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THE MASLOV INDEX, THE SPECTRAL FLOW, AND
DECOMPOSITIONS OF MANIFOLDS

LIVIU I. NICOLAESCU

0. Introduction. Consider a closed, compact-oriented Riemann manifold (M, g)
and a Clifford bundle M over M. The spectral flow of a smooth path of
selfadjoint Dirac operators Dt: C(o) C(o) is the integer obtained by counting,
with sign, the number of eigenvalues of D that cross 0 as varies; it is a
homotopy invariant of the path (cf. [AS]). The aim of this paper is to describe the
spectral flow in terms of a decomposition of the manifold.
More precisely, suppose that M is divided into two manifolds-with-boundary

M1 and M2 by an oriented hypersurface E M. Assume that in a tubular neigh-
borhood N of E, the metric is a product and the operators D have the "cylindri-
cal" form

o’= c(ds)(/s + O’o), (0.1)

where s is the longitudinal coordinate in N, c(ds) is the Clifford multiplication by
ds, and D is independent of s. Set Oo 1 and denote by D and D the restric-
tion of D to M1 and M2.
The kernels of DJ are infinite-dimensional spaces of solutions of DJ 0 on

Mj. Restriction to E gives the Cauchy-data spaces (CD spaces)

A,(t) Ker D Is, Az(t) Ker D[lz

in L2(tfo). Note that the intersection Ax(t)c A2(t is the finite-dimensional space
of solutions of Dqt 0 on M.

This setup has a rich symplectic structure. Multiplication by (ds) introduces a
complex structure in L2(o) and hence a symplectic structure in this space. The
CD spaces Aj(t) are then infinite-dimensional Lagrangian subspaees of L2(go)
that vary smoothly with t, and the pair (A(t),A2(t)) is a Fredholm pair (as
defined in Section 1). As in the finite-dimensional ease, one can associate to a
path of Fredholm pairs of Lagrangians an integer called the Maslov index. The
main result of this paper is Theorem 3.14, which states that this Maslov index
equals the spectral flow of the family D.
The Lagrangians defined by the CD spaces are infinite-dimensional, but the

setup can be reduced to finite-dimensional symplectic geometry by "stretching
the neck." This is done by changing the metric on M to one in which the neck is
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isometric to a long cylinder (-r, r) x Y. We study the Cauchy-data spaces in the
adiabatic limits r--, . These limits exist if we assume that D is "neck-compati-
ble," i.e., is cylindrical, and that the operator Do in (1.1) is selfadjoint. If, more-
over, certain nondegeneracy conditions are satisfied, these limits have a nice de-
scription, and our Cauchy-data spaces Aj(t) stabilize to asymptotic Cauchy-data
spaces Aj. The limiting spaces arise naturally in the Atiyah-Patodi-Singer index
problem [-APS1]-[APS3]. A related adiabatic analysis was considered in [CLM2].
After performing this adiabatic deformation, we can reduce the Maslov index
computation to a finite-dimensional situation by passing to a symplectic quotient.
This generalizes a recent result of Yoshida [Y] in the context of Floer’s instanton
homology.
The paper consists of four sections. In Section 1, we translate some basic facts

of finite-dimensional symplectic topology into infinite dimensions. We prove that
the space of Fredholm pairs of Lagrangians has the homotopy type of the classi-
fying space of KO 1. Next, we deal with the Maslov index in infinite dimensions.
Using Arnold’s definition [Ar] as a model, we define it as an intersection number
and then derive some computational formulae which play a crucial part later.

Section 2 contains the main analytical technicalities of this paper. Many of
these results are known, but we have reformulated them in a symplectic context
(see [BW4] for an extended presentation of this subject).

Section 3 contains our main result: the Maslov index equals the spectral flow.
The idea of the proof is to reduce the general problem via successive homotopies
to a simple situation. For this we rely on a genericity result first used by Floer
IF] in the context of symplectic homology (we give a complete proof in the
appendix). After reducing to the case of piecewise affine homotopies, the theorem
follows by an integration by parts formula. Again, this has an elegant symplectic
interpretation.

Finally, in Section 4 we take up the problem of stretching the neck. This entails
studying the behavior of the Cauchy-data spaces of a neck-compatible Dirac on a
manifold M as the length of the neck tends to infinity. We begin by studying a
related finite-dimensional problem. Namely, suppose that A is a 2n x 2n symmet-
ric matrix that anticommutes with the canonical complex structure J on R2n. We
then get a 1-parameter group of symplectic transformations r e-rA, and hence a
flow on the Lagrangian Grassmanian A(n) of R2n. In Corollary 4.4, we show that
each trajectory in A(n) has a unique limit point as r ; this limit is an A-
invariant Lagrangian in R2. This follows from a simple trick we learned from
Tom Parker. We then return to the infinite-dimensional problem, where we can
regard the CD spaces as infinite-dimensional Lagrangians evolving by the "flow"
r e-r as the neck length r az. By passing to a carefully defined symplectic
quotient, we relate this to the above finite-dimensional situation. This yields
Theorem 4.9, which shows that as the neck length r , the Cauchy-data spaces
stabilize to limiting infinite dimensional Lagrangians that can be explicitly de-
scribed. We can then obtain the Maslov index from a computation in the finite-
dimensional symplectic quotient (Corollary 4.14).
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The families of Dirac operators for which we proved the splitting formula
have constant symbol. In IN2] we deal with higher-dimensional families of Dirac
operators and prove higher-dimensional splitting formulae using an entirely
different approach. The techniques there can be used to successfully discuss the
nonconstant symbol case as well.
Tom Mrowka informed the author that he proved these results using a similar

approach. After this work was completed, the author learned that Ulrich Bunke
independently obtained a splitting formula for the spectral flow (see [Bu2]) as
consequence of a glueing result for the eta function of a neck-compatible Dirac
(see [Bull). The results of this paper were announced in [NI-I.

Acknowledgements. I wish to express my gratitude to my advisor, Tom Parker,
with whom I had many long and illuminating discussionson the subject of this
paper. Also, I am indebted to Tom Mrowka for pointing out an error in a prelim-
inary version of this paper. While working on these results, I benefited from the
correspondence with Krysztof Wojciechowski, who supplied me with valuable
material on this topic. I want to thank both him and Paul Kirk for the stimu-
lating days I spent in Indiana.

I. Infinite dimensional symplectic geometry. In this section, we study Lagran-
gian subspaces in an infinite-dimensional symplectic space. In contrast to
the finite-dimensional situation, the Grassmanian of Lagrangian subspaces is
contractible. A related, but topologically more interesting, space is the space of
Fredholm pairs of Lagrangians. We will show this is a classifying space for KO
and then we will explicitly describe an isomorphism, called the Maslov index,
between its fundamental group and Z.

Let H be a separable real Hilbert space with inner product ). We will denote
the *-algebra of bounded linear operators on H by B(H). Let GL(H) be the group
of invertible elements in B(H), and let O(H) be the subgroup of bounded
orthogonal operators. For A, B B(H), define the commutator and the anti-
commutator as usual:

EA, B] AB- BA, {A, B} AB + BA.

Fix once and for all a complex structure on H, that is, an operator J O(H) with
j2 I. Thus, H becomes a symplectic space with symplectic form

co(x, y) (Jx, y) Vx, y H.

We can then introduce the basic notations of symplectic geometry. Let W be a
subspace of H ("subspace" will always mean closed subspace). Its annihilator is
the subspace

W {y e H; co(w, y) 0 Vw W}.
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It is easily seen that W JW1 where W+/- is the orthogonal complement of W
in H.

Definition. A subspace W of H is called isotropic if W c W, coisotropic if
W c W, and Lagran#ian if W W. Equivalently, W is Lagrangian if and only
ifW- JW.

Let Ae .q’j be the set of Lagranaian subspaces of H. To topologize A", we
identify it with a space of operators using the following construction. Associated
to each Lagrangian are three operators: the orthogonal projection PL onto L, the
complementary projection QL I- P onto the orthogonal complement of L,
and the conjugation operator (reflection through L)

C P Q= 2PL-1.

Note that C C satisfies

C=C*, C:=I, {C,J} -0. (1.1)

It is easy to see that if C satisfies (1.1), then Ker(I C) is a Lagrangian subspace
with projection Pz 1/2(I + C). Thus, we can identify .j with

% {C; C satisfies (1.1)} (1.2)

and topologize it using the operator norm. We will use this identification A"j
c frequently below.
The unitary group q/j(H) {U s O(H); [U, J] 0} is a topological group that

is contractible by Kuiper’s theorem [Ku] and acts on ’ by C-- UCU-1. This
action is transitive (just as in the finite-dimensional case, cf. [GS-i). The stabilizer
of L is O(L)= {U ql; [U, CL] 0}. Using standard arguments ([BW2] or
[AS]), we get a fibration

O(L) --, %

where, again by Kuiper’s theorem, O(L) is contractible. The long exact sequence
in homotopy implies the following result.

PROPOSITION 1.1. is contractible.

Thus, in infinite dimensions, has no interesting topology. To get something
interesting, we will consider

2) {(A1, A2) e ,2; (A, A2) Fredholm pair}.

Recall that a pair of (V, W) of infinite-dimensional subspaces of H is called
Fredholm if both subspaces have infinite codimension, V + W is closed, and both
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dim(V c W) and codim(V + W) are finite. The Fredholm index of this pair is
defined as

i(V, W) dim(V W) codim(V + W).

(For basic facts about Fredholm pairs, we refer to [C] or [K].) Note that
Fredholm pairs of Lagrangians automatically have index 0 since

i(A, A2) dim(Ax c A2) dim(Ai c A-)

dim(A c A2) dim J(Aa c A2) 0. (1.3)

We can also describe ,.(2) in terms of conjugation operators. By Lemma 2.6 of
[BW2], (A1, A2) t2) if and only if the corresponding conjugations satisfy
C1 + C2 3f’, where f is the space of compact operators on H. Thus,

e()= {(c,, c:)e e:; c, + c. e y}.

Now fix Co cg. We have a fibration

where p(C, C2) C and fro p-(Co) (-Co + :,f)c cg. Since Sa is contracti-
ble, we get a weak homotopy equivalence .2) c. Set
and for C cg set Oc,c (I + :;) c Oc.
THEOREM 1.2. There exists a weak homotopy equivalence

& - v(o)/o()

where

U(o) lim U(n) 0(o) lim O(n).

