

The Geometry of Planar Pixelations and Shape Recognition

Liviu I. Nicolaescu \& Brandom Rowekamp

2012
(1) Introduction
(2) Formulation of the problem

- The main characters
- This is trickier than you might think
(3) Perestroika
- Elementary Regions
- A little Morse theory
- The normal cycle
- The convergence theorem

Nicolaescu-Rowekamp (Notre Dame)

Nicolaescu-Rowekamp (Notre Dame)

Pixels

Pixels

Definition

Let $\varepsilon>0$. An ε-pixel is a square of the form

$$
[(m-1) \varepsilon, m \varepsilon] \times[(n-1) \varepsilon, n \varepsilon], \quad m, n \in \mathbb{Z} .
$$

The Grid of Pixels

]

Pixelations

Definition

Let $\varepsilon>0$. An ε-pixelation is the union of a finite collection of ϵ-pixels.

Pixelations

Definition

Let $\varepsilon>0$. An ε-pixelation is the union of a finite collection of ϵ-pixels. . Suppose that S is a compact subset of \mathbb{R}^{2}.

Pixelations

Definition

Let $\varepsilon>0$. An ε-pixelation is the union of a finite collection of ϵ-pixels. . Suppose that S is a compact subset of \mathbb{R}^{2}. The ε-pixelation of S, denoted by $P_{\varepsilon}(S)$, is the union of all the ε-pixels that touch S.

Pixelations

Definition
 Let $\varepsilon>0$. An ε-pixelation is the union of a finite collection of ϵ-pixels. . Suppose that S is a compact subset of \mathbb{R}^{2}. The ε-pixelation of S, denoted by $P_{\varepsilon}(S)$, is the union of all the ε-pixels that touch S. The number ε is called the resolution of the pixelation.

A pixelation

A pixelation

] ε

A pixelation

] ε

A pixelation

The Goal

- Reconstruct a compact, planar semialgebraic set S from its ε-pixelations.

The Goal

- Reconstruct a compact, planar semialgebraic set S from its ε-pixelations.
- More precisely, we want to use the ε-pixelation of S to algorithmically produce a planar PL-set $\mathcal{L}_{\varepsilon}(S)$ that "converges" (?) to S as $\varepsilon \searrow 0$.

The Goal

- Reconstruct a compact, planar semialgebraic set S from its ε-pixelations.
- More precisely, we want to use the ε-pixelation of S to algorithmically produce a planar PL-set $\mathcal{L}_{\varepsilon}(S)$ that "converges" (?) to S as $\varepsilon \searrow 0$.
- The above convergence should be strong enough so that in the limit we can recover the significant feature of S :

The Goal

- Reconstruct a compact, planar semialgebraic set S from its ε-pixelations.
- More precisely, we want to use the ε-pixelation of S to algorithmically produce a planar PL-set $\mathcal{L}_{\varepsilon}(S)$ that "converges" (?) to S as $\varepsilon \searrow 0$.
- The above convergence should be strong enough so that in the limit we can recover the significant feature of S :
area, perimeter, curvature;

The Goal

- Reconstruct a compact, planar semialgebraic set S from its ε-pixelations.
- More precisely, we want to use the ε-pixelation of S to algorithmically produce a planar PL-set $\mathcal{L}_{\varepsilon}(S)$ that "converges" (?) to S as $\varepsilon \searrow 0$.
- The above convergence should be strong enough so that in the limit we can recover the significant feature of S :
area, perimeter, curvature; homotopy type, i.e., Betti numbers.

Some low hanging fruit

Some low hanging fruit

- If S is a compact semialgebraic set then the ε-pixelation $P_{\varepsilon}(S)$ is a $P L$ set that converges to S in the Hausdorff metric.

Some low hanging fruit

- If S is a compact semialgebraic set then the ε-pixelation $P_{\varepsilon}(S)$ is a $P L$ set that converges to S in the Hausdorff metric.
- We can conclude that $P_{\varepsilon}(S)$ has the same number of connected components as S for ε sufficiently small, i.e.,

$$
\lim _{\varepsilon \searrow 0} b_{0}\left(P_{\varepsilon}(S)\right)=b_{0}(S)
$$

Some low hanging fruit

- If S is a compact semialgebraic set then the ε-pixelation $P_{\varepsilon}(S)$ is a $P L$ set that converges to S in the Hausdorff metric.
- We can conclude that $P_{\varepsilon}(S)$ has the same number of connected components as S for ε sufficiently small, i.e.,

$$
\lim _{\varepsilon \searrow 0} b_{0}\left(P_{\varepsilon}(S)\right)=b_{0}(S)
$$

