ∈ Cn, µ⃗ = (µ1, . . . , µn) ∈ Cn are such that

(z − λ1) · · · (z − λn) = (z − µ1) · · · (z − µn), ∀z ∈ C,

then λ⃗ =p µ⃗. ⊓⊔

Using (2.3) and Proposition 2.11 we deduce that the list of numbers b11, . . . , bnn is simply a per-
mutation of the list a11, . . . , ann. For any λ ∈ C we denote by mλ(T ) the number of times λ appears
in one of these lists. Note that λ is an eigenvalue of T if and only if mλ(T ) > 0. In this case mλ(T )
is called the algebraic multiplicity of the eigenvalue λ.

We deduce from Theorem 2.8 the following important consequence.

Corollary 2.12. Suppose that T is a linear operator on the finite dimensional complex vector space
U . Then

detT =
∏

λ∈spec(T )

λmλ(T ), (2.4a)

PT (x) =
∏

λ∈spec(T )

(x− λ)mλ(T ), (2.4b)

∑
λ∈spec(T )

mλ(T ) = degPT = dimU = n. (2.4c)
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2.3. Symmetric polynomials. A polynomial f in n complex variables λ⃗ is called symmetric if

λ⃗ =p µ⃗ ⇒ f(λ⃗) = f(µ⃗).

Any symmetric polynomial f in n complex variables defines an invariant of a linear operator T on an
n-dimensional complex vector space U . More precisely define

f(T ) = f(a11, . . . , ann),

where A = (aij)1≤i,j≤n is any upper triangular matrix representing T in some basis of U .
A fundamental collection of symmetric polynomials are the elementary symmetric polynomials

ck(λ1, . . . , λn) =
∑

1≤i1<···<ik≤n
λi1 · · ·λik , k = 1, . . . , n.

For example,

c1(λ1, . . . , λn) = λ1 + · · ·+ λn =

n∑
i=1

λi,

c2(λ1, . . . , λn) =
∑

1≤i<j≤n
λiλj

cn(λ1, . . . , λn) = λ1 · · ·λn.
To prove that the polynomials ck are symmetric observe that

(1 + xλ1) · · · (1 + xλn) = 1 + c1(λ)x+ · · ·+ ck(λ)x
k + · · ·+ cn(λ)x

n.

If we permute the λ’s, the left-hand side of the above equality does not change and thus neither does
the right-hand side. From the above equality we also deduce.

(x+ λ1) · · · (x+ λn) = xn + c1(λ1)x
n−1 + · · ·+ ck(λ)x

n−k + · · ·+ cn(λ).

If λ1, . . . , λn are the eigenvalues (repeated according to their multiplicities) of a linear operator T on
a complex n-dimensional space U complex n× n matrix, then

PT (x) = (x− λ1) · · · (x+ λn) = xn − c1(λ1)x
n−1 + · · ·+ (−1)kck(λ)x

n−k + · · ·+ (−1)ncn(λ).

If the upper triangular complex n× n matrix A represents the matrix T in some basis, then

λ1 + · · ·+ λn = a11 + · · ·+ ann,

and we deduce
trT = a11 + · · ·+ ann = c1(λ).

Similarly
cn(λ) = λ1 · · ·λn = a11 · · · ann = detT.

Another important class of symmetric polynomials is given by

pk(λ1, . . . , λn) =

n∑
j=1

λkj , k = 1, 2, . . . .

E.g.,
p1 = c1, p2 = λ21 + · · ·+ λ2n, . . . .
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Theorem 2.13 (Netwon-Giraud). For 1 ≤ m ≤ n we have

pm − pm−1c1 + pm−2c2 + · · ·+ (−1)m−1p1cm−1 + (−1)mmcm = 0. (2.5)

More explicitly
c1 = p1, −2c2 = p2 − p1c1, 3c3 = p3 − p2c1 + p1c2, . . .

We deduce successively

c1 = p1, 2c2 = p2 − p21, 3c3 = p3 − p2p1 +
1

2
p1(p2 − p21), . . .

In other words the polynomials ck are uniquely determined by the polynomials p1, . . . , pn.

Proof. The polynomial on the right hand side of (2.5) is a sum of terms of the form

Tk
j,i1,...,ik

:= (−1)kλm−k
j λi1 · · ·λik , k = 0, . . . ,m− 1, 1 ≤ i1 < · · · < ik ≤ n,

and
Tm
j,i1,...,im−1

:= (−1)mλjλi1 · · ·λim−1 , i1 < · · · < im−1, j ̸∈ {i1, . . . , im−1}.

Note that if j ∈ {i1, . . . , ik}, say j = iℓ, then

Tk
j,i1,...,ik

+ Tk−1
j,i1,...,iℓ−1,iℓ+1,...,ik

= 0.

If j ̸∈ {i1, . . . , ik}, we arrange the numbers j, i1, . . . , ik in increasing order, j1 < · · · < jk < jk+1 and then

Tk
j,i1,...,ik

+ Tk+1
j,j1,...,jk+1

= 0.

⊓⊔

2.4. Generalized eigenspaces. Suppose that T : U → U is a linear operator on the n-dimensional
F-vector space. Suppose that spec(T ) ̸= ∅. Choose an eigenvalue λ ∈ spec(T ).

Lemma 2.14. Let k be a positive integer. Then

ker(λ1− T )k ⊂ ker(λ1− T )k+1.

Moreover, if ker(λ1− T )k = ker(λ1− T )k+1, then

ker(λ1− T )k = ker(λ1− T )k+1 = ker(λ1− T )k+2 = ker(λ1− T )k+3 = · · · .

Proof. Observe that if (λ1− T )ku = 0, then

(λ1− T )k+1u = (λ1− T )(λ1− T )ku = 0,

so that ker(λ1− T )k ⊂ ker(λ1− T )k+1.
Suppose that

ker(λ1− T )k = ker(λ1− T )k+1.

To prove that ker(λ1− T )k+1 = ker(λ1− T )k+2 it suffices to show that

ker(λ1− T )k+1 ⊃ ker(λ1− T )k+2.

Let v ∈ ker(λ1− T )k+2. Then

(λ1− T )k+1(1− λT )v = 0,

so that (1− λT )v ∈ ker(λ1− T )k+1 = ker(λ1− T )k so that

(λ1− T )k(λ1− T )v = 0,

i.e., v ∈ ker(λ1− T )k+1. We have thus shown that

ker(λ1− T )k+1 = ker(λ1− T )k+2.
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The remaining equalities ker(λ1− T )k+2 = ker(λ1− T )k+3 = · · · are proven in a similar fashion.
⊓⊔

Corollary 2.15. For any m ≥ n = dimU we have

ker(λ1− T )m = ker(λ1− T )n, (2.6a)

R(λ1− T )m = R(λ1− T )n. (2.6b)

Proof. Consider the sequence of positive integers

d1(λ) = dimF(λ1− T ), . . . , dk(λ) = dimF(λ1− T )k, . . . .

Lemma 2.14 shows that
d1(λ) ≤ d2(λ) ≤ · · · ≤ n = dimU .

Thus there must exist k such that dk(λ) = dk+1(λ). We set

k0 = min
{
k; dk(λ) = dk+1(λ)

}
.

Thus
d1(λ) < · · · < dk0(λ) ≤ n,

so that k0 ≤ n. On the other hand, since dk0(λ) = dk0+1(λ) we deduce that

ker(λ1− T )k0 = ker(λ1− T )m, ∀m ≥ k0.

Since n ≥ k0 we deduce

ker(λ1− T )n = ker(λ1− T )k0 = ker(λ1− T )m, ∀m ≥ k0.

This proves (2.6a). To prove (2.6b) observe that if m > n, then

R(λ1− T )m = (λ1− T )n
(
(λ1− T )m−nV

)
⊂ (λ1− T )n

(
V
)
= R(λ1− T )n.

On the other hand, the rank-nullity formula (2.2) implies that

dimR(λ1− T )n = dimU − dimker(λ1− T )n

= dimU − dimker(λ1− T )m = dimR(λ1− T )m.

This proves (2.6b). ⊓⊔

Definition 2.16. Let T : U → U be a linear operator on the n-dimensional F-vector space U .
(i) For any λ ∈ spec(T ) the subspace ker(λ1− T )n is called the generalized eigenspace of T

corresponding to the eigenvalue λ and it is denoted by Eλ(T ).
(ii) The depth of the eigenvalue is the smallest positive integer kλ = kλ(T ) such that

dimker(λ1− T )k = dimker(λ1− T )k+1.

⊓⊔

Proposition 2.17. Let T ∈ L(U), dimFU = n, and λ ∈ spec(T ). Then the generalized eigenspace
Eλ(T ) is an invariant subspace of T .

Proof. We need to show that TEλ(T ) ⊂ Eλ(T ). Let u ∈ Eλ(T ), i.e.,

(λ1− T )nu = 0.

Clearly λu− Tu ∈ ker(λ1− T )n = Eλ(T ). Since λu ∈ Eλ(T ) we deduce that

Tu = λu− (λu− Tu) ∈ Eλ(T ).

⊓⊔
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Theorem 2.18. Suppose that T : U → U is a triangulable operator on the the n-dimensional F-
vector space U . Then, for any λ ∈ spec(T ), dimEλ(T ) = mλ(T ). We recall that mλ(T ) is equal
to the number of times λ appears along the diagonal of a triangular representation of T .

Proof. We will argue by induction on n. For n = 1 the result is trivially true. For the inductive step
we assume that the result is true for any triangulable operator on an (n − 1)-dimensional F-vector
space V , and we will prove that the same is true for triangulable operators acting on an n-dimensional
space U .

Let T ∈ L(U) be such an operator. We can then find a basis e = (e1, . . . , en) of U such that, in
this basis, the operator T is represented by the upper triangular matrix

A =


λ1 ∗ ∗ ∗ ∗
0 λ2 ∗ ∗ ∗
...

...
...

...
...

0 · · · 0 λn−1 ∗
0 · · · 0 0 λn


Suppose that λ ∈ spec(T ). For simplicity we assume λ = 0. Otherwise, we carry the discussion
using instead the operator T ′ = T − λ1. Let ν be the number of times 0 appears on the diagonal of
A, i.e., ν = m0(T ). We have to show that

ν = dimkerTn.

Denote by V the subspace spanned by the vectors e1, . . . , en−1. Observe that V is an invariant
subspace of T , i.e., TV ⊂ V . If we denote by S the restriction of T to V we can regard S as a linear
operator S : V → V .

The operator S is triangulable because in the basis (e1, . . . , en−1) of V it is represented by the
upper triangular matrix

B =


λ1 ∗ ∗ ∗
0 λ2 ∗ ∗
...

...
...

...
0 · · · 0 λn−1

 .
Denote by µ the number of times 0 appears on the diagonal of B. The induction hypothesis implies
that

µ = dimkerSn−1 = dimkerSn.

Clearly µ ≤ ν. Note that
kerSn ⊂ kerTn

so that
µ = dimkerSn ≤ dimkerTn.

We distinguish two cases.
1. λn ̸= 0. In this case we have µ = ν so it suffices to show that

kerTn ⊂ V . (2.7)

Indeed, if (2.7) were true, we would conclude that kerTn ⊂ kerSn, and thus

dimkerTn = dimkerSn = µ = ν.

To prove (2.7) we argue by contradiction. Suppose that there exists u ∈ kerTn such that u ̸∈ V .
Thus, we can find v ∈ V and c ∈ F \ 0 such that

u = v + cen.
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Note that Tnv ∈ V and
en = λnen + vector in V .

Thus
Tncen = cλnnen + vector in V

so that
Tnu = cλnnen + vector in V ̸= 0.

This contradiction completes the discussion of Case 1.
2. λn = 0. In this case we have ν = µ+ 1 so we have to show that

dimkerTn = µ+ 1.

We need an auxiliary result.

Lemma 2.19. There exists u ∈ U \ V such that Tnu = 0 so that

dim(V + kerTn) ≥ dimV + 1 = n. (2.8)

Proof. Set
vn := Ten.

Observe that vn ∈ V . From (2.6b) we deduce that RSn−1 = RSn so that there exists v0 ∈ V such
that

Sn−1vn = Snv0.

Set u := en − v0. Note that u ∈ U \ V ,

Tu = vn − Tv0 = vn − Sv0,

Tnu = Tn−1(vn − Sv0) = Sn−1vn − Snv0 = 0.

⊓⊔

Now observe that

n = dimU ≥ dim(V + kerTn)
(2.8)

≥ n,

so that
dim(V + kerTn) = n.

We conclude that

n = dim(V + kerTn) = dim(kerTn) + dimV︸ ︷︷ ︸
n−1

−dim(U ∩ kerTn)︸ ︷︷ ︸
=µ

= dim(kerTn) + n− 1− µ,

which shows that
dimkerTn = µ+ 1 = ν.

⊓⊔
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☞ In the remainder of this section we will assume that F is the field of complex numbers, C.

For any polynomial with complex coefficients

p(x) = a0 + a1x+ · · ·+ anx
n ∈ C[x]

and any linear operator T on a complex vector space U we set

p(T ) = a01+ a1T + · · ·+ anT
n.

Note that if p(x), q(x) ∈ C[x], and if we set r(x) = p(x)q(x), then

r(T ) = p(T )q(T ).

Theorem 2.20 (Cayley-Hamilton). Suppose T is a linear operator on the complex vector space U .
If PT (x) is the characteristic polynomial of T , then

PT (T ) = 0.

Proof. Fix a basis e = (e1, . . . , en) in which T is represented by the upper triangular matrix

A =


λ1 ∗ ∗ ∗ ∗
0 λ2 ∗ ∗ ∗
...

...
...

...
...

0 · · · 0 λn−1 ∗
0 · · · 0 0 λn


Note that

PT (x) = det(x1− T ) =

n∏
j=1

(x− λj)

so that

PT (T ) =
n∏
j=1

(T − λj1).

For j = 1, . . . , N we define
U j := span{e1, . . . , ej}.

and we set U0 = {0}. Since A is upper triangular, we deduce that for any j = 1, . . . , n we have

(T − λj1)U j ⊂ U j−1.

Thus

PT (T )U =

n∏
j=1

(T − λj)Un =

n−1∏
j=1

(T − λj)
(
(T − λn1)Un

)

⊂
n−1∏
j=1

(T − λj)Un−1 ⊂
n−2∏
j=1

(T − λj)Un−2 ⊂ · · · ⊂ (T − λ1)U1 ⊂ {0}.

In other words,
PT (T )u = 0, ∀u ∈ U .

⊓⊔
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Example 2.21. Consider the 2× 2-matrix

A =

[
3 2
−2 −1

]
Its characteristic polynomial is

PA(x) = det(xI −A) = det

[
x− 3 −2
2 x+ 1

]
= (x− 3)(x+ 1) + 4 = x2 − 2x− 3 + 4 = x2 − 2x+ 1.

The Cayley-Hamilton theorem shows that

A2 − 2A+ 1 = 0.

Let us verify this directly. We have

A2 =

[
5 8
−4 −3

]
and

A2 − 2A+ I =

[
5 4
−4 −3

]
− 2

[
3 2
−2 −1

]
+

[
1 0
0 1

]
= 0.

We can rewrite the last equality as
A2 = 2A− I

so that
An+2 = 2An+1 −An,

We can rewrite this as

An+2 −An+1 = An+1 −An = An −An−1 = · · · = A− I.

Hence

An = (An −An−1) + (An−1 −An−2) + · · ·+ (A− I)︸ ︷︷ ︸
=n(A−I)

+I = nA− (n− 1)I. ⊓⊔

2.5. The Jordan normal form of a complex operator. Let U be a complex n-dimensional vector
space and T : U → U . For each eigenvalue λ ∈ spec(T ) we denote by Eλ(T ) the corresponding
generalized eigenspace, i.e.,

u ∈ Eλ(T )⇐⇒∃k > 0 : (T − λ1)ku = 0.

From Proposition 2.17 we know that Eλ(T ) is an invariant subspace of T of dimension mλ(T ).
Suppose that the spectrum of T consists of ℓ distinct eigenvalues,

spec(T ) =
{
λ1, . . . , λℓ

}
.

Proposition 2.22.
U = Eλ1(T )⊕ · · · ⊕ Eλℓ(T ).

Proof. It suffices to show that

U = Eλ1(T ) + · · ·+ Eλℓ(T ), (2.9a)

dimU = dimEλ1(T ) + · · ·+ dimEλℓ(T ). (2.9b)
The equality (2.9b) follows from (2.4c) since

dimU = mλ1(T ) + · · ·+mλℓ(T ) = dimEλ1(T ) + · · ·+ dimEλℓ(T ),
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so we only need to prove (2.9a). Set

V := Eλ1(T ) + · · ·+ Eλℓ(T ) ⊂ U .

We have to show that V = U .
Note that since each of the generalized eigenspaces Eλ(T ) are invariant subspaces of T , so is their

sum V . Denote by S the restriction of T to V , which we regard as an operator S : V → V .
If λ ∈ spec(T ) and v ∈ Eλ(T ) ⊂ V , then

(S − λ1)kv = (T − λ1)kv = 0

for some k ≥ 0. Thus λ is also an eigenvalue of S and v is also a generalized eigenvector of S. This
proves that

spec(T ) ⊂ spec(S),

and
Eλ(T ) ⊂ Eλ(S), ∀λ ∈ spec(T ).

In particular, this implies that

dimU =
∑

λ∈spec(T )

dimEλ(T ) ≤
∑

µ∈spec(S)

dimEµ(S) = dimV ≤ dimU .

This shows that dimV = dimU and thus V = U . ⊓⊔

For any λ ∈ spec(T ) we denote by Sλ the restriction of T on the generalized eigenspace Eλ(T ).
Since this is an invariant subspace of T we can regard Sλ as a linear operator

Sλ : Eλ(T ) → Eλ(T ).

Arguing as in the proof of the above proposition we deduce thatEλ(T ) is also a generalized eigenspace
of Sλ. Thus, the spectrum of Sλ consists of a single eigenvalue and

Eλ(T ) = Eλ(S) = ker(λ1− Sλ)
dimEλ(T ) = ker(λ1− Sλ)

mλ(T ).

Thus, for any u ∈ Eλ(T ) we have

(λ1− Sλ)
mλ(T )u = 0,

i.e.,
(Sλ − λ1)mλ(T ) = (−1)mλ(T )(λ1− Sλ)

mλ(T ) = 0.