Proof.
lemmas.

The proof will be carried out in several steps, with some intervening

Step 1. o is path-connected. We associate to each finite-dimensional sub-
space V c Ao the set

fo(V) {A e &o; A Ao c V} c fo.

These define a filtration of o. To show that o is connected, it suffices to show
that each o(V) is connected. Now in finite dimensions, the space of Lagrangians
in V + ,IV is connected (see [GS]). Hence, any Lagrangian in &ao(V can be con-
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nected in o(V) to a Lagrangian in o(0). Thus, it suffices to show that Aao(0) is
connected. This follows immediately from the next lemma, which gives an alter-
nate description of o(0). The idea, which is standard in the finite-dimensional
case, is to regard Lagrangian subspaces as the graphs of symmetric operators (cf.
[Ar], [GS]).

LEMMA 1.3. There is an identification

.Wo(0 {selfadjoint operators JAo JAo }

and hence &ao(0 is contractible.

Proof. Suppose that (A, Ao) is a Fredholm pair of transversal Lagrangians.
Let P PAo and Q I- P. We deduce that H A + Ao. In particular, this
implies that Q(A)= JAo (see Figure 1). Using the fact that A c Ao 0, we see
that Q" A JAo is also injective. The open mapping theorem implies that Q is an
isomorphism. Construct the operator A: JAo JAo by

Clearly, A is a bounded operator (by the closed graph theorem). Note that
(i) each u A can be uniquely written as u l+/- JAl_, where l+/- Qu JAo;
(ii) the condition that L is Lagrangian is equivalent to A being selfadjoint.
Conversely, given a selfadjoint operator A: JAo JAo, its "graph"

Aa {l+/- JAl+/-; l+/- e JAo}

A

pQ_1 x Ao

JAo

Ax JPQ-I x

FIGURE 1. Lagrangian subspaces can be viewed as graphs of symmetric operators.
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is a Lagrangian. Note that Aa c Ao 0. Now consider the operator

A: H H, A(l, l+/-) JAl_, (l, l+/-) Ao JAo.

One sees that Range(/- A)= Ao + At, so that the transversality of the pair
(At, Ao) is equivalent to the surjectivity of I .. Since .2 0 for any selfadjoint
A: JAo JAo, we deduce that for any such A, I A is invertible. Hence, (At, Ao)
is a transversal Fredholm pair. El

Step 2. If C1, C2 "0 satisfy I1C1 C2 < 2, then there is a T in

GLc { T GL(H) (I + o,); IT, J] O}

such that

C2 TCI T- (1.4)

Following [W], we set T I + 1/2(C- C2)C1. Then T is invertible, since
II(Cx- C2)Cxll < 2, and T commutes with J because C and C2 anticommute
with J. On the other hand, C1 and C2 lie in -C + , so T GLc. A simple
computation shows that (1.4) holds.

Step 3. For each pair C, C2 ,-o there is a T GLc such that

C2 TC T- (1.5)

This follows from Step 2 and the path-connectedness of Z’o; the details are left to
the reader.
To proceed further we need the following technical result.

LEMMA 1.4. If T GLc, then (T’T)/2 GLc.
Proof. Set S T*T. Clearly, S/2 GL(H) and S/2 commutes with J. We have

to show that S/2 I + o,f. Then S I + . To find Sm, we use Newton’s itera-
tion, as in I-Ku]:

So =I, Sn+ 1/2(Sn + S; S).

Note that this iteration is well defined, since all S’nS are invertible (they are posi-
tive selfadjoint operators with their spectra bounded away from 0). One sees
inductively that the right-hand side of the iteration is an affine combination of
terms in I + . Thus, S/2 lim Sn I + . El

Step 4. For each pair Cx, C2 ,,o, there is a U q/c such that

C2 UC1U*. (1.6)
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We follow the idea in [B, Proposition 4.6.5]. Consider T e GLc as in (1.5). Then
TC1 C2 T and C1 T* T*C2. It follows that C1 commutes with S S T’T,
and hence with S/. Setting U T(TT*)-/, we clearly have U*U I, and
U GLc by Lemma 1.4. Therefore, U is in q/c and satisfies (1.6).

Step 4 shows that q/c acts transitively on &a. For C ’o, the stabilizer of this
action is Oc.c. Thus,

qo qlc/Oc, c C qo (1.7)

Step 5. There exist homotopy equivalences

qlc - GLc - GL(03, C), Oc,c - GL(, R). (1.8)

The proof of q/c GLc is identical to the proof of Lemma 2.9 of [BW2]. It
essentially uses the polar decomposition which by Lemma 1.4 is an internal de-
composition in GLx, followed by an affine deformation of the positive symmetric
term of the polarization. I + is an affine space, so this deformation stays
within GLee. Then by the results of Palais [P1], we have a homotopy equivalence

GLx GL(03, C).

The second part is completely analogous. Classically,

U(03) - GL(03, C), 0(03) - GL(o3, R) homotopically. (1.9)

Theorem 1.2 follows from (1.7), (1.8), and (1.9). E!

Remark 1.5. A related result was proved in [W-l, [BW3]. In that context,
represents compact pseudodifferential operators in some complex L2 space.

The above arguments apply in finite dimensions to show that the Grassmanian
A(n) of Lagrangians in C is diffeomorphic to U(n)/O(n). Taking the direct limits
over the embeddings A(n) A(n + 1) then gives

A(03) lim A(n)

Hence, we get the following corollary.

COROLLARY 1.6. We have

(’) - o U(03)/0(03)

It is known that U/O is a classifying space for KO (cf. [Kar]). On the other
hand, Atiyah-Singer [AS] have shown that this classifying space can also be
identified (up to homotopy) with the space of selfadjoint Fredholm operators on
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a real Hilbert space. Its fundamental group is isomorphic to Z. The isomorphism
is given by the spectral flow (of a loop of selfadjoint Fredholm operators).
Obviously,

(u/o) z,

and the isomorphism is given by the Maslov index. Thus, Corollary 1.6 displays
the double nature of (2): the operator theoretic nature and the symplectic
nature. In the sequel, we will further analyze this duality.

It will be very convenient to have a computational description of the infinite-
dimensional Maslov index. In the finite-dimensional situation, there are many
excellent presentations of the Maslov index (see, e.g., [Ar], [CLM1], [D1], [D2-1,
[GS], [RS]). However, all these assume the finite-dimensionality, especially when
dealing with orientability questions. For a Banach manifold, orientability is a
delicate question. To avoid this issue, we will give a meaning to a local intersec-
tion number without any elaborate considerations of orientability. Our approach
is inspired from Arnold’s description of the finite-dimensional index [Ar].

Consider a Lagrangian Ao Ker(I Co) specified by the conjugation Co. The
next several lemmas describe the geometry of the space

q’o {A e &a/(Ao, A) is a Fredholm pair}.

LEMMA 1.7. f’O is a smooth Banach manifold modelled on the space Sym(JAo)
of bounded symmetric operators on JAo.

Proof. To each finite-dimensional subspace V of Ao, we associate an ortho-
gonal operator Iv commuting with J by

and the open subset

Thus, v Ivao*, where

lv(v)={v for v V
for veAc V+/-

v {A e q/A c IrAo 0).

 eo* (A  eo/A Ao o}

is the dense open set of transverse pairs (in particular, o &o*). Notice that
Iv q&c, so (IvA, Ao) is a Fredholm pair and thus v c o. The sets v cover
o: if A o, then A v for V A c Ao.
The isomorphism of Lemma 1.3 is a map Wo: o o* Sym(JAo). For other

V, set

kI/V I/0 o Iil: v Sym(JAo).
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Then the collection

{(@v, Wv); V , v: v ---’ Sym(JAo)}

forms an atlas of o. The verification that the transition functions are smooth is
accomplished by writing the conjugation operator C associated to a Lagrangian
in terms of these coordinates. The details are left to the reader. El

The manifold o is filtered by the subspaces

(’’ {A e o; dim(A c Ao) m}.

In fact, these are subvarieties. Indeed, note that 06" is covered by charts of the
form v with dim V m. Fix one such chart and write S Wv. By an elemen-
tary argument of Arnold JAr, Lemma 3.3.3], one sees that A v lies in ’ if
and only if

(Sdu, Jr) 0 for all u, v V (S Wv(A)). (1.10)

Since S is symmetric and dim V m, this describes ’ in this chart as the solu-
tion set of m(m + 1)/2 algebraic equations. In particular, if A e &oX, then A c Ao is
a 1-dimensional space Vo Re, A Vo, and $ Wvo(A). Then

(SJe, Je) O. (1.11)

COROLLARY 1.8. The closure o is a codimension-1 subvariety of o called the
"resonance divisor." It is stratified by subvarieties LP’ of codimension m(m + 1)/2.

We may think of 5Co as a divisor in .,ao defining an element in H1(’o, Z) Z
dual to the generator of H1(o, Z). Dually, given a loop in &ao, we may think of
its Maslov index #(7) as being the intersection number , c ’o. Most of the rest of
this section is devoted to making this intuition rigorous. We will first show that if
a path y intersects &ao transversally, one can associate a sign to each intersection
point. The sum of the intersection numbers is a homotopy invariant of the path.
As a byproduct, we will get several formulae for the local intersection number.

Consider the vector field 7. over &ao defined by

t=O
(eS’A)

PROPOSITION 1.9. 7. defines a transversal orientation on ’.
Proof. This follows easily from a computation of Arnold JAr, Lemma 3.5.3].

Consider A &ao and assume A lies in a coordinate chart v, V span(e), lel-
1. If S Wv(A) are the coordinates of A, then the coordinates of 7. are given by
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the formula

;(A) -(I + $2).

Hence, (z(A)Je, Je) < 0 and thus, in view of (1.11), ;( defines a transversal orienta-
tion along o. r3

Consider a path A(t), which for tl small, lies in a single chart to and
such that A(0) Ao Reo, leol 1. Let S’ Wo(A(t)). Assume A(t) intersects o
transversally at 0. The transversality can be rewritten as

(’2Jeo, Jeo) O,

where--here and belowmthe dot denotes d/dt at 0. Let ’ {v .Ao; Iol 1,
A(0) v}, and define a map a aA.): ’ { + 1} by a(v) sign(SJeo, Jeo).

