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INTRODUCTION

Concentration of measure is the study of how some measures concentrate most of their “mass”
on a particular set of large measure. The simplest way to understand this is to observe that in some
space X with a measure µ that exhibits concentration around a set A, choosing a point randomly
in X means that with high probability, the point is going to be very close to, if not in, A. This is
counter-intuitive to the notion of randomness and is a very powerful result with many applications.

I was introduced to the idea of concentration of measure by Dr. Liviu Nicolaescu via one such
application, when we were discussing potential senior thesis topics. He directed me to a post about
compressed sensing in Terence Tao’s blog [12], and this post sparked my interest in the field.

To hopefully spark your interest in this field as well, I’ll outline the post now. Consider a digital
camera, taking a picture of some landscape. The camera has a digital sensor, of some amount of
pixels, which records the light and color of a scene. Suppose for simplicity that we are dealing
without color, so all the sensor is doing is just recording light. Each pixel is a little square, and the
sensor grids out the captured image by a collection of pixels. For example, the following image could
be taken by a 4× 6 = 24 pixel sensor, where each pixel is labeled P ·.

For each image captured, an N = n×m-pixel sensor maps a certain bounded light measurement
to each pixel,

X : [0, 1]→ (P1, ..., PN),

giving each image a n ×m [0, 1]-valued matrix representation, or equivalently an nm length vector
representation. For N large, this is a lot of information to store, so the solution is to compress the
image using a map Φ : RN → RM , for 0 < M < N . This is traditionally done by choosing a
map that groups similarly measured pixels together into a block with one value, reducing the number
of stored measurements. However, this is very lossy and still not very computationally successful,
so other methods are wanted. Here, concentration of measure comes into play for the first time.
Namely, it turns out that if you choose a M ×N matrix Φ with each entry an independent, identically
distributed standard Gaussian random variable, then with high probability, Φ will preserve distances
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and thus keep the quality of the image high while drastically reducing the amount of information
necessary to store. Additionally, this method is dramatically less lossy than compression by grouping!

The punchline is that Gaussian measure γn on Rn concentrates on some set of large measure, say
A ⊂ Rn. Thus, if you choose a point x randomly in Rn, in the point of view of the Gaussian measure,
with very large probability x will be in or near A. As you will see, we can translate this to a result for
“sufficiently regular”, i.e. Lipschitz, maps F : Rn → R. Then, concentration of measure states that
such a function F differs from some average value only on a set of very small measure. For example,
in the point of view of the Gaussian measure γn on Rn, the standard Euclidean norm concentrates
around the value

√
n. Thus, if you choose a vector x ∈ Rn randomly with respect to the Gaussian

measure and compute its norm, it will be, with high probability, in some small ε > 0 neighborhood
of
√
n.

As you can imagine, this is a very powerful result, and it has many consequences and applications,
such as the high-fidelity compression I mentioned previously. However, as I researched concentra-
tion of measure, what I found more interesting than its applications was its prevalence in drastically
different areas of mathematics; the same concentration of measure results can be arrived at through
geometric, functional analytic, and probabilistic methods (among others which we do not discuss).

We are most interested in the concentration of Gaussian measure, although we prove concentration
of measure results for a much larger class of measures. To demonstrate a few of the most important
methods to arrive at concentration of measure, this thesis will loosely follow the structure of Michel
Ledoux’s monograph The Concentration of Measure Phenomenon [6], although discussing a number
of other sources, most notably Bakry, Gentil, and Ledoux’s book The Analysis and Geometry of
Markov Diffusion Operators [3] for semigroup and spectral related results.

We begin as Ledoux does and define a concentration function. We then define normal and exponen-
tial concentration of measure by bounding the concentration function by either Ce−cr

2
or Ce−er for

some positiveC, c > 0. The remainder of Section 1 describes a way to arrive at normal concentration:
Laplace bounds, and a way to arrive at exponential concentration: expansion coefficients.

Section 2 will show how geometric methods can imply concentration of measure, and will ulti-
mately arrive at proving normal concentration for the Gaussian measure on Rn. We define boundary
measure for spaces and use these measures to discuss isoperimetry, which looks for sets with mini-
mal boundary measure for a set volume. We finally show how a lower bound on isoperimetry implies
concentration of measure.

Continuing, Section 3 turns instead to probabilistic methods of proving concentration of measure.
There, we define semigroups of bounded linear operators on Banach spaces, along with their gen-
erators. We develop a theory of Markov diffusions and show how curvature and uniform convextity
assumptions on Markov diffusions and their semigroups imply concentration of measure.

Section 4 generalizes the results of Section 3 by expanding the class of measures which exhibit
concentration to log-concave measures. However, here we go through not semigroups, but rather
functional-analytic and spectral methods, making heavy use of the Poincaré inequality. Although
these methods are applicable for a much larger class of measures than the previous sections, they can
only lead us to exponential concentration, whereas the previous sections arrive at normal concentra-
tion of measure.

Finally, Section 5 proves the Johnson-Lindenstrauss flattening lemma, which is essentially equiv-
alent to the motivating example of image compression discussed above. This result is one of many
powerful applications of concentration of measure, and its proof will make heavy use of the nor-
mal concentration of measure for the Gaussian measure, which we arrive at through various methods
throughout our thesis.
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1. CONCENTRATION OF MEASURE

We seek to establish concentration of measure results, so it will be good to first define what this
is, and second, to establish when we know we have it. In a brief answer to the first question, concen-
tration of measure, when it is present, states that for a certain space and measure, most of the“mass”
of the space, in the sense of the equipped measure, is contained in a small neighborhood of a cer-
tain “average” set. Concentration of measure is a property of a large number of variables, much like
the central limit theorem or the law of large numbers, so the results strengthen in large dimensional
spaces.

To quantify the first question, “What is concentration of measure?”, we will develop a concentra-
tion function, upon which certain bounds will define the presence of certain types of concentration
of measure phenomenon. To answer the second question, “When do we have concentration of mea-
sure?”, the remainder of the section will be devoted to developing Laplace bounds and expansion
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coefficients, which are easily computable ways to prove existence of concentration of measure. Un-
less otherwise mentioned, proofs follow the approach of [6, Chapter 1].

1.1. Concentration Functions and Deviation Inequalities. We first define the space on which we
will work to develop concentration of measure, along with a convenient technical definition.

Definition 1.1. For us a metric measured space or ( m.m.s for brevity) is a triplet (X, d, µ) where
(X, d) is a metric space and µ is a Borel probability measure on X . Given a subset A of a metric
space (X, d) we define its radius r tube to be the set

Ar :=
{
x ∈ X; dist(x,A) < r

}
ut

Now we define a concentration function, which is how we will detect and quantify concentration
of measure.

Definition 1.2. The concentration function αµ of a m.m.s. (X, d, µ) is the function αµ : [0,∞) →
[0, 1] defined by

αµ(r) : = sup
{

1− µ(Ar); A ⊂ X,µ(A) ≥ 1

2

}
,

= sup
{
µ(X \Ar); A ⊂ X,µ(A) ≥ 1

2

}
.

ut

Concentration functions rely two things: a reference measure, µ, and a notion of enlargement,
r > 0. They are clearly bounded above by 1/2 and below by 0. As r → ∞, they decrease down to
their lower bound of 0. Concentration of measure phenomenon quantifies this decay.

Definition 1.3. Let (X, d, µ) be a m.m.s. with concentration function αµ(r).
(i) We say that µ has normal concentration if ∃C, c > 0 such that

αµ(r) ≤ Ce−cr2 .
(ii) We say that µ has expontential concentration if ∃C, c > 0 such that

αµ(r) ≤ Ce−cr. ut

If µ exhibits one of these modes of concentration, then αµ(r) decreases to 0 rapidly as r → ∞.
Thus, for some not very large r, there is a set A ⊂ X such that A has large measure (µ(A) ≥ 1/2)
and the measure of the complement of A’s r-tube, Acr, is very small. Thus measure is concentrated
on some certain large-measure set A. Note, concentration functions do not indicate on which sets the
measure concentrates on, only that, if bounded, measure concentrates.

A fascinating and critical result concerning concentration of measure is if a measure µ on a space
(X, d) exhibits concentration, then “sufficiently regular” functions F : X → R concentrate around a
constant value, typically the mean/median. We formalize this discussion below.

Definition 1.4. If (X, d, µ) is a m.m.s., and F : X → R is µ-measurable, then we say that mF ∈ R
is a median of F with respect to µ if

µ
(
{F ≤ mF }

)
≥ 1

2
and µ

(
{F ≥ mF }

)
≥ 1

2
.

If F is continuous, then its modulus of continuity is the function

wF : (0,∞)→ [0,∞),

defined by
wF (η) := sup

{
|F (x)− F (y)| : d(x, y) < η

}
, η > 0. ut
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Proposition 1.5. Let (X, d, µ) be a m.m.s. and let F : X → R be a continuous function with modulus
of continuity wF . Then, for any median of F , mF , and ∀ η > 0, we have

µ({|F −mF | > wF (η)}) ≤ 2αµ(η).

Proof. Let A := {F ≤ mF } and fix y ∈ A. Observe that for x ∈ X , if d(x, y) < η, then
F (x)− F (y) ≤ wF (η), and so

F (x) ≤ F (y) + wF (η) ≤ mF + wF (η),

as y ∈ A. By the definition of the median, µ(A) ≥ 1/2, so we can consider A in the supremum used
in the definition of αµ. Thus, if

x ∈
{
F > mF + wF (η)

}
,

then
d(x, y) > η ∀y ∈ A,

so that x ∈ Acη. It follows that

µ({F > mF + wF (η)}) ≤ µ(Acη) ≤ αµ(η).

Performing the same argument using A := {F ≥ mF } yields the similar result

µ({F < mF − wF (η)}) ≤ αµ(η),

so combining the two results yields

µ({|F −mF | > wF (η)}) ≤ 2αµ(η),

as desired. ut

We call these concentration results for functions deviation inequalities. In practice, however, we
will be more interested in deviation inequalities for Lipschitz functions rather than simply continuous
functions, so we now recall the definition of a Lipschitz function and reformulate the previous result
for these functions.

Definition 1.6. A function F : X → R on a metric space (X, d) is said to be K-Lipschitz if

||F ||Lip = sup
x 6=y

|F (x)− F (y)|
d(x, y)

≤ K <∞.

We denote by LipK = LipK(X) the space of K-Lipschitz functions on X and by LipbK the subset of
LipK consisting of bounded functions. ut

As stated above, we can prove a similar result to Proposition 1.5 for Lipschitz functions, which we
will use much more often in our later examples.

Proposition 1.7. Let (X, d, µ) be a m.m.s., and let F : X → R be a K-Lipschitz function. Then,
∀ r > 0 and for any median of F , mF , we have

µ({|F −mF | > r}) ≤ 2αµ(r/K).

Proof. Define A := {F ≤ mF }. For x ∈ X , whenever d(x, y) < η, for some y ∈ A, we have, by
the definition of a K-Lipschitz function,

F (x)− F (y) ≤ Kd(x, y) ≤ Kη.
Thus,

F (x) ≤ F (y) +Kη ≤ mF +Kη.
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Just like in the proof of Proposition 1.5, by passing to complements and appealing to the concentration
function, we attain

µ({F −mF ≥ Kη}) ≤ αµ(η).

Performing the substitution r = Kη yields

µ({F −mF ≥ r}) ≤ αµ(r/K),

and a similar argument for A := {F ≥ mF } concludes the proof. ut

While the previous proposition showed that concentration of measure implies deviation inequal-
ities, the following proposition shows that deviation inequalities for bounded 1-Lipschitz functions
around their means lead to estimates on the concentration function αµ(r). Essentially, finding a devi-
ation inequality allows us to establish concentration of measure. This is our first result which shows
how to establish concentration of measure, and we will use it repeatedly.

Proposition 1.8. Let (X, d, µ) be a m.m.s. Assume there exists a nonincreasing function

φ : [0,∞)→ [0,∞)

such that for any bounded 1-Lipschitz function F : X → R, we have

µ

({
F ≥

∫
Fdµ+ r

})
≤ φ(r) ∀ r ≥ 0. (1.1)

Then, for every Borel set A ⊂ X such that µ(A) > 0, and for every r > 0,

1− µ(Ar) ≤ φ(µ(A)r).

In particular,
αµ(r) ≤ φ(r/2), r > 0.

Proof. Let A ⊂ X with µ(A) > 0 and fix r > 0. Define

F : X → R, F (x) := min(d(x,A), r),

Observing that the functions

x 7→ dA(x) = d(x,A) and t 7→ u(t) = min(t, r)

are 1-Lipschitz we deduce that their composition F = u ◦ dA is also 1-Lipschitz. Further,∫
X
Fdµ =

∫
A
Fdµ︸ ︷︷ ︸

=0

+

∫
Ac
Fdµ ≤ µ(Ac)r =

(
1− µ(A)

)
r. (1.2)

Then, by the definition of F ,

1− µ(Ar) = µ ({F ≥ r}) = µ ({F ≥ µ(A)r + (1− µ(A)r)})
(1.2)

≤ µ

({
F ≥

∫
Fdµ+ µ(A)r

})
(1.1)

≤ φ(µ(A)r).

This proves the first result. Observe next that if µ(A) ≥ 1/2, then

φ
(
µ(A)r

)
≤ α(r/2),

since φ is nonincreasing. We deduce that

αµ(r) ≤ φ(r/2).

This proves the second claim. ut
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The next result generalizes the previous proposition to un-bounded 1-Lipschitz functions. Both
results extend to general K-Lipschitz functions by homogeneity: if F is K-Lipschitz, then (1/K)F
is a 1-Lipschitz function.

Proposition 1.9. Let (X, d, µ) be a m.m.s. Assume that φ is a continuous, non-negative function on
R+ such that

lim
r→∞

φ(r) = 0,

and for any bounded 1-Lipschitz function F : X → R,

µ

({
F ≥

∫
Fdµ+ r

})
≤ φ(r) ∀ r ≥ 0. (1.3)

.
Then, any 1-Lipschitz function G : X → R, bounded or not, is integrable with respect to µ. If

additionally the function φ(r) is continuous, then G satisfies (1.1) as well.

Proof. Let G : X → R be a potentially unbounded 1-Lipschitz function. For any n ≥ 0, define a
function

Gn : X → R, Gn(x) = min(|G(x)|, n).

The functionGn is 1-Lipschitz as a composition of 1-Lipschitz maps. So, by our assumptions applied
to −Gn, ∀ r > 0,

µ

({
Gn ≤

∫
Gn dµ− r

})
≤ φ(r) ∀ r ≥ 0. (1.4)

Next, choose an M ∈ R such that µ
(
|G| ≤ M

)
≥ 1/2. This is possible as G is Lipschitz and

thus continuous, and thus cannot be infinite everywhere. Further, choose an r0 such that φ(r0) < 1/2.
This is possible as α is decreasing to 0 as r →∞. Then

∀n, µ({Gn ≤M}) ≥
1

2
.

Indeed, Gn ≤ |G|, so {
|G| ≤M

}
⊂
{
Gn ≤M

}
.

Plugging r = r0 into (1.1) gets us the system of inequalities:

µ({Gn ≤M}) ≥
1

2
, (1.5a)

µ

({
Gn ≤

∫
Gn dµ− r0

})
≤ φ(r0) <

1

2
. (1.5b)

We deduce that ∫
Gndµ ≤M + r0. (1.6)

Indeed, note that
µ
(
{Gn < c1}

)
< µ

(
{Gn < c2}

)
=⇒ c1 < c2.

Since

µ

({
Gn ≤

∫
Gn dµ− r0

}) (1.5b)
<

1

2
≤ µ({Gn ≤M})

we deduce that ∫
Gn dµ− r0 < M.
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As Gn ↗ |G| as n → ∞, each Gn is pointwise non decreasing, so we can use the monotone
convergence theorem on Gn to obtain∫

Gdµ =

∫
lim
n→∞

Gndµ = lim
n→∞

∫
Gndµ

(1.6)

≤ M + r0.

Hence G is integrable. Next, define

Hn := min(max(G,−n), n).

Each Hn is 1-Lipschitz as it is the composition of 1-Lipschitz functions and is clearly bounded. Thus
we apply (1.1) to Hn to obtain

µ

({
Hn ≥

∫
Hndµ+ r

})
≤ φ(r) ∀ r > 0, n ∈ N.