Definition 2.23. A linear operator N : U → U is called nilpotent if Nk = 0 for some k > 0. ⊓⊔

If we set Nλ = Sλ − λ1 we deduce that the operator Nλ is nilpotent.

Definition 2.24. Let N : U → U be a nilpotent operator on a finite dimensional complex vector
space U . A tower of N is an ordered collection T of nonzero vectors

u1,u2, . . . ,uk ∈ U

satisfying the equalities

Nu1 = 0, Nu2 = u1, . . . ,Nuk = uk−1.

The vector u1 is called the bottom of the tower, the vector uk is called the top of the tower, while the
integer k is called the height of the tower. ⊓⊔
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FIGURE 1. Pancaking a tower of height 4.

In Figure 1 we depicted a tower of height 4. Observe that the vectors in a tower are generalized
eigenvectors of the corresponding nilpotent operator.

Towers interact in a rather pleasant way.

Proposition 2.25. Suppose that N : U → U is a nilpotent operator on a complex vector space U
and T1, . . . ,Tr are towers of N with bottoms b1, . . . , br.

If the bottom vectors b1, . . . , br are linearly independent, then the following hold.

(i) The towers T1, . . . ,Tr are mutually disjoint, i.e., Ti ∩ Tj = ∅ if i ̸= j.
(ii) The union

T = T1 ∪ · · · ∪ Tr

is a linearly independent family of vectors.

Proof. Denote by ki the height of the tower Ti and set

k = max(k1, . . . , kr), K := k1 + · · ·+ kr = #T.

We will argue by induction on k, the sum of the heights of the towers.
For k = 1 the result is trivially true. Assume the result is true for all collections of towers with

maximum heights < k and linear independent bases, and we will prove that it is true for collection of
towers with maximal heights = k.

Let T = T1, . . . ,Tr be a collection of towers with maximum height k. Denote by T′
i the tower

obtained by removing the top of the tower Ti if the height of the tower Ti is k. Otherwise we set
T′
i = Ti. Define

T′ := T′
1 ∪ · · · ∪ T′

r.

The collection of towers T′
1, . . .T

′
r has maximal height k − 1. The induction assumption implies that

the collection T′ is linearly independent. Denote by t1, . . . , tℓ the tops of T of height k so that

T = {t1, . . . , tℓ} ∪ T′.

We argue by contradiction. Suppose that T is linearly dependent. Hence there exist complex numbers

c1, . . . , cℓ, xu,u ∈ T′,

not all equal to zero, such that
ℓ∑

j=1

cjtj +
∑
u∈T′

xuu = 0.



36 LIVIU I. NICOLAESCU

Clearly some of the numbers cj are nonzero since T′ is linearly independent. Hence
ℓ∑

j=1

cjNtj +
∑
u∈T′

xuNu = 0.

Note that the vectors Ntj are tops of towers in T′, but none of the vectors Nu, u ∈ T′ is a top of a
tower in T′. Hence

ℓ∑
j=1

cjNtj +
∑
u∈T′

xuNu.

is a nontrivial linear combination of vectors in T′ equal to zero. This is impossible. ⊓⊔

Theorem 2.26 (Jordan normal form of a nilpotent operator). Let N : U → U be a nilpotent operator
on an n-dimensional complex vector space U . Then U has a basis consisting of a disjoint union of
towers of N .

Proof. We will argue by induction on the dimension n of U . For n = 1 the result is trivially true. We
assume that the result is true for any nilpotent operator on a space of dimension < n and we prove it
is true for any nilpotent operator N on a space U of dimension n.

Observe that V = R(N) is an invariant subspace of N . Moreover, since kerN ̸= 0, we deduce
from the rank-nullity theorem that

dimV = dimU − dimkerN < dimU .

Denote by M the restriction of N to V . We view M as a linear operator M : V → V . Clearly M
is nilpotent. The induction assumption implies that there exist a basis of V consisting of mutually
disjoint towers of M ,

T1, . . . ,Tr.

For any j = 1, . . . , r we denote by kj the height of Tj , by bj the bottom of Tj and by tj the top of
Tj . By construction

dimR(N) = k1 + · · ·+ kr.

Since tj ∈ V = R(N) there exists uj ∈ U such that (see Figure 2)

tj = Nuj .

Next observe that the bottoms b1, . . . , br belong to kerN and are linearly independent, because
they are a subfamily of the linearly independent family T1 ∪ · · · ∪ Tr. We can therefore extend the
family {b1, . . . , br} to a basis of kerN ,

b1, . . . , br,v1, . . . ,vs, r + s = dimkerN .

We obtain new towers T̂1, . . . , T̂r, T̂r+1, . . . , T̂r+s defined by (see Figure 2)

T̂1 := T1 ∪ {u1}, . . . , T̂r := Tr ∪ {ur}, T̂r+1 := {v1}, . . . , T̂r+s := {vs}.
The sum of the heights of these towers is

(k1 + 1) + (k2 + 1) + · · ·+ (kr + 1) + 1 + · · ·+ 1︸ ︷︷ ︸
s

= (k1 + · · ·+ kr)︸ ︷︷ ︸
=dimR(N)

+ (r + s)︸ ︷︷ ︸
=dimkerN

= dimU .
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FIGURE 2. Towers in R(N).

By construction, their bottoms are linearly independent and Proposition 2.25 implies that they are
mutually disjoint and their union is a linearly independent collection of vectors. The above computa-
tion shows that the number of elements in the union of these towers is equal to the dimension of U .
Thus, this union is a basis of U . ⊓⊔

Definition 2.27. A Jordan basis of a nilpotent operator N : U → U is a basis of U consisting of a
disjoint union of towers of N arranged in decreasing order of their heights.. ⊓⊔

Example 2.28. (a) Suppose that the nilpotent operator N : U → U admits a Jordan basis consisting
of a single tower

e1, . . . , en.

Denote by Cn the matrix representing N in this basis. We use this basis to identify U with Cn and
thus

e1 =



1
0
0
...
0
0


, e2 =



0
1
0
...
0
0


, . . . , en =



0
0
0
...
0
1


.

From the equalities

Ne1 = 0, Ne2 = e1, Ne3 = e2, . . .

we deduce that the first column of Cn is trivial, the second column is e1, the 3-rd column is e2 etc.
Thus Cn is the n× n matrix.

Cn =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0
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The matrix Cn is called a (nilpotent) Jordan cell of size n.
(b) Suppose that the nilpotent operator N : U → U admits a Jordan basis consisting of mutually

disjoint towers T1, . . . ,Tr of heights k1, . . . , kr. For j = 1, . . . , r we set

U j = span(Tj).

Observe that U j is an invariant subspace of N , Tj is a basis of U j and we have a direct sum decom-
position

U = U1 ⊕ · · · ⊕U r.

The restriction of N to U j is represented in the basis Tj by the Jordan cell Ckj so that in the basis
T = T1 ∪ · · · ∪ Tr the operator N has the block-matrix description

Ck1 0 0 · · · 0
0 Ck2 0 · · · 0
...

...
...

...
...

0 0 0 · · · Ckr

 . ⊓⊔

We want to point out that the sizes of the Jordan cells correspond to the heights of the towers in a
Jordan basis. While there may be several Jordan bases, the heights of the towers are the same in all
of them; see Remark 2.30. In other words, these heights are invariants of the nilpotent operator. ⊓⊔

Definition 2.29. The Jordan invariant of a nilpotent operator N is the nonincreasing list of the sizes
of the Jordan cells that describe the operator in a Jordan basis. ⊓⊔

Remark 2.30 (Algorithmic construction of a Jordan basis). Here is how one constructs a Jordan basis
of a nilpotent operator N : U → U on a complex vector space U of dimension n.

(i) Compute N2,N3, . . . and stop at the moment m when Nm = 0. Set

R0 = U , R1 = R(N), R2 = R(N2), . . . , Rm = R(Nm) = {0}.

Observe that R1, R2, . . . , Rm are invariant subspaces of N , satisfying

R0 ⊃ R1 ⊃ R2 ⊃ · · · ,

(ii) Denote by Nk the restriction of N to Rk, viewed as an operator Nk : Rk → Rk. Note that
Nm−1 = 0, N0 = N and

Rj = R(Nj−1), ∀j = 1, . . . ,m.

Set rj = dimRj , Kj := dimkerNj , kj = dimKj so that kj = rj − rj+1. Note that

Rm−1 = Km−1 ⊂ Km−2 ⊂ Km−2 ⊂ · · · .

(iii) Construct a basis Bm−1 of Rm−1 = Km−1. Bm−1 consists of rm−1 vectors.
(iv) For each b ∈ Bm−1 find a vector t(b) ∈ U such that

b = Nm−1t(b).

For each b ∈ Bm−1 we thus obtain a tower of height m

Tm−1(b) =
{
b = Nm−1t(b),Nm−2t(b), . . . ,Nt(b), t(b)

}
, b ∈ Bm−1.

(v) Extend Bm−1 ⊂ Rm−1 ⊂ Rm−2 to a basis

Bm−2 = Bm−1 ∪ Cm−2

of Km−2.
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(vi) For each b ∈ Cm−2 ⊂ Rm−2 find t = t(b) ∈ N such that Nm−2t = b. For each b ∈ Cm−2

we thus obtain a tower of height m− 1

Tm−2(b) =
{
b = Nm−2t(b), . . . ,Nt(b), t(b)

}
, b ∈ Bm−2

(vii) Extent Bm−2 to a basis
Bm−3 = Bm−2 ∪ Cm−3

of Km−3.
(viii) For each b ∈ Cm−3 ⊂ Rm−3, find t(b) ∈ N such that Nm−3t(b) = b. For each b ∈ Cm−3

we thus obtain a tower of height m− 2

Tm−3(b) =
{
b = Nm−3t(b), . . . ,Nt(b), t(b)

}
, b ∈ Cm−3

(ix) Iterate the previous two steps
(x) In the end we obtain a basis

B0 = Bm−1 ∪ Cm−2 ∪ · · · ∪ C0

of kerN0 = kerN , vectors t(b), b ∈ Cj , and towers

Tj(b) =
{
b = N jt(b), . . . ,Nt(b), t(b)

}
, j = 0, . . . ,m− 1, b ∈ Cj .

These towers form a Jordan basis of N .
(xi) For uniformity set Cm−1 = Bm−1, and for any j = 1, . . . ,m denote by cj the cardinality of

Cj−1. In the above Jordan basis the operatorN will be a dirrect sum of c1 cells of dimension
1, c2 cells of dimension 2, etc. In terms of towers, there are c1 towers of height 1, c2 towers
of height 2 etc. We obtain the identities

rm−1 = cm, rm−2 = cm−1 + 2cm, rm−3 = cm−3 + 2cm−2 + 3cm,

rj = cj+1 + 2cj+2 + · · ·+ (m− j)cm, ∀j = 0, . . . ,m− 1. (2.10)
where r0 = n.

Indeed, by construction, dimKj − dimKj+1 = cj+1 so

dimKj = cj+1 + · · ·+ cm.

On the other hand
rj = dimKj + rj+1.

If we treat the equalities (2.10) as a linear system with unknown c1, . . . , cm, we see that the matrix
of this system is upper triangular with only 1-s along the diagonal. It is thus invertible so that the
numbers c1, . . . , cm are uniquely determined by the numbers rj which are invariants of the operator
N . This shows that the sizes of the Jordan cells are independent of the chosen Jordan basis.

If you are interested only in the sizes of the Jordan cells, all you have to do is find the integers m,
r1, . . . , rm−1 and then solve the system (2.10). Exercise 2.17 explains how to explicitly express the
cj-s in terms of the rj-s. ⊓⊔

Remark 2.31. To find the Jordan invariant of a nilpotent operator N on a complex n-dimensional
space proceed as follows.

(i) Find the smallest integer m such that Nm = 0.
(ii) Find the ranks rj of the matrices N j , j = 0, . . . ,m− 1, where N0 := 1.

(iii) Find the nonnegative integers c1, . . . , cm by solving the linear system (2.10).
(iv) The Jordan invariant of N is the list

m, . . . ,m︸ ︷︷ ︸
cm

, (m− 1), . . . , (m− 1)︸ ︷︷ ︸
cm−1

, . . . , 1, . . . , 1︸ ︷︷ ︸
c1

.
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⊓⊔

If T : U → U is an arbitrary linear operator on a complex n-dimensional space U with spectrum

spec(T ) =
{
λ1, . . . , λm},

then we have a direct sum decomposition

U = Eλ1(T )⊕ · · · ⊕ Eλm(T ),

where Eλj (T ) denotes the generalized eigenspace of T corresponding to the eigenvalue λj . The
generalized eigenspace Eλj (T ) is an invariant subspace of T and we denote by Sλj the restriction of
T to Eλj (T ). The operator Nλj = Sλj − λj1 is nilpotent.

A Jordan basis of U is basis obtained as a union of the Jordan bases of the nilpotent operators
Nλ1 , . . . , Nλr . The matrix representing T in a Jordan basis is a direct sum of elementary Jordan
λ-cells

Cn(λ) = Cn + λI =


λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 .

Definition 2.32. The Jordan invariant of a complex operator T is a collection of lists, one list for
every eigenvalue of of T . The list Lλ corresponding to the eigenvalue λ is the Jordan invariant of the
nilpotent operator Nλ, the restriction of T − λ1 to Eλ(T ) arranged in noincreasing order. ⊓⊔

Example 2.33. Consider the 4× 4 matrix

A =


1 0 0 0
1 −1 1 0
2 −4 3 0
0 0 0 1

 ,
viewed as a linear operator C4 → C4.

Expanding along the first row and then along the last column we deduce that

PA(x) = det(xI −A) = (x− 1)2 det

[
x+ 1 −1
4 x− 3

]
= (x− 1)4.

Thus A has a single eigenvalue λ = 1 which has multiplicity 4. Set

N := A− I =


0 0 0 0
1 −2 1 0
2 −4 2 0
0 0 0 0

 .
The matrix N is nilpotent. In fact we have

N2 = 0
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Upon inspecting N we see that each of its columns is a multiple of the first column. This means that
the range of N is spanned by the vector

u1 := Ne1 =


0
1
2
0

 ,
where e1, . . . , e4 denotes the canonical basis of C4.

The vector u1 is a tower in R(N) which we can extend to a taller tower of N

T1 = (u1,u2), u2 = e1.

Next, we need to extend the basis {u1} of R(N) to a basis of kerN . The rank nulity theorem tells us
that

dimR(N) + dimkerN = 4,

so that dimkerN = 3. Thus, we need to find two more vectors v1,v2 so that the collection
{u1,v1,v2} is a basis of kerN .

To find kerN we need to solve the linear system

Nx = 0, x =


x1
x2
x3
x4

 .
which we do using Gauss elimination, i.e., row operations on N . Observe that

N =


0 0 0 0
1 −2 1 0
2 −4 2 0
0 0 0 0

 ∼


1 −2 1 0
2 −4 2 0
0 0 0 0
0 0 0 0

 ∼


1 −2 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Hence

kerN =
{
x ∈ C4; x1 − 2x2 + x3 = 0

}
,

and thus a basis of kerN is

f1 =


2
1
0
0

 , f2 =


−1
0
1
0

 , f3 :=


0
0
0
1

 .
Observe that

u1 = 2f1 + f2,

and thus the collection {u1,f2,f3} is also a basis of kerN .
We now have a Jordan basis of N consisting of the towers

T1 = {u1,u2}, T2 = {f2}, T3 = {f3}.
In this basis the operator is described as a direct sum of three Jordan cells: a cell of dimension 2, and
two cells of dimension 1. Thus the Jordan invariant of A consists of single list L1 corresponding to
the single eigenvalue 1. More precisely

L1 = 2, 1, 1. ⊓⊔
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2.6. Exercises.

Exercise 2.1. Denote by U3 the space of polynomials of degree ≤ 3 with real coefficients in one
variable x. We denote by B the canonical basis of U3,

B =
{
1, x, x2, x3

}
.

(a) Consider the linear operator D : U3 → U3 given by

U3 ∋ p 7→ Dp =
dp

dx
∈ U3.

Find the matrix that describes D in the canonical basis B.
(b) Consider the operator ∆ : U3 → U3 given by

(∆p)(x) = p(x+ 1)− p(x).

Find the matrix that describes ∆ in the canonical basis B.
(c) Show that for any p ∈ U3 the function

x 7→ (Lp)(x) =

∫ ∞

0
e−t

dp(x+ t)

dx
dt

is also a polynomial of degree ≤ 3 and then find the matrix that describes L in the canonical basis
B. ⊓⊔

Exercise 2.2. (a) For any n× n matrix A = (aij)1≤i,j≤n we define the trace of A as the sum of the
diagonal entries of A,

trA := a11 + · · ·+ ann =

n∑
i=1

aij .

Show that if A,B are two n× n matrices then

trAB = trBA.

(b) Let U be an n-dimensional F-vector space, and e, f be two bases of U . Suppose that T : U → U
is a linear operator represented in the basis e by the matrix A and the basis f by the matrix B. Prove
that

trA = trB.

(The common value of these traces is called the trace of the operator T and it is denoted by trT .)
Hint: Use part (a) and (2.1).
(c) Consider the operator A : F2 → F2 described by the matrix

A =

[
a11 a12
a21 a22

]
.

Show that
PT (x) = x2 − trAx+ detA.

(d) Let T be a linear operator on the n-dimensional F-vector space. Prove that the characteristic
polynomial of T has the form

PT (x) = det(x1− T ) = xn − (trT )xn−1 + · · ·+ (−1)n detT. ⊓⊔

Exercise 2.3. Suppose T : U → U is a linear operator on the F-vector space U , and V 1,V 2 ⊂ U
are invariant subspaces of T . Show that V 1 ∩ V 2 and V 1 + V 2 are also invariant subspaces of T .⊓⊔
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Exercise 2.4. Consider the Jacobi matrix

Jn =


2 1 0 0 · · · 0 0
1 2 1 0 · · · 0 0
0 1 2 1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 2


(a) Let Pn(x) denote the characteristic polynomial of Jn,

Pn(x) = det(xI − Jn).

Show that
P1(x) = x− 2, P2(x) = x2 − 4x+ 3 = (x− 1)(x− 3),

Pn(x) = (x− 2)Pn−1(x)− Pn−2(x), ∀n ≥ 3.

