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Introduction






Notation and
conventions

We set N :=Z~o, Npo:=Z>o.

For n € N we set I, := {1,2,...,n}.

For n € N we denote by &,, the group of permutations of I,,.
We set Ry := [0, 00).

For x € R we set |z] := maxZ N (—oo,z|, [z] :=minZ N [z, c0).
x Ay :=min(z,y), z Vy = max(x,y).

i:=+—1

If X is a finite dimensional Euclidean space, we denote by Sym(X) the space of
symmetric operators X — X.

Given an ambient set Q2 and a subset A C 2 we denote by I4 : @ — {0,1} the
indicator function of A,

1, weA,
IA(W):{O Y

Given a subset A of a set 2 we denote by A¢ its complement (in 2).

For any set  we denote by 2% the collection of all the subsets of €.

For any set €2 we denote by 28 the collection of all the finite subsets of 2.
We will denote by |S| or #5S the cardinality of a set S.

If T' is a topological space, then we denote by B the o-algebra of Borel subsets of
T.

We denote by A the standard Lebesgue measure on R and by A, the standard
Lebesgue measure on R™.
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iv Notation and conventions

e We denote by w,, the volume of the unit ball in R™ and by o,_1 the “area” of the
unit ((n — 1)-dimensional) sphere in R".
1 or(1/2)»  2x™/?
Wnp = Ean—lv On-1= =

L(n/2) — T(n/2)’
The probabilistic notations are those in [115].

A measurable space is a pair (2,8), where § a sigma-algebra of subsets of the set . A
measured space is a triplet (€2, 8, i), where (w,]8) is a measurable space and p : 8 — [0, 00]
is a measure.

If & :(Qo,,80) — (21,81) is a measurable map between measurable spaces and pg is a
measure on 8g, then the pushforward of o by ® is the measure @419 on 81 defined by

Dupio[S1] = po[@7H(SY) ], VS € 8y
Also, we will often use the notation
{@e s }=0""(%).
The probability spaces are measured spaces (£2,8,P), such that IP’[Q] = 1.

Most of the time we will stick to the convention to capitalize the names of random
variables. The expectation of a random variable X is denoted by E[X } The conditional
expectation of Y given X is denoted by E[ Y || X |. If Y is valued in a finite dimensional vector
space Y and X in a finite dimensional vector space X, then there exists a Borel measurable
map F : X — Y such that F(X) =E[Y || X ]. We set

E[Y|X =z] :=F(x).

The distribution of a random variable X : (©2,8,P) — X, X finite dimensional vector space,
is denoted by Px and it is the pushforward of P by X, Px = XxP. More explicitly

Px[B] =P[{X € B}], VB € Bx.

Let V be a finite dimensional real vector space. The Euclidean topology on V is the topology
defined by a norm on V. Since all the norms on V are equivalent, the Euclidean topology is
well defined. Denote by %y the sigma-algebra of Borel subsets of V, i.e., the sigma-algebra
generated by the subsets open in the Euclidean topology. We denote by Prob(V') the set of
Borel probability measures on V. We let (—, —) denote the natural pairing between a vector
space and its dual

(—,—): V"XV =R, ({v)=¢&©).

If H is a Hilbert space with inner product (—, —)g then the Gramian matrix determined by
the vectors z1,...,xxy € H is the N x N matrix
G(x1,...,oN) = ( (i, 5)H )1§i,jSN'

Given a topological space X and a vector space V we denote by V x the product bundle over
X with fiber V.
Vi=(VxX—=X).
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Chapter 1

(Gaussian measures and
Gaussian fields

The random functions we consider in this book are Gaussian. Most of the time they are de-
scribed by Fourier/eigenfunction series with coefficients independent normal variables. Since
we are interested mostly in geometric questions it is important to have coordinate free de-
scription of basic facts of Gaussian analysis.