Set

H̄n :=

∫
Hndµ, Ḡ :=

∫
Gdµ.

Since |Hn| ≤ |G| andHn(x)→ G(x), ∀x ∈ X , we deduce from the dominated convergence theorem
that H̄n → G. Fix ε > 0. We define the sets

An :=
{
Hn > H̄n + r − ε

}
, A =

{
G > Ḡ+ r − ε

}
.

The sets An and A are open. Since limn→∞Hn = G, we conclude that for any x ∈ A there exists
N = N(x) such that x ∈ An, ∀n > N . Thus

lim
n→∞

IAn(x) = IA(x) = 1, ∀x ∈ A.

We deduce that
IA(x) ≤ lim inf

n→∞
IAn(x), ∀x ∈ X.

We conclude that

µ
(
A
)

=

∫
X
IA(x)dµ ≤

∫
X

lim inf
n→∞

IAn(x)dµ

(Fatou’s lemma)

≤ lim inf
n→∞

∫
X
IAn(x)dµ = lim inf

n→∞
µ(An) ≤ φ(r + ε).

In other words,
µ
( {
G > Ḡ+ r − ε

} )
≤ φ(r − ε), ∀ε > 0. (1.7)

The family
{
G > Ḡ+ r − ε

}
decreases as ε↘ 0 and⋂
ε>0

{
G > Ḡ+ r − ε

}
=
{
G ≥ Ḡ+ r

}
.

Letting ε↘ 0 in (1.7) and using the continuity of φ(r) we deduce

µ
( {
G ≥ Ḡ+ r

} )
≤ φ(r).

ut

Motivated by the above results, to any m.m.s. (X, d, µ) we associate the space Φµ consisting of
non-increasing functions φ : (0,∞)→ (0,∞) such that

lim
r→∞

φ(r) = 0,
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and

sup
F∈Lipb1

µ
( {
F ≥ F̄ + r

} )
≤ φ(r), F̄ :=

∫
X
Fdµ, ∀r > 0.

We denote by Φc
µ the subset of Φµ consisting of continuous functions. Proposition 1.8 and 1.9 imply

that
αµ(r) ≤ φ(r/2), ∀r > 0, ∀φ ∈ Φµ, (1.8a)

µ
( {
F ≥ F̄ + r

} )
≤ φ(r), ∀F ∈ Lip1, ∀φ ∈ Φc

µ. (1.8b)
This concludes our discussion of concentration functions and deviation inequalities. As we have

seen, concentration functions are useful for quantifying the concentration of measure phenomenon
and showing the regularity of nice functions, while deviation inequalities are intrinsically tied to
concentration of measure. In the next few subsections, we demonstrate a few different ways to arrive
at exponential and normal concentration for a m.m.s. by bounding the concentration function.

1.2. Expansion Coefficients. An important method for arriving at concentration of measure is through
what are called expansion coefficients. A limitation of this method is that it can only show exponen-
tial concentration, which we noted was a weaker result than normal concentration. Let us first define
an expansion coefficient.

Definition 1.10. Let (X, d, µ) be a m.m.s. Then we define the expansion coefficient of µ on (X, d)
of order ε > 0 as

Expµ(ε) := inf{η ≥ 1 : µ(Bε) ≥ η µ(B), B ⊂ X, µ(Bε) ≤ 1/2}. ut

In particular, if Expµ(ε) > 1, then any set B ⊂ X with µ(Bε) ≤ 1/2 has very small measure, as
the expansion coefficient shows that just a small ε enlargement ofB results in much larger measure. If
we consider B to be the complement of a set with large measure, then we can picture how expansion
coefficients lead to concentration.

The following proposition shows how finding an expansion coefficient allows one to demonstrate
exponential concentration.

Proposition 1.11. Let (X, d, µ) be a m.m.s. If, for some ε > 0, Expµ(ε) ≥ η > 1, then µ has
exponential concentration

αµ(r) ≤ η

2
e−r log(η)/ε, r > 0.

Proof. Let A ⊂ X a Borel set such that µ(A) ≥ 1/2. Let B = (Akε)
c. Then, clearly, Bkε ⊂ Ac and

so µ(Bkε) ≤ 1
2 . Thus we can invoke expansion coefficients. Observe,

µ(B) ≤ µ(Bkε)

Expµ(ε)k
≤ 1

2

1

Expµ(ε)k
≤ 1

2
η−k.

Thus,

1− µ(Akε) ≤
1

2ηk
=

1

2
e−k log(η).

So if r = kε for some k ≥ 1, then

αµ(r) ≤ 1− µ(Ar) = 1− µ(Akε) ≤
1

2
e−k log(η) ≤ η

2
e−kε log(η)/ε,

as desired. Recall, η > 1. Now, assume that r ∈ (kε, (k + 1)ε). Then clearly r − kε ≤ 1 and
µ(Ar) ≥ µ(Akε). So,

αµ(r) ≤ 1− µ(Ar) ≤ 1− µ(Akε) ≤
1

2
e−k log(η) =

1

2
e−kε log(η)/ε



10 MISHA SWEENEY

=
1

2
exp

[
−r log(η) + (r − kε) log(η)

ε

]
((r − kε)/ε < 1)

≤ 1

2
exp [−r log(η)/ε] exp (log η) =

η

2
e−r log(η)/ε.

as desired. ut

1.3. Laplace Bounds. In this section, we look at another method of establishing concentration of
measure, this time through a functional approach. The results in this section will allow us to arrive at
normal concentration, a much stronger result than exponential concentration. We will use this method
later on as well. First, however, we define what we will bound the concentration function with.

Definition 1.12. Let (X, d, µ) be a m.m.s. Then, for λ ≥ 0, we define the Laplace functional of µ on
(X, d) as

E(X,d,µ)(λ) = Eµ(λ) = sup
F

∫
eλFdµ,

where the supremum is taken over F ∈ Lip1 with mean F̄ = 0. ut

The following proposition demonstrates how the Laplace functional bounds the concentration func-
tion of a m.m.s. and thus implies normal concentration.

Proposition 1.13. Let (X, d, µ) be a m.m.s. Then,

αµ(r) ≤ inf
λ≥0

e−λr/2Eµ(λ), r > 0.

In particular, if we have a normal bound in λ on Eµ, then we get normal concentration of µ. More
precisely, if

Eµ(λ) ≤ eλ2/2c, λ ≥ 0,

then e−cr
2/2 ∈ Φc

µ so that Lip1 ⊂ L1(X,µ) and ∀ r ≥ 0, we have

µ

({
F ≥

∫
Fdµ+ r

})
≤ e−cr2/2,

αµ(r) ≤ e−cr2/8, r > 0.

Proof. Fix λ > 0. Then for any 1-Lipschitz function F : X → R,

F (x) ≥ r =⇒ λF ≥ λr =⇒ eλF ≥ eλr.
Observe that eλF is a bounded, positive function on X and eλr is a positive number in R. Thus

eλF is integrable, and ∫
X
eλFdµ ≥

∫
x:F (x)≥r

eλFdµ ≥ µ ({F (x) ≥ r}) eλr.

And multiplying through by e−λr yields

µ ({F (x) ≥ r}) ≤ e−λr
∫
X
eλFdµ ≤ e−λrEµ(λ) ∀λ ≥ 0. (1.9)

If we define
φ(r) := inf

λ≥0
e−λrEµ(λ),
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and consider our above F to be zero-mean as well, then by (1.9),

µ
(
{F (x) ≥ F̄ + r}

)
= µ ({F ≥ r}) ≤ e−λr

∫
X
eλFdµ (∀λ ≥ 0) ≤ φ(r).

And so, by Proposition 1.8,

αµ(r) ≤ φ(r/2) = inf
λ≥0

e−λr/2Eµ(λ),

which yields the first result. If we assume that

Eµ(λ) ≤ eλ2/2c, λ ≥ 0,

then e−λr+λ
2/2c ∈ Φc

µ, ∀λ ≥ 0. We deduce that from (1.8b) that ∀G ∈ Lip1, we have G ∈ L1(X,µ)
and

µ
( {
G ≥ Ḡ+ r

} )
≤ e−λr+λ2/2c.

To conclude the proof, we optimize in λ. Indeed, e−λr+λ
2/2c is smallest when l(λ) := −λr + λ2/2c

is smallest, which occurs when l′(λ) = 0, or when λ = rc. Thus,

µ
( {
G ≥ Ḡ+ r

} )
≤ inf

λ≥0
e−λr+λ

2/2c = e−cr
2/2.

Finally, using our optimized φ(r) = e−cr
2/2, we deduce from (1.8a) that αµ(r) ≤ φ(r/2), and so

αµ(r) ≤ α(r/2) ≤ e−c(r/2)2/2 = e−cr
2/8,

as desired. ut

1.3.1. An Example. We now illustrate the utility of the Laplace functional through an example. The
below proposition essentially shows that in the point-of-view of the Gaussian measure, Rn for large
n “looks like” the sphere of radius

√
n; Laplace bounds allow us to arrive at a deviation inequality

for the Euclidean norm around the average value
√
n.

Lemma 1.14. We follow the approach of [11, Prop 2.2]. For any δ ≥ 0,

γn
({
x ∈ Rn : ||x||2 ≥ n+ δ

})
≤
(

n

n+ δ

)−n/2
e−δ/2,

and

γn
({
x ∈ Rn : ||x||2 ≤ n− δ

})
≤
(

n

n− δ

)−n/2
eδ/2.

Proof. First fix a λ ∈ (0, 1). Then,

||x||2 ≥ n+ δ =⇒ λ||x||2/2 ≥ λ(n+ δ)/2,

and so
eλ||x||

2/2 ≥ eλ(n+δ)/2.

Reasoning identically as in (1.9) with λ/2, we observe that

γn
({
x ∈ Rn : ||x||2 ≥ n+ δ

})
≤ e−λ(n+δ)/2

∫
Rn
eλ||x||

2/2dγn. (1.10)

By a change of variables,

e−λ(n+δ)/2

∫
Rn
eλ||x||

2/2dγn = e−λ(n+δ)/2

∫
Rn
e
λ||x||2

2
e−||x||

2/2

(2π)n/2
dx
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= e−λ(n+δ)/2(2π)−n/2
∫
Rn
e

(λ−1)||x||2
2 dx.

The above integral splits into the product of one dimensional integrals and we deduce that

(2π)−n/2
∫
Rn
e

(λ−1)||x||2
2 dx =

(
1√
2π

∫
R
e(λ−1)x2/2dx

)n
.

To calculate the latter integral, we perform the substitution

x = y/
√

1− λ, dx = (1− λ)−1/2dy.

The integral then becomes
1√
2π

∫
R
e(λ−1)x2/2dx =

1√
1− λ

· 1√
2π

∫
R
e−y

2/2dy = (1− λ)−1/2,

and so

(2π)−n/2
∫
Rn
e(λ−1)||x||2/2dx = (1− λ)−n/2.

Thus, returning to (1.10),

γn
({
x ∈ Rn : ||x||2 ≥ n+ δ

})
≤ e−λ(n+δ)/2(2π)−n/2

∫
Rn
e(λ−1)||x||2/2dx

= e−λ(n+δ)/2(1− λ)−n/2.

Choosing λ = δ/(n + δ) yields the first conclusion. The second conclusion is easily attained by a
matter of sign changes in a similar manner to this proof. ut

To summarize, we have defined concentration of measure through concentration functions, shown
three different methods of arriving at concentration of measure, and used one of these methods to
show an example of a deviation inequality.

2. ISOPERIMETRIC AND FUNCTIONAL EXAMPLES

Our first results about concentration of measure for specific measures will come from isoperimetric
inequalities, which are statements about extremal sets and surface measure. This approach is inher-
ently geometric in nature, and will actually in some cases answer the question, “On which particular
sets does measure concentrate?” Isoperimetric inequalites will lead us to establish normal concentra-
tion for both the uniform measure on the sphere and the Gaussian measure on Rn. All results, unless
otherwise mentioned, follow from [6, Chap 2].

2.1. Isoperimetry to concentration. We begin by defining what an isoperimetric inequality is,
which in turn first requires defining a new measure.

Definition 2.1. For a m.m.s. (X, d, µ), the boundary measure of a Borel set A ⊂ X with respect to
µ is defined as

µ+(A) := lim inf
r→0

1

r
µ(Ar \A), (2.1)

where we recall that Ar := {x ∈ X ; d(X,A) < r}. ut

Remark 2.2. When X is Rn equipped with the Euclidean distance, µ is the Lebesgue measure,
and A is a bounded open set with smooth boundary, then µ+(A) is indeed the (n − 1)-dimensional
(Hausdorff) measure of ∂A. ut
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This boundary measure enters the definition of the isoperimetric function.

Definition 2.3. Let (X, d, µ) be an m.m.s1

(i) The isoperimetric function of µ is the largest function

Iµ : [0, 1]→ R
such that for every Borel set A ⊂ X ,

µ+(A) ≥ Iµ(µ(A)). (2.2)

(ii) A Borel subset B ⊂ X is called an extremal set if

µ+(B) = Iµ(µ(B)). ut

Remark 2.4. (a) The extremal sets of an m.m.s. are the sets with the smallest boundary measure for
a given volume. To see this, let A, B ⊂ X such that µ(A) = µ(B), but B is an extremal set. Then

µ+(A) ≥ Iµ(µ(A)) = Iµ(µ(B)) = µ+(B),

and so µ+(A) ≥ µ+(B). The search for explicit descriptions of extremal sets is one of the main
focuses of isoperimetric inequalities, but these descriptions are rarely attainable. However, even in
situations where we cannot find explicit descriptions for these extremal sets, we can still say a lot
about them using concentration results.
(b) Very few explicit isoperimetric functions are known. Among those that are known, the most
notable is example is the sphere X = Sn, equipped with its geodesic metric d(x, y) = arccos〈x, y〉
(assuming the usual inner product on Rn), and the unique rotation invariant probability measure µ. If
we write v(r) := the volume of a geodesic ball of radius r on Sn, then the isoperimetric function for
the triple (Sn, d, µ) is

Iµ = v′ ◦ v−1.

Further, the extremal sets for this space are geodesic balls, i.e. spherical caps. We will not prove this
statement, but will rather prove the concentration implications of this result. ut

Let us now define another technical condition upon which we will work.

Definition 2.5. We say that a m.m.s. (X, d, µ) is convenient if the following hold.
(i) If A is a finite union of balls, then the lim inf in (2.1) is actually a limit, i.e.,

µ+(A) = lim
r→0

1

r
µ(Ar \A) = lim

r→0

1

r

(
µ(Ar)− µ(A)

)
.

(ii) The measure µ is uniquely determined by its values on finite union of balls. ut

For example, a sphere in Rn equipped with a geodesic distance metric and uniform area measure
is a convenient m.m.s. The next result is a comparison result that is integral to establishing a bridge
from isoperimetry to concentration of measure.

Proposition 2.6. Suppose that (X, d, µ) is a convenient m.m.s. and

Iµ ≥ v′ ◦ v−1 (2.3)

for some strictly increasing differentiable function2

v : I ⊂ R→ [0, 1].

1Recall, according to our definition of an m.m.s., µ is a probability measure.
2It helps to think of v(r) as the volume of ball of radius r.
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Then, for every r > 0,

v−1 (µ(Ar)) ≥ v−1 (µ(A)) + r.

Proof. Because X is convenient, it suffices to assume that A ⊂ X is given by a finite union of open
balls in X . Fix such an A ⊂ X . We introduce the function h(r) = v−1(µ(Ar)).3

Then, as v is strictly increasing and differentiable, by the inverse function theorem,

h′(r) =
(
v−1(µ(Ar))

)′
=

(µ(Ar)
′)

v′ ◦ v−1(µ(Ar))

=
µ+(Ar)

v′ ◦ v−1(µ(Ar))

(2.2)

≥
Iµ
(
µ(Ar)

)
v′ ◦ v−1(µ(Ar))

(2.3)

≥ 1.

