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Introduction

As the the title suggests, the goal of this book is to give the reader a taste of the “unreasonable
effectiveness” of Morse theory. The main idea behind this technique can be easily visualized.

Suppose M is a smooth, compact manifold, which for simplicity we assume is embedded in
a Euclidean space E. We would like to understand basic topological invariants of M such as its
homology, and we attempt a “slicing” technique.

We fix a unit vector @ in £ and we start slicing M with the family of hyperplanes perpendicular
to u. Such a hyperplane will in general intersect M along a submanifold (slice). The manifold can be
recovered by continuously stacking the slices on top of each other in the same order as they were cut
out of M.

Think of the collection of slices as a deck of cards of various shapes. If we let these slices
continuously pile up in the order they were produced, we notice an increasing stack of slices. As this
stack grows, we observe that there are moments of time when its shape suffers a qualitative change.
Morse theory is about extracting quantifiable information by studying the evolution of the shape of
this growing stack of slices.

From a mathematical point of view we have a smooth function
h: M —R, h(z)=(d,x).
The above slices are the level sets of h,
{x € M; h(zx)= const},
and the growing stack is the time dependent sublevel set
{r € M; h(z) <t}, teR.

The moments of time when the pile changes its shape are called the critical values of h and correspond
to moments of time ¢ when the corresponding hyperplane {(i,z) = t} intersects M tangentially.
Morse theory explains how to describe the shape change in terms of /ocal invariants of h.

A related slicing technique was employed in the study of the topology of algebraic manifolds
called the Picard—Lefschetz theory. This theory is back in fashion due mainly to Donaldson’s pio-
neering work on symplectic Lefschetz pencils.
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The present book is divided into three conceptually distinct parts. In the first part we lay the
foundations of Morse theory (over the reals). The second part consists of applications of Morse
theory over the reals, while the last part describes the basics and some applications of complex Morse
theory, a.k.a. Picard—Lefschetz theory. Here is a more detailed presentation of the contents.

In chapter 1 we introduce the basic notions of the theory and we describe the main properties of
Morse functions: their rigid local structure (Morse lemma) and their abundance (Morse functions are
generic). To aid the reader we have sprinkled the presentation with many examples and figures. One
recurring simple example that we use as a testing ground is that of a natural Morse function arising
in the design of robot arms. We conclude this chapter with a simple but famous application of Morse
theory. We show that the expected number of critical points of the restriction of a random linear map
¢ :R3 — Rtoaknot K — R3 is described by the total curvature of the knot. As a consequence, we
obtain Milnor’s celebrated result [MO0] stating that if a closed curve in R? is “not too curved”, then it
is not knotted.

Chapter 2 is the technical core of the book. Here we prove the fundamental facts of Morse theory:
crossing a critical level corresponds to attaching a handle and Morse inequalities. Inescapably, our
approach was greatly influenced by the classical sources on this subject, more precisely Milnor’s
beautiful books on Morse theory and h-cobordism [M3, M4].

The operation of handle addition is much more subtle than it first appears, and since it is the
fundamental device for manifold (re)construction, we devoted an entire section to this operation and
its relationship to cobordism and surgery. In particular, we discuss in some detail the topological
effects of the operation of surgery on knots in .5® and illustrate this in the case of the trefoil knot.

In chapter 2 we also discuss in some detail dynamical aspects of Morse theory. More precisely,
we present the techniques of S. Smale about modifying a Morse function so that it is self-indexing
and its stable/unstable manifolds intersect transversally. This allows us to give a very simple de-
scription of an isomorphism between the singular homology of a compact smooth manifold and the
(finite dimensional) Morse—Floer homology determined by a Morse function, that is, the homology
of a complex whose chains are formal linear combinations of critical points and whose boundary is
described by the connecting trajectories of the gradient flow. We have also included a brief section on
Morse—Bott theory, since it comes in handy in many concrete situations.

We conclude this chapter with a section of a slightly different flavor. Whereas Morse theory
tries to extract topological information from information about critical points of a function, min-max
theory tries to achieve the opposite goal, namely to transform topological knowledge into information
about the critical points of a function. In particular, we discuss the Lusternik—Schnirelmann category
of a space, which is a homotopy invariant particlarly adept at detecting critical points.

Chapter 3 is devoted entirely to applications of Morse theory. We present relatively few examples,
but we use them as pretexts for wandering in many parts of mathematics that are still active areas of
research. We start by presenting a recent result of M. Farber and D. Schiitz, [FaSch], on the Betti
numbers of the space of planar polygons, or equivalently, the space of configurations of planar robot
arms such that the end-point of the arm coincides with the initial joint. Besides its intrinsic interest,
this application has an added academic bonus: it gives the reader the chance to witness Morse theory
in action, in all its splendor. Additionally it exposes the reader to the concept of Bott-Samelson cycle
which is useful in many other applications of Morse theory.

We next discuss two classical applications: the computation of the Poincaré polynomials of com-
plex Grassmannians, and an old result of S. Lefschetz concerning the topology of Stein manifolds.
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The complex Grassmannians give us a pretext to discuss at length the Morse theory of moment
maps of Hamiltonian torus actions. We prove that these moment maps are Morse—Bott functions.
We then proceed to give a complete presentation of the equivariant localization theorem of Atiyah,
Borel, and Bott (for S'-actions only), and we use this theorem to prove a result of P. Conner [Co]: the
sum of the Betti numbers of a compact, oriented smooth manifold is greater than the sum of the Betti
numbers of the fixed point set of any smooth S*-action. Conner’s theorem implies among other things
that the moment maps of Hamiltonian torus actions are perfect Morse—Bott function. The (complex)
Grassmannians are coadjoint orbits of unitary groups, and as such they are equipped with many
Hamiltonian torus actions leading to many choices of perfect Morse functions on Grassmannians. We
conclude with a section on the celebrated Duistermaat-Heckman formula.

Chapter 4 is more theoretical in nature but it opens the door to an active area of research, namely
Floer homology. While still in the finite dimensional context, we take a closer look at the topological
structure of a Morse-Smale flow. The main results are inspired by our recent investigations [Ni2] and,
to the best of our knowledge, they seem to have never appeared in the Morse theoretic literature.

The key results of this chapter (Theorem 4.3.1 and Theorem 4.3.2) state that a Morse flow on
a compact manifold satisfies the Smale transversality condition if and only if the stratification given
by the unstable manifolds satisfies the Whitney regularity conditions. Because the theory of Whitney
stratifications is not part a standard graduate curriculum we devoted a large part of this chapter survey-
ing this theory. Since the proofs of the main results in this area are notoriously complex, we decided
to skip most of them opting instead for copious references and numerous illuminating examples.

These results provide a rigorous foundation to R. Thom’s original insight [Th]. One immediate
consequence of Theorem 4.3.2 is a result of F. Laudenbach [Lau] on the nature of the singularities of
the closure of an unstable manifold of a Morse-Smale flow.

In Section 4.4 we investigate the spaces of tunnelings between two critical points of a Morse-
Smale flow. Using a recent idea of P. Kronheimer and T. Mrowka [KrMr] we show that these spaces
admit natural compactifications as manifolds with corners. We do not use this fact anywhere else in
the book, but since it is part of the core of Morse theoretic facts available to the modern geometer we
thought we had to include a short proof.

In the last section of this chapter we have a second look at the Morse-Floer complex, from a purely
dynamic point of view. We define the boundary operator 0 in terms of signed counts of tunnelings,
and we give a purely dynamic proof of the equality 9> = 0. Our proof is similar in spirit to the proof
in [Lau], but we have deliberately avoided the usage of currents because the unstable manifolds may
not have finite volume. Instead, we use the theory of Whitney stratifications to show that the equality
02 = 0 is a consquence of the cobordism invariance of the degree of a map.

The application to the topology of Stein manifolds offered us a pretext for the last chapter of
the book on the Picard—Lefschetz theory. Given a complex submanifold M of a complex projective
space, we start slicing it using a (complex) 1-dimensional family of projective hyperplanes. Most
slices are smooth hypersurfaces of M, but a few of them are have mild singularities (nodes). Such a
slicing can be encoded by a holomorphic Morse map M — CP'.

There is one significant difference between the real and the complex situations. In the real case,
the set of regular values is disconnected, while in the complex case this set is connected since it is a
punctured sphere. In the complex case we study not what happens as we cross a critical value, but
what happens when we go once around it. This is the content of the Picard—Lefschetz theorem.
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We give complete proofs of the local and global Picard—Lefschetz formula and we describe basic
applications of these results to the topology of algebraic manifolds.

We conclude the book with a chapter containing a few exercises and solutions to (some of) them.
Many of them are quite challenging and contain additional interesting information we did not include
in the main body, since it may have been distracting. However, we strongly recommend to the reader
to try solving as many of them as possible, since this is the most efficient way of grasping the subtleties
of the concepts discussed in the book. The solutions of these more challenging problems are contained
in the last section of the book.

Penetrating the inherently eclectic subject of Morse theory requires quite a varied background.
The present book is addressed to a reader familiar with the basics of algebraic topology (fundamental
group, singular (co)homology, Poincaré duality, e.g., Chapters 0-3 of [Ha]) and the basics of differ-
ential geometry (vector fields and their flows, Lie and exterior derivative, integration on manifolds,
basics of Lie groups and Riemannian geometry, e.g., Chapters 1-4 in [Nil]). In a very limited num-
ber of places we had to use less familiar technical facts, but we believe that the logic of the main
arguments is not obscured by their presence.

Acknowledgments. This book grew out of notes I wrote for a one-semester graduate course in topol-
ogy at the University of Notre Dame in the fall of 2005. I want to thank the attending students,
Eduard Balreira, Daniel Cibotaru, Stacy Hoehn, Sasha Lyapina, for their comments questions and
suggestions, which played an important role in smoothing out many rough patches in presentation.
While working on these notes I had many enlightening conversations on Morse theory with my col-
league Richard Hind. I want to thank him for calmly tolerating my frequent incursions into his office,
and especially for the several of his comments and examples I have incorporated in the book.

Last, but not the least, I want thank my wife. Her support allowed me to ignore the “publish
or perish” pressure of these fast times, and I could ruminate on the ideas in this book with joyous
abandonment.
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e | have included several immediate but useful consequences of the results proved in the first
edition: Corollary 1.2.9 and Theorem 2.4.15.

I have included several several new sections of applications: Section 1.3, Section 3.1 and
Section 3.7.

The whole of Chapter 4 is new.
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I have fixed many typos and errors in the first edition. In this process I was aided by many
readers. I would especially like to thank Professor Steve Ferry of Rutgers University for
his many suggestions, corrections and overall very useful critique. I would also like to
thank Leonardo Biliotti and Alessandro Ghigi for drawing my attention to some problems
in Theorems 3.45 and 3.48 of the first edition (Theorems 3.5.12 and 3.5.13 in the current
edition.) I have addressed them in the current edition.
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Notations and conventions iX

Notations and conventions

e For every set A we denote by # A its cardinality.

e For K =R, C, r > 0and M a smooth manifold we denote by K, the trivial vector bundle
K'x M — M.

e i := /—1. Re denotes the real part, and Im denotes the imaginary part.

e For every finite dimensional vector space E we denote by End(E) the space of linear
operators £ — E.

e An Euclidean space is a finite dimensional real vector space E equipped with a symmetric
positive definite inner product (e,e) : E x E — R.

e For every smooth manifold M we denote by 7'M the tangent bundle, by T, M the tangent
space to M atx € M and by 77 M the cotangent space at x.

e For every smooth manifold and any smooth submanifold S < M we denote by TgM the
normal bundle of S in M defined as the quotient TsM := (T'M)|s/T'S. The conormal
bundle of S in M is the bundle T¢M — S defined as the kernel of the restriction map
(T*M)|s — T*S.

e Vect(M) denotes the space of smooth vector fields on M.

P

Cpt(M ) the space of compactly

e (P(M) denotes the space of smooth p-forms on M, while 2
supported smooth p-forms.

o If F: M — N is a smooth map between smooth manifolds we will denote its differential
by DF or F,. DF, will denote the differential of ' at z € M which is a linear map
DF, : T,M — T,N. F* : QP(N) — QP(M) is the pullback by F.

e M:= transverse intersection.

e || := disjoint union.

e Forevery X,Y € Vect(M) we denote by Lx the Lie derivative along X and by [X, Y] the
Lie bracket [X,Y] = LxY. The operation contraction by X is denoted by ix or X_1I.

e We will orient the manifolds with boundary using the outer-normal -first convention.

e The total space of a fiber bundle will be oriented using the fiber-first convention.

e s50(n) denotes the Lie algebra of SO(n), u(n) denotes the Lie algebra of U (n) etc.

e Diag(cy, - ,cy,) denotes the diagonal n x n matrix with entries c1, . .., ¢,.






Chapter 1

Morse Functions

In this first chapter we introduce the reader to the main characters of our story, namely the Morse
functions, and we describe the properties which make them so useful. We describe their very special
local structure (Morse lemma) and then we show that there are plenty of them around.

1.1. The Local Structure of Morse Functions

Suppose that F' : M — N is a smooth (i.e., C'"*°) map between smooth manifolds. The differential of
F defines for every x € M a linear map

DF, : TyM — Tp)N.
Definition 1.1.1. (a) The point x € M is called a critical point of F' if
rank DF, < min(dim M, dim N).
A point x € M is called a regular point of F' if it is not a critical point. The collection of all the

critical points of F'is called the critical set of F and is denoted by Crp.

(b) The point y € N is called a critical value of F if the fiber F~!(y) contains a critical point of F'.
A point y € N is called a regular value of F if it is not a critical value. The collection of all critical
values of F is called the discriminant set of F' and is denoted by A .

(c) A subset S C N is said to be negligible if for every smooth open embedding ® : R" — N,
n = dim N, the preimage ®~'(S) has Lebesgue measure zero in R". a

Theorem 1.1.2 (Morse—Sard-Federer). Suppose that M and N are smooth manifolds and F : M —
N is a smooth map. Then the Hausdorff dimension of the discriminant set A is at most dim N — 1.
In particular, the discriminant set is negligible in N. Moreover, if F'(M ) has nonempty interior, then
the set of regular values is dense in F'(M). 0

For a proof we refer to Federer [Fed, Theorem 3.4.3] or Milnor [M2].

Remark 1.1.3. (a) If M and N are real analytic manifolds and I is a proper real analytic map then
we can be more precise. The discriminant set is a locally finite union of real analytic submanifolds of

1



2 Liviu I. Nicolaescu

N of dimensions less than dim N. Exercise 6.1.1 may perhaps explain why the set of critical values
is called discriminant.

(b) The range of a smooth map F': M — N may have empty interior. For example, the range of
the map F' : R® — R2, F(z,y, z) = (x,0), is the z-axis of the Cartesian plane R?. The discriminant
set of this map coincides with the range. O

Example 1.1.4. Suppose f : M — R is a smooth function. Then x¢ € M is a critical point of f if
and only if df |,,= 0 € T, M.

Suppose M is embedded in an Euclidean space F and f : ¥ — R is a smooth function. Denote
by fas the restriction of f to M. A point zg € M is a critical point of fj; if
(df,v) =0, Yv e Ty M.

This happens if either x( is a critical point of f, or df;, # 0 and the tangent space to M at x is
contained in the tangent space at xo of the level set {f = f(zo)}. If f happens to be a nonzero
linear function, then all its level sets are hyperplanes perpendicular to a fixed vector i, and o € M
is a critical point of fj; if and only if @ L Ty, M, i.e., the hyperplane determined by f and passing
through x( is tangent to M.

AY
A

a i
b ‘B' \B
. \ —~
R‘\ j R
C
X

>
L=

Figure 1.1. The height function on a smooth curve in the plane.

In Figure 1.1 we have depicted a smooth curve M C R2. The points A, B, C are critical points
of the linear function f(x,y) = y. The level sets of this function are horizontal lines and the critical
points of its restriction to M are the points where the tangent space to the curve is horizontal. The
points a, b, ¢ on the vertical axis are critical values, while r is a regular value. O

Example 1.1.5 (Robot arms: critical configurations). We begin in this example the study of the
critical points of a smooth function which arises in the design of robot arms. We will discuss only a
special case of the problem when the motion of the arm is constrained to a plane. For slightly different
presentations we refer to the papers [Hau, KM, SV], which served as our sources of inspiration. The
paper [Hau] discusses the most general version of this problem, when the motion of the arm is not
necessarily constrained to a plane.

Fix positive real numbers ry,...,r, > 0, n > 2. A (planar) robot arm (or linkage) with n
segments is a continuous curve in the Euclidean plane consisting of n line segments

s1 = [JoJ1], s2=[N1d2],..., sp=[Jn-1Jp]
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of lengths

dist (J;, Ji—1) =13, i=1,2,...,n.
We will refer to the vertices J; as the joints of the robot arm. We assume that .Jy is fixed at the origin
of the plane, and all the segments of the arm are allowed to rotate about the joints. Additionally, we
require that the last joint be constrained to slide along the positive real semiaxis (see Figure 1.2).

5 53 d
Io A
h ]2
5 7 /5 .
h
o A

Figure 1.2. A robot arm with four segments.

A (robot arm) configuration is a possible position of the robot arm subject to the above constraints.
Mathematically a configuration is described by an n-uple
Z=(z1,...,2n) €C"

constrained by

n n
lzkl =1, k=1,2,...,n, Ierkzkzo, Rlekzk>0.
k=1 k=1
Visually, if z,, = e*%, then 6, measures the inclination of the kth segment of the arm. The position
of kth joint Jy, is described by the complex number 121 + - - - + rg 2.

In Exercise 6.1.2 we ask the reader to verify that the space of configurations is a smooth hyper-

surface C of the n-dimensional manifold
n

M = { (61,...,60,) € (SH™ g T} cOS O > O} c (shHm,
k=1
described as the zero set of

n n
B:M =R, B(b1,....00) = resinfy=Tm> rez.
k=1 k=1
Consider the function 4 : (S1)" — R defined by

h(b1,...,0,) = Zrk cosf = Rlekzk.
k=1 k=1

—

Observe that for every configuration 0 the number h(0) is the distance of the last joint from the origin.
We would like to find the critical points of h|¢.
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It is instructive to first visualize the level sets of h when n = 2 and ry # ro, as it captures the
general paradigm. For every configuration 6 = (61, 62) we have

|’I“1 — 7’2| < h(é} <ri—+mro.
For every c € (|r1 —r2|, 71 +r2), the level set {h = ¢} consists of two configurations symmetric with
respect to the x—axis. When ¢ = |r; £ 3| the level set consists of a single (critical) configuration. We
deduce that the configuration space is a circle.

In general, a configuration 6= (01,...,6,) € C is acritical point of the restriction of h to C if
the differential of h at 6 is parallel to the differential at 6 of the constraint function 8 (which is the
“normal” to this hypersurface). In other words, @ is a critical point if and only if there exists a real
scalar \ (Lagrange multiplier) such that

dh(0) = MdB(0) < —rpsinb), = Argcosly, Vk=1,2,...,n.
We discuss separately two cases.

A. )\ = 0. In this case sin 6, = 0, Vk, that is, §;, € {0, 7}. If 2, = €*%F we obtain the critical points

n
(21, -y 2n) = (€1,...,€n), € ==E1, Zrkek:Rlekzk > 0.

k=1 k
b b )y
‘{) o & © © O

Figure 1.3. A critical robot arm configuration.

B. )\ # 0. We want to prove that this situation is impossible. We have
h(6) = Zrk cos O >0
k

and thus

O:B(g) :ZrksiDHk = —)\Zrkcosﬁk £ 0.
k k

We deduce that the critical points of the function / are precisely the configurations 5 = (€1,.-.,€n)
such that ¢, = £1 and ), _, 74¢;, > 0. The corresponding configurations are the positions of the
robot arm when all segments are parallel to the z-axis (see Figure 1.3). The critical configuration

¢ =(1,1,...,1) corresponds to the global maximum of ~» when the robot arm is stretched to its full
length. We can be even more precise if we make the following generic assumption:

n
D reen #0, Ver,... € € {1, -1} (1.1)
k=1
The above condition is satisfied if for example the numbers 7, are linearly independent over Q. This
condition is also satisfied when the length of the longest segment of the arm is strictly greater than
the sum of the lengths of the remaining segments.

The assumption (1.1) implies that for any choice of €, = &1 the sum ), 7€, is never zero. We
deduce that half of all the possible choices of ¢, lead to a positive ), ri€x, so that the number of
critical points is ¢(n) = 271, O
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If M is a smooth manifold, X is a vector field on M, and f is a smooth function, then we define
the derivative of f along X to be the function

Xf = df(X).

Lemma 1.1.6. Suppose f : M — R is a smooth function and py € M is a critical point of f. Then
for every vector fields X, X', Y, Y’ on M such that

X(po) = X'(po), Y(po)=Y(po),
we have
(XY f)(po) = (X'Y') f(po) = (Y X f)(po).
Proof. Note first that

(XY =Y X)f(po) = ([X,Y]f)(po) = df ([X,Y])(po) = 0.

Since (X — X')(po) = 0, we deduce that
(X = X")g(po) =0, Vg € C™(M).
Hence
(X = X)Y f(po) = 0= (XY f)(po) = (XY f)(po)-

Finally,

(XY f)(po) = (YX'f)(po) = (Y'X'f)(po) = (XY f) (o). O

If pg is a critical point of the smooth function f : M — R, then we define the Hessian of f at pg

to be the map
Hypy : TpoM X Tpo M — R, Hyp,(Xo,Yo) = (XY f)(po),

where X, Y are vector fields on X such that X (py) = Xo, Y (x9) = Yp. The above lemma shows
that the definition is independent of the choice of vector fields X, Y extending Xy and Y. Moreover,
Hy ,,, is bilinear and symmetric.

Definition 1.1.7. A critical point pg of a smooth function f : M — R is called nondegenerate if its
Hessian is nondegenerate, i.e.

Hfp(X,Y) =0, VY € T,y M < X =0.

A smooth function is called a Morse function if all its critical points are nondegenerate. O

Note that if we choose local coordinates (x!, ..., 2™) near py such that z%(py) = 0, Vi, then any
vector fields X, Y have local descriptions

X=X, Y=> Yo,
( J
near pg, and we can write

Hypo(X,Y) =Y hig XY, hij = (0460, f)(po)-
%,

The critical point is nondegenerate if and only if det(h;;) # 0. For example, the point B in Figure
1.1 is a degenerate critical point.

The Hessian also determines a function defined in a neighborhood of py,

Hypy(x) =Y hija'al,
‘7‘7‘
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which appears in the Taylor expansion of f at pg,

1
fl@) = fpo) + 5 Hpo(2) + O().
Let us recall a classical fact of linear algebra.

If V is a real vector space of finite dimension n and b : V x V. — R is a symmetric, bilinear
nondegenerate map, then there exists at least one basis (e1, . .., ey) such that for any v = ). v'e;
we have

b(v,v) = —(|vl|2 +...+ |v)‘]2) + M2+

The integer X is independent of the basis of (e;), and we will call it the index of b. It can be defined
equivalently as the largest integer { such that there exists an (-dimensional subspace V_ of V' with
the property that the restriction of b to V_ is negative definite.

Definition 1.1.8. Suppose pg is a nondegenerate critical point of a smooth function f : M — R.
Then its index, denoted by A(f, po), is defined to be the index of the Hessian H . O

If f: M — R is a Morse function with finitely many critical points, then we define the Morse

polynomial of f to be
Pr(t)y= > AP = (et
p€Cry A>0

Observe that the coefficient 117(\) is equal to the number of critical points of f of index A. The
coefficients of the Morse polynomial are known as the Morse numbers of the Morse function f.

Figure 1.4. A Morse function on the 2-sphere.

Example 1.1.9. Consider the hypersurface S C R? depicted in Figure 1.4. This hypersurface is
diffeomorphic to the 2-sphere. The height function z on R? restricts to a Morse function on S.

This Morse function has four critical points labeled A, B, C, D in Figure 1.4. Their Morse indices
are

AMA)=A(B) =2, A\C)=1, \D) =0,

so that the Morse polynomial is

AA) L AB) 4 MO L AD) =942 1 4 1. 0
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Example 1.1.10 (Robot arms: index computations). Consider again the setup in Example 1.1.5. We
have a smooth function h : C' — R, where

C={(21,--.,22) € (SH™ Rezrkzk >0, ImZTka =0},
k k

and
h(z1y. . y2n) = Rlekzk.
k

Under the assumption (1.1) this function has 2"~ critical points 5 described by

—

CZ(<17"'7C’n):(617"'76n)7 Ek:j:17 Zrk€k>0~

k

We want to prove that h is a Morse function and then compute its Morse polynomial. We write

G = €%, o € {0, 7}
A point Z = (¢%1, ... i) € C close to ( is described by angular coordinates

Ok = or +tr, [te] < 1,
satisfying the constraint

n
g(t1, ... tn) = Zrk sin(pk + tx) = 0.
k=1

Near 5 the function g has the Taylor expansion

n

glti, .. ta) =) erity + O(3),
k=1

where O(r) denotes an error term smaller than some constant multiple of (|¢1]| + - - - + |t,])". From
the implicit function theorem applied to the constraint equation g = 0 we deduce that we can choose
(t1,...,tn—1) as local coordinates on C' near 5 by regarding C' as the graph of the smooth function
t,, depending on the variables (t1,...,t,_1). Using the Taylor expansion of ¢,, at

(t,. .. tao1) = (0,...,0)

we deduce (see Exercise 6.1.3)

n
k7K /
ty = — —— 4+ 0'(2). 1.2
" ; A C) (12)
where O'(r) denotes an error term smaller than some constant multiple of (|¢t1] + ... + |[tp—1])")-
Near ( the function h = > k1 Tk cos(pk + ty) has the Taylor expansion

n

n
1
h = Z €ELTE — 5 Zekrkti + 0(4)
k=1 k=1

Using (1.2) we deduce that near 5 € C we have the following expansion in the local coordinates:
(t1, . tn—1)

n n—1 n—1

1 1 €xTrlE 2
h|C = Z €T — 5 Z fkrktz — §€nrn (Z cr ) + O/(S).
n'n

k=1 k=1 k=1
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We deduce that the Hessian of h|¢ at f can be identified with the restriction of the quadratic form

n

q(tl, - ,tn) = — Z Ekat%

k=1
to the subspace

n
TgC = { (t1,...,tn) € R™; ZEkatk = 0}.
k=1
At this point we need the following elementary result.

Lemma 1.1.11. Let ¢ = (cy,...,c,) € R™ be such that
c1-¢Ce...cn #0, S:=c1+ ...+ ¢, #0.
LetV := { teR™; L 5} and define the quadratic form

n
Q :R*" x R"™ — R, Q(l_[, 17) = chukvk.
k=1

Then the restriction of Q to V is nondegenerate and

(A, S >0,
A@lv) = {)\(Q) 1, S<o.

Proof. We may assume without any loss of generality that |¢] = 1. Denote by Py the orthogonal
projection onto V' and set

L:R" - R", L:=Diag(ci,...,cn).
Then
Q(,v) = (L, 7).
The restriction of () to V' is described by
Q|V(Q71762) = (PVL,Ul’ﬁQ)a V’Uz eV

We deduce that |y is nondegenerate if and only if the linear operator ' = Py L : V' — V has trivial
kernel. Observe that o € V belongs to ker 7' if and only if there exists a scalar y € R such that

Li=yee== =y, 6=(1,...,1).
Since (¥, &) = 0 and (3,¢) = Y7, ¢, # 0 we deduce y = 0, so that 7 = 0.
For v € V and y € R we have

(L(T 4 y0),7 4 y8) = (L¥,7) + 2y(L7,8) + y*(Ld,6) = (LT,7) + 5. (1.3)

Suppose V. is a maximal subspace of V', where Q|V is positive/negative definite, so that
Vit Vo=V (:> dimVy +dimV_ = dimV = n — 1).
Set
Ur=Vi®Ro=Vy ®RE
Observe that
dmUy =dimVy+1, V, U_=R"=U; @ V_. (1.4)

We now distinguish two cases.
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A. S > 0. Using equation (1.3) we deduce that () is positive definite on U and negative definite on
V_. The equalities (1.4) imply that

AQ) = dim V. = A(Q[V).

B. S < 0. Using equation (1.3) we deduce that () is positive definite on V. and negative definite on
U_. The equalities (1.4) imply that

Q) = M@QIV) + 1.

This completes the proof of Lemma 1.1.11. O

Returning to our index computation we deduce that at a critical configuration € = (ey, ..., €,)
the Hessian of & is equal to the restriction of the quadratic form

n n
Q=) cth, cp=—€rr, Y cp=—h(€) <0,
k=1 k=1

to the orthogonal complement of ¢. Lemma 1.1.11 now implies that this Hessian is nondegenerate
and its index is

MO = (&) =#{k; ex=1}—1 (1.5)
For different approaches to the index computation we refer to [Hau, SV].

If (1.1) is satisfied we can obtain more refined information about the Morse polynomial of h. For
every binary vector € € {—1, 1}" we define

0@ :=#{k =1}, L= e p( =) rie.
K K

We deduce

20(6) =Y e+ Y el =@ +n
k k

1
= Mé) = 5(n+L(e) — 1.
The set of critical points of / can be identified with the set
Ry :={ee{-1,1}" p(& >0}.

Define

R_={& —€cR_}.

Assumption (1.1) implies that
{-,1}"=RyUR_.
The Morse polynomial of A is

Pty =Y MO — p3-1 > /2,

€ER €EER
Define
L) = > 072 L )= > 02
€eER4 €eR_

Since ¢(—€) = —{(€) we deduce
Ly (1) = Lt 7).
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On the other hand,
LE) + Ly (1) =Y (/)1 = (12 4712 =Pt 4 1)

€

Hence

Li(t) + Lyt = t 72t + 1)
Since

Ly (t) = "2 Py (1),
we deduce
2P () + PR = 2+ 1),

so that

tPy(t) +t" Pt = (t + )™ (1.6)
Observe that t"~1 P(¢~!) is the Morse polynomial of —h, so that

tPy(t) + P_p(t) = (¢t +1)". (1.7)

If

Ph(t) =ag+ait+...+ an,ltn_l,
then we deduce from (1.6) that

n

k:+1>’ Vk=1,...,n—2, ap_1 = 1. O

ak + ap_92_f = <

Let us return to our general study of Morse functions. The key algebraic reason for their effec-
tiveness in topological problems stems from their local rigidity. More precisely, the Morse functions
have a very simple local structure: up to a change of coordinates all Morse functions are quadratic.
This is the content of our next result, commonly referred to as the Morse lemma.

Theorem 1.1.12 (Morse). Suppose f : M — R is a smooth function, m = dim M, and pq is
a nondegenerate critical point of f. Then there exists an open neighborhood U of pg and local
coordinates (x',...,x™) on U such that

P(po) =0, Yi=1,...,m and f(z)= f(po) + %Hf,po(x).

In other words, f is described in these coordinates by a quadratic polynomial.

Proof. We use the approach in [AGV1, §6.4] based on the homotopy method. This has the advantage
that it applies to more general situations. Assume for simplicity that f(pg) = 0.

Fix a diffeomorphism ® from R™ onto an open neighborhood N of pg such that ®(0) = py. This
diffeomorphism defines coordinates (%) on IV such that z°(pg) = 0, Vi, and we set p(z) = f(®(x)).
For t € [0, 1] define ¢; : R™ — R by

pi(z) = (1= t)p(x) +1Q(z) = Q(z) + (1 — 1) (w(2) — Q(z)),

where
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We seek an open neighborhood U € ®~1(V) of 0 € R™ and a one-parameter family of embeddings
U, : U — R™ such that

U (0) =0, pro¥,=¢ onU Vte|0,1]. (1.8)

Such a family is uniquely determined by the ¢-dependent vector field

Vile) i= ),

More precisely, the path ¢ LN U, (x) € R™ is the unique solution of the initial value problem
V() =Vi(v (1)) vt, 7(0) =
Differentiating (1.8) with respect to ¢, we deduce the homology equation
ProVy+ (Vipr) oWy =0 <= Q — o = Vypy on Wy (U), Vt € [0,1]. (1.9)
If we find a vector field V; satisfying V;(0) = 0, V¢t € [0, 1] and (1.9) on a neighborhood W of 0, then
N= ) o'
te(0,1]

is a neighborhood1 of 0, and we deduce that ¥, satisfies (1.8) on N. To do this we need to introduce
some terminology.

Two smooth functions f, g defined in a neighborhood of 0 € R™ are said to be equivalent at O if
there exists a neighborhood U of 0 such that f |;y= ¢ |. The equivalence class of such a function f
is called the germ of the function at 0 and it is denoted by [f]. We denote by € the collection of germs
at 0 of smooth functions. It is naturally an R-algebra. The evaluation map

C*>fr— f(0)eR

induces a surjective morphism of rings € — R. Its kernel is therefore a maximal ideal in £, which we
denote by m. It is easy to see that € is a local ring, since for any function f such that f(0) # 0, the
inverse 1/ f is smooth near zero.

Lemma 1.1.13 (Hadamard). The ideal m is generated by the germs of the coordinate functions x'.

Proof. It suffices to show thatm C >, x'€. Consider a germ in m represented by the smooth function
f defined in an open ball B,.(0). Then for every « € B,(0) we have

)= 1)~ 10 = [ sa)is = I / S(sa)d
Lo T

Ug

This proves that [f] = >_.[2][u]. 0

For every multi-index o = (o1, ..., o) € ZZ, we set

olal
o ) L 1 myQam —
] = zi:a“ %= (z)* .. (™), DY = (@) (Dam)om

IThis happens because the condition V;(0) = 0 V¢ implies that there exists > 0 with the property that Uy (z) € W, V|z| < r,
vVt € [0, 1]. Loosely speaking, if a point z is not very far from the stationary point 0 of the flow Wy, then in one second it cannot travel
very far along this flow.
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Lemma 1.1.14. If (D“f)(0) = 0 for all || < k then [f] € m*. In particular [¢] € m?%, o —Q € m>.

Proof. We argue by induction on k£ > 1. The case k = 1 follows from Hadamard’s lemma. Suppose
now that (D f)(0) = 0 for all || < k. By induction we deduce that [f] € m*~1, so that

f= Z T%Uqy, Uy € E.
|a|l=k—1
Hence, for any multi-index /3 such that |3| = k — 1, we have
DPf :DB( Z x“ua> € ug +m.
| <k—1
In other words,
DPf —ugem, V|p|=k— 1.
Since (D? f)(0) = 0, we deduce from Hadamard’s lemma that D” f € m so that ug € m for all 5. O

Denote by J,, the ideal in € generated by the germs at 0 of the partial derivatives 0,ip, i =
1,...,m. Itis called the Jacobian ideal of ¢ at 0. Since 0 is a critical point of ¢, we have J, C m.
Because 0 is a nondegenerate critical point, we have an even stronger result.

Lemma 1.1.15 (Key lemma). J, = m.

Proof. We present a proof based on the implicit function theorem. Consider the smooth map
y=dp:R" 5 R", y=(y'(x),...,y" (), v’ = .
Then 5
)
y(0) =0, %‘w:O =H,p.

Since det H, o # 0, we deduce from the implicit function theorem that y is a local diffeomorphism.
Hence its components y* define local coordinates near 0 € R™ such that y*(0) = 0. We can thus
express the %’s as smooth functions of 37°s, z* = 2% (y!, ..., y™).

On the other hand, z°(y)|,—0 = 0, so we can conclude from Hadamard’s lemma that there exist

smooth functions u; = u; (y) such that

zt = Zu?yj = 1’ € J,, Vi O
J
Set § := ¢ — @, so that ¢; = ¢ — t6. We rewrite the homology equation as
Vi (p—10) =0
For every g € € we consider the “initial value” problem
Vi (0) =0, Vte]o,1], ¢))
Vi-(p—t0) =g, Vte[0,1]. (Hy)

Lemma 1.1.16. For every g € m there exists a smooth vector field V; satisfying (Hy) for any t €
[0,1]. Moreover, if g € m? we can find a solution V; of (Hy) satisfying the initial condition (I) as
well.
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Proof. We start with some simple observations. Observe that if V,%* is a solution of (Hyg,), i = 0, 1,
and u; € &, then uovﬂo + uq Vtg1 is a solution of (H,gy+u,4,)- Since every g € m can be written as
a linear combination

m
g= inui, u; € €,
i=1

it suffices to find solutions V;* of (H,:).

Using the key lemma we can find a;; € € such that
xi = Zaijajgo, aj = 8xj.
i

We can write this in matrix form as
r=A(z)Vp <=z = A(x)V(p — t§) + tA(x)Vo. (1.11)

Lemma 1.1.14 implies § € m?, so that 9;0 € m?, Vi. Thus we can find b;; € m such that
825 = Z bijCCj,
J

or in matrix form,
Vé = Bz, B(0)=0.
Substituting this in (1.11), we deduce
(1gm — tA(z)B(z) )o = A(z)V(p — t4).

Since B(0) = 0, we deduce that ( 1gm — tA(z)B(z)) is invertible” for every ¢ € [0, 1] and every
sufficiently small . We denote by Cy() its inverse, so that we obtain

x = Cy(x)A(x)V(p — t9).
If we denote by VJZ (t, ) the (7, j) entry of Cy(x)A(x), we deduce

x' =) Vi(t,2)0;(p — 10),
J

SO

Vi=> Vitz)o;
J

is a solution of (H,:). If g = >, giz* € m, then >, g;V}’ is a solution of (H,). If additionally
g € m?, then we can choose the previous g; to be in m. Then > i V! is a solution of (H,) satisfying
the initial condition (I). O

Now observe that since § € m® C m?, we can find a solution V; of H_; satisfying the “initial”
condition (I). This vector field is then a solution of the homology equations (1.9). This completes the
proof of Theorem 1.1.12. O

2The reader familiar with the basics of commutative algebra will most certainly recognize that this step of the proof is in fact
Nakayama’s lemma in disguise.
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Corollary 1.1.17 (Morse lemma). If pg is a nondegenerate critical point of index A of a smooth
function f : M — R, then there exist local coordinates (x")1<i<m near py such that x*(po) = 0, i,
and in these coordinates we have the equality

A m
f=1rpo) =Y @)+ Y (@) o
i=1 j=A+1

We will refer to coordinates with the properties in the Morse lemma as coordinates adapted to
the critical point. If (x', ... 2™) are such coordinates, we will often use the notation

r=(z_,zy), z_=(z,...,2"), x4 =

f=fpo) = lo—|* + |4 >

A+1 m
2™,

1.2. Existence of Morse Functions

The second key reason for the topological versatility of Morse functions is their abundance. It turns
out that they form a dense open subset in the space of smooth functions. The goal of this section is to
prove this claim.

The strategy we employ is very easy to describe. We will produce families of smooth functions
fr : M — R, depending smoothly on the parameter A € A, where A is a smooth finite dimensional
manifold. We will then produce a smooth map 7 : Z — A such that f) is a Morse function for every
regular value of 7. Sard’s theorem will then imply that f is a Morse function for most \’s.

Suppose M is a connected, smooth, m-dimensional manifold. According to Whitney’s embed-
ding theorem (see, e.g., [W, IV.A]) we can assume that M is embedded in an Euclidean vector space
E of dimension n < 2m + 1. We denote the metric on E by (e, ). Suppose A is a smooth manifold
and F': A x E — R is a smooth function. We regard F' as a smooth family of functions

Fy:E—R, Fy(z)=F\=z), Y(\,z)e Ax E.
We set
[ =Flaxm, r:=F\|m.

Let z € M. There is a natural surjective linear map P, : E* — Ty M which associates to each linear
functional on F its restriction to 7, M C FE. In particular, we have an equality

df)\(.%') = deF)\(x)
For every z € M we have a smooth partial differential map
Ff:N—=TrM, A dfy(x).

Definition 1.2.1. (a) We say that the family F' : A x E — R is sufficiently large relative to the
submanifold M — E if the following hold:

o dimA > dim M.
e For every x € M, the point 0 € T,y M is a regular value for 9° f.
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(b) We say that F'is large if for every x € F the partial differential map
O°F: A — E*, A dF\(z)
is a submersion, i.e., its differential at any A € A is surjective. O

Lemma 1.2.2. If F : A x E — R is large, then it is sufficiently large relative to any submanifold
M — E.

Proof. From the equality 0” f = P,0"F we deduce that 9 f is a submersion as a composition of
two submersions. In particular, it has no critical values. O
Example 1.2.3. (a) Suppose A= FE*and H : E* x E — R,
H(\ x)=Xxz), Y(\,z) e E* X E.

Using the metric identification we deduce that

d.Hy =\, VA€ E™.
Hence

0"H:E*—T,FE=FE"

is the identity map and thus it is a submersion. Hence H is a large family.
(b) Suppose E is a Euclidean vector space with metric (e, ), A = E, and

1
R:Ex E =R, R(A,x):§|x—)\]2.

Then R is large. To see this, denote by T : E — E* the metric duality. Note that
de Ry = (z — \)T,
and the map E > \ — (z — \)! € E* is an affine isomorphism. Thus R is a large family.

(c) Suppose F is an Euclidean space. Denote by A the space of positive definite symmetric endomor-
phisms A : F — E and define

F:AxE—-R, AXE> (A,x)H%(Ax,x).
Observe that 9 F' : A — FE is given by
O"F(A) = Az, VA€ A.

If  #£ 0 then O F is onto. This shows that F' is sufficiently large relative to any submanifold of £
not passing through the origin. O

Theorem 1.2.4. If the family F' : Ax E — R is sufficiently large relative to the submanifold M — E,
then there exists a negligible set Ao, such that for all A\ € A\ A the function fy : M — Ris a
Morse function.

Proof. We will carry the proof in several steps.

Step 1. We assume that M is special, i.e., there exist global coordinates

(ﬂcl,...,x")
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on E (not necessarily linear coordinates) such that M can be identified with an open subset W of the
coordinate “plane”
{merl :-~:xn:0}.
For every A € A we can then regard f) as a function f) : W — R and its differential as a function
oA W —=R™ w= (:cl, o) o (w) = (8$1f)\(w), .. .,8xmfk(w)).
A point w € W is a nondegenerate critical point of f if
or(w) =0eR™
and
the differential Do) : T,,W — R™ is bijective.
We deduce that f) is a Morse function if and only if O is a regular value of ¢,. Consider now the
function
O :AXW =R, O\ w) = pr(w).
The condition that the family be sufficiently large implies the following fact.

Lemma 1.2.5. 0 € R™ is a regular value of ®, i.e., for every (\,w) € ®1(0) the differential
D® : T(y uw)A x W — R™ is onto.

To keep the flow of arguments uninterrupted we will present the proof of this result after we have
completed the proof of the theorem. We deduce that
Z=210)={(\w) e AxW; py(w) =0},

is a closed smooth submanifold of A x V. The natural projection 7 : A x W — A induces a smooth
map 7 : Z — A. We have the following key observation.

Lemma 1.2.6. If A is a regular value of m : Z — A, then 0 is a regular value of ), i.e., f is a
Morse function.

Proof. Suppose A is a regular value of 7. If A does not belong to 7(Z) the the function f) has no
critical points on M, and in particular, it is a Morse function.

Thus, we have to prove that for every w € W such that py(w) = 0, the differential D), :
TwW — R™ is surjective. Set

T :=T\A, Tp = T,W, V =R™,
Dy :Dy®:Ty =V, Dy=Dy®:Ty— V.
Note that D® = D; + Do, z = (A\,w) € Z, and
T.Z =ker(D1+Dy: Ty ®To — V).

The lemma is then a consequence of the following linear algebra fact.

o Suppose 11,15,V are finite dimensional real vector spaces and
D;,:T,—=V, i=1,2,
are linear maps such that D1 + Do : Th @ 1o — V is surjective and the restriction of the natural
projection
P:Thel,—1T
to K = ker(D; + Do) is surjective. Then Dy is surjective.
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Indeed, let v € V. Then there exists (t1,t2) € T1 @ Tb such that v = D1t1 + Dato. On the other
hand, since P : K — T is onto, there exists t;, € T such that (¢,t,) € K. Note that

v = Dit1 + Doty — (Dltl + Dgtlz) = DQ(tQ — t,2> — v € Im D>. a
Using the Morse—Sard-Federer theorem we deduce that the set Ay; C A of critical values of

7 Z — A is negligible, i.e., it has measure zero (see Definition 1.1.1). Thus, for every A € A\ Ay
the function f : M — R is a Morse function. This completes Step 1.

Step 2. M is general. We can then find a countable open cover (M}, ),>1 of M such that Mj, is special
Vk > 1. We deduce from Step 1 that for every k > 1 there exists a negligible set A, C A such that
for every A € A\ Ay, the restriction of f) to M, is a Morse function. Set

Ao = U Ag.
k>1

Then A is negligible, and for every A € A\ A the function fy : M — R is a Morse function. The
proof of the theorem will be completed as soon as we prove Lemma 1.2.5.

Proof of Lemma 1.2.5. 'We have to use the fact that the family F’ is sufficiently large relative to M.
This condition is equivalent to the fact that if (Ao, wp) is such that ¢, (wp) = 0, then the differential
0
D,\(I) = 5 ‘)\:,\0 df)\(’w()) : T)\OA — R™
is onto. A fortiori, the differential D® : T\, ) (A x W) — R™ is onto. 0

Definition 1.2.7. A continuous function g : M — R is called exhaustive if all the sublevel sets
{g < ¢} are compact. 0

Using Lemma 1.2.2 and Example 1.2.3 we deduce the following result.

Corollary 1.2.8. Suppose M is a submanifold of the Euclidean space E not containing the origin.
Then for almost all v € E*, almost all p € E, and almost any positive symmetric endomorphism A
of E the functions
ho,rp,qa s M — R,
defined by
1 1
h'u(l') = ’U(l‘), Tp(ﬂj‘) = §|:‘U _p|27; QA(:E) = 5(‘41"33)7

are Morse functions. Moreover, if M is closed as a subset of E then the functions v, and qu are
exhaustive. a

Corollary 1.2.9. Suppose that M is smooth manifold and U C C*°(M) is a finite dimensional vector
space satisfying the ampleness condition

Vpe M, V&€ TyM, JucU: du(p) =¢.

Then almost any function u € U is Morse.

Proof. Fix an embedding ig : M — Ej into a finite dimensional vector space Ey. Denote by U™ the
dual of U, U™ := Hom(U, R), and define

i:M—EyaU*, M>p—ig(p)®ev,c EgpU”",
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where ev,, : U — R is given by
evpy(u) =u(p), YueU.
The map i is an embedding. Set £ := Ey ® U™ and define
F:UXE—=R, Ux(E®U") 3 (u,e0®u*) = u(u).

Note that for any p € M and any u € U we have F'(u,i(p) ) = u(p), so that F,|ps = u, Vu € U.
The ampleness condition implies that F' is large relative to the submanifold i(M ) of E and the result
follows from Theorem 1.2.4. O

Remark 1.2.10. (a) Although the examples of Morse functions described in Corollary 1.2.8 may
seem rather special, one can prove that any Morse function on a compact manifold is of the type h,,.
Indeed, let M be a compact smooth manifold, and f : M — R be a Morse function on M. Fix an
embedding ® : M — R™. We can then define another embedding

Pp: M > RxR", z— (f(z),®(z)).

If (o, €1, ..., €y,) denotes the canonical basis in R x R", then we see that f can be identified with
the height function hg, i.e.,

f=hgo®p=(Pf) hg,
(b) The Whitney embedding theorem states something stronger: any smooth manifold of dimension
m can be embedded as a closed subset of an Euclidean space of dimension at most 2m + 1. We
deduce that any smooth manifold admits exhaustive Morse functions.

(c) Note that an exhaustive smooth function satisfies the Palais—Smale condition: any sequence x,, €
M such that f(x,,) is bounded from above and |df (x,,)|, — O contains a subsequence convergent to
a critical point of f. Here |df ()|, denotes the length of df (x) € T M with respect to some fixed
Riemannian metric on M. O

Definition 1.2.11. A Morse function f : M — R is called resonant if there exist two distinct critical
points p, g corresponding to the same critical value, i.e., f(p) = f(q). If different critical points
correspond to different critical values then f is called nonresonant® . O

It is possible that a Morse function f constructed in this corollary may be resonant. We want to
show that any Morse function can be arbitrarily well approximated in the C2-topology by nonresonant
ones.

Consider a smooth function 7 : [0, 00) — [0, 1] satisfying the conditions
n0)=1, nt)=0, Vt >2, —1<9'(t) <0, Vt>O0.
We set
ne(t) = (™).
Observe that
n(0) =e, —* <nl(t) 0.
Suppose f : M — R is a smooth function and p is a nondegenerate critical point of f, f(p) = c. Fix
coordinates x = (x_, x ) adapted to p. Hence

f=c—lo—P+lei?, Vo e Us = {Jo_” + o] < 2¢}.

3R. Thom refers to our non-resonant Morse functions as excellent.
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Setuy = |+ |, u = u_ + uy and define
fe=Tep=f+n(u) =c—u_ +uy+n(u).
Then f = f. on X \ U, while along U, we have
dfe = (e — )du— + (n_ + 1)du.

This proves that the only critical point of fi. | is # = 0. Thus f.. ), has the same critical set as f,
and

If = felle2 <&, felp) = f(p) + €% felq) = f(q), Vg€ Crp\{p}.

Iterating this procedure, we deduce the following result.

Proposition 1.2.12. Suppose f : M — R is a Morse function on the compact manifold M. Then
there exists a sequence of nonresonant Morse functions f, : M — R with the properties

Crs, = Cr(f), Vn, fnﬁf, asn — oo. O

Remark 1.2.13. The nonresonant Morse functions on a compact manifold M enjoy a certain stability
that we want to describe.

We declare two smooth functions fy, fi : M — R to be equivalent if and only if there exist
diffeomorphisms R : M — M and L : R — R such that f; = L o fy o R™!, i.e., the diagram below
is commutative

MLR

R[ ‘
M — R
1
In other words, two smooth functions are to be equivalent if one can be obtained from the other via a

global change of coordinates 2 on M and a global change of coordinates L on R.

We can give an alternate, more conceptual formulation of this condition. Consider the group
G = Diff (M) x Diff (R), where Diff (X) denotes the group of smooth diffeomorphisms of the
smooth manifold X. The group G acts (on the left) on the space C°°(M,R) of smooth functions on
M, according to the rule

(R,L)*f::LofoRfl,

V(R, L) € Diff (M) x Diff (R), f € C*°(M,R). Two smooth functions are therefore equivalent if
and only if they belong to the same orbit of the above action of G.

The space C°°(M,R) is equipped with a natural locally convex topology making it a Fréchet
space (see [GG, Chap. III]) so that a sequence of functions converges in this topology if and only
if the sequences of partial derivatives converge uniformly on M. A function f € C*°(M,R) is said
to be stable if it admits an open neighborhood O in the above topology on C'°°(M, R) such that any
g € O is equivalent to f.

One can prove (see [GG, Thm. II1.2.2]) that a function f € C°°(M,R) is stable if and only if it
is a nonresonant Morse function. O
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1.3. Morse Functions on Knots

As we have explained in Remark 1.2.10(a), any Morse function on a compact manifold M can be
viewed as a height function h,, with respect to some suitable embedding of M in an Euclidean space
FE and some vector v € E.

In this section we look at the simplest case, an embedding of S! in the 3-dimensional Euclidean
space and we would like to understand the size of the critical set of such a height function. Since
we have one height function for each unit vector, it is natural to ask what is the “average size” of
the critical set such a height function. The answer turns out to depend both on the geometry and the
topology of the embedding. A byproduct of this analysis is a celebrated result of J. Milnor [M0]
concerning the “amount of twisting” it takes to knot a curve. Our presentation is inspired from [CL].

We define a knot to be a smooth embedding ¢ : S' < E, where FE is an oriented real Euclidean
3-dimensional space, with inner product (—, —). We denote by K the image of this embedding. Let
S denote the unit sphere in E.

A vector v € S determines a linear map
ly: E =R, x— (v,x).
We set
hv = E’U‘K'
As explained in the previous section, for almost all v in S, the function h,, is Morse. We denote by
(i (v) the number of critical points of h,,. If h, is not a Morse function we set p i (v) := 0. Observe

that if h, is Morse, then px (v) > 2 because a Morse function on a circle has at least two critical
points, an absolute minimum and an absolute maximum.

We want to show that the function
Sov— ug(v) €Z

is measurable, and then compute its average

_ 1 1
i = s /S pic(w)dA(w) = - /S e (0)dA (),

where d A denotes the Euclidean area element on the unit sphere.

The proof relies on a special case of classical result in geometric measure theory called the coarea
formula. While the statement of this result is very intuitive, its proof is rather technical. To keep the
geometric arguments in this section as transparent as possible we decided to omit its the proof. The
curious reader can consult [BZ, §13.4], [Fed, §3.2], or [Mor, §3.7].

The formulation of the area formula uses a geometric invariant that may not be as widely know
so we begin by defining it.

Suppose (M, go) and (M, g1) are smooth, connected, Riemannian manifolds of identical di-
mension m, and F' : My — M; is a smooth map. We do not assume that either one of these
manifolds is orientable. The Jacobian of F' is the smooth nonnegative function

|Jp| : My — [0, 00)

defined as follows. Let 29 € My, set x1 = F'(xp) and denote by FIO the differential of F' at zg so
that I, is a linear map
F:):g : TxoMO — Tlel-
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Fix an orthonormal basis (€%, . .., €y,) of T,, My, and set
fr = Euhy 1<k <m.

We can form the m x m symmetric matrix G () whose (i, j)-th entry is the inner product g, (f;, fj)
The matrix Gs(xo) is nonnegative so its determinant is nonnegative, and it is independent of the
choice of orthonormal basis (€}). Then

‘JF‘(xo) = \/det GF({L‘())

If both My and M, are oriented, then we can give an alternate description of the Jacobian. The
orientations define volume forms dV,, € Q™(My) and dV,, € Q™(M;). There exists a smooth
function wg : My — R uniquely determined by the condition
F*dVy, = wpdVy,.
Then
|Jr[(z0) = |wp(zo)|, Vzo € Mo.

Observe that if F' : My — M; is a smooth map between compact smooth manifolds of identical
dimensions, then Sard’s theorem implies that for almost every z; € M is a regular value of F'. For

such z1’s the fiber /=1 (z1) is a finite set. We denote by Ng(z1) € Z>o U {00} its cardinality. We
can now formulate the very special case of the coarea formula that we need in this section.

Theorem 1.3.1 (Corea formula). Suppose F : (Mo, go) — (M1, g1) is a smooth map between two
compact, connected oriented Riemann manifolds of identical dimensions. Then the function

My > x> NF(J/‘l) € Zzo U {OO}
is measurable with respect to the Lebesgue measure defined by dV;,, and

Np(w1)dVy, (21) = / 7| (20) AV (). 0
My Mo

We now return to our original investigation. The embedding ¢ : S' — E defining K induces an
orientation on K. For z € K we denote by &y(x) the unit vector tangent to K at x and pointing in
the direction given by the orientation. Define

S(K)={(z,v) e Kx8; vLélz)}.

In other words, S(K) is the unit sphere bundle associated to the normal bundle of K — E. The
natural (left and right) projections

AMKxS—=K, p:Kx8§—=S8

induce smooth maps

Ak S(K) — K and PK - S(K) — S.
The first key observation is contained in the following lemma whose proof is left to the reader as an
exercise (Exercise 6.1.5).

Lemma 1.3.2. The vector v € S is a regular value of the map p : S(K) — S ifanonly if hy : K —
R is a Morse function. Moreover

pr(v) = Ny (v), Vo e S. 0
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We deduce from Theorem 1.3.1 that the function v — i (v) is measurable, and

1
fig = 47r/5z\pr(v)dA(v). (1.12)

To evaluate the right-hand side of (1.12) we plan to use the coarea formula for the map pg. This
requires a choice of metric on S(K).

Denote by ds the length element along K, and by L the length of K. By fixing a point on K we
obtain an arclength parametrization

0,L] >s— x(s) e K C E.

Fix a smooth map €} : K — S such that €1(x) L éy(x), Vo € K. In other words, €] is a section of
the normal unit circle bundle A\ : S(K) — K. We set

52(:13) = 50(.73) X 51 ($),
where X is the cross-product on E induced by the metric and the orientation on this vector space. The

collection ( &y(z), €1 (z), é2(x) ) is a so called moving frame along K. Observe that for any z € K
the collection (¢ (x), €(z)) is an orthonormal basis of the normal plane (7, K)* C E. We set

€j(s) == é'j(a:(s) ), j=0,1,2.
We can now produce a diffeomorphism ¢ : (R/LZ) x (R/27Z) — S(K)
(R/LZ) x (R/27Z) > (s,0) — (z(s),v(s,0)) € S(K),
v(s,0) = cosf - €1(s) +sinb - e(s).
We define the metric on S(K) to be
gx = ds* + db?.
Note that we have globally defined vector fields 0; and Jy on S(K') that define an orthonormal frame
of the tangent plane at each point of S(K). In the coordinates (s, #) the map px is described by

(s,0) — v(s,0).
If we denote by | Jx| the Jacobian of the map
PK : (S(K)79K) — (5795)
then we deduce that
|JK|2 _ (vs,v5)E (Vs V0)E
(’Usvve)E ('UOaUG)E

where v and vy denote the partial derivatives with respect to s and 6 of the smooth map (s,0) —
v(s,0) € E. We have

vs = cosf- €| (s) +sinf - eh(s), vg=—sinf- & (s)+ cosh - és),
where a prime ’ indicates derivation with respect to s. Let us observe that
(vg,v9)E = 1.

For any 0 < ¢, 5 < 2 we have

so that
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This shows that the s dependent matrix
A(S) = (CLU(S) )Ofi,jSQ’ aij(s) = (57,(8)7 él](s) )E’

is skew-symmetric, so we can represent it as

B(s) (s 0
We deduce
(vs,vg) = (€1(s),E(s) ) p = a21(s) = (s).
We have
vs = cosO(—a(s)é(s) +v(s)éa(s) ) +sinf(—H(s)éo(s) — y(s)@i(s) )
= —(a(s) cos + B(s)sinf)é(s) — sinOy(s)e1(s) + cos Oy(s)éz(s)

so that

(vs,v5)E = (u(s) cos 6 + B(s) Sin0)2 +~(s)2
We deduce that

[Jk|* = (a(s)cosd + B(s)sinb )2.
Using the area formula in (1.12) we deduce

L 27
ﬂK:i </ | au(s) cos 6 + B(s sme\de)ds (1.13)
47T 0 0
::}r(s)

To extract a geometrically meaningful information we need a more explicit description of the integral
I(s). This is achieved in our next lemma.

Lemma 1.3.3. Let i € R2 For any 6 € [0, 27| we denote by 7i(0) the outer normal to the unit circle
in the plane at the point €*°. Then
1(@) / (- 79(0)[d0 = 4],

where - denotes the canonical inner product in R?.

Proof. Observe that for any rotation 7' : R? — R? we have I(T'%) = I(i) so we can assume that
@ =re?,0 =0, r > 0. In this case we have

/2
I(0) = 27“/ cos 0dO = 4r = 4|d. 0
—/2
Now choose @ = ((s), 3(s) ) in Lemma 1.3.3 to deduce that
I(s) = 4v/a(s)? + B(s)* = 4lep(s)]-

The scalar |€)(s)| is known as the (absolute) curvature of K at the point z(s) and it is denoted by
|k(s)|. We conclude

1/ pi(v)dA(v) = i = 1/ |k(5)]| ds. (1.14)

The integral | K |K(8)|ds is called the total curvature of the knot, and it is denoted by T'. It measures
how “twisted” is the curve K. Large Tk signifies that K is very twisted. The above formula shows
that if K is very twisted then the height function h,, will have lots of critical points on K.
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In [MO] the number

1_
CK = iﬂK
was called the crookedness of the knot. Observe that
1 1
= — - dA,.
CK = : 2/~LK(U) v

Observing (Exercise 6.1.4) that on a circle the critical points of a Morse function are either local
minima or local maxima and their numbers are equal, we conclude that % pi (v) is the number of
local minima of the Morse function h,,. We deduce

cr Tk. (1.15)

1
2
Here are some interesting consequences.

Corollary 1.3.4. For any knot K — E we have T > 2.

Proof. Since any Morse function on K has at least two critical points, the equality (1.14) implies
Ty > 2m. O

Corollary 1.3.5. If K is planar and convex then Ty = 2.

Proof. Since K is convex, any local minimum of a height function must be an absolute minimum.
Thus, any Morse height function will have a unique local minimum. This implies that the crookedness
of K is 1. The corollary now follows from (1.15). O

Remark 1.3.6. A stronger result is true. More precisely, Fenchel’s theorem states that if K is a knot,
then Tx = 27 if and only if K is a planar convex curve. In Exercise 6.1.6 we indicate one strategy
for proving this result. g

Corollary 1.3.7 Milnor). If Tk < 4w, then K is not knotted.

Proof. We deduce that g < 4. Thus, there exists v € S such that ux(v) < 4. Since ug(v) is a
positive even number we deduce that px (v) = 2. Thus the function h, has only two critical points
on K a global minimum and a global maximum. We leave the reader as an exercise* to show that
this implies that K is not knotted. O

We can turn the above result on its head and conclude that if the knot K is not the trivial knot,
then its total curvature must be > 4. In other words, a nontrivial knot must be twice twisted than a
planar convex curve.

Remark 1.3.8. The results in this section can be given a probabilistic interpretation. More precisely,
equip the three-dimensional Euclidean space E with a Gaussian probability measure

Jv|?
dy(v) = (27)"%e” 2 dv.
The collection (¢ ),cg is an example of random process. The function

E>ve ug(v) e’

4See Exercise 6.1.20 and its solution on page 255.
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is a random variable and one can prove that

[ o)) = e = 1 [S e () dA (), (1.16)

i.e., the expectation of this random variable is the equal to the crookedness of K. We refer to [Ni3]
for a generalization of this probabilistic equality. a






Chapter 2

The Topology of Morse
Functions

The present chapter is the heart of Morse theory, which is based on two fundamental principles. The
“weak” Morse principle states that as long as the real parameter ¢ varies in an interval containing only
regular values of a smooth function f : M — R, then the topology of the sublevel set {f < t} is
independent of ¢. We can turn this on its head and state that a change in the topology of {f < ¢} is
an indicator of the presence of a critical point.

The*‘strong” Morse principle describes precisely the changes in the topology of {f < t} as ¢
crosses a critical value of f. These changes are known in geometric topology as surgery operations,
or handle attachments.

The surgery operations are more subtle than they first appear, and we thought it wise to devote an
entire section to this topic. It will give the reader a glimpse at the potential “zoo” of smooth manifolds
that can be obtained by an iterated application of these operations.

2.1. Surgery, Handle Attachment, and Cobordisms

To formulate the central results of Morse theory we need to introduce some topological terminology.
Denote by D* the k-dimensional, closed unit disk and by D* its interior. We will refer to D¥ as the
standard k-cell. The cell attachment technique is one of the most versatile methods of producing
new topological spaces out of existing ones.

Given a topological space X and a continuous map ¢ : dDF — X, we can attach a k-cell to
X to form the topological space X U, D*. The compact spaces obtained by attaching finitely many
cells to a point are homotopy equivalent to finite CW -complexes. We would like to describe a related
operation in the more restricted category of smooth manifolds.

We begin with the operation of surgery. Suppose that M is a smooth m-dimensional manifold.
The operation of surgery requires several additional data:

e an embedding S < M of the standard k-dimensional sphere S*, k < m, with trivializable
normal bundle T'sM;
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e a framing of the normal bundle T's M, i.e., a bundle isomorphism
@:TsM - REF=R™"* xS
Equivalently, a framing of .S defines an isotopy class of embeddings
@ : D™ F x Sk — M such that ({0} x S¥) =S.

SetU := gp(]D)m_k x S*). Then U is a tubular neighborhood of S in M. We can now define a
new topological manifold M (S, ¢) by removing U and then gluing instead U = S™~*~1 x Dk+1
along QU = 9(M \ U) via the identifications

oU 50U =9(M\ U).
For every ey € D™ % = Sm~F~1 the sphere ¢(ey x S*) C M will bound the disk ey x D*+1 in
M (S, ). Note that eg x S* can be regarded as the graph of a section of the trivial bundle D% x
L
To see that M (.S, ¢) is indeed a smooth manifold we observe that
U\ S = (D™ "\ 0)x Sk
Using spherical coordinates we obtain diffeomorphisms
(D™ R\ 0) x S% 22 (0,1) x ™ F1 % SF,

SM=R=L 5 (0,1) x §F = gmTkL (DR ().
Now attach (S %=1 x D**+1) to U along U \ S using the obvious diffeomorphism

(0,1) x S™ k=1 gk 5 gm=k=1 5 (0,1) x S*.
The diffeomorphism type of M (.S, ¢) depends on the isotopy class of the embedding S < M and on
the regular homotopy class of the framing . We say that M (.S, ¢) is obtained from M by a surgery
of type (S, ).
Example 2.1.1 (Zero dimensional surgery). Suppose M is a smooth m-dimensional manifold con-
sisting of two connected components M. A 0-dimensional sphere S” consists of two points p4. Fix
an emquding SY <5 M such that p4+ € M. Fix open neighborhoods Uy of p+ € M diffeomor-
phic to D™ and set U = U_ U U4. Then

OM\U)=oU_uUoU, = 8% x g™ 1,

If we now glue Dt x S™~1 = [—1,1] x S™~! such that {£1} x S™! is identified with OU~., we
deduce that the surgery of M_ U M along the zero sphere {p+ } is diffeomorphic to the connected
sum M_# M . Equivalently, we identify (—1,0) x S™~! c D! x S™~! with the punctured neigh-
borhood U_ \ {p_} (so that for s € (—1,0) the parameter —s is the radial distance in U_) and then
identify (0,1) x S™~! with the punctured neighborhood U \ {p} (so that s € (0, 1) represents the
radial distance). O

Example 2.1.2 (Codimension two surgery). Suppose M™ is a compact, oriented smooth manifold
m > 3andi: S™ 2 < M is an embedding of a (m — 2)-sphere with trivializable normal bundle.
Set S = i(S™~2). The natural orientation on S™~2 (as boundary of the unit disk in R™~1) induces
an orientation on S. We have a short exact sequence

0TS —TM|s —TsM — 0

of vector bundles over S.
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The orientation on .S together with the orientation on M induce via the above sequence an ori-
entation on the normal bundle T's M. Fix a metric on this bundle and denote by DgM the associated
unit disk bundle. Since the normal bundle has rank 2, the orientation on T'sM makes it possible to
speak of counterclockwise rotations in each fiber. A trivialization is then uniquely determined by a
choice of section

e: 5 — JIDgM.
Given such a section €, we obtain a positively oriented orthonormal frame (€, f) of Ts M, where f is
obtained from € by a 7 /2 counterclockwise rotation. In particular, we obtain an embedding
e D x S22 DgM < M.
Once we fix such a section €y : S — JDgM we obtain a trivialization
ODgM = S x S,

and then any other framing is described by a smooth map S™~2 — S'. We see that the homotopy
classes of framings are classified by 7, _o(S'). In particular, this shows that the choice of framing
becomes relevant only when m = 3.

The surgery on the framed sphere (5, €p) has the effect of removing a tubular neighborhood
U = ¢z (D? x S™~2) and replacing it with the manifold U = S! x D™!, which has identical
boundary.

The section &, of 0Dg — S traces a submanifold Ly C 0DgM diffeomorphic to S™ 2. Via the
trivialization g, it traces a sphere @z, (Lo) C OU called the attaching sphere of the surgery. After
the surgery, this attaching sphere will bound the disk {1} x D™~ C U. O

Example 2.1.3 (Surgery on knots in S®). Suppose that M = S and that K is a smooth embedding
of a circle S* in S3. Such embeddings are commonly referred to as knots.

A classical result of Seifert (see [Rolf, 5.A]) states that any such knot bounds an orientable
Riemann surface X smoothly embedded in S®. The interior-pointing unit normal along 0X = K
defines a nowhere vanishing section of the normal bundle 7% S® and thus defines a framing of this
bundle. This is known as the canonical framing" of the knot. It defines a diffeomorphism between a
tubular neighborhood U of the knot and the solid torus D? x S*.

The canonical framing traces the curve
(= "lxg ={1} x S* c oD? x S
The curve  is called the longitude of the knot, while the boundary 9D? x {1} of a fiber of the normal
disk bundle defines a curve called the meridian of the knot and denoted by y = .
Any other framing of the normal bundle will trace a curve o on OU = 9D? x S isotopic inside
U to the axis K = {0} x S! of the solid torus U. Thus in H1(dDs x S1,Z) it has the form
[p] = plpl + 14,

where the integer p is the winding number of ¢ in the meridional plane D?. The curve ¢ is called the
attaching curve of the surgery.

The integer p completely determines the isotopy class of . Thus, every surgery on a knot in S°
is uniquely determined by an integer p called the coefficient of the surgery, and the surgery with this

s homotopy class is indeed independent of the choice of the Seifert surface X.
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framing coefficient will be called p-surgery. We denote by S3(K, p) the result of a p-surgery on the
knot K.

The attaching curve of the surgery ¢ is a parallel of the knot K. By definition, a parallel of K is a
knot K’ located in a thin tubular neighborhood of K with the property that the radial projection onto
K defines a homeomorphism K’ — K. Conversely, every parallel K’ of the knot K can be viewed
as the attaching curve of a surgery. The surgery coefficient is then the linking number of K and K’,
denoted by 1k (K, K').

When we perform a p-surgery on K we remove the solid torus U = D? x S! and we replace it
with a new solid torus U = S x D2, so that in the new manifold the attaching curve K, = ¢ + pp
will bound the disk {1} x D? c U.

Let us look at a very simple yet fundamental example. Think of S as the round sphere
{(z0,21) € C% 20> + |21 =2}.
Consider the closed subsets U; = {(z0,21) € S%; |z| < 1}, = 0,1. Observe that Uy is a solid

torus via the diffeomorphism

Uy 3 (20,21) — (Zo, ) eD? x St

|21

Denote by K; the knot in S3 defined by z; = 0. For example, Ky admits the parametrization
[0,1] >t — (0,V2e%™) € §3.

The knots K, K; are disjoint and form the Hopf link. Both are unknotted (see Figure 2.1).

Figure 2.1. The Hopf link.