1.1. Gaussian measures

1.1.1. Finite dimensional Gaussian measures and vectors.

Definition 1.1.1. Let m € R and any v > 0. The Gaussian measure on R with mean m
and variance v is the measure I' = Iy, , € Prob(R) given by

1 (;cf'm)2 1 (w77n)2
r de | = e o)A dx |, Tpo(z)= e 2,
m,v[ ] o 'Ym,v( ) [ ] mw () o
where A denotes the Lebesgue measure on R. O

It is not hard to observe that, as v \ 0, the measure I';,, , converges weakly to ¢,,, the
Dirac measure concentrated at m. For this reason we will refer to ¢,, as the Gaussian measure
of mean m and variance 0, and we set I';, o := d,,. Observe that for any m € R and any
v > 0 we have

/erm,v [dz] = m, /R(x M)y, [de] = .

A Gaussian measure on R is called nondegenerate if it is absolutely continuous with respect to
the Lebesgue measure A. Equivalently, the Gaussian measure is nondegenerate iff its variance
is nonzero. For v > 0 we set

ry,:= Fm:O,v'

For any ¢ € R we denote by R, the rescaling map R. : R — R, R.(x) = cx. A simple
computation shows that
(Re)¢Ty =T, VeeR, ,v>0. (1.1.1)

1



2 1. Gaussian measures and Gaussian fields

The measure I'y is called the canonical Gaussian measure on R. The ratio
Fl [ ('T7 OO) ]

71 ()
is called the Mills ratio and it satisfies the Mills ratio inequalities [19]

, x>0

%Hvl(x) <T[(z,00)] < %71(@, Vo > 0, (1.1.2)

The Fourier transform of a Borel probability measure 1 on R is the function
p:R—=C, u(t)= / eim,u,[da;].
R
Lévy’s theorem shows that a sequence (g, )nen of probability measures on R converges weakly

to a probability measure p if and only if

lim fin(t) = fi(t), Vt € R.

n—oo

We have

~

T,o(t) = #0012 vy e R, (1.1.3)

Proposition 1.1.2. Suppose that the sequence (fin)nen of Gaussian measures on R converges
weakly to a probability measure p. Then p is Gaussian and

lim mp,] =m(p], lim vlp,] = v[y]

n—o0 n—oo

where m[—] and v[—] denote the mean and respectively the variance of a Gaussian measure.

Proof. Set m,, = m[uy], v, = v[py]. Let us first prove that the sequence (my, )nen is bounded.

We argue by contradiction. Then a subsequence converges to £oo. For simplicity we
assume my — oo. (The case m, — —oo is dealt with in a similar fashion.). Then

fin [ (—00,mp] | = %, Vn.

Fix ¢ € R such that
[ (=00, ] >% and i [ (=00, c] ] = p[ (—o0,d]]. (1.1.4)

There exists N = N(c¢) such that, Vn > N m,, > ¢. We deduce that for any n > N(c).
1

5 = tn[ (=00,mu]] = pia[ (—00,d]].

Letting n — oo we deduce

N

M[(_OO’CH = lim Mn[(_oo7c]] <

n—o0
This contradicts the choice (1.1.4). Hence the sequence (m,,) is bounded.

Next, we prove that the sequence v, is also bounded. Indeed, if it were not bounded,
then lim sup v, = co. Observe that for any a < b we have

1 b @mn)? 1 b b
M[(a)b)]:m/e 2vn d$< da}<( a)




1.1. Gaussian measures 3

The Portmanteau Theorem implies that Va < b

o ( a) _
0 < pf(a,b)] Shnrggfun[(a,b)] < lim inf =0.

n—o0 7’L
This is impossible.

Hence on a subsequence nj we have m,, — m € R, v,, — v € [0,00). Hence, Vt € R,

; vny, t? . w2
A = lim fin, (1) 27 T efmt= T = gimt
—00

k—o00

Hence 1 = fm,v- This proves that p is also Gaussian. Moreover, we proved that any subse-
quence of (f1,,) contains a sub-subsequence (ji,,) such that m[uy,,] and v[u,,] converge to Mmoo
and respectively vso. Since fin; converges weakly to mu = I, , we deduce 'y, p, = Ty oo -
This proves

mlpn) — mlul, vlpn] — vlp].
O

Proposition 1.1.3. The space of polynomials in one variable with real coefficients is dense
in L?(R,T)

Proof. We follow the elegant argument in [93, Sec.V.1.3]. It suffices to show that if f € L?(R,T)
and

/ f(m)x”F[daz] =0, vYn=0,1,2,...
R
then f = 0 I'-a.s.. Observe that

/ 2|*e"T[dx] < 0o, VtER, Vn>0.
R

Since (|z|*e! )2 = |z|**e%® we deduce that for any t € R any a > 0 the function x ~ |z|%e!®
is in L2(R, T).
For z =t + s € C we set

F(z) :—/Rei”f(x)I‘[dx].

The above discussion shows that F'(z) is well defined and z — F(z) is an entire function.
Moreover

F(”)(O):i"/f(x):z”I‘[da:] =0, ¥n=0,1,....
R

We deduce from unique continuation that F' is identically zero. In turn, this implies that f
is a.s. 0 since an L? function is uniquely determined by. O

Proposition 1.1.4 (Gaussian integration by parts). Suppose that f,g € C1(R) and there
exists p > 0 such that
! / -p
sup (|f'(2)] + lg'(@)]) (1 + |2]) " < o0.
z€eR
Then

/f( )g(x)dT [ dz | /f z) + zg(z) )T [dz]. (1.1.5)



4 1. Gaussian measures and Gaussian fields

Proof. For any L > 0 we have
1 L

L / / —z2/2
| r@aeria) = —= [ paaae

(integrate by parts)

1, a2 /o|7=L 1 [ d 2
= =@ - [ @) (sla)e )
—L/x z)e "/ oL : 2)(d () — zg(x))e =/
= =l @@ | \/E/Lf( )(9'(2) — zg(x) e /2

r=L

The equality (1.1.5) follows by letting L — oo. O

Definition 1.1.5. Suppose that (€2, 8,P) is a probability space. A random variable
X:(Q,8,P) =R

is called Gaussian if its distribution Px € Prob(R) is a Gaussian measure. Note that in
this case the mean and the variance of X coincide with the mean and variance of Px. The
random variable is called centered iff it has mean 0. It is called nondegenerate if its variance
is nonzero. O

If X is a Gaussian random variable with mean m and variance v, then its characteristic
function has the description.

. ~ . v 2
Ox(t) := B[ X ] = By (t) = eP™ 5.

In particular, this shows that the distribution of a Gaussian random variable is uniquely
determined by its mean and variance.

Remark 1.1.6. Note that if X,Y are independent Gaussian variables and a,b € R, then
aX + bY is also Gaussian since

iamxt—ia%)(]52 'L'myt—LUY)52
@AX_A'_bY(t) = @ax(t)q)by(t) =e€ 2 e 2

(a?v% + b2vy)t2>

= exp (i(amx + bmy)t — 5

The following result is a direct consequence of Proposition 1.1.2.

Proposition 1.1.7. Suppose (X,,)nen s a sequence of Gaussian random variables defined on
the same probability space, and X, converges in distribution to a random variable X. Then
X is also a Gaussian random variable and

E[X,] - E[X], Var[X,]|— Var[X].
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Definition 1.1.5 has one @esthetic deficiency: it is not quite “coordinate free”. The next
results addresses this issue.

Theorem 1.1.8 (G. Polya). Suppose that X is a random variable. The following are equiv-
alent.
(i) The random variable X is centered Gaussian.
(i) If X,Y areiid., then X and %(X +Y') have the same distribution.
(iii) If X,Y areii.d., then for any 0 € [0,2x], the random variables (cos 0)X + (sin6)Y
have a distribution independent of 6.

O

The implications (i) = (iii) = (ii) immediate. The tricky implication is (ii) =
(i). For a proof we refer to [30, Thm. 3.1] or [144, Thm. 2.2.3].

The next characterization highlights the close connection between the concepts of Gauss-
ian random variables and the concept of independence. For a proof we refer to [59, Sec.XV.8].

Theorem 1.1.9 (Bernstein). Suppose that X,Y are independent random wvariables. The
following are equivalent.

(i) The variables X, Y are Gaussian.

(ii) The variables X +Y and X —Y are independent.

O

Corollary 1.1.10. Let X be a a random variable and Y an independent copy of it. Then
the following are equivalent.

(i) The random variable X is centered Gaussian.

(ii) The random vectors (X,Y) and (%(X +Y), %(X —Y)) have identical distribu-

tions.

O

Proposition 1.1.11. Suppose that X is a centered Gaussian random variable with variance
v = IE[X2 ] Then the following hold.

v)P/?
¥p € [1,00) E[|X|P] = (2\/); r(p;1>, (1.1.6)
E[etx] = /2, (1.1.7)
In particular,
E[| X |] = (2v/m)"2, (1.1.8)
VkeN, E[X* '] =0, E[X?*] =v"(2k - 1), (1.1.9)

where (2k — 1)!1:=1-3---(2k — 1).
Proof. Set Y := v~ 1/2X. Then Var [Y] =1 and
E[|XPP] =P PE[|[YP], E[eX] =E[eV"?].
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We have

E[|[Y]] = / eV 2y = — vor / [ylPe "/ 2dy
(r=9/2,y=2r)
2 > dr 2 © p—1
= 2 )P/ 2e" :/ 2 —rd
\/%/0(” T e )y BT

9(p+1)/2 oo 9p/2 1
e / TPTH_le_rdT‘ 7F(p+ )
Vor Jo VT 2

E[|Y]|] = \/zm) = (2/m)"/2.

Since the distribution of X is symmetric we deduce

E[X?*71] =0, VkeN.

For p =1 we have

On the other hand,

t" 1 2 et2/2 w—1)* 2
E[Y"] =E[eY :/ety_y 1Ry = /e_ zdy =€ /2.
;n. (Y] =B[e"]= &= | V=" /. y

Hence

O

Definition 1.1.12. Let V be a finite dimensional real vector space space. A Borel probability
measure pu € Prob(V) is called Gaussian if for every linear functional £ € V*, the induced
random variable & : (V, By, u) — R is Gaussian with mean m,[] and variance v,[{], i.e.,

Pe[dz] =T, e 0. [ 2 ]-

The Gaussian measure p is called centered if m,[¢] = 0, V& € V*. We denote by Gauss(V)
the set of Gaussian measures on V' and by Gaussy(V') the subset of centered ones. O

Example 1.1.13. The Borel measure on R" given measure

_ )

1 ||
', =T ®..0T); = W@ 2 Al dw .z = Zazk,

is a Gaussian measure called the canonical Gaussian measure. Above }\[ — ] denotes the
canonical Lebesgue measure on R".

To see this consider the coordinate maps
Xl,...,Xn : R™ —)]R, XZ(.CCl,l'Z) = Z;.

We view the maps X; as a random variable defined on the probability space (R™, Bgn,I'y, ).
The measure 'y, is the joint distribution of X1, ..., X,,. In particular, these random variables
are independent standard Gaussian with mean 0 and variance one. Using Remark 1.1.6 we
deduce that for any £ € R" the random variable £1 X7 + - - - + £, X, is also Gaussian.
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More generally, if U is finite dimensional real Euclidean space with inner product (—, —)
and associated norm || — ||, then
Ty [du] = (2m) "% e 2P Ay [ du ]
is a Gaussian measure called the canonical Gaussian measure associated to the metric. Above
Ay denotes the natural Lebesgue measure on U. More precisely,

Au = Ty

where T : R4mU _ UJ is any isometry.

To see this fix orthonormal coordinates u1,...,u, on U, n = dimU. In these coordinates
I’[du} = (2%)7%67%(“%+"'+“%)}\[dul .- 'dun] =TIy, [dul e dun].
a

Let p be a Gaussian measure on V. Note that the map V* > & — m,[¢] € R is linear
and hence it defines an element in the bidual

my, € V** := Hom(V*,R) = Hom (V*,R).

Since V is finite dimensional, the natural map J : V' — V** is an isomorphism we can identify
m,, € V** with an element of V' determined by by the equalities

(&my) =m,l¢], ¥, e V™.

mu:/vv,u[dv].

Define the covariance form C,, of the Gaussian measure u on V' to be the map

Cu: V' x V" =R, (§n) Cov [&n] =E,[(£—mlE])(n—mln)].

It is not hard to see C, is a nonnegative definite symmetric bilinear operator on V*.

Equivalently,

Definition 1.1.14. The Fourier transform of a measure p € Prob(V) is the function

BV € ) = B[] = [ 66l
O

Proposition 1.1.15. A Borel measure n on'V is a Gaussian measure on'V if and only if there
exists a vectorm € V and a symmetric nonnegative definite bilinear function C : V*xV* — R
such that

fi(€) = eem=30E0 | we ¢ v,

Proof. Indeed, suppose that y is Gaussian. Then, for any t € R, £ € V*,
. ) Zople]
A(tE) = B[ €] = Bg(t) = eitmlel="%%
Letting t = 1, we deduce
fi¢) = eimul€l=3Cu(.6)

Conversely, if
(¢) = ei<£7m>—%0(5,£)7
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then for any € in V* and ¢t € R we have

t2C(£.8)
2

e (t) = p(tE) = ™~

proving that £ is Gaussian with mean (£, m) and variance C'(,¢&). O

Corollary 1.1.16. A Gaussian measure on V is uniquely determined by its mean and co-
variance. Hence, we denote by I'y, ¢ the Gaussian measure with mean m and covariance

C.

Proof. Proposition 1.1.15 shows that the Fourier transform of a Gaussian measure is uniquely
determined by the mean and covariance, while the measure is uniquely determined by its
Fourier transform. O

Suppose that the vector space V' is equipped with an inner product (—,—). The inner
product induces an isomorphism

LV SV et (o) = (v,u), Yu,v e V.
Classically, this isomorphism is referred to as lowering the indices. Its inverse is given by
VRSV, (&) = (€0), YEEVH, €V

and it is classically referred to as raising the indices.

If i is a Gaussian measure on V', then its covariance form

Cp:VixV* =R
can be identified with a selfadjoint operator Var, : V' — V uniquely determined by the
equality
(u, Var, v) = C,(u*, v¥).

We will refer to Var, as the variance (operator) of the measure p.

Concretely, if (e;) is a basis of V' orthonormal with respect to the inner product (—, —),
then X =), X;e; an Var, is described in this basis by the symmetric matrix (v;;) where

vi; = Cu(Xi, X;) = Cov [ X;, X; |.

Note that the variance operator of the canonical Gaussian measure on V is 1y .
Remark 1.1.17. The variance operator defined above depends on the choice of inner product

whereas the covariance form does not. This aspect is important in geometric applications
and we want to discuss it in some details.

Let u be a centered Gaussian measure on the real vector space U of dimension N. Fix

two inner products on U,
(—,=)i :UxU—>R, i=0,1.

We denote by Var’ the variance operator of u defined in terms of the inner product (—, —);.
We want to relate Var’ and Var!.

Fix an isometry of Euclidean spaces T : (U, (—,—)1) — (U, (—, =)o) and set G = T*T.
Then (Tu,Tv )0 = (u,v)l and G : U — U is the unique operator that is symmetric and
positive definite with respect to inner product (—, —)o and satisfies

(u,v); = (Gu,v)o, (u,v)y= (Gilu,'v)l, Yu,v € U.
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Then for any v, w € U we have
(v vartw), = [ (v.u), (wu), ulu]

— /U (Gv,u)o(Gwvu)oﬂ[u] = (G’U,VaroGw)O = ('U,VarOGw)l.

We deduce that Var! = Var® G. O

Let V be a finite dimensional vector space. For vy € V we denote T, the translation
operator

Too 1 V=V, v v+ 0.
For any Gaussian measure p € ¢ (V') the pushforward (T,,)4u is a Gaussian measure with
mean Jy,m, = m, + v.

Suppose that Vp and V] are two finite dimensional vector spaces and pg is a Gaussian
probability measure on Vj. If A: Vy — Vi is a linear map, then we see that the pushforward
measure Aupg =: j1a is Gaussian on Vi with mean m,, = Am, and covariance form

Coy VXV 3R, O, (€1,m) = Cu(ATgy, Alny),
where AT : Vj* — V' is the adjoint of A defined by
(AT€1,v0) = (&1, Avg), Yo € Vo, & € V7.
Indeed, let & € V¥, then (§1)gpa = (§1)p#(Ag)p = (&1 0 A)»p and observe that
E10A=Al¢ e V.
Hence,
Pey = Linjacy] cuater .t 1d2]
Remark 1.1.18. Suppose that Uy, U are Euclidean spaces and u € 4(Uy). f A: Uy — U,
is a linear operator then the variance operator of us = Ayp is

Var,, = AVar, A" :U; — U;. (1.1.10)

In particular, if C' : Uy — Uy is a symmetric, nonnegative operator and C'/2 denotes
its nonnegative square root, then the probability measure I'¢c := (Cl/ 2)#FU0 is Gaussian,
centered and its variance is C. We deduce that for any ug € U the pushforward of I'yy, via
the affine map ‘J'uOCl/ 2 is a Gaussian measure with variance C' and mean ug. Thus, for any
symmetric nonnegative operator C on Uy, and any m € U, there exists a unique Gaussian
measure 4 on Ug with mean m and variance C. We denote it by I';, . More precisely,

Ym,c = (Tm 0 \@)#FUO. |

Definition 1.1.19. Let V be a finite dimensional vector space and p a Gaussian measure
on V. We say that p is nondegenerate if u[(()] = 0, for any open subset O C V. O

Proposition 1.1.20. Let V' be a finite dimensional vector space and p € G(V') the following
are equivalent.

(i) The measure p is nondegenerate.



10 1. Gaussian measures and Gaussian fields

(ii) The covariance form C,, is nondegenerate , i.e.,

Cu(&n) =0, VeV '«<¢=0.

Proof. Clearly it suffices to consider only centered Gaussian measures. Fix an inner product
on V so we can identify C), with a symmetric operator C': V' — V. Set n = dim V" and fix
an orthonormal basis of V' that diagonalizes C,

C = Diag(A1, ..., A\n)-
Using this basis we identify V isometrically with R™. We have
p=(C?)yl, = (C)y(T1@---aTy)

(1.1.1)
= ((R)#l1) @ @ ((R5)xl1) = Th ®--Ty,.
We see that
p is nondegenerate <= [ [ \i # 0<=C' is invertibe.

7

O

Remark 1.1.21. Suppose that p is centered Gaussian measure on the Euclidean space U
with inner product (—, —). Denote by C' the variance operator of p, C € Sym(U). The proof
of Proposition 1.1.20 shows that the measure p is supported on (ker C)*, i.e., u[(‘)} =0, for
any open subset in U \ (ker C)*.

The argument used in the proof of Proposition 1.1.20 shows that if x4 is nondegenerate and
thus C is invertible, then p is absolutely continuous with respect to the Lebesgue measure

Ay and
pldu] = _ _%(Cilu’u))\u[du]. 0

\/det(QWC)e

Proposition 1.1.22. Let U be a finite dimensional Euclidean vector space with inner product
(=, —). Suppose that (pn)nen @ sequence of Gaussian measures on U. We set my, := m[u,],
Cy, = Var,, . The following are equivalent.

(i) The sequence () converges weakly to a probability measure fis.
(ii) The sequences (my,) and (Cy,) converge.

(iii) The sequence (u,) converges weakly to a Gaussian measure fisc.

Proof. