1 Convex functions and Jensen’s inequality

In the sequel I will denote an interval on the real axis \mathbb{R}. The interval I could be of the form $[a, b], (a, b], [a, b), (-\infty, b], [a, \infty)$ etc.

Definition 1.1. (a) A function $f : I \to \mathbb{R}$ is called **convex** (resp. **concave**) if for any two points $x_0, x_1 \in I$ the portion of the graph of f over $[x_0, x_1]$ lies below (resp. above) the line connecting the endpoints of this portion of the graph.

![Convex and Concave Functions](Image)

Figure 1: A convex and a concave function
Theorem 1.2. Suppose \(f : I \to \mathbb{R} \) is a twice differentiable function. Then the following statements are equivalent.

(i) \(f \) is convex.
(ii) For any \(x_1, x_2 \in I \) and any \(w_1, w_2 \in [0, 1] \) such that \(w_1 + w_2 = 1 \) we have

\[
f(w_1 x_1 + w_2 x_2) \leq w_1 f(x_1) + w_2 f(x_2).
\]

(iii) The derivative \(f'(x) \) of \(f \) is increasing.
(iv) \(f''(x) \geq 0 \), for any \(x \in I \).

Since a function is convex iff \(-f\) is concave we deduce the following result.

Corollary 1.3. Suppose \(f : I \to \mathbb{R} \) is a twice differentiable function. Then the following statements are equivalent.

(i) \(f \) is concave.
(ii) For any \(x_1, x_2 \in I \) and any \(w_1, w_2 \in [0, 1] \) such that \(w_1 + w_2 = 1 \) we have

\[
f(w_1 x_1 + w_2 x_2) \geq w_1 f(x_1) + w_2 f(x_2).
\]

(iii) The derivative \(f'(x) \) of \(f \) is decreasing.
(iv) \(f''(x) \leq 0 \), for any \(x \in I \).

Exercise 1.1. Prove Theorem 1.2. \(\square \)

Example 1.4. Using the above results we can produce easily many examples of convex/concave functions. For example the function

\[
(0, \infty) \to \mathbb{R}, \quad x \mapsto x^\alpha
\]

is convex for \(\alpha > 1 \) or \(\alpha < 0 \) and concave if \(\alpha \in (0, 1) \). In particular, the functions \(x \mapsto x^2 \) and \(x \mapsto \frac{1}{x} \) are convex while the function \(x \mapsto \sqrt{x} \) is concave.

The function \(\mathbb{R} \to \mathbb{R}, \ x \mapsto e^x \) is convex while the function \((0, \infty) \to \mathbb{R}, \ x \mapsto \log x \) is concave.

Exercise 1.2. Prove that if \(f, g : \mathbb{R} \to \mathbb{R} \) are twice differentiable functions such that \(g(x) \) is convex and \(f \) is convex and increasing then the composition \(x \mapsto f(g(x)) \) is also convex. \(\square \)

Theorem 1.5 (Jensen’s Inequality). Suppose \(f : I \to \mathbb{R} \) is a twice differentiable function satisfying

\[
f''(x) \geq 0, \ \forall x \in I.
\]

Then for any integer \(n \geq 2 \), any \(x_1, x_2, \ldots, x_n \in I \) and any \(w_1, \ldots, w_n \in [0, \infty) \) such that \(w_1 + \cdots + w_n = 1 \) we have

\[
f(w_1 x_1 + \cdots + w_n x_n) \leq w_1 f(x_1) + \cdots + w_n f(x_n).
\]
Remark 1.6. (a) If the function in Theorem 1.5 satisfies the more stringent condition
\[f''(x) > 0, \forall x \in I. \] (>)
then in the inequality (1.1) becomes an equality if and only if \(x_1 = \cdots = x_n \).
(b) If \(f : I \to \mathbb{R} \) is a twice differentiable function satisfying
\[f''(x) \leq 0, \forall x \in I. \] (≥)
then for any integer \(n \geq 2 \), any \(x_1, x_2, \ldots, x_n \in I \) and any \(w_1, \ldots, w_n \in [0, \infty) \) such that \(w_1 + \cdots + w_n = 1 \) we have
\[f\left(w_1 x_1 + \cdots + w_n x_n\right) \geq w_1 f(x_1) + \cdots + w_n f(x_n). \] (1.2)

Exercise 1.3. Prove Theorem 1.5 by induction using Theorem 1.2.

