

The Geometry of Planar Pixelations and Shape Recognition

Liviu I. Nicolaescu & Brandom Rowekamp

Nicolaescu-Rowekamp (Notre Dame)

Formulation of the problem

- The main characters
- This is trickier than you might think

Perestroika

- Elementary Regions
- ۰ A little Morse theory
- The normal cycle
- The convergence theorem ۰

Pixels

Pixels

Definition

Let $\varepsilon > 0$. An ε -pixel is a square of the form

$$[(m-1)\varepsilon, m\varepsilon] \times [(n-1)\varepsilon, n\varepsilon], m, n \in \mathbb{Z}.$$

The Grid of Pixels

Definition

Let $\varepsilon > 0$. An ε -pixelation is the union of a finite collection of ϵ -pixels.

Definition

Let $\varepsilon > 0$. An ε -pixelation is the union of a finite collection of ϵ -pixels. . Suppose that *S* is a compact subset of \mathbb{R}^2 .

Definition

Let $\varepsilon > 0$. An ε -pixelation is the union of a finite collection of ϵ -pixels. . Suppose that S is a compact subset of \mathbb{R}^2 . The ε -pixelation of S, denoted by $P_{\varepsilon}(S)$, is the union of all the ε -pixels that touch S.

Definition

Let $\varepsilon > 0$. An ε -pixelation is the union of a finite collection of ϵ -pixels. . Suppose that *S* is a compact subset of \mathbb{R}^2 . The ε -pixelation of *S*, denoted by $P_{\varepsilon}(S)$, is the union of all the ε -pixels that touch *S*. The number ε is called the resolution of the pixelation.

 Reconstruct a compact, planar semialgebraic set S from its ε-pixelations.

- Reconstruct a compact, planar semialgebraic set S from its ε-pixelations.
- More precisely, we want to use the ε-pixelation of S to algorithmically produce a planar PL-set L_ε(S) that "converges" (?) to S as ε ∖ 0.

- Reconstruct a compact, planar semialgebraic set S from its ε-pixelations.
- More precisely, we want to use the ε-pixelation of S to algorithmically produce a planar PL-set L_ε(S) that "converges" (?) to S as ε ∖ 0.
- The above convergence should be strong enough so that in the limit we can recover the significant feature of *S*:

- Reconstruct a compact, planar semialgebraic set S from its ε-pixelations.
- More precisely, we want to use the ε-pixelation of S to algorithmically produce a planar PL-set L_ε(S) that "converges" (?) to S as ε ∖ 0.
- The above convergence should be strong enough so that in the limit we can recover the significant feature of *S*:
 - area, perimeter, curvature;

- Reconstruct a compact, planar semialgebraic set S from its ε-pixelations.
- More precisely, we want to use the ε-pixelation of S to algorithmically produce a planar PL-set L_ε(S) that "converges" (?) to S as ε ∖ 0.
- The above convergence should be strong enough so that in the limit we can recover the significant feature of *S*:
 - area, perimeter, curvature;
 - homotopy type, i.e., Betti numbers.

 If S is a compact semialgebraic set then the ε-pixelation P_ε(S) is a PL set that converges to S in the Hausdorff metric.

- If S is a compact semialgebraic set then the ε-pixelation P_ε(S) is a PL set that converges to S in the Hausdorff metric.
- We can conclude that P_ε(S) has the same number of connected components as S for ε sufficiently small, i.e.,

$$\lim_{\varepsilon\searrow 0}b_0(P_{\varepsilon}(S))=b_0(S).$$

- If S is a compact semialgebraic set then the ε-pixelation P_ε(S) is a PL set that converges to S in the Hausdorff metric.
- We can conclude that P_ε(S) has the same number of connected components as S for ε sufficiently small, i.e.,

$$\lim_{\varepsilon\searrow 0}b_0(P_{\varepsilon}(S))=b_0(S).$$

Additionally

$$\lim_{\varepsilon \searrow 0} \operatorname{Area} \left(P_{\varepsilon}(S) \right) = \operatorname{Area} (S).$$

- If S is a compact semialgebraic set then the ε-pixelation P_ε(S) is a PL set that converges to S in the Hausdorff metric.
- We can conclude that P_ε(S) has the same number of connected components as S for ε sufficiently small, i.e.,

$$\lim_{\varepsilon\searrow 0}b_0(P_{\varepsilon}(S))=b_0(S).$$

Additionally

$$\lim_{\varepsilon \searrow 0} \operatorname{Area} \left(P_{\varepsilon}(S) \right) = \operatorname{Area}(S).$$

• Things go downhill from here.