- Additionally

$$
\lim _{\varepsilon \searrow 0} \operatorname{Area}\left(P_{\varepsilon}(S)\right)=\operatorname{Area}(S)
$$

Some low hanging fruit

- If S is a compact semialgebraic set then the ε-pixelation $P_{\varepsilon}(S)$ is a $P L$ set that converges to S in the Hausdorff metric.
- We can conclude that $P_{\varepsilon}(S)$ has the same number of connected components as S for ε sufficiently small, i.e.,

$$
\lim _{\varepsilon \searrow 0} b_{0}\left(P_{\varepsilon}(S)\right)=b_{0}(S)
$$

- Additionally

$$
\lim _{\varepsilon \searrow 0} \operatorname{Area}\left(P_{\varepsilon}(S)\right)=\operatorname{Area}(S)
$$

- Things go downhill from here.

Geometric headaches

Consider the ε-pixelations of a line segment with an endpoint at the origin.

Geometric headaches

Consider the ε-pixelations of a line segment with an endpoint at the origin.

Geometric headaches

Geometric headaches

The total curvature of the boundary of the pixelation goes to ∞ as $\varepsilon \searrow 0$.

Topological headaches: these are really serious

Topological headaches: these are really serious Very often, $b_{1}\left(P_{\varepsilon}(S)\right)>b_{1}(S), \forall \varepsilon>0$.

Topological headaches: these are really serious Very often, $b_{1}\left(P_{\varepsilon}(S)\right)>b_{1}(S), \forall \varepsilon>0$.

Topological headaches: these are really serious Very often, $b_{1}\left(P_{\varepsilon}(S)\right)>b_{1}(S), \forall \varepsilon>0$.

Topological headaches: these are really serious

- More cycles can be found in pixelations of two lines by altering slopes.

Topological headaches: these are really serious

- More cycles can be found in pixelations of two lines by altering slopes.
- An angle between a line of slope 1 and a line of slope $\frac{n}{n+1}$ will have n cycles appear in each ε-pixelation.

Elementary regions

Definition

A subset $S \subset \mathbb{R}^{2}$ is said to be elementary if it can be defined as

$$
S=S(\beta, \tau):=\{(x, y): x \in[a, b], \beta(x) \leq x \leq \tau(x)\},
$$

where $\beta, \tau:[a, b] \rightarrow \mathbb{R}$ are continuous semialgebraic functions such that $\beta(x) \leq \tau(x), \forall x \in[a, b]$. The function β is called the bottom of S while τ is called the top of S.

Figure: An elementary set.

Columns, stacks and elementary sets

- A column of an ε-pixelation is the intersection of that pixelation with a vertical strip of the form $(m-1) \varepsilon \leq x \leq m \varepsilon$.

Columns, stacks and elementary sets

- A column of an ε-pixelation is the intersection of that pixelation with a vertical strip of the form $(m-1) \varepsilon \leq x \leq m \varepsilon$.
- The connected components of a column are called stacks.

Columns, stacks and elementary sets

- A column of an ε-pixelation is the intersection of that pixelation with a vertical strip of the form $(m-1) \varepsilon \leq x \leq m \varepsilon$.
- The connected components of a column are called stacks.
- KEY REMARK Suppose that S is an elementary region and $\varepsilon>0$.

Columns, stacks and elementary sets

- A column of an ε-pixelation is the intersection of that pixelation with a vertical strip of the form $(m-1) \varepsilon \leq x \leq m \varepsilon$.
- The connected components of a column are called stacks.
- KEY REMARK Suppose that S is an elementary region and $\varepsilon>0$. Then each column of $P_{\varepsilon}(S)$ consists of at most one stack.

Columns, stacks and elementary sets

- A column of an ε-pixelation is the intersection of that pixelation with a vertical strip of the form $(m-1) \varepsilon \leq x \leq m \varepsilon$.
- The connected components of a column are called stacks.
- KEY REMARK Suppose that S is an elementary region and $\varepsilon>0$. Then each column of $P_{\varepsilon}(S)$ consists of at most one stack. In particular, $P_{\varepsilon}(S)$ is homotopic to $S, \forall \varepsilon>0$.

A pixelation of an elementary set

Figure: The columns of the above pixelation consist of single stacks.

Approximating the graph of a function

- Let f be a a continuous semialgebraic function and denote by $P_{\varepsilon}(f)$ the ε-pixelation of its graph.

Approximating the graph of a function

- Let f be a a continuous semialgebraic function and denote by $P_{\varepsilon}(f)$ the ε-pixelation of its graph.
- First Idea: Choose a pixel in each column.