LEMMA 1.10. For a path A(t) as above, the map aAt.) is constant.

Proof. One can alternatively characterize //as {v Ao; Ivl 1, (v, eo)# 0}.
Hence, d//has two components:

’+ {v d/t; _+(v, eo) > 0}.

Now S’ varies continuously with v, and obviously r(v)= a(-v). Thus,
{ + 1 } a continuous even map, so is constant. 121

Definition.
index by

For a path A(t) as in Lemma 1.10, we define the local Maslov

#(Ao, A(t)) au.)(v), (1.12)

By Lemma 1.10, this definition is independent of coordinates.

We will next give several more concrete versions of formula (1.12). To begin,
note that in (1.12) aA(V) is independent of v, so we are free to choose v as we
please. Choose v eo. Set fo deo and R, o(IffXA(t)), where Io IReo. Thus,
(1.12) becomes

#(Ao, A(t)) sign(/,fo, fo). (1.13)

Now consider the path x, fo JR,fo I-lA(t). Then Xo fo (since eo A(0) so
that fo -IXeo IffA(0)), and hence

(x, Xo, eo) (JR,A, eo) (Rtfo, fo).

Differentiating at t 0, we get

(:,, eo) (/,fo, fo). (1.14)
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Now introduce the conjugation D D(t) associated to IfflA(t). Since xt 6 IfflA(t),
we have xt D(t)x. Differentiating this at 0, taking the inner product with
eo, and noting that D(O)eo -eo, we get

(o, eo) (/fo, eo) (, eo)

and therefore

2(o, eo) (/fo, eo) (Jtfo, fo).

The conjugation associated with A(t) is C(t) IfflD(t)Io Using this in (1.15), we
deduce

2(o, eo) (JIo (Ib-lfo, fo) (Jeo, eo). (1.16)

Combining (1.13), (1.14), and (1.16), we get the following corollary.

COROLLARY 1.11. We have

#(Ao, A(t)) sign(J(eo, eo) sign co(dreo, eo)

where A(0) c Ao Reo and co(x, y) (Jx, y) is the symplectic form.
Note that the above formula is independent of coordinates. For the application

we have in mind, we will need another variant of this formula. Consider a family
U(t) qlj with

v(o) , c(t) u(t)c(o)u(t),.

If we write JA, where A commutes with J and A is selfadjoint, then

d JAC(O)- C(O)JA JAC(O) + JC(O)A

eo JAC(O)eo + JC(O)Aeo J(Aeo + C(O)Aeo) J(I + C(O))Aeo.

But P(0) 1/2(I + C(0)) is the orthogonal projection onto A(0), so

(Jeo, eo) -2(P(O)Aeo, eo) -2(Aeo, eo).

Hence we have the following result.

COROLLARY 1.12. If A(t) U(t)A(O)with U(t)= I + tJA + O(tZ), then

#(Ao, A(t))lt=o -sign(Aeo, eo) sign co(t)eo, eo). (1.17)
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Remark 1.13. There is an ambiguity in the definition of the Maslov index, and,
without a proper normalization, the Maslov index is well defined up to a sign.
This is easily seen in the "mirror symmetry" of the Maslov index (cf. [CLM1,
Prop. XI-I:

#(A (t), A2(t)) -#(A2(t), A1 (t)).

We consider as standard normalization the one in Property VII of I-CLM1], and
we want to compare it with our definition of the Maslov index. For this, we
consider R2 with the standard symplectic structure

Let Lo span(eo), where eo (1, 0), and consider the path Lt eJtLo for in
a small neighborhood of 0. Corollary 1.12 gives #(Lo, L)= sign og(Jeo, eo)= 1,
which agrees with the standard normalization.

Consider

#o (r: ( eo, I [a, b] compact interval

’ {y e ’o; y(t) intersects o transversally}.

Since codim k(k + 1)/2 > 3 if k > 2, we see that any path in o can be
deformed (in o) to a path in d’. For ,* e ’ define

(Ao, y*)- (Ao,

This is the usual definition of an intersection number. In particular, standard
arguments show that the above # can be extended to the whole o as a homo-
topy invariant function. Now define

,) {(Ax, A2) e ,.0(2); A c A2 0}

and

#t2) {: (I, dI) (e2),

Any y e 2) looks like y(t)= (Al(t), A2(t)). Without any loss of generality, we
may assume that A(0)= Ao. We can find a smooth family of unitary operators
U(t) q&c such that

Ax(t) U(t)Ao, U(0) I
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and define

#(y) #(Al(t), A2(t))= #(Ao, U(t)-lA2(t)).

Then one can easily check the following:
(A) #() is independent of the family U(t);
(B) #() is a homotopy invariant.
Both assertions follow from the fact the inclusion o 2) is a homotopy

equivalence. The details are left to the reader. An immediate consequence of the
above considerations is that/ defines a morphism kt: zl (&o2)) Z.
The finite-dimensional Maslov index behaves nicely with respect to symplectic

reductions. So does this infinite-dimensional version of it. Recall first the process
of reduction.

LEMMA 1.14. Consider A c H a Laoranoian of H, an isotropic subspace W and
its annihilator W. If (A, W) is a Fredholm pair, then:

(i) ao W/W has an induced symplectic structure;
(ii) Aw (A c W)/W is a Lagranoian subspace in W/W.
Proof. First, (i) is straightforward and is left to the reader. We now prove

(ii) in a special case, which is precisely the situation we will need. We will assume
that A is clean rood W, i.e., A c W 0. We will identify to with the orthogonal
complement of W in W. Finally, set U (W)+/-. Then

H=oWU.

Denote by Po (resp., Pw, Pv) the orthogonal projections onto o (resp., W, U).
Obviously, Aw is an isotropic subspace of o. We show that it is maximal
isotropic. Let ho o such that (Jho, Aw) O. Then

Jho _1. (AW + W) = Jho _1_ (A c W),

hoe J(A c W)+/- J(A- + U) (since (A, W) is Fredholm)

J(JA + U)= A + W (since W is isotropic).

Thus, ho argo c (A + W) i.e., ho AW. The lemma is proved.

For any isotropic subspace W, JW is also isotropic, and we define

)(H) {(At, A2) 6 ,(2)/(A, W) is Fredholm A: c W A2 JW 0}.

(The pairs of ,a) are called clean rood W). Note that if (Ax, A2)
then (A2, (JW)) is Fredholm, and we have a natural identification W/W
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(JW)/JW (given by J). The reduction process described in Lemma 1.14 induces a
map

r: Lf()(H) a()(o)(A, A)-,(A, A).

Since the reduction is clean mod W, we deduce, as in the finite-dimensional case,
that rw is continuous (see IN2-1 for details). As in finite dimensions, we have the
following result.

PROPOSITION 1.15 (Invariance under clean reductions). If (t) t2) is clean
rood W at any time, then

() (.()).

Proof. As before, it suffices to consider only the special case y(t) (Ao, At (t)),
where is very small. We can assume without any loss of generality that

A (t) U(t)A (0), U(O) 1, U(t)l, =- I.

Let (0) JA. Clearly, A 0 on JW. Using (1.17) to compute the local Maslov
index, we see that W has no contribution in the formula and thus nothing
changes if we mod W out.

Remark 1.16. One can show that the map nw is actually a homotopy equiva-
lence (see [N2]). A similar result holds if we allow W to vary with t. As long as
the reductions stay clean, we have the invariance of the Maslov class (see [DP],
IV] for a related result). We leave the details to the reader.

Using the homotopy long exact sequence for the pair (t2), .t2)) and the
results proved so far, we deduce the following theorem.

THEOREM 1.17. Let o, 1 ff #(2). Then o is homotopic to 1 if and only if

(,o) (, ).

In particular, ?t: nl (,.(2)) Z is an isomorphism.

The details are left to the reader.
We now have a flexible definition of the Maslov index. In the following sec-

tions, we will apply it in connection to spectral flow computations.

2. Boundary value problems for Dirac operators. We gather in this section
various analytical facts about boundary value problems for Dirac operators.
Many of these results are known (see [BW4-1), but we reformulate them in a form
suitable to our purposes.
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Consider an oriented Riemann manifold (M, 0) and g M a euclidean vector
bundle over M. Denote by C(M) the bundle of Clifford algebras over M whose
fiber at x M is the Clifford algebra C(T*M). We will assume that is a
selfadjoint C(M)-module, that is, for each 1-form r/e fl (M) the Clifford multipli-
cation c(/)e End(g) is skew-adjoint. Thus, we can speak of Dirac operators
D: C(g) Coo(g) [BGV, Chapter 3]. In the sequel, all Dirac operators will be
assumed formally selfadjoint. The space of selfadjoint Dirae operators compatible
with a given Clifford action is an affine space modelled on the space of symmetric
endomorphisms of g.

Let M be a compact-oriented manifold with boundary E cOM, and suppose
it is endowed with a cylindrical metric in a neighborhood of the boundary. More
precisely, if U c M is a collar neighborhood of E in M with an identification
’U -E x (-1, 0], then in these coordinates the Riemannian metric on M
satisfies glv h + ds2, where h is a Riemannian metric on E (Figure 2). Denote
by V V the corresponding Levi-Civita connection. Let be a selfadjoint
C(M)-module and V a Clifford connection on g. Set go g[ and pick an
isomorphism (cylindrical gauge)

W: glv - go x (- 1, 0]

covering @ such that over the neck

o + ds (R) OleOs,

where 9o 91. Fix once and for all the isomorphisms , W, the connection 9,
and the metric 9.

Definition 2.1. A Dirac operator D is called cylindrical if over U it has the

U

{-} z {0}

FIGURE 2. The metric is cylindrical in a neighborhood of the boundary.



SPECTRAL FLOW AND DECOMPOSITIONS OF MANIFOLDS 501

form

D c(ds)(O/Os + Do), (2.1)

where Do" C(go) C(go) is independent of s over U’. In addition, if Do is
selfadjoint, then D is called neck-compatible (n.c.).

In the sequel, all Dirac operators on manifolds with boundary will be assumed
cylindrical. The Dirac operator associated to the Clifford connection V is neck-
compatible. Also note that Do is a Dirac operator over the boundary, compatible
with the induced Clifford action on go.

If A is a cylindrical endomorphism of g, i.e., a selfadjoint endomorphism sat-
isfying O/OsA 0 over U, then/ + A is cylindrical. We deduce that the space of
cylindrical Dirac operators is an affine space modelled on the space of cylindrical
endomorphisms.

If A is a neck-compatible endomorphism of g, i.e., a cylindrical endomorphism
anticommuting with d(ds)

{A, c(ds)} 0 (2.2)

over U, then D D + A is also an n.e. Dirae operator. In particular, we see
that the n.c. operators also form an affine space modelled on the space of n.c.
endomorphisms.
The adequate functional framework for all our future considerations is that of

Sobolev spaces L2 (distributions "a-times differentiable" with derivatives in L2).
We will denote the norm ofL2 by l, and the L2 norm by I.

Let D be a Dirac operator. Following Seeley [S], we consider the spaces

JC(D) {u C(g); Du 0 in M}

9C(D) JC(D) L2

We are interested in the subspace spanned by the restrictions over E of the
sections in g(D). For tr > 1/2, the existence of these restrictions is a consequence
of classical trace results for Sobolev spaces (cf. [LiMa]). The case tr 1/2 re-
quires a more subtle treatment since the usual trace map is not defined. One uses
the fact that g/2(D) is a distinguished subspace of sections satisfying an elliptic
partial differential equation and a growth condition near the boundary. For s
(0, 1), consider the restriction map

R,: C(g) C(go) uul.x,.

For any u e 3C1/2(D), the limit (in L2(go))

Rou ’=f lim R,u



502 LIVIU I. NICOLAESCU

exists and is uniform in {lul/z < 1} ,dl/2 (see [BW41, [Sl). This limit map has
two important properties.

PROPOSITION 2.2. Ro" fit/’1/2 "- L2(d*o) is a continuous map satisfyin#
(a) unique continuation: If u odl/2(D and Ro(u O, then u O;
(b) boundary estimates: If u "1/2(D), then

lulx/ < const. IRou[.

For the proof, we refer to [BW4] or IS].

Definition 2.3. The Cauchy-data space of D (CD space) is the subspace A(D) c
L2(6o) defined as

A(D)- Ro(:;ff/2(D))= /2(D)lz.

One sees that A(D) is a closed subspace of L2(o). It is roughly the subspace
consisting of those sections u L2(go) which extend to a solution of DU 0 over
M. Proposition 2.2 shows that Ro is a linear isomorphism between da/2(D) and
A(D). The orthogonal projection P(D) onto A(D) is usually called the CaldOron
projector of D. By the classical results of IS], this projection is induced by a
0th-order pseudodifferential operator whose symbol can be explicitly computed
[BW4], [P2], [S].
The dependence of the Caldron projector on the operator is rather nice. The

method of constructing the Cald6ron projectors detailed in [BW4], Theorem
12.4(b) (see also [S]) can be used to prove the following result.

PROPOSITION 2.4. Let {D’} be a family of cylindrical Dirac operators on M
compatible with a fixed Clifford action. Assume D is smooth in some Sobolev norm
L, where k is sufficiently large so that L - C2, (e.g., k > N/2 + 2, N dim M).
Then the path of orthogonal projections IIt onto A(t) A(D(t)) is C as a path in
the Banach space of bounded operators L2(d*o) - L2(o).

Proof. We begin by briefly recalling the construction of the Cald6ron projec-
tion. Let/ denote the double of M: M Mu (-M). Continue to denote by s
the longitudinal coordinate along a tubular neighborhood N of X in M, so that
NX x(-1,1)ands<0onM.
For each Dirac operator D over M, denote by (D) the invertible double

of D constructed in Theorem 9.1 of [BW4]. This is an invertible Dirac operator
on a bundle 6 over M, extending D. Moreover, depends smoothly upon D.
For every u C(o), denote by 3 (R) u the vector-valued distribution over M

defined by

<, (R) u, v> f (u, Vl) v c(a).
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Note that supp (R) u c E and (R) u e L21/2_t for 0 < e < 1/2. This follows from
an equivalent description of the map u di (R) u as the adjoint of the trace map. c() c(o) v vIz.

2This adjoint is a continuous operator V*: L2, ---, L_l/2_ for all a > 0.
Given u e Coo(tfo), denote by U U(u) the distribution over M defined by U
-( (R) u). By classical regularity results, sing supp U c E and U L2/2_. In
particular, U is smooth over the interior of M; and in [BW4, Theorem 12.4] or
IS], it is shown that

RU= lim UIE x (s)
s-O-

exists in any Ck norm. The basic result is that

H(D)u RU Vu c(go).

Now let D be a smooth path of Dirac operators over M and set lI H(Dt),
t (Dt), and let II’ll denote the natural norm in the space of bounded linear
operators L2(go)- L2(go). One fact that will be used frequently in the sequel is
the following inequality for distributions over a compact manifold:

O < a < 2, a e C2, C e L. (2.3)

The proof of (2.3) is immediate. For tr 0 or tr 2, this is simply the Holder
inequality. For the other a, it follows by interpolation.
The proof that t--, IIt is smooth is carried out in several steps. For every

u e Coo(o) and any set Ut 1(6 (R) u). Fix e e (0, 1/2). Note that

U, Ix/- < C lul (2.4)

where C > 0 is independent of at least for all small t.

Step 1. We will prove that U Uo L/2- and

Ut- U013/2_ Ctlul C(go). (2.5)

To prove (2.5), write as o + A(t), where A(t) End(g) satisfies

IIA(t)llc O(t) as 0. (2.6)

Ut satisfies the equation o Ut + A(t)Ut 6 (R) u so that

o(Ut Uo) -A(t)Ut e L/2-.
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2By standard elliptic regularity, we deduce Ut- Uo Za/2-e. Using elliptic esti-
mates and the invertibility of o, we deduce

IUt- Uola/2-, CIA(t)UtI1/2-,.

The estimate (4.7) follows immediately, using (2.3), (2.4), and (2.6).

Step 2.

IIn,- noll O(t) as O. (2.7)

For u Coo(Co), we have

Iltu R-d Ut R-dUo + R(Ut- Uo)= Hou + R(Ut- Uo).

The existence of R(Ut- Uo) follows from the regularity established at Step 1
and classical trace results. In particular,

IrI,u- noul IR(Ut- Uo)l < CIUt- Uo]a/2-.

The estimate (2.7) now follows from (2.5). In particular, we proved that II
depends continuously upon t.
For any u Coo(Co), let Vo be defined as the unique solution of the equation

o Vo + ,4(0)Vo 0, (2.8)

where as before t o + A(t), Uo -l(6t)u), and the dot denotes the
differentiation at 0.

Step 3.

Ut- Uo tVol3/2- < Ct2ly] for all u C(go) and all small. (2.9)

To prove (2.9), write A(t) tfl(O) + R(t), where R(t) End() and

IlR(t)llc O(t2) as - 0. (2.10)

The equation t Ut 6 (R) u can be rewritten as

o Ut + tfl(O)Ut + R(t)Ut 6 (R) u.

Using (2.8) and o Uo 6 (R) u, we deduce

o Ut Uo Vo t,Zl O Ut Uo R Ut
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Hence, by elliptic estimates, we have

IUt- Uo tVol3/2-, < C(tI/I(O)(U,- Uo)lt/2-, + IR(t)Utlt/2-,).

The estimate (2.9) follows easily, using (2.3), (2.5), and (2.10).
Coupling elliptic estimates in (2.8) with the relations (2.3) and (2.4), we get

Vo13/2_, < Clul. (2.11)

The reader can now verify immediately that l-It is C and

IIo u R Vo.

Proposition 2.4 is proved. El

We can now relate the Dirac operators and their CD spaces to the infinite-
dimensional symplectic topology of the previous sections. All this setup lies over
a natural symplectic background. Indeed, c(ds) is a fiberwise isometry, so it
defines a unitary operator

J L2 oo - L2 to

i.e., J is a complex structure on L2(o), thus defining a symplectic structure

co(u, v) f (Ju, v)

for all u, v e L2(6o).
The next result is the key fact which unifies all the topics discussed so far.

It is another manifestation of the duality Selfadjoint operators Lagrangian
subspaces.

PROPOSITION 2.5 [BW2, Proposition 3.2]. A(D) is a La#rangian subspace of
L2(ofo) with respect to the natural symplectic structure induced by the Clifford
multiplication with ds.

Finally, consider the following situation. (M, #) is a compact oriented Riemann
manifold and a selfadjoint C(M)-module over M. Let E be an oriented hyper-
surface in M, which divides it into two manifolds-with-boundary M1, M2. Choose
N, N2 tubular neighborhoods of M, M2 such that N Z x (- 1, 0-1, N2 X; x
!-0, 1) (see Figure 3). Set N N N2. We assume the metric # is a product metric
on N, i.e., #IN ds2 + h, where h is a metric on E and -1 < s < 1 is the longitu-
dinal coordinate on N. Let D: C(6r) C() be a Dirac operator on M. Denote
by DI (resp., D2) its restrictions to M (resp., M2). D will be called cylindrical if
both D and D2 are cylindrical. As usual, set o lr. L2(o) has a symplectic
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M

FIGURE 3. A metrically nice splitting

structure induced by the Clifford action. The CD spaces AI(D), A2(D) of D1 and
D2 are Lagrangian subspaces in L2(fo). In fact, more can be said.

PROPOSITION 2.6. (A(D), A2(D)) is a Fredholm pair. Moreover, (A,A2) is a
transversal pair if and only if D is invertible.

Proof. Let Pj be the orthogonal projection onto Aj, j 1, 2. We have seen
that these are 0th-order pseudodifferential operators in L2(o). In I-S] (see also
[P2, Chapter XVII]), it is proved that their symbols satisfy

o’(Px)() + o(P2)( Id.

Thus, Px (I P2) is a pseudodifferential operator of order < 1 in L2(fo). In
particular, P1- (1- P2) is compact, so that (A, A2) is a Fredholm pair. The
second part is intuitively clear (see also [BW2, Corollary 3.4]).

3. The Maslov index and the spectral flow. The setting of this section is identi-
cal to the one at the end of Section 2. We endow the space of cylindrical Dirac
operators with a Sobolev topology, given by an Lk2 norm with k sufficiently
large so that Lk2 -, C2. Inside sits

9" {D 9; D is invertible}.

To any continuous path y D(t) in with endpoints in *, one can associate an
integer, the spectral flow SF() (see lAPS3], [BWl]) defined as the number of
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eigenvalues of D(t) that change from negative to positive, minus the number of
eigenvalues that change from positive to negative. This is a homotopy invariant
of y (cf. [AS], [BWl]) with an obvious additivity property. If Yl, 72: (1, I)
(, *) with y(1) y2(0), then

SF(7I "Y2)= SF(3q) + SF(y2),

so the spectral flow can be viewed as a homomorphism

SF: z(, *) Z.

In Section 2, we defined a continuous map

A(2): (, ,) __, ((2), D -- (A (D), A:(D)).

Denote by At.2) the homomorphism between zr’s induced by this map.
we will prove that the following diagram is commutative.

7 (, ,) A*(2)) 7 (,.(2), (f(2))

Here #: 1(,,(2), ,,,(2)) Z is the Maslov index isomorphism constructed in Sec-
tion 1.
To this end, we will need a localization procedure for the spectral flow. Let
D(t) (Itl < ) be a smooth family of cylindrical Dirac operators such that

D(t) is invertible for : 0. Let Ko ker D(0), and denote by Po the orthogonal
projection onto Ko. We form the resonance matrix:

R R(A): Ko Ko R Po/(0).

We can view R as a symmetric matrix. We have the following result [DRS].

THEOREM 3.1. Let D and A as above satisfy (1). If the resonance matrix R(A) is
nonde#enerate, then its si#nature #ires the spectral flow

SF(D(t); Itl < e) sign R(A).

The above formula follows from an abstract result of Kato (Theorems 11.5.4
and 11.6.8 of [K-I), which we recall now. H is a separable Hilbert space and
A(t) R a family of unbounded selfadjoint operators with a fixed dense domain
W. W becomes a Hilbert space in its own right using the graph norms. We
assume that the embedding W H is compact and that the resolvent set of



508 LIVIU I. NICOLAESCU

A(t) is nonempty for every t. Then A(t) has compact resolvent and its spectrum
consists entirely of eigenvalues with finite multiplicities. A(t) can also be inter-
preted as bounded operators W H. As such, we assume that A(t) depends
smoothly upon t. The following result gives precise information about how the
eigenvalues of A vary.

THEOREM 3.2 (Kato Selection Theorem). Let to R and Co > 0 such that
+_Co t(A(to)). Then there exists a constant e > 0 and differentiable functions
2j" (to e, to + e) (-Co, Co), j 1, 2,..., N (N is the dimension of the subspace
spanned by the eioenvectors correspondin9 to eioenvalues in (-Co, Co)) such that
2j(t) a(A(t)) and

.(t) (P(t))fl(t)P(t),

where P(t): HH denotes the orthooonal projection onto ker(2(t)I-A(t)).
Moreover, /f 2 tr(A(t))m (.c0, %) with correspondin9 spectral projection P: H---}

ker(2I- A(t)) and 0 a(PA(t)P is an eioenvalue of multiplicity m, then there are
precisely rn indices J1,..., J,, such that 2iv(t) 2 and v(t) 0 for v 1,..., m.

The Kato Selection Theorem has a corollary particularly important for our
purposes. To formulate it, introduce the set of positive cylindrical endomorphisms

Cyl(g)+ {A Cy1()/32 > 0" inf a(A(x)) > 2 Vx M},

where (A(x)) is the spectrum of the selfadjoint endomorphism

A(x): 6, ---}

Set

A path y is called positive if Cyl(g)+ and neoative if - e Cyl(g)+. The set
of positive (resp., negative) paths is denoted by + (resp., _). The resonance set
Z Z(y) of a path y is defined as

Z {t I; ker D(t) # 0}.

We can now formulate the following lemma.

LEMMA 3.3. The resonance set of a positive path is finite.

Proof. Let y D(t) 0o+ and to Z(?). Since/5(to) Cyl(d’)+, the resonance
matrix is positive definite, and by Kato’s selection theorem, we deduce that D(t)
is invertible when is in some e-neighborhood of to. Therefore, Z(y) is a discrete
set. El
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Positive pathshave other important properties.

LEMMA 3.4. Any path y is homotopic to a product of a positive path with a
negative path. (In the sequel, all the homotopies of paths (I, tI) (, *) will
be understood as relative homotopies: the endpoints stay invertible durin9 the
deformation.)

Proof. The difference A D(1)- D(0) Cyl(g) is a bounded, selfadjoint
endomorphism of o*. Choose C > 0 such that

C > 1 + Isup tr(h(x))l VxM (3.1)

D(O) + C" Idt *. (3.2)

The choice (3.2) is possible by Lemma 3.3. Now consider

+ D(O) + tC. Id e I_
D(O) + C.ld + t(A C’Id)

By (3.1) and (3.2), _+ ’+/-. 7 is homotopic to g+._ via an affine homotopy. El

Definition 3.5. A C path 7" (I, OI) (, *), t- D(t) is called
(i) locally affine if eonst, in a neighborhood of any Z(7);
(ii) 9ood if Z(7) is finite and for all Z(7) dim ker D(t) 1.

A key step in our deformation program is a genericity result, which states
that almost any path of Dirac operators is good.

PROPOSITION 3.6. Let D be a cylindrical Dirac operator and assume rank > 2.
Then there exists a Baire set /reg C / such that for / /reg the path D(t)=
D + A(t) is 9ood.
The proof of this proposition is carried out in the appendix. In particular, since

+ is open in #, we deduce the following corollary.

COROLLARY 3.7. Any positive path is homotopic to a positive oood path.

A simple application of Kato’s Selection Theorem yields the next lemma.

LEMMA 3.8. A positive standard path 7 is homotopic to a locally affine,
positive, 9ood path such that:

(i) Z(7)= Z(f);
(ii) for all Z(e): e(t) 7(t).

Proof. The underlying idea is natural: any path is locally homotopic to the
tangent line at a point on the path. The only thing we have to prove is that we
can find a relative homotopy achieving, this. Assume 7" [- 1, 1-1 and Z(7)
{0}. Set D(t) D(O) + A(t) and Ao A(0). Ao is a positive cylindrical endomor-
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phism of & Consider

D,(t) (1 s)O(t) + stAo se [0, 1].

By the Kato Selection Theorem, there exists e > 0 such that for all 0 < ]tl < e,
D(t) is invertible and its inverse E(t) satisfies

IIE(t)ll--O( 1 )tllaoll
(3.3)

Now

D(t) D(t) + R(t),

where R(t) s(tAo A(t)) satisfies

IIR,(t)ll o(t) uniformly in s. (3.4)

Thus,

E(t)D,(t) I + K,(t) K(t) E(t)R,(t), (3.5)

where (by (3.3))

IIK,(t)ll o(1) uniformly in s. (3.6)

Hence, we can find to > 0 such that

lIKe(-4- to)ll < 1/2 Vs e [0, 1],

and from (3.5) we deduce that Ds(+ to) is invertible for all s. Therefore, Ds(t) is an
admissible homotopy between y and a locally affine path satisfying properties (i)
and (ii) in the lemma. El

The homotopies constructed so far were between paths close to each other in
the C distance. Our next result describes one instance of homotopic paths which
can be C1-far apart (but still C-close).
LEMMA 3.9. Let D e and A e Cyl(g) such that dim ker D 1,

ker D span(U),

and

(AU, U)#O.
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If B e Cyl() is such that

(BU, U)= (AU, U),

then 3e > 0 such that for all 0 < tl < e and for all s I,

7,(t) D + (1 s)(tA) + s(tB) *.

In particular, ?s(’) realizes an affine homotopy between ?o(t)= D + tA and
?l(t) D + tB (Itl < e).

Proof. The paths ?s(t) are analytic in (being affine). In such situations, more
powerful perturbation results are available. In particular, by Theorem VII 3.9 of
[K], there exist e > 0 and analytic functions

such that

nZ,s[O, 1]

a(s(t)) (2,,,,(t)/n Z} (multiplicities included).

We labelled the eigenvalues so that 2o,,(0) 0 e ker D. Note that 2.,(0) is inde-
pendent of s for all n Z. We will denote it by 2,. On the other hand, we can find
a, b > 0 such that for all v C(g),

II(t)oll < allvll-4-bll(t)vll Vltl < Vs e [0, 1].

Theorem VII 3.6 of rK] implies

I&,,(t)- &l < C(1 +

where C C(a, b) > 0 is independent of n Z and s [0, 1]. In particular, for

0 < Itl < a inf 2C( + 12.(0)1)
n e {el},

I,t,,,(t)l > 1/21&(o)1 > o. (3.7)

On the other hand, by the Kato Selection Theorem,

.o,,(o) (AU, U) # 0 Vs e [0, 1].

Arguing by contradiction, we can find 0 < e < 2 such that

2o,,(+ ) # 0. (3.8)
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In particular, (3.7) and (3.8) show that the operators ’s(+-e) are invertible for any
s, and Lemma 3.9 is proved. El

Definition 3.10. A good path y e is called elementary if for all e Z(,)

$(t) cz Idt

for some t C(M), a function supported in M2\N and not changing sign (see
Figure 4).

Remark 3.11. If C(M) is as in Definition 3.10 and D , then the unique
continuation principle for Dirac operators [BW4, Chapter 8] implies that

(U, U) # 0 VU e ker D\{0}.

Lemmata 3.3, 3.4, 3.8, 3.9, Corollary 3.7, and Remarks 3.11 have the following
corollary.

COROLLARY 3.12. Any path ? e is homotopic to an elementary path.

In particular, we have the following abstract result.

PROPOSITION 3.13. Let q: #--, Z be a continuous, additive function such that
for any elementary path 09

(o)

and () 0 for every : I 9*. Then for all : () SF(v).

M2

M

z {o} z {}

FIGURE 4. The cutoff function
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Let 7 , 7(0 D(t). Denote by Dj(t) the restriction of D(t) to Mj j 1, 2. Let
A(t) be the CD space of D(t)j 1, 2. Since D(0) and D(1) are invertible, we
deduce Ax(t)cAz(t) =0 for =0, 1. The results of Section 2 show that the
Fredholm pairs of Lagrangians (A(t), A2(t)) vary smoothly with t. In particular,
the Maslov index #(Ax (t), Az(t)) is well defined. We can now state the main result
of this paper.