Then as h′(r) ≥ 1,

h(r) = h(0) +

∫ r

0
h′(s)ds ≥ h(0) + r.

ut

Remark 2.7. Conversely, if we assume

v−1(µ(Ar)) ≥ v−1(µ(A)) + r, r > 0,

then, for any Borel subset A ⊂ X , we have

µ+(A) = lim inf
r→0

1

r
µ(Ar \A) = lim

r→0

1

r

[
v(v−1(µ(Ar)))− µ(A)

]
≥ lim inf

r→0

1

r

[
v(v−1(µ(A)) + r)− µ(A)

]
= v′ ◦ v−1(µ(A)). ut

Remark 2.8. In constant curvature spaces (i.e. Rn and Sn ⊂ Rn+1) equality in Proposition 2.6 is
achieved clearly on geodesic balls. Thus, in constant curvature spaces, Proposition 2.6 is equivalent
to the statement

µ(Ar) ≥ µ(Br), r > 0, (2.4)
for every A ⊂ X such that µ(A) = µ(B) and B ⊂ X is a geodesic ball. This is the so-called
isoperimetric inequality for µ on a constant-curvature space. To see this, observe that under these
conditions, and under the assumptions of Proposition 2.6),

µ(Ar) ≥ v(v−1(µ(A)) + r) = v(v−1(µ(B)) + r) = µ(Br), r > 0. ut

As a corollary to these results, we can establish the bridge from isoperimetry to concentration of
measure. Namely, the result below states that if we have a lower bound on the isoperimetric function
of a convenient m.m.s., then the measure on that space has a bound on its concentration function,
proving concentration of measure.

Corollary 2.9. Let (X, d, µ) be a convenient m.m.s. Assume that

Iµ ≥ v′ ◦ v−1

for some strictly increasing differentiable function

v : I ⊂ R→ [0, 1].

Then,
αµ(r) ≤ 1− v

(
v−1(1/2) + r

)
, r > 0.

3In many applications h(r) is the radius of a ball of volume µ(Ar).
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Proof. If A ⊂ X is a Borel such that µ(A) ≥ 1/2, then by Proposition 2.6, we know that

v−1(µ(Ar)) ≥ v−1(µ(A)) + r,

and so µ(Ar) ≥ v
(
v−1(µ(A)) + r

)
. Then, by our choice of A,

1− µ(Ar) ≤ 1− v(v−1(1/2) + r
)
.

Hence,

αµ(r) = sup
{

1− µ(Ar); A ⊂ X,µ(A) ≥ 1/2
}
≤ 1− v

(
v−1(1/2) + r

)
.

ut

2.2. Concentration on the unit sphere. As an example of this previous result, we establish normal
concentration of measure for the uniform measure on Sn.

Theorem 2.10. For the standard n-sphere Sn, n ≥ 2, equipped with the geodesic metric d and
normalized uniform measure µ,

α(Sn,d,µ) ≤
1

π
e−(n−1)r2/2, 0 < r ≤ π.

Proof. On the unit sphere Sn the geodesic distance between two points P1, P2 is the angle ](P1OP2).
Using spherical coordinates see [10, Eq.(15.50)] we deduce that volume of the unit ballBn+1 ∈ Rn+1

is (see [10, Ex. 15.53 and (15.66)])

ωn+1 =
2π

n+ 1
s1 · · · sn =

πn/2

Γ(1 + n/2)
,

where

sn =

∫ π

0
sinn−1 θ dθ = 2

∫ π/2

0
sinn−1 θ dθ.

The “area” of the unit sphere Sn is

σn = (n+ 1)ωn+1 = 2πs1 · · · sn =
2π(n+1)/2

Γ
(

(n+ 1)/2
) ,

where Γ(x) is Euler’s Gamma function

Γ(x) =

∫ ∞
0

tx−1e−t dt, x > 0.

In particular

sn =
σn
σn−1

=
π1/2Γ(n/2)

Γ
(

(n+ 1)/2
) . (2.5)

The volume of the ball of radius r ∈ (0, π) centered at the North Pole is

2πs1 · · · sn−1

∫ r

0
sinn−1 θdθ.

If we use the normalized uniform measure on Sn we deduce that for every 0 < r ≤ π, the normalized
volume of the geodesic ball of radius r is

v(r) =
2πs1 · · · sn−1

σn

∫ r

0
sinn−1 θdθ = s−1

n

∫ r

0
sinn−1 θdθ.
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We know that v−1(1/2) = π/2, and so we evaluate 1− v(π/2 + r) for 0 < r ≤ π/2. We have

1− v(π/2 + r) = 1− s−1
n

∫ (π/2)+r

0
sinn−1 θdθ = s−1

n

∫ π

(π/2)+r
sinn−1 θdθ

= s−1
n

∫ π/2

r
cosn−1 θdθ.

We use the inequality
cos(u) ≤ 1− u2/2 ≤ e−u2/2, 0 ≤ u ≤ π/2,

and perform the change of variables θ = τ/
√
n− 1 to obtain∫ π/2

r
cosn−1 θdθ ≤

∫ π/2

r
e−(n−1)θ2/2dθ

=
1√
n− 1

∫ (π/2)
√
n−1

r
√
n−1

e−τ
2/2 dτ ≤ 1√

n− 1

∫ ∞
r
√
n−1

e−τ
2/2dτ.

Let us observe that ∫ ∞
r

e−t
2/2dt ≤ 2

π
e−r

2/2, ∀r ∈ (0, π/2). (2.6)

Indeed, set

F (r) =

∫ ∞
r

e−t
2/2dt, φ(r) =

2

π
e−r

2/2.

Indeed

F (0) =

√
π

2
>

2

π
= φ(0),

and

F ′(r)− φ′(r) = e−r
2/2

(
1− 2r

π

)
> 0, ∀r ∈ (0, π/2).

Hence
1− v(π/2 + r) ≤ 2

πsn
√
n− 1

e−(n−1)r2/2.

From (2.5) and the classical identity Γ(x + 1) = xΓ(x), x > 0, we deduce that sn exhibits the
recursion formula (see also [10, Eq. (9.43)])

sn =
n− 1

n
sn−2.

Hence
√
n− 1sn =

(n− 1)3/2

n
sn−2.

Now observe that
(n− 1)3/2

n
> (n− 3)1/2, ∀n ≥ 3.

We deduce √
n− 1sn ≥

√
n− 3sn−2

which implies that √
n− 1sn ≥ 2, ∀n ≥ 2.

Putting all these together we deduce that

αµ(r) ≤ 1− v(π/2 + r) ≤ 1

π
e−(n−1)r2/2.

ut
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2.3. From spherical concentration to Gaussian concentration. Now that we have established con-
centration of measure for the uniform measure on the unit sphere of high dimension, we are able to
establish normal concentration for the Gaussian measure on Rn using the Poincaré Lemma. However,
first we must build up some technical machinery and so briefly discuss Beta distributions and some
of their properties.

Definition 2.11. The Gamma function is the function

Γ : (0,∞)→ R, Γ(x) =

∫ ∞
0

tx−1e−tdt,

and the Beta function is the ratio

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. ut

Definition 2.12. We say a random variable X has a Beta Distribution with parameters a and b,
X ∼ β(a, b), if its probability distribution is given by

PX =
1

B(a, b)
xa−1(1− x)b−1 I(0,1)dx,

where dx is the Lebesgue measure on R and B(a, b) is the above Beta function. ut

Lemma 2.13. Let α, β ∈ R. Then, for all x > 0,
Γ(x+ β)

Γ(x+ α)
∼ xβ−α, as x→∞.

Proof. Let γ = β − α. By Stirling’s Approximation, as x→∞ we have

Γ(x+ 1 + β)

Γ(x+ 1 + α)
∼

√
2π(x+ β)

(
x+β
e

)x+β

√
2π(x+ α)

(
x+α
e

)x+α

=

(
1 +

γ

x+ α

)x+α+1/2

(1 + β/x)γ(x/e)γ ∼ eγ(x/e)γ = xγ .

ut

Lemma 2.14. Let (Xi) be a sequence of independent standard normal random variables. LetN ∈ N
and define

R2
N := X2

1 + ...+X2
N .

Then
R2
n

R2
N+1

∼ β(n/2, (N + 1− n/2)),

where β(a, b) is the Beta distribution.

Proof. If X ∼ N(0, 1), then X2 ∼ Γ(1/2, 1/2). It follows then that

X2
1 + ...+X2

N ∼ Γ(1/2, 1/2) ∗ · · · ∗ Γ(1/2, 1/2)︸ ︷︷ ︸
n

∼ Γ(n/2, 1/2).

If we set

U := R2
n, V :=

N∑
k=n+1

Xk,
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then U and V are independent, with

U ∼ Γ(n/2, 1/2), V ∼ Γ(m/2, 1/2), m = N − n.

Write FU and FV for the cumulative distribution functions of U and V respectively. Then,

PU [du] = F ′Udu = ρU (u)du =
(1/2)n/2

Γ(n/2)
un/2−1e−u/2du, u > 0,

PV [dv] = F ′V dv = ρV (v)dv =
(1/2)m/2

Γ(m/2)
vn/2−1e−m/2du.

Set

X :=
R2
n

R2
N

=
U

U + V
, r = r(x) :=

x

1− x
,

so that
FX(x) = P[X ≤ x] = P[U ≤ x(U + V )] = P[U ≤ rV ]

=

∫
R

∫ rv

−∞
PU [du]PV [dv] =

∫
R
FU (rv)ρV (v)dv.

For x ∈ (0, 1), we have

d

dx
FX(x) =

∫
R
vr′(x)ρU (rv)

d

dx
ρV (v)[dv]

= r′(x)
(1/2)n/2(1/2)m/2

Γ(n/2)Γ(m/2)

∫
R
v(rv)n/2−1e−rv/2vm/2−1e−v/2dv

(N = n+m)

= r′(x)rn/2−1 (1/2)N/2

Γ(n/2)Γ(m/2)

∫
R
vN/2−1e−(r+1)v/2dv

(t = (r + 1)v/2, v = 2t/(r + 1))

= r′(x)rn/2−1 (1/2)N/2

Γ(n/2)Γ(m/2)
(2/(r + 1))N/2

∫
R
tN/2−1e−tdt︸ ︷︷ ︸
=Γ(N/2)

((r′(x)) = 1/(1− x)2, r + 1 = 1/(1− x))

=
1

(1− x)2

xn/2−1(1− x)N/2

(1− x)n/2−1

Γ(N/2)

Γ(n/2)Γ(m/2)

=
Γ(N/2)

Γ(n/2)Γ(m/2)
xn/2−1(1− x)m/2−1,

and so
X ∼ β(n/2,m/2).

It follows immediately that
R2
n

R2
N+1

∼ β(n/2, (N + 1− n/2)),

as desired. ut
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We are now able to state Poincaré’s lemma, which as we previously mentioned will allow us to
establish concentration of measure for the Gaussian measure on Rn. Roughly, the lemma states that
uniform measures on n-dimensional spheres of radius

√
n approximate Gaussian measures. This

result lets us use the isoperimetric inequality on Sn to obtain a Gaussian isoperimetric inequality,
which will then provide us with a normal concentration of measure result through Corollary 2.9. To
simplify the proof, we first introduce some notation.

• We denote by ΠN+1,n be the canonical projection from RN+1 to Rn.
• We denote by ΣN be the N -dimensional sphere of radius

√
N with uniform probability

measure σN .
• Let γn be the canonical Gaussian measure on Rn

γn(dx) = (2π)−n/2 exp(−|x|2/2)dx.

• For every Borel set A ⊂ Rn we set

AN := Π−1
N+1,n(A) ∩ ΣN .

In other words, AN consists of all points in ΣN that project in A.
• We denote by µN,n the pushforward of σN via ΠN+1,n. In other words, for every Borel set
A ⊂ Rn we have

µN,n(A) = σN (AN ).

Lemma 2.15 (Poincaré). For any Borel set A ⊂ Rn we have

lim
N→∞

σN
(
AN

)
= γn(A),

i.e.,
lim
N→∞

µN,n(A) = γn(A).

Proof. We follow the approach of the proof to Lemma 1.2 in [7, p 9]. Let (Xi)i≥1 be a sequence of
independent standard normal random variables. Fix an N ≥ 1. For any 1 ≤ k ≤ N we define

Rk :=
√
X2

1 + ...+X2
k .

Then the random vector

VN :=

√
N

RN+1
(X1, ..., XN+1)

is distributed uniformly on ΣN . In particular, the distribution of the random vector

UN :=

√
N

RN+1
(X1, ..., Xn)

is µN,n.
By our assumptions, the expectation of each X2

i is 1, so R2
N/N converges to 1 almost surely by

the strong law of large numbers. Hence,

UN :=

√
N

RN+1
(X1, ..., Xn)

a.s−→ U∞ := (X1, ..., Xn) ∼ γn.

In particular, UN converges in distribution toU∞, i.e., the probability measure µN,n converges weakly
to γn as N →∞. The lemma however claims strong convergence, namely

lim
N→∞

µN,n(A) = γn(A)

for any Borel set A ⊂ Rn.
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To prove this stronger result, we first define the following random variables.

D := R2
n, Y := R2

N+1 −R2
n, Θ := (X1, ..., Xn)/Rn, Q =

R2
n

R2
N

.

It is immediately clear that D and Y are independent, as Xi and Xl for i ≤ n, l > n are independent
and so all functions of Xi and Xl are independent, including D and Y . Similarly, it is clear that Y
and Θ are independent. Additionally, D and T are independent.

To see this, observe that for (X1, ..., Xn) a standard normal vector, its joint distribution is given by

PX1,...,Xn(dx) =
1

(2π)n/2
e−||x||

2/2|dx|,

which, when converted to spherical coordinates [10] yields

PX1,...,Xn(dx) =
r

(2π)n
e−r

2/2 =
1

2π
rn−1e−r

2/2drdθ,

where dθ is the area element on the unit sphere {‖x‖ = 1} ⊂ Rn. The product form of this joint
density demonstrates that Rn and T are independent.

Thus, Q = R2
n

R2
N+1

, a function of D and Y , is independent of Θ, and is distributed according to

β(n/2, (N + 1− n)/2) by Lemma 2.14. Observe that

σN (AN ) = P
[ √N
RN+1

(X1, ..., Xn) ∈ A
]

= P
[ (
NR2

n/R
2
N+1

)1/2 · 1

Rn
(X1, ..., Xn) ∈ A

]
= P

[
(NQ)1/2 ·Θ ∈ A

]
= E

[
IA
(

(NQ)1/2 ·Θ
) ]

=

∫
Sn−1×[0,1]

IA
(√

Nqθ
)
PΘ[dθ]PQ[dq]

=
1

B
(
n/2, N+1−n

2

) ∫ 1

0
qn/2−1(1− q)

N+1−n
2
−1dt ·

∫
Sn−1
1

IA
(√

Nqθ
)
σn−1

1 [dθ]

=
1

B
(
n/2, N+1−n

2

) ∫
Sn−1
1

∫ 1

0
IA
(√

Nθqn/2−1(1− q)
N+1−n

2
−1dtdσn−1

1 (θ)

(q = u2/N , dq = 2u/Ndu)

=
1

B
(

(n/2, (N + 1− n)/2
) 2

N
×

×
∫
Sn−1
1

∫ √N
0

IA(uθ)(u)(u2/N)n/2−1

(
1− u2

N

)N+1−n/2
duσn−1

1 [dθ]

=
1

B
(

(n/2, (N + 1− n)/2
) 2

Nn/2
×

×
∫
Sn−1
1

∫ √N
0

IA(ux)un−1(1− u2

N
)
N+1−n

2
−1duσn−1

1 [dθ].

Recall that

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,
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so
2

(Nn/2)B
(

(n/2, (N + 1− n)/2
) =

2

Nn/2
·

Γ(N+1
2 )

Γ(n/2)Γ(N+1−n
2 )

.

By Lemma 2.13,

Γ(N+1
2 )

Γ(N+1−n
2 )

∼
(
N + 1

2

)n/2
,

and so

lim
N→∞

2

Nn/2
·

Γ(N+1
2 )

Γ(n/2)Γ(N+1−n
2 )

=
2

Γ(n/2)
lim
N→∞

Γ(N+1
2 )

(Nn/2)Γ(N+1−n
2 )

=
2

Γ(n/2)
lim
N→∞

(
N + 1

2

)n/2( 1

N

)n/2
=

2

Γ(n/2)
lim
N→∞

(
1

2
+

1

2N

)n/2
=

2

Γ(n/2) · 2n/2
.