Approximating the graph of a function

- Let f be a a continuous semialgebraic function and denote by $P_{\varepsilon}(f)$ the ε-pixelation of its graph.
- First Idea: Choose a pixel in each column. Successively connect their centers by line segments.

Approximating the graph of a function

- Let f be a a continuous semialgebraic function and denote by $P_{\varepsilon}(f)$ the ε-pixelation of its graph.
- First Idea: Choose a pixel in each column. Successively connect their centers by line segments.

Approximating the graph of a function

- First idea only lead to integer valued slopes

Approximating the graph of a function

- First idea only lead to integer valued slopes
- Second idea: Select a pixel in every other column. Successively connect their centers by line segments.

Approximating the graph of a function

- First idea only lead to integer valued slopes
- Second idea: Select a pixel in every other column. Successively connect their centers by line segments.

Approximating the graph of a function

- How many columns should we skip?

Approximating the graph of a function

- How many columns should we skip?
- Skipping more columns means more possible slopes, but fewer line segments.

Approximating the graph of a function

- How many columns should we skip?
- Skipping more columns means more possible slopes, but fewer line segments.
- We want to skip a lot of columns, but want many line segments.

Approximating the graph of a function

- To choose how many columns to skip we use a spread function.

Approximating the graph of a function

- To choose how many columns to skip we use a spread function.
- This is a function $\sigma: \mathbb{R}^{+} \rightarrow \mathbb{Z}^{+}$.

Approximating the graph of a function

- To choose how many columns to skip we use a spread function.
- This is a function $\sigma: \mathbb{R}^{+} \rightarrow \mathbb{Z}^{+}$.
- For each $\varepsilon>0, \sigma(\varepsilon)$ indicates how many columns to skip.

Approximating the graph of a function

- To choose how many columns to skip we use a spread function.
- This is a function $\sigma: \mathbb{R}^{+} \rightarrow \mathbb{Z}^{+}$.
- For each $\varepsilon>0, \sigma(\varepsilon)$ indicates how many columns to skip.
- Desired properties:

Approximating the graph of a function

- To choose how many columns to skip we use a spread function.
- This is a function $\sigma: \mathbb{R}^{+} \rightarrow \mathbb{Z}^{+}$.
- For each $\varepsilon>0, \sigma(\varepsilon)$ indicates how many columns to skip.
- Desired properties:
- $\lim _{\varepsilon \rightarrow 0} \sigma(\varepsilon)=\infty$

Approximating the graph of a function

- To choose how many columns to skip we use a spread function.
- This is a function $\sigma: \mathbb{R}^{+} \rightarrow \mathbb{Z}^{+}$.
- For each $\varepsilon>0, \sigma(\varepsilon)$ indicates how many columns to skip.
- Desired properties:
- $\lim _{\varepsilon \rightarrow 0} \sigma(\varepsilon)=\infty$ (We skip more and more columns as the resolution is finer and finer.)

Approximating the graph of a function

- To choose how many columns to skip we use a spread function.
- This is a function $\sigma: \mathbb{R}^{+} \rightarrow \mathbb{Z}^{+}$.
- For each $\varepsilon>0, \sigma(\varepsilon)$ indicates how many columns to skip.
- Desired properties:
- $\lim _{\varepsilon \rightarrow 0} \sigma(\varepsilon)=\infty$ (We skip more and more columns as the resolution is finer and finer.)
- $\lim _{\varepsilon \rightarrow 0} \varepsilon \sigma(\varepsilon)=0$.

Approximating the graph of a function

- To choose how many columns to skip we use a spread function.
- This is a function $\sigma: \mathbb{R}^{+} \rightarrow \mathbb{Z}^{+}$.
- For each $\varepsilon>0, \sigma(\varepsilon)$ indicates how many columns to skip.
- Desired properties:
- $\lim _{\varepsilon \rightarrow 0} \sigma(\varepsilon)=\infty$ (We skip more and more columns as the resolution is finer and finer.)
- $\lim _{\varepsilon \rightarrow 0} \varepsilon \sigma(\varepsilon)=0$. (For fine resolutions, the segments of the resulting broken line are rather short, of size $\approx \varepsilon \sigma(\varepsilon)$.)

Approximating the graph of a function

Approximating the graph of a function

- Choose an appropriate spread function $\sigma(\varepsilon)$.

Approximating the graph of a function

- Choose an appropriate spread function $\sigma(\varepsilon)$.
- Select points from every $\sigma(\varepsilon)$-th column.

Approximating the graph of a function

- Choose an appropriate spread function $\sigma(\varepsilon)$.
- Select points from every $\sigma(\varepsilon)$-th column.
- Successively connect the selected points by line segments.

Approximating the graph of a function

- Choose an appropriate spread function $\sigma(\varepsilon)$.
- Select points from every $\sigma(\varepsilon)$-th column.
- Successively connect the selected points by line segments. Denote by $\mathcal{L}_{\varepsilon}(f)$ the resulting broken line.

Approximating the graph of a function

							-	,	
							,		

Approximating the graph of a function

									-
-				1					
-				.					
					-		\%		

Approximating the Graph of a Function

									6
-									
1							,		
					,		+		

Approximating the graph of a function

	.	.	\cdots	-				.	
.				V			1		
					-		. ${ }^{\text {. }}$		
							.		

Approximating the Graph of a Function

									,
									\%
		*							4
$\cdots \cdot$.		-	,				0	
4				-			7		
							\%.	.	
							\%		

Approximating the graph of a function

Approximating the graph of a function

Theorem (N.\& Rowekamp)

Let f be a continuous semialgebraic function with graph Γ_{f}, and $\sigma: \mathbb{R}_{>0} \rightarrow \mathbb{Z}_{>0}$ be a spread function, i.e.,

$$
\lim _{\varepsilon \searrow 0} \sigma(\varepsilon)=\infty, \quad \lim _{\varepsilon \searrow 0} \varepsilon \sigma(\varepsilon)=0 .
$$

Approximating the graph of a function

Theorem (N.\& Rowekamp)

Let f be a continuous semialgebraic function with graph Γ_{f}, and $\sigma: \mathbb{R}_{>0} \rightarrow \mathbb{Z}_{>0}$ be a spread function, i.e.,

$$
\lim _{\varepsilon \searrow 0} \sigma(\varepsilon)=\infty, \quad \lim _{\varepsilon \searrow 0} \varepsilon \sigma(\varepsilon)=0 .
$$

(a)

$$
\lim _{\varepsilon \searrow 0} \text { length }\left(\mathcal{L}_{\varepsilon}(f)\right)=\text { length }\left(\Gamma_{f}\right) .
$$

Approximating the graph of a function

Theorem (N.\& Rowekamp)

Let f be a continuous semialgebraic function with graph Γ_{f}, and $\sigma: \mathbb{R}_{>0} \rightarrow \mathbb{Z}_{>0}$ be a spread function, i.e.,

$$
\lim _{\varepsilon \searrow 0} \sigma(\varepsilon)=\infty, \quad \lim _{\varepsilon \searrow 0} \varepsilon \sigma(\varepsilon)=0 .
$$

(a)

$$
\lim _{\varepsilon \searrow 0} \text { length }\left(\mathcal{L}_{\varepsilon}(f)\right)=\text { length }\left(\Gamma_{f}\right) .
$$

(b) If the spread satisfies the additional condition

$$
\lim _{\varepsilon \backslash 0} \varepsilon^{\frac{1}{2}} \sigma(\varepsilon)=\infty
$$

Approximating the graph of a function

Theorem (N.\& Rowekamp)

Let f be a continuous semialgebraic function with graph Γ_{f}, and $\sigma: \mathbb{R}_{>0} \rightarrow \mathbb{Z}_{>0}$ be a spread function, i.e.,

$$
\lim _{\varepsilon \searrow 0} \sigma(\varepsilon)=\infty, \quad \lim _{\varepsilon \searrow 0} \varepsilon \sigma(\varepsilon)=0 .
$$

(a)

$$
\lim _{\varepsilon \searrow 0} \text { length }\left(\mathcal{L}_{\varepsilon}(f)\right)=\text { length }\left(\Gamma_{f}\right) .
$$

(b) If the spread satisfies the additional condition

$$
\lim _{\varepsilon \backslash 0} \varepsilon^{\frac{1}{2}} \sigma(\varepsilon)=\infty
$$

then the total curvature of $\mathcal{L}_{\varepsilon}(f)$ converges to the total curvature of Γ_{f}.

Approximating elementary regions

Suppose that S is an elementary region.

Approximating elementary regions

Suppose that S is an elementary region.

- For each $\varepsilon>0$ choose columns of $P_{\varepsilon}(S)$ such that between two consecutive selected columns there are $\approx \sigma(\varepsilon)$ unselected columns.

Approximating elementary regions

Suppose that S is an elementary region.

- For each $\varepsilon>0$ choose columns of $P_{\varepsilon}(S)$ such that between two consecutive selected columns there are $\approx \sigma(\varepsilon)$ unselected columns.
- Successively connect by line segments the top pixels of the selected columns by line segments. We obtain a broken line $\mathcal{L}_{\varepsilon}^{+}(S)$.

Approximating elementary regions

Suppose that S is an elementary region.

- For each $\varepsilon>0$ choose columns of $P_{\varepsilon}(S)$ such that between two consecutive selected columns there are $\approx \sigma(\varepsilon)$ unselected columns.
- Successively connect by line segments the top pixels of the selected columns by line segments. We obtain a broken line $\mathcal{L}_{\varepsilon}^{+}(S)$.
- Successively connect by line segments the bottom pixels of the selected columns by line segments. We obtain a broken line $\mathcal{L}_{\varepsilon}^{-}(S)$.

Approximating elementary regions

Suppose that S is an elementary region.

- For each $\varepsilon>0$ choose columns of $P_{\varepsilon}(S)$ such that between two consecutive selected columns there are $\approx \sigma(\varepsilon)$ unselected columns.
- Successively connect by line segments the top pixels of the selected columns by line segments. We obtain a broken line $\mathcal{L}_{\varepsilon}^{+}(S)$.
- Successively connect by line segments the bottom pixels of the selected columns by line segments. We obtain a broken line $\mathcal{L}_{\varepsilon}^{-}(S)$.
- We denote by $\mathcal{L}_{\varepsilon}(S)$ the region between $\mathcal{L}_{\varepsilon}^{-}(S)$ and $\mathcal{L}_{\varepsilon}^{+}(S)$.

Example of Approximation

Example of Approximation

Example of Approximation

Morse theory to the rescue

Figure: A planar semialgebraic set.

Morse theory to the rescue

Figure: A planar semialgebraic set.

Jump sets

- Suppose that R is a compact semialgebraic set.

Jump sets

- Suppose that R is a compact semialgebraic set.
- For any $x_{0} \in \mathbb{R}$ we denote by $\boldsymbol{c}_{R}\left(x_{0}\right)$ the number of connected components of the intersection of R with the line $x=x_{0}$.

Jump sets

- Suppose that R is a compact semialgebraic set.
- For any $x_{0} \in \mathbb{R}$ we denote by $\boldsymbol{c}_{R}\left(x_{0}\right)$ the number of connected components of the intersection of R with the line $x=x_{0}$.
- The function $\mathbb{R} \ni x \mapsto \boldsymbol{c}_{R}(x) \in \mathbb{Z}_{\geq 0}$ is semialgebraic, so it has finitely many points of discontinuity.

Jump sets

- Suppose that R is a compact semialgebraic set.
- For any $x_{0} \in \mathbb{R}$ we denote by $\boldsymbol{c}_{R}\left(x_{0}\right)$ the number of connected components of the intersection of R with the line $x=x_{0}$.
- The function $\mathbb{R} \ni x \mapsto \boldsymbol{c}_{R}(x) \in \mathbb{Z}_{\geq 0}$ is semialgebraic, so it has finitely many points of discontinuity.
- We denote by \mathcal{J}_{R} the set of points of discontinuity of \boldsymbol{c}_{R}.

Jump sets

- Suppose that R is a compact semialgebraic set.
- For any $x_{0} \in \mathbb{R}$ we denote by $\boldsymbol{c}_{R}\left(x_{0}\right)$ the number of connected components of the intersection of R with the line $x=x_{0}$.
- The function $\mathbb{R} \ni x \mapsto \boldsymbol{c}_{R}(x) \in \mathbb{Z}_{\geq 0}$ is semialgebraic, so it has finitely many points of discontinuity.
- We denote by \mathcal{J}_{R} the set of points of discontinuity of \boldsymbol{c}_{R}. We will refer to it as the jump set of R.

Figure: A planar semialgebraic set. The •'s mark the jump set \mathcal{J}_{s}.

Locating the jump set

Theorem (N. \& Rowekamp)

Suppose that $S \subset \mathbb{R}^{2}$ is a compact semialgebraic set satisfying the following condition.
(G) The restriction to S of the projection $(x, y) \mapsto x$ is a stratified Morse function.

Locating the jump set

Theorem (N. \& Rowekamp)

Suppose that $S \subset \mathbb{R}^{2}$ is a compact semialgebraic set satisfying the following condition.
(G) The restriction to S of the projection $(x, y) \mapsto x$ is a stratified Morse function.
Then there exist $\hbar>0, \nu_{0}>0$ and $\kappa_{0} \in(0,1] \cap \mathbb{Q}$, depending only on S such that for $\varepsilon<\hbar$ we have

$$
\operatorname{dist}\left(\mathcal{J}_{S}, \mathcal{J}_{P_{\varepsilon}(S)}\right)<\nu_{0} \varepsilon^{\kappa_{0}} .
$$

Some remarks

Remark

- The condition (\mathbf{G}) is generic.

Some remarks

Remark

- The condition (\mathbf{G}) is generic.
- If S itself is $P L$, then we can choose $\kappa_{0}=1$. In general κ_{0} depends on the order of contact of the various branches of S at singular points.

Some remarks

Remark

- The condition (\mathbf{G}) is generic.
- If S itself is $P L$, then we can choose $\kappa_{0}=1$. In general κ_{0} depends on the order of contact of the various branches of S at singular points.
- A spread function $\sigma(\varepsilon)$ is said to be compatible with S if it satisfies

$$
\lim _{\varepsilon \searrow 0} \varepsilon^{\frac{1}{2}} \sigma(\varepsilon)=\lim _{\varepsilon \searrow 0} \frac{\varepsilon \sigma(\varepsilon)}{\nu_{0} \varepsilon^{\kappa_{0}}}=\infty
$$

For example if $\alpha:=\max \left(\frac{1}{2}, 1-\kappa_{0}\right)$ then

$$
\sigma(\varepsilon)=\left\lfloor\varepsilon^{-\frac{1+\alpha}{2}}\right\rfloor
$$

will do the trick.

The construction of $\mathcal{L}_{\varepsilon}$

(a) Let S be a compact semialgebraic set. Fix a spread $\sigma(\varepsilon)$ compatible with S.

The construction of $\mathcal{L}_{\varepsilon}$

(a) Let S be a compact semialgebraic set. Fix a spread $\sigma(\varepsilon)$ compatible with S.
(b) For $\varepsilon>0$ we denote by $\mathcal{N}_{\varepsilon}$ the union of the open vertical strips

$$
V_{\varepsilon, x_{0}}:=\left\{\left|x-x_{0}\right|<\sigma(\varepsilon)\right\}, \quad x_{0} \in \mathcal{J}_{P_{\varepsilon}(S)}
$$

We say that $\mathcal{N}_{\varepsilon}$ is the noisy region.

The construction of $\mathcal{L}_{\varepsilon}$

(a) Let S be a compact semialgebraic set. Fix a spread $\sigma(\varepsilon)$ compatible with S.
(b) For $\varepsilon>0$ we denote by $\mathcal{N}_{\varepsilon}$ the union of the open vertical strips

$$
V_{\varepsilon, x_{0}}:=\left\{\left|x-x_{0}\right|<\sigma(\varepsilon)\right\}, \quad x_{0} \in \mathcal{J}_{P_{\varepsilon}(S)}
$$

We say that $\mathcal{N}_{\varepsilon}$ is the noisy region.
(c) Each of the components of $P_{\varepsilon}(S) \backslash \mathcal{N}_{\varepsilon}$ is the pixelation of an elementary region.

The construction of $\mathcal{L}_{\varepsilon}$

(a) Let S be a compact semialgebraic set. Fix a spread $\sigma(\varepsilon)$ compatible with S.
(b) For $\varepsilon>0$ we denote by $\mathcal{N}_{\varepsilon}$ the union of the open vertical strips

$$
V_{\varepsilon, x_{0}}:=\left\{\left|x-x_{0}\right|<\sigma(\varepsilon)\right\}, \quad x_{0} \in \mathcal{J}_{P_{\varepsilon}(S)}
$$

We say that $\mathcal{N}_{\varepsilon}$ is the noisy region.
(c) Each of the components of $P_{\varepsilon}(S) \backslash \mathcal{N}_{\varepsilon}$ is the pixelation of an elementary region. Using the $\sigma(\varepsilon)$-interpolation method outlined earlier, replace each of these components C with the $P L$-set $\mathcal{L}_{\varepsilon}(C)$.

Approximating Noise

(d) Replace each component of $\mathcal{N}_{\varepsilon} \cap P_{\varepsilon}(S)$ with the smallest rectangle that contains it.

Approximating Noise

(d) Replace each component of $\mathcal{N}_{\varepsilon} \cap P_{\varepsilon}(S)$ with the smallest rectangle that contains it.

The $P L$-set $\mathcal{L}_{\varepsilon}(S)$

Define $\mathcal{L}_{\varepsilon}(S)$ as the union of the $P L$-sets constructed at (c) and (d) above.

Example

Example

-							

Example

Example

Example

The normal cycle of a planar semialgebraic set

- The normal cycle of a compact semialgebraic set $S \subset \mathbb{R}^{2}$ is a 1-dimensional current \boldsymbol{N}^{S} in $S\left(T \mathbb{R}^{2}\right)$, the unit tangent bundle of \mathbb{R}^{2}.

The normal cycle of a planar semialgebraic set

- The normal cycle of a compact semialgebraic set $S \subset \mathbb{R}^{2}$ is a 1-dimensional current \boldsymbol{N}^{S} in $S\left(T \mathbb{R}^{2}\right)$, the unit tangent bundle of \mathbb{R}^{2}.
- \boldsymbol{N}^{S} is a cycle, i.e., $\partial \boldsymbol{N}^{S}=0$ in the sense of currents.

The normal cycle of a planar semialgebraic set

- The normal cycle of a compact semialgebraic set $S \subset \mathbb{R}^{2}$ is a 1-dimensional current \boldsymbol{N}^{S} in $S\left(T \mathbb{R}^{2}\right)$, the unit tangent bundle of \mathbb{R}^{2}.
- \boldsymbol{N}^{S} is a cycle, i.e., $\partial \boldsymbol{N}^{S}=0$ in the sense of currents.
- It is a current of integration along a union of oriented, semialgebraic Legendrian arcs in $S\left(T \mathbb{R}^{2}\right)$.

The normal cycle of a planar semialgebraic set

- The normal cycle of a compact semialgebraic set $S \subset \mathbb{R}^{2}$ is a 1-dimensional current \boldsymbol{N}^{S} in $S\left(T \mathbb{R}^{2}\right)$, the unit tangent bundle of \mathbb{R}^{2}.
- \boldsymbol{N}^{S} is a cycle, i.e., $\partial \boldsymbol{N}^{S}=0$ in the sense of currents.
- It is a current of integration along a union of oriented, semialgebraic Legendrian arcs in $S\left(T \mathbb{R}^{2}\right)$.
- A simple description of \boldsymbol{N}^{S} when S is a PL-set was given by Cheeger-Muller-Schrader-Wintgen.

The normal cycle of a planar semialgebraic set

- The normal cycle of a compact semialgebraic set $S \subset \mathbb{R}^{2}$ is a 1 -dimensional current \boldsymbol{N}^{S} in $S\left(T \mathbb{R}^{2}\right)$, the unit tangent bundle of \mathbb{R}^{2}.
- $\boldsymbol{N}^{\boldsymbol{S}}$ is a cycle, i.e., $\partial \boldsymbol{N}^{\mathcal{S}}=0$ in the sense of currents.
- It is a current of integration along a union of oriented, semialgebraic Legendrian arcs in $S\left(T \mathbb{R}^{2}\right)$.
- A simple description of \boldsymbol{N}^{S} when S is a PL-set was given by Cheeger-Muller-Schrader-Wintgen.
- The correspondence $S \mapsto \boldsymbol{N}^{S}$ is injective! Its inverse was explicitly described by Kashiwara-Schapira using the concept of local Euler obstruction. They also gave the first general construction of \boldsymbol{N}^{S} using micro-local theory of sheaves.

The normal cycle à la J. Fu

Suppose that $S \subset \mathbb{R}^{2}$ is a compact semialgebraic set.

The normal cycle à la J. Fu

Suppose that $S \subset \mathbb{R}^{2}$ is a compact semialgebraic set. Fix a C^{3} semialgebraic function function $f: \mathbb{R}^{2} \rightarrow \mathbb{R} \geq 0$ such that $S=f^{-1}(0)$. Denote by R_{ε} the region $\{f \leq \varepsilon\}$.

The normal cycle à la J. Fu

Suppose that $S \subset \mathbb{R}^{2}$ is a compact semialgebraic set. Fix a C^{3} semialgebraic function function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$ such that $S=f^{-1}(0)$. Denote by R_{ε} the region $\{f \leq \varepsilon\}$. For ε small R_{ε} has C^{3}-boundary.

Figure: $A n \varepsilon$-tube around a semialgebraic set S.

The construction of the normal cycle

Consider the Gauss map $\boldsymbol{n}_{\varepsilon}: \partial R_{\varepsilon} \rightarrow S^{1}$ that associates to a point on the boundary its unit outer normal. Its graph

$$
\Gamma_{f, \varepsilon}:=\left\{\left(x, \boldsymbol{n}_{\varepsilon}(x)\right) ; \quad x \in \partial R_{\varepsilon}\right\} \subset S\left(T \mathbb{R}^{2}\right)
$$

is an oriented Legendrian cycle defining a current of integration $\left[\Gamma_{f, \varepsilon}\right]$.