2 Some classical applications of Jensen’s inequality

We can get many interesting and nontrivial results by looking at concrete choices of \(f, x_i \) and \(w_i \) in Jensen’s inequality. Suppose we choose \(w_1 = \cdots = w_n = \frac{1}{n} \). Then for any twice differentiable function such that \(f'' \geq 0 \) on \(I \) we have
\[f\left(\frac{x_1 + \cdots + x_n}{n}\right) \leq \frac{f(x_1) + \cdots + f(x_n)}{n}, \forall x_1, \ldots, x_n \in I. \] (2.1)
If in the above inequality we choose \(f(x) = x^\alpha, \alpha > 1 \) we obtain
\[\left(\frac{x_1 + \cdots + x_n}{n}\right)^\alpha \leq \frac{x_1^\alpha + \cdots + x_n^\alpha}{n}, \forall x_1, \ldots, x_n > 0, \forall \alpha > 1. \] (2.2)
For example, if \(\alpha = 2 \) we get
\[\left(\frac{x_1 + \cdots + x_n}{n}\right)^2 \leq \frac{x_1^2 + \cdots + x_n^2}{n}, \forall x_1, \ldots, x_n > 0. \] (2.3)
Let us specialize even more in (2.3) assume \(n = 2 \) and \(x_1 = x, x_2 = y \). We get
\[\left(\frac{x + y}{2}\right)^2 \leq \frac{x^2 + y^2}{2}, \forall x, y \geq 0. \] (2.4)

Exercise 2.1. (a) Can you prove (2.4) directly, using only elementary algebra?
(b) Using only elementary algebra prove the inequality (2.4) in the special case \(n = 3 \).

Exercise 2.2. Prove the following inequality
\[n^2 \leq \left(\frac{1}{x_1} + \cdots + \frac{1}{x_n}\right)(x_1 + \cdots + x_n), \forall x_1, \ldots, x_n > 0 \] (2.5)
Example 2.1. Here is a simple geometric application of (2.3) Suppose we are given \(n\) nonoverlapping disks \(D_1, \cdots, D_n\) inside a plane region \(R\) of area \(A < \infty\). Denote by \(r_i\) the radius of \(D_i\). We will prove that
\[
r_1 + \cdots + r_n \leq \sqrt{\frac{nA}{\pi}}.
\]
Note that
\[
\sum_{i=1}^{n} \text{area } (D_i) \leq \text{area } (R) = A
\]
so that
\[
\pi \sum_{i=1}^{n} r_i^2 \leq A \iff \sum_{i=1}^{n} r_i^2 \leq \frac{A}{\pi}.
\]
Using (2.3) we deduce
\[
\frac{1}{n^2} \left(\sum_{i=1}^{n} r_i \right)^2 \leq \frac{1}{n} \sum_{i=1}^{n} r_i^2 \leq \frac{A}{n\pi}.
\]
Multiplying the last inequality by \(n^2\) we obtain
\[
\left(\sum_{i=1}^{n} r_i \right)^2 \leq \frac{nA}{\pi}
\]
which is the inequality we sought. \(\square\)