Likewise,

lim
N→∞

(
1− u2

N

)N+1−n
2
−1

= e−u
2/2,

and so in the limit as N →∞,

lim
N→∞

1

B
(

(n/2, (N + 1− n)/2
) 2

Nn/2
×

∫
Sn−1
1

∫ √N
0

IA(ux)un−1(1− u2

N
)
N+1−n

2
−1duσn−1

1 [dθ]

=
2

Γ(n/2) · 2n/2

∫
Sn−1
1

∫ ∞
0
IA(ux)un−1e−u

2/2duσn−1
1 [dθ].

But this is precisely γn(A) in polar coordinates, so

lim
N→∞

σN
(
AN

)
= γn(A),

for any Borel set A ⊂ Rn. ut

An immediate corollary of this lemma is the isoperimetric inequality for the Gaussian measure.

Corollary 2.16. Let A ⊂ Rn be a Borel set, and let H := {x ∈ Rn : 〈x, a〉 ≤ a} ⊂ Rn be a half
space such that γn(A) = γn(H).

Then, ∀ r ≥ 0,

γn(Ar) ≥ γn(Hr).

Proof. To see this, recall that the extremal sets for the isoperimetric inequality (2.4) for the uniform
measure on Sn were geodesic balls, or spherical caps. In the notation of the proof of the Poincaré
Lemma, for a half space H , HN = Π−1

N+1,n(H) ∩ ΣN is a spherical cap B ⊂ Sn. Thus, as N →∞,
by the Poincaré Lemma,

σN (B) = γn(H),

giving us the extremal sets for the Gaussian measure on Rn. ut
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Remark 2.17. Because γn is rotation invariant and a product measure, the measure of a half space is
actually computed in one dimension, using the distribution of γ1, Φ, where

Φ(t) =

∫ t

−∞
e−x

2/2 dx√
2π
, t ∈ R.

Then, for H = {x ∈ Rn : 〈x, a〉 ≤ a}, we can write γn(H) = Φ(a) and Corollary 2.16 expresses
equivalently that

γn(Ar) ≥ Φ(a+ r) ∀ r ≥ 0. ut

Thus we can now identify the isoperimetric function for the Gaussian measure.

Theorem 2.18. For every A ⊂ Rn Borel, and for every r ≥ 0,

Φ−1(γn(Ar)) ≥ Φ−1(γn(A)) + r,

and consequently
Iγ = Φ′ ◦ Φ−1.

Further, the equality γ+
n (A) = Iγn(γn(A)) holds if and only if A is a half space in Rn.

Proof. The first claim follows immediately from the preceding remark. Indeed,

γn(Ar) ≥ Φ(a+ r) =⇒ Φ−1(γn(Ar)) ≥ a+ r = Φ−1(γn(A)) + r,

where the last equality is due to our assumption that γn(A) = Φ(a). The Gaussian isoperimetric
function follows then similarly to Remark 2.7.

γ+
n (A) = lim inf

r→0

1

r
[γn(Ar)− γn(A)] = lim inf

r→0

1

r

[
Φ(Φ−1(γn(Ar)))− γn(A)

]
≥ lim inf

r→0

1

r

[
Φ(Φ−1(γn(A)) + r)− γn(A)

]
= lim inf

r→0

1

r

[
Φ(Φ−1(γn(A)) + r)− Φ(Φ−1(γn(A)))

]
= Φ′ ◦ Φ−1(γn(A)).

Thus, as desired, γ+
n ≥ Φ′ ◦ Φ−1, with equality on half spaces. ut

Finally, we are able to establish normal concentration for the Gaussian measure on Rn, via isoperime-
try.

Theorem 2.19. For the convenient m.m.s. (Rn, | · |, γn), where | · | is the standard Euclidean distance
and γn is the n-dimensional Gaussian measure,

αγn(r) ≤ e−r2/2.

Proof. By Theorem 2.18, the isoperimetric function for γn is Iγ = Φ′ ◦ Φ−1, where

Φ(t) =

∫ t

−∞
e−x

2/2 dx√
2π
, t ∈ R.

Thus, Φ(0) = 1/2, and so 0 = Φ−1(1/2). By Corollary 2.9, taking v = Φ, it follows that

αγn(r) ≤ 1− Φ(Φ−1(
1

2
) + r), r > 0,

and so
αγn(r) ≤ 1− Φ(r) ≤ e−r2/2, r > 0,

where the second inequality follows from

1− Φ(r) =

∫ ∞
r

e−x
2/2 dx√

2π
≤ e−r2/2.
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ut

We have now established Gaussian concentration through isoperimetric methods. In the next sec-
tion, we will again prove normal concentration for the Gaussian measure on Rn, but through very
different techniques.

3. SEMIGROUP METHODS

We now develop semigroup theory and use it to demonstrate concentration of measure for the
Gaussian measure on Rn, among other measures that satisfy a strong convexity assumption. We
begin by defining semigroups and their generators. After, we discuss the Hille-Yosida theory and
when an operator can generate a semigroup. From there we present a class of operators that do in fact
generate good semigroups, and finally discuss how some curvature, or convexity, assumptions imply
concentration of measure. Results in this section follow from Chapters 1 and 3 in [3] unless otherwise
noted. General inspiration was also attained from [14].

3.1. Semigroups and generators.

Definition 3.1. LetX be a Banach space. A family (Pt)t≥0 of bounded linear operators fromX → X
is called a semigroup of bounded linear operators on X if

(i) P0 = I , where I is the identity operator on X .
(ii) Pt+s = Pt ◦ Ps ∀ t, s ≥ 0. (semigroup property)

The semigroup is called a semigroup of contractions if

‖Pt‖ ≤ 1, ∀t ≥ 0.

The semigroup is called strongly continuous of C0-semigroup if

lim
t→0

Ptx = x ∀x ∈ X. ut

Semigroups of bounded linear operators have convenient, quantifiable bounds on their operator
norms as well, which we now discuss.

Proposition 3.2. This result is inspired by the proof of Theorem 2.2 in [13, p 4]. Let Pt be a C0-
semigroup on a Banach space X . Then

∃w ≥ 0, M ≥ 1 : ||Pt|| ≤Mewt ∀ 0 ≤ t <∞.
If w = 0, then Pt is uniformly bounded, and if M = 1, then Pt is called a semigroup of contractions.

Proof. Fix T > 0. We first show that

M := sup
t∈[0,T ]

||Pt|| <∞. (3.1)

Indeed, if this were not true, then we could find a sequence (τn) ∈ [0, T ] such that

‖Pτn‖ > 2n
2
.

Set tn := τn/n so that tn ↘ 0. From the semigroup property we deduce

2n
2
< ‖Pτn‖ ≤ ‖Ptn‖n =⇒ 2n < ‖Ptn‖, ∀n ≥ 1.

Then, by the Uniform Boundedness Theorem, ∃x ∈ X such that ||Ptnx|| is unbounded, which
contradicts the strong continuity property of our semigroup. This proves (3.1).

Since||P0|| = 1, we must have M ≥ 1. Set

w :=
logM

T
≥ 0.
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Observe that ∀ t ≥ 0, we can write t = nT + q, where 0 ≤ q < T . By the semigroup property,

||Pt|| = ||PnT+q|| = ||PnTPq|| = ||PnT Pq||

≤MMn = MM t−q/T ≤MM t/T = Mewt.

as desired. ut

The above notions of continuity are essential for guaranteeing the existence of a generator, which
is essentially the time-derivative of the semigroup at t = 0.

Definition 3.3. Given a semigroup of bounded linear operators Pt on a Banach space X , we define
the linear operator L : D(L) ⊂ X → X

Lx = lim
t→0

Ptx− x
t

=
d+Ptx

dt

∣∣∣∣
t=0

x ∈ D(L),

where
D(L) :=

{
x ∈ X : Lx exists

}
.

We call L the generator of Pt. ut

Now, before we proceed, let us recall some definitions from functional analysis.

Definition 3.4 (Resolvent). Let X be a Banach space and let

L : D(L) ⊂ X → X

be a potentially unbounded linear operator. Then the resolvent set of L is defined as

ρ(L) := {λ ∈ C : λI − L is invertible}.

Note, λI −L being invertible is equivalent to (λI −L)−1 being a bounded linear operator on X . For
the family of such operators, we write

R(λ : L) := (λI − L)−1, λ ∈ ρ(L). ut

Definition 3.5 (Closed Operator). On a Banach space X , a linear operator

L : D(L) ⊂ X → X

is closed if ∀ (xn) ⊂ D(L) such that xn → x ∈ X and Lxn → y, we have that x ∈ D(L) and
Lx = y. ut

If X is the the space Rn equipped with the standard Euclidean norm, then any C0-semigroup of
contractions on X has as the form etA where the eigenvalues of the generator A have nonpositive
real part. The famous Hille-Yosida theorem shows that the situation is essentially the same in infinite
dimensions. We do not prove this result, but refer the interested reader to [13, Thm 3.1, p 8] for the
proof.

Theorem 3.6 (Hille-Yosida). Given a Banach space X , A linear unbounded operator A : X → X is
the generator of a C0-semigroup of contractions Pt if and only if

(i) A is closed and D(A) = X .
(ii) R+ ⊂ ρ(A) and ∀λ > 0,

||R(λ : A)|| ≤ 1

λ
.
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3.2. Markov semigroups and their generators. We now transition into a more probabilistic con-
cept, the Markov semigroup. However, before we can introduce this semigroup, we must discuss
specific measure-theoretic assumptions on the underlying space which we will be working with.

Definition 3.7. A kernel on a measurable space (E,F) is a function

p : E × F → [0, 1]

such that
(i) ∀x ∈ E, p(x, ·) is a probability measure on (E,F), and

(ii) ∀A ∈ F, p(·, A) is a measurable function from E → [0, 1].
Further, we say that the space (E,F) exhibits the measure decomposition property if every probability
measure µ on (E × E,F ⊗ F) can be decomposed as, for some kernel k,

µ(dx, dy) = k(x, dy)µ1(dx),

where µ1 is the projection of µ onto the first coordinate. ut

One can show (see e.g. [5, Th. IV2.10]) that if E is a Polish space4 and F is its Borel σ-algebra,
then (E,F) exhibits the measure decomposition property.

Definition 3.8. Suppose that (E,F) is a measurable space.
(i) A measure µ on (E,F) is called σ-finite if E is the countable union of µ-measurable sets of

finite measure.
(ii) We say that (E,F)is good if it satisfies the measure-decomposition property defined above,

and the σ-algebra F is generated by a countable family.
(iii) The measured space (E,F, µ) is called good if (E,F) is a good measurable space and µ is

a σ-finite measure on F. ut

Now, let us attach some additional demands on the semigroups with which we will work.

Definition 3.9. A semigroup over a good measured space (E,F, µ) is a semigroup (Pt)t≥0 of bounded
linear operators on L∞(E,µ) such that

(i) Identity
P0f = f, ∀f ∈ L∞(E,µ).

(ii) Mass conservation
Pt(IE) = IE , ∀t ≥ 0.

(iii) Positivity
∀f ∈ L∞(E,µ) : f ≥ 0 =⇒ Ptf ≥ 0.

ut

Semigroups extend to contractions via Jensen’s inequality. Suppose that (Pt)t≥0 is a semigroup
over the good measured space (E,F, µ).

Proposition 3.10 (Jensen’s inequality). For any convex function ϕ : R→ R, any f ∈ L∞(E,µ) and
any t > 0 we have

ϕ(Ptf) ≤ Pt(φ(f)). (3.2)

4We recall that a Polish space is a seprable complete metric space.
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Proof. We need to use a lesser known property of convex functions, [1, Thm.6.3.4]. More precisely,
we use the fact that there exist sequences of real numbers (an)n∈N and (bn)n∈N such that

ϕ(x) = sup
n∈N

(anx+ bn).

Set `n(x) = anx+ bn. Clearly,

`n
(
Ptf

)
= anPtf + b = Pt(amf + b) = Pt(`n(f)) ≤ Ptϕ(f).

Hence
ϕ
(
Ptf

)
= sup

n∈N
`n
(
Ptf

)
= sup

n∈N
Pt`n(f) ≤ Ptϕ(f).

ut

As a consequence of Jensen’s inequality we deduce that for any p ∈ [1,∞) and any f ∈ L∞(E,µ)
we have

‖Ptf‖Lp ≤ ‖f‖Lp .
Since L∞ is dense in Lp we deduce that Pt extends to a contraction Lp(E,µ) → Lp(E,µ) for any
p ∈ [1,∞].

Now we can state the final version of a semigroup that we will be working with.

Definition 3.11 (Markov Semigroup). A semigroup (Pt)t≥0 of bounded linear operators over a good
measured space (E,µ) is called a Markov semigroup the semigroup it induces on L2(E,µ) is a C0-
semigroup, i.e., for any f ∈ L2(E,µ)

lim
t↘0

Ptf = f, in L2(E,µ).

For such a semigroup, we write (Pt)t≥0 or (Pt) or, where the context is clear, Pt, equivalently. ut

By Hille-Yosida, any Markov semigroup has an infinitesimal generator

L : D(L) ⊂ L2(E,µ)→ L2(E,µ)

determined by

Lf = lim
t→0

1

t

(
Ptf − f

)
in L2(E,µ), f ∈ D(L).

Moreover Pt ∈ D(L) and

∂tPtf = LPtf = PtLf, ∀t ≥ 0, f ∈ D(L).

For such a Markov semigroup, there are two important measures to consider.

Definition 3.12 (Invariant measure). Given a Markov semigroup Pt over a good measurable space
(E,F, µ), the measure µ is said to be invariant for Pt if for all bounded positive measurable functions
f : E → R, and ∀ t ≥ 0, ∫

E
Ptfdµ =

∫
E
fdµ. (3.3)

ut

Definition 3.13 (Reversible measure). Given a Markov semigroup Pt over a good measurable space
(E,F), a measure µ is reversible for Pt, or Pt is symmetric with respect to µ, if

∀f, g ∈ L2(E,µ), ∀ t ≥ 0,

∫
E
fPtg dµ =

∫
E
gPtf dµ. (3.4)

ut



THE CONCENTRATION OF MEASURE 27

Remark 3.14. Observe that if µ is a probability measure, then the constant function IE is in L2(E,µ),
and so taking f = IE in (3.4) we obtain (3.3). This shows shows that if a probability measure is sym-
metric for a Markov semigroup Pt, then it is also invariant for Pt.

The reversibility of a measure forces the generator to be symmetric. Indeed, differentiating the
identity ∫

E
fPtg dµ =

∫
E
gPtf dµ, f, g ∈ D(L)

at t = 0 yields ∫
E
fLg dµ =

∫
E
gLf dµ, ∀f, g ∈ D(L).

In general this does not imply that µ is invariant for Pt. ut

Suppose that (E,F, ν) is a good measured space and Pt : L2(E,µ) → L2(E,µ) is a C0-
semigroup. To define a Markov semigroup it needs to satisfy additional conditions.

• PtL∞(E,µ) ⊂ L∞(E,µ).
• Ptf ≥ 0, ∀f ∈ L∞(E,µ), f ≥ 0, t ≥ 0.
• PtIE = IE , ∀t ≥ 0.

This is by no means obvious, nor guaranteed. However, we present below a large class of Markov
semigroups.

Example 3.15. Let n ∈ N and suppose that E is the Euclidean vector space Rn equipped with the
canonical inner product (·, ·). Let F denote the Borel sigma-algebra of E. Suppose that W ∈ C2(E)
is such that ∫

Rn
e−W (x)dx = 1.

Then, the space (E,F, µ) is then a good measured space. Consider the differential operator

L = LW : C∞0 (E)→ C∞0 (E), Lf = ∆f − (∇W,∇f).

It satisfies the symmetry condition∫
E
g(Lf)dµ = −

∫
E

(∇f,∇g)dµ =

∫
E
f(Lg)dµ, ∀f, g ∈ C∞0 (E).

We obtain an unbounded, symmetric operator

L : C∞0 (E) ⊂ L2(E,µ)→ L2(E,µ).

Once can show (see [4, Thm. 4.6]) that its closure in L2(E,µ) is a nonpositive selfadjoint operator
and thus generates a symmetric C0-semigroup of contractions

Pt : L2(E,µ)→ L2(E,µ).

This semigroup satisfies the additional conditions [4, Thm. 4.25], [4, Thm. 4.27]

Ptf ≥ 0, ∀f ≥ 0, t ≥ 0. (3.5a)

‖Ptf‖∞ ≤ ‖f‖∞, ∀t ≥ 0, ∀f ∈ L∞(E,µ) (3.5b)

Moreover µ is also invariant for Pt; see [8, Sec. 8.1.2]. In other words Pt is a Markov semigroup on
(E,µ).