The construction of the normal cycle

Consider the Gauss map $\boldsymbol{n}_{\varepsilon}: \partial R_{\varepsilon} \rightarrow S^{1}$ that associates to a point on the boundary its unit outer normal. Its graph

$$
\Gamma_{f, \varepsilon}:=\left\{\left(x, \boldsymbol{n}_{\varepsilon}(x)\right) ; \quad x \in \partial R_{\varepsilon}\right\} \subset S\left(T \mathbb{R}^{2}\right)
$$

is an oriented Legendrian cycle defining a current of integration $\left[\Gamma_{f, \varepsilon}\right]$.

Theorem (J. Fu)

As $\varepsilon \searrow 0$ the current $\left[\Gamma_{f, \varepsilon}\right]$ converges in the sense of currents to a current $\left[\Gamma_{f}\right]$. This limit is independent of the choice of function f and it is, by definition, the normal cycle of S.

The main approximation result

Theorem (N.\& Rowekamp)

Suppose that $S \subset \mathbb{R}^{2}$ is a compact semialgebraic set. For $\varepsilon>0$ denote by $\mathcal{L}_{\varepsilon}(S)$ the $P L$-set obtained from the pixelation $P_{\varepsilon}(S)$ by the algorithm outlined earlier. Then the normal cycle $\mathbf{N}^{\mathcal{L}_{\varepsilon}(S)}$ converges to the normal cycle \boldsymbol{N}^{S} as $\varepsilon \searrow 0$.

A few words about the proof

The proof relies on Fu's approximation theorem.

A few words about the proof

The proof relies on Fu's approximation theorem.

Theorem

Suppose S and $\left(S_{n}\right)_{n \geq 0}$ are compact semialgebraic sets in the plane satisfying the following conditions.

A few words about the proof

The proof relies on Fu's approximation theorem.

Theorem

Suppose S and $\left(S_{n}\right)_{n \geq 0}$ are compact semialgebraic sets in the plane satisfying the following conditions.
(a) There exists a disk that contains all the sets S_{n}.

A few words about the proof

The proof relies on Fu's approximation theorem.

Theorem

Suppose S and $\left(S_{n}\right)_{n \geq 0}$ are compact semialgebraic sets in the plane satisfying the following conditions.
(a) There exists a disk that contains all the sets S_{n}.
(b) The mass of the normal cycle $\boldsymbol{N}^{S_{n}}$ is $O(1)$ as $n \rightarrow \infty$.

A few words about the proof

The proof relies on Fu's approximation theorem.

Theorem

Suppose S and $\left(S_{n}\right)_{n \geq 0}$ are compact semialgebraic sets in the plane satisfying the following conditions.
(a) There exists a disk that contains all the sets S_{n}.
(b) The mass of the normal cycle $\boldsymbol{N}^{S_{n}}$ is $O(1)$ as $n \rightarrow \infty$.
(c) For almost any closed half-plane $H \subset \mathbb{R}^{2}$ we have

$$
\lim _{n \rightarrow \infty} \chi\left(H \cap S_{n}\right)=\chi(S)
$$

where χ denotes the Euler characteristic.

A few words about the proof

The proof relies on Fu's approximation theorem.

Theorem

Suppose S and $\left(S_{n}\right)_{n \geq 0}$ are compact semialgebraic sets in the plane satisfying the following conditions.
(a) There exists a disk that contains all the sets S_{n}.
(b) The mass of the normal cycle $\boldsymbol{N}^{S_{n}}$ is $O(1)$ as $n \rightarrow \infty$.
(c) For almost any closed half-plane $H \subset \mathbb{R}^{2}$ we have

$$
\lim _{n \rightarrow \infty} \chi\left(H \cap S_{n}\right)=\chi(S)
$$

where χ denotes the Euler characteristic.
Then $\boldsymbol{N}^{S_{n}} \rightarrow \boldsymbol{N}^{S}$ as $n \rightarrow \infty$.

A few words about the proof

- In our case the mass condition (b) is guaranteed by the fact that the perimeters and total curvatures of $\mathcal{L}_{\varepsilon}(S)$ are $O(1)$ as $\varepsilon \searrow 0$.

A few words about the proof

- In our case the mass condition (b) is guaranteed by the fact that the perimeters and total curvatures of $\mathcal{L}_{\varepsilon}(S)$ are $O(1)$ as $\varepsilon \searrow 0$.
- The tricky part is proving the condition (c) on convergence of Euler characteristics.