Consider the ε -pixelations of a line segment with an endpoint at the origin.

Consider the $\varepsilon\text{-pixelations}$ of a line segment with an endpoint at the origin.

The total curvature of the boundary of the pixelation goes to ∞ as $\varepsilon \searrow 0$.

Nicolaescu-Rowekamp (Notre Dame)

Topological headaches: these are really serious

Nicolaescu-Rowekamp (Notre Dame)

Topological headaches: these are really serious Very often, $b_1(P_{\varepsilon}(S)) > b_1(S)$, $\forall \varepsilon > 0$.

Topological headaches: these are really serious Very often, $b_1(P_{\varepsilon}(S)) > b_1(S), \forall \varepsilon > 0.$

Topological headaches: these are really serious Very often, $b_1(P_{\varepsilon}(S)) > b_1(S)$, $\forall \varepsilon > 0$.

Topological headaches: these are really serious

 More cycles can be found in pixelations of two lines by altering slopes.
Topological headaches: these are really serious

- More cycles can be found in pixelations of two lines by altering slopes.
- An angle between a line of slope 1 and a line of slope ⁿ/_{n+1} will have *n* cycles appear in each ε-pixelation.

Elementary regions

Definition

A subset $S \subset \mathbb{R}^2$ is said to be elementary if it can be defined as

$$S = S(\beta, \tau) := \{ (x, y) : x \in [a, b], \beta(x) \le x \le \tau(x) \},\$$

where $\beta, \tau : [a, b] \to \mathbb{R}$ are continuous semialgebraic functions such that $\beta(x) \leq \tau(x), \forall x \in [a, b]$. The function β is called the *bottom* of *S* while τ is called the *top* of *S*.

Figure: An elementary set.

 A column of an *ε*-pixelation is the intersection of that pixelation with a vertical strip of the form (*m* − 1)*ε* ≤ *x* ≤ *mε*.

- A column of an *ε*-pixelation is the intersection of that pixelation with a vertical strip of the form (*m* − 1)*ε* ≤ *x* ≤ *mε*.
- The connected components of a column are called stacks.

- A column of an *ε*-pixelation is the intersection of that pixelation with a vertical strip of the form (*m*−1)*ε* ≤ *x* ≤ *mε*.
- The connected components of a column are called stacks.
- KEY REMARK Suppose that *S* is an elementary region and $\varepsilon > 0$.

- A column of an *ε*-pixelation is the intersection of that pixelation with a vertical strip of the form (*m* − 1)*ε* ≤ *x* ≤ *mε*.
- The connected components of a column are called stacks.
- KEY REMARK Suppose that S is an elementary region and ε > 0. Then each column of P_ε(S) consists of at most one stack.

- A column of an ε-pixelation is the intersection of that pixelation with a vertical strip of the form (m − 1)ε ≤ x ≤ mε.
- The connected components of a column are called stacks.
- KEY REMARK Suppose that S is an elementary region and ε > 0. Then each column of P_ε(S) consists of at most one stack. In particular, P_ε(S) is homotopic to S, ∀ε > 0.

A pixelation of an elementary set

Figure: The columns of the above pixelation consist of single stacks.

• Let *f* be a continuous semialgebraic function and denote by $P_{\varepsilon}(f)$ the ε -pixelation of its graph.

- Let *f* be a continuous semialgebraic function and denote by $P_{\varepsilon}(f)$ the ε -pixelation of its graph.
- First Idea: Choose a pixel in each column.

- Let *f* be a continuous semialgebraic function and denote by $P_{\varepsilon}(f)$ the ε -pixelation of its graph.
- First Idea: Choose a pixel in each column. Successively connect their centers by line segments.

- Let *f* be a continuous semialgebraic function and denote by $P_{\varepsilon}(f)$ the ε -pixelation of its graph.
- First Idea: Choose a pixel in each column. Successively connect their centers by line segments.

• First idea only lead to integer valued slopes

- First idea only lead to integer valued slopes
- Second idea: Select a pixel in every other column. Successively connect their centers by line segments.