Suppose additionally that W ∈ C2(Rn) satisfies the uniform convexity requirement

∃c : 0 : ∇2(W (x)− c|x|2/2) ≥ 0, ∀x ∈ Rn. (3.6)
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Then Pt also satisfies the mass conservation condition; see [2] or [3, Thm. 3.26] as thus it is a Markov
semigroup on (E,µ). As shown in [3, Prop. 3.1.13], this semigroup also satisfies the following L2-
ergodicity result

∀f ∈ L2(E,µ) : lim
t→∞

∥∥∥∥Ptf − ∫
E
fdµ

∥∥∥∥
L2

= 0. (3.7)

ut

3.3. Diffusions and the Carré-du-Champ operator. To summarize, we have now developed the
concept of a Markov semigroup and its generator, along with some of their fundamental properties.
Additionally, using Hille-Yosida, we can go from a semigroup to its generator. However, in practice, it
is much more common for one to be given a generator and asked to use the properties of its semigroup,
if it exists. This is a very nuanced problem, and it comes down to finding a dense algebra of functions,
A ⊂ D(L), in the topology of the domain, meaning that

∀ f ∈ D(L), ∃ (fk) ⊂ A : fk → f, and Lfk → Lf as k →∞.
We then work with this known algebra of functions and extend results to D(L) by density. In gen-
erality, this is almost impossible, so we restrict ourselves to a large and useful class of generators
called diffusion operators, to which we can associate Markov semigroups. We begin by recalling the
definition of a derivation.

Definition 3.16. On an algebra of functions A, a derivation is a linear map D : A→ A such that for
all f, g ∈ A,

D(fg) = fDg + gDf. ut
With this definition in mind, we define the Carré-du-champ operator, which intuitively measures

how much a generator differs from being a derivation.

Definition 3.17 (Carré-du-champ). Consider a Markov semigroup over a good measured space (E,F, µ)
with generator L. Let A be an algebra of functions contained in the domain of L. Then, the bilinear
map Γ : A×A→ A,

Γ(f, g) =
1

2
[L(fg)− fLg − gLf ], ∀ (f, g) ∈ A×A,

is called the Carré-du-champ operator of the Markov generator L. For Γ(f, f), we simply write
Γ(f). ut

We now list some properties of Carré-du-champ operators.

Proposition 3.18. Let Pt be a Markov semigroup over a good measured space (E,F, µ), with gen-
erator L and symmetric, invariant measure µ. Let A ⊂ D(L) be an algebra of functions. Then, for
all f, g ∈ A,

(i) Γ(f) ≥ 0.

(ii) Γ(f, g) ≤
√

Γ(f)Γ(g).
(iii)

∫
E Γ(f, g)dµ = −

∫
E fLgdµ.

Proof. First, (iii) follows from µ being invariant and symmetric. Namely,

2Γ(f, g) = L(fg)− fLg − gLf

2

∫
E

Γ(f, g) =

∫
E
L(fg)dµ−

∫
E
fLgdµ−

∫
E
gLf dµ

2

∫
E

Γ(f, g) = 0− 2

∫
E
fLg dµ,

∫
E

Γ(f, g) = −
∫
E
fLg dµ.
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Property (ii) follows from property (i) applied to f + g and the bilinearity of Γ:

∀a ∈ R 0 ≤ Γ(f + ag, f + ag) = Γ(f, f) + 2aΓ(f, g) + a2Γ(g, g).

Choosing a = −Γ(f, g)/Γ(g, g) yields the desired result. Finally, to see property (i), observe that
2Γ(f) = Lf2 − 2fLf , so if suffices to show that Lf2 ≥ 2fLf . By Proposition 3.10 applied to the
convex function φ(r) = r2, we have for every bounded measurable f : E → R,

Pt(f
2) ≥ (Ptf)2.

By the product rule applied to d(Ptf)2/dt,

d(Ptf)2

dt
= 2f

dPtf

dt
= 2fLPtf.

And finally by the definition of the generator,

Lf2 = lim
t→0

Ptf
2 − f2

t

≥ lim
t→0

(Ptf)2 − f2

t
=
d(Ptf)2

dt

∣∣∣∣
t=0

= 2fLPtf

∣∣∣∣
t=0

= 2fLf,

yielding the desired property. ut

Remark 3.19. The above property (iii) is very important because, if A is dense in D(L), it states that
a measured space and a given Carré-du-champ operator completely characterize a Markov generator
and its respective Markov semigroup.

Indeed, in the literature it is common to work with a Markov triple (E,µ,Γ) and deduce the
properties of the corresponding generator and semigroup from this triple. We later will work with a
different tuple, specifying not a Carré-du-champ operator, but rather a diffusion operator, for which
the conditions of the Hille-Yosida theorem will be satisfied, making the operator the generator of a
Markov semigroup. ut

Example 3.20. Consider the good measured space (E,F, µ) discussed in Example 3.15, where n ∈
N, E is the Euclidean vector space Rn equipped with the canonical inner product (·, ·), F is the
Borel sigma-algebra of E, and µ is the Borel probability measure µ(dx) = e−W (x)dx, such that
W ∈ C2(E) and ∫

E
e−Wdx = 1.

Consider the symmetric differential operator

L : C∞0 (E) ⊂ L2(E,µ)→ L2(E,µ), Lf = ∆f − (∇W,∇f),

whose closure generates a Markov semigroup Pt. Then, the associated Carré-du-champ operator to
L is of the form

Γ(f, g) = ∇f · ∇g.

Proof. Observe, taking L = ∆−∇W · ∇, then, for any f, g ∈ C∞0 (E) we have∫
E
fLg =

∫
E
f(∆g −∇W∇g)dµ

=

∫
E
f∆gdµ+

∫
E
f∇g(−∇W )e−Wdx =

∫
E
f∆gdµ+

∫
E
f∇g∇(e−W )dx

=

∫
E
f∆gdµ−

∫
E
∇(f∇g)e−Wdx =

∫
E
f∆gdµ−

∫
E
∇f∇g + f∆gdµ
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= −
∫
E
∇f∇g dµ = −

∫
E

Γ(f, g)dµ,

as desired. Note, the fourth equality follows from integration by parts in Rn, which is possible as f
and g are compactly supported, and we can integrate equivalently on an open ball in Rn containing
the support of f and g. ut

Now we transition into diffusion operators, first defining some notation.

Definition 3.21. Let Ψ0 be the union over n ≥ 1 of the spaces of smooth functions from ψ : Rn → R
such that ψ(0) = 0, i.e.

Ψ0 =
⋃
n≥1

{
ψ ∈ C∞(Rn,R) : ψ(0) = 0

}
. ut

Definition 3.22 (Diffusion). Consider a symmetric Markov semigroup Pt over a good measured space
(E,F, µ) with generator L and Carré-du-champ operator Γ, defined on A × A, where A ⊂ D(L) is
an algebra of bounded measurable functions f : E → R dense in all Lp(E,µ) spaces and such that
∀k ∈ N, ∀f1, . . . , fk ∈ A and any ψ ∈ Ψ0, we have

ψ(f1, . . . , fk) ∈ A.

The Carré-du-champ operator Γ is called a diffusion if for all ∀k ∈ N, ∀f1, . . . , fk ∈ A and any
ψ ∈ Ψ0 we have

Γ(ψ(f1, ..., fk), g) =

k∑
i=1

∂iψ(f1, ..., fk)Γ(fi, g).

Equivalently this means that

Lψ(f1, ..., fk) =
k∑
i=1

∂iψ(f1, ..., fk)Lfi +
k∑

i,j=1

∂i∂jψ(f1, ..., fk)Γ(fi, fj),

in which case we call L a diffusion generator and Pt a Markov diffusion semigroup. ut

Remark 3.23. The above definition can be viewed as the requirement that Γ satisfies a sort of chain
rule. Indeed, for k = 1, the above identities reduces to the equalites

Γ(ψ(f), g) = ψ′(f)Γ(f, g),

and
Lψ(f) = ψ′(f)Lf + ψ′′(f)Γ(f).

For ψ(f, g) = fg, a polynomial function, the definition for Γ simplifies to the condition

Γ(fg, h) = fΓ(g, h) + gΓ(f, h), ∀ f, g, h ∈ A,

which appears much like a chain rule. We can transfer the diffusion properties of generators and
Carré-du-champ operators back and forth through the integration by parts formula. ut

Example 3.24. Consider again the good measured space (E,F, µ) discussed in Example 3.15, where
n ∈ N, E is the Euclidean vector space Rn equipped with the canonical inner product (·, ·), F is
the Borel sigma-algebra of E, and µ is the Borel probability measure µ(dx) = e−W (x)dx, where
W ∈ C2(E) satisfies the uniform convexity condition (3.6).

As explained in Example 3.15, the symmetric operator

L : C∞0 (E) ⊂ L2(E,µ)→ L2(E,µ), Lf = ∆f − (∇W,∇f),
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is essentially selfadjoint and its closure closure generates a Markov semigroup Pt. Then, L is a
diffusion generator.

To see this, recall that, by Definition 3.22, it suffices to show that for ∀ψ ∈ Ψ0,

Lψ(f1, ..., fk) =

k∑
i=1

∂iψ(f1, ..., fk)Lfi +

k∑
i,j=1

∂i∂jψ(f1, ..., fk)Γ(fi, fj).

We will prove this result for k = 1. The computations for k > 1 follows similarly. Let ψ ∈ Ψ0 and
let f ∈ A = C∞0 (E). Then,

Lψ(f) = ∆(ψ(f))−∇W · ∇(ψ(f))

= ∇(∇ψ(f)∇f)−∇W · (∇ψ(f)∇f)

= ∆ψ(f)∇f∇f +∇ψ(f)∆f −∇W∇ψ(f)∇f

= ∇ψ(f)

(
∆f −∇W∇f

)
+ ∆ψ(f)∇f∇f

= ∇ψ(f)Lf + ∆ψ(f)Γ(f),

as desired. It is easy to check as well that the associated Carré-du-champ operator Γ(f, g) = ∇f ·∇g
is a diffusion as well. ut

The reason we discuss diffusions is because generally it is much easier to check that a Carré-
du-champ operator or a generator is a diffusion than it is to check that the generator satisfies the
conditions of the Hille-Yosida theorem. Thus, diffusions, under some additional technical conditions,
guarantee Markov semigroups

Definition 3.25. For a good measured space (E,F, µ), we will call an algebra of functions A nice if
A is dense in Lp(E,µ) for all 1 ≤ p ≤ ∞ and A is stable by Ψ0. ut

.

Definition 3.26 (Good Markov tuples). The tuple (E,F, µ, L,A) is called a good Markov tuple if the
following hold.

(i) (E,F, µ) is a good measured space with µ a probability measure.
(ii) A ⊂ L2(E,µ) is nice algebra of functions.

(iii) L : A ⊂ L2(E,µ)→ L2(E,µ) is a symmetric diffusion operator, its closure is self-adjoint,
and it generates a Markov diffusion semigroup.

ut

Remark 3.27. The preceding definition is a very restricted case of the discussion developed through-
out [3, Chap 3]. There, the authors define the general structure of a Markov tuple not in terms of
a operator L, but in terms of a good measured space (E,F, µ) and an abstract notion of a Carré-
du-champ operator Γ, calling their construction (E,µ,Γ) a Markov triple, implicitly assuming an
underlying algebra A. They define a number of various Markov triples, beginning with the assump-
tion that Γ is a diffusion, [3, Def 3.1.1, p 121], and adding assumptions successively, culminating in
the definition of a compact Markov triple, [3, 3.4.4, p 171], which is equivalent to our assumptions
on a good Markov tuple. ut

Example 3.28. Consider again the good measured space (E,F, µ) discussed in Example 3.15, where
n ∈ N, E is the Euclidean vector space Rn equipped with the canonical inner product (·, ·), F is the
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Borel sigma-algebra of E, and µ is the Borel probability measure

µ(dx) = e−W (x)dx,

where W ∈ C2(E) satisfies the uniform convexity condition (3.6). Recall the symmetric operator

L : C∞0 (E) ⊂ L2(E,µ)→ L2(E,µ), Lf = ∆f − (∇W,∇f),

and let A = C∞0 (E). Then (E,F, µ, L,A) is a good Markov tuple, as we have shown the closure of
L generates a Markov semigroup, and by (3.24), L is a diffusion. For brevity, we will refer to this
tuple as the good W-tuple from now on. ut

Remark 3.29. Our later results will be proven in the context of Definition 3.26, but it is important to
state that this setting is not actually sufficient for all of the results we prove. Indeed, the issue is that
later we will deal with results that implicitly assume that for f ∈ A, Ptf ∈ A, which is generally not
the case.

To remedy this, [3] introduces an exterior algebra Ae, [3, Section 3.3, p 151], with the following
properties.

(i) A ⊂ Ae.
(ii) ∀f ∈ Ae, g ∈ A, gf ∈ A (ideal property).

(iii) Ae is stable by smooth functions.
(iv) If f ∈ Ae :

∫
E gf dµ ≥ 0 ∀ g ∈ A, then f ≥ 0.

(v) There are no integrability assumptions on Ae. Namely, in most cases Ae 6⊂ L2(E,µ).

Then, [3] demands that in addition to generating a Markov diffusion semigroup, L also extends to a
diffusion generator on Ae, and that Γ is then defined on Ae×Ae. Additionally, and most importantly,
[3] also assumes that if Pt is the Markov diffusion semigroup generated by the diffusion operator
L in a good Markov tuple (E,F, µ, L,A), then PtA ⊂ Ae. This assumption allows later curvature
computations to be made rigorous.

For our good W-tuple (Ex. 3.28), A will be C∞0 (E), and Ae is then C∞(E). We define our later
results in terms of Definition 3.26, leaving out the added analysis of the exterior algebra for notational
convenience. The proofs are similar if not identical, and we will provide explicit citations whenever
an exterior algebra is needed. ut

Now we will discuss the property of ergodicity for good Markov tuples. In a good Markov tuple
(E,F, µ, L,A), µ is a probability measure and is invariant for Pt. Moreover, PtIE = IE . As
explained, see [3, Prop. 3.1.3] for a more nuanced discussion.

Proposition 3.30 (Ergodicity). LetPt be the Markov diffusion semigroup generated by a good Markov
tuple (E,F, µ, L,A). If kerL consists only of constant functions, then, for all f ∈ L2(E,µ),

lim
t→∞

Ptf =

∫
E
f dµ in L2(E,µ). ut

3.4. Curvature and Dimension. For our purposes we have now developed a sufficient theory of
Markov semigroups and their associated operators. We turn now to some comments on curvature
and dimension that will provide some necessary identities to establish concentration of measure. We
begin by defining a new bilinear form out of the Carré-du-champ operator, and afterwards define the
necessary curvature conditions from conditions on this new operator.

Definition 3.31. Let (E,F, µ, L,A) be a good Markov tuple. Let Γ : A × A → A be the Carré-du-
champ operator defined from L. Then, ∀ f, g ∈ A, we define the iterated Carré-du-champ operator
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Γ2 : A×A→ A,

Γ2(f, g) =
1

2
[LΓ(f, g)− Γ(f, Lg)− Γ(Lf, g)], ∀ f, g ∈ A.

Again, we write Γ2(f, f) := Γ2(f). ut

This operator also enjoys an integration by parts formula, much like the Carré-du-champ operator
it is defined from.

Proposition 3.32. Let (E,F, µ, L,A) be a good Markov tuple. Then, the iterated Carré-du-champ
operator enjoys an integration by parts formula. Namely, ∀ f, g ∈ A,∫

E
Γ2(f, g)dµ =

∫
E

(Lf)(Lg)dµ.

Proof. By the definition of Γ2,

Γ2(f, g) =
1

2
[LΓ(f, g)− Γ(f, Lg)− Γ(Lf, g)],

so that,

2

∫
E

Γ2(f, g)dµ =

∫
E
LΓ(f, g)dµ︸ ︷︷ ︸

=0

−
∫
E

Γ(f, Lg)dµ−
∫
E

Γ(Lf, g)dµ

=

∫
E
fL(Lg)dµ+

∫
E
LfLgdµ = 2

∫
E

(Lf)(Lg)dµ,

where the third and fourth inequalities follow from µ being invariant and symmetric with respect to
L. Diving by 2 yields the desired result. ut

Example 3.33. Consider the good W-tuple from Example 3.28, where

L = ∆−∇W · ∇, µ(dx) = e−Wdx,

and A = C∞0 (E). Recall, by Example 3.20, the associated Carré-du-champ operator to this tuple is
Γ(f, g) = ∇f · ∇g. Then, ∀ f ∈ A,

Γ2(f) = |∇2f |2 +∇2W (∇f,∇f). ut

This follows from simple but tedious computation, so we omit the proof.

