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Pixels

Definition
Let ε > 0. An ε-pixel is a square of the form

[ (m − 1)ε,mε ]× [ (n − 1)ε,nε ], m,n ∈ Z.
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The Grid of Pixels

ε
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Pixelations

Definition
Let ε > 0. An ε-pixelation is the union of a finite collection of ε-pixels.

.
Suppose that S is a compact subset of R2. The ε-pixelation of S,
denoted by Pε(S), is the union of all the ε-pixels that touch S. The
number ε is called the resolution of the pixelation.

Nicolaescu-Rowekamp (Notre Dame) Planar Pixelations 2012 9 / 59



Pixelations

Definition
Let ε > 0. An ε-pixelation is the union of a finite collection of ε-pixels. .
Suppose that S is a compact subset of R2.

The ε-pixelation of S,
denoted by Pε(S), is the union of all the ε-pixels that touch S. The
number ε is called the resolution of the pixelation.

Nicolaescu-Rowekamp (Notre Dame) Planar Pixelations 2012 9 / 59



Pixelations

Definition
Let ε > 0. An ε-pixelation is the union of a finite collection of ε-pixels. .
Suppose that S is a compact subset of R2. The ε-pixelation of S,
denoted by Pε(S), is the union of all the ε-pixels that touch S.

The
number ε is called the resolution of the pixelation.

Nicolaescu-Rowekamp (Notre Dame) Planar Pixelations 2012 9 / 59



Pixelations

Definition
Let ε > 0. An ε-pixelation is the union of a finite collection of ε-pixels. .
Suppose that S is a compact subset of R2. The ε-pixelation of S,
denoted by Pε(S), is the union of all the ε-pixels that touch S. The
number ε is called the resolution of the pixelation.

Nicolaescu-Rowekamp (Notre Dame) Planar Pixelations 2012 9 / 59



A pixelation

ε
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A pixelation
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The Goal

Reconstruct a compact, planar semialgebraic set S from its
ε-pixelations.

More precisely, we want to use the ε-pixelation of S to
algorithmically produce a planar PL-set Lε(S) that “converges” (?)
to S as ε↘ 0.
The above convergence should be strong enough so that in the
limit we can recover the significant feature of S:

I area, perimeter, curvature;
I homotopy type, i.e., Betti numbers.
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Some low hanging fruit

If S is a compact semialgebraic set then the ε-pixelation Pε(S) is a
PL set that converges to S in the Hausdorff metric.
We can conclude that Pε(S) has the same number of connected
components as S for ε sufficiently small, i.e.,

lim
ε↘0

b0
(

Pε(S)
)

= b0(S).

Additionally
lim
ε↘0

Area
(

Pε(S)
)

= Area (S).

Things go downhill from here.
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Geometric headaches

Consider the ε-pixelations of a line segment with an endpoint at the
origin.
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Geometric headaches

The total curvature of the boundary of the pixelation goes to∞ as
ε↘ 0.
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Topological headaches: these are really serious

Very often, b1
(

Pε(S)
)
> b1(S), ∀ε > 0.
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Topological headaches: these are really serious

More cycles can be found in pixelations of two lines by altering
slopes.

An angle between a line of slope 1 and a line of slope n
n+1 will

have n cycles appear in each ε-pixelation.
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Elementary regions

Definition
A subset S ⊂ R2 is said to be elementary if it can be defined as

S = S(β, τ) :=
{

(x , y) : x ∈ [a,b], β(x) ≤ x ≤ τ(x)
}
,

where β, τ : [a,b]→ R are continuous semialgebraic functions such
that β(x) ≤ τ(x), ∀x ∈ [a,b]. The function β is called the bottom of S
while τ is called the top of S.
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c c cc
0

1 2 3

ττ

β
β

τ=β

Figure: An elementary set.
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Columns, stacks and elementary sets

A column of an ε-pixelation is the intersection of that pixelation
with a vertical strip of the form (m − 1)ε ≤ x ≤ mε.

The connected components of a column are called stacks.
KEY REMARK Suppose that S is an elementary region and ε > 0.
Then each column of Pε(S) consists of at most one stack. In
particular, Pε(S) is homotopic to S, ∀ε > 0.
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A pixelation of an elementary set

Figure: The columns of the above pixelation consist of single stacks.
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Approximating the graph of a function
Let f be a a continuous semialgebraic function and denote by
Pε(f ) the ε-pixelation of its graph.

First Idea: Choose a pixel in each column. Successively connect
their centers by line segments.
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Approximating the graph of a function
First idea only lead to integer valued slopes

Second idea: Select a pixel in every other column. Successively
connect their centers by line segments.
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Approximating the graph of a function

How many columns should we skip?

Skipping more columns means more possible slopes, but fewer
line segments.
We want to skip a lot of columns, but want many line segments.
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Approximating the graph of a function

To choose how many columns to skip we use a spread function.

This is a function σ : R+ → Z+.
For each ε > 0, σ(ε) indicates how many columns to skip.
Desired properties:

I limε→0 σ(ε) =∞ (We skip more and more columns as the
resolution is finer and finer.)

I limε→0 εσ(ε) = 0. (For fine resolutions, the segments of the
resulting broken line are rather short, of size ≈ εσ(ε).)
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Approximating the graph of a function

Choose an appropriate spread function σ(ε).
Select points from every σ(ε)-th column.
Successively connect the selected points by line
segments.Denote by Lε(f ) the resulting broken line.
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Approximating the Graph of a Function
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Approximating the Graph of a Function
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Approximating the graph of a function

Theorem (N.& Rowekamp)
Let f be a continuous semialgebraic function with graph Γf , and
σ : R>0 → Z>0 be a spread function, i.e.,

lim
ε↘0

σ(ε) =∞, lim
ε↘0

εσ(ε) = 0.

(a)
lim
ε↘0

length (Lε(f ) ) = length (Γf ).

(b) If the spread satisfies the additional condition

lim
ε↘0

ε
1
2σ(ε) =∞,

then the total curvature of Lε(f ) converges to the total curvature of Γf .
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Approximating elementary regions

Suppose that S is an elementary region.

For each ε > 0 choose columns of Pε(S) such that between two
consecutive selected columns there are ≈ σ(ε) unselected
columns.
Successively connect by line segments the top pixels of the
selected columns by line segments. We obtain a broken line
L+
ε (S).

Successively connect by line segments the bottom pixels of the
selected columns by line segments. We obtain a broken line
L−ε (S).
We denote by Lε(S) the region between L−ε (S) and L+

ε (S).
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Example of Approximation
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Morse theory to the rescue

S

Figure: A planar semialgebraic set.
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Jump sets

Suppose that R is a compact semialgebraic set.

For any x0 ∈ R we denote by cR(x0) the number of connected
components of the intersection of R with the line x = x0.
The function R 3 x 7→ cR(x) ∈ Z≥0 is semialgebraic, so it has
finitely many points of discontinuity.
We denote by JR the set of points of discontinuity of cR. We will
refer to it as the jump set of R.
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S

Figure: A planar semialgebraic set. The •’s mark the jump set JS.
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Locating the jump set

Theorem (N. & Rowekamp)

Suppose that S ⊂ R2 is a compact semialgebraic set satisfying the
following condition.
(G) The restriction to S of the projection (x , y) 7→ x is a stratified Morse
function.

Then there exist ~ > 0, ν0 > 0 and κ0 ∈ (0,1] ∩Q, depending only on
S such that for ε < ~ we have

dist(JS, JPε(S)) < ν0ε
κ0 .
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Some remarks

Remark
The condition (G) is generic.

If S itself is PL, then we can choose κ0 = 1. In general κ0
depends on the order of contact of the various branches of S at
singular points.
A spread function σ(ε) is said to be compatible with S if it satisfies

lim
ε↘0

ε
1
2σ(ε) = lim

ε↘0

εσ(ε)

ν0εκ0
=∞.

For example if α := max(1
2 ,1− κ0) then

σ(ε) =
⌊
ε−

1+α
2

⌋
will do the trick.
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The construction of Lε

(a) Let S be a compact semialgebraic set. Fix a spread σ(ε)
compatible with S.

(b) For ε > 0 we denote by Nε the union of the open vertical strips

Vε,x0 := {|x − x0| < σ(ε)}, x0 ∈ JPε(S)

We say that Nε is the noisy region.
(c) Each of the components of Pε(S) \Nε is the pixelation of an

elementary region. Using the σ(ε)-interpolation method outlined
earlier, replace each of these components C with the PL-set
Lε(C).
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Approximating Noise
(d) Replace each component of Nε ∩ Pε(S) with the smallest

rectangle that contains it.
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The PL-set Lε(S)

Define Lε(S) as the union of the PL-sets constructed at (c) and (d)
above.
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Example
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The normal cycle of a planar semialgebraic set

The normal cycle of a compact semialgebraic set S ⊂ R2 is a
1-dimensional current NS in S(TR2), the unit tangent bundle of
R2.

NS is a cycle, i.e., ∂NS = 0 in the sense of currents.
It is a current of integration along a union of oriented,
semialgebraic Legendrian arcs in S(TR2).
A simple description of NS when S is a PL-set was given by
Cheeger-Muller-Schrader-Wintgen.
The correspondence S 7→ NS is injective! Its inverse was explicitly
described by Kashiwara-Schapira using the concept of local Euler
obstruction. They also gave the first general construction of NS

using micro-local theory of sheaves.
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The normal cycle à la J. Fu

Suppose that S ⊂ R2 is a compact semialgebraic set.

Fix a C3

semialgebraic function function f : R2 → R≥0 such that S = f−1(0).
Denote by Rε the region {f ≤ ε}. For ε small Rε has C3-boundary.

S

R
ε

Figure: An ε-tube around a semialgebraic set S.
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The construction of the normal cycle

Consider the Gauss map nε : ∂Rε → S1 that associates to a point on
the boundary its unit outer normal. Its graph

Γf ,ε := {(x ,nε(x)); x ∈ ∂Rε} ⊂ S(TR2)

is an oriented Legendrian cycle defining a current of integration [Γf ,ε].

Theorem (J. Fu)
As ε↘ 0 the current [Γf ,ε] converges in the sense of currents to a
current [Γf ]. This limit is independent of the choice of function f and it
is, by definition, the normal cycle of S.
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The main approximation result

Theorem (N.& Rowekamp)

Suppose that S ⊂ R2 is a compact semialgebraic set. For ε > 0
denote by Lε(S) the PL-set obtained from the pixelation Pε(S) by the
algorithm outlined earlier. Then the normal cycle NLε(S) converges to
the normal cycle NS as ε↘ 0.
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A few words about the proof

The proof relies on Fu’s approximation theorem.

Theorem
Suppose S and (Sn)n≥0 are compact semialgebraic sets in the plane
satisfying the following conditions.

(a) There exists a disk that contains all the sets Sn.
(b) The mass of the normal cycle NSn is O(1) as n→∞.
(c) For almost any closed half-plane H ⊂ R2 we have

lim
n→∞

χ
(

H ∩ Sn
)

= χ(S),

where χ denotes the Euler characteristic.

Then NSn → NS as n→∞.
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A few words about the proof

In our case the mass condition (b) is guaranteed by the fact that
the perimeters and total curvatures of Lε(S) are O(1) as ε↘ 0.

The tricky part is proving the condition (c) on convergence of Euler
characteristics.
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