- First idea only lead to integer valued slopes
- Second idea: Select a pixel in every other column. Successively connect their centers by line segments.

• How many columns should we skip?

- How many columns should we skip?
- Skipping more columns means more possible slopes, but fewer line segments.

- How many columns should we skip?
- Skipping more columns means more possible slopes, but fewer line segments.
- We want to skip a lot of columns, but want many line segments.

• To choose how many columns to skip we use a spread function.

- To choose how many columns to skip we use a *spread function*.
- This is a function $\sigma : \mathbb{R}^+ \to \mathbb{Z}^+$.

- To choose how many columns to skip we use a spread function.
- This is a function $\sigma : \mathbb{R}^+ \to \mathbb{Z}^+$.
- For each $\varepsilon > 0$, $\sigma(\varepsilon)$ indicates how many columns to skip.

- To choose how many columns to skip we use a *spread function*.
- This is a function $\sigma : \mathbb{R}^+ \to \mathbb{Z}^+$.
- For each $\varepsilon > 0$, $\sigma(\varepsilon)$ indicates how many columns to skip.
- Desired properties:

- To choose how many columns to skip we use a spread function.
- This is a function $\sigma : \mathbb{R}^+ \to \mathbb{Z}^+$.
- For each $\varepsilon > 0$, $\sigma(\varepsilon)$ indicates how many columns to skip.
- Desired properties:

•
$$\lim_{\varepsilon \to 0} \sigma(\varepsilon) = \infty$$

- To choose how many columns to skip we use a *spread function*.
- This is a function $\sigma : \mathbb{R}^+ \to \mathbb{Z}^+$.
- For each $\varepsilon > 0$, $\sigma(\varepsilon)$ indicates how many columns to skip.
- Desired properties:
 - lim_{ε→0} σ(ε) = ∞ (We skip more and more columns as the resolution is finer and finer.)

- To choose how many columns to skip we use a *spread function*.
- This is a function $\sigma : \mathbb{R}^+ \to \mathbb{Z}^+$.
- For each $\varepsilon > 0$, $\sigma(\varepsilon)$ indicates how many columns to skip.
- Desired properties:
 - lim_{ε→0} σ(ε) = ∞ (We skip more and more columns as the resolution is finer and finer.)

- To choose how many columns to skip we use a spread function.
- This is a function $\sigma : \mathbb{R}^+ \to \mathbb{Z}^+$.
- For each $\varepsilon > 0$, $\sigma(\varepsilon)$ indicates how many columns to skip.
- Desired properties:
 - Iim_{ε→0} σ(ε) = ∞ (We skip more and more columns as the resolution is finer and finer.)
 - Iim_{ε→0} εσ(ε) = 0. (For fine resolutions, the segments of the resulting broken line are rather short, of size ≈ εσ(ε).)

• Choose an appropriate spread function $\sigma(\varepsilon)$.

- Choose an appropriate spread function $\sigma(\varepsilon)$.
- Select points from every $\sigma(\varepsilon)$ -th column.

- Choose an appropriate spread function $\sigma(\varepsilon)$.
- Select points from every $\sigma(\varepsilon)$ -th column.
- Successively connect the selected points by line segments.

- Choose an appropriate spread function $\sigma(\varepsilon)$.
- Select points from every $\sigma(\varepsilon)$ -th column.
- Successively connect the selected points by line segments.Denote by L_ε(f) the resulting broken line.

Theorem (N.& Rowekamp)

Let *f* be a continuous semialgebraic function with graph Γ_f , and $\sigma : \mathbb{R}_{>0} \to \mathbb{Z}_{>0}$ be a spread function, *i.e.*,

$$\lim_{\varepsilon \searrow 0} \sigma(\varepsilon) = \infty, \quad \lim_{\varepsilon \searrow 0} \varepsilon \sigma(\varepsilon) = 0.$$

Theorem (N.& Rowekamp)

Let *f* be a continuous semialgebraic function with graph Γ_f , and $\sigma : \mathbb{R}_{>0} \to \mathbb{Z}_{>0}$ be a spread function, *i.e.*,

$$\lim_{\varepsilon \searrow 0} \sigma(\varepsilon) = \infty, \quad \lim_{\varepsilon \searrow 0} \varepsilon \sigma(\varepsilon) = 0.$$