The iterated Carré-du-champ operator is important because of its presence in curvature results for
semigroups. Indeed, the curvature condition we will be dealing with is defined in terms of Γ2.

Definition 3.34. For a good Markov tuple (E,F, µ, L,A) with associated Carré-du-champ operator
Γ : A × A → A, the diffusion operator L satisfies the curvature dimension condition CD(R,n) of
curvature R ∈ R and dimension n ≥ 1 if ∀ f ∈ A,

Γ2(f) ≥ RΓ(f) +
1

n
(Lf)2.

We say the operator L is of curvature R if L satisfies condition CD(R,∞), i.e. if

Γ2(f) ≥ RΓ(f). ut

We can alternatively express this curvature-dimension condition in terms of commutation of the
semigroup with its associated Carré-du-champ operator.
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Lemma 3.35. Let (E,F, µ, L,A) be a good Markov tuple with Carré-du-champ operator Γ gener-
ating the Markov diffusion semigroup Pt, symmetric with respect to µ. If L satisfies the curvature
condition CD(R,∞) for some R ∈ R, then ∀ f ∈ A and for every t ≥ 0,

Γ(Ptf) ≤ e−2RtPt(Γ(f)).

Proof. Fix f ∈ A and t > 0. Then define the function

F (s) = e−2RsΛ(s), s ∈ [0, t],

where
Λ(s) = Ps(Γ(Pt−sf)), s ∈ [0, t].

As we define Γ on A × A, the definition of Λ(s) inherently assumes that PtA ⊂ A, which like
we mentioned is generally not true. The proof of this result in full detail, using exterior algebras, can
be found in [3, Corollary 3.3.19, p 163]. However, we continue the proof only assuming the interior
algebra A, per [3, Theorem 3.2.3, p 144], as the proofs are similar barring technical details.

Observe that
Λ′(s) = LPs(Γ(Pt−sf))− 2Ps

(
Γ(Pt−sf, Pt−s)

)
,

where the first term comes from ∂tPt = LPt and the second term comes from

(Γ(f, f))′ = Γ(f ′, f) + Γ(f, f ′) = 2Γ(f, f ′).

If we write g(s) := Pt−sf , then we can rewrite the above as

Λ′(s) = Ps(LΓ(g)− 2Γ(g, Lg)) = 2PsΓ2(g),

as the semigroup commutes with its generator. Thus,

F ′(s) = −2Re−2RsΛ(s) + e−2RsΛ′(s) = 2e−2Rs
(
−RPs(Γ(Pt−sf )) + PsΓ2(Pt−sf)

)
≥ 2e−2Rs

(
−RPs(Γ(Pt−sf )) +RPsΓ(Pt−sf)

)
= 0.

The inequality follows from our curvature assumptions. This shows that F is non-decreasing on [0, t],
and as all of the above is true ∀s ∈ [0, t], we can compare s = 0 and s = t to get the desired result.
Indeed, as F is non-decreasing,

F (0) ≤ F (t) =⇒ P0(Γ(Ptf)) ≤ e−2RtPt(Γ(P0f))

=⇒ Γ(Ptf) ≤ e−2RtPt(Γ(f)).

ut

Example 3.36. Consider again the good W-tuple (E,F, µ, L,A), where

E = Rn, L = ∆−∇W · ∇, µ(dx) = e−Wdx, A = C∞0 (E).

Suppose that W ∈ C2(E) satisfies the uniform convexity requirement

∃c : 0 : ∇2(W (x)− c|x|2/2) ≥ 0, ∀x ∈ E. (3.8)

Above ∇2W denotes the Hessian of W . Upon modifying it by an additive constant we can assume
that so that µ(dx) = e−W (x)dx is a Borel probability measure on Rn. Recall that the associated
Carré-du-champ operator to the tuple is Γ(f, g) = ∇f · ∇g. Then, L is of curvature c and satisfies
the curvature-dimension condition CD(c,∞) and thus

|∇Ptf |2 ≤ e−2ctPt(|∇f |2).
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Proof. Recall, by the definition of Γ2 in the general case,

Γ2(f, g) =
1

2
[LΓ(f, g)− Γ(f, Lg)− Γ(Lf, g)],

and so for our triple,

Γ2(f) =
1

2
[L(∇f)2 −∇f · ∇(Lf)].

Likewise by Example 3.33, for our triple,

Γ2(f) = |∇2f |2 +∇2W (∇f,∇f),

so we have the equality
1

2
[L(∇f)2 −∇f · ∇(Lf)] = |∇2f |2 +∇2W (∇f,∇f).

But |∇2f |2 ≥ 0 and by assumption∇2W ≥ c|x|2, so the identity

Γ2(f) =
1

2
[L(∇f)2 −∇f · ∇(Lf)] ≥ c(∇f)2 = cΓ(f)

holds ∀f ∈ A. Thus L satisfies curvature-dimension condition CD(c,∞). By Lemma 3.35, it
follows that

|∇Ptf |2 ≤ e−2ctPt(|∇f |2).

ut

3.5. Concentration from semigroup methods. For our concentration results we are interested in
the good W-tuple introduced in Example 3.15, (E,F, µ, L,A), where

L = ∆−∇W · ∇, µ(dx) = e−Wdx, A = C∞0 (E),

and thus Γ(f, g) = ∇f ·∇g. We require that the potentialW satisfies the uniform convexity condition
(3.8) and thus µ is log-concave in a rather strong sense.

Additionally, by Example 3.36, L satisfies the curvature condition CD(c,∞).We are now ready to
prove our main concentration result.

Theorem 3.37. Let dµ = e−Wdx be a probability measure on the Borel sets of Rn such that µ is
the symmetric invariant measure with respect to the generator L = ∆ − ∇W · ∇. Suppose further
that W is smooth and ∇2(W (x) − c|x|2/2) ≥ 0, so that L satisfies curvature dimension condition
CD(c,∞). Then, for every bounded 1-Lipschitz function F : Rn → R, and ∀ r ≥ 0,

µ
({
F ≥ F̄ + r

})
≤ e−cr2/2, where F̄ :=

∫
Rn
F (x)µ(dx).

Proof. This proof expands on the proof of Proposition 2.17 in [6, p 39]. Let Pt be the semigroup
generated by L and let F : Rn → R be a bounded mean-zero 1-Lipschitz function. We suppose that
F is sufficiently smooth for what follows. Let λ ≥ 0. As F is sufficiently smooth and 1-Lipschitz,
then |∇F | ≤ 1 almost everywhere. We deduce from (3.5b) that

‖PtF‖∞ ≤ ‖F‖∞.
Set

Gt(x) := eλPt(x) ,

so Gt is bounded. Let

Ψ(t) :=

∫
Rn
Gtdµ

∫
Rn
, t ≥ 0.



36 MISHA SWEENEY

The ergodicity of Pt implies that

PtF → F̄ = 0 in L2(Rn, µ),

and therefore in probability, and thus Gt(x) = eλGtF (x) → 1 in probability. The family Gt(x) is
uniformly bounded and thus uniformly integrable so eλPtF (x) → 1 in L1. In particular,

lim
t→∞

Ψ(t) = 1.

Continuing, as |∇F | ≤ 1 a.e., by Example 3.36,

|∇PtF |2 ≤ e−2ct.

So, for all t ≥ 0,

Ψ(t) = 1− (1−Ψ(t)) = 1− (Ψ(∞)−Ψ(t)) = 1−
∫ ∞
t

Ψ′(s)ds

= 1−
∫ ∞
t

(∫
E
eλPsFdµ

)′
ds

= 1−
∫ ∞
t

(∫
E
λLPsFe

λPsFdµ

)
ds

= 1−
∫ ∞
t

(
−λ
∫
E

Γ(PsF, PsF )dµ

)
ds

= 1 + λ2

∫ ∞
t

∫
E
|∇PsF |2eλPsFdµ ds

≤ 1 + λ2

∫ ∞
t

e−2csΨ(s) ds.

By Gronwall’s Lemma,

Ψ(t) ≤ 1 · exp

[
λ2

∫ ∞
t

e−2csds

]
ds = eλ

2/2c.

Thus,

Ψ(0) =

∫
eλFdµ ≤ eλ2/2c.

The result, along with the extension to non mean-zero bounded 1-Lipschitz functions, follows from
Proposition 1.13. ut

By Proposition 1.8, we can use the above deviation inequality to establish normal concentration of
measure, αµ(r) ≤ e−cr2/8, with c the curvature constant.

Corollary 3.38. The Gaussian measure γn on Rn exhibits normal concentration. Namely, ∀F :
Rn → R, and ∀ r > 0,

γn
({
F ≥ F̄ dγn + r

})
≤ e−r2/2.

Proof. Up to a normalization constant, γn(dx) = e−|x|
2/2dx. Thus the result follows from Theorem

3.37 applied to
W (x) = |x|2/2,

and then finally by Proposition 1.8. ut
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4. CONCENTRATION THROUGH SPECTRUM

We now investigate the functional inequality known as the Poincaré inequality and demonstrate
when a Poincaré inequality is satisfied, and how this inequality implies exponential concentration for
a large class of measures: the log-concave measures. This expands our concentration results from
those in the previous section considerably, as we can drop the uniform convexity assumption. Results
are generally expanded upon from [3, Chap 4], although the discussion of log-concave measures also
draws from [15].

4.1. Poincaré Inequalites. Throughout this discussion, we will be working in the context of a
good measured space (E,F, µ), a nice algebra of functions A, and a diffusion generator L : A ⊂
L2(E,µ) → L2(E,µ) whose closure in L2(E,µ) extends to a self-adjoint operator with domain
D(L). We also assume that µ is an invariant symmetric measure for L. To this set-up, Γ will be the
associated Carré-du-champ operator Γ : A×A→ A,

2Γ(f, g) = L(fg)− fLg − gLf.
We refrain from considering a good Markov tuple as it will not necessarily be clear that L generates
a Markov semigroup, instead of potentially a sub-Markov semigroup, which satisfy every condition
on a Markov semigroup, except that PtIE ≤ IE instead of PtIE = IE . These assumptions will be
implicit in the following results.

Definition 4.1. The Dirichlet form, or energy, is the operator E : A×A→ A,

E(f, g) =

∫
E

Γ(f, g) dµ = −
∫
E
fLg dµ,

where the second equality is the integration by parts formula known for Γ. We write E(f, f) = E(f).
For the domain of the Dirichlet form, we write D(E). Most results will only be stated for A, which
by construction is dense in D(E). ut

We next recall the traditional definition of the variance of a function in L2(ν) for a probability
measure ν.

Definition 4.2. For a probability measure ν on a good measurable space (E,F), we define the vari-
ance of a function f ∈ L2(E, ν) as

Varν(f) =

∫
E
f2dν −

(∫
E
fdν

)2

. ut

These two definitions immediately lead us to the critical definition of a Poincaré inequality:

Definition 4.3. The probability measure µ is said to satisfy a Poincaré inequality P (C) with respect
to L for some C > 0, if ∀ f : E → R ∈ D(E),

Varµ(f) ≤ C E(f).

The best constant C > 0 for which such an inequality holds is called the Poincaré constant (relative
to X). We can equivalenty say that µ satisfies the Poincaré inequality P (C) with respsect to the
Carré-du-champ operator Γ. ut

Poincaré inequalities are equivalently called Spectral gap inequalities for the following reason.
Assume X satisfies a Poincaré inequality P (C). If f is an eigenfunction of −L with eigenvalue λ,
then ∫

E
λfdµ =

∫
E
−Lf dµ = 0 =⇒

∫
E
f dµ = 0.
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Likewise, by the Poincaré inequality P (C),∫
E
f2 dµ = Varµ(f) ≤ C E(f) = C

∫
E
f(−Lf) dµ = Cλ

∫
E
f2 dµ.

Thus,

1 ≤ Cλ =⇒ λ ≥ 1

C
,

and so every non-zero eigenvalue of −L is greater than 1/C. Consequently, even when the spectrum
of −L is not discrete, it is still contained in {0} ∪ [1/C,∞). P (C) then describes a gap in the
spectrum of −L.

4.2. The case of Log-concave measures. A natural question after the above definitions is, “Which
measures satisfy Poincaré, or spectral gap, inequalities?” We answer this question by addressing a
large class of measures, the log-concave measures.

Definition 4.4. A probability measure µ on Borel subsets of Rn is called log-concave if it is of the
form

µ(dx) = e−Wdx,

where W is a lower-bounded smooth convex function. For such a function,∇2W ≥ 0. ut

Note, log-concave measures are called so because log(e−W ) = −W is a concave function if e−W

is the density of a log-concave measure. The following theorem is the main result of this section, as
it will imply concentration of measure for log-concave measures.

Theorem 4.5. Let E = Rn, F be the Borel sigma-algebra on Rn, A = C∞0 (Rn), and let µ(dx) =
e−Wdx be a log-concave Borel probability measure on Rn. Then µ satisfies a Poincaré inequality
with respect to the generator L = ∆ − ∇W · ∇ (or equivalently the Carré-du-champ operator
Γ(f, g) = ∇f · ∇g).

Before we can prove this result, we need a collection of lemmas and a few new definitions. The
first of which is a local Poincaré inequality.

Definition 4.6 (local Poincaré inequality). Consider the usual set up with a good probability-measured
space (E,F, µ), algebra A, and generator L. Let K ⊂ E. Then we say µ satisfies a Poincaré in-
equality on K (with respect to L) if

∃CK > 0, ∀ f ∈ A :

∫
K

(
f − f̄K

)2
dµ ≤ CK

∫
K

Γ(f) dµ, f̄K :=
1

µ(K)

∫
K
f dµ. (4.1)

ut

Lemma 4.7. Let E = Rn, F be the Borel sigma-algebra on Rn, A = C∞0 (Rn), and let µ(dx) =
e−Wdx be a log-concave Borel probability measure on Rn. Then µ satisfies a Poincaré inequality on
the open ball BR := BR(0), with respect to the generator L = ∆ − ∇W · ∇ (or equivalently the
Carré-du-champ operator Γ(f, g) = ∇f · ∇g).

Proof. Let p ∈ [1,∞) and denote L1,p(BR) as the closure of C∞(BR) in Lp(BR) with respect to the
norm ||u||1,p := ||u||Lp + ||∇u||Lp . We will show that

∃CR > 0 :

∫
BR

|u− ū|p dx ≤ CR
∫
BR

|∇u|p dx, ∀u ∈ C∞(Rn).

Note that it suffices to prove this inequality for the function v = u − ū whose mean on BR is 0 and
satisfies∇v = ∇u. The inequality in this special case is proved in [9, Thm. 3.65].
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The function W is locally bounded, and so ∃R > 0 and 0 < c1 < c2 such that on BR,

c1 ≤ e−W (x) ≤ c2.

Then, ∫
BR

|∇u|pe−Wdx > c1

∫
BR

|∇u|p dx ≥ CRc1

∫
BR

|u− ū|p dx

≥ CRc1

c2

∫
BR

|u− ū|pe−Wdx.

ut

We will show that a local Poincaré inequality implies a global Poincaré inequality if there exists a
particular function, called a Lyapunov function, which we now define.

Definition 4.8. For a good measured space (E,F, µ) with generator L, we say that a function J :
E → [1,∞) is a Lyapunov function if ∃λ, b > 0 and K ⊂ E measurable such that µ satisfies a local
Poincaré inequality on K and

1 ≤ −LJ
λJ

+ b1K . ut

Using Lyapunov functions, we can define necessary conditions for extending a local Poincaré
inequality to a global one.

Lemma 4.9. Let E = Rn, F be the Borel sigma-algebra on Rn, A = C∞0 (Rn), and let µ(dx) =
e−Wdx be a Borel probability measure on Rn, with W smooth but not necessarily convex. Let L be
a diffusion generator. If there exists a Lyapunov function J on Rn defined with constants λ, b and
measurable subset K ⊂ E, and with µ satisfying a local Poincaré inequality P (CK) on K, then µ
satisfies a Poincaré inequality P (C) on the whole space Rn with

C =
1

λ
+ bCk.