For example, K¢ bounds the embedded 2-disk
Xo={CeC; (P <2} = {(20,21) = (V2 -[C]%,0), € $°}.
Observe that Uy is a tubular neighborhood of Ky, and the above isomorphism identifies it with the
trivial 2-disk bundle, thus defining a framing of K. This framing is the canonical framing of Uy. The
longitude of this framing is the curve
by =0UyN Xy = {(1,627rit); tc [0, 1]}

The meridian of Kj is the curve zg = e?™*, z; = 1, ¢ € [0, 1]. Via the diffeomorphism

U1—>]D2><Sl, U19(Z(),Zl)'—> (2’1, 2’0> €D2><Sl,

1
|20
this curve can be identified with the meridian p, of K.

Set M, := S3(K,p). The manifold M, is obtained by removing Uy from S3 and gluing back a
solid torus UO S x D? to the complement of Uy, which is the solid torus Uy, so that

0Uy D fio = {1} x OD* — plpo] + [€o] = plpo] + ).
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For p = 0 we see that the disk {1} x dD? € S' x D? = Uy bounds a disk in Up and a meridional
disk in Uy. The result of zero surgery on the unknot will then be S* x 52,

If p # 0, we can compute the fundamental group of M, using the van Kampen theorem. Denote
by T the torus o, by jo the inclusion induced morphism 71 (7') — 7 (UO), and by j; the inclusion
induced morphism 71 (7") — 71 (U;1). As generators of 7;(7") we can choose pio and the attaching
curve of the surgery ¢ = pf¢y because the intersection number of these two curves is £1. As
generator of 71 (U7) we can choose {1 = pg because the longitude of K is the meridian of K. As
generator of 71 (Up) we can choose jo(p0) because 7o is surjective and ¢ € ker jo. Thus 71 (M) is
generated by (g, ¢ with the relation

1 = jo(j10) = Jp(tio) = pplo, Lo = jo(lo) = jp(fo), Jp(t0) = jo(tio)-
Hence 7 (M,,) = Z/p. In fact, M), is a lens space. More precisely, we have an orientation preserving

diffeomorphism
S° (Ko, £lpl) = L(|pl, p| £ 1). O

Example 2.1.4 (Surgery on the trefoil knot). Suppose that K is a knot in S3. Choose a closed tubular
neighborhood U of K. The canonical framing of K defines a diffeomorphism U = D? x S'. Denote
by Ei the exterior
Ex = 83\ int (U).

Let T' = 0Eg = OU, and denote by i, : m1(T") — m1(EKk) the inclusion induced morphism. Let
K' C T be aaparallel of K , i.e., a simple closed curve that intersects a meridian p = 0D? x {pt}
of the knot exactly once.

The parallel K determines a surgery on the knot K with surgery coefficient p = 1k(K, K'). To
compute the fundamental group of S3(K, p) we use as before the van Kampen theorem.

Suppose 71 (Ex) has a presentation with the set of generators G and relations Rx. Let U =
S1 x D? and denote by j the natural map

U =oD' x S* — ' xD? =U.
Then 1 (U) is generated by £ = j, (1) and we deduce that S3( K, p) has a presentation with generators
G U {¢} and relation
i(K) =1, 1= ju(p).
Equivalently, a presentation of S3( K, p) is obtained from a presentation of 71 (E ) by adding a single
relation
i(K') = 1.

The fundamental group of the complement of the knot is called the group of the knot, and we will
denote it by G . Let us explain how to compute a presentation of G and the morphism 4.

Observe first that 71 (7") is a free Abelian group of rank 2. As basis of 71(7") we can choose any
pair (u,y), where ~ is a parallel of K situated on 7. Then we can write

K' = ap + by.
If w denotes the linking number of v and K , and ¢ denotes the longitude of K, then we can write
¥ =wp+4,
K'=pp+l=ap+blwp+l)=b=1, a=p—w, K'=(p—w)p+n.

Thus i, is completely understood if we know 4, (x) and i. () for some parallel v of K.
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The group of the knot K can be given an explicit presentation in terms of the knot diagram. This
algorithmic presentation is known as the Wirtinger presentation. We describe it the special case of
the (left-handed) trefoil knot depicted in Figure 2.2 and we refer to [Rolf, I1I.A] for proofs.

Figure 2.2. The (left-handed) trefoil knot and its blackboard parallel.

The Wirtinger algorithm goes as follows.

e Choose an orientation of the knot and a basepoint * situated off the plane of the diagram.
Think of the basepoint as the location of the eyes of the reader.

o The diagram of the knot consists of several disjoint arcs. Label them by
a1, a2,. .., a0y,

in increasing cyclic order given by the above chosen orientation of the knot. In the case of
the trefoil knot we have three arcs, a1, as, as.

e To each arc aj, there corresponds a generator xj represented by a loop starting at * and
winding around aj, once in the positive direction, where the positive direction is determined
by the right-hand rule: if you point your right-hand thumb in the direction of ay, then the
rest of your palm should be wrapping around ay, in the direction of x, (see Figure 2.3).

e For each crossing of the knot diagram we have a relation. The crossings are of two types,
positive (+) (or right-handed) and negative (—) (or left-handed) (see Figure 2.3). Label by
i the crossing where the arc a; begins and the arc a;—1 ends. Denote by ay; the arc going
over the ith crossing and set

€(i) = +1 if i is a £-crossing.

Then the relation introduced by the ¢th crossing is
_ ) €(i)
Ty = xk(z) J}i_lftk(i).
The knot diagram defines a parallel of K called the blackboard parallel and denoted by K. It is
obtained by tracing a contour parallel and very close to the diagram of K and situated to the left of
K with respect to the chosen orientation. In Figure 2.2 the blackboard parallel of the trefoil knot is
depicted with a thin line.

The linking number of K and Ky, is called the writhe of the knot diagram and it is denoted by
w(K). It is not an invariant of the knot. It is equal to the signed number of crossings of the diagram,
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Figure 2.3. The Wirtinger relations.

i.e., the difference between the number of positive crossings and the number of negative crossings.
One can show that

io(Ku) = [T o4 i) = 0 @.1)
i=1
Set G = Gk, where K is the (left-handed) trefoil knot. In this case all the crossings in the diagram
depicted in Figure 2.2 are negative and we have w(K) = —3. The group G has three generators
x1, T2, x3, and since all the crossings are negative we conclude that e(i) = —1, Vi = 1,2, 3, so that
we have three relations
T = .%'2.1‘31’2_1 Ty = :nglxgl, T3 = xlxgxl_l, (2.2)
k(1) =2, k(2) = 3, kE(3) = 1. (2.3)
From the equalities (2.3) we deduce
c=i.(Kp) = 25 w3 ]!, iu(p) = z3. (2.4)
For 2 € G we denote by T}, : G — G the conjugation g — xgz~!. We deduce
Ti = Txk(i)xi—la Vi=1,2,3=a3=T 1 1 -1 x3="T.x3,

TR R(2) R (3)
i.e., 3 commutes with ¢ = xz_lmglel. Set for simplicity
a=x1, b=x9, x3="Tyb=aba " .

We deduce from (2.2) that G has the presentation

G = (a,b| aba = bab).
Consider the group

H=(zy| 2°=y").
We have a map

H — G, v ab, y— aba.

It is easily seen to be a morphism with inverse a = z 7'y, b = a 'z =y '2% sothat G = H.

If we perform —1 surgery on the (left handed) trefoil knot, then the attaching curve of the surgery
is isotopic to
K'=—-1—wp+ Ky, w=1k(Kp,{)=-3,
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and we conclude
in(Kp) = c=a5 agtar =b tabta ta=b"tab™!, ii(p) = aba™ .
The fundamental group 7 ( S3(K,—1) ) is obtained form G by introducing a new relation
i) =t =P ab2a! = ba b
Hence the fundamental group of S3(K, —1) has the presentation
(a,b| aba = bab, ab’*a™" = ba"'b) <= (a,b| aba = bab, a*b* = aba"'ba).
Observe that its abelianization is trivial. However, this group is nontrivial. It has order 120 and it can
be given the equivalent presentation
(z,y] 2° = y* = (xy)?).

It is isomorphic to the binary icosahedral group I*. This is the finite subgroup of SU(2) that projects
onto the subgroup I C SO(3) of isometries of a regular icosahedron via the 2 : 1 map SU(2) —
SO(3).

The manifold S3(K, —1) is called the Poincaré sphere, and it is traditionally denoted by (2, 3, 5)
because it is diffeomorphic to

{z=(20,21,22) €C* 2§ +2}+25=0, |z|=¢}.

It is a Z-homology sphere, meaning that its homology is isomorphic to the Z-homology of S®. O

Suppose that X is an m-dimensional smooth manifold with boundary. We want to describe what
it means to attach a k-handle to X . This operation will produce a new smooth manifold with boundary.

A k-handle of dimension m (or a handle of index k) is the manifold with corners
Hj,,, = D" x D™F,
The disk D x {0} C Hy,y, is called the core, while the disk {0} x D™~* C Hy,,, is called the
cocore. The boundary of the handle decomposes as
OHy, , = O_Hj,p, U 04 Hy 1y,

where
O_Hy,, := ODF x D™F 9, Hy,,, := D¥ x gDF™.

ok

Figure 2.4. A 1-handle of dimension 2, a 0-handle of dimension 2 and a 2-handle of dimension 3. The
mid section disks are the cores of these handles.

The operation of attaching a k-handle (of dimension m) requires several additional data.

e A (k — 1)-dimensional sphere ¥ — 0X embedded in X with trivializable normal bundle
Tx,0X. This normal bundle has rank m — k = dim 90X — dim .
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e A framing ¢ of the normal bundle 750X .

The framing defines a diffeomorphism from D™ * x S*~1 to a tubular neighborhood N of ¥
in 0X. Using this identification we detect inside NV a copy of O_Hj, ,,, = ¥ x D™ k. Now attach
Hj, ,, to 0X by identifying 0_Hj, ,,, with its copy inside N and denote the resulting manifold by
Xt =X(%,p).

Figure 2.5. Attaching a 2-handle of dimension 3.

4=

DA .
4 I
@ =

Figure 2.6. Attaching a 1-handle of dimension 2 and smoothing the corners.

The manifold X+ has corners, but they can be smoothed out (see Figure 2.6). The smoothing
procedure is local, so it suffices to understand it in the special case

X 2 (—00,0] x OD* x R™ 7% 9X = {0} x OD* x R™ k(= N).
Consider the decomposition
R™ =RF xR™ % R™>5z=(r_,zy) € RF xR™F,
We have a homeomorphism

(—00,0] x ODF x Rm_k—>{ z€R™ |z PP —|z_*< -1 },
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defined by
(—00,0] x ODF x R™ % 3 (t,6,2,) — ((e + lz |22 -0, Ty) € RF x R™F,
The manifold X+ obtained after the surgery is homeomorphic to
{2 € R™ |ayf —|a_ <1},
which is a smooth manifold with boundary.

This homeomorphism is visible in Figure 2.6, but a formal proof can be read from Figure 2.7.

A r
L +

e

Figure 2.7. Smoothing corners.

Let us explain Figure 2.7. We set r+ = |x| and observe that
X={r_>1}, Hyp={r_,ry <1}.
After we attach the handle we obtain
X+:{7;21}U{r,§1, r+§1}.
Now fix a homeomorphism
X+—>Y:{T+§1},

which is the identity in a neighborhood of the region {r_ - r; = 0}. Clearly Y is homeomorphic to
the region 72 — 72 < 1 via the homeomorphism

Y3 (oo ay) o (o, (1+72)20y),
Let us analyze the difference between the topologies of X and X .

Observe that we have a decomposition
OXT = (8X \ 8_Hk7m) Uy 8+Hk’m.

Above, (0X \ 0_Hy, ;) is a manifold with boundary diffeomorphic to D™ * x S*¥=! which is
identified with the boundary of 04 Hy, ,,, = D* x D™ * via the chosen framing . In other words,
OX ™ is obtained from X via the surgery given by the data (S, ©).

In general, if M is obtained from M by a surgery of type (S, ¢), then M; is cobordant to M.
Indeed, consider the manifold

X =[0,1] x Mp.
We obtain an embedding S < {1} x My < 90X and a framing ¢ of its normal bundle. Then
6X(S> @) = MO(S7 90) U MO'

The above cobordism X (.S, ¢) is called the trace of the surgery.
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2.2. The Topology of Sublevel Sets

Suppose M is a smooth connected m-dimensional manifold and f : M — R is an exhaustive Morse
function, i.e., the sublevel set

M°={zeM; f(z)<c}
is compact for every ¢ € R. We fix a smooth vector field X on M that is gradient-like with respect
to f. This means that
X f>0 on M\ Cry,

and for every critical point p of f there exist coordinates adapted to p and X, i.e., coordinates ()
such that

A
X = —QZaziﬁmi + 22:53'690,,-, A= Af,p).
i=1 i>A
In these coordinates near p the flow I'y; generated by — X is described by
Ty(z) = e¥a_ + e 2y,
where x = z_ + =4,
z_ = (2 ..., 240,...,0), 24 :=(0,...,0,2 L .. 2™).

To see that there exist such vector fields choose a Riemannian metric g adapted to f, i.e., a metric
with the property that for every critical point p of f there exist coordinates (x*) adapted to p such that
near p we have

m

A
9= ('), f=f(p)+ Z(:vj)g - (@M

i=1 j=1 E>A
We denote by Vf = V9f € Vect(M) the gradient of f with respect to the metric g, i.e., the vector
field g-dual to the differential df. More precisely, V f is defined by the equality
gV, X)=df(X)=X - f, VX € Vect(M).
In local coordinates (%), if

or i
8xidw7 g:Zgijd:c dx?,

.3

df:Z

then

Vi=Y 990uf,
J

where (g% 1<ij<m denotes the matrix inverse to (g;;)1<i,j<m. In particular, near a critical point p of
index )\ the gradient of f in the above coordinates is given by

A
Vi==2> 20, +2> 270,
=1

J>A
This shows that X = V f is a gradient-like vector field.

Remark 2.2.1. As explained in [Sm, Theorem B], any gradient-like vector field can be obtained by
the method described above. a



38 Liviu I. Nicolaescu

Notation. In the sequel, when referring to f *1( (a,b) ), we will use the more suggestive notation
{a < f < b}. The same goes for {a < f < b}, etc. O

Theorem 2.2.2. Suppose that the interval [a,b] C R contains no critical values of f. Then the
sublevel sets M® and MP are diffeomorphic. Furthermore, M® is a deformation retract of M, so
that the inclusion M® < M? is a homotopy equivalence.

Proof. Since there are no critical values of f in [a,b] and the sublevel sets M¢ are compact, we
deduce that there exists € > 0 such that
{a—e<f<b+e} CcM\Cry.

Fix a gradient-like vector field Y and construct a smooth function

p: M —[0,00)
such that
YfI7Y, a< f(z) <D,
p(r) =
0, f(z) & (a—e,b+e).
We can now construct the vector field X := —pY on M, and we denote by

O:RxM— M, (t,x) — Py(x)
the flow generated by X. If u(¢) is an integral curve of X, i.e., u(t) satisfies the differential equation
i = X(u),
then differentiating f along u(t), we deduce that in the region {a < f < b} we have the equality

U _ypo Ly
iR e At

In other words, in the region {a < f < b} the function f decreases at a rate of one unit per second.
This implies

Dy_o(MP) = M, &, (M) = M?,
so that ®;,_, establishes a diffeomorphism between M b and Me.

To show that M¢ is a deformation retract of M, we consider
H:[0,1] x M> = M, H(t,z) = ®p( fz)-a)+ (2),
where for every real number r we set 7 := max(r, 0). Observe that if f(z) < a, then
H(t,z) =z, Vte|0,1],
while for every 2 € M? we have
H(1,2) = @ f(2)—q)+ () € M.

This proves that M@ is a deformation retract of M?. O

Theorem 2.2.3 (Fundamental structural theorem). Suppose c is a critical value of f containing a
single critical point p of Morse index \. Then for every ¢ > 0 sufficiently small the sublevel set { f <
¢+ €} is homeomorphic to { f < ¢ — ¢} with a A\-handle of dimension m attached. If v = (x_,x)
are coordinates adapted to the critical point, then the core of the handle is given by

ex(p) :=={z4 =0, lz_ |2 < £}
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In particular, { f < ¢+ €} is homotopic to { f < ¢ — e} with the \-cell e), attached.

Proof. We follow the elegant approach in [M3, Section I.3]. For simplicity we assume ¢ = 0. There
exist £ > 0 and local coordinates (x*) in an open neighborhood U of p with the following properties.
e The region { |f| <e } is compact and contains no critical point of f other than p.
e z'(p) = 0, Vi and the image of U under the diffeomorphism
(z',...,2™): U - R™

contains the closed disk

i<\ F>A
We set
= (x! 22,0, ,0), u_ = Z(zz)2,
i<
Ty = (07 ,O,I)\—H, 7$m)7 Uy = Z(x])2
J>A
We have

flp=—u- +uy.
We fix a smooth function p : [0, 00) — R with the following properties (see Figure 2.8).

w(0) >¢e, p'(0)=pu(t) =0, Vt> 2, (2.5)
—1 <p/(t) <0, Vt>0. (2.6)
Now let (see Figure 2.8)
h:=p(0) >¢e, r:=min{t; p(t) =0} < 2e.
Define

2e t

Figure 2.8. The cutoff function .

F:M—=R, F=f—pulu-+2uy),

so that along D we have
Flo=—u_ +uy — p(u- + 2uy),

while on M \ D we have F' = f.
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Lemma 2.2.4. The function F satisfies the following properties.
(a) F'is a Morse function,
Crp = Cry, F(p) < —¢, and F(q) = f(q), Vg€ Crs\{p}
b){f<a} C{F<a},VaeR {F <6} ={f <d},Vo >e.
Proof. (a) Clearly CrpN(M \ D) = CryN(M \ U). To show that Crpr N D = CryN D we use
the fact that along D we have
F=f—plu_+2uy), dF = —(1+ p)du_ + (1 — 2u")du..

The condition (2.6) implies that du_ = 0 = du. atevery critical point g of F'in U, so that z_(q) = 0,
z4(q) = 0,1ie., ¢ = p. Clearly F(p) = f(p) — u(0) < ¢ — e. Clearly p is a nondegenerate critical
point of F.

(b) Note first that
F<f={f<a}Cc{F<a}, YaeR.
Again we have
{F<éfn (M\D)={f<é}n (M\D),
so we have to prove
{F<étnDcC{f<o}nD.
Suppose ¢ € {F < ¢+ 0} N D and set ux = u(q). This means that
u_ +up <2 uy <u_ +0+ plu_ + 2uy).
Using the condition —1 < p’ we deduce
p(t) = p(t) — p(2e) <26 —t <26 —t, Vit < 2.
If u_ + 2uy < 2e, we have
u_ + 0+ plu- +2uq) <30 —2up = uyp <0

=uy—u_ <= f(q) <o.
If u_ +2uy > 2¢,then f(q) = F(q) <e. O

The above lemma implies that F is an exhaustive Morse function such that the interval [—&, +&]
consists only of regular values. We deduce from Theorem 2.2.2 that { F' < ¢ + ¢} is diffeomorphic to
{F < —¢}. Since

(F<cy={f<e),
it suffices to show that { F < —¢ } is homeomorphic to { f<—¢ } with a A\-handle attached.
Denote by H the closure of

{F<——e}\{f<—-e}={F<—-}n{f>—c€}
Observe that
H={F<—-e}n{f>—-e}CD.
The region H is described by the system of inequalities
u_ +up < 2¢,

f=—u_+uy > —¢, po= p(u— +2uy).
F=—-u_+uy —pu<—¢
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Its boundary decomposes as 0H = 0_H U 0+ H, where

and

JuoHup <2 f=—u_ +uyp = —¢,
BH_{ F=—-u_+uy—p<—e

U_ +uqp < 2¢,
f=—-u_+uy > —¢,

0+H =
F=—-u_+uy—p=—c¢

Let us analyze the region R in the Cartesian plane described by the system of inequalities

:L',yZO, $+y§2€, —$+y—ﬂ($+29)§—5a _$+y2_5-

The region
{y—2>—e, 2+y<2, 2,y>0}
is the shaded polygonal area depicted in Figure 2.9. The two lines y —x = —e and x +y = 2¢
ty
P hlZ:=C—€ Q
S [
Y ., 2
|
--------- - I
o h 4

Figure 2.9. A planar convex region.

intersect at the point () = (3—287 $). We want to investigate the equation
—r+y—pulx+2y)+e=0.

Set
nz(y) = —x +y — plr +2y) +¢.

Observe that since p(x) > 1(0) — x, we have
N2(0) = —x — p(x) + e < —p(0) + e <0,

while
ﬁgﬁﬁ@=ﬂﬂ

Since y — n,(y) is strictly increasing there exists a unique solution y

s(x) of the equation

N (y) = 0. Using the implicit function theorem we deduce that s(x) depends smoothly on z and

ds 14
— = 0, 1].
dx 1—2u’€[’]
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The point @ lies on the graph of the function y = s(z), s(0) > 0, and since s'(x) € [0, 1], we deduce
that the slope-1 segment A() lies below the graph of s(x). We now see that the region R is described
by the system of inequalities
,y=20, y<sx), y—z=—e
Fix a homeomorphism ¢ from R to the standard square
S={(t_,t;)eR* 0<ty <1}
such that the vertices O, A, P, () are mapped to the vertices
(0,0), (1,0), (1,1), (0,1)
(see Figure 2.9). Denote by h; and v; the horizontal and vertical edges of S (see Figure 2.9). Observe
that we have a natural projection
w:H =R H3qm (2,y) = (u_(q),us(q)).
Its image is precisely the region R, and we denote by ¢ = (¢_, ¢ ) the composition ¢ o u. We now
have a homeomorphism
Hr— H), =D"x D",
H>q— (t-(¢)0-(0),t+(¢)0+(q) ) € D* x D™,
where
-1/2
0+(g) = ui'"*(@)ws(q)
denote the angular coordinates in

E,:{u,zl, x+:O}%S>‘_1

and

Sp={uy=1 z_ =0}
Then 9 H corresponds to the part of H mapped by u onto hs, and 9_ H corresponds to the part of H
mapped by u onto ve. The core is the part mapped onto the horizontal segment h;, while the co-core
is the part of H mapped onto v;. This discussion shows that indeed { F<c—e } is obtained from
{ f<c—¢ } by attaching the A-handle H. O

Remark 2.2.5. Suppose that c is a critical value of the exhaustive Morse function f : M — R
and the level set f~!(c) contains critical points p1, ..., px with Morse indices Ay, ..., A\z. Then the
above argument shows that for € > 0 sufficiently small the sublevel set { f < ¢+ ¢} is obtained from
{f < ¢ — €} by attaching handles Hi, ..., Hy of indices A1, ..., k. O

Corollary 2.2.6. Suppose M is a smooth manifold and f : M — R is an an exhaustive Morse
function on M. Then M is homotopy equivalent to a C'W -complex that has exactly one \-cell for
every critical point of f of index \. a

Example 2.2.7 (Planar pentagons). Let us show how to use the fundamental structural theorem
in a simple yet very illuminating example. We define a regular planar pentagon to be a closed
polygonal line in the plane consisting of five straight line segments of equal length 1. We would like
to understand the topology of the space of all possible regular planar pentagons.

Consider one such pentagon with vertices Jy, J1, Ja2, J3, J4 such that
dist (JZ, Ji—i—l) = 1.
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There are a few trivial ways of generating new pentagons out of a given one. We can translate it, or
we can rotate it about a fixed point in the plane. The new pentagons are not that interesting, and we
will declare all pentagons obtained in this fashion from a given one to be equivalent. In other words,
we are really interested in orbits of pentagons with respect to the obvious action of the affine isometry
group of the plane.

There is a natural way of choosing a representative in such an orbit. We fix a cartesian coordinate
system and we assume that the vertex Jy is placed at the origin, while the vertex J4 lies on the positive
x-semiaxis, i.e., J4 has coordinates (1, 0).

I I h
] ] 4
] 4 0
0 1%3

Figure 2.10. Planar pentagons.

Note that we can regard such a pentagon as a robot arm with four segments such that the last
vertex Jy is fixed at the point (0, 1). Now recall some of the notation in Example 1.1.5.

A possible position of such a robot arm is described by four complex numbers,
21,24, |zl =1, Vi=1,2,3,4.
Since all the segments of such a robot arm have length 1, the position of the vertex Jj, is given by the
complex number 21 + ...+ 2.

The space C' of configurations of the robot arm constrained by the condition that .J4 can only slide
along the positive z-semiaxis is a 3-dimensional manifold. On C' we have a Morse function

h:C — R, h(g) :Re(21+22+z3+z4),

which measures the distance of the last joint to the origin. The space of pentagons can be identified
with the level set { h =1 }.

Consider the function f = —h : C' — R. The sublevel sets of f are compact. Moreover, the
computations in Example 1.1.10 show that f has exactly five critical points, a local minimum
(]-7 ]-7 ]-7 1)7

and four critical configurations of index 1

(171717_1)7 (1717_171)7 (17_17171)a (_17171a1>7

all situated on the level set {h = 2} = {f = —2}. The corresponding positions of the robot arm are
depicted in Figure 2.11.
The level set { f=-1 } is not critical, and it is obtained from the sublevel set {f < —3} by

attaching four 1-handles.

The sublevel set { <=3 } is a closed 3-dimensional ball, and thus the sublevel set { f<-1 }
is a 3-ball with four 1-handles attached. Its boundary, { f=-1 }, is therefore a Riemann surface
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Figure 2.11. Critical positions.

of genus 4. We conclude that the space of orbits of regular planar pentagons is a Riemann surface of
genus 4. For more general results on the topology of the space of planar polygons we refer to the very
nice papers [FaSch, KM]. We will have more to say about this problem in Section 3.1 O

Remark 2.2.8. We can use the fundamental structural theorem to produce a new description of the
trace of a surgery. We follow the presentation in [M4, Section 3].

Consider an orthogonal direct sum decomposition R™ = R* @ R™~*. We denote by z the
coordinates in R* and by y the coordinates in R™~*. Then identify

DY = {z e R |z[ <1}, D™ ={yeR™™ [y <1},
o, = {(z.y) € R™; [af,ly| <1},

Consider the regions (see Figure 2.12)

Byi={(x,y) €R™; 1<~ +y <1, 0<a| |yl <r},

By ={(z,y) € Bx; |a| ]yl >0}
The region B), has two boundary components (see Figure 2.12)

9+By = { (z,y) € Bx; —|z[*+ Jy|* = +1}.
Consider the functions
foh:R™ =R, f(z,y) = —|e* + |y’ hlz,y) =z |y,

so that
By={-1<f<1, 0<h<r}, 0+By={f==+1, 0<h<r}.
Denote by U the gradient vector field of f. We have

U=-Up+Uy, Up=2Y a'0y, Uy=2> 470,
( J

The function h is differentiable in the region h > 0, and
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5 y
N 211
ClelTelyle=1

Figure 2.12. A Morse theoretic picture of the trace of a surgery.

We deduce

U-h=(Vh,U)=0.
Define V = U%fU . We have

V-f=1 V-h=0.
Denote by I'; the flow generated by V. We have

d d
%f(f‘tz) =1, VzeR™ and %h(f‘tz) =0, VzeR™, h(z)>0.

Thus h is constant along the trajectories of V', and along such a trajectory f increases at a rate of one
unit per second. We deduce that for any z € 0_ B) we have

F(Tuz) = =1+, h(Ty2) = h(z) € (0,1).
We obtain a diffeomorphism
U:[—-1,1] x O_By — By, (t,2)+— T'iyi1(2).
Its inverse is
Byxswr— (f(w))rflff(z)w)
This shows that the pullback of f : By — R to [—1,1] x 0_B) via ¥ coincides with the natural
projection
[—1,1] x 0_By — [-1,1].

Moreover, we have a diffeomorphism
{1} x 0_By) -2 9, B,.
Now observe that we have a diffeomorphism
$: (D™ A\ {0}) x S — O_B,,
(]D)m*)‘ \ {0}) x S** 5 (u,v) = (cosh(Ju|)v, sinh(|u|)f, ) € R* x R™™*,
u

0, := .
|ul
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Suppose M is a smooth manifold of dimension m — 1 and we have an embedding
@ : D™ x SAL s ML
Consider the manifold X = [—1, 1] x M and set

X’:X\go([—l,l] X {o}xSH)).

Denote by W the manifold obtained from the disjoint union X’ LI By by identifying By C By with
an open subset of [—1, 1] x M via the gluing map vy = ¢ o @~ 1 o U1,

1 -1 .
By L5 [=1,1] x 0By 25 [=1,1] x (D™ 2\ {0} ) x S* 1 B [=1,1) x M.
Via the above gluing, the restriction of f to B) is identified with the natural projection 7 : X’ —
[—1,1],ie.,
’Y*(f‘B)\) = ﬂ—"y(BA)
Gluing 7 and v* f we obtain a smooth function
F:W —[-1,1]
that has a unique critical point p with critical value F'(p) = 0 and Morse index \. Set
W*={weW; Fw)<a}.

We deduce from the fundamental structural theorem that /2 is obtained from W ~1/2 = M by at-
taching a A-handle with framing given by ¢. The region { —% <F< % } is therefore diffeomorphic
to the trace of the surgery M —M (S 1, ). O

2.3. Morse Inequalities

To formulate these important algebraic consequences of the topological facts established so, far we
need to introduce some terminology.

Denote by Z|[[t,t~!] the ring of formal Laurent series with integral coefficients. More precisely,
D ant" € Z[t,t 7] <= ap =0 Yn <0, ap €Z, Ym.
neZ
Suppose [ is a field. A graded F-vector space
Ao =P A,
neZ

is said to be admissible if dim A" < oo, Vn, and A,, = 0, Vn < 0. To an admissible graded vector
space A, we associate its Poincaré series

Py, (t) == (dimp A,)t" € Z[[t, ¢ 7).

n

We define an order relation > on the ring Z[[t,t~!] by declaring that
X (t) = Y (t) <= there exists Q € Z[[t,t ] with nonnegative coefficients

such that
Xt)=Y(@)+ (1+t)Q(t). 2.7
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Remark 2.3.1. (a) Assume that

X(t) = wt" € Z[[t,t ™), Y(t) =) yat" € Z[[t,t7"]

are such that X = Y. Then there exists Q € Z[[t,¢~!] such that

Xt =Y(®)+(1+0QE), QW)= aut", ¢u>0.

Then we can rewrite the above equality as
1+ X)) = (1+6)7'Y (1) +Qt).

Using the identity

1+t => (-1

n>0

we deduce

S D 2k =Y (D yn k=0 > 0.

k>0 k>0

Thus the order relation > is equivalent to the abstract Morse inequalities
n
X=Y =Y (Vs =) (=) s, >0 (2.8)
k>0 k>0

Note that (2.7) implies immediately the weak Morse inequalities

Tp 2 Yn, VN >0, (2.9)

(b) Observe that > is an order relation satisfying

XY= X+R>Y+R, YReZ[tt,

X>-Y Z-0=X-Z>Y -Z O

Lemma 2.3.2 (Subadditivity). Suppose we have a long exact sequence of admissible graded vector
spaces Aq, Be, Co:

---%Akl)BkACk&)Ak_l—)ﬂ-.
Then
P4, + Pc, - Pg,. (2.10)

Proof. Set

ap = dim A, by = dim By, ¢ = dim Cy,
ap = dimkerig, B = dimker ji, v = dimker 0.
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Then
ar, = o+ P
b, = Br+m = ap — by +cp =+ o
Ck = Vgt -1
== Z(ak — b + Ck)tk = Ztk(ak +ag_1)
% 3

—> Pa,(t) = Pp,(t) + P, (t) = 1+ 1)Q(1), Q) = axt".
k

O

For every compact topological space X we denote by by (X) = by (X,F) the kth Betti number
(with coefficients in [F)
br(X) := dim Hi (X, F),

and by Px (t) = Px r(t) the Poincaré polynomial
Pxp(t) = b(X, F)t*,
k

If Y is a subspace of X then the relative Poincaré polynomial Px y (t) is defined in a similar fashion.
The Euler characteristic of X is

X(X) =) (=D)ko(X),
k>0
and we have the equality
X(X) = Px(-1).

Corollary 2.3.3 (Topological Morse inequalities). Suppose f : M — R is a Morse function on a
smooth compact manifold of dimension M with Morse polynomial

Pp(t) = up(Mt.
A

Then for every field of coefficients F we have
Pf(t) > PMJF(t).

In particular,

D (=D g = Pr(=1) = Paup(=1) = x(M).
A>0

Proof. Letc; < c¢; < --- < ¢, be the critical values of f. Set (see Figure 2.13)

Ck + Ch+1

to=c1—1,t,=c, +1, t = , k=1,...,v—1,

M;={f<ti}, 0<i<w
For simplicity, we drop the field of coefficients from our notations.

From the long exact homological sequence of the pair (M;, M;_1) and the subadditivity lemma
we deduce
Pui_y + Pragvi—y = Py
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Figure 2.13. Slicing a manifold by a Morse function.

Summing over¢ =1, ..., v, we deduce
14 v v v
ZPMi—l +ZPM1'1M1’—1 >‘ZPMZ.:>ZPMI¢7MI€71>—PMV.
i=1 i=1 i=1 k=1

Using the equality M, = M we deduce
v
ZPMmMiﬂ >~ P
i=1

Denote by Cr; C Cry the critical points on the level set { f = ¢;}. From the fundamental structural
theorem and the excision property of the singular homology we deduce

H.(MZ', Mi_l;F) = @ H.(H)\(p),a_H)\(p);F) = @ H.(e/\(p), 8@@);[5‘).
peCr; peCr;
Now observe that Hy(ey, dey; F) = 0, Vk # A, while H)(ey, dey; F) = F. Hence
PMi:Mifl(t) = Z ),
peCr;
Hence

Pf(t) = ZPMi,Mifl(t) > Pyy. O
i=1

Remark 2.3.4. The above proof yields the following more general result. If
XiCc...cX, =X

is an increasing filtration by closed subsets of the compact space X, then

v
Z PXi,XiA(t) = Px(t). 0
i=1

Suppose F is a field and f is a Morse function on a compact manifold. We say that a critical point
p € Cry of index A is F-completable if the boundary of the core e (p) defines a trivial homology
class in Hy_1(M°¢,F), c = f(p), 0 < ¢ < 1. We say that f is F-completable if all its critical
points are F-completable.

We say that f is an F-perfect Morse function if its Morse polynomial is equal to the Poincaré
polynomial of M with coefficients in F, i.e., all the Morse inequalities become equalities.
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Proposition 2.3.5. Any F-completable Morse function on a smooth, closed, compact manifold is
F-perfect.

Proof. Suppose f : M — R is a Morse function on the compact, smooth m-dimensional manifold.

Denote by c¢; < -+ < ¢, the critical values of M and set (see Figure 2.13)

Ci + Ciy1
2 )
Denote by Cr; C Cry the critical points on the level set { f = ¢;}. Set M; := {f < t;}. From

the fundamental structural theorem and the excision property of the singular homology we deduce

H.(MZ',Mi_I;F) = @ H.(H)\(p),a_H)\(p);IF) = @ H.(e)\(p),ae,\(p);IF).
peCr; peCr;

Now observe that Hy(ey, dex; F) = 0, Vk # A, while Hy(ey, Oey; F) = F. This last isomorphism
is specified by fixing an orientation on e)(p), which then produces a basis of Hy(H),0_Hy;F)
described by the relative homology class [ey, Jey].

to=c—1,t, =c, +1, t;:= 1=1 v—1.

goee ey

The connecting morphism
0
Ho(M;, M;—1;F) — He_1(M;—1,F)

maps [ey, dey ] to the image of [Jey] in H),)—1(M;-1,F). Since f is F-completable we deduce
that these connecting morphisms are trivial. Hence for every 1 < ¢ < v we have a short exact
sequence

0 — Ho(M;_1,F) = Hy(M;,F) = @) Hel(erg), Oerq): F) = 0.

peCr;
Hence
Py p(t) = Py, p(H) + > 20
peCr;
Summing over ¢ = 1,. .., v and observing that My = () and M,, = M, we deduce
Pyp(t) = Y ' = P(). O

=1 pECI‘i
Let us describe a simple method of recognizing completable functions.

Proposition 2.3.6. Suppose f : M — R is a Morse function on a compact manifold satisfying the
gap condition

[A(p) — AMa)| # 1, Vp,q € Cry.
Then f is F-completable for any field FF.

Proof. We continue to use the notation in the proof of Proposition 2.3.5. Set
A= {/\(p); p € Cry }, A = {/\(p); peE Cri} CcZ.
The gap condition shows that

AeEA= A+1€Z\A. (2.11)
Note that the fundamental structural theorem implies
Hk(Mi,Mi_l;F):O@kEZ\A, (2.12)

since M;/M;_, is homotopic to a wedge of spheres of dimensions belonging to A.
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We will prove by induction over ¢ > 0 that
ke Z\ A= Hp(M;,F)=0, (A;)
and that the connecting morphism
0 Hy(M;, M;—1;F)—Hy_1(M;-1,F) (B)

is trivial for every £ > 0.
The above assertions are trivially true for ¢ = 0. Assume ¢ > 0. We begin by proving (B;).

This statement is obviously true if Hy (M;, M;_1;F) = 0, so we may assume Hy(M;, M;_1;F) #
0. Note that (2.12) implies k& € A, and thus the gap condition (2.11) implies that k — 1 € Z \ A.

The inductive assumption (A;_1) implies that Hy_1(M;_1,F) = 0, so that the connecting mor-
phism

0: Hy(M;, M;_1;F) = Hp_1(M;_1,F)
is zero. This proves (B;). In particular, for every £ > 0 we have an exact sequence
0— Hk(Mi_l,]F) — Hk(Ml,F) — Hk(M“ Mi_l;F).

Suppose k € Z \ A. Then Hk(Mza M;_q; F) = 0, so that Hk<MZ7 F) = Hk(Mi_l,F). From (A4;_1)
we now deduce Hy(M;_1,F) = 0. This proves (4;) as well.

To conclude the proof of the proposition observe that (B;) implies that f if F-completable. g

Corollary 2.3.7. Suppose f : M — R is a Morse function on a compact manifold whose critical
points have only even indices. Then f is a perfect Morse function. O

Example 2.3.8. Consider the round sphere
St ={("%...,2") eR"; Y P =1}.
i
The height function

hyp:S" =R, (2°...,2") — 2°

is a Morse function with two critical points: a global maximum at the north pole z° = 1 and a global
minimum at the south pole, 20 =—1.

For n > 1 this is a perfect Morse function, and we deduce
Psn(t) = Py, (t) =1+ 1"
Consider the manifold M = S™ x S™. For |n — m/| > 2 the function
gt S™ xS =R, S™ xS 3 (x,y) = hm(z) + hn(y),
is a Morse function with Morse polynomial
Py, () = Py (8) Py, (8) = 1+ 8™ + ™ + ™4,

and since [n — m| > 2, we deduce that it is a perfect Morse function. O
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Example 2.3.9. Consider the complex projective space CP" with projective coordinates [z, . . . , 2p]

and define . )
>_i—171%

: CP" — R, 20,21 -y 2n]) = = .

f f([ 0, <1 n]) |ZO‘2+---+|Zn|2

We want to prove that f is a perfect Morse function.

The projective space CP™ is covered by the coordinate charts
Vi={z#0,}, k=0,1,...,n,
with affine complex coordinates
vl = vi(k) = % ie{0,1,...,n}\ {k}.

Fix k and set

[of? = [o(k)]* =D o'

itk
Then ,
Flve= R+ 40717 ) (1+ ).
k ( 7k ) =:b(v)
::k:—ra(v)

Observe that db = —b?d|v|? and
df |y, = bda — (k + a)b?d|v* = b* Y _(j(1+ [v]*) = (k + a) )d|v? |
i#k
=0 (= k) + (jof? —a) )dv’|*.
i#k
Since
dlv’|* = o7 dv? 4 o7 du?
and the collection {dv’,dv’; j # k} defines a trivialization of 7%V}, ® C we deduce that v is a
critical point of f|y; if and only if
(51 + o) = (k+a))v! =0, Vj#k.
Hence f |y, has only one critical point p; with coordinates v(k) = 0. Near this point we have the
Taylor expansions
L+l =1 o+ ...,
flvp = (k+a@)@ =P +..) =k+> (G =k +....
J#J
This shows that Hessian of f at py, is
Hyp, = 220 - k‘)(x? + 3/]2‘)7 vl = xj + yjt.
i#k
Hence pj. is nondegenerate and has index \(py) := 2k. This shows that f is a Q-perfect Morse
function with Morse polynomial
1 2(n+1)

% =
12

M=

Pepn (t) = P(t) =
5=0
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Let us point out an interesting fact which suggests some of the limitations of the homological tech-
niques we have described in this section.

Consider the perfect Morse function hs 4 : S? x S* — R described in Example 2.3.8. Its Morse
polynomial is
Pog=1++t*+1°
and thus coincides with the Morse polynomial of the perfect Morse function f : CP? — R investi-

gated in this example. However S2 x S* is not even homotopic to CIP3, because the cohomology ring
of $2? x S* is not isomorphic to the cohomology ring of CP3. O

Remark 2.3.10. The above example may give the reader the impression that on any smooth compact
manifold there should exist perfect Morse functions. This is not the case. In Exercise 6.1.19 we
describe a class of manifolds which do not admit perfect Morse functions. The Poincaré sphere is one
such example. a

2.4. Morse-Smale Dynamics

Suppose f : M — R is a Morse function on the compact manifold M and € is a gradient-like vector
field relative to f. We denote by ®; the flow on M determined by —¢. We will refer to it as the
descending flow determined by the gradient like vector field &.

Lemma 2.4.1. For every pg € M the limits
Ptoo(po) :=  lim @4 (po)

exist and are critical points of f. O

Proof. Set y(t) := ®4(po). If y(t) is the constant path, then the statement is obvious. Assume that
~(t) is not constant.

Since £ - f > 0 and (t) = —&(y(t)), we deduce that

fo= S r6(0) = d3) = € <0

From the condition £ - f > 0 on M \ Cr;y and the assumption that () is not constant we deduce

f(t) <0, Vt.
Define €21 to be the set of points ¢ € M such that there exists a sequence ¢, — £oo with the
property that

lim 7(t,) = ¢.

n—oo
Since M is compact we deduce Q4, # (). We want to prove that {21, consist of a single point
which is a critical point of f. We discuss only {2, since the other case is completely similar.

Observe first that
q’t(Qoo) C Qooa vt > 0.

Indeed, if ¢ € Q4 and y(¢,,) — ¢, then

V(tn + 1) = @(V(tn) ) = Pe(q) € Qo
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Suppose qg, q1 are two points in £2,. Then there exists an increasing sequence t,, — oo such that
Y(tanti) = @i, i =0,1, tont1 € (ton, tant2)-

‘We deduce
f(v(t2n)) > f(v(t2nt1)) > f(v(t2n+2))-
Letting n — oo we deduce f(q0) = f(q1), V40, q1 € Q0 SO that there exists ¢ € R such that
Qoo C f7(0).

If g € Qs \ Cry, thent — ®4(q) € Qo is a nonconstant trajectory of —¢ contained in a level set
f~1(c). This is impossible since f decreases strictly on such nonconstant trajectories. Hence

Qe C CI'f.

To conclude it suffices to show that (2., is connected. Denote by C the set of connected components
of Q. Assume that #€ > 1. Fix a metric d on M and set

¢ := min{ dist (C,C"); C,C" €€, C#C"}>0.
Let Cy # C1 € Cand ¢; € Cy, i = 0, 1. Then there exists an increasing sequence ¢,, — oo such that
Y(tonti) = qi, 1 =0,1, topt1 € (ton, tont2).
Observe that
lim dist (7(t2n), Co ) = dist (g0, Co) = 0,
lim dist (y(t2n+1), Co ) = dist (g1, Co) > 6.

From the intermediate value theorem we deduce that for all n > 0 there exists s,, € (top, t2n+1) such

that 5
dist (v(sn),Co ) = 3
A subsequence of (s, ) converges to a point ¢ € ., such that dist (¢, Cy) = %. This is impossible

since ¢ € §2o C Cry \Cp. This concludes the proof of Lemma 2.4.1. O

Suppose f : M — R is a Morse function and py € Cry¢, co = f(po). Fix a gradient-like vector
field £ on M and denote by ®, the flow on M generated by —&. We set

Wi = Wy (€) := ®1oe(po) = {z € M; Jim @y(z) = po }.

W;g (&) is called the stable/unstable manifold of py (relative to the gradient-like vector field £). We
set
Sx(e)=Win{f=cote}

Proposition 2.4.2. Let m = dim M, A = A(f,po). Then W, is a smooth manifold homeomorphic
to R, while WI;E is a smooth manifold homeomorphic to R,

Proof. We will only prove the statement for the unstable manifold since —¢ is a gradient-like vector

field for — f and W (§) = W, (=¢). We will need the following auxiliary result.

Lemma 2.4.3. For any sufficiently small & > 0 the set S, () is a sphere of dimension A — 1 smoothly
embedded in the level set { f = co — €} with trivializable normal bundle.
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Proof. Pick local coordinates x = (x_, z) adapted to pg. Fix ¢ > 0 sufficiently small so that in the
neighborhood

U={|z_P+|z_|*<r}
the vector field £ has the form

20 Oy 34 0p, =2 20, +2) 270,
i< >N
A trajectory ®;(q) of —& which converges to pg as t — —oo must stay inside U for all t < 0. Inside
U, the only such trajectories have the form e**z_, and they are all included in the disk

D, (r) = {zy =0, lz_? <7}

Moreover, since f decreases strictly on nonconstant trajectories, we deduce that if £ < r, then

Sy () = 0Dy, (€). 0

Po
Fix now a diffeomorphism v : $*~! — S (e). If (r,6), § € S*~!, denote the polar coordinates on
R*, we can define

F:R 5 W

oo F(r,0) = @1, (u(0)).

The arguments in the proof of Lemma 2.4.3 show that F’ is a diffeomorphism. O

Remark 2.4.4. The stable and unstable manifolds of a critical point are not closed subsets of M. In
fact, their closures tend to be quite singular, and one can say that the topological complexity of M is
hidden in the structure of these singularities. g

We have the following fundamental result of S. Smale [Sm)].

Theorem 2.4.5. Suppose f : M — R is a Morse function on a compact manifold. Then there exists
a gradient-like vector field § such that for any po,p1 € Cry the unstable manifold W, (&) intersects
the stable manifold W, (€) transversally.

Proof. For the sake of clarity we prove the theorem only in the special case when f is nonresonant,
i.e., every level set of f contains at most one critical point. The general case is only notationally more
complicated. Let

Af: {Cl < ---<CV}
be the set of critical values of f. Denote by p; the critical point of f on the level set { f = ¢;}. Clearly

W, intersects W;r transversally at p, Vp € Cry.

In general, W;g N Wp; is a union of trajectories of —¢ and
Wy NW, #0= f(pi) < fpj) <= i <.

Note that if r is a regular value of f, then the manifolds W;[ (€) intersect the level set {f = r}
transversally, since ¢ is transversal to the level set and tangent to W=, For every regular value r we
set

Wy (©)r == W () N {f =r}.
Observe that
Wi (€) th WiH(€) <= Wi (€, h Wi (€),
for some regular value f(p;) <r < f(p;).
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For any real numbers a < b such that the interval [a,b] contains only regular values and any
gradient-like vector field £ we have a diffeomorphism

®;  {f=a}—{f =0}

obtained by following the trajectories of the flow of the vector field

1
&=e7

along which f increases at a rate of one unit per second. We denote by <I>f1 , its inverse. Note that

§ (2.13)

WiE(©)a = 05, (W), WiE(€)y =05, (WiE(€)a)-

pi

For every r € R we set M, := {f =r}.

Lemma 2.4.6 (The main deformation lemma). Suppose a < b are such that [a,b] consists only of
regular values of f. Suppose h : My — My, is a diffeomorphism of My, isotopic to the identity. This
means that there exists a smooth map

H :[0,1] x My — My, (t,x) — hi(z),

such that x — hy(z) is a diffeomorphism of My, Vt € [0,1], hog = 1y, h1 = h. Then there exists
a gradient-like vector field n for f which coincides with § outside {a < f < b} and such that the
diagram below is commutative:

M,
S

M, —"
q>§;a\
M,
Proof. For the simplicity of exposition we assume that ¢ = 0, b = 1 and that the correspondence
t — hy is independent of ¢ for ¢ close to 0 and 1. Note that we have a diffeomorphism
U0, x My > {0< f <1}, (tz)— 5 (2) € {f =t}
Its inverse is

y = (@), )

Using the isotopy H we obtain a diffeomorphism
H:=10,1] x My — [0,1] x My, H(t,z) = (t, he(x)).
It is now clear that the pushforward of the vector field (£) in (2.13) via the diffeomorphism
F=UoHoU ':{0<f<1}=s{0<f<1}
is a vector field 77 which coincides with (£) near My, M and satisfies 77 - f = 1. The vector field

n=( fn
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extends to a vector field that coincides with £ outside {0 < f < 1} and satisfies () = 7. Moreover,
the flow of (n) fits in the commutative diagram

M, —E My

‘bio{ %’?,0

My —— Mo
Now observe that F'| s, = 1y, and
Fu, = @] 1@, = hy = h. O

Lemma 2.4.7 (The moving lemma). Suppose X,Y are two smooth submanifolds of the compact
smooth manifold V and X is compact. Then there exists a diffeomorphism of h : V. — V isotopic to
the identity” such that h(X) intersects Y transversally. O

We omit the proof which follows from the transversality results in [Hir, Chapter 3] and the
isotopy extension theorem, [Hir, Chapter 8].

We can now complete the proof of Theorem 2.4.5. Let 1 < k < v. Suppose we have constructed
a gradient-like vector field £ such that
W (&) h W, (€), Vi<j<k

We will show that for ¢ > 0 sufficiently small there exists a gradient-like vector field n which coin-
cides with £ outside the region {cx1 — 2 < f < ck11 — €} and such that

W () Wi (), Vi < k.

Pe+1
For ¢ > 0 sufficiently small, the manifold Wy, (§)e,,, -« is a sphere of dimension A(pj4+1) — 1
embedded in {f = cx11 —¢}. We set
a:=cpt1 — 26, b:=cpy1 — ¢,

and
X, = |J W, .
J<k
Using the moving lemma, we can find a diffeomorphism h : M, — M, isotopic to the identity such
that (see Figure 2.14)

h(Xb) h W (f)b (2.14)

Pr+1
Using the main deformation lemma we can find a gradient-like vector field n which coincides
with & outside {a < f < b} such that
- 3
(I)l:],a =ho <I>b,a‘
Since 7 coincides with & outside {a < f < b}, we deduce

Wy (a =Wy (€)a, Vi <k, Wy (&)s =W, ()

2The diffeomorphism A can be chosen to be arbitrarily C%-close to the identity.
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A/
A Y

Figure 2.14. Deforming a gradient-like flow.

Now observe that
Wyl = ) W,k (m)a = h®5 W, (€)a = WV, (€,
and we deduce from (3.26) that
Wy h Wy (), Vi < k.

Performing this procedure gradually, from £ = 1 to k = v, we obtain a gradient-like vector field with
the properties stipulated in Theorem 2.4.5. O
Definition 2.4.8. (a) If f : M — R is a Morse function and ¢ is a gradient like vector field such that

W, (&) h W, (€), Vp,q € Cry,
then we say that (f, £) is a Morse—Smale pair on M and that £ is a Morse—Smale vector field adapted
to f. O
Remark 2.4.9. Observe that if (f, &) is a Morse—Smale pair on M and p,q € Cry are two distinct
critical points such that A¢(p) < A¢(q), then

W, (&) N, (€) = 0.
Indeed, suppose this is not the case. Then
dim W, (€) + dim W, (¢) = dim M + (A(p) — A(g) ) < dim M,
and because W, (&) intersects W, (&) transversally, we deduce that
dim (W, (§) N W (€)) = 0.

Since the intersection W, (§) "W, () is flow invariant and p # g, this zero dimensional intersection
must contain at least one nontrivial flow line. O

Definition 2.4.10. A Morse function f : M — R is called self-indexing if
f(p) = As(p), Vp € Cry. O
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Theorem 2.4.11 (Smale). Suppose M is a compact smooth manifold of dimension m. Then there
exist Morse-Smale pairs (f,&) on M such that f is self-indexing.

Proof. We follow closely the strategy in [M4, Section 4]. We begin by describing the main technique
that allows us to gradually modify f to a self-indexing Morse function.

Lemma 2.4.12 (Rearrangement lemma). Suppose f : M — R is a Morse function such that 0, 1
are regular values of f and the region {0 < f < 1} contains precisely two critical points po, p1.
Furthermore, assume that £ is a gradient-like vector field on M such that

where we have used the notation W (p;) = Wi UW,.
Then for any real numbers ag,a; € [0, 1] there exists a Morse function g : M — R with the
following properties:
(a) g coincides with f outside the region {0 < f < 1}.
(b) g(pi) = a5 Vi = 0, 1.
(c¢) f — g is constant in a neighborhood of {po, p1 }-
(d) & is a gradient-like vector field for g.

Proof. Let
W= (W) U W (€ UW (€ UW, (6) ) n{0 < £ <1},

Mo :={f =0}, My= Mo\ (W, (&) UW,,(€)),
W, (§)o := W, (§) N M.
Denote by (&) the vector field ﬁ& on {0 < f <1} \ W and by <I>§ its flow. Then <I>§ defines a
diffeomorphism
U:[0,1) x My —{0< f<1}\W, (t,z) — 0%(x).
Its inverse is
y = U (y) = (), 9%, (1)-

Choose open neighborhoods U; of W~ (£)o in My such that U N U " = (). This is possible since
W(po) " W(p1) N My = 0.

Now fix a smooth function p : My — [0, 1] such that z = 7 on U;. Denote by U; the set of points
yin {0 < f < 1} such that, either y € Wpf (), or the trajectory of —¢ through y intersects My in Uj,
i = 0,1 (see Figure 2.15). We can extend p to a smooth function /i on {0 < f < 1} as follows.

Ify & (UyUUh), then U1 (y) = (t,x), & € My \ (Uy UU,), and we set
ly) = p(z).
Then we set /i(y) = i, Vy € U,.
Now fix a smooth function G : [0, 1] x [0, 1] — [0, 1] satisfying the following conditions:
o %L(s,t)>0,V0<s5,t<1.
e G(s5,0)=0,G(s,1) = 1.
e G(i,1) —t = (a; — f(p;)) for t near f(p;).
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Figure 2.15. Decomposing a Morse flow.

We can think of G as a 1-parameter family of increasing diffeomorphisms
Gs:[0,1] = [0,1], s+ G4(t) = G(s,t)
such that Go(f(po)) = ao and G1(f(p1)) = a1.
Now define
h:{0<f<1} =01, h(y) =G(iy), f(y))
It is now easy to check that g has all the desired properties. O

Remark 2.4.13. (a) To understand the above construction it helps to think of the Morse function f
as a clock, i.e., a way of indicating the time when when a flow line reaches a point. For example, the
time at the point y is f(y).

We can think of the family s — G5 as 1-parameter family of “clock modifiers”. If a clock
indicates time ¢ € [0, 1], then by modifying the clock with G it will indicate time G(t).

The function h can be perceived as a different way of measuring time, obtained by modifying the
“old clock” f using the modifier G's. More precisely, the new time at y will be G ;) (f (y))-

(b) The rearrangement lemma works in the more general context, when instead of only two critical
points, we have a partition Cyy LI C of the set of critical points in the region {0 < f < 1} such that f
is constant on Cyy and on C1, and W (po, &) N W (p1,€) = 0, Vpo € Co, Vp1 € Ch. O

We can now complete the proof of Theorem 2.4.11. Suppose that (f, ) is a Morse-Smale pair on
M such that f is nonresonant. Remark 2.4.9 shows that

p#q and A(p) < Ng) = W, () NW,(§) = 0.
We say that a pair (p, q) of critical points, p, ¢ € Cry is an inversion if
f(p) > f(q) and A(p) < A(q)-

We see that if (p, ¢) is an inversion, then

Wy (&) N (€) = 0.
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Using the rearrangement lemma and Theorem 2.4.5 we can produce inductively a new Morse—Smale
pair (g, n) such that Cr, = Cry, and g is nonresonant and has no inversions.

To see how this is done, define the level function
s Crp— Lo, €(p):=#{q€Cry; f(q) < fp)}.
In other words, ¢ (p) is the number of critical point of f with smaller energy® than p. Denote by v( f)
the number of inversions of f, and then set
p(f) = max{ ¢s(¢q); Ip € Cry suchthat (p,q) inversion of f }.

If v(f) > 0, then there exists an inversion (p, ¢) such that
Cy(q) = p(f) and £(p) = £(q) +1 = p(f) + 1.

We can then use the rearrangement lemma to replace f with a new function f’ such that v( f') < v(f).

This implies that there exist regular values rg < r; < --- < 1y, such that all the critical points in
the region {ry < g < r)41} have the same index \.

Using the rearrangement lemma again (see Remark 2.4.13(b)) we produce a new Morse-Smale

pair (h, 7) with critical values ¢y < -+ < ¢, and all the critical points on {h = ¢, } have the same
index A.
Finally, via an increasing diffeomorphism of R we can arrange that cy = A. O

Observe that the above arguments prove the following slightly stronger result.

Corollary 2.4.14. Suppose (f,§) is a Morse—Smale pair on the compact manifold M. Then we can
modify f to a smooth Morse function g : M — R with the following properties:

(a) Cry = Cryand \(f,p) = Mg,p) = g(p), Vp € Cry = Cr,.
(b) & is a gradient-like vector field for g.

In particular, (g,&) is a self-indexing Morse—Smale pair. O

Here is a simple application of this corollary. We define a handlebody to be a 3-dimensional
manifold with boundary obtained by attaching 1-handles to a 3-dimensional ball. A Heegard decom-
position of a smooth, compact, connected 3-manifold M is a quadruple (H_, H,, f, ®) satisfying
the following conditions.

e H_ are handlebodies.

e f is an orientation reversing diffeomorphism f : 0H_ — 0H.

e ¢ is a homeomorphism from M to the space H_ Uy H | obtained by gluing H_ to H along
their boundaries using the identification prescribed by f.

Theorem 2.4.15. Any smooth compact connected 3-manifolds admits a Heegard decomposition.

Proof. Fix a self-indexing Morse-Smale pair (f,£) on M. The critical values of f are contained in
{0,1,2,3}. To prove the claim in the theorem it suffices to show that the manifolds with boundary

H-(f) = {féz} and H.(f) = {fzz’}

3Here we prefer to think of f as energy.
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are handlebodies. We do this only for H_. The case H (f) is completely similar since H (f) =
H_(3-f).

Observe first that H_ is connected. Indeed, the connected manifold M is obtained from H_ by
attaching 2 and 3-handles and these operations do not change the number of connected components.

The sublevel set { f < ¢}, ¢ € (0,1), is the disjoint union of a collection of 3-dimensional balls,
one ball for every minimum point of f. The manifold H_ is obtained from this disjoint union of balls
by attaching 1-handles, one for each critical point of index 1.

We can encode this description as a graph I'. The vertices of I" correspond to the connected
components of { f < e}, while the edges correspond to the attached 1-handles. The endpoint(s) of an
edge indicate how the attaching is performed. The graph I' may have loops, i.e., edges that start and
end at the same vertex. To such a loop it corresponds a 1-handle attached to a single component of

{f <eh

Since H_ is connected, so is I'. Let 7" be a spanning tree of I, i.e., a simply connected subgraph
of I" with the same vertex set as I'. By attaching first the 1-handles corresponding to the edges of T’
we obtain a manifold H (7T') diffeomorphic to a 3-dimensional ball. This shows that H_ is obtained
by attaching 1-handles to the 3-dimensional ball H(T'), so that H_ is a handlebody. O

2.5. Morse-Floer Homology

Suppose that ( f, ) is a Morse—Smale pair on the compact m-dimensional manifold M such that f is
self-indexing. In particular, the real numbers k + % are regular values of f. We set

1 1 1
M:{ <k f},Y:{k:—7< <k f}.
k f<k+ 5 k 5 < f<k+ 5
Then Y}, is a smooth manifold with boundary (see Figure 2.16)

OV = 0 Yy UdLYy, 0uYj = {f:ki%}.

Set
Ck(f) = Hk(Mk,Mk_l;Z), CI‘f’]€ = {p € CI‘f; )\(p) = k} C {f = k}
Finally, for p € Cry , denote by fo the unstable disk

+._ £
Dy =Wy (§) NYy.

Using the excision theorem and the fundamental structural theorem of Morse theory we obtain an
isomorphism

Cv(f)= € Hi(D,,0D, ;7).
pECrk
By fixing an orientation or~ (p) on each unstable manifold W~ we obtain isomorphisms
Hk(Dg,aD;,Z) —Z, p€ CI‘f’k.
We denote by (p| the generator of Hy( D, , 0D, ; Z ) determined by the choice of orientation or~ (p).

Observe that we have a natural morphism 0 : C — C}_1 defined as the composition

Hy (M, My_1;Z) = Hy1(My—1,2) — Hp1( My_1, My_2;7). (2.15)
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Figure 2.16. Constructing the Thom—Smale complex.

Arguing exactly as in the proof of [Ha, Theorem 2.35] (on the equivalence of cellular homology with
the singular homology)* we deduce that

= O(f) =5 Crma(f) = - (2.16)

is a chain complex whose homology is isomorphic to the homology of M. This is called the Thom—
Smale complex associated to the self-indexing Morse function f.

We would like to give a more geometric description of the Thom-Smale complex. More precisely,
we will show that it is isomorphic to a chain complex which can be described entirely in terms of
Morse data.

Observe first that the connecting morphism
O + Hy(Mpy, My 1) — Hp—1(Mg_1)

can be geometrically described as follows. The relative class (p| € Cj is represented by the fun-
damental class of the oriented manifold with boundary (D, ,dD, ). The orientation or, induces
an orientation on 9D, and thus the oriented closed manifold 9D, defines a homology class in
Hj,_1(Mjy_1,7Z) which represents 9(p|.

Assume for simplicity that the ambient manifold M is oriented. (As explained Remark 2.5.3 (a)
this assumption is not needed.) The orientation or s on M and the orientation or,, on D, determine
an orientation or,; on D, via the equalities

TyM =T,D, @ TpD;, or, N or;,r =ory.

p

Since § is a Morse-Smale gradient like vector field, we deduce that 9D, and D(‘; intersect transver-
sally. In particular, if p € Cryfy and ¢ € Cryy_1, then

dim 0D, + dim D} = (k — 1) + dim M — (k — 1) = m,

4For the cognoscienti. The increasing filtration - - - C My_1 C M) C --- defines an increasing filtration on the singular chain
complex Ce (M, Z). The associated (homological) spectral sequence has the property that Eg, q = 0 forall ¢ > 0 so that the spectral
sequence degenerates at E2 and the edge morphism induces an isomorphism H, (M) — E§,0~ The E! term is precisely the chain
complex (2.16).



64 Liviu I. Nicolaescu

so that OD,, intersects D transversally in finitely many points. We denote by (p|q) the signed
intersection number

(plg) == #(©D, ND), peCrsy, qeCrpp_1.

Observe that each point s in 9D, N D; corresponds to a unique trajectory () of the flow generated
by —¢ such that y(—o0) = p and (o) = ¢q. We will refer to such a trajectory as a funneling from p
to ¢. Thus (p|q) is a signed count of tunnelings from p to q.

Proposition 2.5.1 (Thom-Smale). There exists €, € {21} such that

opl=ex > (pla)-(al, ¥p € Crpp. (2.17)
q€Cry 1

Proof. We have

opl € Hy—1(Mg—1, My—2;Z) = Hy—1(Yg-1,0-Yi-1;Z).
From the Poincaré-Lefschetz duality theorem we deduce

Hyy(Yie1,0-Yy1;Z) = H™FD(Y, 1, 0.V, 13 7).
Since H;(Yy—1,04+Yy_1;Z) is a free Abelian group nontrivial only for j = m — (k — 1) we deduce
that the canonical map

H™"=D(Y, 1,0, Y13 2)— Hom (Hyy— -1y (Yi-1, 04 Yi—1: Z), Z)
given by the Kronecker pairing is an isomorphism.
The group Hy,_(x—1)(Yi—1, 0+ Yi—1;Z) is freely generated by’

lg) :== [D;,@D;,or;r], qeCryp_q.

If we view O(p| as a morphism H,,,_(,_1y(Yk—1,04Y)—1; Z)—Z, then its value on |g) is given (up
to a sign €, which depends only on k) by the above intersection number (p|q). O

Given a Morse—Smale pair (f, &) on an oriented manifold M and orientations of the unstable
manifolds, we can form the Morse—Floer complex

(C(),0), Cu(H)= P Z-l,
peCry(f)

where the boundary operator has the tunnelling description (2.17). Note that the definitions of C(f)
and O depend on £ but not on f.

In view of Corollary 2.4.14 we may as well assume that f is self-indexing. Indeed, if this is not
the case, we can replace f by a different Morse function g with the same critical points and indices
such that g is self-indexing and £ is a gradient-like vector field for both f and g.

We conclude that 0 is indeed a boundary operator, i.e., 9> = 0, because it can alternatively be
defined as the composition (2.15). We have thus proved the following result.

Corollary 2.5.2. For any Morse—Smale pair (f,§) on the compact oriented manifold M there exists
an isomorphism from the homology of the Morse—Floer complex to the singular homology of M. O

SThere is no typo! |q) is a ket vector and not a bra vector (q|.
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Remark 2.5.3. (a) The orientability assumption imposed on M is not necessary. We used it only for
the ease of presentation. Here is how one can bypass it.

Choose for every p € Cry orientations of the vector subspaces T}, M C T),M spanned by the
eigenvectors of the Hessian of f corresponding to negative eigenvalues. The unstable manifold W~
is homeomorphic to a vector space and its tangent space at p is precisely 7);" M. Thus, the chosen
orientation on 7, M induces an orientation on W, . Similarly, the chosen orientation on 7,7 M
defines an orientation on the normal bundle TW; M of the embedding VVp+ — M.

Now observe that if X and Y are submanifolds in M intersecting transversally, such that T'X is
oriented and the normal bundle Ty M of Y < M is oriented, then there is a canonical orientation of
X NY. Indeed, the normal bundle of X NY < X is naturally isomorphic to the restriction to X NY
of the normal bundle of Y in M, i.e., we have a natural short exact sequence of bundles

0—=TXNY) = (TX)|xny = (Ty M)|xny — 0.

Hence, if A(p) — A(g) = 1, then W, N W, is an oriented one-dimensional manifold.

On the other hand, each component of W, N I/V(;r is a trajectory of the gradient flow and thus
comes with another orientation given by the direction of the flow.

We conclude that on each component of W,” N VVqJr we have a pair of orientations which differ
by a sign e. We can now define n(p, ¢) to be the sum of all these €’s. We then get an operator

0: Ci(f) = Cra(f), Ol = n(p.a)(al

q

One can prove that it coincides, up to an overall sign, with the previous boundary operator.
(b) For different proofs of the above corollary we refer to [BaHu, Sal, Sch].

(c) Corollary 2.5.2 has one unsatisfactory feature. The isomorphism is not induced by a morphism
between the Morse—Floer complex and the singular chain complexes and thus does not highlight the
geometric nature of this construction.

For any homology class in a smooth manifold M, the Morse—Smale flow ®; on M selects a very
special singular chain representing this class. For example, if a homology class is represented by the
singular cycle ¢, then is also represented by the cycle ®;(c) and, stretching our imagination, by the
cycle @ (¢) = limy_yo0 Py(c).

The Morse—Floer complex is, loosely speaking, the subcomplex of the singular complex gen-
erated by the family of singular simplices of the form ®, (o), where o is a singular simplex. The
supports of such asymptotic simplices are invariant subsets of the Morse—Smale flow and thus must
be unions of orbits of the flow.

The isomorphism between the Morse—Floer homology and the singular homology suggests that
the subcomplex of the singular chain complex generated by asymptotic simplices might be homotopy
equivalent to the singular chain complex. For a rigorous treatment of this idea we refer to [BFK],
[Lau] or [HL].

There is another equivalent way of visualizing the Morse flow complex which goes back to R.
Thom [Th]. Think of a Morse—Smale pair (f,£) on M as defining a “polyhedral structure, and then
the Morse-Floer complex is the complex naturally associated to this structure. The faces of this
“polyhedral structure” are labelled by the critical points of f, and their interiors coincide with the
unstable manifolds of the corresponding critical point.
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The boundary of a face is a union (with integral multiplicities) of faces of one dimension lower.
To better understand this point of view it helps to look at the simple situation depicted in Figure 2.17.
Let us explain this figure.

Figure 2.17. The polyhedral structure determined by a Morse function on a Riemann surface of genus 2.

First, we have the standard description of a Riemann surface of genus 2 obtained by identifying
the edges of an 8-gon with the gluing rule

—1;—1 —1;—1
arbiaj "by asboay by .

This poyhedral structure corresponds to a Morse function on the Riemann surface which has the
following structure.

e There is a single critical point of index 2, denoted by F', and located in the center of the
two-dimensional face. The relative interior of the top face is the unstable manifold of F/,
and all the trajectories contained in this face will leave F' and end up either at a vertex or in
the center of some edge.

e There are four critical points of index one, a1, as, b1, ba, located at the center of the edges
labelled by the corresponding letter. The interiors of the edges are the corresponding one-
dimensional unstable manifolds. The arrows along the edges describe orientations on these
unstable manifolds. The gradient flow trajectories along an edge point away from the center.

e There is a unique critical point of index 0 denoted by V.

In the picture there are two tunnellings connecting F' with a1, but they are counted with opposite
signs. In general, we deduce
(Flai) = (Flbj) = 0, Vi, j.
Similarly,
(@il V) = (b;|V) =0, Vi, j.
The existence of a similar polyhedral structure in the general case was recently established in [Qin].
We refer to Chapter 4 for more details.

(d) The dynamical description of the boundary map of the Morse-Floer complex in terms of tun-
nellings is due to Witten, [Wit] (see the nice story in [B3]), and it has become popular through the
groundbreaking work of A. Floer, [FI]. In Section 4.5 we will take a closer look at this dynamical
interpretation.
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The tunnelling approach has been used quite successfully in infinite dimensional situations lead-
ing to various flavors of the so called Floer homologies.

These are situations when the stable and unstable manifolds are infinite dimensional yet they in-
tersect along finite dimensional submanifolds. One can still form the operator O using the description
in Proposition 2.5.1, but the equality > = 0 is no longer obvious, because in this case an alterna-
tive description of O of the type (2.15) is lacking. For more information on this aspect we refer to
[ABr, Sch].

O

2.6. Morse-Bott Functions

Suppose f : M — R is a smooth function on the m-dimensional manifold M.