(b) Show that all the eigenvalues of J4 are real and distinct, and then conclude that the matrices
1, J4, J

2
4 , J

3
4 are linearly independent. ⊓⊔

Exercise 2.5. Prove Proposition 2.11. Hint. Use induction on n. ⊓⊔

Exercise 2.6. Suppose that A and B are complex n × n matrices. Prove that AB and BA have the
same characteristic polynomial.Hint: Consider first the case when A is invertible. For the general case show that ε1 + A is

invertible for all sufficiently small ε. ⊓⊔

Exercise 2.7. Suppose that A = (aij)1≤i,j≤n is an n× n-matrix such that

a1j + a2j + · · ·+ anj = 1, ∀j = 1, . . . , n.

Let

x =

 x1
...
xn


be an eigenvector of A such that x1 + · · ·+ xn ̸= 0. Prove that Ax = x. ⊓⊔

Exercise 2.8. Consider the n × n matrix A = (aij)1≤i,j≤n, where aij = 1, for all i, j, which we
regard as a linear operator Cn → Cn. Consider the vector

c =


1
1
...
1

 ∈ Cn.

(a) Compute Ac.
(b) Compute dimR(A), dimkerA and then determine spec(A).
(c) Find the characteristic polynomial of A. ⊓⊔

Exercise 2.9. Fix the nonzero complex numbers z1, . . . , zn and denote by A = (aij)1≤i,j≤n be the
n× n matrix with entries aij = zi/zj . Find the characteristic polynomial of A. ⊓⊔

Exercise 2.10. Find the eigenvalues and the eigenvectors of the circulant matrix described in Exercise
1.16. ⊓⊔
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Exercise 2.11. Let A, B be two complex n × n matrices such that tr(Am) = tr(Bm), ∀m =
1, . . . ,m.

(i) Let λ⃗ = (λ1, . . . , λn) and µ⃗ = (µ1, . . . , µn) be the eigenvalues of A and B respectively,
repeated according to their multiplicities. Prove that

trAm =
n∑
j=1

λmj , trBm =
n∑
j=1

µmj , ∀m ∈ N.

(ii) Prove that A and B have the same characteristic polynomial. Hint. Use Theorem 2.13.

⊓⊔

Exercise 2.12. Let T : U → U be a linear operator on the finite dimensional complex vector space
U . Suppose that m is a positive integer and u ∈ U is a vector such that

Tm−1u ̸= 0, but Tmu = 0.

Show that the vectors

u, Tu, . . . , Tm−1u

are linearly independent. ⊓⊔

Exercise 2.13. Let T : U → U be a linear operator on the finite dimensional complex vector space
U . Show that if

dimkerT dimU−1 ̸= dimkerT dimU ,

then T is a nilpotent operator and

dimkerT j = j, ∀j = 1, . . . ,dimU .

Can you construct an example of an operator T satisfying the above properties? ⊓⊔

Exercise 2.14. Let S, T be two linear operators on the finite dimensional complex vector space U .
Show that ST is nilpotent if and only if TS is nilpotent. ⊓⊔

Exercise 2.15. Find a Jordan basis of the linear operator C4 → C4 described by the ×4 matrix

A =


1 0 −1 −1
0 1 1 1
0 0 1 0
0 0 0 1

 . ⊓⊔

Exercise 2.16. Find a Jordan basis of the linear operator C7 → C7 given by the matrix

A =



3 2 1 1 0 −3 1
−1 2 0 0 1 −1 1
1 1 3 0 −6 5 −1
0 2 1 4 1 −3 1
0 0 0 0 3 0 0
0 0 0 0 −2 5 0
0 0 0 0 −2 0 5


. ⊓⊔
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Exercise 2.17. (a) Find the inverse of the m×m matrix

A =


1 2 3 · · · m− 1 m
0 1 2 · · · m− 2 m− 1
...

...
...

...
...

...
0 0 0 · · · 1 2
0 0 0 · · · 0 1

 .
(b) Find the Jordan normal form of the above matrix. ⊓⊔
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3. EUCLIDEAN SPACES

In the sequel F will denote either the field R of real numbers, or the field C of complex numbers.
Any complex number has the form z = a + bi, i =

√
−1, so that i2 = −1. The real number a is

called the real part of z and it is denoted by Re z. The real number b is called the imaginary part of
z and its is denoted by Im z.

The conjugate of a complex number z = a+ bi is the complex number

z̄ = a− bi.

In particular, any real number is equal to its conjugate. Note that

z + z̄ = 2Re z, z − z̄ = 2i Im z.

The norm or absolute value of a complex number z = a+ bi is the real number

|z| =
√
a2 + b2.

Observe that
|z|2 = a2 + b2 = (a+ bi)(a− bi) = zz̄.

In particular, if z ̸= 0 we have
1

z
=

1

|z|2
z̄.

3.1. Inner products. Let U be an F-vector space.

Definition 3.1. An inner product on U is a map

⟨−,−⟩ : U ×U → F, U ×U ∋ (u1,u2) 7→ ⟨u1,u2⟩ ∈ F,

satisfying with the following condition.

(i) Linearity in the first variable, i.e., ∀u,v,v2 ∈ U , x, y ∈ F we have

⟨xu+ yv,v2⟩ = x⟨u,v2⟩+ y⟨v,v2⟩.

(ii) Conjugate linearity in the second variable, i.e., ∀u1,u,v ∈ U , x, y ∈ F we have

⟨u1, xu+ yv⟩ = x̄⟨u1,u⟩+ ȳ⟨u1,v⟩.

(iii) Hermitian property, i.e., ∀u,v ∈ U we have

⟨v,u⟩ = ⟨u,v⟩.

(iv) Positive definiteness, i.e.,
⟨u,u⟩ ≥ 0, ∀u ∈ U ,

and
⟨u,u⟩ = 0⇐⇒u = 0.

A vector space u equipped with an inner product is called an Euclidean space. ⊓⊔

Example 3.2. (a) The standard real n-dimensional Euclidean space. The vector space Rn is
equipped with a canonical inner product

⟨−,−⟩ : Rn × Rn → R.
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More precisely if

u =


u1
u2
...
un

 , v =


v1
v2
...
vn

 ∈ Rn,

then

⟨u,v⟩ = u1v1 + · · ·+ unvn =

n∑
k=1

ukvk = u† · v.

You can verify that this is indeed an inner product, i.e., it satisfies the conditions (i)-(iv) in Definition
3.1.

(b) The standard complex n-dimensional Euclidean space. The vector space Cn is equipped
with a canonical inner product

⟨−,−⟩ : Cn × Cn → C.
More precisely if

u =


u1
u2
...
un

 , v =


v1
v2
...
vn

 ∈ Cn

then

⟨u,v⟩ = u1v̄1 + · · ·+ unv̄n =

n∑
k=1

ukv̄k.

You can verify that this is indeed an inner product.
(c) Denote by Pn the vector space of polynomials with real coefficients and degree ≤ n. We can

define an inner product on Pn
⟨−,−⟩ : Pn × Pn → R,

by setting

⟨p, q⟩ =
∫ 1

0
p(x)q(x)dx, ∀p, q ∈ Pn.

You can verify that this is indeed an inner product.
(d) Any finite dimensional F-vector space U admits an inner product. Indeed, if we fix a basis

(e1, . . . , en) of U , then we define

⟨−,−⟩ : U ×U → F,
by setting 〈

u1e1 + · · ·+ unen , v1e1 + · · ·+ vnen

〉
= u1v̄1 + · · ·+ unv̄n. ⊓⊔

3.2. Basic properties of Euclidean spaces. Suppose that (U , ⟨−,−⟩) is an Euclidean vector space.
We define the norm or length of a vector u ∈ U to be the nonnegative number

∥u∥ :=
√

⟨u,u⟩.

Example 3.3. In the standard Euclidean space Rn of Example 3.2(a) we have

∥u∥ =

√√√√ n∑
k=1

u2k. ⊓⊔
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Theorem 3.4 (Cauchy-Schwarz inequality). For any u,v ∈ U we have∣∣ ⟨u,v⟩ | ≤ ∥u∥ · ∥v∥.
Moreover, the equality is achieved if and only if the vectors u,v are linearly dependent, i.e., collinear.

Proof. If ⟨u,v⟩ = 0, then the inequality is trivially satisfied. Hence we can assume that ⟨u,v⟩ ̸= 0.
In particular, u,v ̸= 0.

From the positive definiteness of the inner product we deduce that for any x ∈ F we have

0 ≤ ∥u− xv∥2 = ⟨u− xv,u− xv⟩ = ⟨u,u− xv⟩ − x⟨v,u− xv⟩

= ⟨u,u⟩ − x̄⟨u,v⟩ − x⟨v,u⟩+ xx̄⟨v,v⟩
= ∥u∥2 − x̄⟨u,v⟩ − x⟨v,u⟩+ |x|2∥v∥2.

If we let
x0 =

1

∥v∥2
⟨u,v⟩, (3.1)

then

x̄0⟨u,v⟩+ x0⟨v,u⟩ =
1

∥v∥2
⟨u,v⟩⟨u,v⟩+ 1

∥v∥2
⟨u,v⟩⟨u,v⟩ = 2

|⟨u,v⟩|2

∥v∥2
,

|x0|2∥v∥2 =
|⟨u,v⟩|2

∥v∥2
,

and thus

0 ≤ ∥u− x0v∥2 = ∥u∥2 − 2
|⟨u,v⟩|2

∥v∥2
+

|⟨u,v⟩|2

∥v∥2
= ∥u∥2 − |⟨u,v⟩|2

∥v∥2
. (3.2)

Thus
|⟨u,v⟩|2

∥v∥2
≤ ∥u∥2

so that ∣∣ ⟨u,v⟩ |2 ≤ ∥u∥2 · ∥v∥2.
Note that if 0 = ⟨u,v⟩ = ∥u∥ · ∥v∥ then at least one of the vectors u,v must be zero.

If 0 ̸= ⟨u,v⟩ = ∥u∥ · ∥v∥, then by choosing x0 as in (3.1) we deduce as in (3.2) that

∥u− x0v∥ = 0.

Hence u = x0v. ⊓⊔

Remark 3.5. The Cauchy-Schwarz theorem is a rather nontrivial result, which in skilled hands can
produce remarkable consequences. Observe that if U is the standard real Euclidean space of Example
3.2(a), then the Cauchy-Schwarz inequality implies that for any real numbers u1, v1, . . . , un, vn we
have ∣∣∣∣∣

n∑
k=1

ukvk

∣∣∣∣∣ ≤
√√√√ n∑

k=1

u2k ·

√√√√ n∑
k=1

v2k

If we square both sides of the above inequality we deduce(
n∑
k=1

ukvk

)2

≤

(
n∑
k=1

u2k

)
·

(
n∑
k=1

v2k

)
. (3.3)

⊓⊔
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Observe that if u,v are two nonzero vectors in an Euclidean space (U , ⟨−,−⟩), then the Cauchy-
Schwarz inequality implies that

Re⟨u,v⟩
∥u∥ · ∥v∥

∈ [−1, 1].

Thus there exists a unique θ ∈ [0, π] such that

cos θ =
Re⟨u,v⟩
∥u∥ · ∥v∥

.

This angle θ is called the angle between the two nonzero vectors u,v. We denote it by ∡(u,v). In
particular, we have, by definition,

cos∡(u,v) =
Re⟨u,v⟩
∥u∥ · ∥v∥

. (3.4)

Note that if the two vectors u,v were perpendicular in the classical sense, i.e., ∡(u,v) = π
2 , then

Re⟨u,v⟩ = 0. This justifies the following notion.

Definition 3.6. Two vectors u,v in an Euclidean vector space (U , ⟨−,−⟩) are said to be orthogonal
if ⟨u,v⟩ = 0. We will indicate the orthogonality of two vectors u,v using the notation u ⊥ v. ⊓⊔

☞ In the remainder of this subsection we fix an Euclidean space (U , ⟨−,−⟩).

Theorem 3.7 (Pythagora). If u ⊥ v, then

∥u+ v∥2 = ∥u∥2 + ∥v∥2.

Proof. We have

∥u+ v∥2 = ⟨u+ v,u+ v⟩ = ⟨u,u⟩+ ⟨u,v⟩︸ ︷︷ ︸
=0

+ ⟨v,u⟩︸ ︷︷ ︸
=0

+⟨v,v⟩

= ∥u∥2 + ∥v∥2.
⊓⊔

Theorem 3.8 (Triangle inequality).

∥u+ v∥ ≤ ∥u∥+ ∥v∥, ∀u,v ∈ U .

Proof. Observe that the inequality is can be rewritten equivalently as

∥u+ v∥2 ≤
(
∥u∥+ ∥v∥

)2
.

Observe that

∥u+ v∥2 = ⟨u+ v,u+ v⟩ = ⟨u,u⟩+ ⟨u,v⟩+ ⟨v,u⟩+ ⟨v,v⟩

∥u∥2 + ∥v∥2 + 2Re⟨u,v⟩ ≤ ∥u∥2 + ∥v∥2 + 2
∣∣ ⟨u,v⟩ ∣∣

(use the Cauchy-Schwarz inequality)

≤ ∥u∥2 + ∥v∥2 + 2∥u∥ · ∥v∥ =
(
∥u∥+ ∥v∥

)2
.

⊓⊔
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3.3. Orthonormal systems and the Gramm-Schmidt procedure. In the sequel U will denote an
n-dimensional Euclidean F-vector space. We will denote the inner product on U by ⟨−,−⟩.

Definition 3.9. A family of nonzero vectors{
u1, . . . ,uk

}
⊂ U

is called orthogonal if
ui ⊥ uj , ∀i ̸= j.

An orthogonal family {
u1, . . . ,uk

}
⊂ U

is called orthonormal if
∥ui∥ = 1, ∀i = 1, . . . , k.

A basis of U is called orthogonal (respectively orthonormal) if it is an orthogonal (respectively
orthonormal) family. ⊓⊔

Proposition 3.10. Any orthogonal family in U is linearly independent.

Proof. Suppose that {
u1, . . . ,uk

}
⊂ U

is an orthogonal family. If x1, . . . , xk ∈ F are such that

x1u1 + · · ·+ xkuk = 0,

then taking the inner product with uj of both sides in the above equality we deduce

0 = x1⟨u1,uj⟩+ · · ·+ xj−1⟨uj−1,uj⟩+ xj⟨uj ,uj⟩+ xj+1⟨uj+1,uj⟩+ · · ·+ xn⟨un,uj⟩
(⟨ui,uj⟩ = 0, ∀i ̸= j)

= xj∥uj∥2.
Since uj ̸= 0 we deduce xj = 0. This happens for any j = 1, . . . , k, proving that the family is
linearly independent. ⊓⊔

Theorem 3.11 (Gramm-Schmidt). Suppose that{
u1, . . . ,uk

}
⊂ U

is a linearly independent family. Then there exists an orthonormal family{
e1, . . . , ek

}
⊂ U

such that
span{u1, . . . ,uj

}
= span

{
e1, . . . , ej

}
, ∀j = 1, . . . , k.

Proof. We will argue by induction on k. For k = 1, if {u1} ⊂ U is a linearly independent family,
then u1 ̸= 0 and we set

e1 :=
1

∥u1∥
u1.

Clearly {e1} is an orthonormal family spanning the same subspace as {u1}.
Suppose that the result is true for any linearly independent family of vectors consisting of (k − 1)

vectors. We need to prove that the result is true for linearly independent families consisting of k
vectors. Let {

u1, . . . ,uk
}
⊂ U
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be such a family. The induction assumption implies that we can find an orthonormal system{
e1, . . . , ek−1

}
such that

span{u1, . . . ,uj
}
= span

{
e1, . . . , ej

}
, ∀j = 1, . . . , k − 1.

Define
vk := ⟨uk, e1⟩e1 + . . .+ ⟨uk, ek−1⟩ek−1,

fk := uk − vk.

Observe that
vk ∈ span

{
e1, . . . , ek−1

}
= span{u1, . . . ,uk−1

}
.

Since {u1, . . . ,uk} is a linearly independent family we deduce that

uk ̸∈
{
e1, . . . , ek−1

}
so that fk = uk − vk ̸= 0. We can now set

ek :=
1

∥fk∥
fk.

By construction ∥ek∥ = 1. Also note that if 1 ≤ j < k, then

⟨fk, ej⟩ = ⟨uk − vk, ej⟩ = ⟨uk, ej⟩ − ⟨vk, ej⟩

= ⟨uk, ej⟩ −
〈
⟨uk, e1⟩e1 + . . .+ ⟨uk, ek−1⟩ek−1︸ ︷︷ ︸

=vk

, ej

〉
⟨uk, ej⟩ − ⟨uk, ej⟩ · ⟨ejej⟩ = 0.

This proves that {e1, . . . , ek−1, ek} is an orthonormal family.
Finally observe that

uk = vk + fk = vk + ∥fk∥ek.
Since

vk ∈ span
{
e1, . . . , ek−1

}
we deduce

uk ∈ span
{
e1, . . . , ek−1, ek

}
and thus

span{u1, . . . ,uk
}
= span

{
e1, . . . , ek

}
⊓⊔

Remark 3.12. The strategy used in the proof of the above theorem is as important as the theorem
itself. The procedure we used to produce the orthonormal family {e1, . . . , ek}. This procedure goes
by the name of the Gram-Schmidt procedure. To understand how it works we consider a simple case,
when U is the space R2 equipped with the canonical inner product.

Suppose that

u1 =

[
3
4

]
, u2 :=

[
5
0

]
.

Then
∥u1∥2 = 32 + 42 = 9 + 16 = 25,

so that

e1 :=
1

∥u1∥
u1 =

 3
5

4
5

 .



52 LIVIU I. NICOLAESCU

Next

v2 = ⟨u2, e1⟩e1 = 3e1, f2 = u2 − v2 =

 5

0

−

 9
5

12
5


=

 16
5

−12
5

 = 4

 4
5

−3
5

 .
We see that f2 = 4 and thus

e2 =

 4
5

−3
5

 . ⊓⊔

The Gram-Schmidt theorem has many useful consequences. We will discuss a few of them

Corollary 3.13. Any finite dimensional Euclidean vector space (over F = R,C) admits an orthonor-
mal basis.