Suppose we have a function \(f : (0, \infty) \to \mathbb{R}\) such that \(f''(x) < 0\) for any \(x > 0\). If we choose \(w_1 = \cdots = w_n = \frac{1}{n}\) in (1.2) we deduce
\[
f\left(\frac{x_1 + \cdots + x_n}{n}\right) \geq \frac{f(x_1) + \cdots + f(x_n)}{n}, \ \forall x_1, \cdots, x_n > 0. \quad (2.6)
\]
Let us further analyze (2.6) for some very special choices of \(f\). If we choose \(f(x) = \sqrt{x}\) we deduce
\[
\sqrt{\frac{x_1 + \cdots + x_n}{n}} \geq \frac{\sqrt{x_1} + \cdots + \sqrt{x_n}}{n}, \ \forall x_1, \cdots, x_n > 0 \quad (2.7)
\]
If we choose \(f(x) = \log x\) then we deduce
\[
\log \frac{x_1 + \cdots + x_n}{n} \geq \frac{1}{n} \left(\log x_1 + \cdots + \log x_n \right) = \frac{1}{n} \log (x_1 \cdots x_n) = \log \sqrt[n]{x_1 \cdots x_n}.
\]
We deduce
\[
\frac{x_1 + \cdots + x_n}{n} \geq \sqrt[n]{x_1 \cdots x_n}, \ \forall x_1, \cdots, x_n > 0. \quad (2.8)
\]
The expression in the left-hand-side is called the arithmetic mean of the numbers \(x_1, \cdots, x_n\) while the expression in the right-hand-side is called the geometric mean. Thus we can rephrase (2.8) as
\[
\text{Arithmetic Mean} \geq \text{Geometric Mean}.
\]
Consider now the function \(f(x) = x^p, \ p > 1, \ x > 0 \). It satisfies Jensen’s inequality (1.1).

Let \(x_1, \ldots, x_n > 0 \) and \(u_1, \ldots, u_n \geq 0 \) such that \(U = u_1 + \cdots + u_n > 0 \). If we set

\[
 w_i = \frac{u_i}{U}
\]

then

\[
w_1 + \cdots + w_n = 1
\]

and using Jensen’s inequality we have

\[
\left(\frac{u_1 x_1 + \cdots + u_n x_n}{U} \right)^p \leq \frac{u_1 x_1^p + \cdots + u_n x_n^p}{U}.
\]

Multiplying both sides of the above inequality by \(U^p \) we deduce

\[
\left(u_1 x_1 + \cdots + u_n x_n \right)^p \leq (u_1 x_1^p + \cdots + u_n x_n^p)^{p-1}, \ \forall u_i, x_j > 0. \tag{2.9}
\]

Let us specialize \(p = 2 \) in the above inequality.

Suppose \(a_i, b_j \) are nonzero real numbers, \(\forall i, j = 1, \ldots, n \). Choose positive numbers \(u_i, x_j \) such that

\[
u_i x_i^2 := a_i^2, \quad u_i = b_i^2 \quad \iff \quad x_i = \frac{|a_i|}{|b_i|}, \ u_i = b_i^2.
\]

Observe that \(u_i x_i = |a_i b_i| \). Using these numbers in (2.9) we deduce that \(\forall a_i, b_j \in \mathbb{R} \).

\[
\left(a_1 b_1 + \cdots + a_n b_n \right)^2 \leq \left(|a_1 b_1| + \cdots + |a_n b_n| \right)^2 \leq \left(a_1^2 + \cdots + a_n^2 \right) \cdot \left(b_1^2 + \cdots + b_n^2 \right)^2. \tag{2.10}
\]

The last inequality is usually known as the Cauchy-Schwartz inequality.

Exercise 2.3. Let \(p > 1 \) and \(q = \frac{p}{p-1} \), i.e. \(1 = \frac{1}{p} + \frac{1}{q} \). Use the inequality (2.9) to prove that for any real numbers \(a_i, b_i \) we have the Hölder inequality

\[
\left(|a_1 b_1| + \cdots + |a_n b_n| \right) \leq \left(|a_1|^p + \cdots + |a_n|^p \right)^{\frac{1}{p}} \left(|b_1|^q + \cdots + |b_n|^q \right)^{\frac{1}{q}}
\]

(Observe that when \(p = 2 \) so that \(q = 2 \) the Hölder inequality becomes the Cauchy-Schwartz inequality.)

For a rich presentation of this subject we refer to the classical source, [1]

References