Definition 2.6.1. A smooth submanifold .S < M is said to be a nondegenerate critical submanifold
of f if the following hold.

e S'is compact and connected.

e SC CI'f.

e Vs € Swehave TyS = ker Hy 4, i.e.,

Hpo(X,Y)=0, VY € T,M < X € T,5(C T,M).

The function f is called a Morse—Bott function if its critical set consists of nondegenerate critical
submanifolds. O

Suppose S — M is a nondegenerate critical submanifold of f. Assume for simplicity that
fls= 0. Denote by TsM the normal bundle of S — M, TgM := (T'M)|s/TS. For every s € S
and every X,Y € 7,5 we have

Hy(X,Y) =0,

so that the Hessian of f at s induces a quadratic form Q¢ s on TxM /TS = (T'sM),. We thus obtain
a quadratic form () on Ts M, which we regard as a function on the total space of T's M, quadratic
along the fibers.

The same arguments in the proof of Theorem 1.1.12 imply the following Morse lemma with
parameters.

Proposition 2.6.2. There exists an open neighborhood U of S — E = TgM and a smooth open
embedding ® : U — M such that ®|g = 1g and

OHf = %Qf.

If we choose a metric g on E, then we can identify the Hessians Q) y s with a symmetric automorphism
Q : E — E. This produces an orthogonal decomposition

E=Et®E",

where E is spanned by the eigenvectors of H corresponding to positive/negative eigenvalues. If we
denote by ry the restriction to Ey of the function

u(v7 S) = gs(vv U),
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then we can choose the above ® so that
(I)*f = —u_ + Uy

The topological type of E* is independent of the various choices, and thus it is an invariant of (S, f)
denoted by E*(S) or E*(S, f). We will refer to E~(S) as the negative normal bundle of S. In
particular, the rank of E~ is an invariant of S called the Morse index of the critical submanifold S,
and it is denoted by \(f,S). The rank of E™ is called the Morse coindex of S, and it is denoted by
A(f,9). O

Definition 2.6.3. Let IF be a field. The F-Morse—Bott polynomial of a Morse-Bott function f : M —
R defined on the compact manifold M is the polynomial

Ps(t) = Pr(t;F) =Y 'S Pyg(t),
S

where the summation is over all the critical submanifolds of f. Note that the Morse-Bott polynomial
of a Morse function coincides with the Morse polynomial defined earlier. O

Arguing exactly as in the proof of the fundamental structural theorem we obtain the following
result.

Theorem 2.6.4 (Bott). Suppose f : M — R is a an exhaustive smooth function and ¢ € R is a
critical value such that Cr ¢ Nf~1(c) consists of finitely many critical submanifolds Sy, . .., Sk. For
i =1,...,k denote by D;i the (closed) unit disk bundle of E~(S;) (with respect to some metric on
E~(S;)). Then for € > 0 the sublevel set Mt¢ = {f < c + €} is homotopic to the space obtained
from M¢ = {f < ¢ — e} by attaching the disk bundles Dg, to M =% along the boundaries 8D§i.
In particular, for every field F we have an isomorphism

k

Hy(M®", M™% F) = @) Ho(D(S;), 0D (S ); ). (2.18)
=1

O

Let IF be a field and X a compact CW -complex. For a real vector bundle 7 : £ — X of rank r
over X, we denote by D(F) the unit disk bundle of F with respect to some metric. We say that F is
F-orientable if there exists a cohomology class

7€ H'(D(E),0D(E);F)

such that its restriction to each fiber (D(E),, 0D(E),), © € X defines a generator of the relative
cohomology group H" (D(E),;,0D(E),;F). The class 7 is called the Thom class of E associated to
a given orientation.

For example, every vector bundle is Z/2-orientable, and every complex vector bundle is Q-
orientable. Every real vector bundle over a simply connected space is Q-orientable.

The Thom isomorphism theorem states that if the vector bundle 7 : E — X is [F-orientable, then
for every k£ > 0 the morphism

H*(X,F) > a+— 7gpUn*a € H*"(D(E),0D(E);F)
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is an isomorphism for any k € Z. Equivalently, the transpose map
Hiy(D(E),0D(E);F) — Hp(X,F), ¢— m(cN7E)

is an isomorphism. This implies

Ppg)apE)(t) =t Px (). (2.19)
Definition 2.6.5. Suppose F is a field, and f : M — R is a Morse-Bott function. We say that f is
F-orientable if for every critical submanifold S the bundle £~ () is F-orientable. O

Corollary 2.6.6. Suppose f : M — R is an F-orientable Morse-Bott function on the compact
manifold. Then we have the Morse—Bott inequalities

Pf(t) - PM’F(t).

In particular,

Y DNEN(S) = Pr(=1) = Par(—1) = x(M).
S

Proof. Denote by ¢; < --- < ¢, the critical values of f and set
Cr + Ck41
2
As explained in Remark 2.3.4, we have an inequality

Z P]\/[k’]\/[ki1 = Puy.
k

ly = 7k:17V_17 tozcl_17 tV:cV+17 Mk:{fgtk}

Using the equality (2.18) we deduce
Z Py vy, = Z PD;,@D§>
k S

where the summation is over all the critical submanifolds of f. Since £~ (.9) is orientable for every
S, we deduce from (2.19) that

P (£:59) pg. O

)
Dg.0Dg — ¢
Definition 2.6.7. Suppose f : M — R is a Morse-Bott function on a compact manifold M. For

a € Rweset M* := {f < a}.Then f is called F-completable if for every critical value ¢ and every
critical submanifold S C f~1(c) the morphism

H*(Dg,0Dg;F) — H* (M, M5 F) % H*~' (M F)

is trivial. O

Arguing exactly as in the proof of Proposition 2.3.5 we obtain the following result.

Theorem 2.6.8. Suppose f : M — R is a F-completable, F-orientable, Morse—Bott function on a
compact manifold. Then f is F-perfect, i.e., Pr(t) = Pp(t). O

Corollary 2.6.9. Suppose f : M — R is an orientable Morse-Bott function such that for every
critical submanifold M we have \(f,S) € 27 and Ps(t) is even, i.e.,

br(S) # 0=k € 2Z.
Then f is Q-perfect and thus P¢(t) = Py(t).
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Proof. Using the same notation as in the proof of Corollary 2.6.6, we deduce by induction over k
from the long exact sequences of the pairs (Mj, My_1) that bj(M}) = 0 if j is odd, and we have
short exact sequence

0— Hj(Mk—l) — Hj(Mk) — Hj(Mk,Mk_l) — 0

if j is even. o

2.7. Min-Max Theory

So far we have investigated how to use information about the critical points of a smooth function on
a smooth manifold to extract information about the manifold itself. In this section we will turn the
situation on its head. We will use topological methods to extract information about the critical points
of a smooth function.

To keep the technical details to a minimum so that the geometric ideas are as transparent as
possible, we will restrict ourselves to the case of a smooth function f on a compact, connected
smooth manifold M without boundary equipped with a Riemannian metric g.

We can substantially relax the compactness assumption, and the same geometrical principles we
will outline below will still apply, but that will require additional technical work.

Morse theory shows that if we have some information about the critical points of f we can obtain
lower estimates for their number. For example, if all the critical points are nondegenerate, then their
number is bounded from below by the sum of Betti numbers of M. What happens if we drop the
nondegeneracy assumption? Can we still produce interesting lower bounds for the number of critical
points?

We already have a very simple lower bound. Since a function on a compact manifold must have
a minimum and a maximum, it must have at least two critical points. This lower bound is in some
sense optimal because the height function on the round sphere has precisely two critical points. This
optimality is very unsatisfactory since, as pointed out by G. Reeb in [Re], if the only critical points
of f are (nondegenerate) minima and maxima, then M must be homeomorphic to a sphere.

Min-max theory is quite a powerful technique for producing critical points that often are saddle
type points. We start with the basic structure of this theory. For simplicity we denote by M€ the
sublevel set { f < c}.

The min-max technology requires a special input.
Definition 2.7.1. A collection of min-max data for the smooth function
f:M—-R
is a pair (3, 8) satisfying the following conditions.

e J{ is a collection of homeomorphisms of M such that for every regular value a of M there
exist e > 0 and h € J{ such that

h(M®*e) C M=,
e S is a collection of subsets of M such that

h(S) eS8, VheH, VS eS. O

The key existence result of min-max theory is the following.
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Theorem 2.7.2 (Min-max principle). If (}, 8) is a collection of min-max data for the smooth function
f: M — R, then the real number

c=c(H,8) = ng%fé 81612 f(z)
T

is a critical value of f.

Proof. We argue by contradiction. Assume that c is a regular value. Then there exist € > 0 and
h € 3 such that

h(Mc—i-a) C M.
From the definition of ¢ we deduce that there exists S € 8 such that sup, g f(z) < ¢ + ¢, that is,
S C Mete.
Then S" = h(S) € 8 and h(S) C M. It follows that sup,c g f(x) < ¢ — ¢, so that

inf su ) <c—e.
S/esxegxf( )<

This contradicts the choice of ¢ as a min-max value. O

The usefulness of the min-max principle depends on our ability to produce interesting min-max
data. We will spend the remainder of this section describing a few classical constructions of min-max
data.

In all these constructions the family of homeomorphisms H will be the same. More precisely, we
fix gradient-like vector field £ and we denote by ®; the flow generated by —&. The condition (a) in
the definition of min-max data is clearly satisfied for the family

Hy:={Dy; t>0}.
Constructing the family 8 requires much more geometric ingenuity.

Example 2.7.3. Suppose S is the collection
S = { {z}; zeM }
The condition (b) is clearly satisfied, and in this case we have
H, 8) = mi .
c(Hy,8) = min f(z)

This is obviously a critical value of f. O

Example 2.7.4 (Mountain-Pass points). Suppose xg is a strict local minimum of f, i.e., there exists
a small, closed geodesic ball U centered at ¢y € M such that

co = f(zo) < f(x), Ve e U\ {zo}.
Note that

/ .
= > Cp.
O ) > e

Assume that there exists another point x; € M \ U such that (see Figure 2.18)

c1 = f(z1) < f(wo).
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Figure 2.18. A mountain pass from xo to ;.

Now denote by P, the collection of smooth paths  : [0, 1] — M such that

v(0) = xo, (1) € M\ U.
The collection P, is nonempty, since M is connected and x; € M \ U. Observe that for any
v € P, and any ¢ > 0 we have

(I>t oy S TCEO‘

Now define

8§ = {v([O, 1]); v € Paq }
Clearly the pair (H, 8) satisfies all the conditions in Definition 2.7.1, and we deduce that

= i f
¢= nf max f(v(s))

is a critical value of f such that ¢ > ¢{, > ¢ (see Figure 2.18).

This statement is often referred to as the Mountain-pass lemma and critical points on the level
set {f = ¢} are often referred to as mountain-pass points. Observe that the Mountain Pass Lemma
implies that if a smooth function has two strict local minima then it must admit a third critical point.

The search strategy described in the Mountain-pass lemma is very intuitive if we think of f as a
height function. The point xg can be thought of as a depression and the boundary OU as a mountain
range surrounding xo. We look at all paths v from x to points of lower altitude, and on each of them
we pick a point z, of greatest height. Then we select the path +y such that the point ., has the smallest
possible altitude.

It is perhaps instructive to give another explanation of why there should exist a critical value
greater than cy. Observe that the sublevel set M 0 is disconnected while the manifold M is connected.
The change in the topological type in going from M to M can be explained only by the presence of
a critical value greater than cg. a

To produce more sophisticated examples of min-max data we will use a technique pioneered by
Lusternik and Schnirelmann. Denote by Cj; the collection of closed subsets of M. For a closed
subset C' C M and ¢ > 0 we denote by N.(C) the open tube of radius € around C, i.e., the set of
points in M at distance < ¢ from C.
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Definition 2.7.5. An index theory on M is a map
v Cuyr — Z> :={0,1,... }U{oo}
satisfying the following conditions.
e Normalization. For every x € M there exists = r(x) > 0 such that
y({z}) =1 =~(N.(z)), Yz € M, Ve € (0,r).
¢ Topological invariance. If f : M — M is a homeomorphism, then
(C) =(f(C)), ¥C € Cur.

e Monotonicity. If Cy, C; € Cyy and Cy C C1, then v(Cp) < v(Ch).
e Subadditivity. v(Cy U C1) < v(Co) + v(Ch).

Suppose we are given an index theory 7y : €y — Z>¢. For every positive integer k we define
Ty = {c € Cu; (C) > k).

The axioms of an index theory imply that for each & the pair (3¢, ;) is a collection of min-max
data. Hence, for every k the min-max value

¢ = inf max f(z)

Cery, zeC
is a critical value. Since
Io>Ihy>...,
we deduce that
cp Scp < e

Observe that the decreasing family I'y D 'y D - - - stabilizes at I';,,, where m = ~(M). If by accident
it happens that

cr<cp <. <C’Y(M)’
then we could conclude that f has at least (M) critical points. We want to prove that this conclusion
holds even if some of these critical values are equal.

Theorem 2.7.6. Suppose that for some k,p > 0 we have

Ck:Ck+1:...:Ck+p:C,

and denote by K. the set of critical points on the level set c. Then either c is an isolated critical value
of f and K, contains at least p + 1 critical points, or c is an accumulation point of Cry, i.e., there
exists a sequence of critical values d,, # ¢ converging to c.

Proof. Assume that cis an isolated critical value. We argue by contradiction. Suppose K. contains at
most p points. Then (K .) < p. At this point we need a deformation result whose proof is postponed.
Set
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Lemma 2.7.7 (Deformation lemma). Suppose c is an isolated critical value of f and K. = Cry N{f =
c} is finite. Then for every § > 0 there exist 0 < e, < 6 and a homeomorphism h = hs ., of M
such that

h(Mete\ T, (K.)) C M °.

Consider ¢, r sufficiently small as in the deformation lemma. Then the normalization and subad-
ditivity axioms imply
V(TT(KC)) < V(KC) =P
We choose C' € 'y, such that

max f(x) < cpyp +€=c+e.
zeC

Note that
CCcT (K.)UC\T.(K,),
and from the subadditivity of the index we deduce

'7(0 \ T’I‘(KC)) Z V(C) - V(TT(KC)) Z k.

Hence
V(R(C\TH(Ke)) ) = 1(C\ T (Ke)) > &,
so that
C':=h(C\T,(K,)) € T.
Since

C\T,(K.) C Mcte\ T, (K,),
we deduce from the deformation lemma that
C'c M.
Now observe that the condition C’ € Ty, implies

c=c < ggg;f(x),

which is impossible since C' € M¢ ¢, 0

Proof of the deformation lemma. The strategy is a refinement of the proof of Theorem 2.2.2. The
homeomorphism will be obtained via the flow determined by a carefully chosen gradient-like vector
field.

Fix a Riemannian metric g on M. For r sufficiently small, N,.(K.) is a finite disjoint union of
open geodesic balls centered at the points of K.. Let ry > 0 such that NV, (K.) is such a disjoint
union and the only critical points of f in N, (K_.) are the points in K. Fix £ such that c is the only
critical value in the interval [c — g¢, ¢ + &¢]. For r € (0, 79) define

b=>b(r):=inf{ |Vf(z)], 2 € M\ (M UN,;(K.))} >0.
Choose € = () € (0,¢e0) satisfying.

b(r)r 9 2 r 2e
5 t01) = 55 <5 mmmaey S (220

2e < min(

Define smooth cutoff functions

a:M—10,1], g: M —[0,1]
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such that

ea(x)=0if |f(x) —c| >epand a(z) = 1if |f(x) — | < e

o 3(z) = lifdist (z, K.) > r/4 and f(z) = 0 if dist (x, K.) < r/8.
Finally, define a rescaling function

¢ :]0,00) = [0,00), @(s):= {1_1 s € [0,1],

We can now construct the vector field £ on M by setting
E(x) = —a-B-o([VIf2)VOS.

Observe that £ vanishes outside the region {¢ — g9 < f < ¢ — &} and also vanishes in an /8-
neighborhood of K. This vector field is not smooth, but it still is Lipschitz continuous. Note also
that

(@) <1, Vo e M.

f=c— g

Figure 2.19. A gradient-like flow.

The existence theorem for ODEs shows that for every x € M there exist T (x) € (0, 00] and a
Cl-integral curve 7y, : (—=T_(x), Ty (x)) — M of £ through ,
12(0) = 2, Fa(t) = £(=(1), Vi€ (=T (), Ty ().

The compactness of M implies that the integral curves of £ are defined forall ¢t € R, i.e., T+ (x) = oc.
In particular, we obtain a (topological) flow ®; on M. To prove the deformation lemma it suffices to
show that

Py ( M\ N (K.)) C M2,

Note that by construction we have

9 @) <0, Ve e M,
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so that

O (M) M.
Letz € M\ (N, (K.) UM ). We need to show that ®(z) € M~¢. We will achieve this in
several steps.

For simplicity we set z; := ®;(z). Consider the region
Z={c—e<f<c+e}\NKe),
and define
Ty = {tZO; s €74, Vs€ [O,t]}.
Clearly T, # 0.
Step 1. We will prove that if t € T, then
dist (z, zs) < g, Vs € [0,¢].

In other words, during the time interval T, the flow line ¢ — x; cannot stray too far from its initial
point.

Observe that « and 3 are equal to 1 in the region Z and thus for every ¢t € T, we have

% > f(z) — flag) = — /0 (V). €(x)) ds

:/0 V£ () Pe([V f (@) )ds

drs

d
dss

> b(r) /0 IV ()l ((IVF ()2 )ds = b(r) /O

> b(r) - dist (z, x¢).

From (2.20) we deduce
dist (2, 2) < —— <
ist (x, x — < -.
= by T8
Step 2. We will prove that there exists t > 0 such that ®,(x) € M~ ¢. Loosely, speaking, we want to
show that there exists a moment of time ¢ when the energy f(z;) drops below ¢ — €. Below this level

the rate of decrease in the energy f will pickup.

We argue by contradiction, and thus we assume f(z;) > ¢ — ¢, V¢ > 0. Thus
0< f(x) — fxy) <2, Vt>0.

Since zs € {c —e < f < c+ ¢}, Vs > 0, we deduce
T, = {tz 0; dist (s, K.) > g Vs € [0,1] }

Hence

dist (zy, K.) > dist (z, K.) — d(x,z) > r — g, vVt e T,

This implies that 7" = sup T, = oc. Indeed, if T < oo then

) roor
dist (zp, K.) > r — 3 > 3

= dist (2, Kc) > Vt sufficiently close to T'.

r
27
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This contradicts the maximality of 7. We deduce

2 € Z <= c—e< f(xy) <c+e, dist(z, Kc) > vt > 0.

r
57
This is impossible, since there exists a positive constant v such that

|€(x)| > v, Ve Z,

which implies that
df ()
dt
which is incompatible with the condition 0 < f(x) — f(x¢) < 2¢ for every ¢ > 0.

< — i — _
< —b(rjy = Jim flag) = —oo,

Step 3. We will prove that ®;(x) € M ¢ by showing that there exists ¢ € (0, 1] such that z; €
Me™=. Let

tg 1= inf{t >0; x4 € M= }
From Step 2 we see that ¢( is well defined and f(x,) = ¢ — . We claim that the path
[0,20] 3 5 — x5

does not intersect the neighborhood N, /5(K.), i.e.,

dist (zs, K.) > =, Vs € [0,to].

N3

Indeed, from Step 1 we deduce
dist (x5, Kc) > r — g, Vs € [0, to).

Now observe that

df (zs)

= —|[V/Pe(IVf?) > — max(1,b(r)?).
Thus, for every s € [0, to] we have

f(x) = f(zs) > smax(1,b(r)?) = f(zs) < ¢+ e — smax(1,b(r)?).
If we let s = t; in the above inequality and use the equality f(z;,) = ¢ — €, we deduce

2¢ (2.20)

e Sete—tomax(Lb(r)) =t < oy S
c—e<c+He Omax(,(r)):>0—max(1,b(r)2) -

This completes the proof of the deformation lemma. O

We now have the following consequence of Theorem 2.7.6.

Corollary 2.7.8. Suppose v : Cpy — Z>q is an index theory on M. Then any smooth function on M
has at least v(M) critical points. O

To complete the story we need to produce interesting index theories on M. It turns out that the
Lusternik—Schnirelmann category of a space is such a theory.
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Definition 2.7.9. (a) A subset S C M is said to be contractible in M if the inclusion map S — M
is homotopic to the constant map.

(b) For every closed subset C' C M we define its Lusternik—Schnirelmann category of C' in M and
denote it by catys(C'), to be the smallest positive integer k such that there exists a cover of C' by
closed subsets

S1,..., S, C M

that are contractible in M. If such a cover does not exist, we set

caty (C) := 0. 0

Theorem 2.7.10 (Lusternik—Schnirelmann). If M is a compact smooth manifold, then the correspon-
dence

CuodCwH catM(C)
defines an index theory on M. Moreover, if R denotes one of the rings 7./2, 7, Q then
cat(M) := catp (M) > CL (M, R) + 1,

where CL (M, R) denotes the cuplength of M with coefficients in R, i.e., the largest integer k such
that there exists

at,...,a € H*(M, R)
with the property that

k
Hdegaj#o, apU---Uag #0.
j=1

Proof. It is very easy to check that catj; satisfies all the axioms of an index theory: normalization,
topological invariance, monotonicity, and subadditivity, and we leave this task to the reader. The
lower estimate of cat(M ) requires a bit more work. We argue by contradiction. Let

¢:=CL (M, R)

and assume that cat(M ) < ¢. Then there exist a1, ...,y € H*(M, R) and closed sets Si, ..., Sy C
M, contractible in M, such that

14

k
M:USk, apU---Uay # 0, Hdegaj;«éo.
k=1 j=1

Denote by j the inclusion Sy, — M.
Since Sy, is contractible in M, we deduce that the induced map

Jr H*(M,R) — H*(Sk, R)

is trivial. In particular, the long exact sequence of the pair (M, Sj) shows that the natural map
iy : H*(M,Sk; R) — H®*(M)

is onto. Hence there exists 5, € H®(M, Si) such that

ix(Br) = ag.
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Now we would like to take the cup products of the classes Sx, but we hit a technical snag. The cup
product in singular cohomology,

H.(M, SZ,R) X H.(M, Sj;R) — H.(M, S; U Sj; R),
is defined only if the sets S;, S; are “reasonably well behaved” (“excisive” in the terminology of
[Spa, Section 5.6]). Unfortunately, we cannot assume this. There are two ways out of this technical
conundrum. Either we modify the definition of catj; to allow only covers by closed, contractible, and

excisive sets, or we work with a more supple concept of cohomology. We adopt this second option
and we choose to work with Alexander cohomology H*(—, R), [Spa, Section 6.4].

This cohomology theory agrees with the singular cohomology for spaces which which are not too
“wild”. In particular, we have an isomorphism H*(M, R) = H*(M, R), and thus we can think of
the ay;’s as Alexander cohomology classes.

Arguing exactly as above, we can find classes 3, € H*(M, Si; R) such that
ir(Br) = ag.
In Alexander cohomology there is a cup product
U:H*(M,A;R) x H*(M,B;R) — H*(M,AU B; R),
well defined for any closed subsets of M. In particular, we obtain a class
frLU---UpB € H(M,S1U---USp; R)
that maps to a1 U - - - U arp via the natural morphism
H*(M,S1U---USp;; R) — H*(M, R).

Now observe that lﬁI'(M7 S1U- -+ ,USp; R) = 0, since S1U- - -USy = M. We reached a contradiction
since iy U --- U ayp # 0. O

Example 2.7.11. Since CL (RP",Z/2) = CL((SY)",Z) = CL (CP", Z) = n we deduce
cat(RP") > n+ 1, cat((SH") >n+1, cat(CP") >n+1.

Corollary 2.7.12. Every even smooth function f : S™ — R has at least 2(n + 1) critical points.

Proof. Observe that f descends to a smooth function f on RP" which has at least cat(RP") > n + 1
critical points. Every critical point of f is covered by precisely two critical points of f. a






Chapter 3

Applications

It is now time to reap the benefits of the theoretical work we sowed in the previous chapter. Most
applications of Morse theory that we are aware of share one thing in common. More precisely, they
rely substantially on the special geometric features of a concrete situation to produce an interesting
Morse function, and then squeeze as much information as possible from geometrical data. Often this
process requires deep and rather subtle incursions into the differential geometry of the situation at
hand. The end result will display surprising local-to-global interactions.

The applications we have chosen to present follow this pattern and will lead us into unexpected
geometrical places that continue to be at the center of current research.

3.1. The Moduli Space of Planar Polygons

We want to investigate in greater detail the robotics problem discussed in Example 1.1.5, 1.1.10 and
2.2.7. More precisely, consider a robot arm with arm lengths 7y, ..., 7,, where the initial joint Jy
is fixed at the origin. As explained in Example 1.1.5 a position of the robot arm is indicated by a
collection angles § = (61, .. .,6,) € (S)™, so that the location of the k-th joint is

k
Jk: E Tkewk.
i=1

We will refer to the vector 7" = (rq,...,r,) € RY as the length vector of the robot arm.

We declare two positions or configurations of the robot arm to be equivalent if one can be obtained
from the other by a rotation of the plane about the origin. More formally, two configurations

—

6= (01,...,6n), 6=(d1,...,%n)
are equivalent if there exists an angle w € [0, 27) such that
¢r — 0 =wmod 2w, Vk=1,...,n.

We denote by [0, . . . , 0] the equivalence class of the configuration (61, . . ., 0,,) and by W,, = W,,(7)
the space of equivalence classes of configurations. Following [Fa] we will refer to W), as the work
space of the robot arm. We denote by W' the set of equivalence classes of configurations such that

81
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Jn # Jo, and by M the set of equivalence classes of configurations such that J,, = Jy. Note that
M5 is non-empty if and only if
T SZT]', Vi=1,...,n.
J#
The work space W, is a quotient space of the n-torus and as such it has an induced quotient topology.
In particular, we can equip M with a topology as a closed subspace of W,.

Note that any configuration of the robot arm such that J,, # Jy = 0 is equivalent to a unique
configuration such that .J,, lies in on the positive side of the x-axis. This shows that the configuration
space C', discussed in Example 1.1.5 can be identified with W*.

A configuration such that J,, = Jj is uniquely determined by requiring that the joint J,,—; lies on
the positive part of the x-axis at a distance r,, from the origin. Observe that the configurations in M
can be identified with n-gons whose side lengths r1,...,r,. For this reason, the topological space
Mz is called the moduli space of planar polygons with length vector 7. In this section we want show
how clever Morse theoretic techniques lead to a rather explicit description of the homology of M.
All the results in this section are due to M. Farber and D. Schiitz [FaSch].

Proposition 3.1.1. The work space W, is homeomorphic to a (n — 1)-torus.

Proof. Consider the diagonal action of S* on 7™ = (S*)" given by
e (eiel, L ) = (ei(eﬁ'w), ce i0n+w) )

The natural map
(SH" 3 (e, ) K [0y, ..., 0,] € Wy

is invariant with respect to this action and the induced map (S')"/S' — W, is a homeomorphism.
On the other hand, the map

(S 3 (e, e ) Ty (lfemt) L il0n=01)) ¢ (ghyn-t

is also invariant under the above action of S! and induces a homeomorphism (S1)"/S1 — 771,
O

For any permutation o of {1,...,n} and any length vector ¥ = (r1,...,r,) wWe set oF :=
(To(1)s - - - » To(n))- Note that we have a homeomorphism

Wo(7) 2 [01,...,0,] — [00(1), .. .,Gg(n)] € Wy (o7)

that maps M homeomorphically onto M, 7. Thus, in order to understand the topology of Mz we can
assume that 7is ordered, i.e.,

re>2rey > 21 >0,
The computations in Example 1.1.5 allow us to extract some information about My, where 77 =
(ri,...,my) is ordered. We will also assume that the genericity assumption (1.1) is satisfied, i.e.,

n
Zekrk #0, Ver,...,e, € {1,—1}.

k=1
Consider the a robot arm with (n — 1)-segments of lengths 71, ...,7,_1 and consider again the set

C),—1 of all configurations of this robot arm such that .Jy is fixed at the origin while the endpoint J,, 1
lies on the positive part of the positive z-axis.
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We have a smooth function h,_1 : Cy,—1 — (0, 00) that associates to a configuration the location
of the joint J,,_1 on the x-axis. Observe that M can be identified with the level set { hpo1=1n }

The genericity assumption implies that r,, is a regular value of h. The manifold C,,_; has dimen-
sion (n — 2) so that the level set { h,—1 = ry, } is a smooth manifold of dimension (n — 3). We have
thus established the following result.

Proposition 3.1.2. If the length vector 7 satisfies the genericity assumption (1.1) then the moduli

space M is homeomorphic to a smooth manifold of dimension (n — 3). O
Fix an ordered length vector ¥ = (71, ..., 7y) satisfying (1.1). For any subset I C {1,...,n} we
set
(1) := Zri — er.
el jelI

The subset I is called 7*-short (or short if 7 is understood from the context) if 7(1) < 0. A subset is
called long if 7(1) > 0. Due to the genericity assumption we see that (1) # 0 for any subset I, so
that I is either long, or short. Moreover, a set is long/short if and only if its complement is short/long.
We denote by L§ the collection of 7-long/short subsets. For any £ = 0,1,...,n — 3 we denote by
ay, = ay(7) the number of 7-short subsets of cardinality k + 1 that contain 1, i.e.,

ay(7) ::#{IGL;; 1el, #I:k:-i—l}.
We have the following result.

Theorem 3.1.3 (Farber-Schiitz). Suppose 7= (r1,...,ry) is an ordered length vector satisfying the
genericity assumption (1.1). Then, for any k = 0,1, ..., n — 3 we have the equality

dim Hk(MF, Q) = ak(F‘) + an_g_k(f‘).

Proof. Let us briefly outline the strategy which at its core is based on a detailed analysis of a Morse
function on W),,. The work space W), is equipped with a natural continuous function

by, : Wy, — [0, 00)

that associates to every equivalence class of configurations the distance from Jy to J,. This is not
a smooth function but its restriction to W is a smooth function that we have encountered before in
Example 1.1.5 and 1.1.10. Namely, if we identify W,* with the space C,, of configurations of the
robot arm such that the endpoint .J,, lies on the positive side of the x-axis, then h,, associates to such
a configuration the location of J,, on the x-axis. Using h, we can construct the smooth function
f=fe: Wy = (—00,0]

—

) = ~hal@)? =~ 3 e [ = ~dtist (o, )
k=1

Observe that M coincides with the top level set { f = 0}. Define
Ne:={f>—¢}, e>0.

If ¢ is sufficiently small, then the space M is homotopy equivalent to its neighborhood N.. Hence it
suffices to understand the (co)homology of N.. For simplicity we will denote by He(X ) the homol-
ogy of X with integral coefficients.
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On the other hand, N; is an oriented (n — 1)-dimensional manifold with boundary, and the
Poincaré-Lefschetz duality implies that for any j = 0,...,n — 1 we have isomorphisms

HI(N.) = H,,—1_j(N:,ON:), Hj(N:) = H" (N, ON,).
Thus it suffices to understand the (co)homology of the pair (N, ON).

From the excision isomorphism we see that this is isomorphic to the (co)homology of the pair
(W, W~=¢) where W = W,,, W=¢ = {f < —e}. We will determine the cohomology of the pair
(W, W~¢) in two steps.

A. Produce a description of the homology of W ~¢ using the Morse function f.

B. Obtain detailed information about the morphisms entering into the long exact sequence of
the pair (W, W9,

Lemma 3.1.4. The restriction of f to W* = {f # 0} is a Morse function, and there exists a natural
bijection between the set of critical points of f on W* and the collection of long 7-sets. Moreover, if
1 is such a long set, then the Morse index of the corresponding critical point is n — #1.

Proof. As we have explained before, the open set W* = W,¥ can be identified with the configuration
space C,, in Example 1.1.5. For simplicity we write & instead of h,,. The function f = —h? is not
equal to zero on this set so it must have the same critical points of h. We know that these points
correspond to collinear configurations, 8, = 0, 7, such that the last joint is located on the positive
part of the z-axis. For such configurations we set €5, := €*% and we deduce ¢;, = +1, Vk and

n

Z exrr > 0.

k=1
We see that there exists a bijection between long subsets of {1, ...,n} and the critical points of f on
W*. For such a collinear configuration the corresponding long set is

{k; exr >0 }

For any long set I we denote by 07 the corresponding critical configuration, and we denote by c; the
corresponding critical value, ¢y := f(67)

Denote by H the Hessian of f at 0, 1. Then, for any X, Y € TgIW we have
H{(X,Y) = —XYh*(6r),
where X, Y are smooth vector fields on W such that X (0;) = X, Y (f;) = Y. We have
Yh?=2nYh and XYh?=2(Xh)(Yh)—2hXYh.
The function (X /)(Yh) vanishes at f; and we deduce
Hy = —2hH, ;.

Since the function h is positive we deduce that H is nondegenerate. Denote by Aj the Morse index
of f at #;. The computations in Example 1.1.10 show that

A= dimW = A0 " - gk e =1} =n— #I. 0

For every subset I C {1,...,n} we set

Wy = { [01,....00] € W; 0, = 0;y, Vir,iz € I}’
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Observe that W7 is a torus of dimension n — #1. In particular,when [ is a long subset we have
9_} € W], dim W = Aj.
We have the following key result.

Lemma 3.1.5. Suppose I is a 7-long subset. Then the restriction of f to Wy is a Morse function that
achieves its absolute maximum at 0. O

To keep the flow of arguments uninterrupted we will present the proof of this lemma after we
have completed the proof of Theorem 3.1.3. For ¢ € R we set

Wh:={f <t}
For every critical value ¢ < 0 of f we define
L+ —{IEL+ cI—c}
In other words, £ (c) can be identified with the set of critical points of f on the level set { f = c}.
Lemma 3.1.5 implies that for any I € L;i' (c) the following hold.

e The torus W7 is contained in the sublevel set /¢ and intersects the level set { f = ¢} only
at the point 6;.

e For ¢ > 0 sufficiently small, the torus W7 intersects the level set { f = ¢ — €} transversally,
and W5 := Wi N {c—e < f < c}is adiffeomorphic to a disk of dimension A;. We fix an
orientation 1y on Wy so that we get a relative homology class,

uI(e) = [WIE, 8WIE, ,UI] S H)\I ( WCJ'_E, we—e ),
and a homology class

wi(e) = (Wi, ur] € Hy, (W).

Lemma 3.1.6. Let c be a critical value of f, ¢ < 0. Then for € > 0 sufficiently small the following
hold.

(a) The collection {ur(c); I € Lr(c)} forms an integral basis of the relative homology
Ho(Wete wee).
() If
Ho(WeTe) — Hy (W Wee)
denotes the inclusion induced morphism and
O:Hy (W, W) — He_y (W®)

denotes the connecting morphism in the long exact sequence of the pair (Wete We=¢),
then
ix(wr) =ur, Our =0, VI € L;f(c).

Proof. (a) We choose a Riemann metric ¢ on W with the following property: for any critical point
07 € {f = ¢} there exist local coordinates (!, ..., 2" 1) in a neighborhood N7 of #; such that the
following hold.
2*(07) = 0, Vk.
o g=(dz")?2 + -+ (dz" )2 on Ny.
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A\ .

o f=c— Zj;1(x])2 + Zk>>\l($k)2 on Nj.

e The tangent space T(71 Wr C T(;I W coincides with the coordinate plane P; spanned by the
tangent vector 0,5, 1 < j < Aj.

Let £ denote the vector field —V9 f. Denote by W the unstable manifold of 67 with respect to
&. Note that W, N Ny can be identified with an open neighborhood Oy of 0 in the plane Py, and thus
‘W7 has a natural orientation induced from the orientation of W7.

For € > 0 sufficiently small the intersection
Wi(e) =Wy Nn{c—e< f<c+e}

is a A; dimensional oriented disk, the unstable disk as constructed in Section 2.5. We get a homology
class

vi(e) = Wy (e),0Wy (e), ui] € Hy, (WT7%).
Arguing as in Section 2.5 we see that for £ > 0 sufficiently small the collection {u;(e); I € £} (c)}

is an integral basis of H, (W<, W ¢: 7). The class v;(¢) is none other than the class (67| as defined
in Section 2.5.

To prove (a) it suffices to show that us(¢) = wv;(e) for € sufficiently small. Given our local
coordinates, we can identify N; with some open convex neighborhood of 0 in the tangent space
P = TgIW. Under this identification 67 corresponds to the origin. We let y denote the vectors in P;

and z denote the vectors in TIL so that any x € N; C P admits a unique orthogonal decomposition
x = y + z. In this notation we have
Fy,2) = —lyl* + |2,
Since W7 is tangent to P; we can find an even smaller neighborhood N, of the origin in P such that
the portion W; N N’ can be described as the graph of a smooth map
¢: By C Pr— Pt
where By C Oy is a tinny open ball of radius rg on P; centered at 0, and the differential of ¢ at O is
trivial. In other words
WinNy={z=y+z lyl<r, 2=¢y)}.
Fix 0 € (0, 7) sufficiently small, so that the function

{ly <ot 2y g(y) =y — o) €R
is nonnegative and convex, with a unique critical point at the origin. Such a choice is possible since
¢(0) = 0 and the differential of ¢ at 0 is trivial.
For ¢ > 0 sufficiently small we have W5 C N’ and

W]E:{x:y+z; lyl <0, z=ao(y), 0§|y|27|¢(y)|2§6}

={z=y+z [yl<r, 2=0(), gly) <c}.
The set
Oge:={yePr [yl <4, gly) <e}
is a compact convex neighborhood of the origin with smooth boundary. It defines a relative homology
class [Og ¢, 00, ] that coincides with the class vy (). It also coincides with uy () as can be seen using
the homotopy

0,1] x Ogc = P, (t,y) — y+td(2).
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(b) The equality i.w; = uy follows directly from the definition of ¢, using a triangulation of Wj. The
equality Ou; = 0 is then a consequence of the identity di, = 0. O

Remark 3.1.7. (a) If we form the Floer complex of f|y« then the result in Lemma 3.1.6 and the
considerations in Section 2.5 imply that the boundary maps of this complex are trivial.

(b) The results in Lemma 3.1.6 are manifestations of a more general phenomenon. Suppose
f + M — R is a proper Morse function on a smooth manifold M, and p is a critical point of f of
index A, and f(p) = 0. We say that p is of Bott-Samelson type if there exists a compact oriented
manifold X of dimension A and a smooth map ® : X — M such that

o(X) c{f <0}, o(X)Nn{f=0}={p},

and the point 9 = ®~!(p) is a nondegenerate maximum of f o ® : X — R. Using unstable disks as
in Section 2.5 we obtain a homology class

(pl € Hx(M®,M~*).
Then (see [PT, §10.3])
(p| = i @[ X],
where [X] € H,( X ) is the orientation class and
Qs Ho(M®) — Ho(M®,M™%)
is the natural morphism. In particular, 9(p| = 0. Note that Lemma 3.1.5 states that the critical points
01 of f are of Bott-Samelson type. O

Lemma 3.1.6 implies that for any critical value ¢ < 0 of f, and any sufficiently small € > 0 the
connecting morphism
O: He (W, We®) = He_y (W ?)
is trivial. Thus for any £ > 0 we have short exact sequences,
0— Hy(W®) = Hy (W) = Hy(We, Wee) =0 3.1)
while for £ = 0 we have an exact sequence
0— Ho( WC_E) — HQ(WC+E) — H()(WC+8, WC_S).
Letc; < ¢ < --- < ¢, be all the critical values of f|y+. Set ¢,+1 = 0. Fix
1

€ < - min (cx+1 — Ck)-
5 SV( k1 — Ck)
Observe that f has a unique local minimum corresponding to the critical point 6 1, In={1,...,n}.

Thus WL ¢ has the homotopy type of a point, and its homology is generated by the point W7, . Using
(3.1) inductively we deduce that H,(W ¢, 7Z) is a free Abelian group and the collection of homology
classes [W;] € Hy, (W), I € £ is an integral basis of H,(W ). This completes Step A of our
strategy.

Consider the diffeomorphisms q and ¥ that we used in the proof of Proposition 3.1.1,

Tn—l — (Sl)n—l (X (Sl)n/sl g W

where we recall that

T(b1,...,00) = (Uo,..., ) € (R/20Z)" L, oy, = 0 — H; mod 27.
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Forevery J C {2,...,n} we set
Ty ={(¥2,...,%y); ¥; =0mod2m, VjeJ}.

Then Ty C T™ ! is a torus of dimension (n — 1) — #£.J and, upon fixing an orientation, we obtain a
homology class [T] € Hy,,—1—4;(T™ 1, Z). The collection

{1y Jc{2,...,n} },
is an integral basis of He(7T™~!,Z). Note that

QU NTy) =W;, J=JU{l}.

This proves that the collection

{Wyl Jcf2....n}} (3.2)
is an integral basis of He(W,Z).

Asubset I C {2,...,n} defines a homology class [W;] € H,,_4 (W, Z) and thus can be written
as a linear combination of classes [W;], J C {2,...,n}. More precisely, we have the following
result.

Lemma 3.1.8. Ler I C {2,...,n}. Then
Wi =) +[W;], Ii=1\{i}.

el

Proof. Consider the diffeomorphism ® = Woq~ ! : W — 77!

[917---79n] — (1/)2,...,1!),1) = (92 —01,...,(9n —91).
Thus
OWy) = {(W2,. ., ¥no1) € TN by =1biy, Vi ig € I}

Denote by I¢ the complement of I in {2, ..., n}. Then the torus 77 has angular coordinates (1);)jcre,
while the torus 77 has angular coordinates (1););cr. Denote by A the “diagonal” simple closed curve
on T7c given by the equalities

¢i1 = Yi,, Vii,i0 € 1.
We have a canonical diffeomorphism F': Tre X T — T 1 and we observe

(I)(W]) = F(A X T[)

We fix an orientation on C' and we denote by [C] the resulting cohomology class. We leave to the
reader as an exercise (Exercise 6.1.23) to verify that in Hy (7<) we have the equality

[A] =) +[E), (3.3)
iel
where E; is the simple closed curve in 77 given by the equalities

wj =0, Vjel,.
Using Kiinneth theorem we deduce that
B.Wi) = Y +F(E] x [T1]) = 3 +[T). 0
i€l il

The group He (W ~¢) admits a direct sum decomposition
H.(W_e) = Ao @Bo’
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where
e A, is spanned by the classes [W;], I € L1, 151,
e B, is spanned by the classes [W,], J € L1, J # 1.
Similarly, we have a direct sum decomposition
H (W,Z) = Ae ® Cl
where A, is as above, and
e C, is spanned by the classes [W;], J C {2,...,n}, J
Thus, the inclusion induced morphism j, : He(W™°) — He(W
« 15} A, A,

~—

has a block decomposition

NS
v 1) B.
Lemma 3.1.9.
a=14u,, v=0, §=0.

Proof. Clearly j.|4, = 14, which implies @ = 14, and v = 0.
Let J € £1,and 1 ¢ J, so that [W,] € B,. Lemma 3.1.8 implies that
G =3 =W ).
jeJ
Observe that since 7 is ordered we have
r(J;) =r(J) —rj+r1 > r(J) > 0.

Hence all of the subsets jj, j € J are long. The above equality implies that j.[W;] € A, i.e.,
o[Wy] = 0. O

Lemma 3.1.9 implies that the range of the morphism j;, : Hp(W™°) — Hy(W) is the free
Abelian group Aj. Hence

coker ji = Cf, rankker ji = rank By.

Consider now the long exact sequence of the pair (W, W™¢),

A m W) B W) B B W, w) S H () TS
This yields a short exact sequence (k > 1)
0— Cyr — H(W,W™°) = ker jy_1 — 0.
Hence Hy, (W, W~¢) is a free Abelian group and its rank is
rank Hy (W, W™°) = rank C}, + rank By_1.

From the excision theorem we deduce that Hy(N., ON.) = Hp(W, W —¢) so that Hy(N., ON;) is
free Abelian and
rank Hy(N.,ON,) = rank C}, + rank By_1.
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The Poincaré -Lefschetz duality and the universal coefficients theorem now imply that for VO < £ <
n — 3 we have
rank Hj, ( M;) = rank Hy(N;) = rank C,,_1_j + rank B,,_o_.
Observe that rank C),_1_j, can be identified with the number of subsets J of {2,...,n} such that
Jely, n—#J=n—k—1,
In other words, rank C,_1_, = a(7).
Similarly, rank B,,_5_j, can be identified with the number of long subsets J C {2,...,n} such

that n — 2 — k = n — #J. The complement of such a subset in {1,...,n} is a short subset of
cardinality n — 2 — k that contains one, i.e., rank B,,_s_; = a,,_3_x (7). This concludes the proof of
Theorem 3.1.3. U

Proof of Lemma 3.1.5. On W} we have 0;, = 0,,, Vi1, i2 € I. Denote by 6y the common value of
these angular coordinates. The restriction f7 of f to W7 can now be rewritten as

. . 2
Jr= —‘7“06200 + E ’l“je’u?7 ,
Jelre

where I¢ denotes the complement of [ in {1,...,n} and 79 = ), ;5. Suppose I¢ = {j; < --- <
Jji}. Form a new robot arm with arm lengths 7o, 7j,,...,7;j,. The torus Wy can be identified with the
work space of this robot arm. Note that since I is a long subset we have

ro > i e T
so that the end joint of this arm can never reach the origin. Thus W} can be identified with the
configuration space of this robot arm as defined in Example 1.1.5 and f; < 0 on W;. Arguing as in
the proof of Lemma 3.1.4 we deduce that f; is a Morse function. The minimum distance from the

origin to the end joint is realized for a unique collinear configuration namely, 0y = 0, ¢; = 7, j € I°.
Thus

—

HvlngfI = —(rorj, — - — 1) = f(6)).

This maximum is nondegenerate because fr is Morse. O

Example 3.1.10. (a) Suppose n is an odd number, n = 2v + 1. Then the length vector ¥ =
(1,...,1) € R™ is ordered and satisfies the genericity condition (1.1). In this case a subset I is
long if and only if #1 > v + 1. We deduce that

n—1 »
ak:{(k)v E<v-1 a”—3—k={(k+2)7 E>v—1

0, k>v—1, 0, k<v-—1,
so that
(2]:), k<v-—1
beM) = (1) + (), k=v-1
(;:2), k>v—1.

For n = 5, v = 2 the moduli space M is 2-dimensional and its Poincaré polynomial is 1 4 8t 4 ¢2.
This agrees with the conclusion of Example 2.2.7.

(b) At the other extreme suppose n > 5 is arbitrary and
7= (r,r2...,"-1,Tn) =(n—1—¢,1,1,...,1), 0<e<1.
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Then 7 is ordered and satisfies (1.1). A subset I C {1,...,n} is r-short if and only if either I = {1},
or 1 ¢ I. Then the Poincaré polynomial Pr(t) of M is 1 + "3,
(c) Suppose

F=(r1,...,m)=n—2j+¢1,....,1), 0<e<1, 2j<n-—3.

Consider a subset I C {1,...,r} of cardinality k£ + 1 that contains 1. Then [ is 7-short if and only if
k < j. Hence

. 0, k> 7, . N k>n—3—j
@ = FEP e = J

(k), k<7, 0, k<n-—3-j.
We deduce

P;(t):iii(n;1>t’“+k nzf) <Z;;>t’f O

=0 =n—2—j

3.2. The Cohomology of Complex Grassmannians

Denote by Gy, , the Grassmannian of complex k-dimensional subspaces of an n-dimensional com-
plex vector space. The Grassmannian G/, ,, is a complex manifold of complex dimension k(n — k)
(see Exercise 6.1.26) and we have a diffeomorphism Gy, — G,,—j , Which associates to each k-
dimensional subspace its orthogonal complement with respect to a fixed Hermitian metric on the
ambient space. Denote by Py ,,(t) the Poincaré polynomial of Gy, ,, with rational coefficients. In this
section we will present a Morse theoretic computation of Py, ,, ().

Proposition 3.2.1. For every 1 < k < n the polynomial P}, ,,(t) is even, i.e., the odd Betti numbers
of Gy, p, are trivial. Moreover,

Prpi1(t) = Pon(t) + 2070 p (1), V1 <k <n.

Proof. We carry out an induction on v = k + n. The statement is trivially valid for v = 2, i.e.,
(k,n) = (1,1).

Suppose that U is a complex n-dimensional vector space equipped with a Hermitian metric (e, o).
Set V := C& U and denote by e the standard basis of C. The metric on U defines a metric on V/, its
direct sum with the standard metric on C. For every complex Hermitian vector space W we denote by
G (W) the Grassmannian of k-dimensional complex subspaces of W and by S(W) the linear space
of Hermitian linear operators T' : W — W. Note that we have a natural map

Gk(W) — S(W), L— PL,

where Pr, : W — W denotes the orthogonal projection on L. This map is a smooth embedding. (See
Exercise 6.1.26.)

Denoteby A : C®U — C@ U the orthogonal projection onto C. Then A € S(V') and we define
f:8(V)—=R, f(T)=Retr(AT).
This defines a smooth function on Gy (V),

L f(L) =Retr(APr) = (Preg,€p).
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Equivalently, f(L) = cos? £(eg, L). Observe that we have natural embeddings G(U) — G1(V)
and
Gr-1(U) = Gi(V), Gp—1(U)> L+ Cep @ L.

Lemma 3.2.2.
0< f<1, VLeGg(V),
F7H0) = Gr(U), (1) = Gk (V).
Proof. If L C V is a k-dimensional subspace, we have 0 < (Prep, ep) < 1. Observe that
(Preg,e0) =1 <= ¢ € L,
(Preg,eq) =0 <= eg € Lt <= L C (eg)t =U.
Hence fori = 0,1 we have S; = {f =i} = Gr_;(U). O

Lemma 3.2.3. The only critical values of f are 0 and 1.

Proof. Let L € Gy (V) such that 0 < f(L) < 1. This means that
0 < (Ppeg,e0) = COSQA(eO,L) < 1.

In particular, L intersects the hyperplane U C V transversally along a (k — 1)-dimensional subspace
L' C L. Fix an orthonormal basis e1, . . ., ex_1 of L' and extend it to an orthonormal basis e1, . .., e,
of U. Then

L=1L +Cv, 17:00604-20]'6]‘, \00\24‘2’%“2:1
>k >k
and (Preq, eg) = |co|?. If we choose

() = ao(t)eo + ) aj(t)ej, lao(t) =1 = la; (1),

jzk Jj=k

such that ao(t) and a;(t) depend smoothly on ¢, d";‘z‘Q lt=0 # 0, ap(0) = co, then

is a smooth path in G (V') and %(Lt) lt=0 # 0. This proves that Ly = L is a regular point of f. O

Lemma 3.2.4. The level sets S; = f~1(i), i = 0,1, are nondegenerate critical manifolds.
Proof. Observe that Sy is a complex submanifold of G (V') of complex dimension k(n — k) and thus
complex codimension
codime (Sp) =k(n+1—k) —k(n—k) =k.

Similarly,

codimc (S1)=(n+1—-k)k—(n+1—-k)(k—1)=(n—k+1).
To prove that Sy is a nondegenerate critical manifold it suffices to show that for every L € Sy =
Gy (U) there exists a smooth map ® : C¥ — G},(V) such that

®(0) = L, & is an immersion at 0 € C*,

and
f o ® has a nondegenerate minimum at 0 € C*.
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For every u € U denote by X, : V' — V the skew-Hermitian operator defined by
Xu(eo) =u, Xy(v) =—(v,u)ey, Vv e U.

Observe that the map U > u — X, € Homc(V,V) is R-linear. The operator X, defines a 1-
parameter family of unitary maps !X« : V — V. Set
®(u) == e*"L, P(u) := Py,).
Then
dP(tu)
dt

P(u) = eX“Pre ™", P, = lt=0 = [Xu, PL]

and
(Pueo,u) = —(PrXu(e0), u) = —|ul?,

so that if u € L we have

This proves that the map
L — Gk(V), L>u+— <I>(u) € Gk(V),
is an immersion at u = 0. Let us compute f(®(u)). We have

F(@(u) = (P(u)eq, eg) = (Pre”Xeg, e X eq)

1 1
= (PL(l_Xu+§X5—“')€0,(1—Xu+§ 3—-“)60)
= (PrLXueo, Xueo )+ = uf> +---,
where at the last step we used the equalities X, ,eg = u, Pru = u, Preg = 0. Hence
d?f (®(tu)
(dt2)|t—0 = 2(PrXye0, Xueo) = 2|ul?.

This shows that 0 € L is a nondegenerate minimum of L > u — f(®(u)) € R, and since dim¢ L =
codimg Sg, we deduce that Sy is a nondegenerate critical manifold.

Let L € S;. Denote by Ly the intersection of L and U and by Ly, the orthogonal complement of

Lo in U. Observe that
dim¢ Ly = n — k + 1 = codim¢ 57,
and we will show that the smooth map
O: Ly — Gp(V), urs ®(u) =L

is an immersion at 0 € L{, and that f o ® has a nondegenerate maximum at 0.

Again we set P(u) = Py (,) and we have
dP(tu)

dt

Pueg = XyPreg — PrXue0 = Xueg = u = (Pyeg, u) = |ul?.

P, =

‘t:O = [XuaPL]a

Now observe that

f(@(u)) = (PLe*X”eo, e*X“eo)

1 1
= (PL(l—Xu+§XZ+"')60; (1_Xu+§X3+”')60>
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(Xueo = u, PLXyeq = 0)
1 1
= (60+§X360+“' ,eo—u—f—QXze(])
1 1
= leol* + §(X3€o, €o) + 5(60,)@360) +-
(X, = —Xu)
:1—(Xueo,Xueo)+~~-:1—\U|2+---
This shows that .S; is a nondegenerate critical manifold. O
Remark 3.2.5. The above computations can be refined to prove that the normal bundle of Sy =
Gr(U) — Gg(V) is isomorphic as a complex vector bundle to the dual of the tautological vector

bundle on the Grassmannian G(U), while the normal bundle of S} = Gy_1(U) — Gr(V) is
isomorphic to the dual of the tautological quotient bundle on the Grassmannian G_1(U). O

We have
The negative bundles £~ (.S;) are orientable since they are complex vector bundles
E7(50) =0, E7(51) = T5,Gr(V).

Since Sp = G n» 51 == Gj—1,n, we deduce from the induction hypothesis that the Poincaré poly-
nomials Pg, (t) are even. Hence the function f is a perfect Morse—Bott function, and we deduce

PGk(V) = Pg,(t) + tg(n+1_k)P51 (t),
or
Peps1(t) = Pon(t) + 2R B (). 0
Let us make a change in variables
Qke = Py L= (n—k).
The last identity can be rewritten
Qi1 = Que +2Qp 1 o4
On the other hand, Q1 ¢ = Q¢ ., and we deduce
Qrr1 = Qo1 = Qrir 1 + 2*Qup.

Subtracting the last two equalities, we deduce

(1—t)Qrr = (1 — 2FNQp_1 41

We deduce
(1 _ t2(€+1)) (1 _ t2(n—k+1))
= ——---— _ :> P = —P — .
Qe (1= ) Qr—1,041 k,n (1= ) k—1,n
Iterating, we deduce that the Poincaré polynomial of the complex Grassmannian Gj, ,, is
[T gy (1 —t%) T, (1 — %)
Pk,n(t) _ Jj=(n ) — i=1 — .

[T, (1 — %) [T, (1 —2) TP (1 — 20
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Remark 3.2.6. The above analysis can be further refined and generalized. We leave most of the
details to the reader as an exercise (Exercise 6.1.28).

Suppose E is a finite dimensional real Euclidean space, and A € End(F) is a symmetric en-
domorphism. Denote by Gry(F) the Grassmannian of k-dimensional subspaces of E. For every
L € Gri(F) we denote by Py, the orthogonal projection onto L. The map

Grk(E) 5L— PrLeEndFE

embeds Gry(F) as a (real algebraic) submanifold of End(F). On End(FE) we have and inner product
given by
(S, Ty = tr(ST™).
We denote by | e| the corresponding Euclidean norm on End(E). This inner product induces a smooth
Riemann metric on Gry(E).
The function

fa: Grk(E) — R, fA<L) =tr AP, = <A, PL>. 3.4)
This is a Morse-Bott function whose critical points are the k-dimensional invariant subspaces of A.
Its gradient flow has an explicit description,

Grip(E) 3 L — L € Gri(E) (3.5)

We want to point out a simple application of these facts that we will need later.
Suppose U is a subspace of F/, dim U < k, and define

A= PUL = HE —PU.
Then
fA(L) = tI‘(PL — PLPU) =dimL — tI‘(PLPU).
On the other hand, we have

| Py — PUPL|2 =tr(Py — PyPL)(Py — PLPy) = tr(Py — Py PLPy)

=trPy —tr PP, Py =dimU — tr Py Py,
Hence
fa(L) = |Py — PyPp|* +dim L — dim U,
so that
fa(L) > dim L — dim U,
with equality if and only if L D U. Thus, the set of minima of f4 consists of all k-dimensional

subspaces containing U. We denote this set with Gry(E)y. Since f4 is a Morse-Bott function we
deduce that
Vj <k, VUeGr;j(F), 3IC=C(U)>1, VL € Gry(E):
Lo 2 2 : 2 (3:6)
6 dlSt(L, Grk(E)U) < |PU — PUPL’ < CdlSt(L, GI’k(E)U) .

In a later section we will prove more precise results concerning the asymptotics of this Grassmannian
flow. O
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3.3. The Lefschetz Hyperplane Theorem

A Stein manifold is a complex submanifold M of C¥ such that the natural inclusion M — C¥ is a
proper map. Let m denote the complex dimension of M and denote by ¢ = (¢!,..., (") the complex
linear coordinates on C”. We set ¢ = v/—1.

Example 3.3.1. Suppose M C C¥ is an affine algebraic submanifold of C", i.e., there exist polyno-
mials Py, ..., P, € C[¢!,..., ("] such that

M:{QGC”; P;i(¢) =0, Vizl,...,r}.
Then M is a Stein manifold. O

Suppose M — C¥ is a Stein manifold. Modulo a translation of M we can assume that the
function f : C* — R, f(¢) = |¢|? restricts to a Morse function which is necessarily exhaustive
because M is properly embedded. The following theorem due to A. Andreotti and T. Frankel [AF] is
the main result of this section.

Theorem 3.3.2. The Morse indices of critical points of f|ps are not greater than m. a

Corollary 3.3.3. A Stein manifold of complex dimension m has the homotopy type of an m-dimensional
CW complex." In particular,
Hy(M,Z) =0, Yk >m. O

Before we begin the proof of Theorem 3.3.2 we need to survey a few basic facts of complex
differential geometry.

Suppose M is a complex manifold of complex dimension m. Then the (real) tangent bundle T'M
is equipped with a natural automorphism

J:TM —TM
satisfying .J2 = —1 called the associated almost complex structure. If (z* )1<k<m are complex coor-
dinates on M, z* = z*¥ + iy*, then
JOuk = Oy, JOp = — 0.

We can extend J by complex linearity to the complexified tangent bundle,
Je:‘TM — “TM, ‘“TM :=TM ®g C.
The equality J2 = —1 shows that +3 are the only eigenvalues of J... If we set
TMYW :=ker(i — J.), TM® :=ker(i + J.),
then we get a direct sum decomposition
‘TM =TM"Y & TM".

Locally TM"? is spanned by the vectors

1
Ok = 5 (O = i0), k=1,....m,

1'With a bit of extra work one can prove that if X is affine algebraic, then f has only finitely many critical points, so X is homotopic
to a compact CW complex. There exist, however, Stein manifolds for which f has infinitely many critical values.



An invitation to Morse theory 97

while TM%! is spanned by
1 :
Osk = 5(8wk + zayk), k=1,...,m.

We denote by Vect®(M) the space of smooth sections of “I"M, and by Vect(M ) the space of smooth
sections of T'M, i.e., real vector fields on M .

Given V' € Vect(M) described in local coordinates by

V=> (do,.+b0,.),
k

and if we set vF = ¥ + ¢bF, we obtain the (local) equalities

V=) (R0 +0"0m), JV = (ivFo.. —iv*0.). (3.7)
k k

The operator .J induces an operator J* : T*M — T*M that extends by complex linearity to “T™* M.
Again we have a direct sum decomposition

CT*M — T*Ml,O @ 17>I<]\4'0,17
T*M"° =ker(i — Jf), T*M*" =ker(i + J}).
Locally, T* M is spanned by dz* = da* + idy*, while T*M%! is spanned by dz* = da* — idy".
The decomposition
eT* N — T*Ml’o o) T*MO,l
induces a decomposition of A" ¢T* M,
AT T*M = @ APIT*M, APIT*M = APT* M0 @c AT MO
pt+g=r
The bundle AP4T* M is locally spanned by the forms dz! Adz”, where I, J are ordered multi-indices
of length |I| = p, |J| = ¢,
I'= (i <ipg <---<ip), J=(j1 < <Jg)

and

dzl = dz A ANd2, dzT =dE A A dE.
We denote by QP4(M) the space of smooth sections of AP4T*M and by Q" (M, C) the space of
smooth sections of A" “T* M. The elements of QP¢( M) are called (p, q)-forms.

The exterior derivative of a (p, ¢)-form v admits a decomposition
da = (da)PT™9 + (da)Pat,

We set
da = (da)PT™1, Ja:= (da)PaT.

If fisa (0,0)-form (i.e., a complex valued function on M), then locally we have
Of = (0. f)dz", 0f = (9. f)dz*.
k k

In general, if
o= Z (Jé]JdZI/\dZJ, gy e 000
[|=p,|JI=q
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then
da= Y OapgAdz' NdZT, da= D Oary Adz' AdzE
[|=p,|J1=q [|=p,|J|=q
We deduce that for every f € Q%9(M) we have the local equality
00f = 0,0 fd2? A dz*. (3.8)
ak

IfU=> j(aj Opr +070,;) and V =3, ("0, + dkayk) are locally defined real vector fields on M
and we set
w = (al +ib7), vF = (F +id"),
then using (3.8) we deduce
POf(U, V) = (0,305 f)(uw/ 0" — aFod). (3.9)
j?k
Lemma 3.3.4. Suppose f : M — R is a smooth real valued function on the complex manifold M

and pq is a critical point of M. Denote by H the Hessian of f at py. We define the complex Hessian
of f at pg to be the R-bilinear map

Cy: TpoM x TpyM — R,
Cy(U,V) := HU,V) + H(JU,JV), YU,V € T,,M.

Then
Cf(U, V)= iaéf(U, JV).

Proof. Fix complex coordinates (2!, .., 2™) near pg such that 27 (pg) = 0. Set fo = f(po). Near pg
we have a Taylor expansion

1 , . ,
fz)=fot g Y (a2 + bz z" 4 cjplzh ) + -

gk

Since f is real valued, we deduce
bjk = Gjk, Cjr = Crj = (0,305 f)(0).
Given real vectors
U= (00, +wdy) € Tp,M, V=Y ("0, +0"0.),
J k
we set H(U) := H(U,U), and we have
H(U) = Z(ajkujuk + bjkﬂj@k + Cjkujﬁk )

ik

Using the polarization formula

HU,V)=-(HU+V)-HU-V))

| =

we deduce .
j 0 K —J =k j =k =7,k
H(U,V):zk:(ajkujv +bjku3v )—f-ZZk:Cjk(uJU +u]v )
Js Js
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Using (3.7) we deduce

. . 1 A ‘
H(JU, JV) = — Zk:(ajku]vk + bjk’l_ﬂﬁ_}k) + 5 ZCjk(u]T]k + ’L_Ljvk),
]’
so that

Cy(U,V)=H(U, V) + H(JU,JV) chk (w* 4+ a@lo”).

Using (3.7) again we conclude that

CU,JV) = cjp(—iulv* + in/v")
gk

— i > ep(wieh —awoh) 2 oo, v).
Replacing V by —JV in the above equality we obtain the desired conclusion. O

Lemma 3.3.5 (Pseudoconvexity). Consider the function

y 1
f:C =R, Q) =3l
Then for every g € C¥ and every real tangent vector U € T;C” we have
i(00f), (U, JU) = |U|?.

Proof. We have ) 1
=5 > ¢ 00f = 5y dct ndct
k k

If
U=>Y (u*0x +u*0z ) € T,C,
then
JU =iy (uFoa — aFoa )
and

(80, (U, JU) Z d¢k A dck U, Ju)

dck(U) dcH(JU)
Z‘ ¢k (U df ¢t (JU) ‘
,Z(dgk U)dch (V) — dH(JU)IEHD) )
:'sz:u ak 2*1|U|2-

O

Proof of Theorem 3.3.2 Let M — C" be a Stein manifold of complex dimension m and suppose
f:C” = R, f(¢) = %[¢|?* restricts to a Morse function on M. Suppose py is a critical point of
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f|ar and denote by H the Hessian of f|ys at pp. We want to prove that A(f, po) < m. Equivalently,
we have to prove that if S C T},, M is a real subspace such that the restriction of H to S is negative
definite, then
dimR S <m.
Denote by J : T'M — T M the associated almost complex structure. We will first prove that
SNJS=0.

We argue by contradiction. Suppose that SN .J.S # 0. Then there exists U € S\ 0 such that JU € S.
Then
H(U,U) <0, HJU,JU)< 0= CyU,U)=H(U,U)+ H(JU,JU) < 0.

Lemma 3.3.4 implies
0> Cr(U,U) = i(00f|n1)po (U, JU) = i(00f ), (U, JU),
while the pseudoconvexity lemma implies
0> i(80f)p, (U, JU) = |UP?,
which is clearly impossible. Hence S N JS = 0 and we deduce
2m = dimg Ty, M > dimg S + dimg JS = 2dimg S. O

Let us discuss a classical application of Theorem 3.3.2. Suppose that V' C CP¥ is a smooth
complex submanifold of complex dimension m described as the zero set of a finite collection of
homogeneous polynomials’

Q1,...,Q, €C[°,...,2"].
Consider a hyperplane H C CPY. Modulo a linear change in coordinates we can assume that it
is described by the equation z° = 0. Its complement can be identified with C” with coordinates
¢k = 2—];. Denote by M the complement of Voo :=V N H inV,
M=V\ V.

Let us point out that V. need not be smooth. Notice that M is a submanifold of C” described as the
zero set of the collection of polynomials

Pi(¢t ... ¢) = Q;(1,¢ . ¢Y),
and thus it is an affine algebraic submanifold of C”. In particular, M is a Stein manifold. By Theorem
3.3.2 we deduce
Hpy (M, Z) =0, Yk > 0.

On the other hand, we have the Poincaré—Lefschetz duality isomorphism [Spa, Theorem 6.2.19]3
Hij(V\ Voo, Z) — H*™ 9V, Voo; Z),
and we deduce
H™ MV, Voe: Z) =0, Yk > 0.
The long exact sequence cohomological sequence of the pair (V, V),
o H™ MV, Vi Z) — H™ MV, Z) — H™F(Vae; Z) >
5 H DV Vi Z)
2By Chow’s theorem, every complex submanifold of CP can be described in this fashion [GH, 1.3].

3This duality isomorphism does not require Voo to be smooth. Only V' \ Vi needs to be smooth; Vi is automatically tautly
embedded, since it is triangulable.
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implies that the natural morphism
H"F(V,Z) = H™*(Voe; Z)
is an isomorphism if £ > 1, and it is an injection if £ = 1. Note that
1 1
k>l m-k< idimRVw, k:1<:>m—k::§dimRVoo.
We have obtained the celebrated Lefschetz hyperplane theorem.

Theorem 3.3.6 (Lefschetz). If V is a projective algebraic manifold and V, is the intersection of V
with a hyperplane, then the natural restriction morphism
H)(V,Z) — H’ (Vo Z)

is an isomorphism for j < % dimg Voo and an injection for j = % dimp V. O

3.4. Symplectic Manifolds and Hamiltonian Flows

A symplectic pairing on a finite dimensional vector space V is, by definition, a nondegenerate skew-
symmetric bilinear form w on V. The nondegeneracy means that the induced linear map
I,:V =V v w(v,e),

is an isomorphism. We will identify a symplectic pairing with an element of A2V * called a symplectic
form. A symplectic space is a pair (V,w) where Vis a finite dimensional vector space and w a
symplectic form on V.

Suppose w is a symplectic pairing on the vector space V. An almost complex structure tamed by
w is an R-linear operator .J : V' — V such that J? = — 1y and the bilinear form

g:ng:VXV—)R, Q(U,U):w(u,JU)

is symmetric and positive definite. We denote by J,, the space of almost complex structures tamed by
w.

Proposition 3.4.1. Suppose that (V,w) is a symplectic space. Then J., is a nonempty contractible
subset of End(V'). In particular, the dimension of V' is even, dimV = 2n, and for every J € J,,
there exists a g,, j-orthonormal basis (e1, f1, ..., en, fn) of V such that

Je; = fi, Jfi=—e;, Vi and w(u,v) = g(Ju,v),Vu,v € V.
We say that the basis (e;, f;) is adapted to w.

Proof. Denote by My, the space of Euclidean metrics on V/, i.e., the space of positive definite, sym-
metric bilinear forms on V. Then My  is a contractible space.

Any h € My defines a linear isomorphism Ay, : V' — V uniquely determined by
w(u,v) = h(Apu,v).
We say that h is adapted to w if A2 = —1y,. We denote by M,, the space of metrics adapted to w.
We have thus produced a homeomorphism

Mw _>gw; h'_>Aha

and it suffices to show that M, is nonempty and contractible. More precisely, we will show that M,
is a retract of My,.
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Fix a metric h € My . For every linear operator B : V' — V we denote by B* the adjoint of B
with respect to h. Since w is skew-symmetric, we have

ra—
Set Ty, = (A5 Ay)Y/? = (—A2)1/2. Observe that A, commutes with T},. We define a new metric
h(u,v) == h(Thu,v) <= h(u,v) = E(Tglu,v).
Then
w(u,v) = h(Apu,v) = E(TglAhu, v) = A; = T, Ap.
We deduce that
AZ =T, 2 Af = —1v,

so that h € M, and tI}erefore M, # (). Now observe that h=h<hc M,,. This shows that the
correspondence h — h is a retract of My, onto M. O

If w is a symplectic pairing on the vector space V' and (e;, f;) is a basis of V' adapted to w, then
w= Z N
i
where (e, f*) denotes the dual basis of V*. Observe that

1
—'w”:el/\fl/\---/\e”/\f”.
n

Definition 3.4.2. (a) A symplectic structure on a smooth manifold M is a 2-form w € Q*T*M
satisfying

o dw=0.

e For every x € M the element w, € A>T M is a symplectic pairing on T}, M.