Proof. Apply Theorem 3.11 to a basis of the vector space. ⊓⊔

The orthonormal bases of an Euclidean space have certain computational advantages. Suppose that

e1, . . . , en

is an orthonormal basis of the Euclidean space U . Then the coordinates of a vector u ∈ U in this
basis are easily computed. More precisely, if

u = x1e1 + · · ·+ xnen, x1, . . . , xn ∈ F, (3.5)

then
xj = ⟨u, ej⟩ ∀j = 1, . . . , n. (3.6)

Indeed, the equality (3.5) implies that

⟨u, ej⟩ =
〈
x1e1 + · · ·+ xnen, ej

〉
= xj⟨ej , ej⟩ = xj ,

where at the last step we used the orthonormality condition which translates to

⟨ei, ej⟩ =

{
1, i = j

0, i ̸= j.

Applying Pythagora’s theorem we deduce

∥x1e1 + · · ·+ xnen∥2 = x21 + · · ·+ x2n = |⟨u, e1⟩|2 + · · ·+ |⟨u, en⟩ |2. (3.7)

Example 3.14. Consider the orthonormal basis e1, e2 of R2 constructed in Remark 3.12. If

u =

[
2
1

]
,

then the coordinates x1, x2 of u in this basis are given by

x1 = ⟨u, e1⟩ =
6

5
+

4

5
= 2,

x2 = ⟨u, e2⟩ =
8

5
− 3

5
= 1,

so that
u = 2e1 + e2. ⊓⊔
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Corollary 3.15. Any orthonormal family {
e1, . . . , ek

}
in a finite dimensional Euclidean vector can be extended to an orthonormal basis of that space.

Proof. According to Proposition 3.39, the family{
e1, . . . , ek

}
is linearly independent. Therefore, we can extend it to a basis of U ,{

e1, . . . , ek,uk+1, . . . ,un
}
.

If we apply the Gram-Schmidt procedure to the above linearly independent family we obtain an
orthonormal basis that extends our original orthonormal family.2 ⊓⊔

3.4. Orthogonal projections. Suppose that (U , ⟨−,−⟩) is a finite dimensional Euclidean F-vector
space. If X is a subset of U then we set

X⊥ =
{
u ∈ U ; ⟨u,x⟩ = 0, ∀x ∈ X

}
.

In other words, X⊥ consists of the vectors orthogonal to all the vectors in X . For this reason we will
often write u ⊥ X to indicate that u ∈ X⊥. The following result is left to the reader.

Proposition 3.16. (a) The subset X⊥ is a vector subspace of U .
(b)

X ⊂ Y ⇒ X⊥ ⊃ Y ⊥.

(c)
X⊥ =

(
span(X)

)⊥
. ⊓⊔

Theorem 3.17. If V is a subspace of U , then

U = V ⊕ V ⊥.

Proof. We need to check two things.
V ∩ V ⊥ = 0, (3.8a)
U = V + V ⊥. (3.8b)

Proof of (3.8a). If x ∈ V ∩ V ⊥ then
0 = ⟨x,x⟩

which implies that x = 0.
Proof of (3.8b). Fix an orthonormal basis of V ,

B := {e1, . . . , ek}.
Extend it to an orthonormal basis of U ,

e1, . . . , ek, ek+1, . . . , en.

By construction,
ek+1, . . . , en ∈ B⊥ =

(
span(B)

)⊥
= V ⊥

so that
span{ek+1, . . . , en} ⊂ V ⊥.

2Exercise 3.5 asks you to verify this claim.



54 LIVIU I. NICOLAESCU

Clearly any vector u ∈ U can be written as a sum of two vectors

u = v +w, v ∈ span(B) = V , w ∈ span{ek+1, . . . , en} ⊂ V ⊥.

⊓⊔

Corollary 3.18. If V is a subspace of U , then

V = (V ⊥)⊥.

Proof. Theorem 3.17 implies that for any subspace W of U we have

dimW⊥ = dimU − dimW .

If we let W = V ⊥ we deduce that

dim(V ⊥)⊥ = dimU − dimV ⊥.

If we let W = V we deduce
dimV ⊥ = dimU − dimV .

Hence
dimV = dim(V ⊥)⊥

so it suffices to show that
V ⊂ (V ⊥)⊥,

i.e., we have to show that any vector v in V is orthogonal to any vector w in V ⊥. Since w ∈ V ⊥ we
have w ⊥ v so that v ⊥ w. ⊓⊔

Suppose that V is a subspace of U . Then any u ∈ U admits a unique decomposition

u = v +w, v ∈ V , w ∈ V ⊥.

We set
PV u := v.

Observe that if

u0 = v0 +w0, u1 = v1 +w1, v0,v1 ∈ V , w0,w1 ∈ V ⊥,

then
(u0 + u1) = (v0 + v1)︸ ︷︷ ︸

∈V

+(w0 +w1)︸ ︷︷ ︸
∈V ⊥

and we deduce
PV (u0 + u1) = v0 + v1 = PV u0 + PV u1.

Similarly, if λ ∈ F and u ∈ U , then
λu = λv + λw

and we deduce
PV (λu) = λv = λPV u.

We have thus shown that the map

PV : U → U , u 7→ PV u

is a linear operator. It is called the the orthogonal projection onto the subpace V . Observe that

R(PV ) = V , kerPV = V ⊥. (3.9)

Note that PV u is the unique vector v in V with the property that (u− v) ⊥ V .
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Proposition 3.19. PV ⊥ = 1− PV .

Proof. Any vector u ∈ U admits a unique decomposition as a sum

u = u⊥ + u⊥⊥, u⊥ ∈ V ⊥, u⊥⊥ ∈ V ⊥⊥ = V .

By definition we have u⊥ = PV ⊥u and u⊥⊥ = PV u ⊓⊔

Proposition 3.20. Suppose V is a subspace of U and e1, . . . , ek is an orthonormal basis of V . Then

PV u = ⟨u, e1⟩e1 + · · ·+ ⟨u, ek⟩ek, ∀u ∈ U .

Proof. It suffices to show that the vector

w = u−
(
⟨u, e1⟩e1 + · · ·+ ⟨u, ek⟩ek

)
is orthogonal to all the vectors e1, . . . , ek because then it will be orthogonal to any linear combination
of these vectors. We have

⟨w, ej⟩ = ⟨u, ej⟩ −
(
⟨u, e1, ⟩⟨e1, ej⟩+ · · ·+ ⟨u, ek⟩⟨ek, ej⟩

)
.

Since e1, . . . , ek is an orthonormal basis of V we deduce that

⟨ei, ej⟩ =

{
1, i = j

0, i ̸= j.

Hence (
⟨u, e1, ⟩⟨e1, ej⟩+ · · ·+ ⟨u, ek⟩⟨ek, ej⟩

)
= ⟨u, ej⟩⟨ejej⟩ = ⟨u, ej⟩.

⊓⊔

Theorem 3.21. Let V be a subspace of U . Fix u0 ∈ U . Then

∥u0 − PV u0∥ ≤ ∥u0 − v∥, ∀v ∈ V ,

and we have equality if and only if v = v0. In other words, PV u0 is the vector in V closest to u0.

Proof. Set v0 := PV u0, w0 := u0 − PV u0 ∈ V ⊥. Then for any v ∈ V we have

u0 − v = (v0 − v) +w0.

Since v0 ⊥ (u0 − v) we deduce from Pythagoras’ Theorem that

∥u0 − v∥2 = ∥v0 − v∥2 + ∥w0∥2 ≥ ∥w0∥2 = ∥u0 − PV u0∥2.

Hence
∥u0 − PV u0∥ ≤ ∥u0 − v∥,

and we have equality if and only if v = v0 = PV u0. ⊓⊔

Proposition 3.22. Let V be a subspace of U . Then

P 2
V = PV ,

and
∥PV u∥ ≤ ∥u∥, ∀u ∈ U .
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Proof. By construction
PV v = v, ∀v ∈ V .

Hence
PV

(
PV u

)
= PV u, ∀u ∈ U

because PV u ∈ V .
Next, observe that for any u ∈ U we have PV u ⊥ (u− PV u) so that

∥u∥2 = ∥PV u∥2 + ∥u− PV u∥2 ≥ ∥PV u∥2.
⊓⊔

3.5. Linear functionals and adjoints on Euclidean spaces. Suppose that U is a finite dimensional
F-vector space, F = R,C. The dual of U , is the F-vector space of linear functionals on U , i.e., linear
maps

α : U → F.
The dual of U is denoted by U∗. The vector space U∗ has the same dimension as U and thus they
are isomorphic. However, there is no distinguished isomorphism between these two vector spaces!

We want to show that if we fix an inner product on U , then we can construct in a concrete way an
isomorphism between these spaces. Before we proceed with this construction let us first observe that
there is a natural bilinear map

B : U∗ ×U → F, B(α, u) = α(u).

Theorem 3.23 (Riesz representation theorem: the real case). Suppose that U is a finite dimensional
real vector space equipped with an inner product

⟨−,−⟩ : U ×U → R.
To any u ∈ U we associate the linear functional u∗ ∈ U∗ defined by the equality

B(u∗,x) = u∗(x) := ⟨x,u⟩, ∀x ∈ U .

Then the map D : U → U∗ given by

U ∋ u 7→ u∗ ∈ U∗

is a linear isomorphism.

Proof. Let us show that the map D is linear.
For any u,v,x ∈ U we have

(u+ v)∗(x) = ⟨x,u+ v⟩ = ⟨x,u⟩+ ⟨x,v⟩
= u∗(x) + v∗(x) = (u∗ + v∗)(x),

which show that
(u+ v)∗ = u∗ + v∗.

For any u,x ∈ U and any t ∈ R we have

(tu)∗(x) = ⟨x, tu⟩ = t⟨x,u⟩ = tu∗(x),

i.e., (tu)∗ = tu∗. This proved the claimed linearity. To prove that it is an isomorphism, we need to
show that it is both injective and surjective.
Injectivity. Suppose that u ∈ U is such that u∗ = 0. This means that u∗(x) = 0, ∀x ∈ U . If we let
x = u we deduce

0 = u∗(u) = ⟨u,u⟩ = ∥u∥2,
so that u = 0.
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Surjectivity. The dual of U has the same dimension as U and the rank nullity theorem implies that

dimR(D) = dimU − dimkerD = dimU = dimU∗.

Hence R(D) = U∗. ⊓⊔

Theorem 3.24 (Riesz representation theorem: the complex case). Suppose that U is a finite dimen-
sional complex vector space equipped with an inner product

⟨−,−⟩ : U ×U → C.

To any u ∈ U we associate the linear functional u∗ ∈ U∗ defined by the equality

B(u∗,x) = u∗(x) := ⟨x,u⟩, ∀x ∈ U .

Then the map D : U → U∗ given by

U ∋ u 7→ u∗ ∈ U∗

is bijective and conjugate linear, i.e., for any u,v ∈ U and any z ∈ C we have

(u+ v)∗ = u∗ + v∗, (zu)∗ = z̄u∗.

Proof. Let us first show that the map u 7→ u∗ is conjugate linear.
For any u,v,x ∈ U we have

(u+ v)∗(x) = ⟨x,u+ v⟩ = ⟨x,u⟩+ ⟨x,v⟩

= u∗(x) + v∗(x) = (u∗ + v∗)(x),

which show that
(u+ v)∗ = u∗ + v∗.

For any u,x ∈ U and any z ∈ C we have

(zu)∗(x) = ⟨x, zu⟩ = z̄⟨x,u⟩ = z̄u∗(x),

i.e., (zu)∗ = z̄u∗. This proved the claimed conjugate linearity. We now prove the bijectivity claim.
Injectivity. Suppose that u ∈ U is such that u∗ = 0. This means that u∗(x) = 0, ∀x ∈ U . If we let
x = u we deduce

0 = u∗(u) = ⟨u,u⟩ = ∥u∥2,
so that u = 0.
Surjectivity. We have to show that that for any α ∈ U∗ there exists u ∈ U such that α = u∗.

Let n = dimU . Fix an orthonormal basis e1, . . . , en of U . The linear functional α is uniquely
determined by its values on ei,

αi = α(ei).

Define

u :=
n∑
k=1

ᾱkek.

Then
u∗(ei) = ⟨ei,u⟩ = ⟨ei, ᾱ1e1 + · · ·+ ᾱiei + · · ·+ ᾱnen⟩

= ⟨ei, ᾱ1e1⟩+ · · ·+ ⟨ei, ᾱiei⟩+ · · ·+ ⟨ei, ᾱnen⟩ = ⟨ei, ᾱiei⟩ = αi⟨ei, ei⟩ = αi.

Thus
u∗(ei) = α(ei), ∀i = 1, . . . , n,

so that α = u∗. ⊓⊔
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Suppose that U and V are two F-vector spaces equipped with inner products ⟨−,−⟩U and respec-
tively ⟨−,−⟩V . Next, assume that T : U → V is a linear map.

Theorem 3.25. There exists a unique linear map S : V → U satisfying the equality

⟨Tu,v⟩V = ⟨u, Sv⟩U , ∀u ∈ U ,v ∈ V . (3.10)

This map is called the adjoint of T with respect to the inner products ⟨−,−⟩U , ⟨−,−⟩V and it is
denoted by T ∗. The equality (3.10) can then be rewritten

⟨Tu,v⟩V = ⟨u, T ∗v⟩U , ⟨T ∗v,u⟩U = ⟨v, Tu⟩U , ∀u ∈ U , v ∈ V . (3.11)

Proof. Uniqueness. Suppose there are two linear maps S1, S2 : V → U satisfying (3.10). Thus

0 = ⟨u, S1v⟩U − ⟨u, S2v⟩U = ⟨u, (S1 − S2)v⟩U , ∀u ∈ U ,v ∈ V .

For fixed v ∈ V we let u = (S1 − S2)v and we deduce from the above equality

0 = ⟨ (S1 − S2)v, (S1 − S2)v ⟩U = ∥(S1 − S2)v∥2U ,
so that (S1 − S2)v = 0, for any v in V . This shows that S1 = S2, thus proving the uniqueness part
of the theorem.
Existence. Any v ∈ V defines a linear functional

Lv : U → F, Lv(u) = ⟨Tu,v⟩V .
Thus there exists a unique vector Sv ∈ U such that

Lv = (Sv)∗⇐⇒⟨Tu,v⟩V = ⟨u, Sv⟩U , ∀u ∈ U .

One can verify easily that the correspondence V ∋ v 7→ Sv ∈ U described above is a linear map;
see Exercise 3.13. ⊓⊔

Example 3.26. Let T : U → V be as in the statement of Theorem 3.25. Assume m = dimFU ,
n = dimF V . Fix an orthonormal basis

e := {e1, . . . , em}
of U and an orthonormal basis

f := {f1, . . . ,fn}
of V . With respect to these bases the operator T is represented by an n×m matrix

A =


a11 a12 · · · a1m
a21 a22 · · · a2m

...
...

...
...

an1 an2 · · · anm

 ,
while the adjoint operator T ∗ : V → U is represented by an m× n matrix

A∗ =


a∗11 a∗12 · · · a∗1n
a∗21 a∗22 · · · a∗2n

...
...

...
...

a∗m1 a∗m2 · · · a∗mn

 .
The j-th column of A describes the coordinates of the vector Tej in the basis f ,

Tej = a1jf1 + · · · anjfn.
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We deduce that
⟨Tej ,f i⟩V = aij .

Hence
⟨f i, Tej⟩V = ⟨Tej ,f i⟩V = āij .

On the other hand, the i-th column of A∗ describes the coordinates of T ∗f i in the basis e so that

T ∗f i = a∗1ie1 + · · ·+ a∗miem

and we deduce that
⟨T ∗f i, ej⟩ = a∗ji.

On the other hand, we have

āij = ⟨f i, Tej⟩V
(3.11)
= ⟨T ∗f i, ej⟩ = a∗ji.

Thus, A∗ is the conjugate transpose of A. In other words, the entries of A∗ are the conjugates of the
corresponding entries of the transpose of A,

A∗ = A†. ⊓⊔

Definition 3.27. Let U be a finite dimensional Euclidean F-space with inner product ⟨−,−⟩. A linear
operator T : U → U is called selfadjoint or symmetric if T = T ∗, i.e.,

⟨Tu1,u2⟩ = ⟨u1, Tu2⟩, ∀u1,u2 ∈ U . ⊓⊔

Example 3.28. (a) Consider the standard real Euclidean n-dimensional space Rn. Any real n × n
matrix A can be identified with a linear operator TA : Rn → Rn. The operator TA is selfadjoint if
and only if the matrix A is symmetric, i.e.,

aij = aji, ∀i, j

or, equivalently A = A† = the transpose of A.
(b) Consider the standard complex Euclidean n-dimensional space Cn. Any complex n×n matrix

A can be identified with a line operator TA : Cn → Cn. The operator TA is selfadjoint if and only if
the matrix A is Hermitian, i.e.,

aij = āji, ∀i, j
or, equivalently A = A∗ = the conjugate transpose of A.

(c) Suppose that V is a subspace of the finite dimensional Euclidean space U . Then the orthogonal
projection PV : U → U is a selfadjoint operator, i.e.,

⟨PV u1,u2⟩ = ⟨u1, PV u2⟩, ∀u1,u2 ∈ U .

Indeed, let u1,u2 ∈ U . They decompose uniquely as

u1 = v1 +w1, u2 = v2 +w2, v1,v2 ∈ V , w1,w2 ∈ V ⊥.

Then PV u1 = v1 so that

⟨PV u1,u2⟩ = ⟨v1,v2 +w2⟩ = ⟨v1,v2⟩+ ⟨v1,w2⟩︸ ︷︷ ︸
w2⊥v1

= ⟨v1,v2⟩.

Similarly, PV u2 = v2 and we deduce

⟨u1, PV u2⟩ = ⟨v1 +w1,v2⟩ = ⟨v1,v2⟩+ ⟨w1,v2⟩︸ ︷︷ ︸
w1⊥v2

= ⟨v1,v2⟩. ⊓⊔
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Proposition 3.29. Suppose that U is a finite dimensional Euclidean F-space and T : U → U is a
selfadjoint operator. Then

specT ⊂ R.
In other words, the eigenvalues of a selfadjoint operator are real.

Proof. Let λ be an eigenvalue of T and u ̸= 0 an eigenvector of T corresponding to the eigenvalue
λ. We have

Tu = λu

so that
λ∥u∥2 = ⟨λu,u⟩ = ⟨Tu,u⟩ ⇒ λ =

1

∥u∥2
⟨Tu,u⟩.

On the other hand
⟨Tu,u⟩ = ⟨u, Tu⟩.