(a)

$$\lim_{\varepsilon \searrow 0} \operatorname{length} \left(\mathcal{L}_{\varepsilon}(f) \right) = \operatorname{length} (\Gamma_f).$$

Theorem (N.& Rowekamp)

Let *f* be a continuous semialgebraic function with graph Γ_f , and $\sigma : \mathbb{R}_{>0} \to \mathbb{Z}_{>0}$ be a spread function, *i.e.*,

$$\lim_{\varepsilon \searrow 0} \sigma(\varepsilon) = \infty, \quad \lim_{\varepsilon \searrow 0} \varepsilon \sigma(\varepsilon) = 0.$$

(a)

$$\lim_{\varepsilon \searrow 0} \operatorname{length} \left(\mathcal{L}_{\varepsilon}(f) \right) = \operatorname{length} (\Gamma_f).$$

(b) If the spread satisfies the additional condition

$$\lim_{\varepsilon\searrow 0}\varepsilon^{\frac{1}{2}}\sigma(\varepsilon)=\infty,$$

Theorem (N.& Rowekamp)

Let *f* be a continuous semialgebraic function with graph Γ_f , and $\sigma : \mathbb{R}_{>0} \to \mathbb{Z}_{>0}$ be a spread function, i.e.,

$$\lim_{\varepsilon \searrow 0} \sigma(\varepsilon) = \infty, \quad \lim_{\varepsilon \searrow 0} \varepsilon \sigma(\varepsilon) = 0.$$

(a)

$$\lim_{\varepsilon \searrow 0} \operatorname{length} \left(\mathcal{L}_{\varepsilon}(f) \right) = \operatorname{length} \left(\Gamma_f \right).$$

(b) If the spread satisfies the additional condition

$$\lim_{\varepsilon\searrow 0}\varepsilon^{\frac{1}{2}}\sigma(\varepsilon)=\infty,$$

then the total curvature of $\mathcal{L}_{\varepsilon}(f)$ converges to the total curvature of Γ_f .

Suppose that *S* is an elementary region.

For each ε > 0 choose columns of P_ε(S) such that between two consecutive selected columns there are ≈ σ(ε) unselected columns.

- For each ε > 0 choose columns of P_ε(S) such that between two consecutive selected columns there are ≈ σ(ε) unselected columns.
- Successively connect by line segments the top pixels of the selected columns by line segments. We obtain a broken line *L*⁺_ε(*S*).

- For each ε > 0 choose columns of P_ε(S) such that between two consecutive selected columns there are ≈ σ(ε) unselected columns.
- Successively connect by line segments the top pixels of the selected columns by line segments. We obtain a broken line L⁺_ε(S).
- Successively connect by line segments the bottom pixels of the selected columns by line segments. We obtain a broken line *L*⁻_ε(*S*).

- For each ε > 0 choose columns of P_ε(S) such that between two consecutive selected columns there are ≈ σ(ε) unselected columns.
- Successively connect by line segments the top pixels of the selected columns by line segments. We obtain a broken line L⁺_ε(S).
- Successively connect by line segments the bottom pixels of the selected columns by line segments. We obtain a broken line $\mathcal{L}^{-}_{\varepsilon}(S)$.
- We denote by L_ε(S) the region between L_ε[−](S) and L_ε⁺(S).

Example of Approximation

Example of Approximation

Example of Approximation

Morse theory to the rescue

Figure: A planar semialgebraic set.

Morse theory to the rescue

Figure: A planar semialgebraic set.

• Suppose that *R* is a compact semialgebraic set.

- Suppose that *R* is a compact semialgebraic set.
- For any x₀ ∈ ℝ we denote by c_R(x₀) the number of connected components of the intersection of *R* with the line x = x₀.

- Suppose that *R* is a compact semialgebraic set.
- For any x₀ ∈ ℝ we denote by c_R(x₀) the number of connected components of the intersection of *R* with the line x = x₀.
- The function $\mathbb{R} \ni x \mapsto c_R(x) \in \mathbb{Z}_{\geq 0}$ is semialgebraic, so it has finitely many points of discontinuity.

- Suppose that *R* is a compact semialgebraic set.
- For any x₀ ∈ ℝ we denote by c_R(x₀) the number of connected components of the intersection of *R* with the line x = x₀.
- The function $\mathbb{R} \ni x \mapsto c_R(x) \in \mathbb{Z}_{\geq 0}$ is semialgebraic, so it has finitely many points of discontinuity.
- We denote by \mathcal{J}_R the set of points of discontinuity of \boldsymbol{c}_R .