Proof. This proof expands upon the proof of Theorem 4.6.2 in [3, p. 202]. We denote by f̄E the mean
of f on E

f̄E =

∫
E
f(x)µ(dx).

Since f̄E is the L2(µ)-orthogonal projection on the one-dimensional space of constant functions we
deduce

Varµ(f) =
∥∥f − f̄E‖2L2(µ) ≤

∥∥f − c‖2L2(µ), ∀c ∈ R. (4.2)

As A is dense in the domain of the Dirichlet form

E(f) =

∫
E

Γ(f)dµ,

it suffices to show that ∀ f ∈ A, ∫
E

(f − c)2dµ ≤ C
∫
E

Γ(f)dµ

for any c ∈ R, which we will chose later.
To prove this inequality, we multiply the Lyapunov inequality

1 ≤ −LJ
λJ

+ b1K
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though by (f − c)2 and integrate over E with respect to µ. This yields∫
E

(f − c)2dµ ≤ − 1

λ

∫
E

LJ

J
(f − c)2dµ+ b

∫
K

(f − c)2dµ. (4.3)

Choose c = f̄K as in (4.1). We deduce

b

∫
K

(f − c)2dµ ≤ bCK
∫
K

Γ(f)dµ.

To bound the other term on the right-hand-side of (4.3), we will show that ∀ g ∈ A,

−
∫
E

LJ

J
g2dµ ≤

∫
E

Γ(g)dµ.

To see this, let g ∈ A and integrate by parts (for Γ) to obtain

−
∫
E

LJ

J
g2dµ =

∫
E

Γ

(
g2

J
, J

)
dµ.

Further, observe that

Γ

(
g2

J
, J

)
=

2g

J
Γ(g, J)− g2

J2
Γ(J) ≤ Γ(g),

where the first equality is from Γ being a diffusion operator, and the inequality following from the
identity

Γ(g) +
g2

J2
Γ(J)− 2g

J
Γ(g, J) = Γ(g − J) ≥ 0.

The proof is then concluded by letting g = f − c and observing that Γ(f − c) = Γ(f), so

Varµ(f)
(4.2)

≤
∫
E

(f − c)2dµ ≤ − 1

λ

∫
E

LJ

J
(f − c)2dµ+ b

∫
K

(f − c)2dµ

≤ 1

λ

∫
E

Γ(f)dµ+ bCk

∫
K

Γ(f)dµ︸ ︷︷ ︸
≥0

≤
(

1

λ
+ bCk

)∫
E

Γ(f)dµ,

giving us a Poincaré inequality for µ with constant

C =
1

λ
+ bCk.

ut

Thus to show that a log-concave measure satisfies a Poincaré inequality, we only have to construct
a Lyapunov function for the measure. However, to do this we need the following technical lemma.

Lemma 4.10. If V : Rn → R is differentiable, convex and∫
Rn
e−V dx <∞,

then

∃α,R > 0 : ∀ |x| ≥ R, x · ∇V (x) ≥ α|x|.



THE CONCENTRATION OF MEASURE 41

Proof. This conclusion is inspired by the proof of Lemma 2.2 in [15]. First, observe that ∀x ∈ Rn,
x · ∇V (x) ≥ V (x)− V (0). This is true as t→ g(t) := V (tx) is convex, so

g′(1) ≤ g(0)− g(1)

0− 1
.

Observing that g(0) = V (0) and g(1) = V (x), rearranging the above inequality yields

V (0) ≥ V (x)− 1(x · ∇V (tx))

∣∣∣∣
t=1

,

and so
x · ∇V (x) ≥ V (x)− V (0).

We now show that ∃α,R > 0 such that for |x| ≥ R, V (x)− V (0) ≥ α|x|, which will conclude the
proof.

To see this, choose some K > V (0) + 1. Let

Ak :=
{
x ∈ Rn : V (x) ≤ K

}
,

and observe that this level set has non-empty interior as V is continuous, so it contains Br(0) for
some r > 0. The set Ak is closed by definition, and further, vol(Ak) <∞, as for Lebesgue measure
λ,

vol(Ak) =

∫
Ak

eV µ(dx) ≤ eK
∫
Ak

µ(dx) <∞,

Without loss of generality, we can assume that 0 ∈ AK . Fix r > 0 such that Br(0) ⊂ AK . Let
a ∈ AK \ Br(0) and let Ca be the convex hull of {a} ∪ Br(0). Observe that vol(Ca) depends only
on |a|, and that vol(Ca)→∞ as a→∞. However, vol(Ca) ≤ vol(Ak) <∞, so sup |a|a∈AK <∞
and thus AK is bounded. Thus ∃R > 0 such that AK ⊂ BR−1(0).

Now, let u ∈ Rn such that |u| = R. Then u 6∈ AK , so V (u)− V (0) ≥ 1. But as V is convex,

t→ V (tu)− V (0)

t

is non-decreasing. So, for |x| ≥ R,

V (x)− V (0) ≥ |x|
R
.

Choosing α = 1/R > 0 concludes the proof. ut

Theorem 4.11. Let µ(dx) = e−Wdx be a log-concave Borel probability measure on Rn. Then µ
satisfies a Poincaré inequality with respect to the usual set up, where

L = ∆−∇W · ∇.

Proof. This proof follows the strategy of proof of Theorem 1.4 in [15, p 63]. By Lemma 4.9, it
suffices to show that µ has a Lyapunov function. Fix γ,R > 0. Let K = BR(0). By Lemma 4.7, µ
restricted to BR(0) satisfies a local Poincaré inequality with some constant CK . So, let

J(x) = eγ|x|, |x| ≥ R,
i.e., on (BR(0))c. OnBR(0), let J(x) ≥ 1 so that J is continuous and smooth on all of Rn. We claim
that J is a Lyapunov function for µ. We know that µ satisfies a local Poincaré inequality on K, so it
suffices to show that ∃λ, b > 0 such that

1 ≤ −LJ
λJ

+ b1K .
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To see this, recall that L = ∆−∇W · ∇ and observe that

LJ(x) =

(
γ(n− 1)

|x|
+ γ2 − x · ∇V (x)

|x|

)
J(x), |x| ≥ R,

where it is well known that ∆|x| = (n − 1)/|x| and ∇|x| = x/|x|. Then, by Lemma 4.10, ∃α > 0
such that (x · ∇V (x)) ≥ α/|x|, and so

LJ(x) ≤
(
λ(n− 1)

R
+ λ2 − λα

)
J(x), |x| ≥ R.

On the bounded setBR(0), J(x) ≥ 1 and is less than J(y), ∀ y ∈ (BR0)c, as J is convex on |x| ≥ R.
Thus, we can find some β > 0 such that

LJ(x) ≤ β, |x| < R,

so that

LJ(x) ≤
(
λ(n− 1)

R
+ λ2 − λα

)
J(x) + β1K(x), x ∈ Rn,

and after rearranging,

LJ(x) ≤ −λ
(
−(n− 1)

R
− λ− α

)
J(x) + β1K(x), x ∈ Rn.

Taking R > 0 as large as we need, we can find some sufficiently small λ > 0 such that

θ = λ(α− λ− (n− 1/R)) > 0.

Thus,
LJ ≤ −θJ + β1K .

Finally, we can rearrange this equality to show that J is a Lyapunov function. We have

−LJ ≥ θJ − β1K

so
−LJ
θJ

≥ 1− β

θJ
1K ≥ 1− β

θ
1K ,

as J ≥ 1 on K. Taking b = β/θ > 0 yields

−LJ
θJ

+ b1K ≥ 1,

and so J is a suitable Lyapunov function with set K = BR(0) and constants b, θ > 0. Thus by
Lemma 4.9, µ satisfies a global Poincaré inequality with constant

C =
1

θ
+ bCk.

ut

4.3. Concentration from Poincaré inequalities. Let us now prove the main result of this section,
which shows that log-concave measures exhibit (at least) exponential concentration.

Proposition 4.12. Let (X,F, µ) be a good measured space, with (X, d) being a metric space as well.
Assume that µ is a probability measure that satisfies a Poincaré inequality P (C) with respsect to the
Carré-du-champ operator Γ(f) = |∇f |2. Then,

αµ(r) ≤ e−r/3
√
C , r ≥ 0.
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Proof. This proof expands upon the proof of Theorem 3.1 in [6, p 48]. Fix some ε > 0, and let
A,B ⊂ X open such that d(A,B) = ε. For convenience, we write a := µ(A) and b := µ(B).
Consider the function f : X → R, where

f(x) =

(
1− min(d(x,A), ε)

ε

)
1

a
−
(

min(d(x,A), ε)

ε

)
1

b
.

Essentially, f is a sort of smooth bump function, taking value 1/a onA, smoothly transitioning to 1/b
onAr as r → ε, and taking value 1/b onAcε. f is clearly smooth, and by subtracting out α =

∫
X f dµ,

we can assume without loss of generality that f is mean-zero as well. f is smooth and with bounded
derivative is thus Lipschitz, with∇f = 0 on A ∪B, and

|∇f | ≤ 1

ε

(
1

a
+

1

b

)
almost everywhere. Thus,∫

X
Γ(f) dµ =

∫
X
|∇f |2 dµ =

∫
(A∪B)c

|∇f |2 dµ

≤ 1

ε

(
1

a
+

1

b

)
(1− [µ(A) + µ(B)])

=
1

ε

(
1

a
+

1

b

)
(1− a− b),

and so f ∈ D(E), allowing us to use f in the Poincaré inequality P (C). On the other hand,

Varµ(f) =

∫
X

(
f −

∫
fdµ

)2

dµ =

∫
X
f2 dµ

≥
∫
A∪B

f2 dµ =

∫
A
f2 dµ+

∫
B
f2 dµ

=
µ(A)

a2
+
µ(B)

b2
=

1

a
+

1

b
.

Therefore, by the Poincaré inequality applied to f ,

1

a
+

1

b
≤ Varµ(f) ≤ C

∫
X

Γ(f) dµ ≤ C

ε2

(
1

a
+

1

b
.

)2

(1− a− b),

which implies that
ε2

C
≤
(

1

a
+

1

b

)
(1− a− b) ≤ 1− a− b

ab
.

Separating a and b yields

ε2

C
≤ 1− a− b

ab
=⇒ abε2

C
+ b ≤ 1− a =⇒

b(
aε2

C
+ 1) ≤ 1− a =⇒

b ≤ 1− a
1 + ε2a/C

.

Now, we choose a specfic setA to conclude the proof. LetA = (Bε)
c. Assume that µ(Bε) = 1−a ≤

1/2. Note that this implies that µ(A) = a ≥ 1/2. Then,

b ≤ µ(Bε)

1 + ε2a/C
=⇒ (1 + ε2a/C)µ(B) ≤ µ(Bε),
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and consequently
(1 + ε2/2C)µ(B) ≤ (1 + ε2a/C)µ(B) ≤ µ(Bε).

We now turn to the notation of Expansion coefficients, which we recall from Chapter 2. By the above
inequality, it follows that

Expµ(ε) ≥ 1 +
ε2

2C
> 1.

Finally, let us choose a specific ε > 0 such that ε2/C = 2. Then, by Proposition 1.11, for r > 0,

αµ(r) ≤ (1 + ε2/2C)

2
exp

[
−r log

(
1 + ε2/2C

)
/ε
]

(4.4)

≤ 1 · exp
[
−r log(2)/

√
2C
]

(4.5)

≤ exp [−r/3C] , (4.6)

as desired. Note, the constant 3 in the concluding inequality is far from sharp. ut

5. AN APPLICATION: THE JOHNSON-LINDENSTRAUSS FLATTENING LEMMA

The rest of this thesis is devoted to stating and proving the Johnson-Lindenstrauss lemma. In brief,
the lemma states that if we randomly choose a k-dimensional subspace of Rn to nicely project N
vectors a1, ..., aN ∈ Rn onto, the distances between the projected vectors will be very close to the
distances between the same original vectors.

This is a fascinating result, and it has many applications in imaging and compression. Namely, if
we interpret our vectors a1, ..., aN as slices of an image, then instead of storing the information these
vectors contain in the costly high-dimensional Rn, we can instead store them in a lower dimensional
subspace of Rn, which in practice is much cheaper in terms of memory and recovery time.

The proof of the flattening lemma has at its core the concentration of measure phenomenon for the
Gaussian measure on Rn, the result which we have been developing throughout the entirety of this
thesis. Consequently this result is not only fascinating, it is also a great example of the utility of the
concentration of measure phenomenon, as well as the power of the Gaussian measure. This section
expands upon the results on pages 5-12 of [11].

5.1. Concentration Lemmas. We first must develop a number of technical lemmas, which are a
direct consequence of the Laplace bound method from section 1.3 and the normal concentration of
the Gaussian measure on Rn. Recall, first, the example of Laplace bounds, Lemma 1.14.

Lemma 5.1. For any δ ≥ 0,

γn
({
x ∈ Rn : ||x||2 ≥ n+ δ

})
≤
(

n

n+ δ

)−n/2
e−δ/2,

and

γn
({
x ∈ Rn : ||x||2 ≤ n− δ

})
≤
(

n

n− δ

)−n/2
eδ/2.

From this result we immediately have a more powerful corollary, which we will reference through-
out the proof of the Johnson-Lindenstrauss flattening lemma.

Corollary 5.2. For any ε ∈ (0, 1),

γn

({
x ∈ Rn : ||x||2 ≥ n

1− ε

})
≤ e−ε2n/4, and

γn
({
x ∈ Rn : ||x||2 ≤ (1− ε)n

})
≤ e−ε2n/4.
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Proof. Take δ = nε/(1− ε). Then n+ δ = n+ nε(1− ε) = n/(1− ε). By Lemma 5.1,

γn
({
x ∈ Rn : ||x||2 ≥ n+ δ

})
≤
(

n

n+ δ

)−n/2
e−δ/2,

so plugging in n+ δ = n/(1− ε) yields

γn

({
x ∈ Rn : ||x||2 ≥ n+

n

1− ε

})
≤ (1− ε)−n/2 exp

[
−nε

2(1− ε)

]
.

(1− ε)−n/2 = exp[−(n/2) log(1− ε)], so rearranging the above inequality yields

γn

({
x ∈ Rn : ||x||2 ≥ n+

n

1− ε

})
≤ exp

[(
−n

2

)( ε

1− ε
+ log(1− ε)

)]
.

As ε ∈ (0, 1), we can take the power series expansions of ε/(1 − ε) and log(1 − ε), which are as
follows:

ε

1− ε
=

∞∑
k=1

εk,

log(1− ε) =

∞∑
k=1

−ε
k

k
.

Summing the two convergent series,
ε

1− ε
+ log(1− ε) = ε2 − ε2/2 + ε3 − ε3/3 +−...

≥ ε2/2,

and thus

γn

({
x ∈ Rn : ||x||2 ≥ n+

n

1− ε

})
≤ exp

[(
−n

2

)(ε2
2

)]
≤ e−nε2/4,

as desired. The other result follows similarly from the second conclusion of Lemma 5.1,

γn
({
x ∈ Rn : ||x||2 ≤ n− δ

})
≤
(

n

n− δ

)−n/2
eδ/2,

using δ = nε. ut

5.2. Push-forwards of the Gaussian. Next, we show that the Gaussian measure behaves very nicely
when composed with various projections. First, we consider orthogonal projections. Let us recall
what an orthogonal projection is.

Definition 5.3 (Orthogonal projection). On Rn, an orthogonal projection is a linear map P : Rn →
Rn such that P 2 = P and, in matrix form, P T = P . An orthogonal projection onto a subspace
U ⊂ Rn is the projection PU , where the image of PU is U . ut

The property that P 2 = P is the definition of a general projection, and the property that P = P T

indicates that orthogonal projections are the projections on Rn that minimize the distance between
vectors and their projections. This is equivalent to the property that for an orthogonal projection PW
and a vector x ∈ Rn, P (x)− x is orthogonal to y,∀ y ∈W . ut
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Example 5.4. If U ⊂ Rn is a k-dimensional subspace of Rn with orthonormal basis u1, ..., uk, then
the orthogonal projection onto U is given by

PU =
k∑
i=1

(ui, ·)ui,

where (·, ·) is the canonical inner product on Rn. For e1, ..., en, the canonical basis of Rn, if U is the
span of e1, ..., ek for some k < n, then ∀ (x1, ..., xn) ∈ Rn, PU (x1, ..., xn) = (x1, ..., xk, 0, ..., 0) is
the orthogonal projection onto U . ut

Now, let us recall what a push-forward measure is.