Since T is selfadjoint we deduce
⟨u, Tu⟩ = ⟨Tu,u⟩

so that
⟨Tu,u⟩ = ⟨Tu,u⟩.

Hence the inner product ⟨Tu,u⟩ is a real number. From the equality

λ =
1

∥u∥2
⟨Tu,u⟩

we deduce that λ is a real number as well. ⊓⊔

Corollary 3.30. If A is an n× n complex matrix such that A = A∗, then all the roots of the charac-
teristic polynomial PA(λ) = det(λ1−A) are real.

Proof. The roots of PA(λ) are the eigenvalues of the linear operator TA : Cn → Cn defined by A.
Since A = A∗ we deduce that TA is selfadjoint with respect to the natural inner product on Cn so that
all its eigenvalues are real. ⊓⊔

Theorem 3.31. Suppose that U ,V are two finite dimensional Euclidean F-vector spaces and T :
U → V is a linear operator. Then the following hold.

(a) (T ∗)∗ = T .
(b) kerT = R(T ∗)⊥.
(c) kerT ∗ = R(T )⊥.
(d) R(T ) = (kerT ∗)⊥.
(e) R(T ∗) = (kerT )⊥.

Proof. (a) The operator (T ∗)∗ is a linear operator U → V . We need to prove that, for any u ∈ U we
have x := (T ∗)∗u− Tu = 0.

Because (T ∗)∗ is the adjoint of T ∗ we deduce from (3.11) that

⟨(T ∗)∗u,v⟩V = ⟨u, T ∗v⟩U .
Because T ∗ is the adjoint of T we deduce from (3.11) that

⟨u, T ∗v⟩U = ⟨Tu,v⟩V .
Hence, for any v ∈ V we have

0 = ⟨(T ∗)∗u,v⟩V − ⟨Tu,v⟩V = ⟨x,v⟩V .
By choosing v = x we deduce x = 0.
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(b) We need to prove that
u ∈ kerT⇐⇒u ⊥ R(T ∗).

Let u ∈ kerT , i.e., Tu = 0. To prove that u ⊥ R(T ∗) we need to show that u ⊥ T ∗v, ∀v ∈ V .
For v ∈ V we have

⟨u, T ∗v⟩ (3.11)
= ⟨Tu,v⟩ = 0,

so that u ⊥ T ∗v for any v ∈ V .
Conversely, let us assume that u ⊥ T ∗v for any v ∈ V . We have to show that x = Tu = 0.

Observe that x ∈ V so that u ⊥ T ∗x. We deduce

0 = ⟨u, T ∗x⟩ = ⟨Tu,x⟩ = ⟨x,x⟩ = ∥x∥2.
Hence x = 0.
(c) Set S := T ∗. From (b) we deduce

kerT ∗ = kerS = R(S∗)⊥.

From (a) we deduce S∗ = (T ∗)∗ = T and (c) is now obvious.
Part (d) follows from (c) and Corollary 3.18, while (e) follows from (b) and Corollary 3.18. ⊓⊔

Corollary 3.32. Suppose that U is a finite dimensional Euclidean vector space, and T : U → U is
a selfadjoint operator. Then

kerT = R(T )⊥, R(T ) = (kerT )⊥, U = kerT ⊕R(T ). ⊓⊔

Example 3.33 (Least squares approximation). Let U ,V be two real Euclidean spaces and A : U →
V an injective linear operator. Given v0 ∈ V we seek u0 ∈ U such that Au0 is as close to v0 as
possible.

Since Au0 ∈ R(A) we deduce that Au0 must be the orthogonal projection of v0 on R(A) so that

v0 −Au0 ∈ R(A)⊥ = kerA∗.

Hence A∗v0 −A∗Au0 = 0, i.e.,
A∗Au0 = A∗v0.

Now observe that the linear operatorA∗A : U → U is bijective. It suffices to prove that it is injective.
Indeed, if A∗Au = 0 then

0 = (A∗Au,u) = (Au,Au) = ∥Au∥2 = 0 ⇒ Au = 0.

Since A was assumed injective, we deduce u = 0. Hence A∗A is bijective and we deduce

u0 = (A∗A)−1A∗v0 .

Suppose for example that we are given three points in the plane

P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3).

We want to find a linear function f(x) = b+mx that is as close as possible to these points, i.e.,(
y1 − f(x1)

)2
+
(
y2 − f(x1)

)2
+
(
y3 − f(x3)

)2
is as small as possible. Consider the operator A : R2 → R3 given by the matrix

A =

 1 x1
1 x2
1 x3

 .
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Set

v0 =

 y1
y2
y3

 ∈ R3.

We seek a vector

u0 =

[
b
m

]
∈ R2

such that

Au0 =

 b+mx1
b+mx2
b+mx3


is as close to v0. The answer is

u0 = (A∗A)−1A∗v0.

⊓⊔

Proposition 3.34. (a) Suppose that U ,V ,W are finite dimensional Euclidean F-spaces. If

T : U → V , S : V → W

are linear operators, then
(ST )∗ = T ∗S∗.

(b) Suppose that T : U → V is a linear operator between two finite dimensional Euclidean F-spaces.
Then T is invertible if and only if the adjoint T ∗ : V → U is invertible. Moreover, if T is invertible,
then

(T−1)∗ = (T ∗)−1.

(c) Suppose that S, T : U → V are linear operators between two finite dimensional Euclidean
F-spaces. Then

(S + T )∗ = S∗ + T ∗, (zS)∗ = z̄S∗, ∀z ∈ F. ⊓⊔

The proof is left to you as Exercise 3.16.

Proposition 3.35. Suppose that U is a finite dimensional Euclidean F-space and S, T : U → U are
two selfadjoint operators. Then

S = T⇐⇒⟨Su,u⟩ = ⟨Tu,u⟩, ∀u ∈ U .

Proof. The implication ” ⇒ ” is obvious so it suffices to prove that

⟨Su,u⟩ = ⟨Tu,u⟩, ∀u ∈ U ⇒ S = T.

We set A := S − T . Then A is a selfadjoint operator and it suffices to show that

⟨Au,u⟩ = 0, ∀u ∈ U ⇒ A = 0.

We distinguish two cases.
(a) F = R. For any u,v ∈ U we have

0 = ⟨A(u+ v),u+ v⟩ = ⟨Au,u+ v⟩+ ⟨Av,u+ v⟩
= ⟨Au,u⟩︸ ︷︷ ︸

=0

+⟨Au,v⟩+ ⟨Av,u⟩+ ⟨Av,v⟩︸ ︷︷ ︸
=0

= ⟨Au,v⟩+ ⟨v, Au⟩ = 2⟨Au,v⟩.
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Hence
⟨Au,v⟩ = 0, ∀u,v ∈ U .

If in the above equality we let v = Au we deduce

∥Au∥2 = 0, ∀u ∈ U ,

i.e., A = 0.
(b) F = C. For any u,v ∈ U we have

0 = ⟨A(u+ v),u+ v⟩ = ⟨Au,u+ v⟩+ ⟨Av,u+ v⟩

= ⟨Au,u⟩︸ ︷︷ ︸
=0

+⟨Au,v⟩+ ⟨Av,u⟩+ ⟨Av,v⟩︸ ︷︷ ︸
=0

= ⟨Au,v⟩+ ⟨v, Au⟩ = ⟨Au,v⟩+ ⟨Au,v⟩ = 2Re⟨Au,v⟩.
Hence

Re⟨Au,v⟩ = 0, ∀u,v ∈ U . (3.12)
Similarly for any u,v ∈ U we have

0 = ⟨A(u+ iv),u+ iv⟩ = ⟨Au,u+ iv⟩+ i⟨Av,u+ iv⟩

= ⟨Au,u⟩︸ ︷︷ ︸
=0

−i⟨Au,v⟩+ i⟨Av,u⟩ − i2 ⟨Av,v⟩︸ ︷︷ ︸
=0

= −i⟨Au,v⟩+ i⟨v, Au⟩ = −i
(
⟨Au,v⟩ − ⟨Au,v⟩

)
= 2 Im⟨Au,v⟩.

Hence
Im⟨Au,v⟩ = 0, ∀u,v ∈ U . (3.13)

Putting together (3.12) and (3.13) we deduce that

⟨Au,v⟩ = 0, ∀u,v ∈ U .

If we now let v = Au in the above equality we deduce as in the real case that Au = 0, ∀u ∈ U .
⊓⊔

Definition 3.36. Let U ,V be two finite dimensional Euclidean F-vector spaces. A linear operator
T : U → V is called an isometry if for any u ∈ U we have

∥Tu∥V = ∥u∥U . ⊓⊔

Proposition 3.37. A linear operator T : U → V between two finite dimensional Euclidean vector
spaces is an isometry if and only if

T ∗T = 1U . ⊓⊔

The proof is left to you as Exercise 3.17.

Definition 3.38. Let U be a finite dimensional Euclidean F-space. A linear operator T : U → U
is called an orthogonal operator if T is an isometry. We denote by O(U) the space of orthogonal
operators on U . ⊓⊔

Proposition 3.39. Let U be a finite dimensional Euclidean F-space. Then

T ∈ O(U)⇐⇒T ∗T = TT ∗ = 1U .
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Proof. The implication ” ⇐ ” follows from Proposition 3.37. To prove the opposite implication,
assume that T is an orthogonal operator. Hence

∥Tu∥ = ∥u∥, ∀u ∈ U .

This implies in particular that kerT = 0, so that T is invertible. If we let u = T−1v in the above
equality we deduce

∥T−1v∥ = ∥v∥, ∀v ∈ U .

Hence T−1 is also an isometry so that

(T−1)∗T−1 = 1U .

Using Proposition 3.34 we deduce (T−1)∗ = (T ∗)−1. Hence

(T ∗)−1T−1 = 1U .

Taking the inverses of both sides of the above equality we deduce

1U =
(
(T ∗)−1T−1

)−1
= (T−1 )−1( (T ∗)−1 )−1 = TT ∗.

⊓⊔
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3.6. Exercises.

Exercise 3.1. Prove the claims made in Example 3.2 (a), (b), (c). ⊓⊔

Exercise 3.2. Let
(
U , ⟨−,−⟩

)
be an Euclidean space.

(a) Show that for any u,v ∈ U we have

∥u+ v∥2 + ∥u− v∥2 = 2
(
∥u∥2 + ∥v∥2

)
.

(b) Let u0, . . . ,un ∈ U . Prove that

∥u0 − un∥ ≤ ∥u0 − u1∥+ ∥u1 − u2∥+ · · ·+ ∥un−1 − un∥. ⊓⊔

Exercise 3.3. Show that for any complex numbers z1, . . . , zn we have(
|z1|+ · · ·+ |zn|

)2 ≤ n
(
|z1|2 + · · ·+ |zn|2

)
.

⊓⊔

Exercise 3.4. Consider the space P3 of polynomials with real coefficients and degrees ≤ 3 equipped
with the inner product

⟨P,Q⟩ =
∫ 1

0
P (x)Q(x)dx, ∀P,Q ∈ P3.

Construct an orthonormal basis of P3 by using the Gramm-Schmidt procedure applied to the basis of
P3 given by

E0(x) = 1, E1(x) = x, E2(x) = x2, E3(x) = x3. ⊓⊔

Exercise 3.5. Fill in the missing details in the proof of Corollary 3.15. ⊓⊔

Exercise 3.6. Suppose that T : U → U is a linear operator on a finite dimensional complex Eu-
clidean vector space. Prove that there exists an orthonormal basis of U , such that, in this basis T is
represented by an upper triangular matrix. ⊓⊔

Exercise 3.7. Prove Proposition 3.16. ⊓⊔

Exercise 3.8. Consider the standard Euclidean space R3. Denote by e1, e2, e3 the canonical or-
thonormal basis of R3 and by V the subspace generated by the vectors

v1 = 12e1 + 5e3, v2 = e1 + e2 + e3.

Find the matrix representing the orthogonal projection PV : R3 → R3 in the canonical basis
e1, e2, e3. ⊓⊔

Exercise 3.9. Consider the space P3 of polynomials with real coefficients and degrees ≤ 3. Find
P ∈ P3 such that p(0) = p′(0) = 0 and∫ 1

0

∣∣ 2 + 3x− p(x)
∣∣2dx

is as small as possible.
Hint Observe that the set

V =
{
p ∈ P3; p(0) = p′(0) = 0

}
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is a subspace of P3. Then compute PV , the orthogonal projection onto V with respect to the inner
product

⟨p, q⟩ =
∫ 1

0
p(x)q(x)dx, p, q ∈ P3.

The answer will be PV q, q = 2 + 3x ∈ P3. ⊓⊔

Exercise 3.10. Suppose that (U , ⟨−,−⟩) is a finite dimensional real Euclidean space andP : U → U
is a symmetric linear operator such that

P 2 = P, ∥Pu∥ ≤ ∥u∥, ∀u ∈ U . (P )

Show that there exists a subspace V ⊂ U such that P = PV = the orthogonal projection onto V .
Hint: Let V = R(P ) = P (U), W := kerP . Using (P ) argue by contradiction that V ⊂ W⊥ and
then conclude that P = PV . ⊓⊔

Exercise 3.11. Let P2 denote the space of polynomials with real coefficients and degree ≤ 2. De-
scribe the polynomial p0 ∈ P2 uniquely determined by the equalities∫ π

−π
cosxq(x)dx =

∫ π

−π
p0(x)q(x)dx, ∀q ∈ P2. ⊓⊔

Exercise 3.12. Let k be a positive integer, and denote by Pk denote the space of polynomials with real
coefficients and degree ≤ k. For k = 2, 3, 4, describe the polynomial pk ∈ Pk uniquely determined
by the equalities

q(0) =

∫ 1

−1
pk(x)q(x)dx, ∀q ∈ Pk. ⊓⊔

Exercise 3.13. Finish the proof of Theorem 3.25. (Pay special attention to the case when F = C.) ⊓⊔

Exercise 3.14. Let P2 denote the space of polynomials with real coefficients and degree ≤ 2. We
equip it with the inner product

⟨p, q⟩ =
∫ 1

0
p(x)q(x)dx.

Consider the linear operator T : P2 → P2 defined by

Tp =
dp

dx
, ∀p ∈ P2.

Describe the adjoint of T . ⊓⊔

Exercise 3.15. Let U be a finite dimensional Euclidean space and T : U → U a linear operator.
Prove that the following are equivalent.

(i) T is surjective.
(ii) T ∗ is injective.

(iii) TT ∗ is injective.
⊓⊔

Exercise 3.16. Prove Proposition 3.34. ⊓⊔

Exercise 3.17. Suppose that U is a finite dimensional Euclidean F-space and T : U → V is an
orthogonal operator. Prove that λ ∈ spec(T ) ⇒ |λ| = 1. ⊓⊔
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Exercise 3.18. Let U be a finite dimensional Euclidean F-vector space and T : U → U is a linear
operator. Prove that the following statements are equivalent.

(i) The operator T : U → U is orthogonal.
(ii) ⟨Tu, Tv⟩ = ⟨u,v⟩, ∀u,v ∈ U .

(iii) For any orthonormal basis e1, . . . , en of U , the collection Te1, . . . , Ten is also an orthonor-
mal basis of U .

⊓⊔

Exercise 3.19. Denote by (−,−) the natural inner product on Rn,

(x,y) =
n∑
i=1

xi, yi, ∀x,y ∈ Rn.

Let e1, . . . , en be the canonical basis of Rn. Let U be a real euclidean space with inner product
⟨−,−⟩ and associated norm ∥ − ∥U . Fix vectors u1, . . . ,un and consider the linear operator

T : Rn → U , Tx = x1u1 + · · ·+ xnun..

(i) Describe explicitly the adjoint operator T ∗ : U → U .
(ii) Describe explicitly the operator G = T ∗T : Rn → Rn.

(iii) Show that
∀x ∈ Rn : ⟨Gx, x⟩ =

∥∥x1u1 + · · ·+ xnun
∥∥2
U
.

⊓⊔

Exercise 3.20. Let H be a finite dimensional real Euclidean space with inner product ⟨−,−⟩. Given
n ∈ N and u1, . . . , un ∈ H we define the Gram determinant of u1, . . . , un to be the determinant of
the Gramian matrix

G(u1, . . . , un) =
[
⟨ui, uj⟩

]
1≤i,j≤n

(i) Fix any orthonormal basis {e1, . . . , em} of span{u1, . . . , un}. Denote by A the m × n
matrix with entries aij = ⟨ei,uj⟩, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Show that

G(u1, . . . , xn) = A⊤A,

where A⊤ is the transpose of A. Hint. Define T : Rn → H , Tx =
∑n

i=1 xiui and use Exercise 3.19.

(ii) Prove that detG(u1, . . . , un) ≥ 0 with equality if and only if the vectors u1, . . . , un are
linearly dependent. Hint Use (i) to prove that all the e-values of G are nonnegative real numbers. Prove that kerA =

kerG.

(iii) Suppose that u1, . . . , un are linearly independent and set U := span{u1, . . . , un}. Let
y ∈ H and denote by y0 the orthogonal projection of y on U . Prove that

∥y − y0∥2 =
detG(y, u1, . . . , un)

detG(u1, . . . , un)
.

Hint. Observe that ⟨y − y0, ui⟩ = 0, ∀i. Use Exercise 3.19. Compute G(y − y0, u1, . . . , un).

⊓⊔
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4. SPECTRAL THEORY OF NORMAL OPERATORS

4.1. Normal operators. Let U be a finite dimensional complex Euclidean space. A linear operator
T : U → U is called normal if

T ∗T = TT ∗.

Example 4.1. (a) A selfadjoint operator T : U → U is a normal operator. Indeed, we have T = T ∗

so that
T ∗T = T 2 = TT ∗.

(b) An orthogonal operator T : U → U is a normal operator. Indeed Proposition 3.39 implies that

T ∗T = TT ∗ = 1U . ⊓⊔

(c) If T : U → U is a normal operator and λ ∈ C then λ1U − T is also a normal operator. Indeed

(λ1U − T )∗ = (λ1U )∗ − (T ∗) = λ̄1U − T ∗

and we have
(λ1U − T )∗(λ1U − T ) = (λ̄1U − T ∗) · (λ1U − T ). ⊓⊔

Proposition 4.2. If T : U → U is a normal operator then so are any of its powers T k, k > 0.