THEOREM 3.14. For any path 7 as above, we have

SF(7) #(A1 (t), A2(t)). (3.9)

Proof. We have defined a map b: --} Z,

: 7 D(t)--} /(AI(D(t)), A(D(t))).

By Propositions 2.4 and 2.6, we see that is continuous and 0 on the paths
in *. By Proposition 3.13, it suffices to check (3.9) on elementary paths. Thus, fix
a cylindrical Dirac operator such that

ker D span(Fo), IFol 1,

and consider the family D(t)= D + tI with Itl e, where is a smooth, not-
changing-sign function, compactly supported inside M2, away from the neck N.
The operator D(t) is not changing since is supported outside M:. Thus,

A(t) de=e Ao
is constant, and A(t)%f A2(t is varying.

Let U(t) be a smooth path of unitary operators on L2(o) such that

U(0) I, A(t) U(t)A(0).

Set fo RFo, f U(t)fo being the restriction of Fo to E. (We adopt the conven-
tion of using capital letters for sections of defined over M, Mx, or M2, and
small letters for sections of defined only over E.) Then f lies in A(t), so there
exists a unique Fo e ker D2(t) such that

0 in M2 (3.10)
RF Utfo on E.

Ufo varies smoothly with t, and the boundary estimates of Proposition 2.2
imply that F depends smoothly upon as well. Deriva.ting (3.10) at 0 (the
dot will denote the t-derivative at 0) and noting that D2 I, we get

Fo 0 in M2.+
RFo Ufo on Z
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Multiplying by Fo, we get

-(Fo, Fo) (D(O)/o, Fo).

Now if we integrate by parts in the above equality and use (3.10), we obtain

+ <eo,

Thus,

(zFo, Fo) (JD(O)fo, fo) (fo, fo). (3.11)

By unique continuation, (0Fo, Fo) # 0. The sign of the left-hand side of (3.11) is
equal to SF(D(t); Itl < e) by Theorem 3.1. The sign of the right-hand side is equal
to the Maslov index #(A, A(t)) by Corollary 1.12. This completes the proof. E!

4. Adiabatic limits of CD spaces. Consider a manifold with boundary M, as
in Section 2, and D a neck-compatible Dirac operator on M. Define M(r)=
M w E x I-0, r]. M(r) is usually called an adiabatic deformation of M; (see Figure
5). D has a natural extension D(r) as a neck-compatible Dirac on M(r). Denote by
A L2(lut)) the CD space of D(r).

In this section, we will study the behavior of A’ as r--. 03. On the tube E x
[0, ), the operator D has the cylindrical form D c(ds)(t/c3s + Do), so that at
least formally we may write A’= e-’A, i.e., we are dealing with a dynamics
problem on a Lagrangian Grassmanian. From this representation, we see that the

z {0} z {0} E {r}

glue

FIGURE 5. Adiabatic deformation of the neck
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part of A "interacting" with the negative spectrum of Do will have a dominant
effect as r 03, while we expect that the "interactions" with the positive spectrum
will "soften" as r increases. We may continue our formal discussion by observing
that since Do anticommutes with J, it lies in the "Lie algebra" of the infinite-
dimensional symplectic group, so that the "flow" e-r is a 1-parameter group of
symplectic transformations of H, and the family A is a trajectory in an infinite-
dimensional Lagrangian Grassmanian. Unfortunately, these observations are
purely formal, since Do cannot generate a semigroup. (The spectrum is un-
bounded from both below and above.) However, in finite dimensions, this discus-
sion makes sense, and the first result of this section, Proposition 4.3, describes
the asymptotics of this flow. The study of the infinite-dimensional situation will
ultimately reduce to this result via a careful symplectic reduction.

Since we will be dealing with asymptotics of families of subspaces, it is appro-
priate to begin our presentation by discussing ways to measure the distance
between two closed subspaces in a Hilbert space. The right notion is provided by
the 9ap distance between two subspaces introduced in [K].

Let X, Y be two closed subspaces of a Hilbert space H. Define

di(X, Y) sup{dist(x, Y); x e X Ixl 1}.

In general, is not symmetric in X and Y. We symmetrize it by defining the #ap

between X and Y as

(X, Y) max{6(X, Y), a(Y, X)}.

Note that 6(X, Y) can also be characterized as the smallest number 6 such that

dist(x, Y) < 6 xl vx x.

We say X. X if (X,, X) 0. In particular, if P. are the orthogonal projections
onto Xn, then

X, X ..:, P. P in norm.

Thus, if H is symplectic, the gap topology on the space &a of Lagrangians
is equivalent with the natural topology (defined by the identification (1.2)).
Although the function di(., .) is in general not symmetric, it becomes so when
restricted to . Indeed, by Theorem IV 2.9 of [K], we have

6(L,, L) di(L, L).

Since L1, L2 are Lagrangians,

6(L2, L) 6(JL, JL,) 6(L2, L).
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At the last step, we have used the fact that J is an isometry. Thus,

L. L, in .6(L., L,) 0.

In studying convergence of sequences of subspaces, it is very convenient to
have a method to "renormalize" them (much like the homogeneous coordinates
in the projective spaces). We can achieve this if we can represent these sub-
spaces as graphs of linear operators. This representation is possible once some
obvious transversality conditions are assumed (compare with Arnold’s charts on
Lagrangian Grassmanians). When these renormalizations are possible, there are
ways to relate the gap topology with the norm topology of linear operators. In
particular, we will frequently use the following results. Their proofs can be found
in [K].

LEMMA 4.1. Let H and H2 be two separable Hilbert spaces and consider a
sequence (T) of bounded linear operators T: Ht - H2 with oraphs G(T) H
H2. Then the followin# are equivalent:

(i) T --. T as n c in norm;
(ii) G(T) G(T) as n - in gap.

Now consider H R2 with the complex structure J induced by the iden-
tification R2 C. d defines a symplectic structure co by co(x, y) (Jx, y) for all
x, y e H. The symplectic group is then

Sp(n, R) {T e GL(2n, R)/T*JT J}.

Sp(n, R) is a Lie group with Lie algebra

sp(n, R) {A gl(2n, R)/A*J + JA 0}.

Inside sp(n, R) sits the subspace

a(n) (A sp(n, R)/A A*},

consisting of selfadjoint matrices anticommuting with J. Denote by A(n) the
Lagrangian Grassmanian of (R2, J). Sp(n, R) acts (transitively) on A(n). In partic-
ular, any A a(n) defines a 1-parameter group of diffeomorphisms of A(n): r--
e-’a. The problem we intend to discuss is that of the asymptotic behavior of the
above flow on A(n). Fix A tr(n) and consider

Ia {L e A(n)/AL = L},

the family of invariant Lagrangians of A. The Lagrangians in Ia are stationary
points of the flow r- e-’a.

Let us now describe the dynamics of e-rA in a simple but instructive case.
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Example 4.2. Take n 1 and fix A tr(1)\{0}. We can then choose e e R2,
lel 1, such that in the basis (e, Je) the operator A has the form A diag(2, -2).
Viewed as a (linear) flow on 112, e-’A has the hyperbolic phase portrait depicted in
Figure 6. The Lagrangians of R2 are the lines through the origin, so that A(1) -RP S1. Then e-’A becomes diag(e-x’, e’). H_ =span(f) and H/ span(e) are
the only stationary points of the flow. If L # H/, then one sees from Figure 6 that

exponentially as r --, oz.

The phase portrait of e-ra on A(1) is then the one described in Figure 7. In
particular, we have shown that for all L A(1), e-"4L has a limit in Ia as r oz.

H_

H+

FIGURE 6. Hyperbolic flow

H_ H/

FIGURE 7. Dynamics on A(1)
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The situation presented in the example above is a manifestation of a more
general phenomenon.

PROPOSITION 4.3. Let a be a real n x n symmetric matrix. Then for any sub-
space U c R", there exists Uoo, an invariant subspace of A, such that

lim e-ra U Uoo.

Proof. Assume a(A)= {2 <".< 2.} with the corresponding orthonormal
spectral basis el, e.. Pick ul, UI (rn dim U) a basis of U. Then

u coe i= 1,..., m,
j=l

and we can form the matrix

C (co) <<,

We may assume C is upper triangular. Otherwise, we can reduce it to this form
by performing row operations (which is equivalent to choosing a different basis
for U). For each 1 < < m, let j(i) be the smallest j such that cj # 0. Since C is
upper triangular,

j(1) <... < j(m). (4.1)

For r > 0, let

v(r)
1

erZj(i)e-rAU
ij(i)

Let v (r), Vm(r form a basis of e-rA U. Moreover,

v() lim v(r)

exists, and for all and

v(c e,) + Vkek
k > j(i)

From (4.1) we deduce that v() are linearly independent, and therefore

e-’aU - Uoo span(v(), Vm()).

Proposition 4.3 is proved. E!
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As a consequence we have the next corollary.

COROLLARY 4.4. Let L A(n) and A tr(n)\{0}. Then there exists Loo IA such
that

lim e-rAL Loo.

Remark 4.5. In IN3] we showed that for a natural Riemann metric on A(n),
the flow L-- earL on A(n) is the gradient flow of the Z2-perfect Morse function
f4: L -tr(AP.), where for each L A(n), P. denotes the orthogonal projection
onto L. Moreover, the unstable manifolds realize a Schubert-type decomposition
of A(n), and for some choices of A, this function is also self-indexing.

We now return to our original problem. We use the notation introduced at the
beginning of this section. We are interested in the adiabatic limit limtoo A’. As
usual, set Do D Iz. For any real number E, we denote by t> (resp., ’, t<r,
<r, oE) the subspace of L2(go) spanned by eigenvectors corresponding to
eigenvalues > E (> E, < E, < E and resp., in [-IEI, IEI]). In the sequel, we will
frequently use the following technical result.

LEMMA 4.6. For any U c L2(o) finite-dimensional subspace and any real E,
the pair (A’(D), ,>r ) U) is Fredholm.

For a proof of this lemma, we refer to [BW4]. For nonnegative E, the space
t>r is an isotropic subspace of L2(oo). By the above lemma, the pair (A’(D),
is Fredholm. Thus, according to Lemma 1.14, we can construct the symplectic
reduction of A mod

(A’ c >E)Lz t>r (4.2)

(The symplectic reduction of A A mod >r will be denoted by LeO These are
Lagrangian subspaces in the symplectic vector space oe. Set Ae Doln.
LEMMA 4.7. The set

V’(D) {E > 0/A(D) cf 0}

is a nonempty, closed, unbounded interval.

Proof. Consider an increasing sequence En . Using Lemma 4.6, we obtain
a decreasing sequence of finite-dimensional vector spaces

Un A gf..

In particular, there exists an m > 0 such that
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On the other hand, U 0. Thus, Um 0, and therefore Em
_
/’(D). Since the

spectrum of Do is discrete, we deduce that V(D) is closed. It is an unbounded inter-
val because (’>)r>o is a decreasing family of (isotropic) subspaces of L2(oo). 121

Definition 4.8. The set V’(D) is called the nonresonance range of D, and v(D)
min V’(D) is called the nonresonance level of D. When v(D)= 0 (i.e., V’(D)=
[0, o)), the operator D is called nonresonant.

We can now formulate the main result of this section, which shows that the
family A has a limit as r .
THEOREM 4.9. Let M and D be as above and let E v(D). As r --. ,

A L
where

L lim L lim e-’aELn.

Proof. Fix E W(D). The proof is carried out in several steps.

Step 1: A dynamical description of A’. Let o, be the extension of o to M(r)
and zCf(r) oYfl/2(D(r)). For each 0 < s < r, let

T: 3if(r)--, L2(do)

be the restriction map U- Ulz {s} whose image lies in As. The CD space A" can
be equivalently described as A To(off(r)). By Proposition 2.4, To: or(r) A’ is
bijective with continuous inverse. These traces define a backward translation oper-
ator G,: A A defined as the composition

G,: A’ T;1, ,Jl(r) To, A. (4.3)

On the cylindrical portion C, E x [0, r) of M(r), D(r) has the form

D(r)= c(ds) + Do

Thus, any U e 3f(r) satisfies on Cr an evolution-like equation

DU ---U + DoU O.
us

For any u6L2(o), we write u =u+ + Uo + u_ according to the spectral
decomposition
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which is independent of s. Thus, we can decompose U(s) TU as

u(s) tJ(s)/ + u(S)o + U(s)_.

Each of these three pieces satisfies the same evolution-like equation as U (for-
mally U(s) e-sU(O)). Since the spectrum of Do is discrete, we can find # > 0
such that the set [-#, -E)w (E, #] contains no eigenvalues of Do. Then we de-
duce (by standard Fourier techniques)

I(TU)+I const, exp(-#s)l(To U)+I (4.4)

I(TU)-I const, exp(#s)l(ToU)_[. (4.5)

Using (4.4) and (4.5), we deduce that for all u e Ar,

lu+l 2 const, exp(-#r)l(G,u)+l 2 (4.6)

lu_l 2 const, exp(#r)l(G,u)_l2 (4.7)

Intersecting A with the coisotropic subspace Yg>E, we get (by Lemma 4.6) the
finite-dimensional space

r A c

which leads to the symplectic reduction L defined in (4.2). Using the Fourier
decomposition for Do, we deduce easily that for any L R, Do restricted to
defines a Co-semigroup, which we denote by e-r r > 0. In particular,

r e-rDo

LE e-rDOLE e-rALE.
Let L limr-.oo e-rAELE (which exists by Corollary 4.4), which is a Lagrangian
in oE.

Step 2. Asymptotic transversality.
to the Lagrangian subspace

If E > v(D), then for r large, A is transverse

w J/ + >.
First, suppose ur A c W. Since JL c o, ur lies in .r, so its orthogonal pro-
jection fir on go lies in L JL. But L converges to Ln, which is transverse to
J, so fir 0 for large r. Our nonresonant choice E > v(D) then implies ur 0, so
for large r

A c W 0. (4.8)
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Now, according to Lemma 4.6, (A’, W) is a Fredholm pair of Lagrangians and so
has index 0 by (1.3). Then (4.8) and the definition of the index imply that A’ and
W span, so

A + W L2(d’o). (4.9)

Step 3.

lim At= L. (4.10)

By Step 2, A c W 0. Since Ar, L[, L’ have the same dimension, we can repre-
sent A as the graph of a bounded linear map

Br" L W JL +

To describe Br, we first represent L[ as the graph of a symmetric operator
St: L --, L’ (see Figure 8)

L {u + JSru/u L}

(where Sr 0 since L[ L’). Next (since A is clean mod g’>), there exists a
bounded linear map hr: L r,> such that

,r= (u + JSru + hr(u)/u L}, Br(u) (JSru, hr(u)).

FIGURE 8. A is the graph of Br JSr + hr.
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But recall that

,r e-rOo, {e-raEu + e-raEJSou + e-rOOho(u)/u L}

{v + JeraESoerarv + e-rOho(erarv)/v L}.

Therefore, we have

Sr erAESoerAE and hr(v) e-rVho(erAvv).

Then the estimate

shows that hr 0 exponentially (we chose # > E); we then deduce (4.10) using
Lemma 4.1.

Step 4. Converoence. The conditions (4.8) and (4.9) can be used as in the proof
of Theorem 1.2 to represent A as the graph of a bounded selfadjoint operator
Mr" L’ .r L Yt"-E, i.e.,

A" (u + JM,u/u L ;).

has a block decomposition

C,: y?,E

We already know that S, 0, h,--, 0, and we will now show that IlCll 0. The
theorem will follow from Lemma 4.1.

Remark 4.10. Let Poo denote the orthogonal projection onto L, which is a
closed Do-invariant subspace of L2(’o). If U oC’(r), then w(s) P(R)TU satisfies
the o.d.e.:

(s) + lrw(s) 0 s 0, r).

In particular, if w(r) Poo T, U 0, then the backward translation w(s) 0 for all
s [0, r].

For any f e -, consider

u u(f) f + JMrf f + J(-Jhr)*f + JCrf Ar.

In particular, Poou 0 and any u A with this property can be written in the
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above form. Since J(-Jhr)*" /tr
---} JL, we deduce

u(f)_ f and u(f)+ JC,f JCu_. (4.11)

By Remark 4.10, the backward translation of u, defined in (4.3), v G,u A
satisfies P(R)v 0, and as in (4.11), we deduce v+ JCov_. Co is continuous and
we get

Iv+l
Iv-I <

const. (4.12)

On the other hand, (4.6), (4.7), and (4.11) imply

Iv+l I(Gu)+l e’"lu+l e2,,lJCflIv-I- I(a,u)-I > (4.13)
e-Ulu-I Ifl

The relations (4.12) and (4.13) imply that IICll O(e-2r). Theorem 4.9 is proved.

Theorem 4.9 has many interesting corollaries. We will consider only a special
situation motivated by problems in topology (see [Y]). Assume D is nonresonant,
i.e.,

(D) o.

In this case, we will use the simplified notation

.ff_(D) 9g< o(D) o, t+(D) 9g>

Here ao ker D is finite-dimensional, and the spaces a+/- are spanned by the
positive/negative eigenmodes of Do. We call 9ego the harmonic space of D. Both
+/- are isotropic subspaces of L2(6o). The annihilator of ocg+/- is o ( dog+/-. The
corresponding symplectic reduction

L(D) (A (o ( f+))/ct+ (4.14)

will be called the reduced Cauchy data (RCD) space of D. It can be identified with
a Lagrangian in the harmonic space. To see this, consider the Atiyah-Patodi-
Singer (APS) boundary value problem, i.e.,

with adjoint

(D, APS): Du 0 in M Rou + ,o

(D, APS)*: Du 0 M Rou
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One sees that

dim L(D) ind(D, APS) 1/2 dim o(D).

This agrees with the APS formula, since D is selfadjoint (so its index density is 0)
and Do has a symmetric spectrum (it anticommutes with J), so its eta invariant
vanishes. In I-APS1], A(D)c(o )t+) was called the space of extended L2

solutions and L(D) was identified with the subspace in o of asymptotic values
of extended L2 solutions. Using the reduced CD space L(D), we can form the
asymptotic CD space

A(D) L(D) _(D).

The definition of the asymptotic CD space is orientation-sensitive. Changing the
orientation of M will have the effect of replacing t

_
with / in the above

definition. We see that D is nonresonant if and only if (D, APS)* has only the
trivial solution. The pleasant thing in the nonresonance case is that the finite-
dimensional dynamics is not present, since Ar is identically 0 when E 0, so that
L(D) Lr(D), for all r > 0. We deduce immediately the following corollary.

COROLLARY 4.11. Assume that D is nonresonant. Then

lim A’ A

COROLLARY 4.12. Let {D(t); 0 < < 1} be a continuous family of neck-compat-
ible Dirac operators on M such that each D(t) is nonresonant. Let D’(t) denote their
extensions to M(r) and At(t) denote their CD spaces. If dim Ker(Do(t)) is indepen-
dent of t, then

lim At(t) A(t) uniformly in t.

In particular, (A(t)) is a continuous family of Lagran#ians in L2(o).
One can use the existence of an adiabatic limit when computing the spectral

flow. We analyze what happens to the terms in Theorem 3.9 as we "stretch the
neck." Assume we have a path D(t) such that, for every t, the operators
Dx(t) and D2(t) are nonresonant. We can form the adiabatic deformation M(r) of
(M, g) by replacing the neck N Z x (- 1, 1) by a longer one, Nr E x (-r, r).
Let Dr(t) be the obvious extension of D(t) to M(r). Denote by A(t) the asymp-
totic CD space of Dj(t). We have the following result.

COROLLARY 4.13. Let D(t) be a nonresonant path of neck-compatible Dirac
operators such that dim o(t) is independent of t. Assume

A(j) c A(j) 0 j 0, 1. (4.15)
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Then, for r large enough, D’(0) and Dr(l) are invertible and

SF(Dr(t)) (AT(t), A(t)). (4.16)

Proof. The fact that Dr(0) and Dr(l) are invertible for large r follows easily
from (4.14) using "adiabatic analysis," as in Theorem 4.9. Alternatively, we can
quote the results of [CLM2-1 from which the above conclusion follows trivially.
Thus, (4.15) follows from Theorem 3.9 combined with Corollary 4.12. E!

The nonresonance of the operators D(t) can be translated symplectically by
saying that Al(t) is clean mod ’+(D(t)) and A2(t) is clean mod f_(D2(t)). Using
the invariance of the Maslov index under clean reductions, we deduce the next
corollary.

COROLLARY 4.14. Let D(t) be as in Corollary 4.13. Then

SF(Dr(t)) l(Lt(t), L2(t))

for r large enough, where Li(t) L(Di(t)) is the RCD space of Di(t).

This last corollary generalizes a result of [Y]. In that case, the Dirac operators
arise as the deformation complexes of the fiat-connection equation on a homology
3-sphere.

Finally, we want to address a natural question. Assume that D(t) is a path of
neck-compatible Dirac operators on Mr, and suppose that some of them have
positive nonresonace levels. For simplicity, suppose that v(D(t)) Vo > 0 for all
t and the boundary operators Do(t) D(t)l are independent of t. Then by Theo-
rem 6.1, we can find Lagrangians L(t) in oTM such that

lim At(t)= L(t) o Vt. (4.17)

Is the convergence in (4.17) uniform in t?
We sketch a simple heuristic argument which suggests that the answer one

should expect is, in general, negative. Let us further specialize and assume that the
restriction of Do to Vo fo (henceforth denoted by A) has only simple eigen-
values. In particular, A is invertible because it anticommutes with J. Denote by
Lr(t) the symplectic reduction of At(t) mod fo. We have seen that

r(t) Lr(t) e-arLt= e-aro(t Vt.

Denote by Lag(Vo) the Lagrangian Grassmanian associated to the symplectic
space Vo. The results of IN3] (see Remark 4.5) show that e-at is the negative
gradient flow of some function Lag(Vo). Since A has only simple eigenvalues, all
the critical points are nondegenerate. The function has a unique critical point P
of index 1. The stable manifold of this point is a codimension 1 submanifold of
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gradient
flow

rain

FIGURE 9. A Morse flow on the Lagrangian Grassmanian

Lag(Vo) whose closure is the Poincar6 dual of the Maslov index (see Figure 9).
Now if we let the path o flow along the gradient lines, it will "disintegrate" as
r into a finite set of critical points. Hence, the only time r(t) can converge
uniformly in is when Yo lies entirely in the stable manifold of some critical point.
Generically, this has to be the region of attraction of the minimum, which is the
complement of . Via a small perturbation, we may assume o(0), 1 (1) lie in this
attraction region. Thus, we obtain a Maslov index

#(Yo) # Yo e.

This number is stable under small perturbations. In particular, if #(’o) # 0, then
the endpoints of Vo will flow towards the minimum, and some point on this curve
will flow inside e towards the critical point P. Hence, we do not have uniform
convergence.

APPENDIX

Proof of Proposition 3.6. Proposition 3.6 is a consequence of the Sard-Smale
theorem. We roughly follow an outline given by Floer (Proposition 3.1 in IF]),
making several necessary modifications. (Floer overlooked the hypothesis in
Lemma A.2; fixing this requires applying Sard-Smale to a modified map.) To
define it, choose k large enough so that Lk2([0, 1] x M) - C2([0, 1] x M) (N
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dim M) and set

1 {A L(End([O, 1] x ))/A(t) Cyl(d) Vt [0, 1] }.

We will parametrize the 2-dimensional planes in L(tf) by

W {({, r/) e L{(6) x L()/({, r/)L2 0, I{IL2 Ir/l.= 1}.

This is a Banach manifold. Its tangent space at (, r/) consists of all pairs
L2(g) that satisfy

<, ,> + <q, ,> <{, > <,, ,> o. (A.1)

In the proof of our genericity results, we will need the following lemmata.

LEMMA A.1. Let D be a cylindrical Dirac and (, tl) W such that D Drl
O. Then there exists an open subset U c M2 away from the neck such that and tl
are pointwise linearly independent over U.

Proof. By unique continuation, the set

S {x M/(x) # 0 and r/(x) # 0}

is open and dense as an intersection of two open and dense sets. Set $2 S
(M2\neck). The set

{x S2/(x) & tl(x) are linearly independent}

is open if nonempty. The lemma is proved if we show that J -#- 5. Assume the
contrary. This means there exists a C(R)($2) such that

{(x) z(x)n(x) Vx S2,

, r/# 0 on S2 so that a # 0. Since .L r/, we deduce from the unique continuation
that a is not constant on $2, i.e., da 0 on $2. On the other hand, since D is a
Dirac operator, we deduce (see I-BGV]):

0 D Dat Dr + [D, a]rl c(da)rl.

This is a contradiction since the Clifford multiplication c(da) is an isomorphism
when da # 0. Lemma A.1 is proved. El

For k > 0, let Sk denote the linear space of real, symmetric k x k matrices
(So =0).

LEMMA A.2. Let , r l{k (k > 2) be two linearly independent vectors. Then for
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any vectors u, v Rk satisfyin#

(, v) (n, u),

there exists A Sk such that (A, Al) (u, v).

Proof. Define

H,n: Sk - R2k A (A, At/).

We have to prove that

Range H,, V,, {(u, v)e Rk x Rk/(, v> (1, u> }.

Note that V,, (span(-/, ))+/- and for any A Sk

<(A, At/), (-r/, )> -<A, r/> + <At/, > 0

so that

Range He,, c V,,. (A.2)

On the other hand,

dim Range He,, dim Sk dim Ker

Since and r/are linearly independent, we can identify Ker He,, Sk_2. Thus,

dim Range He,, k(k + 1)/2 (k 2)(k 1)/2 2k 1 dim V,,. (A.3)

Lemma A.2 follows from (A.2) and (A.3). El

Proof of Proposition 3.6. We will apply the Sard-Smale theorem to the
smooth function

F: X x (0, 1) x W x R -, Y L2(cf) L2(o)

defined by

(A(.), t, , l, 2)--(D(t) 2r/, D(t)l + ).

Let Z F-1 (0). The proof of Proposition 3.6 is done in two steps.

Step 1. Z is a smooth Banach manifold. To prove this, we will use the implicit
function theorem. Given z Z, we will show that DF(z): TX Y is onto. More
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precisely, we will show that DF(z) has closed range and its cokernel is zero. Let
z (A, t, , r/, 2) Z. Note that this implies 2 0. Indeed, we have D(t)
and D(t)q -2, so that

D(t)2r/= 2D(t) 22 r

Since D(t) is selfadjoint, we deduce ID(t)ql 2 -A2 I12, which is possible if and
only if 2 0.
Now consider the variation on the direction (a, z, b, ,) TX. The partial

derivatives of F are

DAV(z)(a) (a(O, a(On)

O,F(z)() (.,i(t), A(t)n)

(A.4)

D(,,,)F(z)(q, ) (D(t)qk, D(t)$)

DF(z)(#) #(--l, ),

(A.6)

(A.7)

where b and satisfy (A.1).
Since the operator D(t) is elliptic, we deduce that the range of DF(z) is closed.

Let (u, v) Coker DF(zo). From (A.4) and (A.6), we deduce

(a(t), u) + (a(t)q, v) 0 Va e (A.8)

(D(t), u) + (D(t)k, v) O, (A.9)

for all b, $ satisfying (A.1). Let (e.), z be the eigenvectors of D(t) corresponding
to the nonzero eioenvalues. If we let b e. and k 0 in (A.9), we deduce

(en, U) 0 Vn Z,

so that u e Ker D(t). We deduce similarly that v Ker D(t).
From Lemmata A.1, A.2, and (A.8), we deduce that on an open set U c M2

away from the neck

(u(x), v(x)) c(-n(x), (x)), VxU

for some c R. By unique continuation, the above equality holds for all x M.
Pairing (u, v) with (A.7), we get that c 0, i.e., Coker F(z)= 0. Step 1 is com-
pleted.

Step 2. The natural projection n: Z is Fredholm with index -1. It is a
standard fact that r is Fredholm if and only if

G=(n,F):Xx Y
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is Fredholm. Moreover, nlz and G have the same index. It suffices to study. DG at
a point z Z of our choice. Thus, let zo (Ao, to, o, r/o, 0) Z such that Ao(to) is
a positive cylindrical endomorphism. Hence, (o, qo) W and D(to)o D(to)tlo
0. The derivatives of G are given by (A.4) to (A.7) and

Dan(Zo)(a) a, a . (A.IO)

Again, the ellipticity of D(to) implies that DG(zo) has closed range.
Let (a, z, q, q, #) e Ker DG(zo). This means a 0, # 0, o(to)o ,Zio(to)qo

O(to)o O(to)qo 0. In particular, since k and satisfy. (A.1), they lie in a
codimension-3 sub.space of ker O(to) x ker O(to). Because Ao(to) is positive, we
deduce o(to)o, Ao(to)rlo 4: O, and therefore

dim Ker DG(zo) 2 dim Ker D(to) 3. (A.11)

Let (, u, v) e Coker DG(zo). We deduce from (A.4), (A.6), and (A.10) that

(a(to)o, u) + (a(to)rlo, v) + (a, ) 0 Ya (A.12)

((//o(to)o, u) + (io(to)no, v)) 0 Vz e R (A.13)

(D(to)q, u) + (D(to)k, v) 0 (A.14)

((, v) (, u)) 0 Vu R (A.15)

for all b and g satisfying (A.1). In particular, we deduce from (A.14) and (A.15)
that u, v Ker D(to) and (u, v) _1_ (-t/o, o). For any u, v LZ(g), define 0t

(u, v) by

(a, ) -(a(to)o, u)Lte) + (a(to)rlo, Ya e ’. (A.16)

The existence and uniqueness of a such an is a consequence of the Riesz-Frechet
representation theorem. Set

E {((u, v), u, v)/u, v ker D(t) & (u, v) _k (-t/o, o)}.

We can now describe the cokernel of DG(zo) as

Coker DG(zo) {((u, v), u v)/(u, v) E, (o(to)o, u) + (io(to)no, v) 0}.

Since (o(to)o, o(to)r/o) _k (-r/o, o) and o(to) is positive, we get

dim Coker DG(zo) dim E 1 2 dim Ker D(to) 2. (A.17)
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Step 2 follows from (A.11) and (A.17). Proposition 3.6 is now a consequence of
Sard-Smale theorem.
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