
A PROBABILISTIC COMPUTATION OF A MEHTA INTEGRAL
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ABSTRACT. We use the Kac-Rice formula to compute the Mehta integral describing the normaliza-
tion constant arising in the statistics of the Gaussian Orthogonal Ensemble.
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1. INTRODUCTION

We denote by Sym(Rm) the space of real symmetric m×m matrices. This is a Euclidean space
with respect to the inner product (A,B) := tr(AB). This inner product is invariant with respect to
the action of the orthogonal group O(m) on Sym(Rm).

We define

ℓij , ωij : Sym(Rm) → R, ℓij(A) = aij , ωij(A) :=

{
aij , i = j,√
2aij , i < j.

(1.1)

The collection (ωij)i≤j defines linear coordinates on Sym(Rm) that are orthonormal with respect
to the above inner product on Sym(Rm). The volume density induced by this metric is

vol
[
dA

]
:=

∏
i≤j

dωij = 2
1
2(

m
2 )

∏
i≤j

dℓij .

For any real numbers u, v such that

v > 0,mu+ 2v > 0, (1.2)

we denote by S
u,v
m the space Sym(Rm) equipped with the centered Gaussian measure Γu,v

[
dA

]
uniquely determined by the covariance equalities

E
[
ℓij(A)ℓkℓ(A)

]
= uδijδkℓ + v(δikδjℓ + δiℓδjk), ∀1 ≤ i, j, k, ℓ ≤ m. (1.3)

In particular we have

E
[
ℓ2ii

]
= u+ 2v, E

[
ℓiiℓjj

]
= u, E

[
ℓ2ij

]
= v, ∀1 ≤ i ̸= j ≤ m, (1.4)

while all other covariances are trivial. The ensemble S0,v is a rescaled version of the Gaussian
Orthogonal Ensemble (GOE) and we will refer to it as GOEv

m. The inequalities (1.2) guarantee that
the covariance form defined by (1.3) is positive definite so that Γu,v is nondegenerate.
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For u > 0 the ensemble S
u,v
m can be given an alternate description. More precisely a random

A ∈ S
u,v
m can be described as a sum

A = B + X1m, B ∈ GOEv
m, X ∈ N(0, u), B and X independent.

We write this
Su,vm = GOEv

m +̂N(0, u)1m, (1.5)
where +̂ indicates a sum of independent variables.

In the special case GOEv
m we have u = 0 and

Γ0,v

[
dA

]
=

1

(4πv)
m(m+1)

4

e−
1
4v

trA2
vol

[
dA

]
. (1.6)

Note that GOE
1/2
m corresponds to the Gaussian measure on Sym(Rm) canonically associated to

the inner product (A,B) = tr(AB).
We have a Weyl integration formula [2] which states that if f : Sym(Rm) → R is a measurable

function which is invariant under conjugation, then the value f(A) at A ∈ Sym(Rm) depends only
on the eigenvalues λ1(A) ≤ · · · ≤ λn(A) of A and we have

EGOEv
m

[
f(X)

]
=

1

Zm(v)

∫
Rm

f(λ1, . . . , λm)

 ∏
1≤i<j≤m

|λi − λj |

 m∏
i=1

e−
λ2i
4v

︸ ︷︷ ︸
=:Qm,v(λ)

|dλ1 · · · dλm|,

(1.7)
where the normalization constant Zm(v) is defined by

Zm(v) =

∫
Rm

∏
1≤i<j≤m

|λi − λj |
m∏
i=1

e−
λ2i
4v |dλ1 · · · dλm|

= (2v)
m(m+1)

4 ×
∫
Rm

∏
1≤i<j≤m

|λi − λj |
m∏
i=1

e−
λ2i
2 |dλ1 · · · dλm|

︸ ︷︷ ︸
=:Zm

.