Proof. To see this we invoke Proposition 3.34 and we deduce

(T k)∗ = (T ∗)k

Then
(T k)∗T k = (T ∗ · · ·T ∗)︸ ︷︷ ︸

k

· (T · · ·T )︸ ︷︷ ︸
k

= (T ∗ · · ·T ∗)︸ ︷︷ ︸
k−1

· (T · · ·T )︸ ︷︷ ︸
k

·T ∗

= (T ∗ · · ·T ∗)︸ ︷︷ ︸
k−2

· (T · · ·T )︸ ︷︷ ︸
k

·(T ∗)2 = · · · = (T · · ·T )︸ ︷︷ ︸
k

(T ∗)k = T k(T ∗)k = T k(T k)∗.

⊓⊔

Definition 4.3. Let U be a finite dimensional Euclidean F-space. A linear operator T : U → U is
called orthogonally diagonalizable if there exists an orthonormal basis of U such that, in this basis,
the operator T is represented by a diagonal matrix. ⊓⊔

We can unravel a bit the above definition and observe that a linear operator T on an n-dimensional
Euclidean F-space is orthogonally diagonalizable if and only if there exists an orthonormal basis
e1, . . . , en and numbers a1, . . . , an ∈ F such that

Tek = akek, ∀k.

Thus the above basis is rather special: it is orthonormal, and it consists of eigenvectors of T . The
numbers ak are eigenvalues of T .

Note that the converse is also true. If U admits a n orthonormal basis consisting of eigenvectors of
T , then T is orthogonally diagonalizable.

Proposition 4.4. Suppose that U is a complex Euclidean space of dimension n and T : U → U is
orthogonally diagonalizable. Then T is a normal operator.
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Proof. Fix an orthonormal basis
e = (e1, . . . , en)

of U such that, in this basis, the operator T is represented by the diagonal matrix

D =


a1 0 0 · · · 0 0
0 a2 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 an

 , a1, . . . , an ∈ C.

The computations in Example 3.26 show that the operator T ∗ is represented in the basis e by the
matrix D∗. Clearly

DD∗ = D∗D =


|a1|2 0 0 · · · 0 0
0 |a2|2 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 |an|2

 .
⊓⊔

4.2. The spectral decomposition of a normal operator. We want to show that the converse of
Proposition 4.4 is also true. This is a nontrivial and fundamental result of linear algebra.

Theorem 4.5 (Spectral Theorem for Normal Operators). Let U be an n-dimensional complex Eu-
clidean space and T : U → U a normal operator. Then T is orthogonally diagonalizable, i.e., there
exists an orthonormal basis of U consisting of eigenvectors of T .

Proof. The key fact behind the Spectral Theorem is contained in the following auxiliary result.

Lemma 4.6. Let λ ∈ spec(T ). Then

ker(λ1U − T )2 = ker(λ1U − T ).

We first complete the proof of the Spectral Theorem assuming the validity of the above result.
Invoking Lemma 2.14 we deduce that

ker(λ1U − T ) = ker(λ1U − T )2 = ker(λ1U − T )3 = · · ·
so that the generalized eigenspace of T corresponding to an eigenvalue λ coincides with the eigenspace
ker(λ1U − T ),

Eλ(T ) = ker(λ1U − T ).

Suppose that
spec(T ) =

{
λ1, . . . , λℓ

}
.

From Proposition 2.22 we deduce that

U = ker(λ11U − T )⊕ · · · ⊕ ker(λℓ1U − T ). (4.1)

The next crucial observation is contained in the following elementary result.

Lemma 4.7. Suppose that λ, µ are two distinct eigenvalues of T , and u,v ∈ U are eigenvectors

Tu = λu, Tv = µv.

Then
T ∗u = λ̄u, T ∗v = µ̄v,
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and

u ⊥ v.

Proof. Let Sλ = T − λ1U so that Sλu = 0. Note that S∗
λ = T ∗ − λ̄1U so that we have to show that

S∗
λu = 0. As explained in Example 4.1(c), the operator Sλ is normal. We deduce that

0 = S∗
λSλu = SλS

∗
λu.

Hence

0 = ⟨SλS∗
λu,u⟩ = ⟨S∗

λu, S
∗
λu⟩ = ∥S∗

λu∥2.

This proves that T ∗u = λ̄u. A similar argument shows that T ∗v = µ̄v.
From the equality Tu = λu we deduce

λ⟨u,v⟩ = ⟨Tu,v⟩ = ⟨u, T ∗v⟩ = ⟨u, µ̄v⟩ = µ⟨u,v⟩.

Hence

(λ− µ)⟨u,v⟩ = 0.

Since λ ̸= µ we deduce ⟨u,v⟩ = 0. ⊓⊔

From the above result we conclude that the direct summands in (4.1) are mutually orthogonal. Set
dk = dimker(λk1U − T ). We fix an orthonormal basis

e(k) = e1(k), . . . , edk(k)

of ker(λk1U − T ). By construction, the vectors in this basis are eigenvectors of T . Since the spaces
ker(λk1U − T ) are mutually orthogonal we deduce from (4.1) that the union of the orthonormal
bases ek is an orthonormal basis of U consisting of eigenvectors of T . This completes the proof of
the Spectral Theorem, modulo Lemma 4.6. ⊓⊔

Proof of Lemma 4.6. The operator S = λ1U − T is normal so that the conclusion of the lemma
follows if we prove that for any normal operator S we have

kerS2 = kerS.

Note that kerS ⊂ kerS2 so that it suffices to show that kerS2 ⊂ kerS.
Let u ∈ U such that S2u = 0. We have to show that Su = 0. Note that

0 = (S∗)2S2u = S∗S∗SSu = S∗SS∗Su.

SetA := S∗S. Note thatA is selfadjoint, A = A∗ and we can rewrite the above equality as 0 = A2u.
Hence

0 = ⟨A2u,u⟩ = ⟨Au, Au⟩ = ∥Au∥2.

The equality Au = 0 now implies

0 = ⟨Au,u⟩ = ⟨S∗Su,u⟩ = ⟨Su, Su⟩ = ∥Su∥2.

This completes the proof of Lemma 4.6. ⊓⊔
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4.3. The spectral decomposition of a real symmetric operator. We begin with the real counterpart
of Proposition 4.4

Proposition 4.8. Suppose that U is a real Euclidean space of dimension n and T : U → U is
orthogonally diagonalizable. Then T is a symmetric operator.

Proof. Fix an orthonormal basis
e = (e1, . . . , en)

of U such that, in this basis, the operator T is represented by the diagonal matrix

D =


a1 0 0 · · · 0 0
0 a2 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 an

 , a1, . . . , an ∈ R.

Clearly D = D∗ and the computations in Example 3.26 show that T is a selfadjoint operator. ⊓⊔

We can now state and prove the real counterpart of Theorem 4.5

Theorem 4.9 (Spectral Theorem for Real Symmetric Operators). Let U be an n-dimensional real
Euclidean space and T : U → U a symmetric operator. Then T is orthogonally diagonalizable, i.e.,
there exists an orthonormal basis of U consisting of eigenvectors of T .

Proof. We argue by induction on n = dimU . For n = 1 the result is trivially true. We assume that
the result is true for real symmetric operators action on Euclidean spaces of dimension < n and we
prove that it holds for a symmetric operator T on a real n-dimenasional Euclidean space U .

To begin with let us observe that T has at least one real eigenvalue. Indeed, if we fix an orthonormal
basis e1, . . . , en of U , then in this basis the operator T is represented by a symmetric n×n real matrix
A. As explained in Corollary 3.30, all the roots of the characteristic polynomial det(λ1−A) are real,
and they coincide with the eigenvalues of T .

Fix one such eigenvalue λ ∈ spec(T ) ⊂ R and denote by Eλ the corresponding eigenspace

Eλ := ker(λ1− T ) ⊂ U .

Lemma 4.10. The orthogonal complement E⊥
λ is an invariant subspace of T , i.e.,

u ⊥ Eλ ⇒ Tu ⊥ Eλ.

Proof. Let u ∈ E⊥
λ . We have to show that Tu ⊥ Eλ, i.e., Tu ⊥ v, ∀v ∈ Eλ. Given such a v, we

have
Tv = λv.

Next observe that u ⊥ v since u ∈ E⊥
λ . Hence

⟨Tu,v⟩ = ⟨u, Tv⟩ = λ⟨u,v⟩ = 0.

⊓⊔

The restriction Sλ of T to E⊥
λ is a symmetric operator E⊥

λ → E⊥
λ and the induction hypothesis

implies that we can find and orthonormal basis of E⊥
λ such that, in this basis, the operator Sλ is

represented by a diagonal matrix Dλ. Fix an arbitrary basis eλ of E⊥
λ . The union of these eλ’s is an

orthonormal basis f of U . In this basis T is represented by the block matrix[
1Eλ

0
0 Dλ

]
.

The above matrix is clearly diagonal. ⊓⊔
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4.4. Nonnegative operators. Suppose that U is a finite dimensional Euclidean F-vector space.

Definition 4.11. A linear operator T : U → U is called nonnegative if the following hold.

(i) T is selfadjoint, T ∗ = T .
(ii) ⟨Tu,u⟩ ≥ 0, for all u ∈ U .

The operator is called positive if it is nonnegative and ⟨Tu,u⟩ = 0⇐⇒u = 0. ⊓⊔

Example 4.12. Suppose that T : U → U is a linear operator. Then the operator S := T ∗T is
nonnegative. Indeed, it is selfadjoint and

⟨Su,u⟩ = ⟨T ∗Tu,u⟩ = ⟨Tu, Tu⟩ = ∥Tu∥2 ≥ 0.

Note that S is positive if and only kerS = 0 so that S is injective. ⊓⊔

Definition 4.13. Suppose that T : U → U is a linear operator on the finite dimensional F-space U .
A square root of T is a linear operator S : U → U such that S2 = T . ⊓⊔

Theorem 4.14. Let T : U → U be a linear operator on the n-dimensional Euclidean F-space. Then
the following statements are equivalent.

(i) The operator T is nonnegative.
(ii) The operator T is selfadjoint and all its eigenvalues are nonnegative.

(iii) The operator T admits a nonnegative square root.
(iv) The operator T admits a selfadjoint root.
(v) there exists an operator S : U → U such that T = S∗S.

Proof. (i) ⇒ (ii) The operator T being nonnegative is also selfadjoint. Hence all its eigenvalues are
real. If λ is an eigenvalue of T and u ∈ ker(λ1U − T ) \ 0, then

λ∥u∥2 = ⟨Tu,u⟩ ≥ 0.

This implies λ ≥ 0.
(ii) ⇒ (iii) Since T is selfadjoint, there exists an orthonormal basis e = {e1, . . . , en} of U such

that, in this basis, the operator T is represented by the diagonal matrix

A = Diag(λ1, . . . , .λn),

where λ1, . . . , λn are the eigenvalues of T . They are all nonnegative so we can form a new diagonal
matrix

B = Diag(
√
λ1, . . . ,

√
λn).

The matrix B defines a selfadjoint linear operator S on U which is represented by the matrix B in
the basis e. More precisely

Sei =
√
λiei, ∀i = 1, . . . , n.

If u =
∑n

i=1 uiei, then

Su =

n∑
i=1

√
λiuiei, ⟨Su,u⟩ =

n∑
i=1

√
λi|ui|2 ≥ 0.

Hence S is nonnegative. From the obvious equality A = B2 we deduce T = S2 so that S is
nonnegative square root of T .
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The implication (iii) ⇒ (iv) is obvious because any nonnegative square root of T is automatically
a selfadjoint square root. To prove the implication (iv) ⇒ (v) observe that if S is a selfadjoint square
root of T then

T = S2 = S∗S.

The implication (v) ⇒ (i) was proved in Example 4.12. ⊓⊔

Proposition 4.15. Let U be a finite dimension Euclidean F-space. Then any nonnegative operator
T : U → U admits a unique nonnegative square root.

Proof. We have an orthogonal decomposition

U =
⊕

λ∈spec(T )

ker(λ1U − T )

so that any vector u ∈ U can be written uniquely as

u =
∑

λ∈spec(T )

uλ, uλ ∈ ker(λ1U − T ). (4.2)

Moreover
Tu =

∑
λ∈spec(T )

λuλ.

Suppose that S is a nonnegative square root of T . If µ ∈ spec(S) and u ∈ ker(µ1U − S), then

Tu = S2u = S(Su) = S(µu) = µ2u.

Hence
µ2 ∈ spec(T )

and
ker(µ1U − S) ⊂ ker(µ21U − T ).

We have a similar orthogonal decomposition

U =
⊕

µ∈spec(S)

ker(µ1U − S) ⊂
⊕

µ∈spec(S)

ker(µ21U − T ) ⊂
⊕

λ∈spec(T )

ker(λ1U − T ) = U .

This implies that

spec(T ) =
{
µ2; µ ∈ spec(S)

}
, ker(µ1U − S) = ker(µ21U − T ), ∀µ ∈ spec(S).

Since all the eigenvalues of S are nonnegative we deduce that for any λ ∈ spec(T ) we have
√
λ ∈

spec(S). Thus if u is decomposed as in (4.2),

u =
∑

λ∈spec(T )

uλ,

then
Su =

∑
λ∈spec(T )

√
λuλ.

The last equality determines S uniquely. ⊓⊔

Definition 4.16. If T is a nonnegative operator, then its unique nonnegative square root is denoted by√
T . ⊓⊔
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4.5. Exercises.

Exercise 4.1. Let U be a finite dimensional complex Euclidean vector space and T : U → U a
normal operator. Prove that for any complex numbers a0, . . . , ak the operator

a01U + a1T + · · ·+ akT
k

is a normal operator. ⊓⊔

Exercise 4.2. Let U be a finite dimensional complex vector space and T : U → U a normal operator.
Show that the following statements are equivalent.

(i) The operator T is orthogonal.
(ii) If λ is an eigenvalue of T , then |λ| = 1. ⊓⊔

Exercise 4.3. (a) Prove that the product of two orthogonal operators on a finite dimensional Euclidean
space is an orthogonal operator.
(b) Is it true that the product of two selfadjoint operators on a finite dimensional Euclidean space is
also a selfadjoint operator? ⊓⊔

Exercise 4.4. Suppose that U is a finite dimensional Euclidean space and P : U → U is a linear
operator such that P 2 = P . Show that the following statements are equivalent.

(i) P is the orthogonal projection onto a subspace V ⊂ U .
(ii) P ∗ = P .

⊓⊔

Exercise 4.5. Suppose that U is a real Euclidean space of dimension 2k−1, k ∈ N, and T : U → U
is an orthogonal operator. Prove that there exists a one-dimensional subspace L ⊂ U such that
TL ⊂ L. ⊓⊔

Exercise 4.6. Suppose that U is a finite dimensional complex Euclidean space and T : U → U is a
normal operator. Show that

R(T ) = R(T ∗). ⊓⊔

Exercise 4.7. Does there exists a symmetric operator T : R3 → R3 such that

T

 1
1
1

 =

 0
0
0

 , T

 1
2
3

 =

 1
2
3

? ⊓⊔

Exercise 4.8. Show that a normal operator on a complex Euclidean space is selfadjoint if and only if
all its eigenvalues are real. ⊓⊔

Exercise 4.9. Suppose that T is a normal operator on a complex Euclidean space U such that T 7 =
T 5. Prove that T is selfadjoint and T 3 = T . ⊓⊔

Exercise 4.10. Let U be a finite dimensional complex Euclidean space and T : U → U be a
selfadjoint operator. Suppose that there exists a vector u, a complex number µ, and a number ε > 0
such that

∥Tu− µu∥ < ε∥u∥.
Prove that there exists an eigenvalue λ of T such that |λ−µ| < ε. Hint. Use an orthonormal basis that diagonalizes

T . ⊓⊔
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Exercise 4.11. Let U be a finite dimensional complex Euclidean space and S, T : U → U be two
selfadjoint operators such that ST = TS. Prove that there exists an orthonormal basis of U so that
in this basis both operators are represented by diagonal matrices. Give an example of an Euclidean
space U and selfadjoint operators S, T : U → U such that there exists no orthonormal basis of U in
which both operators are represented by diagonal matrices. ⊓⊔

Exercise 4.12. Let U be a finite dimensional complex Euclidean space and T : U → U a selfadjoint
operator. Prove that for any u ∈ U the number ⟨Tu, u⟩ is real. Set

λ∗ := sup
∥u∥=1

⟨Tu, u⟩, λ∗ := inf
∥u∥=1

⟨Tu, u⟩.

Prove that λ∗ and λ∗ are eigenvalues of T and spec(T ) ⊂ [λ∗, λ
∗]. Hint. Use Theorem 4.9. ⊓⊔

Exercise 4.13. Suppose that U is a real Euclidean space and J : U → U is a linear operator such
that

J = −J∗ and J2 = −1.
(i) Show that U is even dimensional dimRU = 2m, m ∈ R. Hint. Show that J does not have real

eigenvalues.

(ii) Prove that u ⊥ Ju, for any u ∈ U .
(iii) Suppose that u1 ∈ U is a unit vector, i.e., ∥u1∥ = 1. Set v1 = Ju1 and

U1 = spanR{u1,v1} V 1 = U⊥
1 .

Prove that U1 and V 1 are invariant subspaces of J .
(iv) Prove that there exists an orthonormal basis e1,f1, . . . , em,fm of U such that in this basis

J has the block form

0 −1
1 0

0 0
0 0

0 0
0 0

· · · 0 0
0 0

0 0
0 0

0 −1
1 0

0 0
0 0

· · · 0 0
0 0

· · · · · · · · · · · · · · ·
0 0
0 0

0 0
0 0

0 0
0 0

· · · 0 −1
1 0


.

⊓⊔

Exercise 4.14. Suppose that U is a real Euclidean space and A : U → U is a skew-symmetric
operator, i.e., A∗ = −A.

(i) Prove that 1+A is invertible.
(ii) Show that the operator T = (1−A)(1+A)−1 is orthogonal.

(iii) Prove that 1+ T is invertible and A = (1− T )(1+ T )−1.
⊓⊔

Exercise 4.15. Suppose that U is a finite dimensional real vector space and T : U → U is linear
operator. Prove that the following statements are equivalent.

(i) There exists an inner product ⟨−,−⟩ on U such that

⟨Tu,v⟩ = ⟨u, Tv⟩, ∀u,v ∈ U .
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(ii) All the eigenvalues of T are real, spec(T ) ⊂ R, and the operator T is diagonalizable.
⊓⊔
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5. APPLICATIONS

5.1. Symmetric bilinear forms. Suppose that U is a finite dimensional real vector space. Recall
that a symmetric bilinear form on U is a bilinear map

Q : U ×U → R

such that
Q(u1,u2) = Q(u1,u2).