- Suppose that *R* is a compact semialgebraic set.
- For any $x_0 \in \mathbb{R}$ we denote by $c_R(x_0)$ the number of connected components of the intersection of *R* with the line $x = x_0$.
- The function $\mathbb{R} \ni x \mapsto c_R(x) \in \mathbb{Z}_{\geq 0}$ is semialgebraic, so it has finitely many points of discontinuity.
- We denote by \mathcal{J}_R the set of points of discontinuity of c_R . We will refer to it as the jump set of R.

Figure: A planar semialgebraic set. The •'s mark the jump set \mathcal{J}_S .

Locating the jump set

Theorem (N. & Rowekamp)

Suppose that $S \subset \mathbb{R}^2$ is a compact semialgebraic set satisfying the following condition.

(G) The restriction to S of the projection $(x, y) \mapsto x$ is a stratified Morse function.

Locating the jump set

Theorem (N. & Rowekamp)

Suppose that $S \subset \mathbb{R}^2$ is a compact semialgebraic set satisfying the following condition.

(G) The restriction to S of the projection $(x, y) \mapsto x$ is a stratified Morse function.

Then there exist $\hbar > 0$, $\nu_0 > 0$ and $\kappa_0 \in (0, 1] \cap \mathbb{Q}$, depending only on *S* such that for $\varepsilon < \hbar$ we have

 $\mathsf{dist}(\mathcal{J}_{\mathcal{S}},\mathcal{J}_{\mathcal{P}_{\varepsilon}(\mathcal{S})}) < \nu_0 \varepsilon^{\kappa_0}.$

Some remarks

Remark

• The condition (G) is generic.

Some remarks

Remark

- The condition (G) is generic.
- If S itself is PL, then we can choose κ₀ = 1. In general κ₀ depends on the order of contact of the various branches of S at singular points.

Some remarks

Remark

- The condition (G) is generic.
- If S itself is PL, then we can choose κ₀ = 1. In general κ₀ depends on the order of contact of the various branches of S at singular points.
- A spread function $\sigma(\varepsilon)$ is said to be compatible with S if it satisfies

$$\lim_{\varepsilon\searrow 0}\varepsilon^{\frac{1}{2}}\sigma(\varepsilon)=\lim_{\varepsilon\searrow 0}\frac{\varepsilon\sigma(\varepsilon)}{\nu_{0}\varepsilon^{\kappa_{0}}}=\infty.$$

For example if $\alpha := \max(\frac{1}{2}, 1 - \kappa_0)$ then

$$\sigma(\varepsilon) = \left\lfloor \varepsilon^{-\frac{1+\alpha}{2}} \right\rfloor$$

will do the trick.

(a) Let *S* be a compact semialgebraic set. Fix a spread $\sigma(\varepsilon)$ compatible with *S*.

- (a) Let *S* be a compact semialgebraic set. Fix a spread $\sigma(\varepsilon)$ compatible with *S*.
- (b) For $\varepsilon > 0$ we denote by $\mathcal{N}_{\varepsilon}$ the union of the open vertical strips

$$V_{arepsilon, \mathbf{x}_0} := \{ |\mathbf{x} - \mathbf{x}_0| < \sigma(arepsilon) \}, \ \mathbf{x}_0 \in \mathcal{J}_{\mathcal{P}_{arepsilon}(\mathcal{S})} \}$$

We say that $\mathcal{N}_{\varepsilon}$ is the noisy region.

- (a) Let *S* be a compact semialgebraic set. Fix a spread $\sigma(\varepsilon)$ compatible with *S*.
- (b) For $\varepsilon > 0$ we denote by $\mathcal{N}_{\varepsilon}$ the union of the open vertical strips

$$V_{\varepsilon,x_0} := \{ |x - x_0| < \sigma(\varepsilon) \}, \ x_0 \in \mathcal{J}_{P_{\varepsilon}(S)}$$

We say that $\mathcal{N}_{\varepsilon}$ is the noisy region.

(c) Each of the components of $P_{\varepsilon}(S) \setminus \mathcal{N}_{\varepsilon}$ is the pixelation of an elementary region.

- (a) Let *S* be a compact semialgebraic set. Fix a spread $\sigma(\varepsilon)$ compatible with *S*.
- (b) For $\varepsilon > 0$ we denote by $\mathcal{N}_{\varepsilon}$ the union of the open vertical strips

$$V_{\varepsilon,x_0} := \{ |x - x_0| < \sigma(\varepsilon) \}, \ x_0 \in \mathcal{J}_{P_{\varepsilon}(S)}$$

We say that $\mathcal{N}_{\varepsilon}$ is the noisy region.

(c) Each of the components of P_ε(S) \ N_ε is the pixelation of an elementary region. Using the σ(ε)-interpolation method outlined earlier, replace each of these components C with the PL-set L_ε(C).

Approximating Noise

(d) Replace each component of $\mathcal{N}_{\varepsilon} \cap P_{\varepsilon}(S)$ with the smallest rectangle that contains it.

Approximating Noise

(d) Replace each component of $\mathcal{N}_{\varepsilon} \cap P_{\varepsilon}(S)$ with the smallest rectangle that contains it.

The *PL*-set $\mathcal{L}_{\varepsilon}(S)$

Define $\mathcal{L}_{\varepsilon}(S)$ as the union of the *PL*-sets constructed at (c) and (d) above.

Example

Example

Example

Example

Example

• The normal cycle of a compact semialgebraic set $S \subset \mathbb{R}^2$ is a 1-dimensional current N^S in $S(T\mathbb{R}^2)$, the unit tangent bundle of \mathbb{R}^2 .

- The normal cycle of a compact semialgebraic set $S \subset \mathbb{R}^2$ is a 1-dimensional current N^S in $S(T\mathbb{R}^2)$, the unit tangent bundle of \mathbb{R}^2 .
- N^S is a cycle, i.e., $\partial N^S = 0$ in the sense of currents.

- The normal cycle of a compact semialgebraic set $S \subset \mathbb{R}^2$ is a 1-dimensional current N^S in $S(T\mathbb{R}^2)$, the unit tangent bundle of \mathbb{R}^2 .
- N^S is a cycle, i.e., $\partial N^S = 0$ in the sense of currents.
- It is a current of integration along a union of oriented, semialgebraic Legendrian arcs in S(Tℝ²).

- The normal cycle of a compact semialgebraic set $S \subset \mathbb{R}^2$ is a 1-dimensional current N^S in $S(T\mathbb{R}^2)$, the unit tangent bundle of \mathbb{R}^2 .
- N^S is a cycle, i.e., $\partial N^S = 0$ in the sense of currents.
- It is a current of integration along a union of oriented, semialgebraic Legendrian arcs in S(Tℝ²).
- A simple description of **N**^S when S is a *PL*-set was given by Cheeger-Muller-Schrader-Wintgen.

- The normal cycle of a compact semialgebraic set $S \subset \mathbb{R}^2$ is a 1-dimensional current N^S in $S(T\mathbb{R}^2)$, the unit tangent bundle of \mathbb{R}^2 .
- N^S is a cycle, i.e., $\partial N^S = 0$ in the sense of currents.
- It is a current of integration along a union of oriented, semialgebraic Legendrian arcs in S(TR²).
- A simple description of **N**^S when S is a *PL*-set was given by Cheeger-Muller-Schrader-Wintgen.
- The correspondence $S \mapsto \mathbf{N}^S$ is injective! Its inverse was explicitly described by Kashiwara-Schapira using the concept of local Euler obstruction. They also gave the first general construction of \mathbf{N}^S using micro-local theory of sheaves.

The normal cycle à la J. Fu

Suppose that $S \subset \mathbb{R}^2$ is a compact semialgebraic set.

The normal cycle à la J. Fu

Suppose that $S \subset \mathbb{R}^2$ is a compact semialgebraic set. Fix a C^3 semialgebraic function function $f : \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$ such that $S = f^{-1}(0)$. Denote by R_{ε} the region $\{f \leq \varepsilon\}$.

The normal cycle à la J. Fu

Suppose that $S \subset \mathbb{R}^2$ is a compact semialgebraic set. Fix a C^3 semialgebraic function function $f : \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$ such that $S = f^{-1}(0)$. Denote by R_{ε} the region $\{f \leq \varepsilon\}$. For ε small R_{ε} has C^3 -boundary.