The integral Zm is usually referred to as Mehta’s integral. Its value was first determined in 1960
by M. L. Mehta, [8]. Later Mehta observed that this integral was known earlier to N. G. de Brujin
[4]. It was subsequently observed that Mehta’s integral is a limit of the Selberg integrals, [2, Eq.
(2.5.11)], [6, Sec. 4.7.1]. More precisely, we have

Zm = (2π)
m
2

m−1∏
j=0

Γ( j+3
2 )

Γ(3/2)
= 2

3m
2

m−1∏
j=0

Γ
( j + 3

2

)
. (1.8)

The goal of this note is to provide a probabilistic proof of (1.8).
We will determine Zm inductively by computing explicitly the ratios Zm+1

Zm
, ∀m ≥ 1 and ob-

serving by immediate direct computation that

Z1 =

∫
R
e−t2/2dt = (2π)1/2.

Here is the strategy. Any symmetric (m+1)× (m+1) matrix A determines a function on the unit
sphere Sm ⊂ Rm+1

ΦA : Sm → R, ΦA(x) =
1

2

(
Ax,x

)
,
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where (−,−) is the canonical inner product on Rm+1. When A ∈ GOEv
m+1, then with probability

1 the matrix A is simple and the Gaussian random function ΦA is Morse.
To the random matrix A ∈ GOEv

m+1 we can associate two random measures on R. The first is
the spectral measure

σA =
∑

λ∈Spec(A)

δλ,

where δx denotes the Dirac measure on R concentrated at x. The second one is the discriminant
measure

DA =
∑

∇ΦA(x)=0

δ2ΦA(x).

The critical values of 2ΦA are precisely the eigenvalues of A and the critical points are the unit
eigenvectors of A. The function is Morse iff A is simple, i.e., its eigenvalues are distinct. In this
case to each critical value of A there corresponds exactly two critical points. With probability 1 we
have

DA = 2σA.

Then for any Borel subset C ⊂ R we have

E
[
DA

[
C
] ]

= 2E
[
σA

[
C
] ]
. (1.9)

In particular
E
[
DA

[
R
] ]

= 2E
[
σA

[
R
] ]

= 2(m+ 1). (1.10)

Using the Kac-Rice formula we will be able to express E
[
DA

[
R
] ]

as an explicit multiple of the
ratio Zm+1

Zm
.

Here is the structure of the paper. Section 2 contains several probabilistic digressions. The first
one concerns the expectation of the absolute value of characteristic polynomial of a random matrix
A ∈ GOE. The second one describes a version of the Kac-Rice formula needed in the proof. The
last digression of this section is a well known classical result commonly referred to as the Gaussian
regression formula. We give a coordinate free description of this result not readily available in
traditional probabilistic sources, but very convenient to use in geometric applications. Then last
section provides the details of the strategy outlined above.

2. PROBABILISTIC DIGRESSIONS

For any positive integer n we define the normalized 1-point correlation function ρn,v(x) of GOEv
n

to be
ρn,v(x) =

1

Zn(v)

∫
Rn−1

Qn,v(x, λ2, . . . , λn)dλ1 · · · dλn.

For any Borel measurable function f : R → R we have [5, §4.4]
1

n
EGOEv

n

[
tr f(X)

]
=

∫
R
f(λ)ρn,v(λ)dλ. (2.1)

The equality (2.1) characterizes ρn,v. We want to draw attention to a confusing situation in the exist-
ing literature on the subject. Some authors, such as M. L. Mehta [9], define the 1-point correlation
function Rn(x) by the equality

E
GOE

1/2
n

[
tr f(X)

]
=

∫
R
f(λ)Rn(λ)dλ.

The expected value of the absolute value of the determinant of of a random A ∈ GOEv
m can be

expressed neatly in terms of the correlation function ρm+1,v. More precisely, we have the following
result first observed by Y.V. Fyodorov [7].
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Lemma 2.1. Suppose v > 0. Then for any c ∈ R we have

EGOEv
m

[
|det(A− c1m)|

]
=

e
c2

4vZm+1(v)

Zm(v)
ρm+1,v(c) =

e
c2

4v (2v)
m+1

2 Zm+1

Zm
ρm+1,v(c). (2.2)

Proof. Using Weyl’s integration formula we deduce

EGOEv
m

[
|det(A− c1m)|

]
=

1

Zm(v)

∫
Rm

m∏
i=1

e−
λ2i
4v |c− λi|

∏
i≤j

|λi − λj |dλ1 · · · dλm

=
e

c2

4v

Zm(v)

∫
Rm

e−
c2

4v

m∏
i=1

e−
λ2i
4v |c− λi|

∏
i≤j

|λi − λj |dλ1 · · · dλm

=
e

c2

4vZm+1(v)

Zm(v)

1

Zm+1(v)

∫
Rm

Qm+1,v(c, λ1, . . . , λm)dλ1 · · · dλm

=
e

c2

4vZm+1(v)

Zm(v)
ρm+1,v(c) =

e
c2

4v (2v)
m+1

2 Zm+1

Zm
ρm+1,v(c).

⊓⊔

We will need a special version of the Kac-Rice formula. Let (M, g) be a compact Riemann
manifold. Denote by volg[−] the volume element on M determined by g and ∇g the Levi-Civita
connection of g. If F ∈ C2(M), then we define the Hessian of F at p ∈ M to be the linear operator

HessF (p) : TpM → TpM, HessF (p)X = ∇g
X∇F,

where ∇gF is the metric gradient of F .
Suppose that F : M → R is a Morse function. For any subset S ⊂ M we denote by Z(S, dF ) the

number of critical points of F inside S and B is an open subset We denote by D(F ) the discriminant
set of F , i.e., the set of critical values of F . The discriminant measure of F is the pushforward

DF =
∑
t∈R

Z(F−1(t), dF )δt.

The discriminant measure is concentrated on D(F ). For φ ∈ C0
cpt(R) we set

DF

[
φ
]
:=

∫
R
φdDF .

When F is random, DF

[
φ
]

is a random variable. We have the following result [1, Thm. 12.4.1].

Theorem 2.2. Suppose that F : M → R is a C2 Gaussian random function function satisfying the
ampleness condition

for any p ∈ M the Gaussian vector F (p)⊕ dF (p) ∈ T ∗
pM is nondegenerate. (A)

We denote by PF (p) the probability distribution of the random variable F (p) and by pdF (p) the
probability density of the Gaussian vector dF (p).
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Then F is a.s. Morse and, for any function φ ∈ C0
cpt(R) we have

E
[
DF [φ]

]
=

∫
M

(∫
R
E
[ ∣∣ detHessF (p) ∣∣ ∥ dF (p) = 0, F (p) = t

]
φ(t)PF (p)

[
dt

])
pdF (p)(0) volg

[
dp

]
=

∫
M

E
[ ∣∣ detHessF (p)

∣∣φ(F (p)
)
∥ dF (p) = 0

]
.

(2.3)

Above, E
[
− ∥ −

]
denotes appropriate conditional expectations.

When applying the Kac-Rice formula we need to evaluate certain conditional expectations. In
the Gaussian case this is readily achieved using the classical Gaussian regression formula. In the
remainder of this section we describe this Gaussian regression in a form convenient in geometric
applications.

Suppose that X and Y are finite dimensional vector spaces. Consider two random vectors

X : (Ω, S,P) → X, Y : (Ω, S,P) → Y ,

where (Ω, S,P)) is a probability space. The mean or expectation of X is the vector

m(X) = E
[
X

]
=

∫
Ω
X(ω)P

[
dω

]
∈ X,

whenever the integral is well defined. The random vector X is called centered if m(X) = 0.
The covariance form of Y and X is the bilinear form

Cov
[
Y,X

]
: Y ∗ ×X∗ → R

given by
Cov

[
Y,X

]
(η, ξ) = Cov

[
⟨η, Y ⟩, ⟨ξ,X⟩

]
, ∀η ∈ Y ∗, ξ ∈ X∗.

If X and Y are equipped with inner products (−,−)X and respectively (−,−)Y , then we can
identify Cov

[
Y,X

]
with a linear operator CY,X : X → Y . Concretely, if (ei)i∈I and (f j)j∈J are

orthonormal bases of X and respectively Y , and we set Xi := (ei, X)X , Yj := (f j , Y )Y , then
in these bases the operator CY,X is described by matrix (cji)(j,i)∈J×I , where cji := Cov

[
Yj , Xi

]
.

Hence
CY,Xei =

∑
j

cjif j .

We will refer to CY,X as the correlator of Y with X . Some times, for typographical reasons, we
will use the alternate notation Corr

[
Y,X

]
:= CY,X .

The variance operator of X is Var
[
X

]
:= CX,X . We say that X is nondegenerate if its variance

operator is invertible. Observe that CX,Y : Y → X is the adjoint of CY,X , CX,Y = C∗
Y,X .

If X and Y are equipped with inner products, then X ⊕ Y is equipped with the direct sum
of these inner products and in this case Var

[
X ⊕ Y

]
: X ⊕ Y → X ⊕ Y admits the block

decomposition

Var
[
X ⊕ Y

]
=

[
Var

[
X

]
CX,Y

CY,X Var
[
Y
] ]

.

The random vectors X,Y are said to be jointly Gaussian if the random vector X ⊕ Y is Gaussian.

Proposition 2.3 (Gaussian regression formula). Suppose that X,Y are Gaussian vectors valued in
the Euclidean spaces X and respectively Y . Assume additionally that

(i) the random vectors X,Y are jointly Gaussian and,
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(ii) X is nondegenerate.
Define the regression operator

RY,X : X → Y , RY,X := CY,X Var[X]−1 (2.4)

Then the following hold.
(a) The conditional expectation E

[
Y ∥X

]
is the Gaussian vector described by the linear regression

formula
E
[
Y ∥X

]
= m(Y )−RY,Xm(X) +RY,XX. (2.5)

(b) For any x ∈ X
E
[
Y
∣∣X = x

]
= m(Y )−RY,Xm(X) +RY,Xx.

(c) The random vector vector Z = Y − E
[
Y ∥X

]
is Gaussian and independent of X . It has mean

0 and variance operator

∆Y,X = Var
[
Y
]
−DY,X : Y → Y , DY,X = CY,X Var[X]−1CX,Y . (2.6)

Moreover, for any bounded measurable function f : Y → R and any x ∈ X we have

E
[
f(Y )

∣∣X = x
]
= E

[
f
(
Z +m(Y )−RY,Xm(X) +RY,Xx

) ]
. (2.7)

In particular, if X and Y are centered we have

E
[
f(Y )

∣∣X = x
]
= E

[
f
(
Z +RY,Xx

) ]
. (2.8)

For a proof we refer to [3, Prop. 2.1].

3. THE COMPUTATION OF THE MEHTA INTEGRAL

As explained in the introduction, when A runs in the Gaussian ensemble GOEv
m+1 we obtain a

Gaussian function
Φ = ΦA : Sm → R.

This function is invariant under the natural O(m+ 1)-action on Sm.

Lemma 3.1. The Gaussian function ΦA is a.s. Morse.

Proof. It suffices to show that the Gaussian section ∇ΦA of TSm i satisfies the ampleness condition
(A). Let x ∈ Sm. If Projx : Rm+1 → Rm+1 the orthogonal projection onto TxS

m, then

∇ΦA(x) = ProjxAx = Ax− (Ax,x)x.

The map
Symm+1(R) ∋ A 7→ Ax ∈ Rm+1

is onto and thus the map

Symm+1(R) ∋ A 7→ ProjxAx ∈ TxS
m

is also onto, thus proving that the gradient ∇ΦA(x) is nondegenerate since the Gaussian ensemble
GOEm+1,v is nondegenerate. ⊓⊔

The spectral measure of A is

σA :=
∑

λ∈Spec(A)

mult(λ)δλ.

The discriminant measure of ΦA is

DA =
∑

∇ΦA(x)=0

δ2ΦA(x).
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With probability 1 we have DA = 2σA. Then for any Borel subset C ⊂ R we have

1

(m+ 1)
E
[
DA

[
C
] ]

=
2

m+ 1
E
[
σA

[
C
] ]

= 2

∫
C
ρm+1,v(λ)dλ. (3.1)

Using the Kac-Rice formula (2.3) we will give an alternate description of the left-hand-side of the
above equality. We will need to describe explictly the integrand in this formula.

For x ∈ Sm we denote by HessA(x) the Hessian of ΦA at x viewed as a symmetric operator
TxS

m → TxS
m.

Denote by (x0, x1, . . . , xm) the canonical Euclidean coordinates on Rm+1. Since ΦA is O(m+1)
invariant, the distribution of HessA(x) is independent of x so it suffices to determine it at any point
of our choosing. Suppose that x is the north pole

x = n = (1, 0, . . . , 0) ∈ Rm+1

Then TnS
m = {x0 = 0} and x∗ :=

(
x1, . . . , xm) are orthonormal coordinates on TnS

m. The
coordinates x∗ also define local coordinates on Sm. More precisely, the upper hemisphere

Sm
+ :=

{
x ∈ Sm; x0 > 0

}
admits the parametrization

x∗ 7→ x
(
x∗

)
=

(
x0(x∗),x

∗ ) ∈ Sm, x0(x∗) =
√

1− ∥x∗∥2.

The round metric on Sm satisfies

gij = δij +O
(
∥x∗∥2

)
near n. (3.2)

On the upper hemisphere we will view ΦA as a function of x∗.
If A = (aij)0≤i,j≤m, then in the coordinates x∗ we have

ΦA(x) =
1

2
a00

(
1− ∥x∗∥2

)
+

1

2

m∑
j=1

ajj(x
j)2 +

∑
0≤j<k≤m

ajkx
jxk,

=
1

2
a200 +

1

2

m∑
j=1

(
ajj − a00

)
(xj)2 +

∑
0≤j<k≤m

ajkx
jxk,

∇ΦA(n) = dΦA(x∗)|x∗=0 =

m∑
j=1

a0jdx
j .

Since A ∈ GOEv
m+1, covariance kernel of ΦA is

KA(n,x) = E
[
ΦA(n)ΦA(x)

]
=

1

4

(
1− ∥x∗∥2

)
E
[
a200

]
=

v

2

(
1− ∥x∗∥2

)
.

Denote by A∗ the m×m matrix A∗ = (aij)1≤i≤m. Note that A∗ ∈ GOEv
m. Using (3.2)

HessA(n) = A∗ − a001m.

Since a00 is independent of A∗ we deduce from (1.5) that HessA(0) ∈ S
2v,v
m , where S

u,v
m is the

O(m)-invariant Gaussian ensemble defined by (1.3). If we set

Lij = ℓij
(
HessA(n)

)
, Ωiij = ωij

(
HessA(n)

)
,

where ℓij and ωij are defined by (1.1), then

E
[
LijLkℓ(A)

]
= 2vδijδkℓ + v(δikδjℓ + δiℓδjk), ∀1 ≤ i, j, .k, ℓ ≤ m.
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Note that ∇ΦA(n) = (a01, . . . , a0n) is independent of ΦA(n) and of HessA(n) and since A ∈ GOEv
m+1

we deduce from (1.3) that
Var

[
ΦA

]
= v1m. (3.3)

Moreover the correlator Corr
[
HessA(n),ΦA(n

]
: R → Symm(R) is given by

R ∋ x 7→ −x1m ∈ Symm(R).
Set

W =

[
ΦA(n)
∇ΦA(n)

]
=


1
2a00
a01

...
a0m

 .

Note that
Var

[
W

]
= Diag

( v
2
, 2v, . . . , 2v︸ ︷︷ ︸

m

)
.

Denote byHessA(n) the random symmetric matrix with variance given by the regression formula

Var
[
HessA(n)

]
= Var

[
HessA(n)

]
−Corr

[
HessA(n),W

]
Var

[
W

]−1
Corr

[
W,HessA(n)

]
.

Set
Lij = ℓij

(
HessA(n)

)
, Ωij := ωij

(
HessA(n)

)
,

and
Cij|k := Cov

[
Ωij ,Wk

]
, 1 ≤ i ≤ j ≤ m, 0 ≤ k ≤ m.

Note that
Cij|k = 0, ∀i, j, ∀k > 0, Cij|k = 0, ∀i < j, ∀k ≥ 0,

and
Cii|0 =

1

2
E
[
(aii − a00)a00

]
= −1

2
E
[
a200

]
= −v.

If we write
Var

[
W

]−1
=

(
tab

)
0≤a,b≤m

,

then

E
[
ΩijΩkℓ

]
= E

[
Ωij(x)Ωkℓ(x)

]
−

m∑
a,b=0

Cij|atabCkℓ|b = E
[
Ωij(x)Ωkℓ(x)

]
− 2

v
Cij|0Ckℓ|0

For i ̸= j

E
[
ΩiiΩjj

]
= E

[
Ωii(x)Ωjj(x)

]
− 2v = 0

E
[
Ω
2
ii

]
= 2v,

E
[
ΩijΩkℓ

]
= E

[
Ωij(x)Ωkℓ(x)

]
, ∀1 ≤ k ≤ ℓ.

We deduce thatHessA ∈ GOEv
m soHessA has the same distribution as A.

The regression operator

RHessA,W = Corr
[
HessA,W

]
Var

[
W−1

]
: Rm+1 → Symm(R)

is 
w0

w1
...

wm

 7→ −2w01m.
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Using the regression formula we deduce

E
[
|HessA(n)| ∥W (n) = (t/2, 0)

]
= EGOEm,v

[
| det(A− vt)|

]
.

Since 2ΦA(n) = a00 is Gaussian with variance 2v, we deduce. from the Kac-Rice formula (2.3)
that for any Borel subset C ⊂ R we have

E
[
DA

[
C
] ]

=

∫
C
ρA(t)γ2v

[
dt

]
,

where

ρA(t) =

∫
Sm

E
[
|HessA(x)| ∥ 2ΦA(x) = t, ∇ΦA(x) = 0

]
p∇ΦA(x)(0)dx

(3.3)
=

(
2πv

)−m/2
∫
Sm

E
[
|HessA(x)| ∥W (x) = (t/2, 0)

]
dx

=
(
2πv

)−m/2E
[
|HessA(n)| ∥W (n) = (t/2, 0)

]
vol

[
Sm

]
=

(
2πv

)−m/2
vol

[
Sm

]
EGOEv

m

[
|det(A− vt)|

]
.

(3.4)

In Lemma 2.1 we showed

EGOEm,v

[
det(A− vt)|

]
= (2v)

m+1
2 e

v2t2

4v
Zm+1

Zm
ρm+1,v(vt).

Assume now that v = 1.

EGOE1
m

[
det(A− t)|

]
= e

t2

4 2
m+1

2 π−1/2Zm+1

Zm
ρm+1,1(t)

Since γ2v

[
dt

]
= e−

t2

4
dt√
4π

we deduce

E
[
DA

[
C
] ]

=
(
2π

)−m/2
2

m+1
2 vol

[
Sm

]Zm+1

Zm

∫
C
ρm+1,1(t)

dt√
4π

.

On the other hand, we deduce from (3.1) that
1

(m+ 1)
E
[
DA

[
C
] ]

= 2

∫
C
ρm+1,1(t)dt,

so that (
2π

)−m/2
2

m+1
2 vol

[
Sm

]
(m+ 1)

Zm+1

Zm
(4π)−1/2 = 2.

Using the fact that
vol

[
Sm

]
m+ 1

=
π

m+1
2

Γ(m+3
2 )

we deduce
Zm+1

Zm
=

Γ(m+3
2 )

π
m+1

2

· 2(2π)
m/2(4π)1/2

2
m+1

2

= 23/3Γ
( m+ 3

2

)
.

Note that

Z1 =

∫
R
e−t2/2dt = (2π)1/2.

We deduce immediately the equality (1.8)

Zm = Z1

m−1∏
j=1

Zj+1

Zj
= 2

3m
2

m−1∏
j=0

Γ
( j + 3

2

)
.
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