We denote by Sym(U) the space of symmetric bilinear forms on U .
Suppose that e = (e1, . . . , en) is a basis of the real vector space U . This basis associated to any

symmetric bilinear form Q ∈ Sym(U) a symmetric matrix

A = (aij)1≤i,j≤n, aij = Q(ei, ej) = Q(ej , ei) = aji.

Note that the form Q is completely determined by the matrix A. Indeed if

u =

n∑
i=1

uiei, v =

n∑
j=1

vjej ,

then

Q(u,v) = Q

 n∑
i=1

uiei,

n∑
j=1

vjej

 =

n∑
i,j=1

uivjQ(ei, ej) =

m∑
i,j=1

aijuivj .

The matrix A is called the symmetric matrix associated to the symmetric form Q in the basis e.
Conversely any symmetric n × n matrix A defines a symmetric bilinear form QA ∈ Sym(Rn)

defined by

Q(u,v) =
m∑

i,j=1

aijuivj , ∀u,v ∈ Rn.

If ⟨−,−⟩ denotes the canonical inner product on Rn, then we can rewrite the above equality in the
more compact form

QA(u,v) = ⟨u, Av⟩.

Definition 5.1. Let Q ∈ Sym(U) be a symmetric bilinear form on the finite dimensional real space
U . The quadratic form associated to Q is the function

ΦQ : U → R, ΦQ(u) = Q(u,u), ∀u ∈ U . ⊓⊔

Observe that if Q ∈ Sym(U), then we have the polarization identity

Q(u,v) =
1

4

(
ΦQ(u+ v)− ΦQ(u− v)

)
.

This shows that a symmetric bilinear form is completely determined by its associated quadratic form.

Proposition 5.2. Suppose that Q ∈ Sym(U) and

e = {e1, . . . , en}, f = {f1, . . . ,fn}

are two bases of U . Denote by S the matrix describing the transition from the basis e to the basis f .
In other words, the j-th column of S describes the coordinates of f j in the basis e, i.e.,

f j =

n∑
i=1

sijei.
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Denote by A (respectively B) the matrix associated to Q by the basis e (respectively f ). Then

B = S†AS, (5.1)

where S† denotes the transpose of S.

Proof. We have

bij = Q(f i,f j) = Q

(
n∑
k=1

skiek,

n∑
ℓ=1

sℓjeℓ

)

=
n∑

k,ℓ=1

skisℓjQ(ek, eℓ) =
n∑

k,ℓ=1

skiakℓsℓj

If we denote by s†ij the entries of the transpose matrix S†, s†ij = sji, we deduce

bij =
n∑

k,ℓ=1

s†ikakℓsℓj .

The last equality shows that bij is the (i, j)-entry of the matrix S†AS. ⊓⊔

☞ We strongly recommend the reader to compare the change of base formula (5.1) with the change
of base formula (2.1).

Theorem 5.3. Suppose that Q is a symmetric bilinear form on a finite dimensional real vector space
U . Then there exist at least one basis of U such that the matrix associated to Q by this basis is a
diagonal matrix.

Proof. We will employ the spectral theory of real symmetric operators. For this reason with fix an
Euclidean inner product ⟨−,−⟩ on U and the choose a basis e of U which is orthonormal with
respect to the above inner product. We denote by A the symmetric matrix associated to Q by this
basis, i.e.,

aij = Q(ei, ej).

This matrix defines a symmetric operator TA : U → U by the formula

TAej =
n∑
i=1

aijei.

Let us observe that
Q(u,v) = ⟨u, TAv⟩, ∀u,v ∈ U . (5.2)

To verify the above equality we first notice that both sides of the above equalities are bilinear on u,v
so that it suffices to check the equality in the special case when the vectors u,v belong to the basis e.
We have

⟨ei, TAej⟩ =

〈
ei,
∑
k

akjek

〉
= aij = Q(ei, ej).

The spectral theorem for real symmetric operators implies that there exists an orthonormal basis f of
U such that the matrix B representing TA in this basis is diagonal. If S denotes the matrix describing
the transition to the basis e to the basis f then the equality (2.1) implies that

B = S−1AS.
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Since the biases e and f are orthonormal we deduce from Exercise 3.18 that the matrix S is orthog-
onal, i.e., S†S = SS† = 1. Hence S−1 = S† and we deduce that

B = S∗AS.

The above equality and Proposition 5.2 imply that the diagonal matrix B is also the matrix associated
to Q by the basis f . ⊓⊔

☞ Warning. Suppose that Q is a symmetric bilinear form on U . As shown above if we choose
an inner product (−,−)1 on U , then we can identify Q with a symmetric operator A1. If we choose
another inner product (−,−)2 on U , then we can identifyQ with a symmetric operatorA2. Typically
these two operators are different! They may not even have the same spectra!

Theorem 5.4 (The law of inertia). Let U be a real vector space of dimension n and Q a symmetric
bilinear form on U . Suppose that e,f are bases of U such that the matrices associated to Q by these
bases are diagonal.3 Then these matrices have the same number of positive (respectively negative,
respectively zero) entries on their diagonal.

Proof. We will show that these two matrices have the same number of positive elements and the same
number of negative entries on their diagonals. Automatically then they must have the same number
of trivial entries on their diagonals.

We take care of the positive entries first. Denote by A the matrix associated to Q by e and by B
the matrix associated by f . We denote by p the number of positive entries on the diagonal of A and
by q the number of positive entries on the diagonal of B. We have to show that p = q. We argue by
contradiction and we assume that p ̸= q, say p > q.

We can label the elements in the basis e so that

aii = Q(ei, ei) > 0, ∀i ≤ p, ajj = Q(ej , ej) ≤ 0, ∀j > p. (5.3)

Observe that since A is diagonal we have

Q(ei, ej) = 0, ∀i ̸= j. (5.4)

Similarly we can label the elements in the basis f so that

bkk = Q(fk,fk) > 0, ∀k ≤ q, bℓℓ = Q(f ℓ,f ℓ) ≤ 0, ∀ℓ > q. (5.5)

Since B is diagonal we have
Q(f i,f j) = 0, ∀i ̸= j. (5.6)

Denote V the subspace spanned by the vectors ei, i = 1, . . . , p, and by W the subspace spanned by
the vectors f q+1, . . . ,fn. From the equalities (5.3), (5.4), (5.5), (5.6) we deduce that

Q(v,v) > 0, ∀v ∈ V \ 0, (5.7a)

Q(w,w) ≤ 0, ∀w ∈ W \ 0. (5.7b)
On the other hand, we observe that dimV = p, dimW = n− q. Hence

dimV + dimW = n+ p− q > n > dimU

so that there exists a vector
u ∈ (V ∩W ) \ 0.

The vector u cannot simultaneously satisfy both inequalities (5.7a) and (5.7b). This contradiction
implies that p = q.

3Such a bases are called diagonalizing bases of Q.



80 LIVIU I. NICOLAESCU

Using the above argument for the form −Q we deduce that A and B have the same number of
negative elements on their diagonals. ⊓⊔

The above theorem shows that no matter what diagonalizing basis of Q we choose, the diagonal
matrix representing Q in that basis will have the same number of positive negative and zero elements
on its diagonal. We will denote these common numbers by µ+(Q), µ−(Q) and respectively µ0(Q).
These numbers are called the indices of inertia of the symmetric formQ. The integer µ−(Q) is called
Morse index of the symmetric form Q and the difference

σ(Q) = µ+(Q)− µ−(Q).

is called the signature of the form Q.

Definition 5.5. A symmetric bilinear form Q :∈ Sym(U) is called positive definite is

Q(u,u) > 0, ∀u ∈ U \ 0.
It is called positive semidefinite if

Q(u,u) ≥ 0, ∀u ∈ U .

It is called negative (semi)definite if −Q is positive (semi)definite. ⊓⊔

We observe that a symmetric bilinear form on an n-dimensional real space U is positive definite if
and only if µ+(Q) = n = dimU .

Definition 5.6. A real symmetric n×nmatrixA is called positive definite if and only if the associated
symmetric bilinear form QA ∈ Sym(Rn) is positive definite. ⊓⊔

5.2. Stochastic matrices. First some terminology. Let A ∈Mm×n(C),
A = (aij)1≤i≤m

1≤j≤n
.

We. introduce the following notation and conventions.
• We denote by |A| the matrix

|A| = (|aij |)1≤i≤m
1≤j≤n

∈Mm×n(R).

• We denote by Ri(A) the i-th row of A

Ri(A) =
[
ai1, ai2, . . . , ain

]
.

• We denote by Cj(A) the j-th column of A

cj(A) =


a1j
a2j

...
amj


• We write A ≥ 0 to indicate that aij ≥ 0, ∀i, j. Wer write A > 0 to indicate that that aij > 0,
∀i, j.

If A,B ∈Mm×n(R), then

A ≥ B
def⇐⇒ A−B ≥ 0

and
A > B

def⇐⇒ A−B > 0.
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We will refer to 1× n matrices as rows or weights of dimension n and to n× 1 matrices as columns
or observables of dimension n. Observe that if R and C are respectively a row and a column of the
same dimension then R · C is a scalar,

Definition 5.7. A weight
w =

[
w1, . . . , wn

]
is said to be a distribution if it is nonnegative w ≥ 0 and

w1 + · · ·+ wn = 1,

The distribution w is called positive if w > 0. ⊓⊔

We ought to explain the above terminology. Suppose that we have a box with a large number of
balls that come in n colors. We denote by pi the proportion of balls of color i. Then the row

π :=
[
p1, . . . , pn

]
is a positive distribution: the distribution of colors in the box. The number pi is the probably that a
randomly drawn ball has color 1.

One can think of an observable as a numerical attribute associate to a color, e.g., the value or the
mass of a ball of a certain color. If

v =

 v1
...
vn


is an observable: vi is the “value” of a ball of color i. The scalar

π · v =
n∑
k=1

pkvk

is the expected value of a randomly drawn ball.
Set

1⃗ :=

 1
...
1


Observe that a weight w =

[
w1, . . . , wn

]
is a distribution iff w ≥ 0 and

w · 1⃗ = w1 + · · ·+ wn = 1.

Definition 5.8. A matrix A ∈ MN (R) is called stochastic if each of its rows is a distribution, i.e.,
A ≥ 0 and

ai1 + · · ·+ aiN = 1, ∀1 ≤ i ≤ N.

⊓⊔

Observe that a nonnegative matrix A is stochastic iff

A1⃗ = 1⃗.

Indeed

A1⃗ =

 R1(A) · 1⃗
...

R1(A) · 1⃗

 .
We have thus proved the following result.
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Proposition 5.9. If A ∈MN (R) is a stochastic matrix then 1 ∈ spec(A). ⊓⊔

Lemma 5.10. Let A,B ∈MN (R) be stochastic matrices.
(i) If w =

[
w1, . . . , wN

]
is a distribution then w ·A is also a distribution.

(ii) A ·B is a stochastic matrix.
⊓⊔

Proof. (i) Set π := w ·A =
[
π1, . . . , πN

∣∣ where

πi = w · Ci(A) =
∑
j

wjaji.

Then obviously π ≥ 0 and∑
i

πi =
∑
i

∑
i

wjaji =
∑
j

∑
i

wjaji =
∑
i

wj

(∑
i

aji

)
︸ ︷︷ ︸

=1

=
∑
j

wj = 1.

Hence π is a distribution.
(ii) We have

A ·B =

 R1(A ·B)
...

RN (A ·B)

 =

 R1(A) ·B
...

RN (A) ·B

 .
We deduce from (i) that Ri(A) ·B is a distribution for any i since the row Ri(A) is a distribution and
B is stochastic. ⊓⊔

To proceed further we need to introduce a but more terminology. For any N dimensional real
observable

u =

 u1
...
uN

 ∈ RN

we set
maxu = max

1≤k≤N
uk, minu = min

1≤k≤N
uk,

Lemma 5.11. If w is a N dimensional distribution and u is an N -dimensional observable real
observable, then

minu ≤ w · u ≤ maxu. (5.8)

If w is positive and minu ̸= maxu, then the above inequalities are strict.

Proof. Let
w =

[
w1, . . . , wN

]
Then

w · u = w1u1 + w2u2 + · · ·+ wNuN

≤ w1(maxu) + · · ·+ wN (maxu) = (w1 + · · ·+ wN )maxu = maxu.
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If w > 0 and minu < maxu, then there exists i such that wiui < wimaxu so

w · u < maxu.

The lower inequality is dealt with in a similar fashion. ⊓⊔

Lemma 5.12. Suppose that w is a distribution and u is a complex observable of the same dimension.
Then ∣∣w · u

∣∣ ≤ w ·
∣∣u ∣∣ ≤ max

∣∣u ∣∣. (5.9)

Moreover, if w > 0, then we have equality
∣∣w · u

∣∣ = max
∣∣u ∣∣ iff u is a multiple of 1⃗.

Proof. We have∣∣w · u
∣∣ = ∣∣w1u1 + · · ·+ wNuN

∣∣ ≤ w1|u1|+ · · ·+ wN |uN | = w ·
∣∣u ∣∣ (5.8)≤ max

∣∣u ∣∣.
If w > 0 and we have equality, then we deduce from Lemma 5.11 that

|u1| = · · · = |uN | = max
[
u
∣∣.

Thus, the n complex numbers u1, . . . , uN are situated on a circle of radius r = max
∣∣u ∣∣. If two of

them are different, say u1 ̸= u2, then the point

z =
w1

w1 + w2
u1 +

w2

w1 + w2
u2,

is in the interior of the the line segment connecting these two points so z lies strictly in the interior of
the circle of radius r”, |z| < r so that∣∣w1u1 + w2u2

∣∣ = (w1 + w2)|z| < (w1 + w2)r.

Hence ∣∣w · u
∣∣ ≤ ∣∣w1u1 + w2u2

∣∣+ w3|u3|+ · · ·wN |uN |
< (w1 + w2)r + w3|u3|+ · · ·wN |uN | = r.

Thus if
∣∣w · u

∣∣ = max
∣∣u ∣∣, then u1 = u2 = · · · = uN , i.e., u is a multiple of 1⃗. ⊓⊔

Corollary 5.13. Let A ∈MN (R) be a stochastic matrix. If λ ∈ spec(A), then |λ| ≤ 1.

Proof. Suppose

u =

 u1
...
uN

 ∈ CN \ {0}.

be an eigenvector corresponding to the eigenvalue λ. Then max
∣∣u ∣∣ > 0. Note that

λu = Au =

 R1(A) · u
...

RN (A) · u

 .
There exists k such that |uk| = max

∣∣u ]. Then

|λ| ·max
∣∣u ∣∣ = |λ| · |uk| =

∣∣Rk(A) · u ∣∣ (5.9)≤ max
∣∣u ∣∣.

Hence
|λ| ≤ 1.

⊓⊔
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Theorem 5.14. If A ∈MN (R) is a positive stochastic matrix then the following hold.

(i) 1 is a simple eigenvalue of A and ker
(
1−A

)
= span(1⃗).

(ii) If λ ∈ spec(A) \ {1}, then |λ| < 1.

Proof. We have to prove that 1 has algebraic multiplicity 1. Let us first show that ker(1 − A) is
spanned by 1⃗ and thus it is 1-dimensional. Let

u =

 u1
...
uN

 ∈ ker(1−A).

There exists k such that uk = max ν. Form the equality u = Au we deduce

maxu = uk = Rk(A) · u
5.8)

≤ maxu.

Hence Rk(A) ·u = maxu we deduce from Lemma 5.11 that u1 = · · · = uN so u is a multiple of 1⃗.
We will show that ker(1 − A)2 = ker(1 − A). Let V denote the subspace of RN consisting of

observable v such that
v1 + · · ·+ vN = 0.

Any u ∈ Rn decomposes uniquely as a sum c1⃗ + v, v ∈ V . If u ∈ ker(1 − A)2 then (1 − A)u ∈
ker(1−A). We have

(1−A)u = (1−A)
(
c1⃗+ v

)
= v −Av.

Hence v − Av ∈ ker(1− A) so v − Av is a multiple of 1⃗, say v − Av = c1⃗, c ≥ 0. We will argue
by contradiction that v = 0. Suppose v ̸= 0. Since

v1 + · · ·+ vN = 0

we deduce minv < 0. Fix k such that vk = minv. From the equality v −Av = c1⃗ we deduce

c = vk −Rk(A)v.

Since A > 0 we deduce from Lemma 5.11 that

0 ≤ c = vk −Rk(A)u < vk −minv = 0.

Let λ ∈ spec(A) \ {1}. Then |λ| ≤ 1. We will prove by contradiction that |λ| < 1.
Suppose that |λ| = 1 and u ∈ ker(λ1−A) is a non-zero eigenvector. Fix k such that

|uk| = max
∣∣u ] > 0.

Since A > 0 and u is not a multiple of 1⃗ we deduce from Lemma 5.12 that

0 < max
∣∣u ∣∣ = |λ| · |uk| =

∣∣Rk(A)u|∣∣ < max
[
u
∣∣.

This contradiction show that |λ| < 1. ⊓⊔

Definition 5.15. Let A ∈MN (R) be stochastic matrix .
(i) The matrix A is called irreducible if for any 1 ≤ i, j ≤ N there exists k = k(i, j) ∈ N such

that Akij , where Akij denotes the entry of Ak at location (i, j).
(ii) The matrix A is called primitive if there exists k ∈ N such that Akij > 0, ∀i, j.

⊓⊔

Clearly a primitive stochastic matrix is irreducible.
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Corollary 5.16 (Perron). IfA ∈MN (R) is a primitive stochastic matrix, then 1 is a simple eigenvalue
of A. Moreover, if λ ∈ spec(A) \ {1}, then |λ| < 1.

Proof. Let k ∈ N such that Ak > 0. Then Am > 0, ∀m ≥ k. Note that Ak is stochastic

spec(Ak) =
{
λk; λ ∈ spec(A)

}
.

We deduce from Theorem 5.14 that 1 is a simple eigenvalue and the corresponding eigenspace is
spanned by 1⃗. Moreover if µ ∈ spec(Ak)\{1}, then |µ| < 1. Thus, if λ ∈ spec(A)\{1}, then either
λk = 1 or |λ| < 1. If λk = 1 and λ ̸= 1, then there exists a nonzero vector u such that λu = Au.
Clearly u is not a multiple of 1⃗ since λ ̸= 1. We deduce that u = Aku contradicting the fact that
dimker(1−A) = 1. The characteristic polynomial of Ak is

PAk(t) =
∏

λ∈spec(A)

(
t− λk

)mA(λ)
,

where mA(λ) is the algebraic multiplicity of λ ∈ spec(A). Since λk = 1 iff λ = 1 we deduce

mA(λ) = mAk(λ) = 1.

⊓⊔

Corollary 5.17. If A ∈ MN (R) is an irreducible stochastic matrix, then 1 is a simple eigenvalue of
A.

Proof. Set B = 1
2

(
1+A

)
. Then B is a stochastic matrix. Moreover, ∀m ∈ N

Bm =
1

2m

m∑
j=0

(
m

j

)
Aj .

Since A is irreducible we deduce that there exists m ∈ N such that Bm > 0, i.e., B is a primitive
stochastic matrix. Thus 1 is a simple eigenvalue of B. Since

spec(B) =
{ 1

2
(1 + λ); λ ∈ spec(A)

}
we deduce that 1 is also a simple eigenvalue of A. ⊓⊔

Theorem 5.18. Let A ∈ MN (R) be an irreducible stochastic matrix. The there exists a unique
distribution w∞ such that w∞ ·A = w∞. This distribution is called the invariant distribution of A.

Proof. Note that
w ·A = w⇐⇒A⊤w⊤ = w⊤⇐⇒w⊤ ∈ ker

(
1−A⊤ )

Since A and A⊤ have the same characteristic polynomial we deduce that 1 is a simple eigenvalue of
A⊤. Hence the vector space {

w; w = w ·A
}
.

is one dimensional. It particular, this space contains at most one distribution.
Let w be a weight such that w ·A = w. We argue by contradiction that

∣∣w ∣∣ ·A =
∣∣w ∣∣. We have

wj =
∑
i

wiAij , ∀j

so that
|wj | ≤

∑
j

|wi|Aij , ∀j
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If
∣∣w ∣∣ ·A ̸=

∣∣w ∣∣, then there exists j0 such that

|wj0 | <
∑
i

|wi|Aij0 .

so ∑
j

|wj | >
∑
j

∑
i

|wi|Aij =
∑
i

|wi|

∑
j

Aij


︸ ︷︷ ︸

=1

=
∑
i

|wi|.

This contradiction shows that
∣∣w ∣∣ = ∣∣w ∣∣ ·A.

Set B = 1
2

(
1 + A

)
. Note that

∣∣ ∣∣ · A =
∣∣w ∣∣ iff

∣∣w ∣∣ · B =
∣∣w ∣∣ . In particular we deduce∣∣w ∣∣ ·Bm =

∣∣w ∣∣, ∀m ∈ N. Choose m such that Bm > 0 and set M = Bm. Since |
∣∣w ∣∣ ·M =

∣∣w ∣∣
and M > 0 we deduce

∣∣w ∣∣ > 0 and
∣∣w ∣∣ = ∣∣w ∣∣ ·A. Hence

w∞ :=
1

|w1|+ · · ·+ |wN |
[
|w1|, . . . , |wN |

]
is a positive distribution satisfying w∞ · A = w∞. Since there is at most one distribution with this
property, we deduce that w∞ is the unique distribution with this property. ⊓⊔

Theorem 5.19. Let A ∈ MN (R) be a primitive stochastic matrix. Denote by w∞ its invariant
distribution. Then the sequence of stochastic matrices (An)n∈N converges as n → ∞. Its limit,
denoted by A∞ satisfies

Ri(A
∞) = w∞, ∀i.

In other words
lim
n→∞

Ri(A
n) = w∞, ∀i = 1, . . . , N.

1st Proof. Assume first that the sequence An converges and denote by A∞ its limit. Hence

lim
n→∞

Ri(A
n) = Ri(A∞), ∀i.

Since the rows Ri(An) are distributions so are their limits. Letting n → ∞ in the equality An+1 =
An ·A we deduce

A∞ = A∞ ·A.
We have

Ri(A∞) = Ri(A
∞) ·A.

so the distribution Ri(A∞) is a solution of the equation w · A = w. The only distribution satisfying
this equation is w∞ so that

Ri(A) = w∞, ∀i.
To conclude the proof of the theorem it suffices to show that An converges as n → ∞. We will
achieve this using the Jordan decomposition of A.

The space CN decomposes as a direct sum

Cn =
⊕

λ∈spec(A)

Vλ

where Vλ is the generalized eigenspace corresponding to the eigenvalue λ. These are invariant spaces
of A. The space V1 is one-dimensional and spanned by 1⃗. The restriction of A to Vλ has the form
λ1+Nλ, where Nλ is a nilpotent operator.
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Any u ∈ Cn decomposes uniquely as a sum

u = u1 +
∑

λ∈spec(A)\{1}

uλ, uλ ∈ V λ.

Then
Anu = u1 +

∑
λ∈spec(A)\{1}

(
λ1+Nλ

)n
uλ

Since A is primitive, any λ ∈ spec(A) \ {1} satisfies λ| < 1 and we deduce that

lim
n→∞

(
λ1+Nλ

)n
uλ = 0, ∀λ ∈ spec(A) \ {1}.

Hence, for any u ∈ Cn the sequence Anu is convergent and its limit is u1.
Let
(
ej
)
1≤j≤N be the canonical basis of Cn. We deduce that for any jb the sequence

(
Anej

)
n∈N

is convergent. Observing that Anej is the j-th column of An we deduce that the sequence (An)n∈N
is convergent. ⊓⊔

2nd Proof.4 For any matrix M ∈MN (C) we set

∥M∥ := sup
i,j

∣∣Mij

∣∣.
Denote by A∞ the stochastic matrix with all rows equal to w∞. Note that A∞ > 0 and

A∞ ·A = A ·A∞ = A∞.

Fix k such that Ak > 0 and set

c = min
i,j

Akij
A∞
ij

= min
i,j

Akij
w∞
j

> 0.

From the equality w∞ = w∞Ak we deduce

w∞
j = w∞ · Cj(Ak) ≥ minCj(A

k) = min
i
Akij

Hence

min
i

Akij
w∞
j

≤ 1

so that c ∈ (0, 1]. Note that if c = 1 then we deduce from Lemma 5.11 that

Akij = wj , ∀i

and thus in this case Ak = A∞ so that

An = A∞, ∀n ≥ k.

In this case the theorem is trivially true. Suppose that c ∈ (0, 1). Note that Ak − cA∞ ≥ 0 and the
matrix

B =
1

1− c

(
Ak − cA∞ )

is stochastic. Moreover

BmA∞ = A∞Bm = A∞ = A∞ ·A∞, ∀m ∈ N

4This argument is due to Wolfgang Doeblin (1915-1940). During his life cut short by WW2 he had major mathemati-
cal contributions, many made public only in the year 2000. https://link.springer.com/content/pdf/10.
1007/s780-002-8399-0.pdf.

https://link.springer.com/content/pdf/10.1007/s780-002-8399-0.pdf
https://link.springer.com/content/pdf/10.1007/s780-002-8399-0.pdf
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Set D := B −A∞. We claim that

Dm =
(
B −A∞ )m = Bm −A∞, ∀m ∈ N. (5.10)

We argue by induction. The result is obviously true for m = 1. As for the inductive step we have

Dm+1 = Dm ·D = (Bm −A∞)(B −A∞)

= Bm+1 −BmA∞ −A∞ −A∞ ·A∞ = Bm+1 −A∞.

Arguing in a similar fashion we deduce(
Ak −A∞)m = Akm −A∞. (5.11)

Note that
Dm := Bm −A∞ = Bm −BmA∞ = Bm(1−A∞).

We deduce from Lemma 5.12 that

|Dm
ij | =

∣∣Ri(Bm)Cj(1−A∞)
∣∣ ≤ 1, ∀i, j,

i.e.,
∥Dm∥ ≤ 1.

On the other hand,
(Ak −A∞) = (1− c)(B −A∞) = (1− c)D.

Hence for any m ∈ N
Akm −A∞ =

(
Ak −A∞ )m = (1− c)mDm.

Hence
∥Akm −A∞∥ ≤ (1− c)m∥Dm∥ ≤ (1− c)m. (5.12)

On the other hand from the equality Aℓ+1 −A∞ = A
(
Aℓ −A∞) we deduce that∣∣ (Aℓ+1 −A∞ )

ij

∣∣ = ∣∣Ri(A) · Cj(Aℓ −A∞ ) ∣∣ (5.9)≤ ∥Aℓ −A∞∥, ∀i, j.

In other words,
∥Aℓ+1 −A∞∥ ≤ ∥Aℓ −A∞∥,

so the function ℓ 7→ r(ℓ) := ∥Aℓ −A∞∥ is nonincreasing. The inequality (5.12) implies that

lim
m→∞

r(km) = 0

and thus
lim
ℓ→∞

r(ℓ) = 0.

This completes the proof of the theorem. ⊓⊔

How hard it is to find the invariant distribution of an irreducible stochastic matrix A ∈MN (R)? If
the sizeN of the matrix, then this is a nearly impossible task. There are however situations frequently
occurring in concrete applications when this is possible, and quite easily.

Proposition 5.20. We say that P ∈ MN (R) is a stochastic matrix and w1, . . . , wN are positive
numbers such that

wipij = wjpji, ∀i, j (5.13)
If we set w :=

[
w1, . . . , wN

]
, then wP = w. In particular, if P is irreducible, its stationary

distribution is

w∞
i =

1

W
wi, W =

N∑
i=1

wi.
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Proof. Note that
w · P =

[
w · C1(P ), . . . , w · CN (P )

]
Hence

(w · P )j = w · Cj(P ) =
∑
i

wipij
(5.13)
=

∑
i

wjpji = wj
∑
i

pji = wj .

Note that
w =

1

W
w

is a distribution satisfying
wP = w.

If P is irreducible, there is only one such distribution, the stationary distribution w∞. ⊓⊔

Definition 5.21. A stochastic matrix P ∈MN (R) is called reversible if there exist positive numbers
w1, . . . , wN satisfying the condition (5.13) in Proposition 5.20. ⊓⊔
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5.3. Exercises.
Exercise 5.1. Let Q be a symmetric bilinear form on an n-dimensional real vector space. Prove that
there exists a basis of U such that the matrix associated to Q by this basis is diagonal and all the
entries belong to {−1, 0, 1}. ⊓⊔

Exercise 5.2. Let Q be a symmetric bilinear form on an n-dimensional real vector space U with
indices of inertia µ+, µ−, µ0. We say Q is positive definite on a subspace V ⊂ U if

Q(v,v) > 0, ∀v ∈ V \ 0.
(a) Prove that if Q is positive definite on a subspace V , then dimV ≤ µ+.
(b) Show that there exists a subspace of dimension µ+ on which Q is positive definite.
Hint: (a) Choose a diagonalizing basis e = {e1, . . . , en} of Q. Assume that Q(ei, ei) > 0, for
i = 1, . . . , µ+ and Q(ej , ej) ≤ 0 for j > µ+. Argue by contradiction that

dimV + dim span{ej ; j > µ+} ≤ dimU = n. ⊓⊔
Exercise 5.3. Let Q be a symmetric bilinear form on an n-dimensional real vector space U . with
indices of inertia µ+, µ−, µ0. Define

Null (Q) :=
{
u ∈ U ; Q(u,v) = 0, ∀v ∈ U .

}
.

Show that Null (Q) is a vector subspace of U of dimension µ0. ⊓⊔

Exercise 5.4 (Jacobi). For any n× n matrix M we denote by Mi the i× i matrix determined by the
first i rows and columns of M .

Suppose that Q is a symmetric bilinear form on the real vector space U of dimension n. Fix a
basis e = {e1, . . . , en} of U . Denote by A the matrix associated to Q by the basis e and assume that

∆i := detAi ̸= 0, ∀i = 1, . . . , n.

(a) Prove that there exists a basis f = (f1, . . . ,fn) of U with the following properties.
(i) span{e1, . . . , ei} = span{f1, . . . ,f i}, ∀i = 1, . . . , n.

(ii) Q(fk, ei) = 0, ∀1 ≤ i < k ≤ n, Q(fk, ek) = 1, ∀k = 1, . . . , n.
Hint: For fixed k, express the vector fk in terms of the vectors ei,

fk =
n∑
i=1

sikei

and then show that the conditions (i) and (ii) above uniquely determine the coefficients sik, again with
k fixed.
(b) If f is the basis found above, show that

Q(fk,f i) = 0, ∀i ̸= k,

Q(fk,fk) =
∆k−1

∆k
, ∀k = 1, . . . , n, ∆0 := 1.

(c) Show that the Morse index µ−(Q) is the number of sign changes in the sequence

1,∆1,∆2, . . . ,∆n. ⊓⊔
Exercise 5.5 (Sylvester). For any n × n matrix M we denote by Mi the i × i matrix determined by
the first i rows and columns of M .

Suppose that Q is a symmetric bilinear form on the real vector space U of dimension n. Fix a
basis e = {e1, . . . , en} of U and denote by A the matrix associated to Q by the basis e. Prove that
the following statements are equivalent.
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(i) Q is positive definite.
(ii) detAi > 0, ∀i = 1, . . . , n. ⊓⊔

Exercise 5.6. (a) Let f : [0, 1] → [0,∞) by a continuous function which is not identically zero. For
any k = 01, 2, . . . we define the k-th momentum of f to be the real number

µk := µk(f) =

∫ 1

0
xkf(x)dx.

Prove that the symmetric (n+ 1)× (n+ 1)-matrix symmetric matrix

A = (aij)0≤i,j≤n, aij = µi+j .

is positive definite.
Hint: Associate to any vector

u =


u0
u1
...
un


the polynomial Pu(x) = u0 + u1x+ · · ·+ unx

n and then express the integral∫ 1

0
Pu(x)Pv(x)f(x)

in terms of A.
(b) Prove that the symmetric n× n symmetric matrix

B = (bij)1≤i,j≤n, bij =
1

i+ j

is positive definite.
(c) Prove that the symmetric (n+ 1)× (n+ 1) symmetric matrix

C = (cij)0≤i,j≤n, cij = (i+ j)!,

where 0! := 1, n! = 1 · 2 · · ·n.
Hint: Show that for any k = 0, 1, 2, . . . we have∫ ∞

0
xke−xdx = k!,

and then due the trick in (a). ⊓⊔

Exercise 5.7. (a) Show that the 2× 2-symmetric matrix

A =

[
2 −1
−1 2

]
is positive definite.
(b) Denote by QA the symmetric bilinear form on R2 defined by then above matrix A. Since QA is
positive definite, it defines an inner product ⟨−,−⟩A on R2,

⟨u,v⟩A = QA(u,v) = ⟨u, Av⟩
where ⟨−,−⟩ denotes the canonical inner product on R2. Denote by T# the adjoint of T with respect
to the inner product ⟨−,−⟩A, i.e.,

⟨Tu,v⟩A = ⟨u, T#v⟩A, ∀u,v ∈ R2. (#)
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Show that
T# = A−1T ∗A,

where T ∗ is the adjoint of T with respect to the canonical inner product ⟨−,−⟩. What does this
formula tell you in the special case when T is described by the symmetric matrix[

1 2
2 3

]
?

Hint: In (#) use the equalities ⟨x,y⟩A = ⟨x, Ay⟩, ⟨Tx,y⟩ = ⟨x, T ∗y⟩, ∀x,y ∈ R2. ⊓⊔

Exercise 5.8. Suppose that U is a finite dimensional Euclidean F-space and T : U → U is an
invertible operator. Prove that

√
T ∗T is invertible and the operator S = T (

√
T ∗T )−1 is orthogonal.⊓⊔

Exercise 5.9. (a) Suppose that U is a finite dimensional real Euclidean space and Q ∈ Sym(U) is a
positive definite symmetric bilinear form. Prove that there exists a unique positive operator

T : U → U

such that
Q(u,v) = ⟨Tu, Tv⟩, ∀u,v ∈ U . ⊓⊔

Exercise 5.10. Let U be a complex Euclidean space and T : U → U a selfadjoint operator.
(i) Prove that T 2 is nonnegative definite.

(ii) Set |T | =
√
T 2. Prove that |T | and T commute, i.e., T · |T | = |T | · T .

(iii) Prove that if T is invertible then so is |T | and then operator |T |−1T is orthogonal.
⊓⊔



LINEAR ALGEBRA 93

REFERENCES

[1] S. Axler: Linear Algebra Done Right, Springer Verlag, 2004.
[2] V.V. Prasolov: Problems and Theorem in Linear Algebra, in Russian.
[3] S. Treil: Linear Algebra Done Wrong, Notes for a Linear algebra course at Brown University.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, NOTRE DAME, IN 46556-4618.
Email address: nicolaescu.1@nd.edu
URL: http://www.nd.edu/˜lnicolae/

ftp://ftp.mccme.ru/users/prasolov/linalg/linalg.pdf
http://www.math.brown.edu/~treil/papers/LADW/LADW.pdf
http://www.nd.edu/~lnicolae/

	1. Multilinear forms and determinants
	1.1. Mutilinear maps
	1.2. The symmetric group
	1.3. Symmetric and skew-symmetric forms
	1.4. The determinant of a square matrix
	1.5. Additional properties of determinants.
	1.6. Examples
	1.7. Exercises

	2. Spectral decomposition of linear operators
	2.1. Invariants of linear operators
	2.2. The determinant and the characteristic polynomial of an operator
	2.3. Symmetric polynomials
	2.4. Generalized eigenspaces
	2.5. The Jordan normal form of a complex operator
	2.6. Exercises

	3. Euclidean spaces
	3.1. Inner products
	3.2. Basic properties of Euclidean spaces
	3.3. Orthonormal systems and the Gramm-Schmidt procedure
	3.4. Orthogonal projections
	3.5. Linear functionals and adjoints on Euclidean spaces
	3.6. Exercises

	4. Spectral theory of normal operators
	4.1. Normal operators
	4.2. The spectral decomposition of a normal operator
	4.3. The spectral decomposition of a real symmetric operator
	4.4. Nonnegative operators
	4.5. Exercises

	5. Applications
	5.1. Symmetric bilinear forms
	5.2. Stochastic matrices
	5.3. Exercises

	References