Figure: An ε -tube around a semialgebraic set S.

The construction of the normal cycle

Consider the Gauss map $\mathbf{n}_{\varepsilon} : \partial R_{\varepsilon} \to S^1$ that associates to a point on the boundary its unit outer normal. Its graph

$$\Gamma_{f,\varepsilon} := \{ (x, \boldsymbol{n}_{\varepsilon}(x)); \ x \in \partial R_{\varepsilon} \} \subset S(T\mathbb{R}^2)$$

is an oriented Legendrian cycle defining a current of integration $[\Gamma_{f,\varepsilon}]$.

The construction of the normal cycle

Consider the Gauss map $\mathbf{n}_{\varepsilon} : \partial R_{\varepsilon} \to S^1$ that associates to a point on the boundary its unit outer normal. Its graph

$$\Gamma_{f,\varepsilon} := \{ (x, \boldsymbol{n}_{\varepsilon}(x)); \ x \in \partial R_{\varepsilon} \} \subset S(T\mathbb{R}^2)$$

is an oriented Legendrian cycle defining a current of integration $[\Gamma_{f,\varepsilon}]$.

Theorem (J. Fu)

As $\varepsilon \searrow 0$ the current $[\Gamma_{f,\varepsilon}]$ converges in the sense of currents to a current $[\Gamma_f]$. This limit is independent of the choice of function f and it is, by definition, the normal cycle of S.

The main approximation result

Theorem (N.& Rowekamp)

Suppose that $S \subset \mathbb{R}^2$ is a compact semialgebraic set. For $\varepsilon > 0$ denote by $\mathcal{L}_{\varepsilon}(S)$ the PL-set obtained from the pixelation $P_{\varepsilon}(S)$ by the algorithm outlined earlier. Then the normal cycle $\mathbf{N}^{\mathcal{L}_{\varepsilon}(S)}$ converges to the normal cycle \mathbf{N}^S as $\varepsilon \searrow 0$.

The proof relies on Fu's approximation theorem.

The proof relies on Fu's approximation theorem.

Theorem

Suppose S and $(S_n)_{n\geq 0}$ are compact semialgebraic sets in the plane satisfying the following conditions.

The proof relies on Fu's approximation theorem.

Theorem

Suppose S and $(S_n)_{n\geq 0}$ are compact semialgebraic sets in the plane satisfying the following conditions.

(a) There exists a disk that contains all the sets S_n .

The proof relies on Fu's approximation theorem.

Theorem

Suppose S and $(S_n)_{n\geq 0}$ are compact semialgebraic sets in the plane satisfying the following conditions.

- (a) There exists a disk that contains all the sets S_n .
- (b) The mass of the normal cycle \mathbf{N}^{S_n} is O(1) as $n \to \infty$.

The proof relies on Fu's approximation theorem.

Theorem

Suppose S and $(S_n)_{n\geq 0}$ are compact semialgebraic sets in the plane satisfying the following conditions.

- (a) There exists a disk that contains all the sets S_n .
- (b) The mass of the normal cycle \mathbf{N}^{S_n} is O(1) as $n \to \infty$.
- (c) For almost any closed half-plane $H \subset \mathbb{R}^2$ we have

$$\lim_{n\to\infty}\chi(H\cap S_n)=\chi(S),$$

where χ denotes the Euler characteristic.

The proof relies on Fu's approximation theorem.

Theorem

Suppose S and $(S_n)_{n\geq 0}$ are compact semialgebraic sets in the plane satisfying the following conditions.

- (a) There exists a disk that contains all the sets S_n .
- (b) The mass of the normal cycle \mathbf{N}^{S_n} is O(1) as $n \to \infty$.
- (c) For almost any closed half-plane $H \subset \mathbb{R}^2$ we have

$$\lim_{n\to\infty}\chi(H\cap S_n)=\chi(S),$$

where χ denotes the Euler characteristic.

Then $\mathbf{N}^{S_n} \to \mathbf{N}^S$ as $n \to \infty$.

 In our case the mass condition (b) is guaranteed by the fact that the perimeters and total curvatures of L_ε(S) are O(1) as ε ∖ 0.

- In our case the mass condition (b) is guaranteed by the fact that the perimeters and total curvatures of L_ε(S) are O(1) as ε ∖ 0.
- The tricky part is proving the condition (c) on convergence of Euler characteristics.