We will denote by I, : TM — T*M the bundle isomorphism defined by w and we will refer to
it as the symplectic duality.

(b) A symplectic manifold is a pair (M, w), where w is a symplectic form on the smooth manifold M.
A symplectomorphism of (M, w) is a smooth map f : M — M such that

ffw=uw. 0

Observe that if (M, w) is a symplectic manifold, then M must be even dimensional, dim M = 2n,
and the form dv,, := %w" is nowhere vanishing. We deduce that M is orientable. We will refer to dv,,
as the symplectic volume form, and we will refer to the orientation defined by dv,, as the symplectic
orientation. Note that if f : M — M is symplectomorphism then

[ (dvy) = dv,.
In particular, f is a local diffeomorphism.

Example 3.4.3 (The standard model). Consider the vector space C™ with Euclidean coordinates
zj = 2/ 4+ 4y’. Then

n . n
. . 7 _ . .
Q= dej ANdy = §Zdzj Ndzj = —ImZdz” ® dz?
J=1 J=1 J
defines a symplectic structure on C". We will refer to (C", ) as the standard model.
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Equivalently, the standard model is the pair (R?", ), where 2 is as above. O

Example 3.4.4 (The classical phase space). Suppose M is a smooth manifold. The classical phase
space, denoted by ®(M), is the total space of the cotangent bundle of M. The space ®(M) is
equipped with a canonical symplectic structure. To describe it denote by 7 : ®(M) — M the
canonical projection. The differential of 7 is a bundle morphism
Dr:T®(M) — n*TM.
Since 7 is a submersion, we deduce that D is surjective. In particular, its dual
(D)t T T*M — T*®(M)

is injective, and thus we can regard the pullback 7*T*M of T*M to ®(M) as a subbundle of
T*®(M).

The pullback 7*T* M is equipped with a tautological section 6 defined as follows. If x € M and
v e TrM,sothat (v,x) € ®(M), then

O(v,z) =v €Ty M = (7"T" M)y z)-

Since 7*T* M is a subbundle of 7*® (M), we can regard 0 as a 1-form on 7" M. We will refer to it

as the tautological 1-form on the classical phase space.

If we choose local coordinates (z!,...,2") on M we obtain a local frame (dz!,..., dz") of

T*M. Any point in ¢ € T*M is described by the numbers (&1, ..., &y, b, ..., 2"), where z = (z°)
are the coordinates of 7(y) and > &;da’ describes the vector in T;(@)M corresponding to ¢. The

tautological 1-form is described in the coordinates (&;, 27) by
0=> &da'
i
Set w = —d#f. Clearly w is closed. Locally,
w=Y_dr’ NdE,
i

and we deduce that w defines a symplectic structure on ®(M). The pair (®(M),w) is called the
classical symplectic phase space.

Let us point out a confusing fact. Suppose M is oriented, and the orientation is described locally
by the n-form dxz' A --- A dz™. This orientation induces an orientation on T*M, the topologists
orientation ory,, described locally by the fiber-first convention

dEi A - NdEy Ndzt A -+ A da™.
This can be different from the symplectic orientation orgy,,,, defined by
det AdEp A -+ Adx™ A dEy,.

This discrepancy is encoded in the equality
n(n+1)
Oripp = (—1)" 2 Orgymp. O
Example 3.4.5 (Kdhler manifolds). Suppose M is a complex manifold. A Hermitian metric on M is
then a Hermitian metric 4 on the complex vector bundle TM Y. At every point 2 € M the metric h
defines a complex valued R-bilinear map

hy : TeMY0 x TL.M™0 — C
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such that for X, Y € T, MY and z € C we have
(X, Y) = ho(2X,Y) = ha(X, 2V,

hy (Y, X) =hy(X,Y), he(X,X)>0, if X#0.
We now have an isomorphism of real vector spaces T, M — T, M given by
1
T.M > X — X80 = (X —iJX) € TM*MY,

where J € End(7T'M) denotes the almost complex structure determined by the complex structure.
Now define
oy We : ToM X T, M — R
by setting
9:(X,Y) =Reh, (X0, Y1) and w,(X,Y) = —Imh, (X0, Y1),

where g, is symmetric and w, is skew-symmetric. Note that

we(X,JX) = —Imh (X0, (JX)10)

= —Imh,(X'0iX10) = Re h, (X0, X10).

Thus w, defines a symplectic pairing on 7, M, and the almost complex structure .J is tamed by w,.

Conversely, if w € Q2(M) is a nondegenerate 2-form tamed by the complex structure .J, then we
obtain a Hermitian metric on M.

A Kdhler manifold is a complex Hermitian manifold (M, h) such that the associated 2-form
wp, = — Im h is symplectic.

By definition, a Kidhler manifold is symplectic. Moreover, any complex submanifold of a Kihler
manifold has an induced symplectic structure.

For example, the Fubini—Study form on the complex projective space CP" defined in projective
coordinates Z' = [z0, 21, . . ., 25 DY

n
w=1400log |2, |2> = |zl
k=0

is tamed by the complex structure, and thus CP" is a Kéhler manifold. In particular, any complex
submanifold of CIP" has a symplectic structure. The complex submanifolds of CPP" are precisely the
projective algebraic manifolds, i.e., the submanifolds of CIP" defined as the zero sets of a finite family
of homogeneous polynomials in n + 1 complex variables. O

Remark 3.4.6. A symplectic structure on a manifold may seem like a skew-symmetric version of a
Riemannian structure. As is well known, two Riemann structures can be very different locally. In
particular, there exist Riemann metrics which cannot be rendered Euclidean in any coordinate system.
The Riemann curvature tensor is essentially the main obstruction.

The symplectic situation is dramatically different. More precisely if (M?™, w) is a symplectic
manifold, then a theorem of Darboux shows that for any point py € M there exists local coordinates
T1,.--sTm,Y1,---,Ym on aneighborhood U of py such that in these coordinates w has the canonical
form

m
w‘u = dek: A dyg.
k=1
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For a proof of this and much more general results we refer to [Au, II.1.c]. O

Example 3.4.7 (Codajoint orbits). To understand this example we will need a few basic facts con-
cerning homogeneous spaces. For proofs and more information we refer to [Helg, Chapter I1].

A smooth right action of a Lie group G on the smooth manifold M is a smooth map
MxG—-M, GxM> (z,9) = Ry(z) :=2-g
such that
Ri =1y, (x-g)-h=x-(gh), Ve e M, g,heq.
The action is called effective if Ry # 17, Vg € G\ {1}.

Suppose G is a compact Lie group and H is a subgroup of G that is closed as a subset of G. Then
H carries a natural structure of a Lie group such that H is a closed submanifold of G. The space
H\G of right cosets of H equipped with the quotient topology carries a natural structure of a smooth
manifold. Moreover, the right action of G on H\G is smooth, transitive, and the stabilizer of each
point is a closed subgroup of GG conjugated to H.

Conversely, given a smooth and transitive right action of G on a smooth manifold M, then for
every point mo € M there exists a G-equivariant diffeomorphism M — G, \G, where G, denotes
the stabilizer of m(. Via this isomorphism the tangent space of M at my is identified with the quotient
T1G/T1Gy-

Suppose G is a compact connected Lie group. We denote by L the Lie algebra of G, i.e., the
vector space of left invariant vector fields on G. As a vector space it can be identified with the tangent
space T1G. The group G acts on itself by conjugation,

Cy:G — G, hs ghg™t.
Note that Cy(1) = 1. Denote by Ad, the differential of C, at 1. Then Ad, is a linear isomorphism
Ad, : Lo — Lg. The induced group morphism
Ad: G — Autr(Lg), g~ Ady,

is called the adjoint representation of Gi. Observe that Ady;, = Ad}, o Ady, and thus we have a right
action of G on L,

Lo x G—Lg, (a,g9) = a-g:=Adja.
This is called the coadjoint action of G.

For every X € L and o € L, we set
d
X*a) = Jl=0 AdCux a € To L = L5
More explicitly, we have
(XH@),Y) = (@, [X,Y]), VY € Lg, (3.10)

where (e, ) is the natural pairing £, x Lo — R.

Indeed,

§ d N d
(X¥(a),Y) = < Z -0 AdZix (a), Y> = <a, -0 Adgex Y> = (a, [X,Y]).
For every o € L, we denote by O, C L, the orbit of o under the coadjoint action of G, i.e.,
Oq = {Ad;(a); geG}.
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The orbit O, is a compact subset of £,. Denote by G, the stabilizer of o with respect to the coadjoint
action,

Go:={g€G; Ady(a) =« }.
The stabilizer G, is a Lie subgroup of G, i.e., a subgroup such that the subset G4, is a closed subman-
ifold of G. We denote by £, its Lie algebra. The obvious map

G — 0q, g+ Ady(a),

is continuous and surjective, and it induces a homeomorphism from the space G, \G of right cosets
of G, (equipped with the quotient topology) to O, given by

O:G,N\G>G, g Ad;(oc) € O,.

For every g € G denote by [g] the left coset G, - g. The quotient G, \G is a smooth manifold, and
the induced map
d: G, \G — Ly

is a smooth immersion, because the differential at the point [1] € G, \G is injective. It follows that O,
is a smooth submanifold of £,. In particular, the tangent space T, O, can be canonically identified
with a subspace of L.

Set
Ly ={Bely (B,X)=0, VX €L}
We claim that
To00 = L.
Indeed, let B € T,0, C L7,. This means that there exists X = Xz € L such that

. d .
B = l=0 Adeex,) @ = XH(a).

Using (3.10) we deduce that
(B,Y) = (a,[X3,Y]), VY € Lg.
On the other hand, « is GG, -invariant, so that

ZHa) =0, VZ € L,

G 2t (), X) = (0, [Z,X]) = 0, VX € Le, VZ € La.
If we choose X = X3 in the above equality, we deduce
(B,2) = (a,[X3,2]), VZ € L, = B €Ly
This shows that 7,0, C £2. The dimension count
T004 = dim O, = dim G, \G = dim L — dim £, = dim £
implies
T,0, = LE.
The differential of ® : G,\G — O, at [1] induces an isomorphism
P, : T[l]Ga\G — To04
and thus a linear isomorphism

D, 1 T |Go\G = £/Lo—L%, X mod Lo — X¥(a).

('R}
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Observe that the vector space £ is naturally isomorphic to the dual of £ /L. The above isomor-
phism is then an isomorphism (£})* — £X. We obtain a nondegenerate bilinear pairing

wa : £ x Ly = R, wa(B,4) = (8,2, 14).
Equivalently, if we write
B=Xi(a), ¥=Xi(a), Xp,X, € L,
then
wa(B,4) = (Xh(@), X;) = (a, [X3, X,]). (3.11)
Observe that w,, is skew-symmetric, so that w,, is a symplectic pairing. The group G, acts on 7,0
and w, is G-invariant. Since G acts transitively on O, and w, is invariant with respect to the

stabilizer of «, we deduce that w,, extends to a G-invariant, nondegenerate 2-form w € QZ(OQ). We
want to prove that it is a symplectic form, i.e., dw = 0.

Observe that the differential dw is also G-invariant and thus it suffices to show that
(dw)q = 0.
LetY; = Xf(a) € To04, X; € L,1 =1,2,3. We have to prove that
(dw)a(Y71,Y2,Y3) = 0.
We have the following identity [Nil, Section 3.2.1]
dw(X1,Y2,Y3) = Yiw(Yz, Y3) — Yaw(Y3, Y1) + Ysw(Y1, Y2)
+w(Y1, [Yo,Y3]) — w(Ya, [Ys, Y1]) + w(Y3, [Y1, Ya)).
Since w is G-invariant we deduce
w(Y;,Y;) = const Vi, j,
so the first row in the above equality vanishes. On the other hand, at o we have the equality
w(Y1, [Y2, Y3]) — w(Y2, [Y3, Y1]) + w(Y3, [Y1,Y2])
= (a, [X1, [Xo, X3]] — [X2, [ X3, Xo]] + [¥3, [ X1, Xo]] ).
The last term is zero due to the Jacobi identity. This proves that w is a symplectic form on Q.

Consider the special case G = U(n). Its Lie algebra u(n) consists of skew-Hermitian n x n
matrices and it is equipped with the Ad-invariant metric

(X,Y) = Retr(XY™).
This induces an isomorphism u(n)* — u(n). The coadjoint action of U(n) on u(n)* is given by
ACHX)=T*XT =T 'XT, VT € U(n). VX € u(n) = u(n)*.
Fix Sp € u(n). We can assume that Sy has the diagonal form
So = So(X) = i\ lem @ --- @il lem, Aj € R,

with n1 + -+ + ng = n and the \’s. The coadjoint orbit of Sy consists of all the skew-Hermitian
matrices with the same spectrum as Sy, multiplicities included.
Consider a flag of subspaces of type ¥/ := (nj,...,ng), i.e. an increasing filtration F of C" by
complex subspaces
0=VycWc.---cV,=C"
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such that n; = dimc V;/Vj_1. Denote by P; = P;(IF) the orthogonal projection onto V. We can
now form the skew-Hermitian operator

A(F) = i)(P = Pioa).
J
Observe that the correspondence F > Aj;(IF) is a bijection from the set of flags of type i/ to the

coadjoint orbit of Sp(A). We denote this set of flags by Flc (7). The natural smooth structure on the
codajoint orbit induces a smooth structure on the set of flags. We will refer to this smooth manifold
as the flag manifold of type U := (ny, ..., ny). Observe that

Flc(1,n — 1) = CP" 1,
Flc(k,n — k) = G(C") = the Grassmannian of k-planes in C".
The diffeomorphism Ay defines by pullback a U (n)-invariant symplectic form on Fl¢ (%), depending

on X. However, since U(n) acts transitively on the flag manifold, this symplectic form is uniquely
determined up to a multiplicative constant. O

Proposition 3.4.8. Suppose (M,w) is a symplectic manifold. We denote by Jir ., the set of almost
complex structures on M tamed by w, i.e., endomorphisms J of T'M satisfying the following condi-
tions

o J2=—1pp.
o The bilinear form g, j defined by
9(X,Y) =w(X,JY), VX,Y € Vect(M)
is a Riemannian metric on M.
Then the set J,, 1 is nonempty and the corresponding set of metrics {g.,.5; J € dJmw} is a

retract of the space of metrics on M.

Proof. This is a version of Proposition 3.4.1 for families of vector spaces with symplectic pairings.
The proof of Proposition 3.4.1 extends word for word to this more general case. O

Suppose (M, w) is a symplectic manifold. Since w is nondegenerate, we have a bundle isomor-
phism [, : TM — T*M defined by

(I,X,Y) =w(X,Y) <= (a,Y) = w(l;'a,Y),
Va € QY (M), VX,Y € Vect(M).

One can give an alternative description of the symplectic duality.

(3.12)

For every vector field X on M we denote by X _| or i x the contraction by X, i.e., the operation
X 1:Q%(M) — Q*~1(M) defined by
(X an) (X1,...,Xk) =n(X, X1, ..., Xk),
VX1,..., X € Vect(M), ne Q).
Then
I, =0 lw<—=[,X =X Jw, VX € Vect(M). (3.13)
Indeed,
(I,X,)Y)=w(X,)Y)= (X Jw)(Y), VY € Vect(M).
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Lemma 3.4.9. Suppose J is an almost complex structure tamed by w. Denote by g the associated
Riemannian metric and by 1, : TM — T* M the metric duality isomorphism. Then

Iy=1Ijo <=1, =—Jol " (3.14)

Proof. Denote by (e, e) the natural pairing between 7*M and T'M. For any X,Y € Vect(M) we
have

(1,X,Y) =w(X,Y)=9(JX,Y) = ([,(JX),Y)
sothat I, = I, 0 J. O

For every vector field X on M we denote by ®; the (local) flow it defines. We have the following
result.

Proposition 3.4.10. Suppose X € Vect(M). The following statements are equivalent:

(a) @} is a symplectomorphism for all sufficiently small t.
(b) The 1-form 1,X is closed.

Proof. (a) is equivalent to L xw = 0, where Lx denotes the Lie derivative along X. Using Cartan’s
formula L x = dix + ixd and the fact that dw = 0 we deduce

LXw = d’in = d(IwX).
Hence Lxw = 0 < d([,X) = 0. 0

Definition 3.4.11. For every smooth function H : M — R we denote by V* H the vector field
VYH := I (dH). (3.15)

The vector field V¥ H is a called the Hamiltonian vector field associated with H, or the symplectic
gradient of H. The function H is called the Hamiltonian of V¥ H. The flow generated by V¥ H is
called the Hamiltonian flow generated by H. O

Remark 3.4.12. Note that the equality (3.15) is equivalent to
(V¥H) Jw=dH. (3.16)

Proposition 3.4.10 implies the following result.

Corollary 3.4.13. A Hamiltonian flow on the symplectic manifold (M, w) preserves the symplectic
forms, and thus it is a one-parameter group of symplectomorphisms.

Lemma 3.4.14. Suppose (M,w) is a symplectic manifold, J is an almost complex structure tamed
by w, and g is the associated metric. Then for every smooth function H on M we have

VYH = —-JVYH, (3.17)
where VI H denotes the gradient of H with respect to the metric g.
Proof. Using (3.14) we have
I,V'H =dH =1,V*H = 1,JVYH = JV*H = VYH. O
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Example 3.4.15 (The harmonic oscillator). Consider the standard symplectic plane C with coordi-
nate z = ¢ + ¢p and symplectic form €2 = dg A dp. Let

1 k
H<p7Q) = %pQ + §q27 kam > O

The standard complex structure J given by
JOy = 0p, JO, = —0,
is tamed by €2, and the associated metric is the canonical Euclidean metric g = dp? + dg?. Then

VIH = %ap + kqdy, VOH = —JVIH = %% — kqdy.

The flow lines of VX H are obtained by solving the Hamilton equations
i= 0k o a0~
{ 5 = Tkg o PO =po a0) =00
Note that mg = —kq, which is precisely the Newton equation of a harmonic oscillator with elasticity
constant k£ and mass m. Furthermore, p = mg is the momentum variable. The Hamiltonian H is the

2
sum of the kinetic energy ﬁpz and the potential (elastic) energy %. If we set* w := 4/ %, then we
deduce

q(t) = qo cos(wt) + Po. sin(wt), p(t) = —gomw sin(wt) + pg cos(wt).
mw

The period of the oscillation is 7' = %“ The total energy H = ﬁp2 + %ﬁ is conserved during
the motion, so that all the trajectories of this flow are periodic and are contained in the level sets
H = const, which are ellipses. The motion along these ellipses is clockwise and has constant an-
gular velocity w. For more on the physical origins of symplectic geometry we refer to the beautiful
monograph [Arl1]. O

Definition 3.4.16. Given two smooth functions f, g on a symplectic manifold (M, w) we define the
Poisson bracket of f and g to be the Lie derivative of g along the symplectic gradient vector field of
f. We denote it by {f, g}, so that®

{f.g} = Lywy g. O
We have an immediate corollary of the definition.

Corollary 3.4.17. The smooth function f on the symplectic manifold (M,w) is conserved along the
trajectories of the Hamiltonian flow generated by H € C*° (M) if and only if {H, f} = 0. O

Lemma 3.4.18. If (M, w) is a symplectic manifold and f,g € C°°(M) then
{f}g} = _w(vwf’vwg)’ vw{f’g}: [vwf’ vwg] (318)
In particular, { f, g} = —{g, [} and { f, f} = 0.

4The overuse of the letter w in this example is justified only by the desire to stick with the physicists’ traditional notation.

5Warning: The existing literature does not seem to be consistent on the right choice of sign for {f, g}. We refer to [McS, Remark
3.3] for more discussions on this issue.
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Proof. Set Xy = V¥f, X, = V®g. We have

(9} = dg(Xp) "2 w13 ldg, X ;) = —w (X}, X,).

For every smooth function v on M we set X, := V“u. We have

Xipgpu={{f 9} u} = ~{uA{f.g}} = —Xu{f, 9} = Xuw(Xy, Xy).

Since Lx,w = 0, we deduce
Xuo(X7. Xy) = (X Xg], X) + (X7, (X0 X))
= —[Xu, Xflg + [Xu, Xgl f = = XuXpg + X Xug + Xo Xo f — X Xuf.

The equality {f, g} = —{g, f} is equivalent to X, f = —X g, and we deduce

Xipgpu=—XuXpg + Xy Xog + Xo Xgf — XgXuf

= —2X, X9 — Xy Xgu+ Xy Xpu = 2X¢p yu — [Xp, Xglu.
Hence
Xipgpu = [Xyp, Xglu, Vu e C¥(M) <= X590 = [Xy, X4l O

Corollary 3.4.19 (Conservation of energy). Suppose (M,w) is a symplectic manifold and H is a
smooth function. Then any trajectory of the Hamiltonian flow generated by H is contained in a level
set H = const. In other words, H is conserved by the flow.

Proof. Indeed, {H, H} = 0. 0

Corollary 3.4.20. The Poisson bracket defines a Lie algebra structure on the vector space of smooth
functions on a symplectic manifold. Moreover, the symplectic gradient map

V¥ C®(M) — Vect(M)

is a morphism of Lie algebras.

Proof. We have

{figb. by +{g.{f.h}} = X(pph + XgXph = [ Xy, Xglh + Xg X ¢h
0

Example 3.4.21 (The standard Poisson bracket). Consider the standard model (C", ©2) with coordi-
nates z; = ¢ + ip; and symplectic form 2 = ) y dg’ A dp;. Then for every smooth function f on
C™ we have

Ve = =305,y + D0 ),
j J
so that

1£,9Y = - (00 1)(D,9) = 00, 1)(Ds9) ). 0
J
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Suppose we are given a smooth right action of a Lie group G on a symplectic manifold (M, w),
MxG—M, GxM>(z,9) = Ry(z) =x-g.
The action of G is called symplectic if Rjw = w, Vg € G.

Denote by L¢ the Lie algebra of G. Then for any X € £ we denote by X” € Vect(M) the
infinitesimal generator of the flow ®;X(z) = z - !X, 2 € M, t € R. We denote by (e, ) the natural
pairing £, x L5 — R.

Definition 3.4.22. A Hamiltonian action of the Lie group G on the symplectic manifold (M, w) is a
smooth right symplectic action of G on M together with an R-linear map

£:Lg—>C®(M), Lo X —Ex e C®(M),
such that
Vex = X, {éx,&v} = Exy), VXY € L
The induced map p : M — L7, defined by
(n(x), X) = Ex(x), Vo€ M, X €L,

is called the moment map of the Hamiltonian action. O

Remark 3.4.23. To any smooth left-action
GXM—>M7 (g7p)'_>gp7

of the Lie group GG on the smooth manifold we can associate in a canonical fashion a right action

M x G — M, (p,g)b—)p*g::g_l-m.

A left-action of a Lie group on a symplectic manifold will be called Hamiltonian if the associated
right-action is such. This means that there exists an R-linear map h : Lo — C®(M), X — hx,
such that the flow p — e*X - p is the hamiltonian flow generated by hx and

{hx, hy} = _h[X,Y]7 VX,Y € Vect(M).

Example 3.4.24 (The harmonic oscillator again). Consider the action of S on C = R? given by

o ._ —ib

Cx St (z,e?) = zx ¢ e vz,

Using the computations in Example 3.4.15 we deduce that this action is Hamiltonian with respect to
the symplectic form Q = dx Ady = %dz Adz. If we identify the Lie algebra of S! with the Euclidean
line R via the differential of the natural covering map t — €%, then we can identify the dual of the
Lie algebra with R, and then the moment map of this action is y(z) = |z|%. O

Lemma 3.4.25. Suppose we have a Hamiltonian action
MxG—M, (r,9)—x-g,

of the compact connected Lie group G on the symplectic manifold (M,w). Denote by p : M — LF,
the moment map of this action. Then

w(x - g) = Adg pu(x), Vge G, v e M.
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Proof. Set {x = (u, X). Since G is compact and connected, it suffices to prove the identity for g of
the form g = e!X. Now observe that

d d .
(X)) = Slimople - €) and X¥(u(2) = im0 Ad%ux (@),
and we have to show that
(X°p)(2) = X*(pu(x)), VX € Lg, © € M.

For every Y € L we have

Lliolpla X)) = X (u(@), V) = {ex. &) = )

(3.10)
= (u(@), [X,Y]) "= (XF(u(@),Y).
g
Example 3.4.26 (Coadjoint orbits again). Suppose G is a compact connected Lie group. Fix a €
L\ {0} and denote by O, the coadjoint orbit of . Denote by w the natural symplectic structure on

O, described by (3.11). We want to show that the natural right action of G on (O, w) is Hamiltonian
and that the moment map of this action x : O, — L, is given by

042 B —pely.

Let X € L. Seth = hx : L — R, h(B) = —(B, X), where as usual (e, ®) denotes the natural
pairing L, X L — R. In this case Xt = X”. We want to prove that

X' =V¥hy, (3.19)
that is, for all 8 € O, and all 3 € T30, we have
w(X*,B) = dhx(B).
We can find Y € L such that 5 = Yﬁ(ﬁ). Then using (3.11) we deduce
w(XF,B) = (8, 1X,Y)).
On the other hand,

dhX(Y)|,3 = _%’t=0<Adth B7X> = _%|t=0<57Adety X> = <ﬁa [Xa Y]>

This proves that X* is the hamiltonian vector field determined by hx. Moreover,

{hx, hy}p = —w(X5YF)|g = —(6,[XF,YF])) = hix v)(B)-

This proves that the natural right action of G on G, is Hamiltonian with moment map p(5) = —f3. O

Proposition 3.4.27. Suppose we are given a Hamiltonian action of the compact Lie group G on the
symplectic manifold. Then there exists a G-invariant almost complex structure tamed by w. We will
say that J and its associated metric

hX,Y) =w(X,JY), VX,Y € Vect(M)

are G-tamed by w.
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Proof. Fix an invariant metric on G, denote by dVj, the associated volume form, and denote by |G|
the volume of G with respect to this volume form.

Note first that there exist G-invariant Riemannian metrics on M. To find such a metric, pick an
arbitrary metric g on M and then form its G-average ¢,

1
IX)Y) = ’G|/Gu*g(X, Y)dV,, VX,Y € Vect(M).

By construction, § is G-invariant. As in the proof of Proposition 3.4.1 define B = B; € End(T'M)
by

g(BX,Y) =w(X,Y), VX,Y € Vect(M).
Clearly B is G-invariant because w is G-invariant. Now define a new G-invariant metric h on M by

hX,Y) :=§((B*B)Y?X,Y), VX,Y € Vect(M).

Then h defines a skew-symmetric almost complex structure J on 7'M by

w(X,Y)=h(JX,Y), VX,Y € Vect(M).
By construction J is a G-invariant almost complex structure tamed by w. O
Example 3.4.28 (A special coadjoint orbit). Suppose (M, w) is a compact oriented manifold with a
Hamiltonian action of the compact Lie group G. Denote by p : M — L7, the moment map of this

action. If T is a subtorus of G, then there is an induced Hamiltonian action of T on M with moment
map pr obtained as the composition

M L 0% — ¥,

where £, — t* denotes the natural projection obtained by restricting to the subspace t a linear
function on L.

Consider the projective space CP™. As we have seen, for every A € R* we obtain a U(n + 1)-
equivariant identification of CP" with a coadjoint orbit of U (n+1). More precisely, this identification
is given by the map

U, :CP" > u(n+1), CP" 5 L —i\P, € u(n+1),

where P;, denotes the unitary projection onto the complex line L, and we have identified u(n + 1)
with its dual via the Ad-invariant metric

(X,Y)=Retr(XY*), X,Y €u(n+1).

We want to choose A such that the natural complex structure on CP” is adapted to the symplectic
structure €2y = Wiwy, where w) is the natural symplectic structure on the coadjoint orbit O, :=
U, (CP"). Due to the U(n + 1) equivariance, it suffices to check this at Ly = [1,0,...,0].

Note that if L = [z, .. ., 25| then P, is described by the Hermitian matrix (p;)o<j,k<n, Where

1 _ .
Djk = szzk; VO <j,k<n.

In particular, Pr, = Diag(1,0,...,0).
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If Ly :=[1,tz1,...,tz,) € CP™, then

0 Z1 o+ Zn
. d . z1 0O 0
P = £|t:O\IIA(PLt> = ’L)\ : : : :
Zn 0 0

On the other hand, let X = (xj;)0<i j<n € u(n+1). Then x;; = —Z;;, Vi, j and X defines a tangent
vector X! € T7,,0x

0 Zio -+ Fno
X M%‘t=06_tXPLoetX = —iA[Pp,, X] = i) x_lo 0 | O
sy 0 0
These two computations show that if we identify X # with the column vector (2105 - -+, Tp o)t, then the

complex J structure on 77,,CP" acts on X # via the usual multiplication by 4.
Given X,Y € u(n + 1) we deduce from (3.11) that at Ly € O we have

wA(X%,Y?) = Retr(iAPr, - [X,Y]*) = AIm[X, Y]§,

where [X, Y]§ o denotes the (0,0) entry of the matrix [X, Y]* = [Y*, X*] = [V, X] = —[X,Y]. We

have
n

n
[X,Y]oo = Z(%kyk;o — Yo,kTho) = — Z(fkoyko — TroYko)-
k=0 k=1
Then
w(XETXY) =20 |wok]?
k

Thus, if A is positive, then 2 is tamed by the canonical almost complex structure on CP". In the
sequel we will choose A = 1.

We thus have a Hamiltonian action of U (n + 1) on (CP", ©;). The moment map p of this action
is the opposite of the inclusion

Uy :CP" —u(n+1), L~ iPp,
so that
(L) = =V (L) = —iPp.
The right action of U(n + 1) on CP" is described by
CP" xU(n+1)3 (L, T) — T7'L
because Pr—1; = TP, T.

Consider now the torus T C U(n + 1) consisting of diagonal matrices of determinant equal to
1, i.e.,6 matrices of the form

A() = Diag(e i+t it citn ) t=(t,...,t,) € R™.
Its action on CP" is described in homogeneous coordinates by

[20, ..., 20 A@F) = [frtHtn) 50 ez ez ]

OT" is a maximal torus for the subgroup SU(n+ 1) C U(n + 1).
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This action is not effective since the elements Diag(¢™", ¢, ..., (), ¢(""1 = 1 act trivially. We will
explain in the next section how to get rid of this minor inconvenience.

The Lie algebra t™ C u(n + 1) of this torus can be identified with the vector space of skew-
Hermitian diagonal matrices with trace zero.

We can identify the Lie algebra of T™ with its dual using the Ad-invariant metric on u(n + 1).
Under this identification the moment map of the action of T" is the map /i defined as the composition
of the moment map

p:CP* - u(n+1)
with the orthogonal projection u(n + 1) — t". Since tr P, = dim¢ L = 1 we deduce

ﬂ(L) = — Diag(iPL) + ]l(cn+1,

where Diag(Py,) denotes the diagonal part of the matrix representing PL We deduce

a([z0, .-, 2n]) = ’_,‘2 Diag(|z0/%, ..., |za]?) + -y 1]1@n+1.
Thus the opposite action of T" given by
(20, ..., 2] A(F) = [e 8t ttn) 50 itz etz ]
is also Hamiltonian, and the moment map is
w(l) = ’_,|2 D1ag(\z0| , |Zn‘2) — Len+a.

n—+1

We now identify the Lie algebra t” with the vector space’

W::{w:(wg,...,wn)eRnﬂ; Zwi:O}.

A vector w € W defines the Hamiltonian flow on CP",
it
e" %y [20,...,20) = [

with the Hamiltonian function

twit

Twot
%20, 21, ... €

twnt ], (3.20)

$a[20,- -, 2n]) = ﬂ,Q ijlz]! (3.21)
The flow does not change if we add to £; a constant
= —»‘2 Z ‘ZJ‘Q
Thus the Hamiltonian flow generated by g 1s 1dentlcal to the Hamiltonian flow generated by
f= HQ Zw |22, wi = wj + c.
Note that if we choose w; = j (so that ¢ = %), we obtain the perfect Morse function we discussed

in Example 2.3.9. In the next two sections we will show that this “accident” is a manifestation of a
more general phenomenon. O

7In down-to-earth terms, we get rid of the useless factor % in the above formulz.
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Example 3.4.29 (Linear hamiltonian action). Suppose that (V,w) is a symplectic vector space and
VxT—=V, (v,eX)=vxeX, YweV, X et,

is a linear hamiltonian action of a k-dimensional torus T on (V,w) with moment map p : V' — t*.

Fix a T-invariant almost complex structure J on V' tamed by w, and denote by h the associated
invariant inner product

h(v1,v2) = w(vr, Jv2), vi,ve € V.
Denote by s0 (V') the space of skew-symmetric endomorphisms of V' that commute with .J. We can
then find a linear map
A:ﬂ:—)BOJ(V), X — Ax
such that for any v € V, X € t we have

v elN = eAxy,

Note that Ax Ay = AY Ax, VX,Y € t. We set Bx := JAx. Note that Bx is a symmetric
endomorphism that commutes with J. A simple computation shows that the moment map of this
action is given by

1
(u(v), X) = Eh(BXv,v), YveV, X ect.

Because (Bx ) xey is a commutative family of symmetric operators we can find an orthonormal basis
that diagonalizes all these operators. O

3.5. Morse Theory of Moment Maps

In this section we would like to investigate in greater detail the Hamiltonian actions of a torus

T" =8 x - x St
n
on a compact symplectic manifold (M, w). As was observed by Atiyah in [A] the moment map of
such an action generates many Morse—Bott functions. Following [A] we will then show that this fact
alone imposes surprising constraints on the structure of the moment map. In the next section we will
prove that these Morse—Bott functions are in fact perfect.

Theorem 3.5.1. Suppose (M, w) is a connected symplectic manifold equipped with a Hamiltonian
action of the torus T = T™. Let pn : M — t* be the moment map of this action, where t denotes the
Lie algebra of T. Then for every X € t the function

Ex M =R, &x(z) = (u(z), X)

is a Morse—Bott function. The critical submanifolds are T-invariant symplectic submanifolds of M,
and all the Morse indices and coindices are even.

Proof. Fix an almost complex structure J and metric i on T'M that are equivariantly tamed by w.

For every subset A C T we denote by Fix 4 (M) the set of points in M fixed by all the elements
in 4, i.e.
Fixy(M)={z e M; z-a==, YacA}.
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Lemma 3.5.2. Suppose G is a subgroup of T. Denote by G its closure. Then
Fixg(M) = Fixg(M)
is a union of T-invariant symplectic submanifolds of M.
Proof. Clearly Fixg (M) = Fixs(M). Since T is commutative, the set Fixg (M) is T-invariant. Let
z € Fixg(M) and g € G \ {1}. Denote by A, the differential at = of the smooth map
M>3>y—y-ge M.
The map A, is a unitary automorphism of the Hermitian space (7, M, h, J). Define
Fixg(T, M) :=ker(1 — Ag) and Fixg(T.M) = () Fixg(T,M).
geG

Consider the exponential map defined by the equivariantly tamed metric h,
exp, : TyM — M.

Fix r > 0 such that exp,, is a diffeomorphism from { veT,M; |vp<r } onto an open neighbor-
hood of x € M.

Since g is an isometry, it maps geodesics to geodesics and we deduce that Vv € T, M such that
|v|p < r we have

(exp,(v)) - g = exp(Ay).
Thus exp(v) is a fixed point of ¢ if and only if v is a fixed point of Ay, i.e., v € Fixy(T,M). We
deduce that the exponential map induces a homeomorphism from a neighborhood of the origin in the
vector space Fixg (7, M) to an open neighborhood of = € Fixg(M). This proves that Fixg (M) is a
submanifold of M and for every x € Fixg (M) we have

T, Fixg(M) = Fixg(T,M).
The subspace Fixg (T, M) C T,M is J-invariant, which implies that Fixg (M) is a symplectic
submanifold. O
Let X € t \ {0} and denote by G x the one parameter subgroup
Gx ={e* eT; teR}.

Its closure is a connected subgroup of T, and thus it is a torus T x of positive dimension. Denote by
tx its Lie algebra. Consider the function

Ex(2) = (u(@), X), € M.
Lemma 3.5.3. Cr¢, = Fixr, (M).
Proof. Let X” = V¥&x. From (3.17) we deduce
X' =V9ex = —JV"¢x.

This proves that x € Cr¢, <= z € Fixg, (M). O

We can now conclude the proof of Theorem 3.5.1. We have to show that the components of
Fixt, (M) are nondegenerate critical manifolds.
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Let C be a connected component of Fixy, (M) and pick z € C. As in the proof of Lemma 3.5.2,
for every t € R we denote by A;(X) : T, M — T, M the differential at x of the smooth map

M3y y-eX = o) e M.
Then A;(X) is a unitary operator and

ker(1— Ay(X)) =T,C, VteR.
We let

Ay = %L:OA,, (3.22)

Then Ay is a skew-hermitian endomorphism of (7, M, .J), and we have

Ay(X) := "% and T,F = ker A.
Observe that

Axu = [U, X"y, YueTM, YU € Vect(M), U(z) = u. (3.23)
Indeed,
. d _d X B B )
Axu==| AOu==2| (@) =-(LypU)=[U,X).

Consider the Hessian H, of {x at x. For Uy, Us € Vect(M) we set
u; = Ui(x) € T M,
and we have
Hy(u1,uz) = (Ur(U2éx) )|
On the other hand,
Ur(Uséy) = Urdéx (Us) = Urw (X, Us)
= (Lu,w)(X?, U2) + w([U1, X’], Us) + w(X", [Uy, Us)).
At x we have
(U1, X%, = Auy, X°(z) =0,
and we deduce
H,(uy,u2) = w(Axuy,ug) = h(JAxuy,uz). (3.24)
Now observe that B = JA is a symmetric endomorphism of 7, M which commutes with J. More-
over,
ker B = ker A = T,,C.

Thus B induces a symmetric linear isomorphism B : (T,C)+ — (T,C)~*. Since it commutes with
J, all its eigenspaces are J-invariant and in particular even-dimensional. This proves that C' is a
nondegenerate critical submanifold of {x, and its Morse index is even, thus completing the proof of
Theorem 3.5.1. O

Note the following corollary of the proof of Lemma 3.5.3.
Corollary 3.5.4. Let X € t. Then for every critical submanifold C of {x and every x € C we have
T,C = {ueT,M; 3U € Vect(M), [X’,Ul, =0, Ulx)=u},
where X° = V¥€x. O
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Suppose M, T and w are as in Theorem 3.5.1. For every x € M we denote by St the stabilizer
of x,
St ::{geT; a:'g:x}.
Then St is a closed subgroup of T. The connected component of 1 € St, is a subtorus T, C T.
We denote by t, its Lie algebra.

The differential of x defines for every point x € M a linear map
fp 2 Ty M — 67,
We denote its transpose by /. It is a linear map
[yt — T M.
Observe that for every X € t we have
[5(X) = (déx)e, where £x = (i, X) : M — R, (3.25)
Lemma 3.5.5. For every x € M we have ker [1}, = t,.
Proof. From the equality (3.25) we deduce that X € ker /i) if and only if d{u, X) vanishes at x.
Since X’ is the Hamiltonian vector field determined by (11, X), we deduce that
X ekerjif <= X’(z) =0 < X € TySt, = t,. O
We say that a (right) action X x G — X, (g9,2) — Ry(x) = x - g of a group G on a set X is
called quasi-effective if the kernel of the group morphism
G > g+ Ry € Diff (M) = the group of diffeomorphisms of M
is finite.

Lemma 3.5.6. If the Hamiltonian action of T on M is quasi-effective, then the set of points © € M
such that i, : T, M — t* is surjective is open and dense in M. In particular, the points in p(M)
which are regular values of p form a dense subset of (M ).

Proof. Recall that an integral weight of T is a vector w € t such that
e’ =1€T.

The integral weights define a lattice LT C t¢. This means that Lt is a discrete Abelian subgroup of
t of rank equal to dimp ¢ such that the quotient /Ly is compact. Observe that we have a natural
isomorphism of Abelian groups

Lt — Hom(SY, T), Lt 3w~ ¢, € Hom(SY, T), @, (™) = e,

Any primitive® sublattice A of Lt determines a closed subtorus Ty := {e®¥; w € A}, and any
closed subtorus is determined in this fashion. This shows that there are at most countably many
closed subtori of T.

If T' C T is a nontrivial closed subtorus, then it acts quasi-effectively on M, and thus its fixed
point set is a closed proper subset of M with dense complement. Baire’s theorem then implies that

Z:=M\ |J Fixp(M)={zeM; t.=0}
{1}#T'CT

8The sublattice A C L is called primitive if L/A is a free Abelian group.
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is a dense subset of M. Lemma 3.5.5 shows that for any z € Z the map

st — Ty M
is one-to-one, or equivalently that ji, is onto. Clearly Z is open since submersiveness is an open
condition.

We still have to prove that if ¢ € u(M), then there exists a sequence (@) C p(M) such that,
Vk, ¢y is a regular value of ¢ and limy ¢, = ¢.

To show this fix 2 € 1 ~!(¢). Then there exists a sequence (x,) C Z such that 3, — z. Each x;,
admits an open neighborhood Uy, such that ;(Uy) is an open subset of ¢*. Invoking Sard’s theorem
we can find a regular value oy, € pu(Uy,) such that dist(u(xy), pr) < % It is now clear that

li =i = .
im llglu(ﬂ:k) ®

O

We have the following remarkable result of Atiyah [A] and Guillemin and Sternberg [GS] known
as the moment map convexity theorem. It generalizes an earlier result of Frankel [Fra].

Theorem 3.5.7 (Atiyah—Guillemin—Sternberg). Suppose we are given a quasi-effective Hamiltonian
action of the torus T = T™ on the compact connected symplectic manifold (M,w). Denote by
w: M — t* the moment map of this action and by {Cy; « € A} the components of the fixed point
set Fixyp(M). Then the following hold.

(a) p is constant on each component C,.

(b) If 1o € t* denotes the constant value of 1 on Cy, then (M) C t* is the convex hull of the finite
set {po; a € A} C t*.

Proof. Lemma 3.5.5 shows that x is constant on the connected components C,, of Fixp (M) because
(the transpose of) its differential is identically zero along the fixed point set. There are finitely many
components since these components are the critical submanifolds of a Morse—Bott function £ x, where
X € Tissuchthat Ty = T.

To prove the convexity statement we need to prove two things.

(P1) The image p(M) is convex.
(P2) The image u(M) is the convex hull of the finite set {yq, o € A}.

Proof of P;. A key ingredient in the proof is the following topological result.

Lemma 3.5.8 (Connectivity lemma). Suppose f : M — R is a Morse—Bott function on the compact
connected manifold M such that Morse index and coindex of any critical submanifold are not equal
to 1. Then for every c € R the level set { f = c} is connected or empty. O

To keep the flow of arguments uninterrupted we will postpone the the proof of this result.

Fix an integral basis X7y, ..., X,, of the weight lattice L. For £ = 1,2,...,n we denote by tj
the subspace of ¢ spanned by X7, ..., Xj. The space t is the Lie algebra of a k-dimensional torus
Ty C T. Clearly

ti Ctg C--- Ct, =1.
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We denote by i, the moment map of the Hamiltonian action of Ty, on M,
pi s M — .

If we use the basis X1, ..., X} of t; to identify t; with R, then we can view Wi as amap M — RE.
More precisely

Mk(x) = (51(1'), s agk’(l‘) )7 Vo e M,
where §; = £x; = (u(x), Xj) is the function with Hamiltonian vector field Xg.
Using the Connectivity Lemma 3.5.8 we deduce that all the fibers of the function
pr=8&:M—R

are connected. We want to prove by induction on k that the fibers of uj are connected for any
k =1,...,n. More precisely we have the following result.

Lemma 3.5.9. Let k = 1,...,n — 1. If the fibers of uy are connected, then the fibers of pg11 are
also connected.

Proof. We will prove that if £ = (t1,...,t,, txs1) € pes1(M) is such that (¢1,. .., ;) is a regular
value of i, then u,:il( t) is also connected. Consider the submanifold

Q =, (t,...,t§) C M.

We will prove that the restriction of £ to () satisfies all the properties of the Connectivity Lemma
so that M,;il(f) = fk__&l(tkH) N @ is connected.

A point x € @ is critical for 1 if and only if there exist Lagrange multipliers A, ..., Ay € R
such that

k
déra(z) + D Njde;(z) = 0.
j=1

In other words, x is a critical point of the function £x, where

k
X =Xpp1 + > N Xe
j=1

We know that £x is a Morse-Bott function. Denote by C' the critical set of £x that contains x. Note
that any y € Q N C'is a critical point of £11|g. We will prove that C' intersects () transversally,

WM =T,C+T,Q, Yyec CNQ. (3.26)
We have to show that the restrictions of d;(y), . .., d¢(y) to T,,C are linearly independent.
To prove this observe that £ x Poisson commutes with all the functions &1, . . ., £. Corollary 3.5.4
implies
Xy),-... X2y) € T,C.

(y) are linearly independent, because differentials
)$1,...,5k) € RF\ 0 we have

T o

On the other hand, the vectors X}(y),..., X
déi(y), . .., d&k(y) are such. Hence, for any §

V(5) = s1X1(y) + - + 51X (y) € T,C\ 0.
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Since T, C is a symplectic subspace of T, M, we deduce that for any 5 € R¥ \ 0 there exists U(5) €
T, C such that

k
0 7é w( V(g)) U(g)) = <d§s1X1+---+stk (y)v U(g)) = <Z degj(y)v U(g) >

j=1

This proves (3.26), so that C'N( is a submanifold of Q). Observe that a complement W, of T,,(C'NQ)
in T,.() is also a complement of 1;,C' in T;, M. Thus the restriction of the Hessian of {x to W, is non
degenerate and has even index and coindex. Along () the function &1 differs from £ x by an additive
constant so the Hessian of {x|¢ at « is equal to the Hessian of &5, 1|¢g at « This proves that £;,11|¢ is
Morse-Bott with even indices and coindices. The Connectivity Lemma now implies that

f];.h(tk—&-l) NQ = ps1(t)
is connected.

We have thus shown that ,u,;ll (t1,...,tg, tgy1) is connected forany (¢1,. .., tx, tkr1) € pgr1 (M)
such that (¢1,...,¢) is a regular value of . Since the action of T}, is quasi-effective we deduce
from Lemma 3.5.6 that u,;l_l(t_) is connected for a dense set of ’s in y1. In particular, this shows
that all the fibers of px41 connected.

O

Since the basis Xi,..., X, of Lt was chosen arbitrarily, Lemma 3.5.9 shows that given any
subtorus T of T whose induced Hamiltonian action has moment map ./, the fibers of y’ are con-
nected.

For any primitive sublattice A of Lt of dimension n — 1 = dimT — 1 we obtain a subtorus
Tx. We denote by t, its Lie algebra and by p, its moment map pp : M — t}. We have a natural
projection

A T — ),
and pup = 7 o p. Note that for any ¢ € t}, the fiber ﬂ'Xl((p) is an affine line £(A, p) C t*.

For any ¢ € t}, the fiber ,qu(go) is a connected subset of M. Its image under p is then a
connected subset of ;(M) contained in the line £(A, ) = 71 (). It is therefore a segment.

We thus proved that for any primitive lattice A C Lt of codimension 1 and any ¢ € t}, the
intersection of (M) with the line £(A, ¢) is a connected subset.

We denote by Graff;(t*) the Grassmannian of affine lines in t*. Consider the incidence variety
Inv = {(n,0) € u(M) x Graff(t*); nel}.

This incidence variety is a compact subset of p(M) x Graff;(t*) and it is equipped with a
natural projection

7 Iy — Graff(t*), (n,¢) — L.
The fiber of 7 over the line ¢ € Graff;(t*) can be identified with the intersection ¢ N (M ).

The collection of lines £(A, ¢), A primitive sub lattice o codimension 1 and ¢ € t} = Hom(A, R)
is a dense subset of Graff; (t*). Hence the fibers of 7 over the points of a dense subset are connected.
We deduce that all the fibers of 7 are connected. In other words, the intersection of p (M) with any
affine line in t* is a connected set, i.e., (M) is a convex set.
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Proof of P5. Since we know that p(M) is convex, it suffices to show that if all the points x, lie on
the same side of an affine hyperplane in t*, then any other point € p(M) lies on the same side of
that hyperplane.

Any hyperplane in t* is determined by a vector X € ¢\ 0, unique up to a multiplicative constant.
Let X € ¢\ 0 and set

cx = min{ (o, X); a €A}, mx = ;Iél;(lfx(l’) = gﬂ(u(x),X>

We have to prove that my = cx.

Clearly mx < cx. To prove the opposite inequality observe that mx is a critical value of £x.
Since {x is a Morse—Bott function we deduce that its lowest level set

{x e M; &x(x) =mx}
is a union of critical submanifolds. Pick one such critical submanifold C.

If we could prove that C' N Fixp (M) # (), then we could conclude that C,, C C for some « and
thus cx < mx.

The submanifold C'is a connected component of Fixt, (M). It is a symplectic submanifold of

M, and the torus T | := T/Tx acts on C. Moreover,
FiXTL (C) =Cn FiXT(M),
so it suffices to show that
FiX']I‘L (C) 75 @
Denote by ¢ the Lie algebra of T | and by t x the Lie algebra of T x. Observe that ¢’ is naturally a
subspace of t*, namely, the annihilator 1‘59( of tx
t] =tk ={veth ®Y)=0, V¥ etx}

We will achieve this by showing that the action of T on C' is Hamiltonian.

Lemma 3.5.5 shows that for every Y € tx the restriction of (u,Y’) to C' is a constant ¢(Y")
depending linearly on Y. In other words, it is an element ¢ € t%. Choose a linear extension
@ :t — R of ¢ and set

pti= ple — @.
Observe that for every Y € tx we have (u*,Y) = 0, and thus p* is valued in fug( =t . For every
Z € t we have (along ()
V¥, Z) = V¥ ut, Z),
and we deduce that the action of T on C' is Hamiltonian with = as moment map.

Choose now a vector Z € t, such that the one-parameter group e!? is dense in T,. Lemma
3.5.3 shows that the union of the critical submanifolds of the Morse—Bott function £ % = (ut,Z) on
C is fixed point set of T | . In particular, a critical submanifold corresponding to the minimum value
of £ is a connected component of Fixy  (C'). This proves Ps.

Let us observe that the above arguments imply the following result.

Corollary 3.5.10. If T acts quasi-effectively on M and X € t, then the critical values of {x are

{ (o, X); aG.A}:<u(FiXT(M)), X>. O
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Proof of Lemma 3.5.8. For ¢; < ¢y we set
M2 ={c1 < f<ca}, M2={f<ca}, Mo, ={f>c1}, Le, ={f =c1}.

For any critical submanifold S of f we denote by E;f (respectively Eg) the stable (respectively
unstable) part of the normal bundle of S spanned by eigenvectors of the Hessian corresponding to
positive/negative eigenvalues. Denote by ngt the unit disk bundle of Efgc with respect to some metric
on E;?L

Since the Morse index and coindex of S are not equal to 1, we deduce that 8D§ is connected.
Thus, if we attach DgE to a compact C'W-complex X along dDZE, then the resulting space will have
the same number of path components as X.

Let fumin := mingens f(2) and frax = maxgens f(z). Observe now that if ¢ > 0 then { f <
fmin + € } has the same number of connected components as { f = fyin }-

Indeed, if C1, ..., C} are the connected components of { f = fuin }, then since f is a Morse—
Bott function, we deduce that for ¢ > 0 sufficiently small the sublevel set { f < fiin + €} isa
disjoint union of tubular neighborhoods of the C;’s.

The manifold M is homotopic to a space obtained from the sublevel set { f < fuin + ¢} viaa
finite number of attachments of the above type. Thus M must have the same number of components
as { f = fmin }, so that { f = fuin } is path connected. We deduce similarly that for every regular
value c of f the sublevel set M¢ is connected. The same argument applied to — f shows that the level
set {f = fmax} is connected and the supralevel sets M, are connected.

To proceed further we need the following simple consequence of the above observations:
M2 is path connected if L, is path connected. (3.27)

Indeed, if pg,p1 € MS?, then we can find a path connecting them inside M 2. If this path is not in

c1°?

Mgz, then there is a first moment ¢y when it intersects L., and a last moment ¢; when it intersects

this level set. Now choose a path (3 in L., connecting y(to) to y(¢1). The path

B
po 2 (o) — v(t1) —= p1

is a path in M¢? connecting pg to p;.

Consider the set
C :={ ¢ € [fmin, fmax); Le is path connected V¢’ <c} CR.

We want to prove that C' = [ finin, fmax]-
Note first that C' # () since fynin € C. Set ¢y = sup C. We will prove that ¢y € C and ¢y = finax.

If ¢ is a regular value of f, then L., = L.,_. for all ¢ > 0 sufficiently small, so that L, is path
connected and thus ¢y € C.

Suppose ¢y is a critical value of f. Since L. is path connected, we deduce from (3.27) that
M (fglf is path connected for all € > 0.
On the other hand, the level set L., is a Euclidean neighborhood retract (see for example [Do,

1V.8] or [Ha, Theorem A.7]), and we deduce (see [Do, VIIIL.6] or [Spa, Section 6.9]) that

hEEH.(MCC(?j;E? Q) = H.(LC()’Q)a
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where H*® denotes the singular cohomology.” Hence

H(L.,,Q) = HY(M*™° Q) =Q, V0<e< 1.

co—¢€?
Hence L., is path connected. This proves ¢y € C.
Let us prove that if ¢y < fiax then ¢o + € € C, contradicting the maximality of ¢q. Clearly this

happens if ¢y is a regular value, since in this case L¢, e = Le, = Ley—e, V0 < € < 1. Thus we can
assume that cg is a critical value.

Observe that since L., is connected, then no critical submanifold of f in the level set L., is a local
maximum of f. Indeed, if S were such a critical submanifold then because f is Bott nondegenerate,
S would be an isolated path component of L., and thus L., = S. On the other hand, M., is path
connected and thus one could find a path inside this region connecting a point on S to a point on
{f = fmax }- Since ¢y < fimaz, this would contradict the fact S is a local maximum of f.

We deduce that for any critical submanifold S in L, the rank of Eér is at least 2, because it
cannot be either zero or one. In particular, the Thom isomorphism theorem implies that

HY(D§,0D%:2/2) = 0,
and this implies that
HY (Mg "2, Legre3 2/2) 2 H' (Mey—e, Mey12;2/2)

cp—€?
=~ @Hl(pg,aDg;Z/m =0,
s
where the summation is taken over all the critical submanifolds contained in the level set L, the first
isomorphism is given by excision, and the second from the structural theorem Theorem 2.6.4. The
long cohomological sequence of the pair (M°*% L., .) then implies that the morphism

co—E€?
HO(MEGEE,2/2) = HO(Legs=,2/2)
is onto. Using (3.27) we deduce that HO(M 2, Z,/2) = 7./2, so that L, is path connected. O

The action of the torus near its fixed points is rather special. More precisely we have the following
result.

Theorem 3.5.11. Suppose (M,w) and T are as as in Theorem 3.5.7 and suppose that z is a fixed
point of the T-action. The symplectic form w on M defines a symplectic pairing w, on T,M. Then
there exists a T-invariant open neighborhood Uy of 0 € T, M, a T-invariant open neighborhood U,
of z € M and a T-equivariant diffeomorphism ¥ : Uy — WU, such that the following hold

o U(0) ==
o Uw=uw, € A°T} M.
e forany X € t and any u € Ug we have

Ex(P(u)) =&x(2) + %wz(/lxu,u) =¢x(z) + %hz(JAXu,u),

where AX is defined as in (3.22). O

9The point of this emphasis is that only the singular cohomology H® counts the number of path components. Other incarnations of
cohomology count only components.
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Loosely speaking, the above theorem states that near a fixed point of a hamiltonian torus action
we can find local coordinates so that in these coordinates the action becomes a linear action of the
type described in Example 3.4.29. For a proof of this theorem we refer to [Au, IV.4.d] or [GS, Thm.
4.1]. The deep fact behind this theorem is an equivariant version of the Darboux theorem, [Au, II.1.c].

The image of the moment map contains a lot of information about the action.

Theorem 3.5.12. Let (M, w), i and T be as above. Assume that T acts effectively. Then the following
hold.

(a) For any face F of the polyhedron (M) we set
Ft = {Xen;; deeR: (n,X)=c, VUGF}.

Observe that F- is a vector subspace of t whose dimension equals the codimension of F. It is called
the conormal space of the face F. Then for any face F of the convex polyhedron (M) of positive
codimension k the closed set

Mp = }(F)
is a connected symplectic submanifold of M such that

codim Mg > 2 codim F.
Moreover, if we set
Stp = {gET; T-g=ux, VxGMF},

then

TiStp = F*.
(b)dim M > 2dim T .
(c) Ifdim M = 2dim T, then codim Mp = 2 codim F for any face of pu(M).

Proof. .
Suppose F' is a proper face of p(M) of codimension & > 0. Then there exists X € T which
defines a proper supporting hyperplane for the face F, i.e.,
(n,X) < (0, X), VneF, nepnM),

with equality if and only if 7 € F. Consider then the Morse-Bott function {x = (u, X') and denote
by mx its minimum value on M. Then

Mp = = 1(F) = {¢&x = mx}.
Lemma 3.5.8 shows that M is connected. It is clearly included in the critical set of £ x, so that M
is a critical submanifold of £ x. It is thus a component of the fixed point set of T x.
Form the torus ’]I‘f := T/Str and denote by t its Lie algebra. Note that
th=t/tp.
The dual of the Lie algebra 1‘5# can be identified with a subspace of t*, namely the annihilator fu% of
tr,
th:={nct* (ntr)=0}Ct"
As in the proof of Theorem 3.5.7 we deduce that for every X € tp the function (u, X) is constant
along M. The action of Tl{: on M is Hamiltonian, and as moment map we can take

pt = plag — @,
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where ¢ is an arbitrary element in t* satisfying
(p, X) =(u(2),X), Vz€ Mp, X € tp.
Then
p(Mp) = F — ¢ C tp = (t5)".
Since the action of Tf on M is effective we deduce that that y* (M) has nonempty interior in t%.
Thus, the relative interior of F' — ¢ as a subset of 1‘5% C t* is nonempty, and by duality we deduce
that
Ft=(t%)° = tp.
This proves that T is a torus of the same dimension as F, which is the codimension of F.
Let us prove that
codim Mg > 2codim F = 2dim F*.

Since the action of T is effective, we deduce that the action of T/Str on My is effective. Using
Lemmas 3.5.6 and 3.5.5 we deduce that there exists a point z € My such that its stabilizer with
respect to the T /St p-action is finite. This means that the stabilizer of z with respect to the T-action
is a closed subgroup whose identity component is T, i.e., t, = tp.

We set V,, := T, M and we denote by F, the orthogonal complement of V, in T, M with respect
to a metric h on M equivariantly adapted to the Hamiltonian action as in the proof of Theorem 3.5.1.
Then E, is a complex Hermitian vector space. Let m := dim¢ E,, so that 2m = codimgr Mpr. We
will prove that

m > dim F+ = dim Tp.
The torus Tz acts unitarily on ., and thus we have a morphism
Tr 29— Ay € U(m) = Aut(E;, h).

We claim that its differential

. d
tp> X > Ax = —

a t:OAetX S u(m) = TlU(m)

is injective.
Indeed, let X € t \ 0. Then z is a critical point of {x. Denote by H, the Hessian of 7 at z.
Arguing exactly as in the proof of (3.24) we deduce

HZ(Ul,UQ) = W(AXU1,U2) = h(JAXul,uQ), Vul,uQ ek,

Since £x is a nonconstant Morse—Bott function, we deduce that H,|g, # 0, and thus A x # 0. This
proves the claim.

Thus the image T r of Ty in U(m) is a torus of the same dimension as Ty, and since the maximal
tori of U(m) have dimension m we deduce

codim FF=dimTr < m = %codimR (Mp).
If we apply (a) in the special case when F' is a vertex of p( M) we deduce
dim M — dim Mg = codim Mg > 2codim F' = 2dim T.
This proves (b). To prove (c) assume that dim M = 2dim T. We deduce. From the inequality
dim M — dim Mp > 2(dim T — dim F')
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we deduce
dim Mp < 2dim F.

On the other hand, we have an effective hamiltonian action pf the torus TL =T /ST on Mp and
thus
dim My > 2dim T = 2dim F.

Theorem 3.5.13. Suppose (M,w) is equipped with a quasi-effective Hamiltonian action of the torus
T with moment map . : M — t*. Assume that

dim M =2dim T = 2m.

Then any point 1 in the interior of (M) is a regular value of p, the fiber n=1(n) is connected and
T-invariant, and the stabilizer of every point z € u='(n) is finite.

Proof. Fix an invariant almost complex structure J tamed by w and denote by h the associated metric.
Letn € int u(M) and z € p~1(n). Denote by T, the identity component of St . To prove that z is a
regular point of p it suffices to show that St is finite, i.e., T, = 1. We follow the approach in [Del,
Lemme 2.4]. We argue by contradiction and we assume that £ := dim T, > 0.

Choose a vector X, € t, the Lie algebra of T, such that the 1-parameter subgroup {etXZ)teR
is dense in T,. The point z is a critical point of the Morse-Bott function £x_(z) = (u(z), X,). We
denote by V, the critical submanifold of {x, that contains z.

We have an effective hamiltonian action of the torus T /T, on V, so that
dimV, > 2dimT/T, = 2(m — ¢).

In particular, the orthogonal complement 7, VZL of TV, in T, M, has dimension 2d < 2/.

The Lie algebra ¢, of T, is a subalgebra of t, and thus we have a natural surjection 7 : t* — t}.
The action of T, on M is hamiltonian with moment map

pn s M5 5o
We have an action of T, on T, M
Ve = eAXv, YveT,M, X €t,,

where X — Ay is a linear map t, — so;(7,M), where we recall that so;(7,M ) denotes the
space of skew-symmetric endomorphisms of 7, M that commute with J. This action is trivial on the
subspace T, V, C T, M.

For X € t, we set By := JA x. Clearly By commutes with By for any X,Y € t.. Thus the
operators (Bx) xet, can be simultaneously diagonalized. Hence we can find an orthonormal basis

61, 627 ey 62777,71) me
of T, M and linear maps

Wy, ..., w6, > R
such that

Jéyp_1 =€, YVe=1,...,m,
€1, ...,Eq is an orthonormal basis of T, V.*,
Bngk,1 = wk(X)egk,l, B)(éék = wk(X)€2k, Vk = 1, Ce ,d,

and

Bxé =0, Vj=2d+1,...,2m.



130 Liviu I. Nicolaescu

Using Theorem 3.5.11 we can find a T.-invariant neighborhood Uy of 0 € T, M, a T,-invariant
neighborhood U, of z in M and a T,-equivariant diffeomorphism ¥ : Uy — U, such that

1
Ex(U(u)) = pa(2) + §h(BXU, u), VX €t,, ueUp.
Fix a basis X1, ..., X, of t., and denote by X7, ..., X the dual basis of t}. Note that

wk—Zwk X)XF, Vk=1,...,d.

Foranyu e T,M andk=1,...m denote by uy, the component of u along the subspace spanned by
{€2%—1, €2 }. We deduce that for any u € uo we have

,uz(\Il( Z (Zwk ‘ukP) X*
=1 k=1
1 , ¢ 1 ,
k=1 k=1
We deduce that the image of U, via the moment map p, : M — t is a neighborhood of y(z) in the
affine cone

d
C, = p(z) +C(wr,...,wg), Clwy,...,wg) = {Z SEWE; SE > 0} C t}.
k=1
Since d < ¢ we deduce that the cone C(wy, ..., wy) is strictly contained in ¢} and thus p,(z) cannot

be a point in the relative interior of y, (M ). We reached a contradiction because

pz(M) = 7 (u(M) ),
and . (z) = 7(n), where 7 is in the relative interior of p(M).

Hence 12~ 1(n) is a smooth submanifold of M of codimension equal to m = dim T. Lemma 3.5.9
shows that it is also connected. Choose a basis X1, ..., X, of t such that forevery? = 1,..., m the
hyperplane

H,; := {C S 1‘5*; <C7Xz> =1 = <T],Xi> }
does not contain'® any of the vertices of wu(M). Corollary 3.5.10 shows that this condition is equiv-
alent to the requirement that 7; be a regular value of &; := £x,, Vi = 1,...,n. The fiber u=*(n) is
therefore the intersection of regular level sets of the functions &;,

pt) ={zeM; &(z)=m, Vi=1,...,n}= ﬂ{ﬁi =1}
=1

Since {&;,&;} = 0, Vi, j, we deduce from Corollary 3.4.17 that &; is constant along the trajectories of
X ]b = V¥¢;. This proves that any intersection of level sets of &;’s is a union of flow lines of all of the
X;’s. Hence 12~ !(n) is connected and T-invariant. O

Definition 3.5.14. A roric symplectic manifold is a symplectic manifold (M, w) equipped with an
effective Hamiltonian action of a torus of dimension % dim M. O

107he space of hyperplanes containing n and a vertex v of (M) is rather “thin”. The normals of such hyperplanes must be
orthogonal to the segment [7), v], so that a generic hyperplane will not contain these vertices.
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Theorem 3.5.15. Suppose (M,w) is a toric symplectic manifold of dimension on 2m. We denote by
T the m-dimensional torus acting on M and by p the moment map of this action. The the following
hold:

(a) For every face F of (M) the submanifold My = p~'(F) is a toric manifold of dimension
2dim F.

(b) For every 1) in the interior of j1(M) the fiber M, = w1 (n) is diffeomorphic to T.

Proof. Asin Theorem 3.5.12 we set
Stp:={geT;, gr =2, Vo & Mp}.
Theorem 3.5.12 shows that St is a closed subgroup of T and
dim Stz = codim F' = m — dim F.

Thus T; = T /St is a torus of dimension M acting effectively on the symplectic manifold Mf of
dimension 2(m — k).

For part (b) observe that M, is a connected T-invariant submanifold of M of dimension m. Let
O denote an orbit of T on M,,. Then O is a compact subset of M,. Denote by G the stabilizer of a
point in O, so that

0=T/G.

On the other hand, by Theorem 3.5.13, G is a finite group, and since dim T = m = dim M,,, we
deduce that the orbit O is an open subset of M,,. Hence O = M, because O is also a closed subset of
M,, and M,, is connected. The isomorphism O = T/G shows that M,, is a finite (free) quotient of T
so that M, = T. O

Remark 3.5.16. Much more is true. A result of T. Delzant [Del] shows that can show that the image
of the moment map of a toric symplectic manifold completely determines the manifold, uniquely up
to an equivariant symplectic diffeomorphis. g

Example 3.5.17 (A toric structure on CP?). Consider the action of the two torus T = S' x S' on
CP? described in Example 3.4.28. More precisely, we have
[Z07 21, ZQ] . (6’it1 ’ eitg) — [6—1:(151-1-152)207 eitl 21, eit222]

(@titto)iy p(tit2t)i (3.28)

= [20,€ 22,

with Hamiltonian function
1 2 2 2 1
M([zmzl,zQ]) = ’2»‘72(|Z0| 7‘Z1| 7‘Z2| ) - 5(1,1, 1) € t.
Setb:= £(1,1,1).
This action is not effective because the subgroup
G={lp,p)€T; p*=1}=Z/3

acts trivially. To obtain an effective action we need to factor out this subgroup and look at the action
of T?/G. We will do this a bit later.

The Lie algebra of T is identified with the subspace
t = {wER?’; w0+w1+w220}.
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The vector @ € t generates the Hamiltonian flow

O ([20, 21, 22]) = [ 20, €™ 21, €72 2]

with Hamiltonian function

_ wolzol® + w21 [* + walzo|?
o EE |

We can now explain how to concretely factor out the action of GG. This is done in two steps as follows.

Step 1. Construct a smooth surjective morphism of two dimensional tori ¢ : T — Ty such that
ker o = G.
Step 2. Define a new action of Ty on CP? by setting

[ZOa 21722] g = [ZOa 215 ZQ] : 90_1(9)7 g € To,

where ¢~ !(g) denotes an element h € T such that ¢(h) = g. The choice of h is irrelevant since two
different choices differ by an element in G which acts trivially on CP?.

Step 1 does not have a unique solution, but formula (3.28) already suggests one. Define
©:T—To=25" xS, Ts (e, eft2) —s (eH2htt2) ilit2t2)y ¢

To find its “inverse” it suffices to find the inverse of A = Dy|; : t — t. Using the canonical bases
of T given by the identifications T = S* x S = T we deduce

(21 1 2 —1
A[1 2]”4 3{—1 2}’

TO 5 (eiSI,eiSQ) |¢_71> <ei(251752)/3 , ei(fs1+232)/3) eT.

and

The action of Ty on CP? is then given by

[207 21, 22] . (67’81, ezsg) _ |:€—(51+52)1,/3Z0 ’ 6(281_82)7’/321 ,6(_81+282)Z/322

. , (3.29)
= [zo ,e 121, €% 2 ]
Note that
At 1
tp 3 05y —> W1 = =(—1, 2,—1 ) € t,
3 S~~~
first column of A~1
and
AL 1
ﬂ:oB@SQ >—>w2:*(—1, —1,2 ) c t.
3 S~~~

second column of A1

The vector s, generates the Hamiltonian flow ¥} = @?i with Hamiltonian function x; := &g,. More
explicitly,

_ —lwlP A+ 20— —lwl — |l + 2]
Y 3P e 3P
Using the equality |2]? = |29|2 + | 21| + | 22|, we deduce'!
z? 1
Xi = |Z‘2_§7 1’:1’2‘

1 1Compzure this result with the harmonic oscillator computations in Example 3.4.24.
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We can thus take as moment map of the action of Ty on CP? the function
1

v([z0, 21, 22]) = (v1,12), Vi=Xi+ 3

because the addition of a constant to a function changes neither the Hamiltonian flow it determines
nor the Poisson brackets with other functions.

For the equality (3.29) we deduce that the fixed points of this action are
Py=1[1,0,0], P, =1[0,1,0], P, =10,0,1].
Set v; = v(F;), so that
vy = (0,0), vy = (1,0), Vo = (0, 1).

The image of the moment map p is the triangle A in tg with vertices vy 5. Denote by E; the edge
of A opposite the vertex ;. We deduce that v~!(E;) is the hyperplane in CP? described by zg = 0.

As explained in Theorem 3.5.12, the line ¢; through the origin of t and perpendicular to FE;
generates a 1-dimensional torus Tg, and E; = Fixr,, (CP?). We have
Tg, = {(e®,e); s €R}, Tg, ={(1,e%); s R}, Tg, = {(eSi, 1); seR}.
Observe that the complex manifold
X =v'(intA) =CP?*\ (/fl(Eo) Up Y (Ep)U /fl(Eg))
is biholomorphic to the complexified torus Tf = C* x C* via the Ty-equivariant map

@ * *
X 3 [20, 21, 22] ¥ (1, ¢2) = (21/20,22/21) € C" x C*.
For p = (p1, p2) € int (A) we have
v (p) = {[1,21,22] € CP?; |aif* = pi(1 + |21 + |22 }

pi(p1 + p2)
={[1,20,2); |z|>=m}, = .
Hhm sl = = )
This shows what happens to the fiber v~ 1(p) as p approaches one of the edges E;. For example, as
p approaches the edge E given by p; = 0, the torus v~ !(p) is shrinking in one direction since the
codimension one cycle |z1|? = r; on v~ !(p) degenerates to a point as p — 0. O

3.6. S'-Equivariant Localization

The goal of this section is to prove that the Morse—Bott functions determined by the moment map of
aHamiltonian torus action are perfect. We will use the strategy in [Fra] based on a result of P. Conner
(Corollary 3.6.17) relating the Betti numbers of a smooth manifold equipped with a smooth S*-action
to the Betti numbers of the fixed point set.

To prove Conner’s result we use the equivariant localization theorem of Atiyah and Bott [AB2]
which will require a brief digression into S!-equivariant cohomology. For simplicity we write H®(X) :
H*(X,C) for any topological space X.

Denote by S°° the unit sphere in an infinite dimensional, separable, complex Hilbert space. It is
well known (see e.g. [Ha, Example 1.B.3]) that S°° is contractible. Using the identification

Slz{zeC; 2| =1}
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we see that there is a tautological right free action of S on S*. The quotient BS! := S /S is the
infinite dimensional complex projective space CIP*°,

Its cohomology ring with complex coefficients is isomorphic to the ring of polynomials with
complex coefficients in one variable of degree 2,

H*(BS') = C[r], degt = 2.

We obtain a principal S'-bundle S>° — BS!. To any principal S'-bundle S < P — B and any
linear representation p : S — Aut(C) = C* we can associate a complex line bundle L, — B whose
total space is given by the quotient

Px,C=(PxC)/S,
where the right action of S* on P x C'is given by
(,0) - €% = (p- e, p(e 7)), ¥(p,() €P X C, ¥ e

L, is called the complex line bundle associated with the principal S L_bundle P — B and the repre-
sentation p. When p is the tautological representation given by the inclusion S* — C* we will say
simply that L is the complex line bundle associated with the principal S*-bundle.

Example 3.6.1. Consider the usual action of S* on S?**! ¢ C"*!. The quotient space is CP™ and
the S'-bundle $2"+1 — CP" is called the Hopf bundle. Consider the identity morphism

pr: St — S C Aut(C), € — ",
The associated line bundle
S+l », C — CP"

can be identified with the tautological line bundle U,, — CP".

To see this, note that we have an S'-invariant smooth map

52n+1 x C — CP" x Cn+1
given by
Sl 5 C 3 (20500520, 2) = ([20, - -5 2], (220, - - -, 220) )

which produces the desired isomorphism between S2"+1 x p1 C and the tautological line bundle Uy,.

More generally, for every integer m we denote by O(m) — CP" the line bundle associated with
the Hopf bundle and the representation

P St — St et s emmit
Thus O(—1) = U,,.
Observe that the sections of O(m) are given by smooth maps

o: S ¢

satisfying

o(e'v) = ™o (v).
Thus, if m > 0, and P € C[zy, ..., 2] is a homogeneous polynomial of degree m, then the smooth
map

S+l 5 (20, ..., 20) = P20, - -+ Zm)
defines a section of O(m). O
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We denote by U,, — BS'! the complex line bundle associated with the S'-bundle S — BS!.
The space BS! is usually referred to as the classifying space of the group S', while U, is the called
the universal line bundle. To explain the reason behind this terminology we need to recall a few
classical facts.

To any complex line bundle L over a C'W-complex X we can associate a cohomology class
e(L) € H%(X) called the Euler class of L. It is defined by
e(L):=1i"rp,

where 7 : X — L denotes the zero section inclusion, D, denotes the unit disk bundle of L, and
11, = H? (D, 0Dp; C) denotes the Thom class of L determined by the canonical orientation defined
by the complex structure on L.

The Euler class is natural in the following sense. Given a continuous map f : X — Y between
CW -complexes and a complex line bundle L — Y, then

e(f*L) = fre(L),

where f*L — X denotes the pullback of L — Y via f.
Often the following result is very useful in determining the Euler class.

Theorem 3.6.2 (Gauss—Bonnet—Chern). Suppose X is a compact oriented smooth manifold, L — X
is a complex line bundle over X, and o : X — L is a smooth section of L vanishing transversally.
This means that near a point vy € o~ 1(0) the section o can be represented as a smooth map o :
X — C that is a submersion at xo. Then S := o~1(0) is a smooth submanifold of X. It has a
natural orientation induced from the orientation of T'X and the canonical orientation of L via the
isomorphism

Lls = (TX)|s/TS.

Then [S| determines a homology class that is Poincaré dual to e(L). 0

For a proof we refer to [BT, Proposition 6.24].

Example 3.6.3. The Euler class of the line bundle O(1) — CP" is the Poincaré dual of the homology
class determined by the zero set of the section described in Example 3.6.1. This zero set is the
hyperplane

H:{[zo,zl,...,zn}; 20:0}.

Its Poincaré dual is the canonical generator of H*(CP"). O

The importance of BS' stems from the following fundamental result [MS, §14].

Theorem 3.6.4. Suppose X is a CW-complex. Then for every complex line bundle L — X there
exists a continuous map f : X — BS' and a line bundle isomorphism f*U, = L. Moreover;

e(L) = fre(Ux) = —f*(r) € H*(X),

where T is the canonical generator'* of H?(CP>). 0

12The minus si gn in the above formula comes from the fact that the Euler class of the tautological line bundle over CP! 2 S2 s the
opposite of the generator of H2(CP') determined by the orientation of CP* as a complex manifold.
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The cohomology of the total space of a circle bundle enters into a long exact sequence known as
the Gysin sequence. For the reader’s convenience we include here the statement and the proof of this
result.

Theorem 3.6.5 (Gysin). Suppose S' — P 5 B is a principal S'-bundle over a C'W -complex.
Denote by L — B the associated complex line bundle and by e = e(L) € H*(B, C) its Euler class.
Then we have the following long exact sequence:

= H(P) =5 HY(B) <5 H*+(B) = H**Y(P) — - . (3.30)
The morphism 7y : H*(P) — H*~Y(B) is called the Gysin map.
Proof. Denote by Dy, the unit disk bundle of L determined by a Hermitian metric on L. Then 0Dy,

is isomorphic as an S!'-bundle to P. Denote by i : B — L the zero section inclusion. We have a
Thom isomorphism

i H*(B) — H*"*(Dy,0Dr),
H*(B)3 B~ rpUn*B € H***(Dy,dDy).

Consider now the following diagram, in which the top row is the long exact cohomological sequence
of the pair (Dr,0Dy), all the vertical arrows are isomorphisms ,and r, ¢ are restriction maps (i.e.,
pullbacks by inclusions)

4 H*(0D;) —2 s H**Y(Dy,,0D;) —— H*™ (D) %

j 1 i*

H*(P) H*Y(B) H**'(B)
The bottom row can thus be completed to a long exact sequence, where the morphism
H*Y(B) — H*(B)
is given by
i*rif(a) = i*(rp Ur*a) = i* (1) Ui*n* (o) = eUa, Ya € H*'(B). O

Definition 3.6.6. (a) We define a left (respectively right) S'-space to be a topological space X to-
gether with a continuous left (respectively right) S'-action. The set of orbits of a left (resp. right)
action is denoted by S\ X (respectively X/S*).

(b) An S'-map between left S'-spaces X,Y is a continuous S'-equivariant map X — Y.

(c) If X is a left S'-space we define

Xg1:= (5 x X)/S*,
where the right action of S* on Py := (S x X) is given by
(v,2)- € = (v-e¥ e ¥x), Y(v,x) € S x X, teR.
(d) We define the S'-equivariant cohomology of X to be
H (X) := H*(Xg1). O
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Remark 3.6.7 (Warning!). Note that to any left action of a group G on a set .5,
GxX—=S, (9,8)—g-s,

there is an associated right action

SxG—S, (s,g)—sog:=g ' s

We will refer to it as the right action dual to the left action. Note that these two actions have the same
sets of orbits, i.e.,

G\S =5/G.
If S is a topological space and the left action of G is continuous, then the spaces S/G and G\ S with
the quotient topologies are tautologically homeomorphic.
The differences between right and left actions tend to be blurred even more when the group G
happens to be Abelian, because in this case there is another right action
SxG—=S, (s,9)—sxg=g-s.

The o and * actions are sometime confused leading to sign errors in computations of characteristic
classes. O

In the sequel we will work exclusively with left S'-spaces, and therefore we will refer to them
simply as S'-spaces.
The natural S'-equivariant projection S> x X — S induces a continuous map
U: Xq — BS
We denote by £ x the complex line bundle ¥*U,, — Xg1.

Proposition 3.6.8. L x is isomorphic to the complex line bundle associated with the principal S*-
bundle

St Px — Xagi

Proof. Argue exactly as in Example 3.6.1. O

We set z := e(Lx) € H?(Xg1). The U-product with z defines a structure of a C[z]-module on
Hg,(X). In fact, when we think of the equivariant cohomology of an .S L_space, we think of it as a
C[z]-module because it is through this additional structure that we gain information about the action
of S,

The module Hg, (X) has a Z/2-grading given by the parity of the degree of a cohomology class,
and the multiplication by z preserves this parity. We denote by HSj[1 (X) its even/odd part. Let us
point out that Hg, (X) is not Z-graded as a C[z]-module.

Any S'- map between S'-spaces f : X — Y induces a morphism of C[z]-modules
f*Hg (Y) = Hgi (X)),
and given any S'-invariant subset Y of an S!'-space X we obtain a long exact sequence of C[z]-
modules
o HO(X,Y) = H3(X) — Hou (V) S HFN(X,Y) = -
where
H(X,Y) = H*(Xg1,Yg1).
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Moreover, any S'-maps that are equivariantly homotopic induce identical maps in equivariant coho-
mology.

Example 3.6.9. (a) Observe that if X is a point %, then
21 (x) =2 H*(BS") = C[7].
Any S'-space X is equipped with a collapse map cx : X — {*} that induces a morphism
cx : Clr] = H3 (X).
We see that c induces the canonical C[z]-module structure on Hg, (X ), where z = ¢ (—7).
(b) Suppose that S! acts trivially on X. Then
Xg1 =BS' x X, H%(X)= H*(BS") @ H*(X) = C[r] @ H*(X)
and z = —7. Hence H¢, (X) is a free C[z]-module.
(c) Suppose X is a left S'-space such that S* acts freely on X. The natural map (S x X) — X is
equivariant (with respect to the right action on S* x X and the dual right action on X') and induces
a map
Xg1 = (5® x X)/St - X/S*.
If X and X/S* are a reasonable spaces (e.g., are locally contractible), then the map 7 : Xg1 — X/S?!
is a fibration with fiber S°°. The long exact homotopy sequence of this fibration shows that 7 is a

weak homotopy equivalence and thus induces an isomorphism in homology (see [Ha, Proposition
4.21]). In particular, H, (X) = H*(X/S").

If e(X/S') denotes the Euler class of the S*-bundle X — X/S!, then the multiplication by z is
given by the cup product with e(X/S'). In particular, z is nilpotent. For example, if

X = &2t = {(z0,21,...,2) € crtl, Z\sz =1},
k

and the action of S is given by

it

ez t

(20,5 2n) = (eitzo,...,ei zn),
then X/S! = CP" and

§1(X) = H*(CP") 2 C[]/(:""), degz=2.

(d) For every nonzero integer k denote by [S!, k] the circle S* equipped with the action of S! given
by
St x [SY k] 3 (z,u) — 25 - w.
Equivalently, we can regard [S!, k] as the quotient S'/Z/k equipped with the natural action of S*.
We want to prove that
Si([STk]) = H(x) = C,
where * denotes a space consisting of a single point. We have a fibration

Z/k < (S x §)/8* 5 (5% x [SY, k])/S" .

=11 =Ly

In other words, Ly is a cyclic covering space of L.
Note that L; = S5°° is contractible and

H*(Ly) = H5: (S, K]).
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We claim that
Hp (L, C) =0, Ym >0, (3.31)
so that Hg, ([S*, k]) = HY(x) = C.
To prove the claim, observe first that the action of Z/k induces a free action on the set of singular

simplices in L and thus a linear action on the vector space Cy (L1, C) of singular chains in L; with
complex coefficients. We denote this action by

Z]k xc> (p,c)—poc.

We denote by C, (L1, C) the subcomplex of Cy(L1,X) consisting of Z/k-invariant chains.

We obtain by averaging a natural projection,

a = Co(L1,C) = Cu(L1,C), ¢—> afc) = % S poc
pETL/k
This defines a morphism of chain complexes
a:Ce(L1,C) = Co(L1,C),

with image Co(L1, C).

Each singular m-simplex ¢ in Ly, admits precisely k-lifts to L,

&l 6" A, — L.

These lifts form an orbit of the Z/k action on the set of singular simplices in L;. We define a map
Crn(Li,C) = Crn(L1,C), €= 2400 &= Zaba,
o (0%
where

0=

k
Z&i, Vo : Ay — L.
i=1

=

Clearly ¢ is Z/k-invariant and
Oc = 0¢.
We have thus produced a morphism of chain complexes
7 Co(Ly, C) — Co(L1,C), ¢+ &

Denote by 7, the morphism of chain complexes Co(L1,C) — Co(Lyg, C) induced by the projection
7 : L1 — Lj. Observe that

o m = a.

This shows that the restriction of the morphism 7, to the subcomplex Cy(L1,C) of invariant chains
is injective.

Suppose now that c is a singular chain in C), (L, Z) such that dc = 0. Then

o€ = ¢, T (0¢) = Omy¢ = 0c = 0.

Since 0¢ is an invariant chain and 7, is injective on the space of invariant chains we deduce 9¢ = 0.

On the other hand, L is contractible, so there exists & € C,,—1(L1, C) such that 94 = ¢. Thus

C = TyC = T 0U = Om.

This shows that every m-cycle in Ly, is a boundary.
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(e) Suppose X = C and S* acts on X via
S1x C 3 (¥, 2) s e ™y,

Then X1 is the total space of the complex line bundle O(m) — CP>°. 0

Remark 3.6.10. The spaces Ly, in Example 3.6.9(c) are the Eilenberg—Mac Lane spaces K (Z/k, 1)
while BS! is the Eilenberg-Mac Lane space K (Z,2). We have (see [Ha, Example 2.43])

Z if m=0,
H, (L, Z) = 0 if miseven and positive, O
Z/k if misodd.

We will say that a topological space X has finite type if its singular homology with complex
coefficients is a finite dimensional vector space, i.e.,

> bi(X) < o0.
k

An S'-space is said to be of finite type if its equivariant cohomology is a finitely generated C|z]-
module.

Proposition 3.6.11. If X is a reasonable space (e.g., a Euclidean neighborhood retract, ENR'?) and
X has finite type, then for any S*-action on X the resulting S'-space has finite type.

Proof. X« is the total space of a locally trivial fibration
X — Xsl —» le

and the cohomology of X1 is determined by the Leray—Serre spectral sequence of this fibration
whose Fy-term is
EY? = gP(BS") @ H1(X).

The complex E» has a natural structure of a finitely generated C[z]-module. The class z lives in Eg 0,
so that doz = 0. Since the differential d5 is an odd derivation with respect to the U-product structure
on F» (see [BT, Theorem 15.11]), we deduce that do commutes with multiplication by z, so that ds
is a morphism of C|[z]-modules. Hence the later terms E), of the spectral sequence will be finitely
generated C[z]-modules since they are quotients of submodules of finitely generated C[z]-modules.
If we let » > 0 denote the largest integer such that b, (X) # 0, we deduce that

Er+1 = Er+2 == Fy.
Hence E is a finitely generated C|z]-module. This proves that Hg, (X) is an iterated extension of a
finitely generated C[z]-module by modules of the same type. O

The finitely generated C[z]-modules have a simple structure. Any such module M fits in a short
(split) exact sequence of C[z]-modules

0 —= Miors > M — Moo — 0.
If M is Z/2-graded, and z is even, then there are induced Z/2-gradings in Mp,ce and Miqys, so that

the even/odd parts of the above sequence are also exact sequences.

Bpor example, any compact C'W-complex is an N R or the zero set of an analytic map F' : R™ — R™ is an ENR. For more
details we refer to the appendix of [Ha].
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The free part My has the form @&]_, C|[z], where the positive integer r is called the rank of M
and is denoted by rankc(,) M. The classification of finitely generated torsion C[z]-modules is equiva-
lent to the classification of endomorphisms of finite dimensional complex vector spaces according to
their normal Jordan form.

If T is a finitely generated torsion C[z]-module then as a C-vector space T is finite dimensional.
The multiplication by z defines a C-linear map
A, T —-T, Tt z-t.
Denote by P, (\) the characteristic polynomial of A, P,(\) = det(Alp — A,). The support of T is
defined by
suppT := {a € C; P.(a) =0}.
For a free C[z]-module M we define supp M := C. For an arbitrary C[z]-module M we now set

supp M = supp Miors U supp Miree.

Thus a finitely generated C[z]-module M is torsion if and only if its support is finite. Note that for
such a module we have the equivalence

suppM = {0} <= In€Z-o: 2" -m=0, Ym e M.

We say that a C[z]-module M is negligible if it is finitely generated and supp M = {0}. Similarly,
an S'-space X is called negligible if it has finite type and H 21(X) is a negligible C[z]-module

supp M = {0}.
The negligible modules are pure torsion modules. Example 3.6.9 shows that if the action of S* on X

is free and of finite type then X is negligible, while if S* acts trivially on X then H 21 (X)tors = 0.

For an S'-action on a compact smooth manifold M the equivariant localization theorem of A.
Borel [Bo] and Atiyah-Bott [AB2] essentially says that the free part of H, (M) is due entirely to the
fixed point set of the action.

Theorem 3.6.12. Suppose S' acts smoothly and effectively on the compact smooth manifold M.
Denote by F' = Fixg1 (M) the fixed point set of this action,

F:{:CEM; et =1, VtGR}.

Then the kernel and cokernel of the morphism i* : Hg, (M) — H$, (F') are negligible C[z]-modules.
In particular,

ranke, | Hg, (M) = dime HE(F), (3.32)
where for any topological space X we set

HY(X)= & H'WX).

k=even/odd

Proof. We follow [AB2], which is in essence a geometrical translation of the spectral sequence argu-
ment employed in [Bo, Hs]. We equip M with an S'-invariant metric, so that S! acts by isometries.
Arguing as in the proof of Lemma 3.5.3, we deduce that F' is a (possibly disconnected) smooth sub-
manifold of M. To proceed further we need to use the following elementary facts.



142 Liviu I. Nicolaescu

Lemma 3.6.13. (a) If A i> B Cis an exact sequence of finitely generated C|z]-modules, then

supp B C supp A Usupp C. (3.33)
In particular, if the sequence 0 — A — B — C — 0 is exact and two of the three modules in it are
negligible, then so is the third.

(b) Suppose f : X — Y is an equivariant map between S'-spaces of finite type such that Y is
negligible. Then X is negligible as well. In particular, if X is a finite type S*-space that admits an
St-map f : X — [S', k], k > 0, then X is negligible.

(c) Any finite type invariant subspace of a negligible S*-space is negligible.

(d)IfU and V are negligible invariant open subsets of an S' space, then their union is also negligible.

Proof. Part (a) is a special case of a classical fact of commutative algebra, [S, I.5]. For the reader’s
convenience we present the simple proof of this special case.

Clearly the inclusion (3.33) is trivially satisfied when either Afee Or Chree is nontrivial. Thus
assume A = A5 and C' = Cios. Observe that we have a short exact sequence

0—kerf— B —Img—0. (3.34)

Note that supp ker f C supp A and supp Im g C supp C. We then have an isomorphism of vector
spaces
B=ker f@Imyg.

Denote by «, the linear map induced by multiplication by z on ker f, by /3, the linear map induced on
B, and by +, the linear map induced on Im g. Using the exactness (3.34) we deduce that 3, regarded
as a C-linear endomorphism of ker f & Im g, has the upper triangular block decomposition

*
v { 0 o } ’
where * denotes a linear map Im g — ker f. Then
det(A\1 — B,) = det(A\1 — ;) det(A\1 — 7,),
which shows that

supp B = suppker f U supp Im g C supp A U supp C.

(b) Consider an Sl—map f: X — Y. Note that cx = ¢y o f, and we have a sequence

Clr] = Ho (%) 5 Ho (V) L5 B3, (X).

On the other hand, since supp H¢,; (Y') = {0}, we deduce that cj,(7)" = 0 for some positive integer
n. We deduce that ¢’ (7) = 0, so that supp H%,(X) = {0}. If Y = [S', k], then we know from
Example 3.6.9(c) that supp H¢, (V') = {0}.

(¢) If U is an invariant subset of the negligible S!-space X, then applying (b) to the inclusion U < X
we deduce that U is negligible.

(d) Finally, if U, V' are negligible invariant open subsets of the S'-space X, then the Mayer—Vietoris
sequence yields the exact sequence

HG (UNV) > Hu(UUV) = Ha(U) @ Hq (V).
Part (c) shows that U N V' is negligible. The claim now follows from (a). O
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Our next result will use Lemma 3.6.13 to produce a large supply of negligible invariant subsets
of M.

Lemma 3.6.14. Suppose that the stabilizer of x € M is the finite cyclic group 7Z./k. Then for any
open neighborhood U of the orbit O, of x there exists an open S*'-invariant neighborhood U, of O,
contained in U that is of finite type and is equipped with an S*-map f : U, — [S1, k. In particular,
U, is negligible.

Proof. Fix an S'-invariant metric g on M. The orbit O, of x is equivariantly diffeomorphic to [S', k].
For r > 0 we set

Uy(r)={y € M; dist(y,0,) <r}.
Since S! acts by isometries, U, (r) is an open S'-invariant set.

For every y € O, we denote by TyO% the orthogonal complement of 7,0, in T), M. We thus
obtain a vector bundle 7O+ — O,. Denote by D;- the associated bundle of open disks of radius
r. If r > 0 is sufficiently small then the exponential map determined by the metric g defines a
diffeomorphism

exp : D — Uy(r).
In this case, arguing exactly as in the proof of the classical Gauss lemma in Riemannian geometry
(see [Nil, Lemma 4.1.22]), we deduce that for every y € U,(r) there exists a unique 7(y) € O such
that

dist (y, m(y) ) = dist (y, Oz).

The resulting map 7 : U,(r) — O, = [S', k] is continuous and equivariant. Clearly, U,(r) is of
finite type for » > 0 sufficiently small, and for every neighborhood U of O, we can find r > 0 such
that U, (r) C U. 0

Remark 3.6.15. Observe that the assumption that the stabilizer of a point x is finite is equivalent to
the fact that  is not a fixed point of the S'-action. O

For every € > 0 sufficiently small we define the S!-invariant subset of M
M, :={y € M; dist(y,F) > e}, U. =M\ M.
Observe that M. is the complement of an open thin tube U, around the fixed point set .
Lemma 3.6.16. For all ¢ > 0 sufficiently small, the set M, is negligible.
Proof. Cover M. by finitely many negligible open sets of the type U, described in Lemma 3.6.14.

Denote them by Uy, ..., , U,. Proposition 3.6.11 implies that V; = U; N M. is of finite type and we
deduce from Lemma 3.6.13 and Lemma 3.6.14 that

supp H§: (Vi) = supp Hg: (U1) = {0}.
Now define recursively
Wy =U;, Wipir =W, UV, 1<i<w.
Using Lemma 3.6.13(d) we deduce inductively that M. is negligible. O

Observe that the natural morphism Hg, (Uz) — Hg, (F) is an isomorphism for all ¢ > 0 suffi-
ciently small, so we need to understand the kernel and cokernel of the map

HE (M) — H3 (UL).
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The long exact sequence of the pair (M, U.) shows that these are submodules of H¢,; (M, U.). Thus,
it suffices to show that ¢, (M, U.) is a negligible C[z]-module. By excision we have

H% (M, U.) = Hg (M, 0M,).
Lemma 3.6.13(c) implies that M, is negligible.
Using the long exact sequence of the pair (M., OM.) we obtain an exact sequence
HE (0M.)— H, (M., 0M.)— Hg, (M.).

Since the two extremes of this sequence are negligible, we deduce from Lemma 3.6.13(a) that the
middle module is negligible as well. This proves that both the kernel and the cokernel of the morphism
Hg (M) — Hg, (F) are negligible C[z]-modules.

On the other hand, according to Example 3.6.9(d), the C[z]-module Hg, (') is free and thus

ker(Hgl(M) - H;l(F)) = H% (M)iors.

We thus have an injective map H; (M )tree — H (F') whose cokernel is a torsion module. We
deduce that

ranke, Hg, (M) = ranke, Hg, (F) = dime H*(F). O
From the localization theorem we deduce the following result of P. Conner [Co]. For a different
approach we refer to [Bo, IV.5.4].

Corollary 3.6.17. Suppose the torus T acts on the compact smooth manifold M. Let M and F be as
in Theorem 3.6.12. Then

dimg H*(M)) > dime H* ( Fixp(M) ). (3.35)

Proof. We will argue by induction on dimT. To start the induction, assume first that T = S'.

Consider the S'-bundle Py; = S x M — Mg:1. Since S* is contractible the Gysin sequence of
this S'-bundle can be rewritten as

o HY (M) — H3TH (M) 25 HEY (M) — H (M) — -
In particular we deduce that we have an injection
Hg(M)/zHZ (M) — H*(M).
Using a (noncanonical) direct sum decomposition
H; (M) = Hsil(M)tors ® H; (M) ree
we obtain an injection
H;El (M)free/ZH§1 (M)gree = H*(M).

The above quotient is a finite dimensional complex vector space of dimension equal to the rank of
H 351 (M), and from the localization theorem we deduce

dime HE(F) = dime Hg, (M)free/2H g1 (M) free
< dim¢ H¥(M) = dimec H(M).
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Suppose now that T is an n-dimensional torus such that T = T x S! acts on M. Let F” denote
the fixed point set of T and let F' denote the fixed point set of T. They are both submanifolds of M
and F’ C F. The component St acts on F, and we have

F' = Fixqi (F).
The induction hypothesis implies
dime H(M) > dime HE(F),
while the initial step of the induction shows that
dime HE(F) > dim¢e H* (Fixg: (F) ) = dime HE (F'). O

Theorem 3.6.18. Suppose (M,w) is a compact symplectic manifold equipped with a Hamiltonian
action of a torus T with moment map 1 : M — t*. Then for every X € t the function {x : M — R
given by {x () = (u(z), X), x € M, is a perfect Morse—Bott function.

Proof. We use the strategy in [Fra]. We already know from Theorem 3.5.1 that £x is a Morse—Bott
function. Moreover, its critical set is the fixed point set F' of the closed torus Tx C T generated by
e!X . Denote by {F,,} the connected components of this fixed point set and by )\, the Morse index of
the critical submanifold Fi,. We then have the Morse—Bott inequalities

>t Pe,(t) = Pul(t). (3.36)

If we set t = 1 we deduce
Do) =)0 b(Fa) 2 ) (M), (337)
k a Kk Kk

The inequality (3.35) shows that we actually have equality in (3.37), and this in turn implies that we
have equality in (3.36), i.e., f is a perfect Morse—Bott function. O

Remark 3.6.19. (a) The perfect Morse—Bott functions on complex Grassmannians used in the proof
of Proposition 3.2.1 are of the type discussed in the above theorem. For a very nice discussion of
Morse theory, Grassmannians and equivariant cohomology we refer to the survey paper [Gu]. For
more refined applications of equivariant cohomology to Morse theory we refer to [AB1, B2].

(b) In the proof of Theorem 3.6.18 we have shown that for every Hamiltonian action of a torus T on
a compact symplectic manifold we have

> dim H*(Fixp(M)) =Y~ H¥(M).
k k

Such actions of T are called equivariantly formal and enjoy many interesting properties. We refer to
[Bo, XII] and [GKM] for more information on these types of actions. O

3.7. The Duistermaat-Heckman formula

We have now at our disposal all the information we need to prove the celebrated Duistermaat-
Heckman localization formula, [DH]. This is a multifaceted result but, due to space constraints, we
limit ourselves to discussing only one of its facets, analytical in nature. To understand its significance
we need to present a classical result.
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Proposition 3.7.1 (Stationary Phase Principle). Suppose that (M, g) is a smooth, connected oriented
Riemannian manifold of dimension m,

a,p: M —R
are smooth functions such that a has compact support, and all the critical points of @ contained in
supp a are nondegenerate. For any point p € Cr,Nsupp a we denote by o(p, ) the signature of
the Hessian H, ;, of ¢ at p. Using the metric g we can identify the Hessian with a symmetric linear
operator T, M — T),M and we denote by dety H, ), its determinant. Then as t — oo we have

m imo(p,p)

[ eteadv, = 3 <%>2“€W“’>a<p>+o<t?l>. (3:38)
M t

1

pECry, Nsuppa ’ detg H%O7P| 2
Proof. We will complete the proof in several steps.
Step 1. (Riemann-Lebesgue Lemma) Assume that (M, g) is the Euclidean space R™ and Cr, Nsupp a =
(). Then for any N > 0 we have

Ii(p,a) = / @) (z)dx = O(t_N) as N — oo
Rm

Fix compact neighborhoods Oy C Oy of supp a such that dy # 0 on O and then define

1
Y := ——Vp € Vect(0q).
Vol (@)

Next, choose a smooth function 7 : R”* — R which is identically 1 on Og and identically zero outside
O1. The vector field nY extends to a smooth vector field X on R™ that satisfies

X -¢=dp(X)=1 on0y.
Note that
X - et = jte”.
Using the divergence theorem [Nil, Lemma 10.3.1] and the fact that a has support contained in Og
we deduce that

Ii(p,a) = ilt/Rm (X - eiw)adx = l—lt - eit‘P(—X -a —div(X)a)dz,

where div(X) denotes the divergence of X. If we write
La:=-X-a—div(X)a,

then we can rewrite the above equality as.

1
It((pv CL) - E(@a La)

Iterating this procedure we deduce that for any N > 0 we have

L(p,a) = (z.j)NmLNa).

Step 2. Suppose that ) : R™ — R™ is a symmetric invertible operator and ¢ is quadratic,
o(x) =c+ (Qux,x), ceR.
Then

i sign Q

(& 4

| det Q|2

m
2

Ii(p,a) = (%) e°a(0) + Ot~ 21 ast — oco. (3.39)
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After an orthogonal change of coordinates we can assume that () is diagonal, i.e.,

p(r)=c+(Qu,z) =c+ > Maj, M €R\O,
k=1

For r > 0 we set
Ii(p,a,r) = eitc/ e_T|z‘2+iW($)a(x)da:.

Observe that
I p,a) = lim 1, w,a,r).
t( ) ) rl\JO t( s Uy )

Denote by A(&) the Fourier transform of the amplitude a(z)

_ 1 e~ @0 g (z)du.
A©) = g [ e at)d

Arguing as in Step 1 we deduce that

A(€) =0(l¢]™N) as € — oo, YN > 0. (3.40)
The Fourier inversion formula [RS, IX] implies
1 ,
- l(x’g)A d
o) = g [, “OOAk
so that
itc . .
Iean = [ ( / e‘r'x'“”“’(x)*’(g"f)A(é)d§> da
— eZtCm/ (/ €—T|$2+iw(r)+i(%5)d:p) A(&)de
_ eitcm/ H/e(r+it)\k)x%+ifk$kdxk A(f)dﬁ
(@m)z Jrm \j 2 /R
eitc m
= N J (N, e, ) | A(E)dE,
(2m)z Jrm \
where

T, &r) = [ elorhuetricegy,

We now invoke the following classical result whose proof is left to the reader as an exercise (Exercise
6.1.46).

T

Lemma 3.7.2. For every complex number z = pe'?, 0] < 7 we set 23 = p%e%. Then, for any
r > 0 we have
1
T2 £2
T, 6,7) = — T,
(r—ip)2
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We deduce that
itc M m e2
1 _ Sk
Li(p,a,r) = 1/ <H 64“’”’“"”) A(&)ds.
22 0 (r—dth)2 Jrm
Letting r N\, 0 we deduce
) pitc ﬁ 1 ﬁ —ig? )
i) = o [ [ (T ) ae (3.41)
(20)2 ;5 (—ixg)2 Jrm \j )
Now observe that
m 1 eiﬂ'signQ

NN 1
o1 (Z8Ag)Z [det Q2
and there exists a constant C' > 0, independent of ¢ such that

2
O s, enn

_152

He4tAk —1l <

Hence, using (3.40) we deduce

/ (H e;ffi> €)d¢ = . A(&)de+0(t™h).

On the other hand, the Fourier inversion formula implies

A(&)d = (2)

R'n
Using these equalities in (3.41) we obtain (3.39).

m
2

a(0).

Step 3. Suppose that M = R™, o(x) = ¢+ (Qz, x) as in Step 2, but the metric g is not necessarily
the Euclidean metric. Then

m 4 sign Q
/ 2@ g(2)dV, (z) = (E) ’ L “eq(0) + O~ 271, ast — oo.
m t | dety Q|2 :
With respect to the Euclidean coordinates (x1, .. ., z,,) we have

9= (gijh1<ij<m, Gij = 9(Ox;,0z;),
and

dV = y/det gdz, detg—det(gzj)1<”<m
Hence From Step 2 we deduce

/ £9() 0 () AV () = / 1@ (2)dx, a, = ar/detg.

From Step 2 we deduce

m 4w sign Q
/ @, (v)de = <E> ’ 67416“0&9(0) +O0(t™27Y), ast — oco.
n ) |detQ)
We conclude by observing that
det
det,@ = )



An invitation to Morse theory 149

Step 4. The general case can now be reduced to the situations covered by Steps 1-3 using the Morse
lemma (Theorem 1.1.12) and partition of unity. O

The Duistermann-Heckmann theorem describe one instance when the stationary phase asymptotic
expansion (3.38) is exact!

Theorem 3.7.3 (Duistermaat-Heckman). Suppose that (M ,w) is a smooth, compact, connected sym-
plectic manifold of dimension 2n equipped with a Hamiltonian S*-action

M x St — M, (p,eie)b—>p-ei9

with moment map - M — u(1). As usual, we identify u(1) with iR and thus we can write j(x) =
io(x). Assume that o is a Morse function. Fix a S*-invariant almost complex structure on M tamed
by w and denote by g the associated metric

9(X,Y) =w(X,JY), VX,Y € Vect(M).

Then dV,; = %w”, and for any t € C* we have

/M eiw(m)dvg(az) = Z

imo(p,p)
27 \" ;
<7T> Llelw(p)‘ (3.42)
peCr,

| dety Hypl?

Proof. Our proof is a slight variation of the strategy employed in [BGV, §7.2]. Denote by X, the
Hamiltonian vector field generated by ¢,

Xo=—JVop.

For any 0 < k < 2n we denote by Q¥ (M) C QF(C* x M) the space of differential forms of degree
k on M depending smoothly on the parameter z € C*. More precisely, Q¥ (M) consists of (complex)
differential k-forms ov on C* x M such that, for any vector field Z € Vect(C* x M) that is tangent
to the fibers of the natural projection

my  C*x M — M,

we have Z J o = 0. Equivalently, Q%(M) consists of smooth sections of the pulled back bundle
i ART*M ® C — C* x M. We set

QM) = P t(M),
k
and we define an operator
d, : QM) = Q(M), d.a(z) =dya(z) — 22X, 1 afz),

where dj; denotes the exterior derivative on M.

We have the following elementary facts whose proofs are left to the reader.
Lemma 3.7.4. (a) If a(z) € QF(M) and 3(z) € QL(M), then
d=(a(2) A B(2)) = dza(t) A B(E) + (=1)*a(t) A d=B(1).

(b) dZ = —zLx,, where L, denotes the Lie derivative along X . O
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For any a(z) € Q2(M) we denote by [«(2)]y, its degree k component. Note that
[dza(2)]k+1 = dar[a(2)]k — 2Xp I [(2)]kpa-

The integration defines a linear map

/ L2 (M) — C(C).
M
Consider the form
alz) =w+zp € QY(M).
Since X, is the Hamiltonian vector field associated to ¢ we deduce from (3.16) that
d.a(z) = z(dpyyp — Xp Jw) = 0.

Using Lemma 3.7.4(a) we deduce
d,a(z)* =0, VE,
so that d,e®(®*) = 0. Note that

) = e = 0 3 Lk 0] el
k! n n!
k>0

Denote by 6, € Q'(M) the 1-form g-dual to X, i.e.,
0,(Y) =9(Xy,Y), VY € Vect(M).
We regard 6 in a canonical way as an element in 21 (A/). Note that
d:0, = dfy — 2| X,[2 .
j,(z)_/

Since the metric g is invariant with respect to the flow generated by X, we deduce Lx 0, = 0.
Using Lemma 3.7.4(b) we deduce d.[3(z) = 0. Set

M*:= M\ Cr,,

The vector field X, does not vanish on M* so that 3(z) is invertible in Q3 (M*), i.e., there exists
v(2) € QF(M*) such that

v(2) A B(z) =1 € Q3 (M™).
More precisely, we can take

(=) = B(2) " =~ Xpl2) 7 (1= (21X,12) e, )

n
_ NS k
:_Z(Z 1‘X<P’g2) (db,)".
k=0
Observe that on M™* we have the equality.

d. (0, A e A Y(z)) = (d-0,) A e A ry(z) = 23,

Hence

[604(2)] om dpr [09" A 7(2) A eOé(Z) }211—1'
Let p € Cry, and r > 0 sufficiently small. Denote by B,.(p) the (open) ball in (M, g) of radius r and
centered at p. Since p is a fixed point of the S*-action, we have an induced S'-action on T,M

T,M x S* — T,M, (v,e?’ r—)etApv,
p p
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where, according to (3.24) the endomorphism Ap of T}, M is skew-symmetric, commutes with J and
Hyp(u,v) = gp(JApu,v), Yu,v € T,M.

The endomorphism B, = J Ap of T}, M is symmetric and commutes with J. We can find an or-
thonormal basis ey, €z, . . . , €2, of T, M and numbers A\; = A1(p), ..., Ay = Au(p) € Z such that'*
Vk =1,...,n we have

Apesi—1 = Apeagr, Apes, = —Apeap_1,
Jegp_1 = e, Jegy, = —egp_1.

Moreover, since p is a nondegenerate critical point of p we have A\ # 0, Vk. We use the the orthonor-
mal basis {ey} to introduce coordinates ¥ = (x1,...,Z2,) on T, M, and via the exponential map,
normal coordinates Z on B (p). We denote by O(¢) any smooth function on M whose derivatives at
p up to order £ are zero.

The metric g is S'-invariant and thus the S action preserves distances and maps geodesics to

geodesics. Thus, on B.(p) the S!-action is given by
i et = ety

In the Z-coordinates we have g;; = d;; + O(2) so that

Xo(&) = ApZ =Y " Me(—20k00yy,_, + Ton—10ay, ).

= (3.43)
Xp@)F =D X (e +7h) +O(2).
k=1
Note that the Hessian of ¢ at p is given by the quadratic form
. n
Hy () = gp(JARE, T) = =Y Mp(a3y_y +23;). (3.44)
k=1
The equality (3.43) implies that
n
980 = Z Ak (—xzkdxgk,l + :czk,ldxgk) +0(2),
h=t (3.45)

decp = Z 2Apdxop—1 N dxop + O(l)
k=1

For £ > 0 sufficiently small we denote by E.(p) the elllipsoid

E.(p) = {7 € B:(p); Zki(m’%k_l +a,) =€ }.
k=1

We set

M = M\ U E.(p).
peCr,

14The eigenvalues Ay, belong to Z since e(t+2™4p — ¢t4p vt € R.
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We deduce
/M [ea(Z)]2n = 21{(% M. [ea(Z)]Qn
(3.46)
=_ Z hm [0, Av(2) A ea(Z)]2n—1'
peCr, OF( )

We have

n—1

1 _
[0¢ Ay(z) A eo‘(z)]%il = e*? [Qp A 7(2)]%71 + Z [950 N 7(2)]%—1 A mw” ’
k=1

= —e* (271 Xp?) "0, A (dB,)"
n—1

1
— 27X, 72k, A (dO,)FE A Wk
D Y ]

Using (3.43) and (3.45) we deduce that forany k = 1,...,n — 1 we have along 0FE-(p)

(n—k)!

uniformly with respect to z on the compacts of C*. Since the area of IE.(p) is O(¢2"~!) we deduce
that

, , - 1 n— -
(2 1’X<p| Q)kaw/\ (d@w)k EA W =0,
g

lim 0, Ny(z AN———w"F=0, VE=1,...,n—1.
N0 BEe(p)[ e Mt G
Using(3.46) we deduce
/M [e*@], =2 > lim | X720, A (d,)" 1. (3.47)

peCr,, eNo OE:(p)

On B, (p) we have
e =P 1 O(|7)), |X,(T)| =e(1+0(T))

and we deduce that on E.(p) we have

| Xo| 720, A (dO,)" " = e 2P (1 4 R(2,7) )0, A (dB,)" ", (3.48)
where R.(z,Z) = O(|Z|) uniformly with respect to Z € B,(p) and z on the compacts of C*.
Lemma 3.7.5.
2m)"
lim 2" / 0, (do )" = T (3.49)
e\0 0B.(p) () AL A
Proof.

g2 / 0y A (df,)" 1 =g~ 2n / (d,)"
OE.(p) E(p)

3.45) 2"y - -\, .

(345 < 5;” / (1 —i—O(]a:\))dxl A Adxoy,
=(p)

2"\ - A\

= vol (Es(p) ) i

+ o(1).
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The volume of the ellipsoid E-(p) is

7Tn€2n
vol (Ea(P)) = m
The equality (3.49) is now obvious. g
Using (3.49) and (3.48) in (3.47) we deduce
alz)] (2m)" 2¢(p)
e = e . 3.50
/M[ ]zn Z 2 T, Ak(p) (3.50)

peCry

The equality (3.44) implies that for any p € Cr,, we have
n
detgHypp = (—1)" H A (p)?
k=1

Denote by £(p) the cardinality of
{k:; Ak(p) > 0}.
Thus the index of the critical point p is 1(p) = 2¢(p) and it follows that the signature of H,, , is
o(p,p) =2n — 4l(p) = 2n — 2u(p). (3.51)
Observe that
dety Hy,p|2 = (=1)" "7 T Mu(p)-
k=1

We can now rewrite (3.50) as

1 2o m ) (22m)" o)
n!/Me“”w = Z(—l)p—e‘“’

1
peCr,, 2"|detg Hey p|2

= 3 (1) @) o)

(—iz)"|dety Hyp|?

n  imo(ep)
- Z (27r> e e2#(p)
—iz

1
peCry, |dety Hy p|2

By letting z = ¢t in the above equality we obtain the Duistermaat-Heckman identity (3.42). O
Remark 3.7.6. (a) Admittedly, the space 23(M ) and the operator d. seem a bit strange at a first
encounter. Their origin is in equivariant cohomology. Consider the space

An element of Q7 ;) (M) has the form

a(z) = Z apz®,

where oy, € Q°(M) and oy, = O for all but finitely many k. We can regard «(z) as a form on M
depending smoothly on z and thus we have a natural embedding

(M) © Q2(M).
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The variable z is assumed to have degree 2 so we can equip 95(1) (M) with a new grading

deg, a2’ = deg ay, + 2k.
Note that
d 8254 (M) C 04y (M)
and -
deg, d.a(z) = dega(z) + 1.

Consider now the subspace Q%, (M) C Qu(l)( ) consisting of forms
> o

such that the forms o, are invariant with respect to the .S L action, i.e.,
L Xy A = 0, Vk.

Note that d.Q%, (M) C Q%,(M), while Lemma 3.7.4(b) shows that d2 = 0 on Q%, (M ). Thus
(%1 (M), d.) is a cochain complex. It is known as Cartan’s complex and one can show that its
cohomology is isomorphic as a C[z]-module to the equivariant cohomology of M (over C). As a
matter of fact, the Duistermaat-Heckman formula is a consequence of the Atiyah-Bott equivariant
localization theorem, Theorem 3.6.12. For a proof and much more information on this topic we
refer to the beautiful monograph [GS1]. In particular, this monograph also contains a more detailed
discussion on the significance of the Duistermaat-Heckman theorem.

(b) Using (3.51) we can rewrite (3.42) as
i\ 7 ;1(p)
<27t”’> Lleiw(p)
| dety Hop|?

/Meiw(x)dvq(x): 3
278\ " — 1 PP p(p)k ,
GO B\ 2 )

pECry

k>0 \ peCr, | dety Hyp|?
Since
I te(@) = vol (M
lim ; e dVy(z) = vol (M)
we deduce that for any m = 0,...,n — 1 we have
() m
Z e(p) =0,
peCry, | dety Hyp|?
and

) - 20" 5~ #Pp(p)"

vol (M py

T
pECry, | dety Hyp|2

Using (3.44) we can rewrite the above equalities as

3 L) L (3.52a)
, Vm=0,...,n—1, 52a
2 T ] o
_9\n i1 (p) n
vol (M) = ¢ 7217'7) 3 )" (3.52b)
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Example 3.7.7. Let @ = (wg, w1, ..., w,) € Z", where
n
O<w <+ < Wy, woz—ij.
j=1

The vector 0 defines a hamiltonian S'-action on CP" given by (3.20)
. ot ot
e kg [0y, 2n] = [€20,...,€" " 2]

with hamiltonian function given by (3.21)
1 n
Salleo, o l) = 3 D wilzl
j=0

The critical points of &5 are the critical lines
fj = [5]'0’-"75]'11] E(C[Pn, 7=0,....n
Note that
§a(45) = wj,
while the computations in Example 2.3.9 show that the Morse index of ¢; is ;1(¢;) = 2j. The tangent
space Ty, CP"™ can be identified with the subspace

‘/j = {5:<07"'7Cn) € CnJrl; Cj :0}
and the action of S' on this subspace is given by
i = d : A ] —w; it (wp—w;
e (= famoe® wy [ + 5C] = (M107G, MG =V
Using (3.52b) we deduce
(20" g~ D) @onss W)

vol (CP") = = . (3.53)
n! JZ(:) Hk;ﬁj [wi, — w;| n! jzo Hkyﬁj(wj — W)

Similarly, using (3.52a) we deduce

n m
Wy

=0, Vm=0,...,n—1. (3.54)
=0 Hk;éj(wj — wg)

To find a simpler expression for the volume of CP™ we introduce the polynomial

n

P(z) = Py(z) = [ (= = w)).

=0
we can rewrite the equalities (3.54) as

= s m=4u,...,n— L.
= P'(w))

We deduce that

—0, (3.55)
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for any polynomial @) of degree < n — 1. Let
Q(z) :=P'(z) — (n+1)2".
Then deg @ < n — 1, and (3.55) implies

P’ (wj) "owy
(n+1)=> -+ =(n+1) —
= P'(wj) = P'(w))
This shows that

=1

=0 Hk;éj(wj — wg)

and thus (2m)
n\ __ )"
vol (CP") = P

For a different symplectic approach to the computation of vol (CP™) we refer to Exercise 6.1.42. O




Chapter 4

Morse-Smale Flows and
Whitney Stratifications

We have seen in Section 2.2 how to use a Morse function on a compact manifold M to reconstruct
the manifold, up to a diffeomorphism via a sequence of elementary operations namely, handle attach-
ments.

In this more theoretical chapter we want to describe a different approach to the reconstruction
problem. Namely, the manifold M is the union of the unstable manifolds of the descending flow of
a gradient like vector field. The strata are homeomorphic to open disks so it resembles a cellular
decomposition. This was pointed out long ago by R. Thom, [Th]. This stratification can be quite
unruly, but if the flow satisfies the Smale transversality condition, then this stratification enjoys re-
markable regularity. The central result of this chapter shows that the descending flow satisfies the
Smale transversality condition if and only if the stratification of M by unstable manifolds satisfies the
so called Whitney regularity condition.

The first part of this chapter is a gentle introduction to the very technical subject of Whitney
stratifications. The proofs of the main results of this theory are notoriously difficult and complex, and
we decided that for a first encounter it is more productive not to include them, but instead provide as
much intuition as possible. Some of the more elementary facts were left as exercises to the reader,
and we have included generous references.

The central result in this chapter is contained in §4.3. It is based on and expands the author’s
recent investigations [Ni2]. To the best of our knowledge this result never appeared in book form.

In the remainder of the chapter we go deeper into the structure of a Morse flow. In Section 4.4
we investigate the spaces M (p, ¢) of tunnelings between two critical points p, ¢, i.e., the trajectories
of the Morse flow that connect p to ¢g. This is a smooth manifold of dimension A(p) — A(¢q) — 1.
Using the elegant point of view pioneered by P. Kronheimer and T. Mrowka [KrMr, §18] we prove
the classical result stating that M (p, ¢) admits a natural compactification M(p, ¢) as a topological
manifold with corners. This compactification parameterizes the so called broken tunnelings from p
to g. In particular, if A(p) — A(¢) = 2, then M(p, q) is a 1-dimensional manifold with possibly
non-empty boundary.

157
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In Section 4.5 we give a description of the Morse-Floer complex in terms of tunnelings. The
boundary operator 0 is defined in terms of signed counts of tunnelings between critical points p, ¢
such that A\(p) — A(¢) = 1. The main result of this section states that the boundary operator thus
defined is indeed a boundary operator, i.e., 3> = 0. Our proof seems to be new, and it is based on the
equivalence between the Smale transversality and the Whitney transversality. During this we reveal
in quite an explicit fashion the intimate connections between the compactifications M(p, ¢) in §4.4
and the singularities of the stratification by unstable manifolds.

4.1. The Gap Between Two Vector Subspaces

The definition of the Whitney regularity conditions uses a notion of distance between two subspaces.
The goal of this section is to introduce this notion and discuss some of its elementary properties.

Suppose that F is a real finite dimensional Euclidean space. We denote by (e, e) the inner product
on E, and by | e | the associated Euclidean norm. We define as usual the norm of a linear operator
A : E — FE by the equality

|A| :=sup{|Az|; z€E, |z|=1}.

The finite dimensional vector space End(FE) of linear operators E — E is equipped with an inner
product
(A, B) :=tr(AB"),

|A| := (A, A) = /tr(AA*) = \/tr(A*A).

Since E is finite dimensional, there exists a constant C' > 1, depending only on the dimension of F,
such that

and we set

Sl < 4] < Clal @.1)
If U and V are two subspaces of E, then we define the gap between U and V' to be the real number
§(U,V) :=sup{dist(u,V); ueU, |Ju/=1}
= supilgf{ lu—vl; wellul=1, veV}.

If we denote by Py,1 the orthogonal projection onto V', then we deduce
6(U,V) = sup [Pyru| =[Py Pyl

ful=1 4.2)
=[Py — Py Pyl = [Py — PuPy|.

Note that
s(vt Uty =6(U, V). (4.3)
Indeed,
S(VHUY) = [|Pyr = Py Pyo|| = |1 = Py — (1 = Py)(1 - PV
=||Py — PuPv|| = 0(U,V).
We deduce that

0<46(U,V)<1, YU,V.
Let us point out that
S(U,V)<1l+= dimU <dimV, UnV+=0.



An invitation to Morse theory 159

Note that this implies that the gap is asymmetric in its variables, i.e., we cannot expect 6(U, V) =
o(V,U). Set
oU, V) :=6(U,V)+6(V,U).
Proposition 4.1.1. (a) For any vector subspaces U,V C E we have
|1Py — Pyll <6(U,V) < 2| Py — Py
(b) For any vector subspaces U, V, W such that V. C W we have
S(UV) = §(U,W), §(V,U) < (W, ),
In other words, the function (U, V') — (U, V) is increasing in the first variable, and decreasing in
the second variable.

Proof. (a) We have

o(U,V) =[Py — PuPy|l + ||Py — Py Pyl
= |Py(Py — Pv)|| + |Pv(Pv — Py)|| < 2| Py — Py,

and
Py — Py|| <||Pv — PuPv| + ||PuPy — Py

= ||Py — PyPy| + ||Pv — Py Py|| = 8(U, V).
(b) Observe that for all u € U,
dist(u, V') > dist(u, W) = 6(U, V) > §(U, W).

Since V. C W we deduce

u| = 1 we have

1 1
sup — dist(v,U) < sup — dist(w,U). O
vEV\0 |v] wEW\0 |w|

We denote by Gry(E) the Grassmannian of k-dimensional subspaces of F equipped with the metric
dist(U, V) :== ||Py — Py||.
The Grassmannian Gry(E) is a compact (semialgebraic) subset of End(E). We set

dim F
Gr(E):= ] Gu(E).
k=0

Let Grk(E) denote the Grassmannian of codimension k subspaces. For any subspace U C F we set
Gr(E)y :=={VeGr(E); VOU}, Gu(B)Y ={VeG(E); VcU}.
Note that we have a metric preserving involution
Gr(E) 3V +— V*+ € Gr(E),

such that . .

Gl“k(E)U — Grk(E)U s Grk(E)U — Gl“k(E)U .
Using (3.6) we deduce that for any 1 < j < k, and any U € Gr;(E), there exits a constant ¢ > 1
such that, for every L € Gry(E) we have

1
—dist(L, Gr(E)y )* < |Py — PyPr|?* < cdist(L, Gri(E)y )%
C

The constant ¢ depends on j, k,dim F, and a priori it could also depend on U. Since the quantities
entering into the above inequality are invariant with respect to the action of the orthogonal group
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O(FE), and the action of O(E) on Gr;(E) is transitive, we deduce that the constant ¢ is independent
on the plane U. The inequality (4.1) implies the following result.

Proposition 4.1.2. Let 1 < j < k < dim E. There exists a positive constant ¢ > 1 such that, for any
U e Grj(E), V € Gri(E) we have

%dist(V, Grk(E)U) <H(U,V) < cdist(V, Grk(E)U). O

Corollary 4.1.3. For every 1 < k < dim F there exists a constant ¢ > 1 such that, for any U,V €
Gry(E) we have

1
S dist(U,V) < 8(UV) < edist(U, V),

Proof. In Proposition 4.1.2 we make j = k and we observe that Gry(E)y = {U}, VU € Gri(E). O

We would like to describe a few simple geometric techniques for estimating the gap between two
vector subspaces. Suppose that U, V' are two vector subspaces of the Euclidean space E such that

dimU <dimV and 6(U,V) < 1.

As remarked earlier, the condition (U, V) < 1 can be rephrased as U NV = 0, or equivalently,
UL +V = E, i.e., the subspace V intersects U~ transversally. Hence

U Nker Py =0.

Denote by S the orthogonal projection of U on V. We deduce that the restriction of Py to U defines
a bijection U — S. Hence dim S = dim U, and we can find a linear map h : S — V -+ whose graph
isU,ie.,

U={s+h(s); s€S}.
Next, denote by 7 the orthogonal complement of S in V' (see Figure 4.1), T := S+ NV, and by W
the subspace W :=U + T.

Figure 4.1. Computing the gap between two subspaces.

Lemmad.14. T=U+NV.
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Proof. Observe first that
(S+U)c Tt (4.4)
Indeed, lett € T'. Any element in S + U can be written as a sum
s+u=s+s+h(s), s,s€8.

Then (s + s') L tand h(s') L t, because h(s') € V+. Hence T C U+ N S+ C U™. On the other
hand, T C V sothat T C U+ N V. Since V intersects U~ transversally we deduce

dim(U*+NV)=dimU* +dimV —dim E = dimV — dim U = dim T. 0
Lemma 4.1.5. §(W,V) = §(U, V) = 6(U, 9).

Proof. The equality 6(U, V') = §(U, S) is obvious. Let wg € W such that |wp| = 1 and
dist(wo, V') = §(W, V).
To prove the lemma it suffices to show that wy € U. We write
wo = ug +to, ug €U, to €T, |upl>+ [to|> = 1.
We have to prove that {5 = 0. We can refine some more the above decomposition of wg by writing
ug = so + h(so), so € S.

Then Pywo = so + to. We know that for any u € U, t € T such that |u|? + [t?| = 1 we have

lud — Pyug|? = |wo — Pywo|® > |(u+t) — Py(u+t)]* = |u— Prul
1
0

If in the above inequality we choose t = 0 and u = Tug] W€ deduce

1
|u(2) - Pvu0]2 > —|u(2) — PVUO\Q.
|uo|?

Hence |up| > 1 and since |ug|? + [to|> = 1 we deduce ¢y = 0. 0

The next result summarizes the above observations.

Proposition 4.1.6. Suppose U and V' are two subspaces of the Euclidean space E such that dim U <
dim V and V intersects U~ transversally. Set

T:=VnU*+, W:=U+T,
and denote by S the orthogonal projection of U on V. Then
S=T+nvV,
dimU =dim S, dimW =dimV,

and
(W, V) =46(U,V)=46(U,S9). O
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Proposition 4.1.7. Suppose that E is a finite dimensional Euclidean vector space. There exists a
constant C' > 1, depending only on the dimension of E, such that, for any subspaces U C E, and

any linear operator S : U — UL, we have
5(Ts,U) = |ISI| (1 +18]1*) ™,
and
IS+ 181R) ™2 < 6w, ) < Clsl (1 +1812) 7,
where T's C U + U+ = E is the graph of S defined by
I'g:= {u+Su€E; uEU}.

Proof. Observe that

| Sul? (S*Su,u)
6(Lg, U2 = sup ———— = sup .
( ) wet\o |2+ [Sul?  eino [2]* + (S*Su, u)

Choose an orthonormal basis e1, . . ., e of U consisting of eigenvectors of 5*S,
S*Sei = )\iei, 0 S /\1 S S )\k:-
Observe that || S*S|| = A\x. We deduce

(T, U —sup{Z/\ u?; Z (14 X\)uf = 1}
:sup{l—Zui; Z 1+)\i)U%:1}
:1—1nf{2ul, Zl—l—)\)U—l}

S S ] I
T4+ Xe  14+|S*S|| 14|52

This proves (4.5). The inequality (4.6) follows from (4.5) combined with Corollary 4.1.3.

Set
P(E) :={(U,V) € Gi(E) x Gr(E); dimU <dimV, VhU"*}.

4.5)

(4.6)

For every pair (U,V) € P(E) we denote by Sy (U) the shadow of U on V, i.e., the orthogonal

projection of U on V. Let us observe that
Ut nsy(U) =0.
Indeed, we have

Utn8y(U)cT:=UtNV =U N8y (U)CSy(U)NT,

and Proposition 4.1.6 shows that Sy (U) is the orthogonal complement of 7" in V. Since dimU =

dim 8y (U), we deduce that 8y, (U ) can be represented as the graph of a linear operator

My(U):U = U+
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which we will call the slope of the pair (U, V'). From Proposition 4.1.6 we deduce
1My (U]
o\1/2
(L+ My (U)]12)

58y (U),U) =
or equivalently, 5(8y(U),U)

Vv )
(1-8(sv (), U)2)

Corollary 4.1.8. There exists a constant C > 1, which depends only on the dimension of F such that,
for every pair (U, V') € P(E) we have

1My ()] =

1 1My (O)] My (D]
ol 5 1/2_(5(U,V)§C TR
(1+ My (D)]?) (1+ My (U)]?)
Proof. Use the equality (U, V') = 6( U, 8y (U) ) and Proposition 4.1.7. 0

For any symmetric endomorphism A of an Euclidean space we denote by m (A) the smallest
positive eigenvalue of A, and by m_(A) the smallest positive eigenvalue of —A.

Proposition 4.1.9. Suppose A : E — FE is an invertible symmetric operator, and U is the subspace
of E spanned by the positive eigenvectors A. Then, for every subspace V. C E, such that (U, V) €
P(E), we have

(U, e 4V) < e (me A +m— () v (17|
v(U),U) _
v(U),U)2)"?

%)

_ o (mi(Aybm_(A))t (8
(1-6(8
Proof. Denote by L the intersection of V with U~. We have an orthogonal decomposition
V =L+8y(U),
and if we write M := My, (U) : U — U+, then we obtain
V:{€+u+3\/[u; le L, uGU}.
Using the orthogonal decomposition £ = U + U~ we can describe A in the block form
a=lv A

where A, denotes the restriction of A to U, and A_ denotes the restriction of A to U -

Set V, := !4V, L, :== V, N U~L. Since U+ is A-invariant, we deduce that L, = ¢4~ L, so that

Vi={et+ eyt edMu; (€L, ueU}
= { Al rute-Me Mty (el, uelU }
We deduce that for every u € U the vector u + '~ Me~*4+ belongs to V;. Hence
S(U,V;) < sup [e-Me 4y

lul=1

_ ”etA_MeitA'*'H < ef(m+(A)+m_(A))tHMH. 0
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Corollary 4.1.10. Let A and U as above. Fix (¢ > dim U and consider a compact subset K C Gry(E)
such that any V. € K intersects U transversally. Then there exists a positive constant, depending
only on K and dim FE such that

S(U, eV < Cem(m+(Atm-—(A)) - yy ¢ | O

Later we will need the following elementary result whose proof is left to the reader as an exercise
(Exercise 6.1.31).

Lemma 4.1.11. Suppose V is a subspace in R™ and (T),) is a sequence in Grp(R™) which con-
verges to a subspace T' € Gry(R™) that intersects V transversally. Then for all sufficiently large T,
intersects V transversally and

lim §(T'NV,T,,NnV)=0. O

n—o0

4.2. The Whitney Regularity Conditions

For any subset S of a topological space X we will denote by cl(.S) its closure. We will describe
an important category of topological spaces made up of smooth pieces (called strata) glued together
according to some rules imposing a certain uniformity. Such rules are encoded by the so called
Whitney regularity conditions.
Definition 4.2.1. Suppose X, Y are two disjoint smooth submanifolds' of the Euclidean space E.
(a) We say that the pair (X,Y) satisfies the Whitney regularity condition (a) at xo € X N cl(Y) if,
for any sequence y,, € Y such that

o yn — ‘T07

e the sequence of tangent spaces 7T}, Y converges to the subspace T,
we have T, X C T.
(b) We say that the pair (X,Y") satisfies the Whitney regularity condition (b) at zo € X Nel(Y) if,
for any sequence (x,, yn) € X X Y such that

® Tn,Yn — X0,
o the one dimensional subspaces ¢, = R(y,, — x,,) converge to the line /.,

e the sequence of tangent spaces T}, Y converges to the subspace T,

we have (o, C T, thatis, 0({o, To) = 0.

(c) The pair (X,Y) is said to satisfy the regularity condition (a) or (b) along X, if it satisfies this
condition atany z € X Nel(Y). O

Example 4.2.2. (a) It is perhaps instructive to give examples when the one of the regularity conditions
(a) or (b) fails. Consider first the Whitney umbrella W depicted in Figure 4.2.

1Typically, these submanifolds are not properly embedded. For example, the unit circle in plane with a point removed is a submani-
fold of the plane.
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Figure 4.2. Whitney umbrella z° = zy®.

This surface contains the origin O, and two lines, the y-axis and the z-axis. The surface W is
singular along the z-axis. Let X denote z-axis and Y the complement of X in W, so that X C ¢l(Y).
We claim that the pair (X, Y") does not satisfy the regularity condition (a) at O. Along the y-axis we

have
Vw = (2x, —22y, —y*) = (0,0, —y?).

If we choose a sequence of points p,, — 0 along the y-axis then we see 1}, Y converges to the plane

T:{z:()};_sToX.

Figure 4.3. The Whitney cusp y° + z* — 222 = 0.

(b) Consider the Whitney cusp depicted in Figure 4.3, that is, the real algebraic surface U C R3
described by the equation

flz,y,2) =y + 23 - 2%2* = 0.
The vertical line visible in Figure 4.3 is the z-axis. Clearly the Whitney cusp is singular along this
line. The surface has a ”saddle” at the origin. Denote by X the z-axis, and by Y its complement in
the Whitney cusp. We claim that (X, Y) is (a)-regular at O, but is not (b)-regular at this point.

To prove the (a)-regularity we have to show that
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0. f(p)]
IV f(p)]

=0 ifp=(x,y,2) = O along U. 4.7)
Observe that
Vi = (322 — 2222, 2y, 222?)

Obviously (4.7) holds for all sequences p, = (Zn,Yn,2n) € U such that z,, = 0, Yn > 1. If
(z,y,2) — 0along U N {2z # 0} then y? = 22(2? — x)

IVFI2 = 4|z%2)* + 4)y|* + 322 — 2222

= 4]x?22 + 4|z)?|2? — z? + |z|?|32 — 222

Then
VAP el —af? 23 — 227
|0 f|2 Afa?z[? Afa?z]?
:14_1 22—z |z)?[3x — 222
4| xz 4|x2z|?
1]z 1)? z 312 (z,2)—0
= Tl o0

To show that the (b)-condition is violated at O we need to find a sequence
U>spn= (xnaynazn) —0

such that
1,,U =T, ILm bh(pn) =b, and h ¢ T, (4.8)

where h(p,,) denotes the line spanned by the vector (zy,, yn, 0). Thus, we need to find a sequence p,,
such that mv f(pr) is convergent and

. T30z f (Pn) + YnOy(Pn)
n=0 |V f(pn)] - V/]%nl? + |ynl?

We will seek such sequences along paths in U which end up at O. Look at the parabola
C={y=0ynU={x=2% y=0, y#0} ={(2%0,2); 2#0} CU.
Along C line (22,0, 0) is the line generated by the vector €1 = (1,0, 0) and we have
Vf=("0,2°) = [Vf| = |2|"(1 + O(2]))

£0

We conclude that along this parabola the tangent plane 7,,U converges to the plane perpendicular to
€1 which shows that the (b)-condition is violated by the sequence converging to zero along C. g

Remark 4.2.3. The Whitney condition (a) is weaker than (b) in the sense that (b)=— (a). The
Whitney cusp example shows that (b) is not equivalent to (a). O

In applications it is convenient to use a regularity condition slightly weaker than the condition (b).
To describe it suppose that the manifolds X, Y are as above, X C cl(Y)\Y,andletp € X Nel(Y).
We can choose coordinates in a neighborhood U of p in E such that U N X can be identified with an
open subset of an affine plane L C E. We denote by Py, the orthogonal projection onto L.
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We say that (X,Y") satisfies the condition (b’) at p if, for any sequence y,, — p such that the
T,,Y converges to some 75, and the one dimensional subspace ¢,, := R(y, — Pry,) converges to
the 1-dimensional subspace /., we have

loo C Tooy 6., Y(loo, Tro) = 0.
The proof of the following elementary result is left to the reader as an exercise.

Proposition 4.2.4. (a) + (b’) = (b). O

To delve deeper into the significance of the Whitney condition we need to introduce a very precise
notion of tubular neighborhood.

Definition 4.2.5. Suppose X is a smooth submanifold of the smooth manifold M.> A tubular neigh-
borhood of X — M (or a tube around X in M) is a quadruple T' = (7, E, €, ¢), where E — X is a
real vector bundle equipped with a metric, € : X — (0, 00) is a smooth function, and if we set

B, = {(v,x) eEE; zeX, ||y, < E(JU)}a

then ¢ is a diffeomorphism from B, — X onto an open subset of X such that the diagram below is
commutative,

B

X —M
where ¢ denotes the zero section of E. We set |T| := ¢(B.). The function € is called the width
function of the tube. O

Given a tubular neighborhood T = (7, F, €, ¢) we get a natural projection
mr | T| — X.

Moreover the function p(v,z) = |[v||? induces a smooth function pr : |T| — X. We say that
pr 18 projection and pr is the radial function associated to the tubular neighborhood 7'. We get a
submersion

(mp,pr) : T\ X — X xR.

For any function v : X — (0, 00) such that a(x) < e(x), Vo € X we set

Tlo = {y € |T}; pr(y) <a(nr(y))*}.

Via the diffeomorphism ¢ we can identify | 7’|, with the bundle of (closed) disks bundle cl(B,,). Its
boundary 0|T|, is sphere bundle 0B,. — X. The restriction of a tubular neighborhood of U to an
open subset of X is defined in an obvious fashion.

2The submanifold X need not be closed in M.
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Definition 4.2.6. Suppose that T is a tubular neighborhood of X — M and f : M — Y is a map.
We say that f is compatible with 7" if the restriction of f to |T'| is constant along the fibers of 77, i.e.,
the diagram below is commutative

|\

X —Y

We have the following existence result [GWPL, Mat].

Theorem 4.2.7 (Tubular Neighborhood Theorem). Suppose f : M — N is a smooth map between
smooth manifolds and X — M a smooth submanifold of M such that f |x is a submersion. Suppose

W—=V=X
are open subsets such that the closure of W in X lies inside V', and Ty is a smooth tubular neighbor-
hood of V- — M which is compatible with f.
Then there exists a tubular neighborhood T of X — M satisfying the following conditions.

(a) The tube T is compatible with f.
(b) T‘WC T() ’W
O

The Whitney regularity condition interacts nicely with the concept of tubes. The proof of the
following result is left to the reader as an exercise. We strongly recommend to the reader to attempt
a proof of this result since it will help him/her understand what is hiding behind the regularity condi-
tions.

Lemma 4.2.8. Suppose X,Y C R™ are smooth submanifolds such that X C cl(Y) and T =
(m, E, €, @) is a tube around X in R™. The the following hold.

(a) If the pair (X,Y") satisfies Whitney's condition (a) along X, then there exists a function o : X —
(0,00), a < €, such that the restriction mr Y N |T|o NY — X is a submersion.

(b) If the pair (X, Y) satisfies Whitney’s condition (b) along X, then there exists a function o : X —
(0,00), a < g, such that the induced map

mr X pr i |T|laNY — X x (0,00)

is a submersion. O

Remark 4.2.9. It is useful to rephrase the above result in more geometric terms. Let ¢ = m —
dim X = codim X. For any » > 0 and z € X we denote by D¢(x) the c-dimensional disk D¢ (z) of
radius r, centered at = and perpendicular to 7, X .

The first statement in the above lemma shows that if (X, Y") satisfies the condition (a) along X,
then for any z € X and any r < «a(z) the normal disk D¢(z) intersects Y transversally. If (X,Y")
satisfies the condition (b) along X, then for any x € X and any r < «(z), then both the disk D¢(x)
and its boundary D¢ (x) intersect Y~ transversally. O
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In a certain sense the above transversality statements characterize the Whitney regularity condi-
tion (b). More precisely, we have the following geometric characterization of the Whitney condition

(b).

Proposition 4.2.10 (Trotman). Suppose (X,Y) is a pair of C' submanifolds of the RN, diim X = m.
Assume X C cl(Y)\'Y. Then the pair (X,Y) satisfies the Whitney regularity condition (b) along X
if and only if, for any open set U C E, and any C*-diffeomorphism U : U — V, where V is an open
subset of RN, such that
TUNX)CR™®0cCRY,
the map
T(Y NU)—R™ x (0,00), y+— (proj(y), dist(y,R™)?),

is a submersion, where proj : RN — R™ denotes the canonical orthogonal projection. O

For a proof we refer to the original source, [Tr].

Definition 4.2.11. Suppose X is a subset of an Euclidean space E. A stratification of X is an
increasing, finite filtration

F_1:@CFOCF1C"'CFm:X
satisfying the following properties.

(a) F} is closed in X, Vk.

(b) Forevery k = 1,...,mthe set X}, = F}, \ Fj_1 is a smooth manifold of dimension k with finitely
many connected components called the k-dimensional strata of the stratification.

(c) (The frontier condition) For every kK = 1, ..., m we have
Cl(Xk) \ X C Fi_q.
The stratification is said to satisfy the Whitney condition (a) (resp. (b)) if
(d) for every 0 < j < k < m the pair (X, X},) satisfies Whitney’s regularity condition (a) (resp (b))
along Xj;.
A Whitney stratification is a stratification satisfying the Whitney condition (b) (hence also the
condition (a)).

We will specify a stratification of a set X by indicating the collection & of strata of the stratifica-
tion. The dimension the stratification is the integer

maxdim S.
Se§

If S, 5" € Swewrite S < S"if S C cl(S’) and S # S’. We say that the stratum S’ covers the stratum
S and we write this S < " if S < S’ and dim S’ = dim S + 1. We will use the notations

Xog = U Sl, X>g 1= U S’ etc. O
S'>8 S'>8

Example 4.2.12. (a) The simplex
{(z,y) eR* 2,y>0, z+y<1}

admits a natural Whitney stratification. The strata are: its vertices, the relative interiors of the edges
and the interior of the simplex.
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(b) Suppose (X;,8;), i = 0,1 are Whitney stratified subsets of R™:. Then Xy x X7 admits a
canonical Whitney stratification with strata Sy x Sy, S; € S;.

A smooth manifold X with boundary 0X admits a canonical Whitney stratification. Its strata are
the interior of X and the connected components of the boundary.

(c) Suppose (X,8) is a Whitney stratified subset of R contained in some open ball B. If
® : B — R™ is a diffeomorphism onto an open subset O C R™, then ®(X) is a Whitney stratified
set with strata defined as the images via ® of the strata of X.

(d) Suppose (Xo,80), (X1,81) C R™ are Whitney stratified subsets of R™ such that
So M Sy, VSy € 8p, Si € 8.
Then the collection
{SonS1; Soe8, S1€81}
defines a Whitney stratification of Xy N X;. For a proof we refer to [GWPL, 1.1.3].

(e) Suppose F' : M — N is a smooth map and (X, Sx) is a Whitney stratified subset of N and
(Y, 8y) is a stratified subset of M such that the restriction of F' to any stratum of Y is transversal
to all the strata of X. Then the set Y N F~!(X) admits a natural Whitney stratification with strata
SNFYS"), S €8y, S’ € 8x. To see this consider the stratified subset

Z =Y xXCMXN.

Its strata are S x S’, S € 8y, S’ € 8x. The transversality assumption on F' implies that the graph of
F,

Tr={(pF(p)); p€M}CMxN,
intersects transversally the strata of Z. Thus I'r N Z is a Whitney stratified subset of I" . The natural
projection wps : M X N — M induces a diffeomorphism 'y — M. Thus

YNF Y X)=ry(TrnZ)
is a Whitney stratified subset of M with strata S N F~1(S’), S € 8y, S’ € 8y.
(f) Suppose (X, 8) is a Whitney stratified subset of the sphere S™~! C R™. Then the cone on X
Cx ={z€R™ 3rel0,1), z€ X suchthat z=rz}

caries a natural Whitney stratification. The strata consists of the origin of R and the cones on the
strata of X with the origin removed.

(g) This last example may give the reader an idea on the possible complexity of a Whitney strati-
fied space. Consider the solid torus

7 = {(zo,zl) eC? |z| <1, |z| =1}
We denote by A its axis, i.e. the curve

A= {(zo,zl) €C? % =0, |z|=1},
and by 7 the natural projection

Z 3 (Z(],Zl) — (O,Zl) € A.

Along its boundary

0Z = {(z0,21) € C?% 2| =1, |21| =1}
we consider the simple closed curve

C = {(20,21) = (e, et t e [0,2n] }.
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The restriction of 7 to C' induces 4 : 1-covering C' — A. Consider the singular surface

Figure 4.4. A surface with a codimension 1 singularity.

X = {(re'it,eizlt) €C? re [0,1], t € [0,27] } cZ

Note that the axis A is contained in X, and X \ A is a smooth submanifold of Z. Topologically, X
is obtained from four rectangles sharing a common edge A via the gluing prescription indicated in
Figure 4.4. Then the filtration A C X defines a Whitney stratification of X. a

In the traditional smooth context we know that transversality is an open condition. More pre-
cisely, if X is a smooth manifold embedded in some Euclidean space F, and Y is a smooth compact
submanifold of F that intersects X transversally, then a small perturbation of Y will continue to in-
tersect M transversally. If X is an arbitrary stratified space this stability of transversality is no longer
true. However, this desirable property holds for stratified spaces satisfying the Whitney condition (a).
We state a special case of this fact. The proof is left to the reader as an exercise.

Proposition 4.2.13. Suppose we are given the following data.

e A compact smooth manifold M embedded in some Euclidean space.
o A stratified subset X C M of M satisfying Whitney’s condition (a).

e A smooth compact manifold Y and a smooth map F : [0,1] x Y — M, (t,y) — Fi(y),
such that for any t € [0,1] the map Y > y — F;(y) € M is an embedding.

If Yy = Fyo(Y) intersects the strata of X transversally, then there exists € > 0 such that for any
t € (—¢,¢) the manifold Y; = F(Y) intersects the strata of X transversally. 0

A Whitney stratified space X C R" has a rather restricted local structure, in the sense that along
a stratum S of codimension ¢ the singularities of X “look the same” in the following sense. If s;,
¢ = 0, 1, are two points in .S and Dy, is a small disk of dimension c centered at z; and perpendicular to
T, S, then the sets X N 0D, and X NJD,, are homeomorphic. In other words, an observer walking
along .S and looking at X in the directions normal to .S will observe the same shapes at all points of
S. We say that X is normally equisingular along the stratum S.

In Figure 4.3 we see a violation of equisingularity precisely at the origin, exactly where the (b)-
condition is violated. Figure 4.9 also illustrates this principle. The surface in the right-hand side of
this figure is equisingular along the axis, while in the left-hand side the equisingularity is violated at
this origin. The precise formulation of the above intuitive discussion requires some preparation.

First, we need to defined an appropriate notion of local triviality of a map.
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Definition 4.2.14. (a) Suppose (X, 8) is a stratified subset of R™, N is an open neighborhood of X
in R™, M is a connected smooth manifold and f : N — M is a smooth map. We regard M as a
Whitney stratified set with a stratification consisting of a single stratum.

(b) We say that the restriction f|x is topologically trivial if there exists a Whitney stratified subset
(F, F) of some Euclidean space and a homeomorphism A : F' x M — X that sends the strata of the
product stratification of F' x M homeomorphically onto the strata of X, 8) and such that the diagram
below is commutative

FxM h

N
M

(c) We say that the restriction f|x is locally topologically trivial if for any x € M there exists an
open neighborhood U such that f|xn F-1(u) 1s topologically trivial. O

X

The next highly nontrivial result describes a criterion of local triviality.

Theorem 4.2.15 (Thom’s first isotopy theorem). Suppose (X, 8) is a Whitney stratified space, Y is a
smooth manifold and f : X — Y is a continuous map satisfying the following conditions.

e The map f is proper, i.e., f~'(compact) = compact.
e The restriction of f to each stratum S € 8 is a smooth submersion f|s : S — Y.

Then the map f : X — 'Y is locally topologically trivial. O

The proof of this result is very delicate and we refer to [GWPL, Mat] for details. We have the
following useful consequence.
Corollary 4.2.16. Suppose we are given the following data.

(c1) A compact smooth manifold M embedded in some Euclidean space.

(c2) A Whitney stratified compact subset X C M of M.

(c3) A smooth compact manifoldY and a smoothmap F : [0,1] xY — M, (t,y) — Fi(y), such
that for any t € [0,1] themap Y > y — Fy(y) € M is an embedding, and the submanifold
Y; = F(Y) intersects transversally the strata of X.

Then the stratified spaces Y; N X, t € [0, 1] have the same topological type, and
cd(F((0,1]xY )=F([0,1] xY]).

Proof. We regard [0, 1] X Y as a stratified space obtained as the product of the spaces [0, 1] and Y
equipped with the natural stratifications. Consider the space

7 :=F1(X)cC[0,1] xY.
From Example 4.2.12(e) we deduce that Z carries a natural Whitney stratification. The condition (c3)
implies that the natural projection
Z C0,1] xY — [0,1]
is transversal to all the strata of Z. The desired conclusions now follow from Thom’s first isotopy
theorem. g
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Suppose now that X C R" is a Whitney stratified subset. Denote by S the collection of strata.
Assume that for every stratum U € § we are given a tubular neighborhood Tyy of U — R™. We
denote by 7y (resp. py) the projection (resp. the tubular function) associated to Ty;. For any stratum
V < U we distinguish two commutativity relations.

mv o my(x) = my(x), Yo € |Ty|N|Ty| N, (|Tv|NU). (Cr)
pv o my(x) = pv(x), Yz € |Ty|N|Tv| Ny (|Tv|NU). (Cp)

A controlled tube system for the Whitney stratified set (X, 8) is a collection of tubes {7y }yes
satisfying the above commutativity identities.

Figure 4.5. Non-compatible tubular neighborhoods

Example 4.2.17. In Figure 4.5 the condition (C7) is satisfied but the condition (C),) is violated. The
tubular neighborhoods in Figure 4.6 are compatible, i.e., both commutativity relations are satisfied.O

Figure 4.6. Compatible tubular neighborhoods

We have the following fundamental and highly non-trivial result whose proof can be found in
[GWPL, 11.§5] or [Mat].

Theorem 4.2.18 (Normal equisingularity). Suppose (X, 8) is a Whitney stratified subset R™. Then
there exists a controlled tube system (Ts)gscs such that for any stratum S the induced map

s % ps : XsgNTs = Se = {(z,1) € S x (0,00); t < es(z)?}
is locally topologically trivial in the sense of Definition 4.2.14(b). O

The above result has a very rich geometric content that we want to dissect. The typical fiber of
the fibration g X pg : XssNTg — :5’\6 is an important topological invariant of the stratum .S called
the normal link of S in X, and it is denoted by £g or Lg(X). It can be described as a Whitney
stratified set as follows. Choose = € S and let ¢ denote the codimension of S. Next choose a local
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transversal to S at x, i.e., a Riemann submanifold Z, of dimension ¢ of the ambient space R"" that
intersects S only at  and such that

7.8 +T,Z, =T,R™.
Next choose a Riemann metric g on Z,. Then L£g can be identified with the intersection
XogN{z€ Zy; disty(z,2) =€}

for € sufficiently small. Thom’s first isotopy lemma shows that the topological type of £ g is indepen-
dent of the choice of the local transversal, the metric g and € > 0 small. The induced map

mg:TsNX — S

is also locally topologically trivial. Its typical fiber is the cone on the link £g as defined in Example
4.2.12(d).

ha, B ,
4, i
2
/N N
b R b b h
4, /‘q
\ > i q
A% ]} a ‘DZ Vv 2

Figure 4.7. A Whitney stratification of the 2-torus.

Example 4.2.19. (a) Consider the Whitney stratified set X in Example 4.2.12(g). Then the link of the
stratum A is the topological space consisting of four points. The equisingularity along A is apparent
in Figure 4.4.

(b) In Figure 4.7 we have depicted a Whitney stratification of the 2-torus consisting of a single
0-dimensional stratum v, two 1-dimensional strata a, b, and a single 2-dimensional stratum R. The
link v is the circle depicted in the right-hand side of the figure. It is carries a natural stratification
consisting of four 0-dimensional strata and four 1-dimensional strata. O

Let us record for later use the following useful technical result, [Mat, Cor. 10.4]

Proposition 4.2.20. Suppose (X,8) is a compact Whitney stratified subset of R™, Sy < Sy are two
strata of the stratification. and W is a submanifold of R™ that intersects Sy. Then

SoﬂWCCl(SlﬂW). O
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4.3. Smale transversality <> Whitney regularity

Suppose M is a compact, connected smooth manifold of dimension m, f is a Morse function on
M and £ is a gradient like vector field on M. Denote by ®¢ the flow generated by —¢, by W, (&)
(respectively W;“ (£)) the unstable (respectively stable) manifold of the critical point p, and set

Mo(&) = |J W, (€, 85 (&) = M(&)\ Mi_1(9).

pECryf, Ap)<k

We say that the flow ®¢ satisfies the Morse-Whitney condition (a) (resp. (b)) if the increasing filtration

Mo(§) € My(€§) C -+ C Mp(§)

is a stratification satisfying the Whitney condition (a) (resp. (b)). In the sequel, when no confusion is
possible, we will write I/foE instead of W;E (&).

Theorem 4.3.1. If the Morse flow ®¢ satisfies the Morse-Whitney condition (a), then it also satisfies
the Morse-Smale condition.

Proof. Let p,q € Cry such that p # g and W, N VV,;r # (). Let k denote the Morse index of g,
and ¢ the Morse index of ¢ so that £ > k. We want to prove that this intersection is transverse. Let
reW, N WqJr and set x; := <I>f(:c) Observe that

W, NTW, <=3t >0: T, WS hT,W,.
We will prove that 17, Wqu h T, W, if t is sufficiently large.
We can find coordinates (u') in a neighborhood U of ¢, such that

k
wl(q) =0, Vj, £= 2u'dy, — Y 2u®Dy,.
=1 a>k
Denote by A the diagonal matrix
A = Diag(-2,...,-2,2,...,2).
N N
k m—Fk
Without any loss of generality, we can assume that the point z lies in the coordinate neighborhood
U. Denote by E the Euclidean space with Euclidean coordinates (u?). Then the path ¢t — Ty, W, €
Gr(FE) is given by
To W, =T, W, .
We deduce that it has a limit
tlggo T, W, =Tx € Gry(E).
Since the pair (W(; Wy ) satisfies the Whitney regularity condition (a) along W_~, and z; — ¢, as
t — oo, we deduce
Too D TyW, = Too M T,W,.
Thus, for ¢ sufficiently large T, W, th Tz, Wj . O
Theorem 4.3.2. Suppose M, f and ¢ are as in Theorem 4.3.1, and the flow ® satisfies the Morse-

Smale condition. Then the flow ®¢ satisfies the Morse-Whitney condition, i.e., the stratification by
unstable manifolds satisfies the Whitney regularity (b).
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Proof. We will achieve this in three steps.

(a) First, we prove that the stratification by unstable manifolds satisfies the frontier condition.
(b) Next, we show that is satisfies Whitney’s condition (a).
(c) We conclude by proving that it also satisfies the condition (b’).
To prove the frontier condition it suffices to show that
W, Nel(W, ) #0 = dim W, <dimW, .
Observe that the set W~ N ¢l ( W, ) is flow invariant, and its intersection with any compact subset
of W, is closed. We deduce that p € W, N el (W, ).

Fix a small neighborhood U of p in W,". Then there exists a sequence z,, € OU, and a sequence
tn € [0,00), such that
lim t, = o0, lim q)fnxn =gq.
n—oo n—oo
In particular, we deduce that f(p) > f(q). For every n define
C, = cl( {@fmn; te (—oo,tn]} )

Denote by Cr} the set of critical points p’ such that f(q) < f(p') < f(p). For every p’ € Crl we
denote by dy,(p') the distance from p' to C;,. We can find a set S C Cr} and a subsequence of the
sequence (Cy,), which we continue to denote by (C),), such that

lim d,(p') =0, Vp' €S and infd,(p') >0, Vp' € Crh\S.
n—oo n
Label the points in S by s1, ..., Sk, so that

fs1) > -+ > f(sk).
Set s9 = p, sp+1 = ¢. The critical points in S are hyperbolic, and we conclude that there exist
trajectories Yo, . . . , vx of ®, such that

m %i(t) = si, tli{go%(t) =8it1, Vi=0,...,k,
and
lim inf dist(Cy,, To U --- UTg) =0,
n—o0
where I'; = ¢l (7;(R) ), and dist denotes the Hausdorff distance. We deduce
WoAWE, #£0, Yi=0,... k.

Sit+1
Since the flow ®¢ satisfies the Morse-Smale condition we deduce from the above that

dim W >dimW, , Vi=0,... k.

Si417?
In particular, dim W,,” > dim W".
To prove that the stratification satisfies the regularity condition (a), we will show that for every

pair of critical points p, g, and every z € W, N cl(Wp*), there exists an open neighborhood U of
z € M, and a positive constant C' such that

S(T,Wy , T,W, ) < Cdist(z,y)%, YeeUNW,, YyeUnW, . 4.9)

Since the map = ~ ®;(x) is smooth for every ¢, the set of points z € W N cl(W") satisfying

(4.9) is open in W~ and flow invariant. Since ¢ € cl(W,") N cl(W,") it suffices to prove (b) in the
special case z = q. We will achieve this using an inductive argument.
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For every 0 < k < m = dim M we denote by Cr’} the set of index k critical points of f. We
will prove by decreasing induction over k the following statement.

S(k):: For every q € Cr’}, and every p € Cry such that q € cl( W, ) there exists a neigh-
borhood U of ¢ € M, and a constant C' > 0 such that (4.9) holds.

The statement is vacuously true when & = m. We fix k, we assume that §(k’) is true for any
k" > k, and we will prove that the statement its is true for k as well. If & = 0 the statement is trivially
true because the distance between the trivial subspace and any other subspace of a vector space is
always zero. Therefore, we can assume k£ > 0.

Fix g € Cr’}, and p € Cr?, ¢ > k. Fix a real number R > 0 and coordinates (u’) defined in a
neighborhood of N of ¢ such that

£=— Z 20D, + Z 2u“0y,,,
i<k o>k
and
{(u'(2),...,u™(2)) €ER™; €N} D[-R,R™
For every r < R we set
Ny={zeN; [W/(z)|<r, Vj=1,....,m}.

For every x € Ng we define its horizontal and vertical components,

h(z) = (u'(z),--- ,uf(z) € R*, v(z) = (T (2),...,u™(z)) € R™7F.
Define (see Figure 4.8)

S;r(r) = {x S Wqu NNy Jo(z)| = 7’}, Z;r(r) = {:z: eEN,; |v(z)| = r}.

The set Z,/ (r) is the boundary of a “tube” of radius 7 around the unstable manifold W, .

We denote by U the horizontal subspace of R™ given by {v(u) = 0}, and by U~ its orthogonal
complement. Observe that for every € W, N Ng we have T, W, = U. Finally, for K >k
we denote by Ty (U+) C Grp (R™) the set of k’-dimensional subspaces of R™ which intersect U+
transversally.

From part (a) we deduce that there exists r < R
Ny Nel(W, ) =0, Vi<k, Vg eCr}, ¢ +#q (4.10)
For every critical point p’ we set
Cp',q) =Wy nW,, CW,q):=CW,q) NSy (r).

Now consider the set

X () =Cl.aru |J <@ o
kE<A(p')<t

For any positive number A we set
G = cl( {Tpr_; T € Z;'(r); |h(z)| < h} )C Gre(R™). 4.11)

Lemma 4.3.3. There exists a positive h < r such that G, C To(U 4.
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W+

DN

Figure 4.8. The dynamics in a neighborhood of a hyperbolic point.

Proof. We argue by contradiction. Assume that there exist sequences 4, — 0 and x,, € N, such that

1
o)l =7 [h(@a)| < Tin, 06U, Te, W) 21— —.

By extracting subsequences we can assume that z,, — x € S;(T) and T, W,” — Tt so that

§(U,Tso) = 1 <= T, does not intersect U transversaly. 4.12)

From the frontier condition and (4.10) we deduce = € X,.(¢). If v € C(p, q), thenx € W, N S(‘; (r),
and we deduce T, = T, pr_- On the other hand, the Morse-Smale condition shows that Tpr_
intersects transversally T;BW;r = U~ which contradicts (4.12).

Thus € C(p', q) with \(p/) = K, k < k' < £. Since we assumed that the statement S(k’) is
true, we deduce 5(Tpr_,,Too) =0,i.e.,

Tw DT, Wp‘, .

From the Morse-Smale condition we deduce that 7T, WpT intersects 71 W;“ =yt transversally, and a
fortiori, T will intersect U+ transversally. This again contradicts (4.12). O

Fix i € (0, r] such that the compact set
Grn= {Tpr_;x eWw, N Z;'(r), |h(z)| < B} C Grg(R™)
is a subset of T;(U+). Consider the block
Brpi={zeNy; [v()| <r, |h(z)] <h}.
The set B,.j, is a compact neighborhood of g. Define
A, :RF 5 RF A, = Diag(2,...,2),
Ay :R™F 5 R™F AL = Diag(2,...,2),
A:R™ - R™ A= Diag(A,, —As).
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Forevery z € B, 1, \ W, we denote by I, the connected component of
{t <0; ¥z e B,y
which contains 0. The set I, is a closed interval
I, :=[-T(x),0], T(x) € [0,00].
Ifz € B, \ W, then T(z) < oo. We set

z(x) == @E_T(x)a;, y(z) == v(z(x)).

Then
y() = "D v(a), |y(@)| =r
We deduce
[o(x)] = e Ty (z)| = e Ty ()| = e
Hence
e (@) < %|v(x)|. (4.13)

Letz € B, N W, . Then

— T(z)A _ _
Tpr =e€ (@) Tz(z)Wp ) Tz(:v)Wp € 9r,ﬁ,
and we deduce
S(U,T,W, ) = 8(U, " AT, W), U=T,W,.

Using Corollary 4.1.10 we deduce that there exists a constant C' > 0 such that for every V' € G, 5,
and every ¢t > 0 we have

5(U, V) < ce ™.

Hence
V€ By W, : §(UT,W, ) < Ce T,
Observing that
4T(x (4.13) 1
e L (@),

we conclude that

Vo € By NW, o §(UT,W, ) < C%|v(m)\2 = %dist(x,Wq_)Q.
Since for every w € B,., " W~ we have U = T, W, the last inequality proves S(k).

Finally, let us prove the regularity condition (b’). Fix a critical point ¢ of index & and an critical
point p of index ¢ > k. Fix r, h small as before. Due to the flow invariance of W~ and W, it suffices
to prove that the condition (b’) is satisfied in a neighborhood N;. of g. We identify ¢ with the origin of
R™ and N, with an open neighborhood of 0 € R™. The stable manifold of ¢ can be identified with
the subspace V' = U~ of R"™ spanned by the vertical vectors. We will show that if , is a sequence
of points on W,,” such that

® T, — Too €W, NN,
o T, W, — T € Grg(R™),

e the line L,, spanned by v(x,,) converges to a line Lo,
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then Lo, C T.

Denote by t,, the unique positive real number such that e?»|v(z,,)| = r, and denote by y,, the
point
—tnA
Yn =Py, xp =¢ T

Observe that the line L,, spanned by v(z,,) coincides with the line spanned by v(yy,). More generally,
for any subspace S C V we have e/4S = S. Hence

VNT, W,)=e"*(VNnT, W,)=VnT,W,.
We will prove that
11113010 6(Ly,VNT,,W, ) =0. (4.14)
This implies the desired conclusion because
O(Ln, V- NIy, W) = 6(Ly, VN Ty, W,).
Invoking Proposition 4.1.1(b) we conclude
6(Lin, T, W, ) < 6(Ln, VT, W) = 0 asn — oo.
We will prove (4.14) by contradiction. Suppose that
limsup 6(Ln, V NT,, W, ) > 0.

n—o0

We can find a subsequence n; such that the following hold.

(c1) limy; 500 6( Ly, V N Tynj W, ) > 0.

(c2) The points y,; converge to a point g’ € V., [y/| = 7.

(c3) The tangent spaces Tynj W, converge to a space T" € Gry(R™).

Since the line L,, spanned by v(y,,) converges to L, and h(y,) — 0 we deduce that L, coin-
cides with the line spanned by v/’

The point 3’ belongs to the closure of W, and thus there exists a critical point p’ such that

yew, c cl(W, ). Since the pair (W, , W, ) satisfies the Whitney condition (a) we deduce that

the limit space 7" contains the tangent space Ty/WPT. Since ¥’ € V we deduce that the flow line

through 4/, t — e~2%y/, t > 0, contains the line segment (0, 3/']. This proves that the line determined

by ¢/ is contained in T}, Wp‘, and, a fortiori, in 7”. Thus Lo, C 7" and thus
LoCcT NV (4.15)

From Lemma 4.3.3 we deduce that 77 h V and T, W, V, for all n sufficiently large so that
|h(yn)| < h. These transversality conditions are needed to use Lemma 4.1.11. From this lemma,
(4.15) and Proposition 4.1.1(b) we deduce

lim §(Loo, Ty, W, NV) = lim §(Leo, Ty, W, ) = 0.

n;—00 N —00
Since limy, 0 (Ln;, Loo) = 0 we conclude that

lim L, = Lo and lim §(Ly,, V0T, W,)=0.

This contradicts (c1) and concludes the proof of Theorem 4.3.2. O
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Remark 4.3.4. (a) The main result of [Lau] on the local structure of the closure of an unstable
manifold of a Morse-Smale flow is an immediate consequence of Theorem 4.3.2 coupled with the
normal equisingularity theorem (Theorem 4.2.18).

(b) Theorem 4.3.2 has a hidden essential assumption that we want discuss. More precisely, we
assumed that in the neighborhood of a critical point the flow <I>§ has the form ®; = e'4, where A is a
symmetric matrix such that all the positive eigenvalues are clustered at A = 2, while all the negative
eigenvalues are clustered at A = —2. We want to present a simple example which suggests that some
clustering assumption on the eigenvalues of the Hessian at a critical point is needed to conclude the
Whitney regularity. For a more detailed analysis of this problem we refer to [Ni2, §7].

Suppose we are in a 3-dimensional situation, and near a critical point ¢ of index 1 we can find
coordinates (z,y, z) such that 2(q) = y(q) = 2(q) = 0, f = 3(—aa? + by? + cz?), and the
(descending) Morse flow has the description

Oy(2,y,2) = (ea,e Py, e2), a>0, ¢>b>0.
The infinitesimal generator of this flow is described by the (linear) vector field

§ = ax0, — bydy — cz0,.
The stable variety is the plane = 0, while the unstable variety is the z-axis. In this case A is the
diagonal matrix*
A = Diag(a, —b, —c)
and we say that its spectrum is clustered if it satisfies the clustering condition
(c—0b) <a.

We set g := ¢ — b. The clustering terminology is meant to suggest that the positive eigenvalues of
the Hessian of f at 0 are contained in an interval of short length g, more precisely, shorter than the
distance from the origin to the negative part of the spectrum of the Hessian.
Consider the arc
(—=1,1) 3 s = v(s) :== (s,s,1).

Observe that the arc -y is a straight line segment that intersects transversally the stable variety of ¢ at
the point v(0) = (0,0, 1). Suppose that 7 is contained in the unstable variety W, of a critical point p
of index 2. We deduce that an open neighborhood of v(0) in W, can be obtained by flowing the arc
7 along the flow ®. More precisely, we look at the open subset of W,” given by the parametrization

(=1,1) x R > (s,t) = D4(y(s)) = (se™, se ™, e ).

The left half of Figure 4.9 depicts a portion of this parameterized surface corresponding to |s| < 0.2,
t €10,2],a = b =1, ¢ =8, so that the spectral clustering condition is violated. It approaches the
x-axis in a rather dramatic way, and we notice a special behavior at the origin. This is where the
condition (b’) is be violated. The right half of Figure 4.9 describes the same parameterized situation
when a = 1, b = 1, and ¢ = 1.5, so that we have a clustering of eigenvalues in the sense that
¢ < a + b. The asymptotic twisting near the origin is less pronounced in this case.

Suppose that the clustering condition is violated, i.e., g > a > 0. Fix a nonzero real number m,
define s; := me 9%, and consider the point

Pt = @t(y(st)) = (eatst, efbtst, eiCt) = (me(afg)t,mefct, efCt) S Wpi.

3The matrix — A describes the Hessian of the function f-
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Figure 4.9. Ditferent behaviors of 2-dimensional unstable manifolds.

Observe that since b < ¢ we have lim;_,, s = 0, and a — g < 0 so that
Jim py = ¢ =(0,0,0).
The tangent space of I,” at the point y(s;) is spanned by
v (s¢) = (1,1,0) and &(y(st)) = (ast, —bss, —c).
Denote by L, the tangent plane of W™ at p;. It is spanned by
E=E&(p) = (ae“tst, —be sy, —ceiCt) = (mae(afg)t, —mbe™ —cefCt),

and by
up = D®y'(s) = (e, e 0).
Observe that L; is also spanned by

mae”"uy = (ma, mae” @0 0)

and
el9—ltz, = (ma, —mbel9—a=)t, —ce(g_“_c)t).
Noting that g — a — ¢ = —(b+ a) we deduce that L, is also spanned by the pair of vectors e ~*u; and
X; = mae %y — e9IE, = (O, e*(bJr“)tm(a +b), ce~(atb)t )
Now observe that
@0t X, — (0,m(a +b),c),
which shows that L; converges to the 2-plane L., spanned by

1
(1,0,0) = %g& e uy; = (1,0,0) and (0,m(a +b),c).

On the other hand, if we denote by 7 the projection onto the z-axis, the unstable variety of g, then

bt — 7T(pt) = (07 me_Cta e_Ct)
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and the line ¢, spanned by the vector p, — m(p;) converges to the line ¢, spanned by the vector (1, 1).
The vectors (m(a + b),c) and (m, 1) are collinear if and only if ¢ = (a + b). We know that this is
not the case.

Hence {oo ¢ Loo, and this shows that the pair (W, W) does not satisfy Whitney’s regularity

condition (b’) at the point ¢ = limy p;. O
v a A%
b R N
d
A\ \/b
Z. N
v a\ r g v

Figure 4.10. A Morse-Smale flow on the 2-torus.

Example 4.3.5. Consider the torus
T? := {(z1,y1,22,92) €RY; 2 +9yf =23 +y3=2}.

The function the linear function f = y; + y»2 induces a Morse function on this torus. If we equip
the torus with the metric induced from R?, then the flow generated by the negative gradient of this
function is depicted in Figure 4.10. The stationary point corresponds to the global maximum of f,
while v corresponds to the local minimum. The stationary points a and b are saddle points. The
stratification by unstable manifolds coincides with the stratification depicted in Figure 4.7. a

4.4. Spaces of tunnelings of Morse-Smale flows

Suppose that M is a compact smooth manifold of dimension m, f : M — R is a Morse function and
¢ : M — R is a gradient-like vector field such that the flow ®¢ generated by —¢ satisfies the Smale
transversality conditions. We then obtain a Whitney stratification (M, 8 ) of M, where

8;:={W,; peCry}.
We define
My = |J w,.
Wi <W,
The order relation between the strata of 8y defines an order relation < on Cr by declaring

g=p= W, <W, <= W, Ccel(W, ).

The vector field —¢ is a gradient-like vector field for the function — f and the flow ®, ¢ = @Et also
satisfies the Smale condition. We obtain in this fashion a dual stratification

S_y={W}; peCry}.
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We define similarly
+ . +
MyP= ) W
Wi <w,h
The Smale condition implies that the strata of 8 intersect transversally the strata of S_y. For ¢ < p
we set

C(p,q) =W, NW,".

The connector C(p, q) is a ®¢-invariant smooth submanifold of M of dimension A(p) — A(¢). Note
that

: 13 _ : 1 _
z € C(p,q) = tlggo o5 (x) =g, tg@w @3 (z) = p,

so that C(p, q) is filled by trajectories of ®¢ running from p to g. We recall that we call such trajecto-
ries tunnelings from p to q. For ¢ < p we set

C(p,q) :== M, N Mq+.

Since the strata of 8 ; intersect transversally the strata of §_ ; we deduce from Example 4.2.12(d) that
the space C(p, ¢) carries a natural Whitney stratification 8, , with strata

CWw,qd), =4 =p =p.
It has a unique top dimensional stratum, C(p, q). Proposition 4.2.20 implies that C(p, ¢) coincides
with the closure of C'(p, ¢). We have thus proved the following result.

Corollary 4.4.1. Let ¢ < p. Then the closure of C(p,q) is the space C(p,q) that carries a natural
Whitney stratification with strata

CW,d), ¢=<d =2p =p O

We want to relate the C(p, ¢) to the space M(p, q) of [CJS]. As a set, M(p, q) consists of contin-
uous maps

3 [f(), f(p)] = M
satisfying the following conditions.

e The composition f o ¥ : [f(q), f(p)] — R is a homeomorphism onto [f(p), f(q)].
e Ifr € [f(q), f(p)] is a regular value of f, then 7 is differentiable at r and
dy 1
Tols=r= mfw)-
For any = € M we denote by ~, the flow line 7, (t) = ®%(z). Set po = v, (+o0) € Cry. We
can associate to -y, a path 3, € M(p_, p4+),
e(s) =72 (5(t)),
where the parametrization
B>t s(t) € (F(pe) S(p))
is uniquely determined by the equalities
ds df

% = %(’Yx(_t)% tlir—noos(t) = f(p-‘r)'



An invitation to Morse theory 185

We see that the image of any map 5 € M(p, ) is a finite union of trajectories uy, . . ., uj of ®¢ such
that
. _ . _ . - T ' i<kl
Jim w(t) = p, lim wg(t) = g, lim wi(t) = lim wi (), 1<i<k—1

For this reason we will refer to the paths in M(p, q) as broken tunnelings from p to q.

We topologize M(p, ¢) using the metric of uniform convergence. We have the following result
whose proof is left to the reader as an exercise.

Proposition 4.4.2. The metric space M(p, q) is compact. O

Observe that we have a natural continuous evaluation map

Ev:M(p,q) x [f(q), f(p)] = M, Ev(¥,s) =75(s).

Its image is the space C(p, ¢). Note that we have a commutative diagram of surjective maps

M(p,q) x [f(q), f(p)] B C(p, q)
[f(q), f(p)]

(4.16)
The space M(p, q) contains a large open subset M (p, q) consisting of paths v € M(p, ¢) such that
the restriction of v to the open interval ( f(q), f(q) ) is smooth, the image of « contains no critical
points of f and

dy(t), 1
7 \—é(w(t))f(v(t))v Vf(g) <t < f(p)

The evaluation map induces a homeomorphism

Ev: M(p,q) x (f(q), f(p)) = C(p,q).

Observe that if 7 is a regular value of f situated in the interval [f(q), f(p)], then the commutative
diagram (4.16) implies that we have a homeomorphism

M(p,q) = C(p,q)r := Clp,q) N f ().
More explicitly, this homeomorphism is described by
C(p.q)r 22— 32 € M(p,q).

Since r is a regular value of f we deduce that C(p, q), is a smooth manifold of dimension A(p) —
A(g) — 1. We have thus proved the following result.

Proposition 4.4.3. For any critical points p, q € Cr ¢ such that ¢ < p the space of tunnelings M (p, q)
is homeomorphic to a smooth manifold of dimension \(p) — A\(q) — 1. O

Example 4.4.4. Consider the Morse-Smale flow on the 2-torus depicted in the right-hand side of
Figure 4.11.

It has four critical points: a maximum p, a minimum v and two saddle points, s,, sp. The unstable
manifold W,;” is the interior of the square. The connector C(p, v) consists of the interiors of the four
smaller squares, and its closure is the entire torus. The space M(p, v) consists of four disjoint line
segments. O
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v Sa N a_ .,
/ \ b R N
5 < > S,
M(py) N & -
\ / .
Vooa v

Figure 4.11. A Morse-Smale flow on the 2-torus and the spaces of broken tunnelings.

The behavior displayed in the above example is typical of the general situation. We want to spend
the remainder of this section explaining this in greater detail.

For any string of critical points pg < p1 < -+ < py—1 < Py, and any € > 0 we set
M(plu s 7p17p0) = {’7 € M(puvp()); ;Y(f(pk)) =pk, k=1,...,v—1 }
Observe that we have an obvious concatenation homeomorphism
M(pl/7pll—1) X X M(php()) 2> (:}/l/a o ’71) — '71/ Kook '71 € M(pl/7 o 7p0))
where
Yo kexq1(s) = (), VI<k <wv, s€[f(pr-1), f(pr)]-
In particular, we have an inclusion
M (py,py—1) X - X M(p1,p0) — M(pu, po)-
We denote by M (p,, ..., p1,po) its image. It is a topological manifold of dimension

dim M (py,...,po) = Ap) — A(q) — v.
This leads to a stratification of M(p, q)

M(p7Q):H H M(pV7"'7p0)7
v q=po=-=py=p
where the strata are topological manifolds. This stratification enjoys several regularity properties
reminiscent of a Whitney stratification. More precisely we want to prove the following key structural
result.

Theorem 4.4.5. (F1) If g < p, then M (p, q) is dense in M(p, q).

(F2) If g < p, then M(p, q) is homeomorphic to a topological manifold with corners. The “corners”
of codimension v — 1 are the strata

M(py,...,po), P=pv > >po=q.

Definition 4.4.6. A topological space X is said to be an N-dimensional topological manifold with
corners if for any point 9 € X there exists an open neighborhood N of xp in X and a homeomor-
phism

Z:00,00)F xRN"F 5N
that maps the origin to zo. The corresponding set E( {0}k x RNk ) is said to be a corner of codi-
mension k.
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A topological N-dimensional manifold with corners X is said to be a smooth manifold with
corners if there exists a smooth manifold X such that the following hold.
e The manifold X is a closed subset of X.
e For any g € X ~there existNan integer 0 < k < N, a neighbo~rhood N of o in X and a
diffeomorphism = : R — N that maps [0, c0)* x RVN=* onto N N X.
g

Remark 4.4.7. The facts (F1) and (F2) show that we can regard the map Ev in (4.16) as a resolution
of C(p, q). O

To prove (F1) and (F2) we follow an approach inspired from [KrMr, §18] based on a clever
geometric description of the flow ®¢ near a critical point of f. A similar strategy is employed in
[BFK].

Suppose that p is a critical point of f. Set E = E,, := T,M, so that E is an m-dimensional
Euclidean space. Fix coordinates (z') adapted to p and £ defined a in a neighborhood U, of p. Via
these coordinates we can identify U, with an open neighborhood of the origin in E. For simplicity we
assume that U, is an open ball of radius 27, > 0 centered at the origin. Similarly, we can isometrically
identify 7, M with E. We have an orthogonal decomposition

E =T,W, & T,W, .
For simplicity we set
+_ pt . +
E*-=E; =T,W, .
We denote by 7+ = w}jf the orthogonal projection onto ET, and we write 2% := 7™ (z). Note that
WU, = E; NU,.

Denote by ST = S’;t the unit sphere in E* centered at the origin. For any real number ¢ € 0,7p)
we set
By(e) :={z € E; 2t < e} CUp.
The block B, (¢) has the property that it intersects any flow line of ¢ along a connected subset.
Indeed, we have
xp = q)f(z:"',:v_) = (e¥zt, e ?g7),
so that z; € B, (¢) if and only if
|z | 2t £
— < < —F.
e~ TR
We write
By(e)" = By(e) \ (B~ UET),
04 Bple—,eq):={z € E; |at|=¢, |z7]|<e},
0+Bple—,er):={z € E; |z¥|<e, |27|=¢},
8:‘:‘Bp(€)* = 6iBi(s-:) \ (E_ U E+).
A trajectory that intersects B, (¢) can have one and only one of the following three behaviors.

e It is contained in the stable manifold of p.
e It is contained in the unstable manifold of p.
e Itenters B, (¢) through 0, B, (¢)* and exits through 0_B,,(¢)*.
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If v € 04By(e)*, then the trajectory of ®¢ through z will intersect 9_B,(e_,e4) in a point
Tp(x) so we get a local tunneling map

Tp: 04By(e)" — 0_By(e)”.
Ifz = (zt,27) € 9;:B,(e)* then
lzt|=¢, 0<|z7|<e, Tplx)= (e 2T, e*az), t>0 e Xz |=c¢.

We deduce e?t = % and

T, (z) = (‘Z_’x* |;|x) . (4.17)
E+

x\\.7;(»«)

Figure 4.12. The block B, (¢) and the tunneling map T.

More precisely if pg, p1 are two critical points of f such that pg < p < pi, then the set of
tunnelings from p; to py that intersect the block B, (¢) can be identified with the set of solutions of
the equation

v €0y By(e) NW

p1’

Tp(x) € 0_B,(e)* N Wi .

=:Wp, (pe)* ::W; (pe)*

Denote by M (p1,p,po)e the set of tunnelings from py to p; that intersect the block B, (¢). If we
denote by I', or I}, the graph of T,

') COLBy(e)” x 0-B,(e)™,
then we see that we have a homeomorphism
Ly N (W, (pe) x Wh(p,e)*) 3 (2, Tp(x)) = 72 € M(p1,p,po)e-

To understand the intersection I', N (W, (p,e)* x Wi (p,€)* ) we need a better understanding of

the graph I';,. Using the equality (4.17) we obtain a diffeomorphism

0::(0,e) x 8™ x 8T =Ty, op,w ,wh) = (pw,ew’; ew_, pwy).
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We denote by T, the closure of I', in . B, (g) x _B,(c). We notice that o extends to a diffeo-
morphism

G.:00,e) xS xSt =T,

The closure Iy, is a smooth submanifold with boundary in 04 B, (g) x O_B,(c). We denote by o',
its boundary. Note that we have an equality

ool ={0} x ST x 8§~ x {0} = ST xS.
We like to think of fp as the graph of a multi-valued map®
0+ B,(e) -+ 0-Bp(e).
We define
W, (p,e) == 04 By(e) "W, Wi(p,e) :=0-Byp(e) N W, .

p1 p1?

Note that we have a canonical homeomorphism
(W (p,e) x Wi (p,e) ) N Ty = M(p1,p) x M(p,po). (4.18)

It is useful to have yet another interpretation of the compactification I'y. Denote by A, () the
“diagonal”

Ap(e) = {(a—,24) € Byle); la| = |zs] }.

Equivalently, A, (¢) is the intersection of the block B, (¢) with the level set { f = f(p)}. Geometri-
cally, A, () is obtained by cone-ing the subset

{(zy); Jo|=]zy|=¢}
which is diffeomorphic to the product of the spheres S~ x S+,

We set A, (e)* := Ap(e)\{0}. Observe that we have a natural diffeomorphism ¢ : ') — A, (g)*
that associates to a point (z, Tp(z)) on I'y the intersection of the flow line -, with A,(¢); see Figure
4.12. Consider the map

0,6) x §* x S~ 5 A (e),
Be(p,wt,w™) = ((pe) 2w, (pe)2w™).

The map f3; is called the radial blowup of Ay (e) at the origin. It induces a diffeomorphism (0, ¢) x
St x xS~ — A,(e)*, and we have a commutative diagram,

(4.19)

(0,6) x 8T x §~ e r,

S

Ap(e)*

The map ¢ extends to a map

4Algebraic geometers would call this a birational map.
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topologically equivalent to the radial blowup of A,(¢) at the origin, i.e., we have a commutative
diagram

[0,) x ST x 8§~

Bs\; o 4

Ap(g)
Now observe that
Xps o (p:€)* = a1 (T 0 (W (pi2)* x Wit (p,2)*))

= 1 (C(p1,p0) N Ap(e))
={(pw,w"); (™ ew®) e W, (ew™,pw™) e W, p>0}.

0
Since C'(p1, po) intersects A, (¢) transversally and 4 is a diffeomorphism we deduce that X,,, ,, (p,€)*
is a smooth submanifold in (0,&) x S~ x S7.

Let us observe that the map

G::00,6) x 8™ x 8T — 0:B,(e) x 0-By(e)

is proper, so its image, I'p, is a proper submanifold with boundary of 0B, (g) x 0_By(e).
Lemma 4.4.8. There exists ¢g = £0(&, p) > 0 such that for any £ € (0, ) the following hold.

(@) The manifold Wy, p, := W, x W, intersects 04 B, (e) x 0_By,(¢) transversally in M x M.
(b) The map
G::00,8) x 8™ x 8T — 0:B,(e) x 0-By(e)

is transversal to the submanifold

Wpl,Po(pvg) = Wpl,Po(p) N (8+Bp(5) X 87‘Bp(5))'

In particular, this shows that

xm,po(pvg) = 0;1 (fp n thpo(]?vE) )

is a smooth submanifold with boundary. The boundary is the hypersurface described by the
equation p = 0.

Proof. The condition (a) is immediate since for € > 0 sufficiently small the vector field £ is transver-
sal to 0+ By, (¢). To prove the transversality conditions (b) we first observe that the map

0. :(0,6) x 8 x 8T — 0,B,(e) x I_By,(e)

is transversal to the submanifold W, ,,, (p, €). To reach desired conclusions it then suffices to show
that the restriction of & to the boundary {0} x S~ x ST is transversal to W, ,,,(p,€). The key
observation is that the restriction of & to {0} x S~ x ST coincides with the inclusion

St x 8™ < 0. B,() x O_B,(e).

The Smale transversality condition implies that this product of spheres is transversal to W,,, ., (p, €).
O
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The stability of transversality implies that for any & < (&, p) there exists & = () € (0, &] such
that the coordinate p on [0,£) x S~ x S defines a submersion

P Xpypo(pr8) N{p <0} = [0,0)
The fiber over p = 0 is the subset
Foopn ()" = (ST NW,, ) x (87N W),
Note that F),, ,, (p)* is homeomorphic with the product M (p1,p) x M (p,po), and X, . (p)* is an
open subset in Xy, ,, (p). A point in X, ,, (p,€)* N {p = r} corresponds to a tunneling 7 from p; to
po that intersects the diagonal A,(¢) at a distance (2r¢)'/? from the origin. If we set ¢ = f(p) then
we can write

p=p(y) = zigdist (p.7(c))” (4.20)
We deduce that for any wy € JFp, ,, (p)* there exist an open neighborhood N of wy in Ty, p, (p)*,
a positive number §; < § and a homeomorphism
Ee =Ecp : Nx[0,01) = Xp, po (s €, 01), 4.21)
onto an open neighborhood N of wp in Xp1.po (Ds €, 01) such that the diagram below is commutative

N x [0,(51

E. N
s
)

This homeomorphism associates to a point w € N and a real number » € (0,6;) a point Z.(w, r) in
Xpo.pr (ps€)* N {p = r}. The point w can be identified with a broken trajectory

(’_)/17’70) € M(plap) X M(p,po),

and the point =, (w, r) can be identified with a tunneling ¥ € M (p1, po). We like to think of 4 as an
approximate concatenation of 7 and 7, that intersects A, (¢) at a distance (2re)/? from the origin.
For this reason we set

)
proj
[0) 51

N#rewnVo = Ze(71,50,7)-
Putting together all of the above we obtain the following result.

Theorem 4.4.9. Fix e < £o(), and a broken trajectory

wo = WH#% € M(p1,p) x M(p, po)-
Then there exists an open neighborhood N of wq in M (p1,p) X M(p,po) and 61 = §1(¢) € (0,¢)
such that the following hold.
(1) If 1#50 € N, then as v (0, < d1, the trajectory

M #rewoYo € M(p1,po)

converges in M(p1, po) to the concatenation 11970 € M(p1,p, p)). Inparticular, M (p1,p, po)
is contained in the closure of M (p1, po) in M(p1, po)-

(2) The map
N x [0751) — M(p17p0)7 (/7177)/07 ’I”) = ’71#7’,8,(4)0:)/07

is a homeomorphism onto an open neighborhood N of wo in M(p1,po).
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Applying the above theorem inductively we deduce the claim (F1) in Theorem 4.4.5.

Corollary 4.4.10. For any critical points p = q of f the set M (p, q) is dense in M(p, q). a

Theorem 4.4.9 implies immediately the following result.

Corollary 4.4.11. Suppose p = p' are critical points of f such that X\(p) — \(p") = 2. Then M(p,p’)
is homeomorphic to a one-dimensional manifold with boundary. Moreover,

M(p,p') = U M(p,q,p). O
g€Cry,A(p)—A(g9)=1

Remark 4.4.12. In Corollary 4.5.2 of the next section we will give a more direct proof of this result
based on the theory of Whitney stratifications. This will provide additional geometric intuition behind
the structure of M(p, p'). O

To proceed further we need to introduce additional terminology. For any critical points p,q €

Cr; we set
Crs(p,q) :={p' € Cry; ¢=p <p}
Note that Cr(p, ¢) is nonempty if and only if ¢ < p. A chain in Cr¢(p, q) is a sequence of critical
points po, . ..,p, € Cry such that
Po=<p1 =< <Py

The integer v is called the length of the chain. A maximal chain Cr¢(p, q) is a chain Cry(p, q) of
maximal length. Note that if po, . .., p, is a maximal chain in Cr(p, ¢) then ¢ = pg and p = p,..

Fix a chain po, ..., p, in Cr(p, q) such that p, = p and py = ¢. Fix € > 0 sufficiently small.
Define

M(py, - .- p1,00)e = {7 € M(pv.po); Y(f(pr)) € Bp,(e), 1<k<v—1}.

Note that M(p,, ..., p1,po)e is a neighborhood of M (p,,...,po) in M(p,, po). To ease the nota-
tional burden we set

0L (e) := 91By, (e),
and we define

Cppiy =05 0 = {(z,9) € O (e) x0T He); FIH>0: y= ot }.

The set I'p, 5, , is the graph of a diffeomorphism T, |, from an open subset O, C 0 () onto an
open subset O | C 9''(¢). Note that if ¢ < ¢, then e, 0, C F;;pF .- We denote by @fa the
diagonal in 9’ (¢) x 9 () and we set

=1 X 1“;

&g € 1> 1>
9p7/:--~7p0 ) Pv—1 . Ppu— X X P X P

v—1,Pv—2 2 p2,pP1 p1’

where IS denote the graphs of the local tunneling maps T, : 9% (¢) — 9" (¢). Theset G5, isa
submanifold of

Yo =0 (e) x (0771 (e) x 97 (e) ) x
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v—2

< (TI(&(2) % &.(2)) x (D) x () ) x (9h(e) x Dh(e)) x DL ().

j=2
Consider the submanifold Z° C Y given by

25 = (W, N () x D, X

v—1,e

v—2
< (T1 5. x @1 ) x D x (9L(e) W ).
j=2
Note that G, ., M Z° can be identified with the collection of strings of points in M of the form

+ - + -
X 1T, gy, T, T

subject to the constraints
ez, €W, N " (e).
oz €9 (e)NW,L.
d wztl = Tpi_ypi(T7), ZUJ_ =Tp; (xj)
Thus, G, . ,, N Z° can be identified with M (p,, ..., po). If ¢ > 0 is sufficiently small, then the

above description coupled with the Smale condition imply that G ., intersects Z° transversally
inside Y¢. Let us define
&€ €

— = - — - _
gpu,---,po T Fpu—l x Fpu_hpu_z X Fpu_z X X Fp27p1 X Fpl'

The intersection of Z° with §;V7M7PO consists of strings of points in M

L= (37;1733;717 e ’flffv%—)
subject to the constraints
(C) o e WiENoi(e),i=1,...,v— 1L
(C2) zf e W, N " e).
(C3) 7 € 9L (e) N Wi,
(CH 27 =Ty (27 ), (], 27) €Ty,
Using the Smale condition we conclude that the above intersection is transverse. Note that there

exists a natural bijection between strings 7 satisfying the constraints (C1-C4) and the set 3/\\f(p,,, .oy D0)e
consisting of broken trajectories 7 € M(p,, . .., po). that contain no critical point p € Cr¢ \{po, ..., p,}.
We denote by ¥ +— 4z this correspondence. The set ﬂ(py, ...,D0)e is an open neighborhood of
M(py,...,po) in M(py, po), and the map ¥ — 7z defines a homeomorphism

()

Sroo N 25 = N(pus- ., Do)

Each of the factors f;, is a smooth manifold with boundary so that g;qupo carries a natural structure
of smooth manifold with corners. Each of the factors f;' is a subset of [0,&) x S, x S;,ri and thus

we have a natural smooth map
Pi f; — [O,E).
These induce a map

=€

p=(p1ssp0-1) :Gppy = [0,e)""t c RV,
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Arguing exactly as in the proof of Lemma 4.4.8 we deduce that the point 0 € [0,)” ! is a regular

-----

is a smooth manifold with corners. This proves the claim (F2) in Theorem 4.4.5.

4.5. The Morse-Floer complex revisited

In the conclusion of this chapter we want to have another look at the Morse-Floer complex.

Suppose that M is a smooth, compact, connected m-dimensional manifold and (f, &) is a self-
indexing Morse-Smale pair on M. Denote by &, the flow generated by —¢.

For every critical point p of f we denote by W™ the unstable manifold of & at p, by W;r the stable
manifold at p and we fix an orientation or, of W,". Concretely, the orientation or,, is specified
by a choice of a basis of the subspace of T},M spanned by the eigenvectors of the Hessian Hy ),
corresponding to negative eigenvalues. The orientation w,, defines a co-orientation of WI;L — M,
i.e., an orientation of the normal bundle of le — M.

If p, ¢ € Cr; are such that
Alp) = Ag) =1,
then the connector C(p, q) = W, n I/VqJr consists of finitely many tunnelings.

As explained in Remark 2.5.3(a), the normal bundle of C'(p, q) in W, can be identified with the
restriction to C'(p, q) of the normal bundle of I/VqJr — M, i.e., we have a short exact sequence of
vector bundles

0—=TC(p,q) = (TW,)|c@pq — (TW;M)C — 0.

(p,a)
Thus the submanifold C'(p, q) C W, has a co-orientation induced from the co-orientation of W;r —
M. This determines an orientation of C'(p, ¢) defined via the rule

or(TW, )| c(p.g) = or( Ty + M )e (v N 0T TC (D). (4.22)

For each flow line ~y contained in C'(p, g) we define €(y) = 1 if the orientation of v given by the flow
coincides with the orientation of -y given by (4.22) and we set €(y) = —1 otherwise. We can view ¢
as a map

€=¢pq: M(p,q) — {£1}.
We set

(plgy = Y ().
yeM(p,q)

Denote by Cy(f) the free Abelian group generated by the set Cr . of critical points of f of index
k. Each critical point p € Cry ), determines an element of Cj(f) that we denote by (p|, and the
collection ((p|)pecr,, is an integral basis of C(f). Now define

9: Cp(f) = Cea(f), Ol= D (pla)lal, ¥p e Cryy.

qECI‘fyk_l

In Section 2.5 we gave an indirect proof of the equality 9> = 0. Below we will present a purely
dynamic proof of this fact.

Theorem 4.5.1. The operator
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is a boundary operator, i.e., 0> = 0. The resulting chain complex (Co(f),d) is isomorphic to the
Morse-Floer complex discussed in Section 2.5.

Proof. The theorem is equivalent with the identity

> e(7)e(3) =0, (4.23)
p'<q=p
YEM(p,q), 7' €M(q.p")
for any critical points p = p’ such that A\(p) — A\(p’) = 2. We begin by giving an alternate description
of the signs €(7) using the fact that the collection of unstable manifolds is a Whitney stratification of
M.

Fix a controlled tube system for this stratification satisfying the local triviality conditions in
Theorem 4.2.18. For any p € Cry we denote by T, the tube around W, by m,, the projection
m, Ty = W, ,bye, : W, — (0,00) the width function of T), and by p,, the radial function on T,.
With these notations, the fiber of 7, Loverz € W, should be viewed as a disk of radius £,(z), and
the restriction of p,, to this disk is the square of the distance to the origin.

We set ), := T,,M so that E, is an m-dimensional Euclidean space equipped with an orthogonal
decomposition

_ gt -
E,=E; ¢ E,
determined by the eigenvectors of the hessian of f at p corresponding to positive/negative eigenvalues.
For x € E,, we denote by x7 its components in Eff.

As on page 187 we choose a coordinate neighborhood U, of p € M identified with a ball of
radius 27, in E;,. Note that the restriction of 7, to U, coincides with the orthogonal projection onto
E,, while for any x € U, N T, we have

pp(a) = |z (4.24)

We denote by d;, the value of €, at p € W,,". The Smale condition implies that any stable manifold
intersects transversally all the strata of the stratification by unstable manifolds.

Let p € Cryy and ¢ € Cry 1. Note that if ¢ £ p, then (p|g) = 0 so we may as well assume
that ¢ < p, i.e., W, C cl(W,). The restriction of 7~ to W," N Ty is a locally trivial fibration with
fiber described by the intersection

- +
TN W, NnW,.
This is a finite collection of oriented arcs, one arc for every tunneling from p to g. For x sufficiently
small the set
W,y (5) =Wy \{z €Ty pylz) < /125q(7r;x )*}
is a smooth manifold with boundary. Intuitively, W, (x) is obtained from W, by removing a very

X
thin tube around W~ The projection 7 induces a finite-to-one covering map

w, W, (k) = W, .
Since W(; is contractible, this covering is trivial.

The fiber of this covering over ¢ can be identified with the set of tunnelings from p to q. For any
tunneling 5 € M(p, q) we denote by z(y) = x(7, ) its intersection with 9W,," . Note that z(7, r)
is in the fiber of 7 over ¢, and it is the point on 7 situated at distance xd, from g. We denote by
0,W, (k) the component of W, (x) containing x(7, k)
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The orientation on W, induces an orientation of 9W, () via the outer-normal first rule. The
vector field —¢ is tangent to W, and transversal to OW,,  (x) at the points (%, ). The equality
(4.24) shows that it points towards the exterior of Wp_,q(fi). The orientation convention (4.22) shows
that €(7) is the degree of 7, : OW,, (k) — W~ at the point z(7, k) or, equivalently,

€(7) = deg(m, : 05W, (k) = W, ).
For « sufficiently small (to be specified a bit later) we set

Wy (k) = Wy, \ U {pg(a) < KPeq(mg))?}
z€Tq; q€Cryp i1

This is a manifold with boundary. The components of the boundary are

05W, 4(k), q € Crpr_1, 7€ M(p,q).

oW, (h)

Figure 4.13. The structure of M, near Wp_,.

Choose h € (0,1). Let Y'(3,7') be the hypersurface in 05 W, (x) (see Figure 4.13) defined as
the preimage of 05/ W, ,y(h) via the diffeomorphism

w, 2 O5W, (k) = W, .

Since w_, = Ty O Ty and the map Ty 8§/Wq_p, — Wp_, is a diffeomorphism we obtain a
diffeomorphism
- . ] —
m, Y(7,5) = W,
We set

o(7,7) = deg(m, : Y(3,7) = W, ) € {+1}.

- we deduce that Y'(7,4') is contained in the hypersurface of M described by

Since py = py om,
Zyn={ €Ty pylw) = ey (my(2) }.
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Now fix x small enough so that for any ¢ € Cryj;_; and any tunneling ¥ € C(p, ¢) the hyper-
surface Z, j, intersects transversally the boundary component 05W q(/@). We then have a disjoint
union

Zyn N O5W, (k) = |_| Y (v,7).
¥ eM(q.p')
The hypersurface Z, 5, intersects transversally the manifold with boundary W, (x) and the intersec-
tion is a manifold with boundary. Moreover

O Zyn "W, (k) = | ] Y (v,7').
P’ <q=<p
YEM (p,q), 7' €M (g,p")

Let us observe that
a(7,7) = e(¥)e(¥). (4.25)
Indeed,
— . — —
deg(ﬂ'p, Y (7,9) = W, )

= deg(ﬂ';, Oy W (h) — WPT) - deg(m, : Y(7,7") — Oy W, (h))

= e(Y)e()-
We orient Y (7,7') as a component of the boundary of Z , N W, (). Fix a differential form
YRS Qk_Q(WPT) with support in a small neighborhood of p’ and such that

Then

Hence

p'<q=<p p'<q=<p
YEM (p,q),7' €M (q,p") YEM (p,q),7' €M (q,p’

= (7)) = / d(m ) n.
/a(Zp’,thp(ﬁ)) ! Zp nWp () g

At the last step we have used Stokes formula and the fact that the map T, Zy h — Wp7 1S proper.

R D DI PR
)

The last integral is zero since dn = 0 on Wp‘,. Using (4.25) in the above equality we obtain (4.23). O

The setup in the above proof yields a bit more information. Fix p’ < p, A(p') = A(p) —2 = k—2.
Denote by M, the closure of W, in M. The closed set M, has a canonical Whitney stratification
with strata W™, ¢ < p.

The link in M, of the (k — 2)-dimensional stratum W, is a compact one-dimensional Whitney
stratified space £, ;s obtained by intersecting M, with a small sphere

S;,(s) = {zt € E;,; 2t =¢e} CUy.
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O TS,

O =<l
—

~_

Figure 4.14. The link £, ,,» (top half) and its blowup along the O-strata (bottom half).

The 0-dimensional strata of £,, , are in bijective correspondence with tunneling 5" € C(q,p’),
p' < ¢ < p. For such a tunneling 5" we denote by v(7’) the corresponding 0-dimensional stratum
of L. The link of v(7) in £, is in bijective correspondence with the tunnelings ¥ € C(p, q). If
from £, we remove tubes around the 0-dimensional strata we obtain a 1-dimensional manifold with
boundary that is homeomorphic to the space of broken trajectories M(p, p’). Equivalently, M(p, p)
is homeomorphic to the space Ep,p, obtained by blowing up £,, , at the vertices; see Figure 4.14.

This provides another proof and a different explanation for Corollary 4.4.11.

Corollary 4.5.2. Suppose p € Cryy and p' € Cryj_o are critical points of f such that p > p'.
Denote by L,y the link of the stratum Wp_, in the closure of W,". Then L,y is a compact one-

dimensional Whitney stratified space and M(p,p') is homeomorphic to the blowup zpp/ of the link
L,y along the O-dimensional strata. This blowup is homeomorphic to a one-dimensional manifold
with boundary. Moreover,
Mp,p)= | Mp.ap) D
q€Cry 1

Remark 4.5.3. Suppose p’ < p, A(p') = A(p) — v — 1. Then the link of W is a v-dimensional
Whitney stratified space £, ;y. The link can be realized concretely as before by intersecting M,,” with
a small sphere S;)r, (e) C W;,r centered at p’. The strata of the link are the connected components of
the smooth manifolds

Clg,p): = Cla,p)NSy(e), ' <q=p.
If S is a component of C(q, p’)., then the normal equisingularity of the Whitney stratification of M,
implies the link of S'in £, ; is homeomorphic with the link £;, ; of W~ in M. O

Remark 4.5.4. F.B. Harvey and H.B. Lawson [HL] have shown that given a Morse function f on
a compact manifold M we can find a smooth Riemann metric g on M such that the flow generated
by —V9Y f satisfies the Morse-Smale condition and moreover, the unstable manifolds have finite vol-
ume with respect to the induced metric. By fixing orientations or;, on each unstable manifold W,
p € Cry, we obtain currents of integration [Wp_, orp]. The boundary (in the sense of currents) of
[W,,, orp] can be expressed in terms of the boundary of the Morse-Floer complex. More precisely,

a[Wp77 Orp] = Z <p’q> [qua Orq}' U
A(g@)=A(p)—1
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Remark 4.5.5. The closure cl(W,,") of an unstable manifold W, of a Morse-Smale flow is typically
a very singular Whitney stratified space. However, it admits a canonical resolution as a smooth
manifold with corners. This consists of a pair (Wp_, op) with the following properties.

e W, is a smooth manifold with corners.

® o) is a smooth map o), : W — M.

e 0p(W, ) =cl(W,).

e The restriction of o, to W~ \ OW,;" is an injective immersion onto W,

To describe this resolution we follow closely the very nice presentation of [BFK] to which we
refer for proofs and more details. A conceptually similar description can be found in [Qin].

—

As a set, W, is a disjoint union
W, = | | M(p,q) x W, where M(p,p) = {p}.
a=p
The map o, is defined by its restriction to the strata. Along M(p, g) x W, it s given by the compo-
sition
M(p,q) x W - W, = M

where the first map is the canonical projection onto the second factor while the second is the canonical
inclusion. We set

fp::foapzwp_%]l%.

An element w := /V[7p_ can be viewed as a broken trajectory that “originate” at p and ends at
x = op(w). More precisely, we can identify @ with a continuous map v : [f(x), f(p)] = M
satisfying the following properties.

e The composition
F(@). F@)) > M 5 R
is the inclusion map [f(x), f(p)] — R.
* 1(f(@) =2 7(f(P) =p.
e If 5o € ( f(z), f(p)) is aregular value of f, then v is differentiable at sy and
dry 1

5 |s=s —75 So)*
ds'" 7 T df (€35)) T

To describe the natural topology on /Wp_ we first label the critical values of f
co<cp << Cy.
We set
c_1:=—00, ¢ := f(p), ¢ imin{ci —c¢i—1; 1<i<v},

~ 100
and for j =0,...,k — 1 we define

Wj = f,  ((cj—1 +6,¢j41 — ).

We will describe topologies on U; that are compatible, i.e., for any j < j’ the overlap U; N U/ is an
open subset of both U; and U;:.



200 Liviu I. Nicolaescu

Observe that we have an inclusion

k
T; :uj"—>{Cj71—|-5<f<Cj+1—5}>< H {f:Ci—(S}CMk_j—H,
i=j+1
(’Yax) = (JI, ’Y(Cj-i-l - 5)7 . w’V(Ck _5))
We equip U; with the topology as a subspace of M*=7+1,

In [BFK, §2.3] it is shown that these topologies on U, are indeed compatible and Wp_ with the
resulting topology is a compact Hausdorff space containing IV, as a dense open subset. The fact
that /Wp_ is a smooth manifold with corner follows from arguments very similar to the ones we have
employed in §4.4. For details we refer to [BFK, §4.2].

Recently, Lizhen Qin has proved in [Qin] that the pair (Wp_, aWp—) is homeomorphic to the pair
(DAMP) 9DAP)), where D* denotes the closed unit disk in R¥. In other words, the stratification by

unstable manifolds is a bona-fide CW-decomposition of the manifold. Moreover, the cellular chain
complex determined by his cellular decomposition of M coincides with the Morse-Floer complex. O



Chapter 5

Basics of Complex Morse
Theory

In this final chapter we would like to introduce the reader to the complex version of Morse theory that
has proved to be very useful in the study of the topology of complex projective varieties, and more
recently in the study of the topology of symplectic manifolds.

The philosophy behind complex Morse theory is the same as that for the real Morse theory we
have investigated so far. Given a complex submanifold M of a projective space CP"V we consider a
(complex) 1-dimensional family of (projective) hyperplanes Hy, t € CPP* and we study the the family
of slices H; N M. These slices are in fact the fibers of a holomorphic map f : M — CP!,

In this case the “time variable” is complex, and we cannot speak of sublevel sets. However, the
whole setup is much more rigid, since all the objects involved are holomorphic, and we can still
extract nontrivial information about the family of slices H; N M from a finite collection of data,
namely the behavior of the family near the singular slices, i.e., near those parameters 7 such that H-
does not intersect M transversally.

In the complex case the parameter ¢ can approach a singular value 7 in a more sophisticated way,
and the right information is no longer contained in one number (index of a Hessian) but in a morphism
of groups called monodromy, which encodes how the homology of a slice ;M M changes as ¢ moves
around a small loop surrounding a singular value 7.

We can then use this local information to obtain surprising results relating the topology of M to
the topology of a generic slice H; N M and the singularities of the family.

To ease notation, in this chapter we will write P"V instead of CP” . For every complex vector space
V we will denote by P(V) its projectivization, i.e., the space of complex one dimensional subspaces
in V. Thus PY = P(CN+!). The dual of P(V) is P(V*), and it parametrizes the (projective)
hyperplanes in P(V'). We will denote the dual of P(V') by P(V).

We will denote by Py n the vector space of homogeneous complex polynomials of degree d in
the variables zg, . .., zn. Note that

d+ N
dim(cideV = ( —2 )

201
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We denote by P(d, N) the projectivization of P4 . Observe that P(1, N) = PV,

5.1. Some Fundamental Constructions

Loosely speaking, a linear system on a complex manifold is a holomorphic family of divisors (i.e.,
complex hypersurfaces) parametrized by a projective space. Instead of a formal definition we will
analyze a special class of examples. For more information we refer to [GH].

Suppose X < P¥ is a compact submanifold of dimension n. Each polynomial P € P4y \ {0}
determines a (possibly singular) hypersurface

Zp ::{[zo Stz e PN: P(zy,...,2n) :0}.
The intersection Xp := X N Zp is a degree d hypersurface (thus a divisor) on X. Observe that Zp
and X p depend only on the image [P] of P in the projectivization P(d, N) of Py n.
Each projective subspace U C IP(d, N) defines a family (X p)(pjcys of hypersurfaces on X. This

is a linear system." When dim U = 1, i.e., U is a projective line, we say that the family (Xp)pev is
a pencil. The intersection

B=By:= ﬂ Xp
pPeU
is called the base locus of the linear system. The points in B are called base points.

Any point € X \ B determines a hyperplane H,, C U described by the equation
H, = {Pe U; P(x) :O}.

The hyperplane H, determines a point in the dual projective space U. (Observe that if U is 1-
dimensional then U = U.)

We see that a linear system determines a holomorphic map
fo:X*=X\B—U, z~ H,.
We define the modification of X determined by the linear system (X p) pey to be the variety

X:XU:{(JU,H)GXXU; P(z) =0, vpeHcU}.

Equivalently, the modification of X determined by the linear system is the closure in X x U of the
graph of fi;. Very often, B and X are not smooth objects.

When dim U = 1 the modification has the simpler description
X:XU:{(x,P)GXXU; xEZP}.
We have a pair of holomorphic maps mx and fU induced by the natural projections:

XUCXXU

2
fu .

X e U
When dim U = 1 the map f : X — U can be regarded as a map to U.

I be accurate, what we call a linear system is what algebraic geometers refer to as an ample linear system.
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The projection wx induces a biholomorphic map X* .= 77;(1 (X*) — X™ and we have a com-
mutative diagram

Xt
”7‘ \{U
fu

X*

U
Remark 5.1.1. When studying linear systems defined by projective subspaces U C P(d, N) it suf-
fices to consider only the case d = 1, i.e. linear systems of hyperplanes.

To see this, define for 7 € CN*1\ {0} and w = (wp, ..., wy) € ZY T

N N
—w Wi
]w\ = E wi, 27 = HZZ- S :P|w\,N'
i=0 i=0

Any P = Z\w\:dpwéw € Pg N defines a hyperplane in IP’(d, N),
Hp = { (2] €P(A,N); > poze = 0}-

|w|=d
We have the Veronese embedding
Vd,N L PN — ]P’(d, N)7 [Z] = [(Zw)] = [(Ew)\w\zd] 5.1
Observe that V(Zp) C Hp,sothat V(X NZp) = V(X) N Hp. 0

Definition 5.1.2. A Lefschetz pencil on X — PV is a pencil determined by a one dimensional
projective subspace U < P(d, N') with the following properties.

(a) The base locus B is either empty or it is a smooth, complex codimension two submanifold of X.
(b) X is a smooth manifold.

(c) The holomorphic map f . X — U is a nonresonant Morse function, i.e., no two critical points
correspond to the same critical value and for every critical point xy of f there exist holomorphic
coordinates (z;) near x( and a holomorphic coordinate u near f(x¢) such that

wof=322
J

The map X — Sis called the Lefschetz fibration associated with the Lefschetz pencil. If the base
locus is empty, B = (), then X = X and the Lefschetz pencil is called a Lefschetz fibration. a

We have the following genericity result. Its proof can be found in [Lam, Section 2].

Theorem 5.1.3. Fix a compact complex submanifold X — PN. Then for any generic projective line
U C P(d, N), the pencil (Xp)pey is Lefschetz. 0

According to Remark 5.1.1, it suffices to consider only pencils generated by degree 1 polynomi-
als. In this case, the pencils can be given a more visual description.

Suppose X < PV is a compact complex manifold. Fix a codimension two projective subspace
A — PV called the axis. The hyperplanes containing A form a one dimensional projective space
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U c PY = P(1, N). It can be identified with any line in PV that does not intersect A. Indeed, if S is
such a line (called a screen), then any hyperplane H containing A intersects S in a single point s(H ).
We have thus produced a map

U>Hw~—s(H)eS.

Conversely, any point s € S determines an unique hyperplane [As] containing A and passing through
s. The correspondence

Sos—[As] e U

is the inverse of the above map; see Figure 5.1. The base locus of the linear system

(Xs=[As]NX), g

is B = X N A. All the hypersurfaces X pass through the base locus B. For generic A this is a
smooth codimension 2 submanifold of X.

Figure 5.1. Projecting onto the “screen” S.

We have a natural map
f:X\B—S, X\Bx+— SNJ[Ax] € S.

We can now define the elementary modification of X to be the incidence variety

A~

X = {(m,s)GXxS; a:GXS}.
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The critical points of f correspond to the hyperplanes through A that contain a tangent (projective)
plane to X. We have a diagram

N
X —-tess
We define B := 7~ (B). Observe that
B:{(b,s)eBxS; be [As]}:Bxs,

and the natural projection 7 : B — B coincides with the projection B x S — B. Set X, = f —1(s).

The projection 7 induces a homeomorphism X, — X,

Example 5.1.4 (Pencils of lines). Suppose X is the projective plane
{23 =0} = P? — P3.

Assume A is the line 21 = 29 = 0 and S is the line zg = 23 = 0. The base locus consists of the
single point B =[1:0:0: 0] € X. The pencil obtained in this fashion consists of all lines passing
through B.

Observe that S C X = P? can be identified with the line at oo in P2. The map f : X \ {B} — S
determined by this pencil is simply the projection onto the line at oo with center B. The modification
of X defined by this pencil is called the blowup of P? at B. O

Example 5.1.5 (Pencils of cubics). Consider two homogeneous cubic polynomials A, B € P35 (in
the variables zp, 21, 22). For generic A, B these are smooth cubic curves in P2, (The genus formula
in Corollary 5.2.9 will show that they are homeomorphic to tori.) By Bézout’s theorem, these two
general cubics meet in 9 distinct points, p1, ..., pg. For t := [to : t1] € P! set

Ci = {[Zo 121 22] € PQ; tQA(Zo,Zl,Zz) + tlB(Zo,Zl,ZQ) = 0}.

The family Cy, t € P, is a pencil on X = P2. The base locus of this system consists of the nine
points p1, ..., pg common to all these cubics. The modification

X = {([20,21,22],t) € P? x Py t9A(z0, 21, 22) + t1B(20, 21, 22) = 0}
is isomorphic to the blowup of X at these nine points,
X = Xpy . po-

For general A, B the induced map f — P! is a Morse map, and its generic fiber is an elliptic curve.
The manifold X is a basic example of an elliptic fibration. 1t is usually denoted by E'(1). g

5.2. Topological Applications of Lefschetz Pencils

All of the results in this section originate in the remarkable work of S. Lefschetz [Lef] in the 1920s.
We follow the modern presentation in [Lam]. In this section, unless otherwise stated, Hq(X) (respec-
tively H*® (X)) will denote the integral singular homology (respectively cohomology) of the space X.

Before we proceed with our study of Lefschetz pencils we want to mention two important results,
frequently used in the sequel. The first one is called the Ehresmann fibration theorem [Ehr].
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Theorem 5.2.1. Suppose ® : E — B is a smooth map between two smooth manifolds such that
o ® is proper, i.e., ® 1 (K) is compact for every compact K C B.
o O is a submersion.

o If OF +# () then the restriction O® of ® to OE continues to be a submersion.
Then ® : (E,0F) — B is a locally trivial, smooth fiber bundle. O

The second result needed in the sequel is a version of the excision theorem for singular homology,
[Spa, Theorems 6.6.5 and 6.1.10].

Theorem 5.2.2 (Excision). Suppose f(X, A) — (Y, B) is a continuous mapping between compact
ENR pairs® such that
F:X\A-Y\B
is a homeomorphism. Then f induces an isomorphism
fe: Ho(X,A;Z) — Ho(Y, B;Z). O

Remark 5.2.3. For every compact oriented, m-dimensional manifold M denote by PD; the Poincaré
duality map
HYM) — Hp—q(M), w— un[M].
The sign conventions for the N-product follow from the definition
(vUu,c) = (v,unc,
where (—, —) denotes the Kronecker pairing between singular cochains and chains.

Observe thatif f : X — Y is a continuous map between topological spaces, then for every chain
cin X and cochains u,vin Y,

(v, uNpa(c)) = (WU, pi(c)) = (p*(u) Up*(v),c)
= (" (v),p"(u) Nc) = (v,p«(p"(u) N €) ),
so that we obtain the projection formula
P«(p*(u) Nc) = uNp.(c). (5.2)
O

Suppose X < PV is an n-dimensional algebraic manifold, and S C P(d, N) is a one dimen-
sional projective subspace defining a Lefschetz pencil (X;)scs on X. As usual, denote by B the base

locus
B=()X,
ses
and by X the modification

A~

X:{(m,s)EXxS; xEXS}.

We have an induced Lefschetz fibration f : X — S with fibers X, := f ~1(s), and a surjection
p: X — X that induces homeomorphisms X, — X,. Observe that degp = 1. Set

B:=p Y(B).

2E.g., (X, A) is a compact ENR pair if X is a compact CW -complex and A is a subcomplex.
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We have a tautological diffeomorphism
B~BxS, B> (x,s)— (z,5) € BxS.
Since S = S? we deduce from Kiinneth’s theorem that we have an isomorphism
Hy(B) = Hy(B) & Hy2(B)

and a natural injection

H, o(B) — Hy(B), H, 9(B)>cw cx[S] € Hy(B).
Using the inclusion map B — X we obtain a natural morphism

K Hy o(B) — Hy(X).
Lemma 5.2.4. The sequence
0— Hy o(B) 5 Hy(X) 5 Hy(X) =0 (5.3)

is exact and splits for every q. In particular, X is connected iff X is connected and

X(X) = Xx(X) + x(B).

Proof. The proof will be carried out in several steps.

Step 1 p,. admits a natural right inverse. Consider the Gysin morphism
P Hy(X) = Hy(X), p' = PD4p*PDy,

so that the diagram below is commutative:

We will show that p,p' = 1. Let ¢ € H,(X) and set u := PDy"(c), thatis, u N [X] = c. Then
p'(¢) = PDgp*u = p*(u) N [X]
and

pep(€) = pu(p* () N [X]) % 0 pu (X)) = deg p(un [X]) = c.

Step 2. Conclusion. We use the long exact sequences of the pairs (X' , B), (X, B) and the morphism
between them induced by p,.. We have the following commutative diagram:

Hyi1(X) Hy1(X, B) % Hy(B) ® Hy—(B)—

I I Jo

Hyr1(X) Hy1(X,B) —2— Hy(B)—
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D Pl

Y (X) —— Hy(X, B)

The excision theorem shows that the morphisms p/, are isomorphisms. Moreover, p, is surjective.
The conclusion in the lemma now follows by diagram chasing. O

Decompose the projective line .S into two closed hemispheres
S = DJF Uub_, E= D+ nD_, Xi = f_l(Di)a XE = f_l(E)

such that all the critical values of f : X — S are contained in the interior of D . Choose a point *
on the equator £ = 0D, = dD_ = S, Denote by r the number of critical points (= the number of
critical values) of the Morse function f. In the remainder of this chapter we will assume the following
fact. Its proof is deferred to a later section.

Lemma 5.2.5.

PSRN 0 if n = dim¢ X,
(% 1) = { 27 n =dimc

7" if q=n.

Remark 5.2.6. The number r of nondegenerate singular points of a Lefschetz pencil defined by
linear polynomials is a projective invariant of X called the class of X. For more information about
this projective invariant we refer to [GKZ]. a

Using the Ehresmann fibration theorem we deduce
X_ = X* x D_, 8Xi = X* x 0D_,
so that
(X, Xg) 2 X, x (D_,E).
Clearly, X « 1S a deformation retract of X . In particular, the inclusion X X > X _ induces isomor-
phisms
Ho(X,) = Ho(X).
Using excision and the Kiinneth formula we obtain the sequence of isomorphisms

x[D_,E] excig
—

H, 2(X.) Hy(X. x (D_,E)) = Hy(X_, Xg) =% H, (X, X,). (5.4)

Consider now the long exact sequence of the triple (X X T X )5
o Hyn (X4, X)) = Hyn (X, X)) = Hepn (X, X0) 5 Hy(X %) = -
If we use Lemma 5.2.5 and the isomorphism (5.4) we deduce that we have the isomorphisms
L:Hy (X, X.) = Hy (X)), ¢g#n,n—1, (5.5)
and the 5-term exact sequence
0— Ho1 (X, X)) = Hy1(Xy) = Ho (X4, X)) —

N R (5.6)
— H, (X, X,) = Hp—2(X,) — 0.
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Here is a first nontrivial consequence.

Corollary 5.2.7. If X is connected and n = dimc X > 1, then the generic fiber X, & X, is
connected.

Proof. Using (5.5) we obtain the isomorphisms
Ho(X,X,) = H (X,) =0, H(X,X,)=H (X.)=0.
Using the long exact sequence of the pair (X, X, ) we deduce that Hy(X,) = Hy(X). Since X is

N

connected, Lemma 5.2.4 now implies Hy(X) = 0, thus proving the corollary. O

Corollary 5.2.8.
X(X) = 2x(Xo) + (=1)"r, x(X) = 2x(Xs) = x(B) + (=1)"r.

A~

Proof From (5.3) we deduce x(X) = x(X) + x(B). On the other hand, the long exact sequence
of the pair (X, X,) implies
X(X) = x(X) = x(X, Xy).
Using (5.5), (5.6), and the Lemma 5.2.5 we deduce
XX, X)) = x(Xa) + (=1)"r.
Thus
X(X) =2x(Xs) + (=1)"r and x(X) = 2x(X) — x(B) + (=1)"r. 0
Corollary 5.2.9 (Genus formula). For a generic degree d homogeneous polynomial P € P4, the
plane curve
Cp = {[20,21,22] €P* P(20,21,22) =0}
is a smooth Riemann surface of genus
d—1)(d—2
)~ =02

Proof Fix a projective line . C P? and a point ¢ € P? \ (Cp UL). We get a pencil of projective
lines {[c¢/]; ¢ € L} and a projection map f = f. : Cp — L, where for every z € Cp the point f(z)
is the intersection of the projective line [cz]| with LL. In this case we have no base locus, i.e., B = ()
and X = X = Vp. Since every generic line intersects C'p in d points, we deduce that f is a degree
d holomorphic map. A point x € Cp is a critical point of f, if and only if the line [cz] is tangent to
Cp.

For generic ¢ the projection f. defines a Lefschetz fibration. Modulo a linear change of coordi-
nates we can assume that all the critical points are situated in the region zy # 0 and c is the point at
infinity [0: 1 : 0].

In the affine plane zo # 0 with coordinates x = z1/29, y = 22/ 20, the point ¢ € P? corresponds
to the point at infinity on the lines parallel to the z-axis (y = 0). In this region the curve Cp is
described by the equation

F(x7 y) =0,

where F'(z,y) = P(1,x,y) is a degree d inhomogeneous polynomial.
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The critical points of the projection map are the points (x, y) on the curve F'(z,y) = 0 where the
tangent is horizontal,
_dy _ Fp
dr E)
Thus, the critical points are solutions of the system of polynomial equations

{ F(.%',y) =0,
Falc(xay) =0.

The first polynomial has degree d, while the second polynomial has degree d — 1. For generic P
this system will have exactly d(d — 1) distinct solutions. The corresponding critical points will be
nondegenerate. Using Corollary 5.2.8 with X = X = Cp, r = d(d — 1), and X, a finite set of
cardinality d we deduce

2-2(9(Cp) = x(Cp) =2d —d(d - 1)

so that
o) = B=009=2)

Example 5.2.10. Consider again two generic cubic polynomials A, B € P32 as in Example 5.1.5
defining a Lefschetz pencil on P2 < P3. We can use the above Corollary 5.2.8 to determine the
number r of singular points of this pencil. More precisely, we have

X(P?) = 2x(X.) — x(B) + 1.

We have seen that B consists of 9 distinct points. The generic fiber is a degree 3 plane curve, so by
the genus formula it must be a torus. Hence x(X,) = 0. Finally, x(P?) = 3. We deduce r = 12, so
that the generic elliptic fibration IP’IZ,LW,pg — P! has 12 singular fibers. O

O

We can now give a new proof of the Lefschetz hyperplane theorem.

Theorem 5.2.11. Suppose X C P is a smooth projective variety of (complex) dimension n. Then
for any hyperplane H C PV intersecting X transversally the inclusion X N H — X induces
isomorphisms

Hy(XNH)— Hy(X)
ifg < % dimg(X N H) = n — 1 and an epimorphism if ¢ = n — 1. Equivalently, this means that

Hy (X, XNH)=0, Vg<n-—1.

Proof. Choose a codimension two projective subspace A C P such that the pencil of hyperplanes
in PV containing A defines a Lefschetz pencil on X. Then the base locus B = A N X is a smooth
codimension two complex submanifold of X and the modification X is smooth as well.

A transversal hyperplane section X N H is diffeomorphic to a generlc divisor X of the Lefschetz
pencil, or to a generic fiber X, of the associated Lefschetz fibration f X — S, where S denotes the
projective line in PV = P(1, N) dual to A.

Using the long exact sequence of the pair (X, X, ) we see that it suffices to show that
Hy(X,X,)=0, Vg<n-—-1
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We analyze the long exact sequence of the triple (X , X+ UB,X,UB ). We have

excis

H (X, X, UB)=H,(X,X,UBxD_) =2 Hy (X ,XpUBxD_)
(use the Ehresmann fibration theorem)
>~ Hy((Xs, B) X (D, E)) & Hy_9(X+, B).

Using the excision theorem again we obtain an isomorphism

pe s Hy(X,X,.UB) = H, (X, X.).
Finally, we have an isomorphism

H, (X, UB,X,UB)~ H(X,,X,). (5.7)

Indeed, excise B x Int (D_) from both terms of the pair (X4 U B, X, U B). Then

X, UB\(BxInt(D_)) =Xy,
and since X, N B = {*} x B, we deduce

X*UB\(BxInt(D_)):X*U<D+><B>.

Observe that X, N <D+ X B) = {*} x B and that D, x B deformation retracts to {«} x B. Hence
X, U (DJr X B) is homotopically equivalent to X, thus proving (5.7).
The long exact sequence of the triple (X L X4 U B, X, U B) can now be rewritten
oo Hy (X, B) S Hy(X 4, X)—Hy(X, X,) = Hy_o(X., B) S - |
Using the Lemma 5.2.5 we obtain the isomorphisms
L':H(X,X.) = Hy—2(X.,B), ¢q#n,n+1, (5.8)
and the 5-term exact sequence

0— Hny1(X, X.) = Hy 1(X., B) = Hy (X4, X)) —

03
— Hp(X, X)) - Hyp—o(X,,B) — 0.

We now argue by induction on n. The result is obviously true for n = 1.

For the inductive step, observe first that B is a transversal hyperplane section of X, dim¢ X, =
n — 1 and thus by induction we deduce that

Hy(X.,B)=0, Vg<n-—2.
Using (5.8) we deduce
Hy(X,X,) = Hyo(X,,B)=0, Vg<n-—1. O
Corollary 5.2.12. If X is a hypersurface in P", then
be(X) = bp(P"), Yk <n-—2.
In particular, if X is a hypersurface in P3, then by (X) = 0. O
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Consider the connecting homomorphism
d: Hy(X 1, X,) = Hy 1(X,).
Its image

V(X,) = 8<Hn(f(+,f(*) ) = ker( Hy_1(X,) = Hy 1(X)) C Hy_1(X.)

is called the module of vanishing® cycles.

Using the long exact sequences of the pairs (X, X,) and (X, X,) and Lemma 5.2.5 we obtain
the following commutative diagram:

A A b N

Hn (X4, Xy) —— Hpa(Xs) — Hna(Xy) 0
p1 = | P2 = |P3

Hy (X, Xs) -2 n—1(Xs) —— Hp—1(X) 0

All the vertical morphisms are induced by the map p : X — X. The morphism p; is onto because it
appears in the sequence ("), where H,,_2(X,, B) = 0 by the Lefschetz hyperplane theorem. Clearly
po is an isomorphism since p induces a homeomorphism X, ~ X,. Using the refined five lemma
[Mac, Lemma 1.3.3] we conclude that p3 is an isomorphism. The above diagram shows that

V(X,) = ker(i* L Hyo1(X,) — Hn,l(X))
(5.9a3)
= Image (a CHo(X, X)) — Hn,l(X*)),

rank H,,_1(X,) = rank V(X,) 4 rank H,,_1(X). (5.9b)
Let us observe that Lemma 5.2.5 and the universal coefficients theorem implies that
H™(X4,X,) = Hom( Ho( X4, X,),Z).
The Lefschetz hyperplane theorem and the universal coefficients theorem show that
H"(X,X,) = HomZ( H,(X, X,), Z).

We obtain a commutative cohomological diagram with exact rows:
é

HY (X, X,) —— H" (X)) —— H" (X)) 0
mono =
HM(X, X.) «>— g™ 1(X,) —— H"(X) 0

This diagram shows that
I(X,)" = ker(a CHY(X,) — H”(X+,X*)>
=~ ker<(5 CH'Y(X,) — HY(X, X*)>

~ Im (1 CHYY(X) = H”_l(X*)).

3The are called vanishing because they “melt” when pushed inside X.
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Define the module of invariant cycles to be the Poincaré dual of I(X)",
I(X,) = {u N[X.]; ue ]I(X*)"} C Ho 1(X)),
or equivalently,
I(X,) = Image (i’ o1 (X) — Hn_l(X*)), i' .= PDy. 0i* o PDY.

The last identification can be loosely interpreted as saying that an invariant cycle is a cycle in a generic
fiber X, obtained by intersecting X, with a cycle on X of dimension %dimR X = dimc X. The
reason these cycles are called invariant has to do with the monodromy of the Lefschetz fibration and

it is elaborated in greater detail in a later section.
Since i* is one-to-one on H"~!(X), we deduce i' is one-to-one, so that
rank [(X,) = rank H,,41(X) = rank H,,_1(X)
= rankIm (i, : Hp—1(Xs) = Ha1(X) ). ©-10)

Using the elementary fact
rank H,_1(X,) = rank ker ( H,_(X.) AN H,1(X))
+rank Im (i, : H, 1(X.) = H, 1(X)),
we deduce the following result.

Theorem 5.2.13 (Weak Lefschetz theorem). For every projective manifold X — PN of complex
dimension n and for a generic hyperplane H C PN the Gysin morphism
it Hypy1(X) — H, 1 (X N H)
is injective, and we have
rank H, 1 (X N H) =rank[(X N H) + rank V(X N H),

where

V(X NH) = ker( Hy (X N H) — Hy_y(X) ) I(X N H) = Image . 0

The module of invariant cycles can be given a more geometric description. Using Lemma 5.2.5,
the universal coefficients theorem, and the equality

I(X,)" = ker(5 CHY(X) — Hﬂ(fg,fg)),

we deduce
I(X,)" = {w e HN(X,); (w,0) =0, Vv e V(X,) }

Observe thatn — 1 = % dim X, and thus the Kronecker pairing on H,,_1(X,) is given by the inter-
section form. This is nondegenerate by Poincaré duality. Thus

I(X,) = {y € Hy1(X.): y-v=0, YveV(X,) } (5.11)
We have thus proved the following fact.

Proposition 5.2.14. A middle dimensional cycle on X, is invariant if and only if its intersection
number with any vanishing cycle is trivial.
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5.3. The Hard Lefschetz Theorem

The last theorem in the previous section is only the tip of the iceberg. In this section we delve deeply
into the anatomy of an algebraic manifold and try to understand the roots of the weak Lefschetz
theorem.

In this section, unless specified otherwise, Ho(X ) denotes the homology with coefficients in R.
For every projective manifold X < P" we denote by X" its intersection with a generic hyperplane.
Define inductively

X0 = x, xt) .= (X(q))g q>0.
Thus X (¢11) is a generic hyperplane section of X (9,
Denote by w € H?(X) the Poincaré dual of the hyperplane section X', i.e.

[X'] = wn [X].

If a cycle ¢ € Hy(X) is represented by a smooth (real) oriented submanifold of dimension ¢ then its
intersection with a generic hyperplane H is a (¢ — 2)-cycle in X N H = X'. This intuitive operation
¢ — c¢N H is none other than the Gysin map

|

i Hy(X) = Hy o(X')

related to wN : Hy(X) — Hy—2(X) via the commutative diagram

Hy(X) —— Hya(X')

!

quZ(X)

Proposition 5.3.1. The following statements are equivalent.
HL;. V(X')NI(X') = 0.
HL,. V(X)) @ L(X') = Hy_1(X')
HL;3. The restriction of ix : Hp—1(X') = Hp—1(X) to I(X') is an isomorphism.
HLy4. The map wN : Hp1(X) = Hyp—1(X) is an isomorphism.
HL5. The restriction of the intersection form on H,,_1(X") to V(X') stays nondegenerate.

HLg. The restriction of the intersection form to 1(X') stays nondegenerate.

Proof. e The weak Lefschetz theorem shows that HL.; <— HLs.
e HL,; — HL3. From the equality

V(X') = ker(i* L Hy 1 (X) — Hn,l(X)>

and HL9 we deduce that the restriction of i, to I(X”’) is an isomorphism onto the image
of 7,. On the other hand, the Lefschetz hyperplane theorem shows that the image of i, is
H,_1(X).

e HL; — HL,. Theorem 5.2.13 shows that i' : H,,1(X) — H,_1(X’) is a monomor-
phism with image I(X’). By HLs, i, : I(X’) — H,_1(X) is an isomorphism, and thus
wN =i, 0i is an isomorphism.



An invitation to Morse theory 215

e HL, — HL3 If i, 0i' = wn : H,+1(X) — Hp,_1(X) is an isomorphism then we
conclude that i, : Im (i') = I(X’) — H,_1(X) is onto. Using (5.10) we deduce that
dimI[(X") = dim H,,—1(X), so that i, : H,_1(X’") = H,_1(X) must be one-to-one. The
Lefschetz hyperplane theorem now implies that ¢, is an isomorphism.

e HL, — HL;, HLy — HL¢. This follows from (5.11), which states that I(X") is the
orthogonal complement of V(X") with respect to the intersection form.

e HL; — HL;, HL; — HL;. Suppose we have a cycle
ce V(X)) NI(X").
Then
cel(X')=c-v=0, Yo e V(X'),
while
ceV(X)Y=c-2=0, Vz € (X").

When the restriction of the intersection to either V(X”) or I(X") is nondegenerate, the above
equalities imply ¢ = 0, so that V(X’) N I(X’) = 0.
O

Theorem 5.3.2 (The hard Lefschetz theorem). The equivalent statements HL1, . .., HLg above are
true (for the homology with real coefficients).

This is a highly nontrivial result. Its complete proof requires sophisticated analytical machinery
(Hodge theory) and is beyond the scope of this book. We refer the reader to [GH, Section 0.7]
for more details. In the remainder of this section we will discuss other topological facets of this
remarkable theorem.

We have a decreasing filtration
X=X05x" 5x®5...5xM 59,

so that dimge X (9 = n — ¢, and X is a generic hyperplane section of X (¢~1). Denote by I,(X) C
H,_,(X@) the module of invariant cycles

Iy (X) = Tmage( i : Ho-g2(X07D) = Hyoy(XD) ).
Its Poincaré dual (in X (‘1)) is
1,(X)* = Image(#* : H"9(X0~Y) — B (X)) = PDL}, (I,(X)).
The Lefschetz hyperplane theorem implies that the morphisms
ix s Hy(XD) = Hy(XY), ¢ (5.12)
are isomorphisms for k < dim¢ X(@ = (n — ¢). We conclude by duality that
P HEXD) 5 BRX@), <,

is an isomorphism if £ 4+ g < n.
Using HL3 we deduce that

in Ty (X) = Hyo(X@7D)
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is an isomorphism. Using the Lefschetz hyperplane section isomorphisms in (5.12), we conclude that

i maps 1,(X) isomorphically onto Hy,_4(X). @)
Using the equality

T,(X)Y = Image (i* : H* (X7 V) - gn=1(X@))
and the Lefschetz hyperplane theorem we obtain the isomorphisms
H9(X) 5 gax’) 5.0 5 greax @)y,

Using Poincaré duality we obtain

i' maps H,,4(X) isomorphically onto 1,(X). an
Iterating HLg we obtain

The restriction of the intersection form of H,,_,(X) to I,(X)

(1)

is nondegenerate.

The isomorphism i, carries the intersection form on I;(X') to a nondegenerate form on H,,_,(X) =
H,,+4(X). When n— g is odd this is a skew-symmetric form, and thus the nondegeneracy assumption
implies

dim Hy,—¢(X) = dim Hy44(X) € 2Z.

We have thus proved the following result.

Corollary 5.3.3. The odd dimensional Betti numbers bop11(X) of X are even. O

Remark 5.3.4. The above corollary shows that not all even dimensional manifolds are algebraic.
Take for example X = S3 x S'. Using Kiinneth’s formula we deduce

b (X)=1.
This manifold is remarkable because it admits a complex structure, yet it is not algebraic! As a
complex manifold it is known as the Hopf surface (see [Ch, Chapter 1]). O

The gth exterior power w? is Poincaré dual to the fundamental class
[X@] € Hap—oq(X)
of X(9)_ Therefore we have the factorization

Hy(X) —" Hy_py(X@)

win ll*

H k—2q(X )
Using (1) and (1) we obtain the following generalization of HL,.

Corollary 5.3.5. Forq=1,2,--- ,n the map
wiN: Hp1¢(X) = Hp—(X)

is an isomorphism. O
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Clearly, the above corollary is equivalent to the hard Lefschetz theorem. In fact, we can formulate
an even more refined version.

Definition 5.3.6. (a) An element ¢ € H,,,(X), 0 < ¢ < n, is called primitive if
wi™ne=0.
We will denote by P, ,(X) the subspace of H,,,(X) consisting of primitive elements.
(b) An element z € H,,_4(X) is called effective if
wNz=0.
We will denote by E,,_,(X) the subspace of effective elements. 0

Observe that
¢ € Hyyq(X) is primitive <= w? N c € Hy_q(X) is effective.

Roughly speaking, a cycle is effective if it does not intersect the “part at infinity of X, X N
hyperplane.

Theorem 5.3.7 (Lefschetz decomposition). (a) Every element ¢ € H,4(X) decomposes uniquely
as

c=co+wnNei+wNeg+---, (5.13)
where c; € Hy,q12i(X) are primitive elements.
(b) Every element z € H,,_4(X) decomposes uniquely as

ZzwqﬁZ()—l-qurlle‘f'"'y (5.14)

where zj € Hy i qy2;(X) are primitive elements.

Proof. Observe that because the above representations are unique and since
(5.14) = w?N (5.13),
we deduce that Corollary 5.3.5 is a consequence of the Lefschetz decomposition.

Conversely, let us show that (5.13) is a consequence of Corollary 5.3.5. We will use a descending
induction starting with ¢ = n.

A dimension count shows that
Py, (X) = Hop(X), Pop—1(X) = Hop_1(X),
and (5.13) is trivially true for ¢ = n,n — 1. The identity
an(Bne)=(aUpB)Ne, Ya,B€ H*(X), c€ Ho(X),

shows that for the induction step it suffices to prove that every element ¢ € H,,;,(X) can be written
uniquely as

c=cot+wnNer, ¢ € Hypgro(X), co € Prgq(X).
According to Corollary 5.3.5 there exists a unique z € Hj,44+2(X) such that

w2 Nz =wilne,

so that
co=c—wNze€ Pyyy(X).
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To prove the uniqueness of the decomposition assume
O0=co+wner, co€ Pryg(X).

Then
0:wq+1ﬂ(co+wﬂcl):>wq+2001:0:>q:O:>co:0. O

The Lefschetz decomposition shows that the homology of X is completely determined by its
primitive part. Moreover, the above proof shows that

0 < dim Pn+q = bn+q - bn+q+2 = bn—q - bn—q—27
which implies the unimodality of the Betti numbers of an algebraic manifold,
L=by <by<---<bgpyz), b1 <b3 <+ <byn-1)/2)+1

where |z | denotes the integer part of z. These inequalities introduce additional topological restric-
tions on algebraic manifolds. For example, the sphere S* cannot be an algebraic manifold because
b2<54) =0< b0(54) =1.

5.4. Vanishing Cycles and Local Monodromy

In this section we finally give the promised proof of Lemma 5.2.5.

Recall we are given a Morse function f : X — P! and its critical values ¢1, .. ., ¢, are all located
in the upper closed hemisphere D . We denote the corresponding critical points by py, ..., pr, SO
that )

fpj) =tj, Vi.

We will identify D, with the unit closed diskat0 € C. Letj =1,...,r.

e Denote by D; a closed disk of very small radius p centered at t; € D,. If p < 1 these disks are
disjoint.

e Connect x € 0D, to t; + p € 9D; by a smooth path /; such that the resulting paths /1, ..., ¢, are
disjoint (see Figure 5.2). Set k; := ¢; U D;, { = |J/; and k = Uk;.

e Denote by Bj a small closed ball of radius I in X centered at Dj-

Figure 5.2. Isolating the critical values.

The proof of Lemma 5.2.5 will be carried out in several steps.
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Step 1. Localizing around the singular fibers. Set
L:=f7'0), K:=f"(k).

We will show that X « 18 a deformation retract of L, and K is a deformation retract of X + ,s0 that the
inclusions

(X4, Xo) = (X4, L) <= (K, L)
induce isomorphisms of all homology (and homotopy) groups.

Observe that k is a strong deformation retract of D and x* is a strong deformation retract of £.
Using the Ehresmann fibration theorem we deduce that we have fibrations

FiL—=t, f:X \f Mty te} = D\ {te,... .t}

Using the homotopy lifting property of fibrations (see [Ha, Section 4.3]) we obtain strong deformation
retractions

L— X, Xy\f Yt .ty = K\t ...t}

Figure 5.3. Isolating the critical points.

Step 2. Localizing near the critical points. Set (see Figure 5.3)
Xp, = fHDy), Xj:=f""t;+p),
Ej = XD]. N Bj, Fj = Xj ﬂBj,
E = UjEj, F = U]’.Fj.

The excision theorem shows that the inclusions (X D;s X ;) — (K, L) induce an isomorphism

r
@H.(XDj7Xj) - H‘(K) L) = H‘(X+a X*)
j=1
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Now define
Y;:= Xp, \int (Bj), Z;:=Fj\ int(B)).

The map f induces a surjective submersion f :'Y; — Dj, and by the Ehresmann fibration theorem
it defines a trivial fibration with fiber Z;. In particular, Z; is a deformation retract of Y}, and thus

Xj = F; U Zj is a deformation retract of F; UY;. We deduce
H.(XDj7Xj) = H.(XD]WF} U }/]) = H’(E]7 F’])’

where the last isomorphism is obtained by excising Y.

Step 3. Conclusion. We will show that for every j = 1,...,r we have

0 if ¢g#dimcX =n

At this point we need to use the nondegeneracy of p;. To simplify the presentation, in the sequel we
will drop the subscript ;.

By making B even smaller we can assume that there exist holomorphic coordinates (z;) on B,
and u near f(p), such that f is described in these coordinates by z7 + - - - + z2. Then E and F can be
given the explicit descriptions

E= {2: (21,5 2n); Z|Zi|2 <r? }Zzﬂ < p},
i i
F=F, = {ZG E Zz?:p}.
i
The region E can be contracted to the origin because 2 € E = tZ € E, Vt € [0,1]. This shows

that the connecting homomorphism H,(E, F') — H,_1(F) is an isomorphism for ¢ # 0. Moreover,
Hy(E, F) =0. Lemma 5.2.5 is now a consequence of the following result.

(5.15)

Lemma 5.4.1. F), is diffeomorphic to the disk bundle of the tangent bundle TS™ 1,

Proof. Set

zj =+ Yy, T=(T1,...,2n), ¥:=1,---,Yn),
2= ad, [P =)
J J

The fiber F' has the description

77 =p+ 5%, Z-G=0€eR, |7+ 5* <"
In particular,

215> <r* —p.
Now let 9
i=(p+0)) V2T ER", =57
re—=p
In the coordinates i, ¥ the fiber F' has the description
i =1, @-7=0, [7*><1.

The first equality describes the unit sphere S”~! C R™. Observe next that

U-v<ylu
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shows that  is tangent to S™~! at . It is now obvious that F' is the disk bundle of 7S™~!. This
completes the proof of Lemma 5.2.5. O

We want to analyze in greater detail the picture emerging from the proof of Lemma 5.4.1. Denote
by B a small closed ball centered at 0 € C™ and consider

f:B—C, f(z):z%+---+z2.

Let p be a positive and very small real number.

We have seen that the regular fiber F), = f ~1(p) (0 < p < 1) is diffeomorphic to a disk bundle
over an (n — 1)-sphere S, of radius /p. This sphere is defined by the equation

Spi={ImZ =0} N f7(p) <= {7=0, | = p}.

As p — 0, i.e., we are looking at fibers closer and closer to the singular one Fy = f~1(0), the radius
of this sphere goes to zero, while for p = 0 the fiber is locally the cone 22 + - - - 4 22 = 0. We say
that S, is a vanishing sphere.

The homology class in F, determined by an orientation on this vanishing sphere generates H,,_1(F).
Such a homology class was called vanishing cycle by Lefschetz. We will denote by A a homology
class obtained in this fashion, i.e., from a vanishing sphere and an orientation on it (see Figure 5.4).
The proof of Lemma 5.2.5 shows that Lefschetz’s vanishing cycles coincide with what we previously
named vanishing cycles.

r>0 r=0

2
A 2
212+ 2,50
Figure 5.4. The vanishing cycle for functions of n = 2 variables.

Observe now that since 0 : Hy (B, F) — H,_1(F) is an isomorphism, there exists a relative
n-cycle Z € Hy (B, F) such that 0Z = A. The relative cycle Z is known as the thimble associated
with the vanishing cycle A. It is filled in by the family (.S,) of shrinking spheres. In Figure 5.4 it is
represented by the shaded disk.
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Denote by D, C C the closed disk of radius p centered at the origin and by B, C C" the closed
ball of radius r centered at the origin. Set

E.,:={Z€B,; f(z)eD,}, E;,:=={Z€B,; 0<|f(2)|<p},
OE,,:={Z€dB,; f(z)€D,}.
We will use the following technical result, whose proof is left to the reader.
Lemma 5.4.2. For any p,r > 0 such that r> > p the maps
frEr, = D,\{0} =D}, fo:0E.,— D,

are proper surjective submersions. O

By rescaling we can assume 1 < p < 2 =7r. Set B = B;,, D = D,, etc. According to the
Ehresmann fibration theorem we have two locally trivial fibrations.

o ' — E* — D* with standard fiber the manifold with boundary
F=f~Y%)NnB.

e OF — OE —» D with standard fiber OF = f~!(x) N @B. The bundle OF — D is a globally
trivializable bundle because its base is contractible.

Choose the basepoint * = 1. From the proof of Lemma 5.4.1 we have
F=f#)={=0+igeC [T+ |7 <4, [T =1+ & §=0}.
Denote by M the standard model for the fiber, incarnated as the unit disk bundle determined by the
tangent bundle of the unit sphere S"~! < R™. The standard model M has the algebraic description

M={(@7) eR" xR |@]=1, @-7=0, |7 <1}.

—

X

Note that
OM = {(6,17) ER"xR"; |@|=1=17], @-7= o}.
We have a diffeomorphism
i=(1+ )12 &
O:F—->M, F>2=7+1y,—>
U= oy, (®)
a=+/2/3.
Its inverse is given by
= 2/ 2\1/2-
[ F=as e
M > (4, 7) — @ h
7=a 7.
This diffeomorphism ® maps the vanishing sphere ¥ = {Im z = 0} C F to the sphere
S:={(a,9) e R" xR"; |a|=1, 7=0}.
We will say that S is the standard model for the vanishing cycle. The standard model for the thimble
is the ball {|@| < 1} bounding S.

Fix a trivialization 0E —» OF x D and a metric h on OF. We now equip OF with the product
metric gy := h @ hg, where hy denotes the Euclidean metric on D. Now extend gy to a metric on E
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and denote by H the subbundle of T'E* consisting of tangent vectors g-orthogonal to the fibers of f.
The differential f, produces isomorphisms

f* : Hp — Tf(p)D*, Vp € E*.

Suppose v : [0,1] — D* is a smooth path beginning and ending at x, v(0) = (1) = *. We obtain
for each p € F = f~1(x) a smooth path 7, : [0,1] — E that is tangent to the horizontal sub-bundle
H, and it is a lift of w starting at p, i.e., the diagram below is commutative:

(E",p)

e

([0,1],0) —— (D*, %)

We get in this fashion a map h, : F = f71(x) — f71(x), p—> Fp(%).
The standard results on the smooth dependence of solutions of ODEs on initial data show that h.,
is a smooth map. It is in fact a diffeomorphism of F' with the property that
hy lor= 1oF.

The map h. is not canonical, because it depends on several choices: the choice of trivialization
OF = OF x D, the choice of metric h on F', and the choice of the extension g of gs.

We say that two diffeomorphisms G, Gy : F' — F such that G; |gp= 1o are isotopic if there
exists a smooth homotopy
G:[0,1]xF—F
connecting them such that for each ¢ the map Gy = G(t,®) : F' — F is a diffeomorphism satisfying
Gt logp= lop forall t € [0,1].

The isotopy class of h, : F' — F'is independent of the various choices listed above, and in fact
depends only on the image of «y in 71 (D*, *). The induced map

(hy] : Ho(F) = Ha(F)
is called the (homological) monodromy along the loop y. The correspondence
[h] : 1 (D*,%) 3 v — hy € Aut (H,(F))
is a group morphism called the local (homological) monodromy.
Since hy\aF = 1pF, we obtain another morphism
[h]"¢ : 7 (D, %) — Aut (Ho(F,0F)),
which we will call local relative monodromy.

Observe that if z is a singular n-chain in F’ such that 9z € OF (hence z defines an element
[z] € Hyp(F,0F)), then for every v € m;(D*, %) we have

0z = Ohyz = 0(2 — hyz) = 0,
so that the singular chain (z — h.z) is a cycle in F'. In this fashion we obtain a linear map
var : w1 (D*, %) — Hom ( H,—1(F,0F) — H,_1(F)),
var,(2) = (b2 — 2, 2 € H,_1(F,0F), v € m(D*, %),

called the variation map.
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The local Picard—Lefschetz formula will provide an explicit description of this variation map. To
formulate it we need to make a topological digression.

An orientation or = ory on F' defines a nondegenerate intersection pairing
*or ¢ Hp—1(F,0F) X Hy,_1(F) — Z
formally defined by the equality
c1 *or €2 = (PDg, (ix(c1)), c2),
where i, : H,,_1(F) — H,_1(F,0F) is the inclusion induced morphism,
PDyy : H""Y(F) — H,,_1(F,0F), uw~— un[F,0F],
is the Poincaré—Lefschetz duality defined by the orientation or, and (—, —) is the Kronecker pairing.

The group H,,_1(F,0F) is an infinite cyclic group. Since F is the unit disk bundle in the tangent
bundle T'Y, a generator of H,,_1 (F, OF) can be represented by a disk V in this disk bundle (see Figure
5.5). The generator is fixed by a choice of orientation on V. Thus var, is completely understood
once we understand its action on V (see Figure 5.5).

The group H,,_1(F) is also an infinite cyclic group. It has two generators. Each of them is
represented by an embedded (n — 1)-sphere ¥ equipped with one of the two possible orientations.
We can thus write

vary ([V]) = v5(V)[Z], v(V) =1,([V,ory]) € Z.
The integer v, ([V]) is completely determined by the Picard—Lefschetz number,
my(orp) = [V] *orp vary ([V]) = v, ([V])[V] + [X].
Hence
var,([V]) = my(orp)(V tory [X]) [E] = ([V] * [E])(V + var, (V) ) [5],

-~

vy ([V])

var, (2) = m, (orr) (= *or, [Z]) [S].

The integer m~, depends on choices of orientations on orp, ory, and ory, on I, V and %, but v,
depends only on the the orientations on V and X.. Let us explain how to fix such orientations.

Figure 5.5. The effect of monodromy on V.
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The diffeomorphism ® maps the vanishing sphere ¥ C F to the sphere S described in the (#, V)
coordinates by ¥ = 0, |@| = 1. This is oriented as the boundary of the unit disk {|u| < 1} via the
outer-normal-first convention.* We denote by A € H,_1(F) the cycle determined by S with this
orientation.

Let

iy = (£1,0,...,0), P = (i+,0) €S C M. (5.16)
The standard model Ml admits a natural orientation as the total space of a fibration, where we use the
fiber-first convention
or(total space)=or(fiber) A or(base).
Observe that since M is (essentially)the tangent bundle of S, an orientation on S determines tautolog-
ically an orientation in each fiber of M. Thus the orientation on S as boundary of an Euclidean ball

determines via the above formula an orientation on M. We will refer to this orientation as the bundle
orientation.’

Near Py € M we can use as local coordinates the pair
), €= (ugye.yun), T=(vay...,00). (5.17)
The orientation of S at P, is given by
d€ = dug A - A dun,

so that the orientation of 3 at ®~!(P, ) is given by dxy A - - - A dz,,. The bundle orientation of M is
described in these coordinates near P, by the form

orbundleNdﬁ/\dgzdvg/\~--/\dvn/\du2/\---/\dun

&)dyg/\---/\dyn/\dxg/\~-/\dxn.

Using the identification (®) between F' and M we deduce that we can represent V as the fiber T of
M — S over the north pole P, (defined in (5.16)) equipped with some orientation. We choose this
orientation by regarding T as the tangent space to S at P,. More concretely, the orientation on T
is given by

orr, Ndvg/\'--/\dvn<i>dy2/\~-/\dyn.
We denote by V € H,,_1(F,0F) the cycle determined by T with the above orientation.

On the other hand, F' has a natural orientation as a complex manifold. We will refer to it as the
complex orientation. The collection (22, ..., z,) defines holomorphic local coordinates on F' near
®~1(P,), so that

OT compler = drog Ndys A -+ Ndzy A dyp,.

We see that®

(_1)n(n—1)/2

OY complex = OTpyndle-

4The orientation of the disk is determined by a linear ordering of the variables w1, . . ., Up.

5 Note that while in the definition of the bundle orientation we tacitly used a linear ordering of the variables w;, the bundle orientation
itself is independent of such a choice.

OThis sign is different from the one in [AGV2] due to our use of the fiber-first convention. This affects the appearance of the
Picard-Lefschetz formulz. The fiber-first convention is employed in [Lam] as well.
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We denote by o (respectively *) the intersection number in H,,_1(F') with respect to the bundle
(respectively complex) orientation. Then’

1=VoA=(—1)"""N2g A
and
AoA = (~1)"""D2A %A = (TS )57

. n-1y _ ) 0 if mniseven, (5.18)
=S )_{2 if 7 is odd.

Above, e denotes the Euler class of 7.5™ 1.

The loop 71 : [0,1] 3t + 71 (t) = e>™* € D* generates the fundamental group of D*, and thus
the variation map is completely understood once we understand the morphism of Z-modules

var; :=var,, : H,_(F,0F) = H,_1(F).

Once an orientation ory on F' is chosen, we have a Poincaré duality isomorphism
H, 1(F) = Homy( H,_1(F,0F),Z),
and the morphism var; is completely determined by the Picard—Lefschetz number
mi(orp) := V %o, var;(V).

We have the following fundamental result.
Theorem 5.4.3 (Local Picard-Lefschetz formula).

m1(0Tpundle) = V o vary (V) = (=1)",

M1 (0T complez) = V * var (V) = (—1)”(""’1)/27
vary (V) = (—=1)"A,

and

var|(z) = (=1)"(z 0 )% = (—=1)"" 2z« £)%, Vz e H, (F,0F).

5.5. Proof of the Picard-Lefschetz formula

The following proof of the local Picard—Lefschetz formula is inspired from [HZ] and consists of a
three-step reduction process.

We start by constructing an explicit trivialization of the fibration 0F — D. Set
Ey:=f Y w)NB, 0<|w|<p, F=FEy4_.
Note that
OFuri = {T+if 72 =a+ |77 27-5=0b, |7 +[7° = 4}.
For every w = a + ib € D define Iy, : OF,, — M,

= c1(w)Z,
BF, 5 7+ if (5.19)
7 = c3(w) (7 + c2(w) ),
il =1, |v]<1

) )

7The choices of A and V depended on linear orderings of the variables u;. However, the intersection number V o A is independent
of such choices.
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where

2 \ /2 b
qw0:<4+a> o ea(w) = =g

(5.20)
» 8+2a \?
cs(w) = ——=23 .
K 16 — a? — b?
Observe that I'; coincides with the identification () between F* and M. The family (I'y, )|, defines
atrivialization I' : OF — OM x D, 2+ (T'y( (%), f(Z) ). We set
Bjyj=1 = [ ({lw] = 1}) N B = El{jy=1}-
The manifold Ej,,—; is a smooth compact manifold with boundary
OB y=1 = ' ({lw| =1}) N 9B,
The boundary JE),,—; fibers over {|w| = 1} and is the restriction to the unit circle { [w| = 1} of

the trivial fibration OF — D. The above trivialization I" of 0E — D induces a trivialization of
8E‘w‘:1 — {\w| = 1}.
Fix a vector field V on Ej,,|— such that
fo(V) =270y and T'w(V |og,_,) = 270p on OM x {|w| =1}
Denote by p; the time ¢-map of the flow determined by V. Observe that p; defines a diffeomorphism
JI F—F e2mit

compatible with the chosen trivialization I';, of 0E. More precisely, this means that the diagram

below is commutative:

' (=D
or 2E o

et 1om

L orit
OF sy —7%

Consider also the flow ; on Ej,,—; given by
Q4(2) = exp(mit)Z = (cos(mt)Z — sin(rt)7) + ¢ ( sin(xt)Z + cos(mt)7 ). (5.21)
This flow is periodic, and since f(;2) = e2™ f(2), it satisfies
Qu(F) = Fomi.

However, ), is not compatible with the chosen trivialization of OF, because €21 |sr, is the antipodal
map Z+— —Z.

We pick two geometric representatives 7. C F' of V. More precisely, we define 7' so that
T, = ®(T}) C Mis the fiber of M — S over the north pole P, € S. As we have seen in the
previous section, T is oriented by

dvg A+~ ANdvy, <— dyas A -+ A dyp,.
Define T_ C M as the fiber of Ml — S over the south pole P~ € Sand set T = ®~1(T_).
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The orientation of S at P_ is determined by the outer-normal-first convention, and we deduce that
it is given by —dug A - - - A du,,. We deduce that T_ is oriented by —dvs A - - - A dv,,. Inside F' the
chain 7_ is described by

T=0+7?/a®) V%1 <= 11 <0, z9=--- =12, =0,
and it is oriented by —dys A - - - A dyp.
Note that {2; = —1, so that taking into account the orientations, we have
N (Ty) = (—1)"T- = (—-1)"V. (5.22)

For any smooth oriented submanifolds A, B of M with disjoint boundaries 9A N B = ), of com-
plementary dimensions, and intersecting transversally, we denote by A o B their intersection number
computed using the bundle orientation on F'. Set
m := m1(0ryyndie) = V o var (V).
Step 1.
m = (—1)"Q(T) o ua(T4).
Note that
m=Vo (u(Ty) —Ty) =T-o (u(T}) — T4).
Observe that the manifolds 7 and 7 in F' are disjoint so that

m=T_ o u(Ty) "2 (1" Qu(Ty) o (T4).

Step 2.

(T4 ) o pa(Ty) = Q(T4) o pu(T4), Vit € (0,1].
To see this, observe that the manifolds Q;(7";) and p(7") have disjoint boundaries if 0 < ¢ < 1.
Indeed, the compatibility of p; with the boundary trivialization I' implies

T omie pi (0T ) = Tozmiepry @ (0T, ) = 0Ty = {(i0y,7) € M; ¥ = 1}.
On the other hand,
L 2rie Q4 (0T1) = T orie Q@ H(OT)

14+ a2
o2

S ial7) (a? =2/3).

and from the explicit descriptions (5.19) for I .2i: and (5.21) for €2; we deduce
0 =T eomss (T4 ) N OT4 = Toamie (0T ) N T gormin p1 (0T ).
Hence the deformations
N (T4) = N sq-n(Th), m(T4) = m—sq—n(T4)

do not change the intersection numbers.
Step 3.
Q(Ty) o e (T+) = 1 if t > 0 is sufficiently small.
Set
Ap = U(Ty), Br=m(Ty).
For 0 < € < 1 denote by C. the arc C. = {exp(2mit); 0 <t < e}. Extend the trivialization
I': 90E|c. — OM x C to a trivialization

I:Elc. > MxC.
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such that I'|p = ®.

For t € [0, e] we can view €, and p; as diffeomorphisms wy, by : M — M such that the diagrams
below are commutative:

Iy
F M
lth
M

Set At = FeQﬂit(At) = (.Ut(’]r+) and Bt = F627rit (]Bt) = ht(T+). Clearly
AtOBt :AtOBt.

Q¢

Observe that h; |gy= Ly, so that By (77;) is homotopic to T via homotopies that are trivial along
the boundary. Such homotopies do not alter the intersection number, and we have

AtOBt:AtOT+.

Along OM we have
wiloar = Wy := T pamir 0 Qo T L (5.23)
Choose 0 < i < % For ¢ sufficiently small the manifold A, lies in the tubular neighborhood

o= {€ms el <r, i <1)

of fiber T C M, where as in (5.17) we set £ = (ug, ..., uy,) and 7 = (va,...,v,). More precisely,

—

if P = (u, ) is a point of M near P, then its (&, 77)-coordinates are pr(i, ¥), where pr denotes the
orthogonal projection

pr:R" x R" — R x R*"™ (&,7) = (ug, ..., un;v2,...,0,).
We can now rewrite (5.23) entirely in terms of the local coordinates (é’, 7j) as
wi(€7) = pr oWy = pro Ty 0 o Iy (w( ), 7€ 7).
The coordinates (5_: 77) have a very attractive feature. Namely, in these coordinates, along OM, the
diffeomorphism W, is the restriction to OM of a (real) linear operator
Ly : R R 5 R RYL

More precisely, . .
| _ 1 | €
n| & =cormco | £,

where

C(t) = [ ci(t) ot) ] R() = [ cos(mt) —sin(mt) ] ’

ca(t)es(t) e sin(mt)  cos(mt)

and cg(t) = ck(e%"t ), k = 1,2,3. The exact description of c;(w) is given in (5.20). We can
thus replace A; = w;(T4) with Ly(T.) for all ¢ sufficiently small without affecting the intersection
number because L is very close to wy for ¢t small and 0A; = OL(T).

For ¢ sufficiently small we have

. . d
Ly=Lo+tLy+O(t*), Lo=1, Lo:= pn lt=o Lt,
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where

Lo = C0)C(0)™ +C0)JCO), J=R(0) = [ ‘i’ _01 ] .

Using (5.20) with a = cos(2t), b = sin(27t) we deduce

Cl(O) = \/E >0, CQ(O) =0, C3(0) = \/g > 0,

2
¢1(0) = ¢3(0) = 0, &(0) = —%.
Thus
2t 0 0 . @ 0
C0)=—-= . Cco)yt=| 9l
© 25 |:Cg(0) 0] (0) [ 0 &
o 0 0
C0)C0) ™ = -2 | e
25 | o O
Next

The upshot is that the matrix L has the form

: 0 —a
L0—|:b 0},a,b>0.
For ¢ sufficiently small we can now deform L;(T.) to (Lo + tLg)(T4) such that during the defor-
mation the boundary of the deforming relative cycle does not intersect the boundary of T. Such
deformation again does not alter the intersection number. Now observe that ¥; := (Lo + tLo)(T4)
is the portion inside U}, of the (n — 1)-subspace
=[]
7|

(—taduz + dva) A -+ A (—taduy, + doy,).

i+ (Lo + tLo) [

I O

It carries the orientation given by

Observe that X, intersects the (n — 1)-subspace T given by E = 0 transversely at the origin, so that
YpoTy =+1.
The sign coincides with the sign of the real number v defined by
vdug A -+ Advp, ANdug A -+ - A duy,
= (—tadug + dva) A+ A (—tadu, + dop) Advg A -+ A doy,
= (—ta)”_ldug/\-~-/\dun/\dv2/\~--/\dvn
= (=)= DD Goy Ao Aduy Adus A A duy,
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Since (n — 1) + (n — 1)? is even, we deduce that v is positive so that
1=3%,0Ty = Q(T4) o pu(T4), VO <t <L

This completes the proof of the local Picard-Lefschetz formula. O

Remark 5.5.1. For a slightly different proof we refer to [LLo]. For a more conceptual proof of the
Picard-Lefschetz formula in the case that n = dim¢ is odd, we refer to [AGV2, Section 2.4]. O

5.6. Global Picard-Lefschetz Formulae

Consider a Lefschetz pencil (X;) on X < PV with associated Lefschetz fibration f: X S5=p!
such that all its critical values ¢1, ..., t, are situated in the upper hemisphere in D C S. We denote
its critical points by p1, ..., py, S0 that

fpj) =5, V.
We will identify D with the closed unit disk centered at 0 € C. We assume |¢;| < 1forj=1,...,7.
Fix a point * € 0D, . For j = 1,...,r we make the following definitions:

e D; is a closed disk of very small radius p centered at t; € D,. If p < 1 these disks are
pairwise disjoint.

e /; :[0,1] = D is a smooth embedding connecting * € 0D to t; + p € 0D, such that
the resulting paths ¢1, ..., ¢, are disjoint (see Figure 5.2). Set k; := ¢; U D;, £ = |J¥¢; and
k=Jk;.

e B;is a small ball in X centered at Dj-

Denote by ; the loop in D \ {t¢1,...,t,} based at * obtained by traveling along ¢; from * to

t;+ p and then once counterclockwise around 9 D; and then back to * along ¢;. The loops 7; generate
the fundamental group

m(S*, %), ST =S5\ {t1,...,t,}.
Set
Xg = f1(S7).
We have a fibration
f:Xge = 5%,
and as in the previous section, we have an action

(8%, %) = Aut (He(X,,Z))

called the monodromy of the Lefschetz fibration. Since X, is canonically diffeomorphic to X,, we
will write X, instead of X..

From the proof of the local Picard—Lefschetz formula we deduce that for each critical point p; of
f there exists an oriented (n — 1)-sphere X; embedded in the fiber Xy, which bounds a thimble,

i.e., an oriented embedded n-disk Z; C X +. This disk is spanned by the family of vanishing spheres
in the fibers over the radial path from ¢; + p to ¢;.
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We denote by A; € Hy,—1(Xy;4 ), Z) the homology class determined by the vanishing sphere ¥;
in the fiber over ¢; + p. In fact, using (5.18) we deduce

0 if niseven,
AjxAj = (1) (1 n (—1)"—1) —{ 2 if n=-1 mod4,
2 if n=1 mod 4.
The above intersection pairing is the one determined by the complex orientation of Xy, .

Note that for each j we have a canonical isomorphism
Ho(X;,Z) — Ho(X4,Z)

induced by a trivialization of f: Xg- — S* over the path /; connecting * to ¢+ p. This isomorphism
is independent of the choice of trivialization since any two trivializations are homotopic. For this
reason we will freely identify Hq (X, Z) with any He(X;,7Z).

Using the local Picard—Lefschetz formula we obtain the following important result.
Theorem 5.6.1 (Global Picard—Lefschetz formula). If z € H,_1(Xx,Z), then
var,, (z) == i, (2) — 2 = —(=1)"" D2 (2 x A) A

Proof. We prove the result only for the homology with real coefficients, since it contains all the
main ideas and none of the technical drag. For simplicity, we set X; := X 1, We think of the
cohomology H*(X;) as the De Rham cohomology of X ;.

Represent the Poincaré dual of z by a closed (n — 1)-form ¢ on X and the Poincaré dual of A;
by an (n — 1) -form §; on X;. We use the sign conventions® of [Nil, Section 7.3], which means that
for every closed form w € Q" 1(X,) we have

/w:/ w A dj,
2j X

Aj*zzijajM:(—l)"1/Xj<Mj=<—1>“/ch.

We can assume that d; is supported in a small tubular neighborhood U of 3; in X;, 1, diffeomorphic
to the unit disk bundle of 7'3;.

The monodromy (i, can be represented by a diffeomorphism £ of X; that acts trivially outside
a compact subset of U;. In particular, h; is orientation preserving. We claim that the Poincaré dual of
f; (2) can be represented by the closed form (h;l)* Q).

The easiest way to see this is in the special case in which z is represented by an oriented subman-
ifold Z. The cycle yi,(z) is represented by the submanifold /;(Z) and for every w € Q" 1(X;) we

have
w= h"fw:/ h*-w/\(:/ Riw A RE((hT1)*¢
JL o= fme= [ [ e nm 0

:/X h;(wA(hjl)*g):/X w A (h7LYC.

J J

8Given an oriented submanifold S C X, its Poincaré dual should satisfy either [qw = [y wAdgor [gw = [y 05 Aw,
Vw € QImS(X,), dw = 0. Our sign convention corresponds to first choice. As explained in [Nil, Prop. 7.3.9] this guarantees that for
any two oriented submanifolds S7, S2 intersecting transversally we have S7 * Sy = f x 05, Nbg,-
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At the last step we used the fact that h; is orientation preserving. As explained in the footnote, the

equality
/ w —/ wA (h; D¢, Yw
h;(Z) X;

J

implies that (h; 1)%¢ represents the Poincaré dual of fo; (2)-

This is not quite a complete proof of the claim , since there could exist cycles that cannot be
represented by embedded, oriented smooth submanifolds. However, the above reasoning can be made
into a complete proof if we define carefully the various operations it relies on. We leave the details to
the reader (see Exercise 6.1.47).

Observe that (h; 1)*¢ = ¢ outside Uy, so that the difference (h; 1yx¢ —¢isaclosed (n — 1)-form

with compact support in Uj. It determines an element in H,, YU, )

On the other hand, H, ?pt ! (U;) is a one dimensional vector space spanned by the cohomology class
carried by ¢;. Hence there exist a real constant ¢ and a form n € Q"™ 2U ) with compact support

such that
(hi1)"¢ = ¢ = cdj +dn, (5.24)
We have (see [Nil, Lemma 7.3.12])

%

(—1)”1c(vj*Aj):/vcaj:/v((hj—l)*g—g)—/vdn

J J J

so that

where

since 7 has compact support in U;.
Invoking (5.18) we deduce
(V) 8,) = (1072,
The (piecewise smooth) singular chain h(V;) — V; is a cycle in U; representing var,, (V;) €

H,,—1(Uj). The local Poincaré-Lefschetz formula shows that this cycle is homologous in U; (and
thus in X, 1, as well) to (—1)"%;:

(_l)n—i-lc _ (_1)n—1c — (_1)n(n—1)/2/ C

vary; (Vi)
_ (_l)n(n 1)/2 / ¢ = n+n n— 1)/2A -
Thus
c=— (=" 5 A).
Substituting this value of c in (5.24) and then applying the Poincaré duality, we obtain
pj(2) — z = —(=1)"" V2 (2 Aj)A;. O
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Definition 5.6.2. The monodromy group of the Lefschetz pencil (X;)ses of X is the subgroup of
® C Aut ( Hn—1(X.,Z)) generated by the monodromies /i, 0

Remark 5.6.3. (a) When n = 2, so that the divisors X are complex curves (Riemann surfaces),
then the monodromy 1; along an elementary loop ¢; is known as a Dehn twist associated with the
corresponding vanishing sphere. The action of such a Dehn twist on a cycle intersecting the vanishing
sphere is depicted in Figure 5.5. The Picard—Lefschetz formula in this case states that the monodromy
is a (right-handed) Dehn twist.
(b) Suppose n is odd, so that

AjxAj=2(—1)"D/2,
Denote by ¢ the intersection form on L := H,_1(X,,Z)/Tors. It is a symmetric bilinear form
because n — 1 is even. An element u € L defines the orthogonal reflection R, : L® R — L ® R
uniquely determined by the requirements

Ry(z) =z + t(z)u, q(u,:n—{- t(;)u) =0, Vxe LR
<= Ry(z) =z — 2qq((i’$)u

We see that the reflection defined by A; is
Rj(z) =z + (=)D 2¢(z, A A; = 2 — (=)D 2g(z, A))A;.

This reflection preserves the lattice L, and it is precisely the monodromy along ;. This shows
that the monodromy group & is a group generated by reflections preserving the intersection lattice
H,_1(X.,Z)/Tors. O

The vanishing submodule
V(X,) : Tmage (01 Hy (X4, X5 Z) = Hy1(%.,2) ) © Hya(K,,2)

is spanned by the vanishing cycles A;. We can now explain why the invariant cycles are called
invariant.

Since V(X,) is spanned by the vanishing spheres, we deduce from (5.11) that

I(X,) :={y € Ho1(X:,Z); yxA; =0, Vj}
(use the global Picard—Lefschetz formula)
={y e Hy1(Xs,Z); pyy=y, i}

We have thus proved the following result.

Proposition 5.6.4. The module 1(X,) consists of the cycles invariant under the action of the mon-
odromy group &. g



Chapter 6

Exercises and Solutions

6.1. Exercises
Exercise 6.1.1. Consider the set
2={(z,a,b,c) eRY; a#0, az’® +br+c=0}.

(a) Show that Z is a smooth submanifold of R*.

(b) Find the discriminant set of the projection

m:2 =R w(z,a,b,c)=(a,b,c). O
Exercise 6.1.2. (a) Fix positive real numbers r1, ..., r,, n > 2, and consider the map
B (Sl)” —C

given by
n
(SH 3 (21,...,2p) — Zrizi eC.
i=1
Show that x = x + 4y is a critical value of /3 if and only if 22 = 2.

(b) Consider the open subset M of (51)" described by Re 3 > 0. Show that 0 is a regular value of
the function

M > Z—Imp(2) e R. 0

Exercise 6.1.3. Suppose g = g(t1,...,t,) : R” — R is a smooth function such that g(0) = 0 and
dg(0) = c1dty + - - - + cpdty, ¢, #0.

The implicit function theorem implies that near 0 the hypersurface X = {g = 0} is described as the
graph of a smooth function

tn =tn(ty, ..., th1) : R S R.

235
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In other words, we can solve for ¢, in the equation g(t1,...,t,) = 0if >, |t;| is sufficiently small.
Show that there exists a neighborhood V' of 0 € R™ and C' > 0 such that for every (¢1,...,tn—1,1,) €

V' N X we have
cit1+---+cp_1tn—
tn I - n—1in-1 ’ <C(t% t721—1)'

Exercise 6.1.4. (a) Suppose f : R — R is a proper Morse function, i.e., f~!(compact) = compact.
Prove that the number of critical points of f is even if lim,_,o f(z)f(—x) = —o0, and it is odd if
lim, 00 f(2) f(—2) = 0.

(b) Suppose f : S — R is a Morse function on R. Show that its has an even number of critical
points, half of which are local minima. O

Exercise 6.1.5. Prove Lemma 1.3.2. O

Exercise 6.1.6. In this exercise we outline a proof of Fenchel’s theorem, Remark 1.3.6. We will use
the notations introduced in Section 1.3. Suppose K is a knot in R? with total curvature Tk = 2.

(a) Show that for any v € R? and any ¢ € R, the sublevel set {h,, < ¢} C K is connected.

(b) Prove that K is a planar convex curve. O

Exercise 6.1.7. Suppose that E is an Euclidean space of dimension N and ¢ : S? — E is a knot.
We denote by (—, —) the inner product on E and by K the image of . We fix a gaussian probability
measure on F,
:z:|2
dvy(x) = (27‘(‘)_%6_Td$.
For every point p € K we have a random variable
gp : E — Ra Ep(m) = (xap)

(a) Find the expectation this random variable, i.e., the quantity

B(&) = /E (@) ().

(b) Let py, p, € K Find the expection of the random variable &, - §p,, i.€., the quantity

E(6p,6p,) = /E p, ()6, (2)d().

(c) Conclude that for any p € K the random variable &, is normally distributed.
(d) Prove the equality (1.16). O

Exercise 6.1.8. Suppose K C R? is smooth curve in the plane without self-intersections. Assume
that 0 ¢ K. Let S be the vector space of symmetric 2 x 2 matrices equipped with the inner product

(A,B) :=tr(A- B).
Denote by 8; the unit sphere in S,
81 := {A €8; trA?= 1},



An invitation to Morse theory 237

and by dS the induced volume form on 8;. For any A € 8; we obtain a function
ga: K =R, ¥— (Az,x).

Corollary 1.2.8 shows that g4 is a Morse function for almost all A € 8;. Denote by N (A) the
number of critical points of ¢4. Express

Nk (A)dS(A)
81

in terms of differential geometric invariants of K. O

Exercise 6.1.9. For every (x,y) € R" x R" we denote by T}, ,, the trigonometric polynomial

n

Tey(8) = Z(l‘k cos kO + yj, sin ),
k=1

and by N (x,y) the number of critical points of T}, , viewed as a smooth map S 1 % R. We set

1
n ‘= N ) A Y )
a area (S2n—1) /Szn1 (@ y)dA(@,y)

where dA denotes the area element on the unit sphere S?*~! C R"™ x R™. Note that j, can be
interpreted as the average number of critical points of a random trigonometric polynomial of degree
< n. Show that

i Hn 3
m — = —.

O

Exercise 6.1.10 (Raleigh-Ritz). Denote by S™ the unit sphere in R"*! equipped with the standard
Euclidean metric (e, ). Fix a nonzero symmetric (n+ 1) x (n+ 1) matrix with real entries and define

fa R SR, f(@) = %(Ax,ar).

Describe the matrices A such that the restriction of f4 to S™ is a Morse function. For such a choice of
A find the critical values of f4, the critical points, and their indices. Compute the Morse polynomial
of f4. O

Exercise 6.1.11. For every vector A = (Ao, ..., A\s) € R™\ 0 we denote by fy + CP" — R the
smooth function

Molzof? 4+ Anlznl?
(1204 -+, 2n]) =
f)\([ 0 n]) |20’2+"‘+|Zn|2

where [29, . . ., 2,] denotes the homogeneous coordinates of a point in CP".

)

(a) Find the critical values and the critical points of fX‘

(b) Describe for what values of X the critical points of f are nondegenerate and then determine their
indices. O
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Exercise 6.1.12. Suppose X, Y are two finite dimensional connected smooth manifolds and f : X —
Y is a smooth map. We say that f is fransversal to the smooth submanifold S if for every s € S,
every x € f~1(s), we have

T.Y =T,S+1Im (Df : T, X — T,Y).

(a) Prove that f is transversal to S if and only if for every s € S, every x € f~1(s), and every smooth
function u : Y — R such that v |g= 0 and du |s# 0 we have f*(du) |7 0.

(b) Prove that if f is transversal to S, then f~!(.S) is a smooth submanifold of X of the same codi-
mension as S — Y. U

Exercise 6.1.13. Let X, Y be as in the previous exercise. Suppose A is a smooth, connected manifold.
A smooth family of submanifolds of Y parametrized by A is a submanifold S C A x Y with the
property that the restriction of the natural projection 7 : A XY — A to S is a submersion 7 : S — A.
For every A € A we set!

Sy:={yeY; Ny eSt=rtA)nS.
Consider a smooth map
F:AXxX =Y, AxX>\a)— fu(z) €Y
and suppose that the induced map
G:AxX =5 AXY, (\z)—= (A filx))
is transversal to S.

Prove that there exists a subset Ag C A of measure zero such that for every A € A\ Ay the map
fr: X — Y is transversal to S). O

Remark 6.1.1. If we let S = {0} x A in the above exercise we deduce that for generic A the point
Yo is a regular value of f) provided it is a regular value of F'. O

Exercise 6.1.14. Denote by (e, ) the Euclidean metric on R"*!. Suppose M C R™*! is an oriented
connected smooth submanifold of dimension n. This implies that we have a smoothly varying unit
normal vector field N along M, which we interpret as a smooth map from M to the unit sphere

S™ C RV,
N = ﬁM M — S,
This is known as the Gauss map of the embedding M « R"*1,
For every unit vector 7 € S™ C R"*! we denote by /5 : R""! — R the linear function

Show that the restriction of £z to M is a Morse function if and only if the vector v € S™ is a regular
value of the Gauss map N. O

INote that the collection (Sx)aen is indeed a family of smooth submanifolds of Y.
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Exercise 6.1.15. Suppose ¥ — R? is a compact oriented surface without boundary and consider the
Gauss map

ﬁz DY — 52
defined as in the previous exercise. Denote by (e, ) : R? x R® — R the canonical inner product.

Recall that in Corollary 1.2.8 we showed that there exists a set A C S? of measure zero such that for
allu € S?\ A the function

by : X =R, ly(z) = (u, )
is a Morse function. For every u € 52\ A and any open set V' C ¥ we denote by Cr,, (U) the set of
critical points of ¢, situated in U. Define

W)= Y (e
z€Cry(U)

and
1 1
= «(V)d = — w(V)d .
(V)= o [ Mot = - [ (Wydotu)

Denote by s : ¥ — R the scalar curvature of the metric g on ¥ induced by the Euclidean metric on
R? and by dVg2 the volume form on the unit sphere S2. Show that

1 [ =, 1
m(u) = M/UNEdVSQ = 471_/Us(a:)dvg(a:)

In particular, conclude that

W) = = [ s@av; o). 0

Exercise 6.1.16. Suppose X — R? is a compact oriented surface without boundary. The orientation
on X defines smooth unit normal vector field

ii: Y — S di(p) LT,%, VpeX.

For every u € R? we denote by ¢, the function
1
qu: X =R, qu(z) = i\x — ul?

We denote by § the set u € R3 such that the function g, is a Morse function. We know that R3 \ 8
has zero Lebesgue measure.

(a) Show that p € X is a critical point of ¢, if and only if there exists ¢ € R such that u = p + r7i(p).

(b) Let u € R3 and suppose p € X is a critical point of u. Denote by g : T,% x T, — R the first
fundamental form of ¥ — R? at p, i.e., the induced inner product on 7,3, and by a : T,£x T,% — R
the second fundamental form (see [Str, 2.5]) of & < R3 at p. These are symmetric bilinear forms.
For every ¢ € R we denote by v,(t) the nullity of the symmetric bilinear form g — ta. Since p is
a critical point of ¢, there exists ¢, = t,(p) € R such that u = p + t,7i(p). Show that p is a
nondegenerate critical point of ¢, if and only if v(¢,,) # 0. In this case, the index of ¢, at p is

Mau,p) = > v(b),
tel,(p)

where I,,(p) denotes the interval consisting of all real numbers strictly between 0 and ¢,,(p).
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(¢)* For every u € 8 and every p € 3 we set

(u,p) (—1)*wP)  p critical point of g,
e(u,p) := .
P 0 p regular point of q,,.

For r > 0and U C ¥ an open subset of > we define
p)= [ (% wp)du
R p€eU, |p—ul|<r

Show that there exist nonzero universal constants cy, co such that

pr(U) = ClT(/UdVg>r+c2</U Sngg)r3

for all r sufficiently small. Above dV, denotes the area form on X while s, denotes the scalar curva-
ture of the induced metric g on X. If U = D.(po) is a geodesic disk of radius € centered at py € %,

then
1

;i{% areag(T(m))W(Dg(po) )=ar+ c3r3s4(po), VO <r < 1.

O

Exercise 6.1.17. Prove the equality (2.1).

Exercise 6.1.18. Consider the group G described by the presentation

G = (a,b|,aba = bab, a?b* = aba"'ba).
(a) Show that ab®a~! = b2, b = bab~!, and a® = 1°.
(b) Show that G is isomorphic to the group
H = (z,y|l2® = y° = (zy)?).
(c) Show that H is a finite group. O

Exercise 6.1.19. Suppose M is a compact, orientable smooth 3-dimensional manifold whose integral
homology is isomorphic to the homology of S3 and f : M — R is a Morse function.

(a) Prove that f has an even number of critical points.
(b) Construct a Morse function on S x S? that has exactly 4 critical points.

(c) A theorem of G. Reeb [Re] (see also [M1, M3]) states that M is homeomorphic to S? if and only
if there exists a Morse function on M with exactly two critical points. Prove that if He(M,Z) =
Ho(S3,7Z) but w1 (M) # {1} (e.g., M is the Poincaré sphere), then any Morse function on M has at
least 6 critical points. O

Remark 6.1.2. Part (c) is true under the weaker assumption that He(M,Z) = He(S3,7Z) but M
is not homeomorphic to S3. This follows from Poincaré’s conjecture whose validity was recently
established by G. Perelman, which shows that M = S3 <= 71 (M) = {1}. However, this result is
not needed in proving the stronger version of (c). One immediate conclusion of this exercise is that
the manifold M does not admit perfect Morse functions!!! O
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Figure 6.1. Cylindrical coordinates.

Exercise 6.1.20. Consider a knot K in R3, i.e., a smoothly embedded circle S < R3. Suppose
there exists a unit vector v € R? such that the function

l,: K - R, {,(x) = (u,z) = inner product of u and =

is a function with only two critical points, a global minimum and a global maximum. Prove that K
must be the unknot. In particular, we deduce that the restriction of any linear function on a nontrivial
knot in R? must have more than two critical points!

Exercise 6.1.21. Construct a Morse function f : S — R with the following properties:

(a) f is nonresonant, i.e., no level set { f = const} contains more than one critical point.
(b) f has at least four critical points.

(c) There exist orientation preserving diffeomorphisms R : S — 52, L : R — R such that
—f=LofoR. U

Exercise 6.1.22 (Harvey—Lawson). Consider the unit sphere

S ={(z,y,2) e R3 22+ 42 +22=1}
and the smooth function f : S? — R, f(z,y, z) = z. Denote by N the north pole N = (0,0, 1).
(a) Find the critical points of f.

(b) Denote by g the Riemannian metric on S? induced by the canonical Euclidean metric gy =
dz? + dy? + dz* on R3. Denote by w, the volume form on S? induced by g and the orientation of S>
as boundary? of the unit ball. Describe g and wg in cylindrical coordinate (6, z) (see Figure 6.1):

x=rcosf, y=rsinf, r=+1-22 0¢€l0,2n], z€[-1,1].

(c) Denote by V f the gradient of f with respect to the metric g. Describe V f in the cylindrical
coordinates (6, z) and then describe the negative gradient flow
dp

7 —Vf(p) (6.1)

ZWe are using the outer-normal-first convention.
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as a system of ODEs of the type

{9’ = A(0,2)
i = B(6,2) "’

where A, B are smooth functions of two variables, and the dot denotes differentiation with respect to
the time variable .

(d) Solve the system of ODEs found at (c).

(e) Denote by ®; : S? — S2, ¢ € R, the one parameter group of diffeomorphisms of 52 determined
by the gradient flow® (6.1) and set w; := ®;w,. Show that for every t € R we have

52 S2

and there exists a smooth function )\; : S? — (0, 0o) that depends only on the coordinate z such that
. : _ 2
W = A¢ - Wy, tllglo A(p) =0, ¥Ype S°\N.

Sketch the graph of the function \; for |¢| very large.

(f) Show that for every smooth function v : S 2 5 R? we have

t1i>120 . u-wp = u(N) /52 Wy (6.2)
and then give a geometrical interpretation of the equality (6.2). O
Exercise 6.1.23. Prove the equality (3.3). O

Exercise 6.1.24. Suppose V' is a finite dimensional real Euclidean space. We denote the inner product
by (e, ). We define an inner product on the space End (V') of endomorphisms of V' by setting

(S,T) :=tr(ST™).

Denote by SO(V) C End(V) the group of orthogonal endomorphisms of determinant one, by
End (V) the subspace of symmetric endomorphisms, and by End_ (V') the subspace of skew-
symmetric endomorphisms.

(a) Show that End_ (V') is the orthogonal complement of End (V') with respect to the inner product

(o, 0).

(b) Let A € End (V') be a symmetric endomorphism with distinct positive eigenvalues. Define
fa:SO(V) =R, Tw— —(AT).

Show that f 4 is a Morse function with 2"~ critical points, where n = dim V" and then compute their
indices.

(¢) Show that the Morse polynomial of f4 is
Po(t)=(1+1t)---(1+t"h). O

3In other words, for every p € S2 the path t — & (p) is a solution of (6.1).
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Remark 6.1.3. As explained in [Ha, Theorem 3D.2] the polynomial
(1+t)--- (14t

is the Poincaré polynomial of SO(n) with Z/2 coefficients. This shows that the function f4 is a
7./ 2-perfect Morse function. O

Exercise 6.1.25. Let V and A € End(V) be as in Exercise 6.1.24. For every S € SO(V') we have
an isomorphism

TsSO(V) = T1SO(V), X — XS 1.
We have a natural metric g on SO(V') induced by the metric (e, ®) on End(V').
(a) Show that for every S € SO(V') we have
2VIfa(S) = —-A" + ASA.
(b) Show that the Cayley transform
X=YX)=010-X)14+X)"!

defines a bijection from the open neighborhood U of 1 € SO(V) consisting of orthogonal transfor-
mations S such that det(1 + ) # 0 to the open neighborhood O of 0 € End_ (V') consisting of
skew-symmetric matrices Y such that det(1 + Y") # 0.

(c) Suppose Sy is a critical point of f4. Set Us, = Ug,. Then Ug, is an open neighborhood of
So € SO(V), and we get a diffeomorphism

Ysy : Ug, — O, Ug, 2T+ Y(T'Sy),

Thus we can regard the map Yg, as defining local coordinates Y near Sy. Show that in these local
coordinates the gradient flow of f4 has the description

Y = AS)Y — Y AS.
(d) Show that for every orthogonal matrix Sy, the flow line through Sy of the gradient vector field
2V f 4 is given by

t— <sinh(—At) + cosh(—At)So) ) <cosh(—At) + sinh(—At)Sy ) _1. 0

Exercise 6.1.26. Suppose V is a finite dimensional complex Hermitian vector space of dimension 7.
We denote the Hermitian metric by (e, e), the corresponding norm by | e |, and the unit sphere by
S = S(V). For every integer 0 < k < dim V' we denote by G (V') the Grassmannian of complex
k-dimensional subspaces in V. For every L € G(V) we denote by P, : V' — V the orthogonal
projection onto L and by L the orthogonal complement. We topologize G (V') using the metric

d(Ly, L2) = [P, — Pr,||-

Suppose L € Gi(V)and S : L — L is a linear map. Denote by I's € Gy(V) the graph of the
operator S, i.e., the subspace

Is={z+Sz; zellcLeLt=V.

We thus have a map
Hom(L, L) 3 S+ T's € G(V).
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(a) Show that for every S € Hom(L, L) we have
Ig={-y+Sy yelt}cL+alL,
where S* : L+ — L is the adjoint operator.
(b) Describe Pr in terms of P, and S. Fort € R set L; = I';s. Compute % lt=0 Pr,.
(c) Prove that the map
Hom(L,LY) 5 S+ I's € Gi(V)

is a homeomorphism onto the open subset of G(V) consisting of all k-planes intersecting L=
transversally. In particular, its inverse defines local coordinates on G (V') near L = I's—g. We
will refer to these as graph coordinates.

(d) Show that for every L € G (V) the tangent space 17, G (V) is isomorphic to the space of sym-
metric operators P : V' — V satisfying

P(L)c L*, PL* c L.
Given P as above, construct a linear operator S : L — L» such that

d )
%‘tZOPFtS:P I:l

Exercise 6.1.27. Assume that A : V' — V is a Hermitian operator with simple eigenvalues. Define
hy : Gk(V) — R, hA(T) = —Retr APy,

(a) Show that L is a critical point of h 4 if and only if AL C L.
(b) Show that h 4 is a perfect Morse function and then compute its Morse polynomial. O

Remark 6.1.4. The stable and unstable manifolds of the gradient flow of /14 with respect to the metric
g(P,Q) = Retr(P,Q) coincide with some classical objects, the Schubert cycles of a complex
Grassmannian. O

Exercise 6.1.28. Show that the gradient flow the function f4 in (3.4) is given by (3.5). Use this to
conclude that f4 is Morse-Bott.

Exercise 6.1.29. Suppose V' is an n-dimensional real Euclidean space with inner product (e, ) and
AV — V is a selfadjoint endomorphism. We set

SV)={veV; v=1}

and define

fa:S(V) =R, f(v)=(Av,v).
For 1 < k < n = dimV we denote by G (V') the Grassmannian of k-dimensional vector subspaces
of V and we set

A = M (A) == i .
g #(A) EG%L?V)veEmmak;%V)fA(v)

Show that
A(A) < Aa(4) < < A(4)

and that any critical value of f4 is equal to one of the Ag’s. O
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Exercise 6.1.30. Prove Proposition 4.2.4. O
Exercise 6.1.31. Prove Lemma 4.1.11. a
Exercise 6.1.32. Prove Lemma 4.2.8. a
Exercise 6.1.33. Prove the claims in Example 4.2.12(c), (d). O
Exercise 6.1.34. Prove Proposition 4.2.13. O
Exercise 6.1.35. Prove Proposition 4.4.2. O

Exercise 6.1.36. Suppose V is a vector space equipped with a symplectic pairing
w:VxV =R

Denote by I, : V — V™ the induced isomorphism. For every subspace . C V we define its
symplectic annihilator to be

L¥ :={veV; wvx)=0 Vo e L}.
(a) Prove that
LY=L ={aecV" (a,v)=0, YoeL}.
Conclude that dim L + dim L* = dim V.

(b) A subspace L C V is called isotropic if L C L. An isotropic subspace is called Lagrangian if
L = L*. Show that if L is an isotropic subspace then

0<dimL < %dimV

with equality if and only if L is lagrangian.
(c) Suppose Lo, Ly are two Lagrangian subspaces of V' such that Lo N L; = (0). Show that the
following statements are equivalent.
(c1) L is a Lagrangian subspace of V' transversal to L.
(c2) There exists a linear operator A : Ly — L1 such that
L={z+Az; z€ Lo}

and the bilinear form

Q:Lox Lo =R, Qz,y) =w(,Ay)
is symmetric. We will denote it by Qr,, 1, (L).

(d) Show that if L is a Lagrangian intersecting L transversally, then L intersects Lg transversally if
and only if the symmetric bilinear form Qr,, 1, (L) is nondegenerate. O

Exercise 6.1.37. Consider a smooth n-dimensional manifold M. Denote by E the total space of the
cotangent bundle 7 : T*"M — M and by 8 = 0;; the canonical 1-form on £ described in local

coordinates (&1, ..., &m, zt, ..., ™) by
0=> &da'.
i
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Let w = —df denote the canonical symplectic structure on . A submanifold . C F is called
Lagrangian if for every x € L the tangent subspace 7, L is a Lagrangian subspace of T, F.

(a) A smooth function f on M defines a submanifold I'js of E, the graph of the differential. In local
coordinates (&;; z7) it is described by

Show that I'g is a Lagrangian submanifold of .

(b) Suppose x € M is a critical point of M. We regard M as a submanifold of £ embedded as the
zero section of 7" M. We identify x € M with (0,z) € T*M. Set

Lo=TM CTonE, L1i=T;M CTonE, L=TouTq CTiomkE.
They are all Lagrangian subspaces of V' = T{q ,) E. Clearly Lo th Ly and L th L;. Show that
QrLo.L, (L) = the Hessian of f atx € M. (6.3)

(c) A Lagrangian submanifold L of E is called exact if the restriction of € to L is exact. Show that
4 is an exact Lagrangian submanifold.

(d) Suppose H is a smooth real valued function on . Denote by X the Hamiltonian vector field

associated with H and the symplectic form w = —df. Show that in the local coordinates (£;, 27) we
have 5 5
H H
Xpg= — 0y — — 0.
Show that if L is an exact Lagrangian submanifold of E, then so is ®/7(L) for any ¢ € R. O

Exercise 6.1.38. We fix a diffeomorphism
R x St — T*St, (€£,0) — (£db,6),
so that the canonical symplectic form on 7*S" is given by
w=df NdE.
Denote by Ly C T*S! the zero section.

(a) Construct a compact Lagrangian submanifold of 7*S" that does not intersect Ly.

(b) Show that any compact, exact Lagrangian, oriented submanifold L of T*S' intersects L in at
least two points. O

Remark 6.1.5. The above result is a very special case of Arnold’s conjecture stating that if M is
a compact smooth manifold then any exact Lagrangian submanifold 7* M must intersect the zero
section in at least as many points as the number of critical points of a smooth function on M. In
particular, if an exact Lagrangian intersects the zero section transversally, then the geometric number
of intersection points is no less than the sum of Betti numbers of M. g

Exercise 6.1.39. Consider the tautological right action of SO(3) on its cotangent bundle
T*SO(3) x SO(3) 5 (¢, hi g) > (10, Ry(h) = hg),

where
Rz,l : TghSO(?)) — ThSO(3)
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is the pullback map. Show that this action is Hamiltonian with respect to the tautological symplectic
form on 7%SO(3) and then compute its moment map

p:T*SO(3) — s0(3)". 0
Exercise 6.1.40. Consider the complex projective space CP" with projective coordinates 2 = [2°, ..., 2"].

(a) Show that the Fubini—Study form
n
w=i00log|Z, |22 =" |ul?
k=0

defines a symplectic structure on CP",

(b) Show that the action of S* on CP" given by

e [z0,...,2n) = [, ez, ez, .., e"itzn]

is Hamiltonian and then find a moment map for this action. g

Exercise 6.1.41. Let (M, w) be a compact toric manifold of dimension 2n and denote by T the
n-dimensional torus acting on M.

(a) Prove that the top dimensional orbits of T are Lagrangian submanifolds.

(b) Prove that the set of points in M with trivial stabilizers is open and dense. O

Exercise 6.1.42. (a) Let T be a compact torus of real dimension n with Lie algebra t. A character of
T is by definition a continuous group morphism y : T — S. We denote by T set of characters of
T. Then T is an Abelian group with respect to the operation

(1 x2)(®) = x1(t) - x2(t), T, x1,x2€T.
(a) Show that the natural map

(T,) 3 x — (dX)|i=1 € (t*,+)
is an injective group morphism whose image is a lattice of t*, i.e., it is a free Abelian group of rank
n that spans t* as a vector space. We denote this lattice by A.

(b) Consider the dual lattice

AY := Homz(A,Z) C T,
Show that A" is a lattice in ¢t and

T=¢/A.

(c) There exists a unique translation invariant measure A on t such that the volume of the quotient
T := t/A" isequal to 1. Equivalently, A is the Lebesgue measure on T normalized by the requirement
that the volume of the fundamental parallelepiped of AV be equal to 1. Suppose we are given an
effective Hamiltonian action of T of a compact symplectic manifold (M, w) of dimension 2n =
2dim T. Denote by p a moment map of this action. Show that

1
me" = voly (u(M)). 0

Exercise 6.1.43. Prove that there exists no smooth effective action of S' on a compact oriented
Riemann surface X of genus g > 2. O



248 Liviu I. Nicolaescu

Exercise 6.1.44. Let G = {£1} denote the (multiplicative) cyclic group of order two, and Fy denote
the field with two elements. Then G acts on S by reflection in the center of the sphere. The quotient
is the infinite dimensional real projective space RIP>°. The cohomology ring of RIP>° with coefficients
in [Fy is

H.(]RIP)OO,FQ) = R:= Fg[t], degt =1
For every continuous action of GG on a locally compact space X we set

X¢ = (5% x X)/G,

where GG acts by
t-(v,x)=(t-v,t7'z), Vt€G, veS®, zeX.
Set
Hg(X):= H*(Xg,Fa).
Observe that we have a fibration

X < Xg — RP*™,

and thus H;(X) has a natural structure of an R-module. Similarly, if Y is a closed, G-invariant
subset of X we define

He(X,Y) = H*(Xa, Yo; Fa).
A finitely generated R-module M is called negligible if the Fa-linear endomorphism
t:M—>M, m—t-m,
is nilpotent.

(a) Show that if G acts freely on the compact space X then H¢(X) is negligible.

(b) Suppose X is a compact smooth manifold and G acts smoothly on X. Denote by Fix(X) the
fixed point set of this action. Show that [ is a compact smooth manifold. Show that Hg (X , Fixg(X) )
is negligible.

(c) Prove that

> dimp, B (Fixg(X),F2) < ) dimg, H*(X,Fy). O
E>0 k>0

Exercise 6.1.45. Consider a homogeneous polynomial P € R[z,y, z] of degree d. Define

X(P) = {[r,y,2] € RP*; P(z,y,2)=0}.

For generic P, the locus X (P) is a smooth submanifold of RP? of dimension 1, i.e., X(P) is a
disjoint union of circles (ovals). Denote by n(P) the number of these circles. Show that

n(P)§1+(d_1)2(d_2). O

Exercise 6.1.46. Prove Lemma 3.7.2. O
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Exercise 6.1.47. Suppose M is a compact, connected, orientable, smooth manifold without boundary.
Set m := dim M. Fix an orientation or on M. Denote by H*(M ) the De Rham cohomology of M.
For 0 < k < m we set
H(M) := Hom(H"*(M),R).
The Kronecker pairing
(=, =) : H¥(M) x Hy(M) - R, H¥(M) x Hy(M) 3 (a, 2) — (o, 2)
is the natural pairing between a vector space and its dual.

The orientation or ), determines an element [M| € H,,(M) via

@)= [

where 7, denotes an m-form on M whose De Rham cohomology class is a.

Observe that we have a natural map
PD : H" ®(M) — H,(M),
so that for o € H™*(M) the element PD(«) € Hy, (M) is defined by
(8, PD(c)) = (a U 8, [M]).

The Poincaré duality theorem states that this map is an isomorphism.

A smooth map ¢ : M — M induces a linear map ¢. : Ho(M) — Ho(M) defined by the
commutative diagram

*

H (M) 2 H*(M)

(a) Show that if ¢ is a diffeomorphism, then for every « € H*(M) and every smooth map ¢ of M
we have

6.(PDa) = (deg 8) - PD((¢7})"a).
(b) Suppose S is a compact oriented submanifold of M of dimension k. Then S determines an
element [S] of Hi(M) via

(o, 1S]) = /S o Ve

where 7, denotes a closed k-form representing the De Rham cohomology class a. Any diffeomor-
phism ¢ : M — M determines a new oriented submanifold ¢(S) in an obvious fashion. Show
that

¢«[S] = [9(5)]- O

Exercise 6.1.48. Consider two homogeneous cubic polynomials in the variables (zg, 21, 22). The
equation

toAo(20, 21, 22) + tT A1 (20, 21,22) =0
defines a hypersurface Y, in P? x P!,

(a) Show that for generic Ay, A1 the hypersurface Y,, is smooth.
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(b) Show that for generic Ag, A1 the natural map Y,, — P! induced by the projection P? x P! — P!
is a nonresonant Morse map.

(c) Show that for generic Ag A; the hypersurface Y7 is biholomorphic to the blowup of P? at the nine
points of intersection of the cubic {Ag = 0} and {A4; = 1}. (See Example 5.1.5.)

(d) Using the computations in Example 5.2.10 deduce that for generic A, A; the map X,, — P! has
precisely 12n critical points. Conclude that

X(Xy,) = 12n.

(e) Describe the above map X,, — P! as a Lefschetz fibration (see Definition 5.1.2) using the Segre
embeddings
]Pyk < P N ]P)(k-‘rl)(m-i-l)—l

PEx P™ 5 ([(zi)o<i<k) [(Uj)o<i<m] ) = [(@is)oisk, 0<j<m] € PETDMHD=L,

6.2. Solutions to Selected Exercises

Exercise 6.1.6. (a) The equality T = 2m and the identity (1.14) imply that for almost any unit vector
v the height function h,, has only two critical points. Show that for such a function the sublevele sets
{hs < c} are connected. Hence, for a dense collection of unit vectors v, all the sublevel sets of h,,
are connected. To prove that this is true for any v argue by contradiction using the above density.

(b) Use part (a) to show that for any three non-collinear points x,y,z € K on K the plane
determined by these three points intersects K along a connected set. Deduce from this that K is
planar. Once K is planar, the convexity follows easily from the equality T = 27 and (a). O

Exercise 6.1.8. Fix an arclength parametrization [0, L] > s — Z(s) € K, where L is the length of
K. Define

Ik ={(Z,A) € K x 81; AT L TzK }.
Show that J is a two-dimensional smooth submanifold of K x 8;. Denote by g the induced metric.
The submanifold Jx comes with two natural smooth maps

K&K g, PEg

Denote by |J| the Jacobian of px . The area formula implies

Nic(4)dS(A) = / T Vi

S1 JK
The second integral can be computed using Fubini’s theorem. Here are some details. Consider the
oriented Frenet frame (Z/(s), 7i(s)) along K, and decompose § along this frame

#(s) = a(s)(s) + B(s)(s).
Note that since 0 ¢ K we have
a(s)? + B(s)* #0.

For any 6 € [0,27] denote by A(s,6) € 8; the symmetric linear transformation of R? which with
respect to the Frenet frame is represented by the matrix

—cB(s) ca(s)

ca(s) sinf

)
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where c is determined by the equality tr A(s, )% = 1, i.e.,

cosf
cv/2a(s)? 5)2 = cos c=c(s,0) = .
VBT = cost = = el ) =

Denote by (¢, €2) the canonical basis of R?. We can write
#'(s) = cos ¢(s)é€1 + sin ¢(s)

.
Denote by Rys) the counterclockwise rotation of R? of angle ¢(s). With respect to the frame (1, €2)
the linear map A(s, 0) is represented by the matrix

T(5.0) = Ruto | core)) oy | Rooto
The map
R/LZ x R/27Z > (s,0) — (z(s),T(s,0),) € K x 8;. (6.4)

is a diffeomorphism onto Ji. The volume form dVx can be written as
dVy, = wi(s,0)dsdb,

where wg (s, 0) is a positive function that can be determined explicitly from (6.4). In the coordinates
(s,0) the map pg takes the form

(s,0) — T(s,0), (6.5)
while the map A\ takes the form (s,6) — s. The equality (6.5) can be used to determined the
Jacobian | Jx|(s, 0) of pr. We deduce that

[ Ni(ayas, = /0 ! ( /0 : \JK\(s,H)wK(s,Q)cw) ds. .

Exercise 6.1.12. Let z € X and s = f(x). Set
U=T,X, V=T W=1T,Y, T=Df:U—YV, R=rangeT.
For every subspace £ C W we denote by E+ C W* its annihilator in TW*,
Et+ = {w eW*;, (w,e) =0,Ve € E}

We have
ftransversalto S <= R+ V =W <= (R+ V)L =0.
On the other hand,
(R+V)*=R'nvt, RY =kerT™,
so that

kerT*NV+ =0.
If u is a function on Y then dugs € W*. If u|g = 0 we deduce dug € VL. Then
fr(du)y = T*(duls)
and thus
Fdu)y =0 <= dug e ker T* NV = 0.
(b) Let ¢ = codim S. Then S is defined near s € .S by an equality
u' = =u®=0, du’lslinearly independent in T*S,
and f~1(9) is defined near x € f~! by the equality

v'=0, i=1,...,¢c, v'— fru".
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We have A A
D Nidvi =0, N eR= f*(du), =0, u=>» I,

and from part (a) we deduce dus = 0 € 1, S. Since dui are linearly independent, we deduce A; = 0,
and thus dv’, are linearly independent. From the implicit function theorem we deduce that f~1(S) is
a submanifold of codimension c. O

Exercise 6.1.13. Set
Z={(z,\) e X xA; (\fi(z))eS}=aG"1S9).

Denote by ¢ : Z — A the restriction to Z of the natural projection X x A — A and let
Zy=CtN2{reX; (N eZ}=F"(S)).

Sard’s theorem implies that there exists a negligible set Ay C A such that for every A € A\ Ay either
the fiber Z, is empty or for every (x, \) € Z) the differential

Gt T Z = Tl
is surjective. If Z) = (), then f) is tautologically transversal to S).
Let (o, o) € Z such that ( : Tz 00)Z — ThoA is onto. Set (yo, Ao) = G(z0, Ao) € S,
X = T, X, Y = TyY, A= Ty, A,
S = Tor)S: S0 =Ty Sy, Z:=T, Z.

40,20) x0,M0)

Decompose the differential F, of F" at (xq, Ag) in partial differentials
A=D\F:A—Y, B=D,F=D,f\,: X =Y.
The transversality assumption on G implies that
YOA=S+G.(X®A). (6.6)
Observe that _ ' .
So=SN{Y @0).
Moreover, our choice of (xg, Ag) implies that (. : Z C X & A — A is onto. We have to prove that
YV = B(X) + So.
Let gg € Y. We want to show that ¢y € B (X )+ So. From (6.6) we deduce
(i, No) € X @A, (41,\1) €S
such that
(40,0) = G+ (0, ho) + (91, A1) <= (90, 0) = (AXo + Bio, ho) + (1, M).
Thus \; = —\o and (i, —}\0) € S and
(41, \o) = (Ao + B, Ao) + (91, — o) -
€s

On the other hand, g lies in the image projection (s : Z — A, so that 3 € X such that (21, }\0) €
Z. Since G Z C S, we deduce

G*(x'l,).\o) € S < (A)\o +Bj31,).\0) € S
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Now we can write
(90,0) = G*((!to,j\o) - (iﬁl,/.\o)) + G (1, Ao) + (91, —Mo)
— T
es s

< (90,0) = (B(@o — 41),0) 4 (Biy + Axg + 91,0) .

GSO
This proves that 5o € B(X) + Sp. 0

Exercise 6.1.14. Let ¥ € S™ and suppose = € M is a critical point of /7. Modulo a translation we
can assume that x = 0. We can then find an orthonormal basis (e, ..., ey, €,4+1) With coordinate
functions (z!,...,2"*!) such that 7 = e, 1. From the implicit function theorem we deduce that
near 0 the hypersurface M can be expressed as the graph of a smooth function

" = f(z), z= (', 2", df(0) =0
Thus (x!,...,2") define local coordinates on M near 0. The function £; on M then coincides with
the coordinate function 2"t = f(x).
Near ;11 € S™ = {(y},...,y"") € R, 3. |y¥|? = 1} we can choose y = (y*,...,y")

as local coordinates. Observe that

NM(Q?) - ! 1/2 (en+1 - vf)

1+ IVf?)
In the coordinates z on M and y on S™ the Gauss map Ny : M — S™ is expressed by

1
A+ e

For simplicity, we set g = —V f and we deduce that
DONM : T(]M — Te

NM({L‘) = —

n+1
n+1S

is equal to
1 1 1
D——m— ::d(i) =0+ ————75D9g|z=0-
(il = gy e gy Dol
Since g(0) = 0 and Dg|,—o = —H, we conclude that
1 1

——————Glpm=0=—————~<Hyo-
(g = TRy
Hence 0 € M is a regular point of N/ if and only if det Hj, o # 0, i.e., 0 is a nondegenerate critical
point of f. O

DoNy =D

Remark 6.2.1. The differential of the Gauss map is called the second fundamental form of the hyper-
surface. The above computation shows that it is a symmetric operator. If we denote by Ay, ..., A, the
eigenvalues of this differential at a point x € M, then the celebrated Theorema Egregium of Gauss
states that the symmetric combination ), ,; A;A; is the scalar curvature of M at x with respect to
the metric induced by the Euclidean metric in R"*!. In particular, this shows that the local minima
and maxima of £ are attained at points where the scalar curvature is positive.

If ¥ is a compact Riemann surface embedded in R3, then /; has global minima and maxima and
thus there exist points in X where the scalar curvature is positive. Hence, a compact Riemann surface
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equipped with a hyperbolic metric (i.e., scalar curvature = —2) cannot be isometrically embedded in
R3. O

Exercise 6.1.15. To prove the equality

1 -
m(u) = - / NtdVse
4 U
use Exercise 6.1.14. The second equality follows from the classical identity,[Nil, Example 4.2.14],
[Str, Sections 4-8, p. 156]
NgdVge = gdvg.
O

Exercise 6.1.16. See [BK, Section 4]. O

Exercise 6.1.19. (a) Suppose f is a Morse function on M. Denote by P(t) its Morse polynomial.
Then the number of critical points of f is Pr(1). The Morse inequalities show that there exists
@ € Z[t] with nonnegative coefficients such that

Py(t) = Pu(t) + (1 +0)Q(1). ()
Since M is odd dimensional and orientable, we have x (M) = 0 and we deduce
Pi(—=1) = PM(—1) = x(M) = 0.
Finally, note that
P¢(1) = Pp(—1) mod 2 = Py(1) € 27Z.
(b) For every n > 1 denote by S™ the round sphere

st ={ («°,...,2") e R"H1; Z]:r’\z =1}.

The function h,, : S™ — R, h,, (20, ..., 2™) = 2™ is a perfect Morse function on S” because its only
critical points are the north and south poles. Now consider the function

hn 2 S™ X 8™ = R, Ty (2,y) = ha(x) + hin(y).
One can check easily that

(c) Suppose Ho(M,Z) = Ho(S3,Z) and f has fewer than 6 critical points, i.e., Pr(1) < 6. Since
Py (1) is an even number, we deduce Pr(1) = 2,4. On the other hand, the fundamental group of M
is nontrivial and non Abelian. This means that any presentation of 71 (M) has to have at least two
generators. In particular, any C'W decomposition of M must have at least two cells of dimension
1. Hence the coefficient of ¢ in Py(t) must be at least two. Since f must have a maximum and
a minimum, we deduce that the coefficients of t and t3 in Py are strictly positive. Now using
Py (t) < 6 we conclude that

Pp(t) =1+ 2t + 3.
However, in this case Pr(—1) =1 — 3 # x(M). O
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Exercise 6.1.20. The range of /,, is a compact interval [m, M|, where

m =min¥,, M =max/¥,, m < M.
K K

Observe that for every ¢ € (m, M) the intersection of the hyperplane

{(u, ) =t}
with the knot K consists of precisely two points, By(t), B (t) (see Figure 6.2). The construction of
the unknotting isotopy uses the following elementary fact.

Figure 6.2. Unwinding a garden hose.

Given a pair of distinct points (Ag, A1) € R? x R2, and any pair of continuous functions
By, By : [0,1] — R?
such that
By(0) = Ao, B1(0) = A1, By(t) # Bi(t), Vte[0,1],
there exist continuous functions
A:[0,1] = (0,00), S:[0,1] = SO(2)
such that A\(0) = 1, Sp = 1 and for every ¢t € [0, 1] the affine map
T; : R? — R?, Ty(z) = Bo(t) + A(t)Si(z — Ap)

maps Ag to By(t) and A; to By (t).

To prove this elementary fact use the lifting properties of the universal cover of SO(2) = S1. O
Exercise 6.1.21. Consider the S-shaped embedding in R? of the two sphere depicted in Figure 6.3.
The height function h(z,y,2) = z induces a Morse function on S? with six critical points. This

height function has all the required properties. O

Exercise 6.1.22. We have
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Figure 6.3. An embedding of S? in R3.

and therefore the gradient flow equation (6.1) has the form
t=(22-1), 6=0, 2(0) =z, 6(0) =6y, ze€[-1,1].
This equation is separable and we deduce
dz
22 -1
Integrating form 0 to ¢ we deduce

1 1 1 1
log(i—'—z) = 10g<e_2t +ZO) SN e
1—=z 1— 2 1—2z 1— 2

—dt<:>< 1 + 1
- z+1 1—=z2

)dz — _2dt.

‘We conclude that

C(z) — * 1
z=¢(z0) := ng;_i_;t, C(z) := li_z
Hence
Py(2,0) = (¢u(2),0).
Now

d
Wg = doNdz = )\t(Z) = dzgzﬁt(z).

Using the equalities

2e? 2
—, C(z) = -1
C(z) +e2t’ (2) 1—2

de(z) =1—

we deduce
2€2t

(z = 1)*(C(2) + €*)*’
which shows that as t — oo \; converges to 0 uniformly on the compacts of S?\{N} = S\ {z = 1}.
Let u € C°°(S?) and set ug = u(NN). Then

() - oo

Set v = u — up. Fix a tiny disk D, of radius € > 0 centered at the north pole. We then have

/ VWi / VAWy / VAW
52 . 52\ D,
—_— —

A(t,e) B(te)

A=

< +
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Then

A(t,e) < (sll)lp |v|) /D wt < (SBPW‘)a

€ € >

while
B(t,e) < area (5°) -suplo| - sup [\ = 0.

S2 S2\D,
VWt
52

VWt
52

Since v is continuous at the north pole and at that point v = 0, we deduce

li ( ) — 0.
N0 SB?'”'

This proves

0 < liminf

< lim sup
t—o00

t—o00

< (sgﬁpv]), Ve > 0.

Hence

lim vwy = 0.

t—o0 SQ

g

Exercise 6.1.23. Consider the m-dimensional torus 7™ with angular coordinates (¢!, ..., ¢™). De-
note by A,,, the “diagonal” simple closed curve given by the parametrization ¢’(t) = t, t € [0,27] ,
i = 1,...,m. Denote by [A,,] the 1-dimensional homology class determined by this oriented. For
t=1,...,m we define E; to be the simple closed curve given by the parametrization

o =6/t, Tel0,,2n],1 <j<m.

We want to prove that

m
[Am] = [E]
i=1
The depicted in Figure 6.4 in the case m = 3
E;
I
|
| A
AJ
E2
- - /

Figure 6.4. A fundamental domain for the lattice (277Z)3.

The cube denotes the fundamental domain of the lattice (27r7Z)3. The torus is obtained by identi-
fying the faces of this cube using the gluing rules

=zt +2r, i=1,2,3.
We have the equalities of simplicial chains

Az — Ay — E3 = boundary of triangle, As — Fy — E5 = boundary of triangle.



258 Liviu I. Nicolaescu

These lead to identities in homology
[As] = [Ag] + [E5], [Ag] = [En] + [En].

The argument for general m should now be obvious. O

Exercise 6.1.24 Let n := dim V. Then

dim End_ (V) = (Z) dim End (V) = <”; 1)

and thus
dim End_ (V) + dim End, (V) = n? = dim End(V').
If S € End_(V)and T € Endy (V) ,then
(S, T)=tr ST =tr ST = —tr ST = —txr T'S* = —(T, S)
so that
(S, T) = 0.
This completes part (a).
(b) Observe that 73 SO(V)) = End_ (V). Fix an orthonormal basis
{ei; 1= 1,2,...,n}
of V consisting of eigenvectors of A,
Ae; = Ne;.
We assume \; < \;if i < j.
If T € SO(V) is a critical point of f 4, then for every X € End_ (V') we have

4
dt lt=0
From part (a) we deduce that 7’ is a critical point of f4 if and only if AT is a symmetric operator, i.e.,

AT =T*A=T 'A<+ TAT = A.
If T is described in the basis (e;) by the matrix (té),

Tej = Ztéei, Vj,
i

then the symmetry of AT translates into the collection of equalities

Aith = A\jt], Vi, j.

fa(TeX) =0« tr ATX =0, VX € End_(V).

We want to prove that these equalities imply that t;- =0, Vi # j,ie., T is diagonal.

Indeed, since 7' is orthogonal we deduce that the sum of the squares of elements in any row, or in

any column is 1. Hence
. N2 '
1= ()2 = Z(AJ) ()2, ¥i.
. . (2
J J
We let ¢ = 1 in the above equality, and we conclude that
noo A2
1=300) = 3 (5) @)

J=1 J=1
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Aj > AL Vj#1)
n
> (1) =
j=1
The equality can hold if and only if t{ = t]l = 0, Vj # 1. We have thus shown that the off-diagonal
elements in the first row and the first column of 7" are zero. We now proceed inductively.

We assume that the off-diagonal elements in the first k£ columns and rows of I" are zero, and we
will prove that this is also the case for the (k£ + 1)-th row and column. We have

1= Z(ti:—&—l) :Z< Y ) (ti-u)
j=1

= Akt
\j .
= Z()\ ) lc+1 Z k+1 = Z(tiﬂ) =1
jok kL >k =1

Since \j > Apy1if j > k + 1, we deduce from the above string of (in)equalities that
o =t1=0, Vi#k+1.

This shows that the critical points of f, are the diagonal matrices

Diag(eq,...,€ = ﬁ

(5) +(5) +(3) oo

Fix a vector € € {—1, 1}" with the above properties and denote by 7= the corresponding critical point
of f4. We want to show that T is a nondegenerate critical point and then determine its Morse index,

A(E).
A neighborhood of T=in SO(V') can be identified with a neighborhood of 0 € End_ (V) via the
exponential map

Their number is

End_ (V)3 X — Tezexp(X) € SO(V).
Using the basis (e;) we can identify X € SO(V') with its matrix (x;) Since mz = —l'g we can use
the collection
{x;, 1§j<i§n}
as local coordinates near 7. We have
1
exp(X) =1y + X + 5X2 +0(3),
where O(r) denotes terms of size less than some constant multiple of || X||" as || X|| — 0. Then
1

fa(Teexp(X)) = fa(Te) — S tr

Thus the Hessian of f4 at T is given by the quadratic form

(AT:X?) 4+ O(3).

J—C;(X):—%tr( T-X?) = — Z
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1 & . 1 .
=3 > ghilag)? = 3 Yo (e e (@)
Ji,k=1 1<j<k<n

The last equalities show that J{. diagonalizes in the coordinates (azfc) and its eigenvalues are

ik = k(€)== (A + exAp), 1<k <j<n.
None of these eigenvalues is zero, since 0 < A\, < A; if k& < j. Moreover,

pin(€) <0 <= €, <0 or € <0 <e¢.
—— ——
Type 1 Type 2
For i = 1,2 we denote by \;(€) the number of Type i negative eigenvalues 11 (€) so that
A(€) = A1(€) + A2(€).
We set
Zz:={j; € <0}, v(€):=#Zz

Observe that v(€) is an even, nonnegative integer. The number of Type 1 negative eigenvalues is then

M@ =) #{ke 2z k<j}—< 7)

JjE€EZZ
On the other hand, we have
=Y #lk#Zs k<j}.
J€Ze
Hence
MO =M@+ 0@ =D #{k<i}= ) G-1)=> ji-v@
Jj€Zz J€Zz J€Ze

(¢) To find a compact description for the Morse polynomial of f4 we need to use a different kind of
encoding. For every positive integer k we denote by I}, ,, the collection of strictly increasing maps

(1,2,....k} = {1,2,....,n}.

For ¢ € I, we set

k
ol ==Y ()
j=1
Define for uniformity
Ipp :={x}, |*|:=0.
Denote by P, the Morse polynomial of f4 : SO(V) — R, n = dim V. Then

Puty= > t7F >l

k even IS P

Skn(t) Z t\<ﬁ|

L:DEI k,n
and consider the Laurent polynomial in two variables

Qn(t, 2) Zz *Shn(t)

For every k, even or not, define
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If we set

Qrﬂz:(t’ Z) = (Qn(tv Z) + Qn(tv _Z) )a

N | =

then
Po(t) = Qi (t,z=1).
For every k, even or not, an increasing map ¢ € Ij, ,, can be of two types.
A.plk) <n<= g €lyy.
B. p(k) = n, so that ¢ is completely determined by its restriction
<P|{1,...,k—1}
which defines an element ¢’ € I;_; ,,_; satisfying
|| = |l —n.
The sum Sy, ,(t) decomposes according to the two types
Sk,n = Ak,n(t) + Bk,n(t)'
We have
Ak,n(t) = Sk:,nfl(t)v Bk,n(t) = tnSk:fl,nfl(t)'

We multiply the above equalities by z~* and we deduce

RS n(t) = 27 S 1 + 2R Sy .
If we sum over k£ we deduce

Qu(t,2) = Qu-i1(t,2) + 271" Quoa(t,2) = (L4 27 ) Qna (¢, 2).

We deduce that for every n > 2 we have

n

Qn(t,z) = ( [Ta+z"m ) Qa(t, 2).

m=3

On the other hand, we have
Q2(t,2) = So2(t) + 27 S12(t) + 27 2S20(t) = 1+ 2 1t + %) + 2727
= (142711 + 27117,
Qi (t,2) =142, Qf(t,z=1) =1+

We deduce that
_ -1 + _ -1 -1
Qn(taz)_H(1+Z tm)’ Qn(t’z)_§H(1+Z tm)+§ H(]'_Z tm)a
m=1 m=1 m=1
so that
Pa(t) = Qi (t: )= = 5 [T+t + 5 [T -t = [+, O
m=1 m=1 k=1
=0

Exercise 6.1.25 For a proof and much more we refer to [DV]. O
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Exercise 6.1.26 Part (a) is immediate. Let v = Prv+ Pyiv = vp, + v+ € V (see Figure 6.5). Then
Prov=x+Sz, r€L<=>v—(z+Sr)clg

r+S%Y = v,

= 3JxeL, ye Lt suchthat {
Sr—y = wvpL.

Consider the operator § : L & L+ — L & L*, which has the block decomposition

(1, s
S—[s —ﬂi]‘

Then the above linear system can be rewritten as

s [y ]=[oe ]

Now observe that

g2 _ 1y +5*S 0
o 0 1,0+ 55
Hence 8 is invertible and
g1 — (1 + S*S)~t 0 3
B 0 (:H.LJ_ + SS*)_I

B [ (I +8*9)~t (1, +S5*S)~1s5* }

T (Mg +88)7TLS (1 + 8587 |
We deduce

z= (14 S*S) or + (1 + 5*S) " 1S* v
and

T
PFSU:[SJ;]

Hence Prg has the block decomposition

Pr, = { ]gL ] (1 +8*S)"t (1p + S*S)"1s*]

[ (ap+8%9)7t (1 +S5*9)"ts*
T S(1p+5*8)" S(1p 4 5*S) s

Sx b — — — — — -

Figure 6.5. Subspaces as graphs of linear operators.
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If we write P, := Pr,,, we deduce
(1 +t25*S)~1 t(lg, +t25*S)~19*
P, = 2qQxQ\—1 42 2 ox @\ —1 Qx
tS(1p 4 t2S*S) t=S(1p +t2S*S)~'S
Hence
d [ 0 S*

apth:oz 5 0 ] =S"P;. + SFr. 0O

Exercise 6.1.27. Suppose L € G1,(V'). With respect to the decomposition V = L @ L the operator
A has the block decomposition
s [ A,  B* }

B ALL
B € Hom(L, L*), A, € Hom(L, L), A;. € Hom(Lt, L1).
Suppose we are given S € Hom(L, L*) = Ty G (V). Then

d

d d
7 tZOhA(Fts) =——| Retr(AP,,) =— Retr(A—‘ :oPFtS)

dt lt=0 dtle
= —Retr(B*S + BS") = —2Retr(BS™).
We see that L is a critical point of h 4 if and only if

Retr(BS*) =0, VS € Hom(L, L") < B =0.
Hence L is a critical point of h 4 if and only if A has a diagonal block decomposition with respect to
L,
=[]

This happens if and only if AL C L. This proves part (a).

Choose a unitary frame (e;)1<;<p, of V consisting of eigenvectors of A,
Ae; = aje;, a; €R, 1 < j = a; < aj.

Then L C V is an invariant subspace of V' if and only if there exists a cardinality k subset I = I}, C
{1,...,n} such that

L =V; =spang{e;; i€ Ip}.
Denote by J = Jy, the complement of I and by V; the subspace spanned by {e;; j € J}. Any
S € Hom(V7, Vy) is described by a matrix
S = (Sz‘j)z‘el,jeJ-
Then
Ap(1p + 8*8)~1 Ap(1p 4 5*S)~1s*
ha(Ts) = —Retr
ApS(p+8*S)™1 A, S(1p + S*S)~1s*
= —Retr AL(]IL + S*S)il — Retr ALLS(]IL + S*S)fls*

If we denote by @, the Hessian of h 4 at L then from the Taylor expansions (||.S]| < 1)

Ap(1p +8*S)™' = Ay — A;S*S + higher order terms,

Ap1S(1p +8*S)718* = A1 SS* + higher order terms,
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we deduce
Qr(S,S) =Retr A;S*S —Retr A; . SS*, VS € Hom(L, L) = T, Gr(V).
Using the matrix description S = (s;;) of S we deduce
=D Ny IsalP =D N sl = Y = A)lsylt
el jeJ jeJ i€l (i,5)elxJ

This shows that the Hessian of h 4 at L is nondegenerate and we denote by A(A, L) its index. It is an
even integer because the coordinates s;; are complex. Moreover,

MA, L) =2p(Ir) =2#{ (i,j) € I, x Jp; i <j}.

Setting
I:IL:{i1,...,ik}, J:JL
we deduce
= #liel; i<j}
jeJ
A e N AL
:1'(ig—i1)+"‘+(k—1)(zk—lk 1)+kn—zk ZZ
k(k—1 k(k—1
SRR, (5 N )
il el
k
Z n—io—(k—10)).
=1
Define
7TLg::n—ig—(k}—f):(n—k)—(ig—f)
so that
k
pr =) m. (6.7)
(=1
Since
0<(i1—1)<(i2—2)<--<(ix— k)< (n—k)
we deduce
n—k>my>--->my >0.
Given a collection (my, ..., my) with the above properties we can recover I by setting

iv=(n—Fk)+{—my.
The Morse numbers of h 4 are
Min(N) = #{L; MA, L) =} = #{1; 2#u(I) =X}

The Morse polynomial is

Mk’n ZMkn t>\ = ZMk,n(z)‘)tz/\‘
A
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For every nonnegative integers (a, b, ¢) we denote by P(alb, ¢) the number of partitions of a as a sum
of b nonnegative integers < c,

a=x1+- 4z, 021 <--- <1 < e

Let P, .(t) denote the generating polynomial
Pyc(t) =Y _ Palb, c)t®.
a

The equality (6.7) implies
Mk,n(2)\) = Pk,nfk(A) — Mk,n(t) = Pk’n,k(tQ).

The polynomial Py ,,_(t) can be expressed as a rational function

"o(1—t
Pk,n—k(t) _ - Ha—bl( n,k) )
[Tp=1 (1 =) - TTe=y (1 —t9)
For a proof we refer to [Nil, Lemma 7.4.27]. O

Exercise 6.1.28. For a short proof that (3.5) is the gradient flow of the function f4 in (3.4) we refer
to [DV, §2]. To find the critical points of f4 and the conclude that it is Morse Bott we proceed as
follows.

Consider an orthonormal basis of eigenvectors of A4, eq, ..., e, n = dim E such that
Ae; = hieg, A > X >0 > A\
For every subset I C {1,...,n} we write
Er:=span{e;, i}, It :={1,...,n}\ I

For #1 = k we set
Gl‘k(E)] = {L € Gry; LﬂEf‘ =0, }

Gr(E); is a semialgebraic open subset of Gry(E) and

Grp(E) = | Gri(BE)r.
#I=k

A subspace L € Gri(F); can be represented as the graph of a linear map S = Sp, : Ef — EIL, ie.,
L= {:E—I—S:E; mEEI}.
Using the basis (e;)icr and (eq),c71 We can represent S as a (n — k) X k matrix
S = [Sai]z’el, aelt-

The subspaces Er and EIL are A invariant. Then e*L € Grj,(E)s, and it is represented as the graph
of the operator S; = e1*Se~4? described by the matrix

Diag(e*!, a € I")-S-Diag(e ™, iel)= [e(/\a_)\i)tsai]iel, aelt-

Exercise 6.1.32 See [Mat, Lemma 7.3]. O
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Exercise 6.1.36. (a) Fix an almost complex structure on V' tamed by w and denote by g(e,e) the
associated metric

g(u,v) = w(u, Jv) <= w(u,v) = g(Ju,v), Yu,v € V.

Identify V and its dual using the metric g. Then for every subspace L C V, L+ C V* is identified
with the orthogonal complement of L. Moreover,

l,=—-J.
Then
LY =2{veV; g(Jv,x) =0, Vo € L} = JL*.
(b) L is isotropic if and only if L C JL*, and thus
dimL +dim LY =dimV, dim L C dim L*.
Thus dim L < % dim V' with equality iff dim L = dim L, iff L = L“.
(c) Since Ly and L, are transversal, we have natural isomorphisms
Lo® Ly — Lo+ L1 — V.
A subspace L C V of dimension dim I = dim Ly = dim L is transversal to L; if and only if it is
the graph of a linear operator
A:Ly— L.
Let ug,vg € Lg. Then Aug, Avyg € Ly and ug + Avg, vy + Avg € L, so that
0 = w(ug + Aug, vo + Avyg)
= w(uo, vo) + w(Aug, Avy) + w(Aug, vo) + w(ug, Avg)
= —w(vg, Aug) + w(ug, Avg) = Q(ug, vo) — Q(vo, uo).
Let ug € Lg. Then
Q(ug,u) =0, Yu € Ly <= w(ui,u) =0, Yu € Ly, (u; = Auyp)
— w(u,v) =0, Yo €V <= uj =0.
Thus @ is nondegenerate iff ker A = 0 iff L is transversal to Lg as well.

(b) Since this statement is coordinate independent, it suffices to prove it for a special choice of coor-
dinates. Thus we can assume

M=R", E=R"x M =R"xR", z=0¢cR"
The coordinates on R” x R™ are (&;, 27). Then
Lo =0xREL, leR’ng.
Then L is the graph of the linear operator
0x Ry = R x0

given by the differential at x = 0 of the map R"™ 5 x — ¢ = df(x) € R™. This is precisely the
Hessian of f at 0. Thus if the Hessian is given by the symmetric matrix (H;;), then

Ay = ZHijaﬁi and w(0y:, Ad,5) = Hij.
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Exercise 6.1.37. (a) and (c) We have a tautological diffeomorphism
v:M =Ty, x— (df(x),x).
Then
Y0 =df, v'w=—y"(df) =—dy*0 = —d(df) = 0.
This also implies part (c), since v*df is the differential of f.

(d) We need a few differential-geometric facts.

A. Suppose M is a smooth manifold and oy, ¢ € R, is a smooth one parameter family (path) of
differential forms of the same degree k. Denote by ¢ the path of differential forms defined by

1
amwzg%ﬁwﬁmm—%@neAWym~meALteR

Construct the cylinder M =R x M and denote by i, : M — M the inclusion
M < Rx M, xw (tx).
The suspension of the family oy is the k-form & on M uniquely determined by the conditions
O 1& = 0, Z:OAé = Q¢.
We then have the equality
&y = if Ly, G
Indeed, if we denote by d the exterior derivative on M and by d the exterior derivative on M, then
d=dt N0+ d, and
Ly & = d(@t o d) + 0% (dd) =q.

B. Suppose & : Ny — N is a diffeomorphism between two smooth manifolds, a € QF(N),
X € Vect(M). Then

Lx®*a = 9" (Le, x).
Indeed, this a fancy way of rephrasing the coordinate independence of the Lie derivative. Equiva-
lently, if 3 € Q¥ (M) and we define the pushforward

$.8:= (1) B = (*)"8,
then we have
@, (LxB) = Lo, xP.f.

C. Suppose P, is a one parameter family of diffeomorphisms of M. This determines a time dependent

vector field on M

d
Xi(x) = %|h:0¢t+h(x)v VteR, xze M.

We obtain a diffeomorphism

d: M — M, (t,x)— (t, O(z)).
Observe that

D,(9) = X = 9y + X; € Vect(M).

Suppose « is a k-form on M. We denote by oy the path of forms o := ®;(M). If we denote by
w : M — M the natural projection, then we have the equality

A

& = d*r*a.
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From A we deduce
Gy :=iy Ly, é.
From B we deduce
®,(Lo,&) = Lo, (P:0) = Ly*a,
so that

Loa =0 (Lyr*a) = a4 = ¥ (Lgm*a).
Now observe that
Lym*a = Lyn*a+ Lx,m*a = Lx,m"a.
Hence
& = ®f Lx,a.
Suppose X; 1 da = dy, Vt. Then

Ly,a= X, lda+dX; Ja=d(v+ Xi 1 a),
————

en
so that
t
y :d@‘(’yt—i—XtJa) = a; — Qg :d/ psds.

~— 0

Pt
This shows that if X;_Id is exact on M for every ¢, then for every submanifold I. C M the restriction
ay|r is exact for every t > 0, provided ayp|, is exact. O

Exercise 6.1.40. (a) The Fubini—Study form is clearly closed and invariant with respect to the tau-
tological action of U(n + 1) on CP™. Since the action of U(n + 1) is transitive, it suffices to show
that w defines a symplectic pairing on the tangent space of one point in CPP". By direct computation

(see a sample in part (b)) one can show that at the point [1,0,0,...,0] and in the affine coordinates
w; = zj/2o, the Fubini-Study form coincides with
iy dw; A di;,

J

which is a multiple of the standard symplectic form €2 on C™ described in Example 3.4.3.

(b) Notice that if an S'-action on a smooth manifold M is Hamiltonian with respect to a symplectic
form w, then it is Hamiltonian with respect to cw, for every nonzero real number c.

Since the Fubini-Study form is invariant with respect to the tautological U (n + 1)-action on the
connected manifold CPP", and this action is transitive, we deduce that up to a multiplicative constant
there exists exactly one U(n + 1)-invariant symplectic form on CP".

The computations in Example 3.4.28 show that the given S'-action is Hamiltonian with respect
to some U (n + 1)-invariant symplectic form and thus with respect to any U (n + 1)-invariant form.
In particular, this action is Hamiltonian with respect to the Fubini—Study form. Moreover, the com-
putations in the same Example 3.4.28 show that a moment map must have the form

> ij‘zj‘Q
w(z) = CT,

where c is a real nonzero constant. This constant can be determined by verifying at a (non-fixed)
point in CP" the equality dy = X | w, where X is the infinitesimal generator of the S*-action.
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If we work in the coordinate chart zy # 0 with wy, = zj/zo then

AR Olwl|?
— 2y _
The projective line L in CP" described by wo = --- = w,, = 0 is S'-invariant, and along this line
we have

. Olw;? ) 1

wlp =10————— = 10(————5w1dw
2= O T ~ O 2
dw1 Adwy . |Jwy|?dwy A diy

(]
T+ w2 (14 Jwi[?)?

= 7dw A dwq.
(T w227 00
If we write w1 = x1 + 2y, then we deduce that
2dzx1 A dyr
w|L = 2 2\2
(1 + .Il + yl)
In these coordinates we have
v = 10y, + 10
M|L(w1) m, X=-n zy T T10y, -
Along L we have
x1dxy + yidy d|wi 2 |wy |2 1
Xlw=-2— """ =— =d = Zdulr.
3+ AP T~ o
Thus we can take ¢ = 1. O

Remark 6.2.2. It is interesting to compute the volume of the projective line
Wy = =w, =0

with respect to the Fubini—Study form. We have

vol, (L) = 2/ M
(1+ 7 +y7)?

w rew 2m
(w1 = / d@/ 2rdr
1—{—7‘2
14 27
(u=Lr%) / d6 /
0 1

Thus, if we define the normalized Fubini—Study form ® by

— " 98log |7,
2

| e-u
CPr

20521y -« -5 2n) = |20, €

we have

We deduce that the action of T™ given by
( 627‘('7:151 )

2mit 27t 2mit
oo, e T21,...,e™n
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is Hamiltonian with respect to ® with moment map
- 1 2 2
w(Z) = =z (2l [2al7).
2]
The image of the moment map is the n-simplex

A={peRly; > pi<1}

Its Euclidean volume is % and it is equal to the volume of CP" with respect to the Kéhler metric
determined by @,

1 1
volg (CP") = / " = —. 0
Cpn

n! n!

Exercise 6.1.42 Part (a) is classical; see e.g., [Nil, Section 3.4.4]. Part(b) is easy.

For part (c), assume T = (R/Z)™. Thus we can choose global angular coordinates (81, ..., 6")

on the Lie algebra ¢ =2 R such that the characters of of T™ are described by the functions
Xa (0, ..., 0") = exp(2mi(wi0' + ... +w,0")), W€ L.
We obtain a basis dy; on t and a dual basis d6’ on t*. We denote by (&) the coordinates on t* defined
by the basis (d6”). In the coordinates (;) the lattice of characters is defined by the conditions
§ €L, Vj=1,...,n.

The normalized Lebesgue measure on T* is therefore d¢; - - - d&,,. Moreover,

/ dOY A - AdO™ = 1.
R" /7"

The one-parameter subgroup of T generated by 0y; defines a flow @{ on M, and we denote by X
its infinitesimal generator. Using the coordinates (£;) on T* we can identify the moment map with a
smooth map

prM =R peu(p) = ((p), - n(p))-
Since the action is Hamiltonian, we deduce
d{j :Xij, j=1...,n.
Fix a point
& =(&,....6)emtP
and a point py in the fiber =1 (£%) € M*.

The vector £° is a regular value for 1, and since p is a proper map we deduce from the Ehresmann
fibration theorem that there exists an open contractible neighborhood U of the point £” in int P and a
diffeomorphism

P U)—p () x U
In particular, there exists a smooth map o : U — M which is a section of u, i.e., poo = 1y. We
now have a diffeomorphism
TxU— p Y (U), TxU5> (t,&) —st-o(£).
Using the diffeomorphism W ~! we pull back the angular forms df’ on T to closed 1-forms ¢/ =
(U=1*d7 on =1 (U). Observe that

X; oF = 5;7“‘ = Kronecker delta.
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The collection of 1-forms {7, d¢*} trivializes T* M over u~1(U), and thus along = (U) we have
a decomposition of the form

w=Y (aje’ At + ! A, + TRdg; A dgy).

7,k
Since
X; Jw=d&, Xj1dé={&,&}=0
we deduce
ajr =0
and
w=) ¢ Adg+ Y Idg nde.
k gk
Hence

Urw =" "do? N+ Y Rde; A dgF
k 3.k

Since w is closed, we deduce that the coefficients ¢/* must be constant along the orbits, i.e. they are
pullbacks via y of functions on t*. In more concrete terms, the functions ¢/* depend only on the
variables £7. We now have a closed 2-form on U,

0= chdg; ndgy.
4.k
Since U is closed there exists a 1-form A = } N d€; such that
n=—d\ A=Y M (d& € (V).
k

For every £ € U denote by [A(£)] the image of the vector A(¢) € R™ in the quotient R®/Z". If we
now define a new section

we obtain a new diffeomorphism

Wy T x Ua (t7€) =t 3(5) = [A({)]\I}(t,{)

Observe that
Wiw =Y d(0F + Ny ndgp = > dN" ndg = do* A de.
k k
Thus
1
E\P,\w”:d@l/\---/\dﬁn/\dfl/\-~-/\d§n,
so that

//L_I(U):L!w”: (/Rn/zndel/\...AdH")</Ud§1/\.../\dfn) — vol (U).

The result now follows using a partition-of-unity argument applied to an open cover of int P with the
property that above each open set of this cover, 1 admits a smooth section. a
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Remark 6.2.3. The above proof reveals much more, namely that in the neighborhood of a generic
orbit of the torus action we can find coordinates (¢;, %) (called “action-angle coordinates’) such that
all the nearby fibers are described by the equalities §; = const, the symplectic form is described by

w=Y_do* ndg,
k
and the torus action is described by

t-(&,0%) = (&; 0% +t5).
This fact is known as the Arnold-Liouville theorem. For more about this we refer to [Au]. O

Exercise 6.1.44 Mimic the proof of Theorem 3.6.12 and Corollary 3.6.17. O

Exercise 6.1.45 The group Z/2 acts by conjugation on
X(P)® = {[x,y,2] € CP* P(x,y,2) =0},
and X (P) is the set of fixed points of this action. Now use Exercise 6.1.44 and Corollary 5.2.9. 0O

Exercise 6.1.46 We have

2

2 A i
J(p, &) = / (TIPS g o) / i (o2 ) gy
R R

52
edlip—r) 2
= /e z dZ,
(r—ip)z Jr

I‘:{z:(r—i)\)

-

where I is the line

N
—~
8
|
[\
—~

One can then show that
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concatenation, 186
approximate, 191
connector, 184, 194
conormal space, 127
controlled tube system, 173
critical point, 1, 210
Bott-Samelson type, 87
hessian, 5
index, 6
nondegenerate, 5
critical value, 1
crookedness, 24
cuplength, 78
curve, 2
cubic
pencil, 205
cycle
effective, 217
invariant, 213, 234
primitive, 217
vanishing, 212, 221, 234

Dehn twist, 234

divisor, 202

duality
Poincaré, 206, 213
Poincaré—Lefschetz, 64, 84, 224

Eilenberg-Mac Lane space, 140
elliptic fibration, 205

ENR, 140

Euclidean space, ix

Euler

fibration
homotopy lifting property, 219
Lefschetz, 206

finite type, 140

five lemma, 212

flag, 107
manifold, 108

flow, 38, 45, 53, 56, 64, 109, 227
descending, 53
Hamiltonian, 109
Morse-Smale, 65
Morse-Smale, 175
Morse-Whitney, 175

Fourier
inversion formula, 147
transform, 147

framing, 28

Fubini-Study form, 104, 247, 268

gap condition, 50
Gauss lemma, 143
gaussian, 24, 236
genus formula, 209
germ, 11
graded vector space, 46
admissible, 46
gradient, 37
Grassmannian, 91, 94, 108
group
action, 105, 112, 136
dual right, 136
effective, 105, 116, 131
fixed point set of, 118, 121, 141, 145
Hamiltonian, 112, 117, 121, 145
left, 136
quasi-effective, 120
right, 136
symplectic, 112
Lie, see also Lie
Gysin
map, 136
sequence, 136

Hamilton equations, 110
Hamiltonian, 109

vector field, 109
Hamiltonian action, see also group
handle, 34

cocore, 34

core, 34

index of, 34, 42
handlebody, 61
harmonic oscillator, 110, 112
Heegard decomposition, 61
Hessian, 84
hessian, 5
Hodge theory, 215
homogeneous space, 105
homology equation, 11
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homology sphere, 34
homotopy method, 10
Hopf bundle, 134
Hopf link, 30

Hopf surface, 216

index, 6
index theory, 73
intersection form, 213

Jacobi identity, 107
Jacobian, 20
Jacobian ideal, 12

Key Lemma, 209, 211
knot, 20, 29
diagram, 32
crossings, 32
group
Wirtinger presentation, 32
group of, 31
longitude of, 29
meridian of, 29
parallel, 31
blackboard, 32
trefoil, 31, 32
Kronecker pairing, 64, 206, 213, 224

Lagrangian
submanifold, 246
exact, 246
subspace, 245
lattice, 247
Lefschetz decomposition, 217
lemma
Hadamard, 11
length vector, 81
ordered, 82
Lie
algebra, 105, 107
group, 105, 112, 114
adjoint representation, 105
coadjoint action, 105
line bundle, 134
associated, 134
universal, 135
linear system, 202
base locus of, 202, 206
linkage, 2
linking number, 30
local transversal, 174
Lusternik—Schnirelmann
category, 78

manifold, 1
algebraic, 96, 101, 104, 206
modification of, 202
complex, 96, 103
Kihler, 103
stable, 54
Stein, 96
symplectic, 102, 104

unstable, 54
with corners, 186
map
critical point of, 1
critical set of, 1
critical value of, 1
degree of, 209
differential of, 1
discriminant set of, 1
regular point of, 1
regular value of, 1
variation, 223
Mayer—Vietoris sequence, 142
min-max
data, 70
principle, 71
theory, 70
moment map, 112
monodromy, 223
group, 234
homological, 223
local, 221, 223
relative, 223
Morse
coindex, 68
function, 5, 15, 53, 55, 203, 218
completable, 49
excellent, 18
exhaustive, 18, 37
metric adapted to a, 37
nonresonant, 18, 55
perfect, 49, 52, 116, 243
resonant, 18
self-indexing, 58
index, 68, 145
inequalities, 48
abstract, 47
weak, 47
lemma, 10, 14, 149
with parameters, 67
number, 6
polynomial, 6, 48, 68
Morse—Bott
function, 67, 117, 121
completable, 69
perfect, 69, 94, 133, 145
inequalities, 69, 145
polynomial, 68
Morse—Smale
pair, 58
vector field, 58
Morse-Floer complex, 64, 194
Mountain-pass
Lemma, 72
points, 71
moving frame, 22

negligible
C[z])-module, 141
Sl—space, 141, 143
set, 1, 17

normal bundle
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negative, 68

Palais—Smale condition, 18
pencil, 202

Lefschetz, 203, 206

monodromy group, 234
monodromy of, 231

phase space

classical, 103
Picard-Lefschetz

global formula, 232, 234

local formula, 226

number, 224
planar polygons

moduli space of, 82
Poincaré

dual, 135, 213

series, 46, 94

sphere, 34, 53
Poisson bracket, 110
polyhedron

convex, 127
projection, 209

axis of, 203

screen of, 203
projection formula, 206
projective space, 201

dual of, 201

regular value, 1

Riemann-Lebesgue lemma, 146

robot arm, 2, 7, 43
configuration, 3

shadow, 162
short subset, 83
spectral sequence, 63
Leray—Serre, 140
stabilizer, 106, 120
standard model, 102, 222
stationary phase, 146
Stein manifold, 96
stratum, 169
structure
almost complex, 96
G-tamed, 113
tamed, 101
subadditivity, 47
submersion, 222
surgery, 27, 28
attaching sphere, 29
coefficient, 30
trace of, 36, 44
type of, 28
symplectic
duality, 102, 108
form, 101
gradient, 109
manifold, 102
toric, 130
orientation, 102
pairing, 101

basis adapted to, 101
space, 101
structure, 102
volume form, 102

theorem

hard Lefschetz, 215
Andreotti-Frankel, 96
Arnold-Liouville, 272
Bott, 68

Conner, 144

Darboux, 104, 127
Duistermaat-Heckman, 149

Ehresmann fibration, 205, 208, 211, 219, 222, 270

equivariant localization, 141, 154
excision, 206, 211, 219
Fenchel, 24

fundamental structural, 38, 68, 126

Gauss—Bonnet—Chern, 135
Gysin, 136
Kiinneth, 88, 207
Lefschetz

hard, 217

Lefschetz hyperplane, 101, 210, 212, 215

Lusternik—Schnirelmann, 78
moment map convexity, 121
Morse-Sard-Federer, 1, 17

Poincaré—Lefschetz, 64, 84, 100, 224

Sard, 21

Thom first isotopy, 172

Thom isomorphism, 68, 126
universal coefficients, 212, 213
van Kampen, 31

weak Lefschetz, 213, 214
Whitney embedding, 14, 18

thimble, 221, 231
Thom

class, 68, 135
first isotopy theorem, 172
isomorphism, 69, 136

Thom-Smale complex, 63
total curvature, 23
tube, 167

width function, 167

tubular neighborhood, 167
tunneling, 64, 184, 194

broken, 185
map, 188

vanishing

cycle, 212, 221, 232
sphere, 221, 232

vector field, 5, 11, 109

gradient like, 37, 53
Hamiltonian, 109

Veronese embedding, 203

Whitney

condition, 164
stratification, 169
umbrella, 164

Wirtinger presentation, 32
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writhe, 32
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