Definition 5.5. Let (X, C, µ) be a measured space and let (Y,D) be a measurable space. For a
measurable mapping φ : X → Y , the push-forward measure f#µ on (Y,D) is the measure

f#µ(D) = µ(f−1(D)), D ∈ D.
ut

Likewise, recall what invariance for a measure is.

Definition 5.6. For a measured space (X,F , µ) and a measurable mapping F : X → X , we say that
µ is invariant by F if ∀A ∈ F , µ(A) = µ(F (A)), where by F (A) we mean the set {F (x) : x ∈ A}.

ut

A useful example of measure invariance comes in the following result, which is key in the proof of
the flattening lemma.

Proposition 5.7. For a k-dimensional subspace L ⊂ Rn with orthogonal projection P : Rn → L,
the push forward of the standard Gaussian measure γn on Rn by P is the standard Gaussian measure
γk on L, with density (2π)−k/2 exp[−||x||2/2], x ∈ L.

Proof. First, observe that the Gaussian measure on Rn is invariant under orthogonal transformations
of Rn. To see this, recall that for an orthogonal transformation O : Rn → Rn, ||O(x)|| = ||x|| for
x ∈ Rn. The Gaussian measure is computed through its density, which depends only on ||x||, so

γn(O(A)) = (2π)−n/2
∫
A
e−||O(x)||2/2dx

= (2π)−n/2
∫
A
e−||x||

2/2dx = γn(A), A ⊂ Rn.

Thus if necessary, we can have an orthogonal transformation act on L, so that without loss of gener-
ality,

L = (x1, ..., xk, 0, ..., 0), xk ∈ R,
where the last n− k coordinates are 0. Let A ⊂ L and write B = P−1(A) ⊂ Rn. Then,

P#γn = γn(B) = (2π)−n/2
∫
B

exp
[
−(x2

1 + ...+ x2
n)/2

]
dx1...dxn

= (2π)−n/2
∫
A
e(−(x21+...+x2k)/2)dx1...dxk ×

n∏
i=k+1

(2π)−n/2
∫
R
e−x

2
i /2dxi

= γk(A) · 1 · ... · 1 = γk(A).

ut
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Remark 5.8. We can consider another push-forward of the Gaussian measure γn, this time by the
radial projection φ : Rn \ 0 → Sn−1, φ(x) = x/||x||. Then, the push-forward φ#γn is the uniform
probability measure on Sn−1, µn. Indeed, by the above proposition, the Gaussian measure is invariant
by orthogonal transformations, which include rotations, so the Gaussian measure is rotation-invariant.
It is easy to see that push-forward measures preserve invariance, so φ#γn must be rotation invariant
as well. There is a unique Borel probability measure on Sn−1 that is invariant by rotations, µn, so this
measure must be the push-forward of the Gaussian by φ.

We will not prove that the unit sphere Sn−1 has a unique rotation invariant Borel probability mea-
sure µ, but instead we describe how to sample a point with µn: sample x ∈ Rn randomly by γn, then
project radially, x→ x/||x||. Note that x 6= 0 with probability one. ut

Using these results, we can prove a precursor to the Johnson-Lindenstrauss flattening lemma. The
next result shows that if we fix a subspace L ⊂ Rn and then randomly choose a vector x ∈ Rn,
the orthogonal projection of x onto L, xL, will have length very close to the length of x, i.e. ||xL||
will not differ much from ||x||. This is a sort of dual to the actual flattening lemma, in which we fix
vectors and then choose a subspace randomly. However, we will show later on that the two problems
are in fact equivalent.

Proposition 5.9. Let L ⊂ Rn be a k-dimensional subspace of Rn. For a vector x ∈ Rn, let xL be its
orthogonal projection onto L. Then, ∀ ε ∈ (0, 1),

γn

({
x ∈ Rn :

√
n

k
||xL|| ≥

||x||
(1− ε)

})
≤ e−kε2/4 + e−nε

2/4, and

γn

({
x ∈ Rn :

√
n

k
||xL|| ≥ (1− ε)||x||

})
≤ e−kε2/4 + e−nε

2/4.

Proof. Let ε ∈ (0, 1). Recall, by Corollary 5.2,

γn
({
x ∈ Rn : ||x||2 ≤ (1− ε)n

})
≤ e−ε2n/4,

so
γn
({
x ∈ Rn : ||x||2 ≥ (1− ε)n

})
≥ 1− e−ε2n/4,

and thus
γn

({
x ∈ Rn : ||x| ≥

√
(1− ε)n

})
≥ 1− e−ε2n/4.

By Proposition 5.7, if x ∈ Rn has standard Gaussian distribution, then its projection xL has standard
Gaussian distribution γk on L. Thus by Corollary 5.2 applied to xL,

γn

({
x ∈ Rn : ||xL|| ≤

√
k

1− ε

})
≥ 1− e−ε2k/4.

If we let

A :=
{
x ∈ Rn : ||x||2 ≤ (1− ε)n

}
B :=

{
x ∈ Rn : ||xL||2 ≥

k

1− ε

}
,

then

Ac :=
{
x ∈ Rn : ||x| ≥

√
(1− ε)n

}
Bc :=

{
x ∈ Rn : ||xL|| ≤

√
k

1− ε

}
.
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Observe that

γn(Ac ∩Bc) = γn(A ∪B)c = 1− γn(A ∪B) ≥ 1− γn(A)− γn(B),

so by our above computations

γn(Ac ∩Bc) ≥ 1− e−kε2/4 − e−nε2/4.

For x ∈ Ac ∩Bc,

||xL|| ≤
√

k

1− ε
=⇒

√
n√
k
||xL|| ≤

√
n

1− ε
≤
√
n(1− ε)
1− ε

≤ ||x||
1− ε

.

Putting everything together, we get

γn

({
x ∈ Rn :

√
n

k
||xL|| ≤

||x||
1− ε

})
≥ 1− e−nε2/4 − e−kε2/4,

and passing to the complement yields

γn

({
x ∈ Rn :

√
n

k
||xL|| ≥

||x||
(1− ε)

})
≤ e−kε2/4 + e−nε

2/4,

as desired. The second computation follows similarly. ut

As a corollary, we can attain the same result on the sphere Sn−1, via the radial projection.

Corollary 5.10. Let µn be the rotation-invariant Borel probability measure on the unit sphere Sn−1

and let L ⊂ Rn be a k-dimensional subspace. For x ∈ Sn−1, let xL be the orthogonal projection of
x onto L. Then, ∀ ε ∈ (0, 1),

µ

({
x ∈ Sn−1 :

√
n

k
||xL|| ≥

||x||
1− ε

})
≤ e−kε2/4 + e−nε

2/4, and

µ

({
x ∈ Sn−1 :

√
n

k
||xL|| ≤ (1− ε)||x||

})
≤ e−kε2/4 + e−nε

2/4.

Proof. For x ∈ Rn, the ratio ||xL||/||x|| is unchanged under the radial projection φ(x) = x/||x||, so
the inequalities of Proposition 5.9 remain unchanged when x is replaced with φ(x) ∈ Sn−1, and the
measure is replaced by the push-forward φ#γn = µn, as in our discussion in Remark 5.8. ut

However, this result is still not enough to prove our final result. We must switch the assumptions
of Corollary 5.10 to a fixed vector x ∈ Sn−1 and a random L ⊂ Rn in order to prove the flattening
lemma. However, like we previously mentioned, none of our results change in this switch. We discuss
why that is the case now.

5.3. Random subspaces, fixed vectors. Let us first define a space which will not only simplify our
notation, but will allow us to extract deep results out of a familiar concept.

Definition 5.11 (Grassmannian). Let k ≤ n and define the Grassmannian Gk(Rn) as the set of all
k-dimensional subspaces of Rn,

Gk(Rn) :=
{
L ⊂ Rn : L is a subspace, dimL = k

}
. ut

Additionally, let us recall some definitions from group theory.
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Definition 5.12 (Orthogonal group). We let On be the group of orthogonal transformations of Rn.
We can write

On :=
{
M ∈ Mat(n, n,R) : MMT = 1

}
,

where Mat(n, n,R) is the space of n×n dimensional R-valued matrices, and det(M) is the determi-
nant of M . ut

Definition 5.13. For a group G and a non-empty set X , we call the orbit of an element x ∈ X as the
set

Gx := {g · x : g ∈ G}.
Additionally, we say that the group action of G acts transitively on X if there exists only one orbit,
i.e. if ∃x ∈ X : Gx = X . ut

Remark 5.14. We state without proving that both Gk(Rn) and On are compact smooth manifolds
∀ 0 ≤ k ≤ n, n ≥ 1. Additionally, both spaces can be equipped with a metric invariant under the
action of the orthogonal group, which acts transitively on both spaces. As a result, which we also do
not prove, both spaces are equipped with a unique Borel probability measure, invariant by orthogonal
maps, i.e., invariant by On. On Gk(Rn), we will denote this measure µn,k. To sample a random
A ∈ Gk(Rn) with respect to µn,k, sample k vectors x1, ..., xk ∈ Rn randomly from the standard
Gaussian measure on Rn and let A be the subspace spanned by x1, ..., xk. In other words,

µn,k = span#(γn × ...× γn).

Similarly, let νn be the unique On-invariant Borel probability on On. To sample a M ∈ On
randomly, sample n vectors x1, ..., xn ∈ Rn, apply the Gram-Schmidt orthogonalization process to
the vectors to obtain vectors u1, ..., un ∈ Rn and let M = [u1 ... un] be the matrix with columns
u1, ..., un. Note that this holds as x1, ..., xn are linearly independent with probability one. In other
words,

νn = Gram-Schmidt#(γn × ...× γn). ut

With these results, we can now state the final lemma necessary to prove the Johnson-Lindenstrauss
flattening lemma. It essentially states that because of the On-invariance of νn and µn,k, fixing a
subspace and choosing a vector randomly is equivalent in probability to fixing a vector and choosing
a subspace randomly.

Proposition 5.15. Let x ∈ Rn \ 0. For L ∈ Gk(Rn), let xL be the orthogonal projection of x onto
L. Then ∀ ε ∈ (0, 1),

µn,k

({
L ∈ Gk(Rn) :

√
n

k
||xL|| ≥

||x||
1− ε

})
≤ e−kε2/4 + e−nε

2/4, and

µn,k

({
L ∈ Gk(Rn) :

√
n

k
||xL|| ≤ (1− ε)||x||

})
≤ e−kε2/4 + e−nε

2/4.

Proof. Let x ∈ Rn \ 0. Normalizing if necessary, we can assume without loss of generality that
||x|| = 1, i.e. that x ∈ Sn−1. As On acts transitively on Gk(Rn), we can choose a L0 ∈ Gk(Rn)
such that the orbit of L0 is Gk(Rn). Thus, applying a randomly chosen U ∈ On to L0 (with respect
to νn) gives a random L ∈ Gk(Rn), so we can consider µn,k as the push-forward of νn under the map
U → U(L0). Thus,

µn,k

({
L ∈ Gk(Rn) :

√
n

k
||xL|| ≥

1

1− ε

})
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= νn

({
U ∈ On :

√
n

k
||xU(L0)|| ≥

1

1− ε

})
,

and likewise,

µn,k

({
L ∈ Gk(Rn) :

√
n

k
||xL|| ≤ (1− ε)

})
= νn

({
U ∈ On :

√
n

k
||xU(L0)|| ≤ (1− ε)

})
.

Now we have to reckon with the length ||xU(L0)||. But letting y = U−1x, ||xU(L0)|| = ||yL0 ||. On
acts transitively on Sn−1, so for a random U ∈ On, we get a random y = U−1x ∈ Sn−1. Thus,
we can consider µ, the Borel probability measure on Sn−1, as the push-forward of νn under the map
U → U−1x. It follows that

νn

({
U ∈ On :

√
n

k
||xU(L0)|| ≥

1

1− ε

})
= µ

({
y ∈ Sn−1 :

√
n

k
||yL0 || ≥

1

1− ε

})
.

Likewise,

νn

({
U ∈ On :

√
n

k
||xU(L0)|| ≤ (1− ε)

})
= µ

({
y ∈ Sn−1 :

√
n

k
||yL0 || ≤ (1− ε)

})
.

The conclusion follows immediately from Corollary 5.10. ut

5.4. Proof of the J-L flattening lemma. Now we are prepared to finally state and prove the Johnson-
Lindenstrauss flattening lemma. In the below proof, ε will be a constant representing fidelity, or how
much the projected vectors’ distances will differ form the original vectors’ distances, and Π will be
a probability bound, indicating with what probability we would like our result to hold. In practice,
these two constants are pre-specified, and we must choose a k and n such that our assumptions are
satisfied.

Theorem 5.16 (Johnson-Lindenstrauss flattening lemma). Let a1, ..., aN ∈ Rn for some N > 2.
Given a probability bound Π > 0 and a fidelity constant ε > 0, choose an integer k such that

N(N − 1)

2
·
(
e−kε

2/4 + e−nε
2/4
)
≤ Π.

Assuming that k ≤ n, let L ∈ Gk(Rn) be chosen at random with respect to µn,k. Let a′i be the
orthogonal projection of ai onto L for 1 ≤ i ≤ N . Then,

(1− ε)||ai − aj || ≤
√
n

k
||a′i − a′j || ≤

||ai − aj ||
1− ε

, 1 ≤ j < i ≤ N

with probability at least 1−Π.

Proof. ∀ j < i ∈ [1, N ], let cij = ai−aj and let c′ij be the orthogonal projection of cij onto L. There
are
(
N
2

)
= N(N − 1)/2 vectors cij , and for each pair (i, j), ||c′ij || = ||a′i− a′j ||. By Proposition 5.15,

if we let

Aij :=

{
L ∈ Gk(Rn) :

√
n

k
||c′ij || ≥

||cij ||
1− ε

}
,
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Bij :=

{
L ∈ Gk(Rn) :

√
n

k
||c′ij || ≤ (1− ε)||cij ||

}
,

then
µn,k(Aij) ≤ e−kε

2/4 + e−nε
2/4,

and
µn,k(Bij) ≤ e−kε

2/4 + e−nε
2/4.

Likewise,

µn,k(Aij ∩Bij) ≤ min

(
µn,k(Aij), µn,k(Bij)

)
≤ e−kε2/4 + e−nε

2/4.

Thus the probability of both Aij and Bij for all j < i is bounded above by

µn,k

⋃
j<i

(Aij ∩Bij)

 ≤ N(N − 1)

2
e−kε

2/4 + e−nε
2/4 ≤ Π.

So, the probability that the event Acij ∪Bc
ij ={

(1− ε)||ai − aj || ≤
√
n

k
||a′i − a′j || ≤

||ai − aj ||
1− ε

, 1 ≤ i, j ≤ N
}

occurs for all pairs j < i is

1− µn,k

⋃
j<i

(Aij ∩Bij)

 ≥ 1−Π,

concluding the proof. ut

Observe the key role that concentration of measure plays in both the propositions leading up to the
Johnson-Lindenstrauss lemma, and the proof of the result itself.

Remark 5.17. In the statement of the Johnson-Lindenstrauss lemma, we can in fact choose our
dimension k independently of the ambient dimension n by noting n ≥ N and instead dealing only
with N . Namely, for ε,Π > 0 fixed,

k >
4 log(N2/Π)

ε2

satisfies the condition
N(N − 1)

2
·
(
e−kε

2/4 + e−nε
2/4
)
≤ Π.

To see this, observe that 0 < k ≤ n, so

e−nε
2/4 ≤ e−kε2/4,

and thus

k >
4 log(N2/Π)

ε2
=⇒ −kε2/4 < − log(N2/Π) =⇒ e−kε

2/4 <
Π

N2.
In this case, it follows that

N(N − 1)

2
·
(
e−kε

2/4 + e−nε
2/4
)
≤ N(N − 1)e−kε

2/4 <
Π(N2 −N)

N2
≤ Π,

as desired. Thus, in practice, we can choose the dimension of k to be of order log(N), which is much
lower than N and provides a serious computational reduction. ut
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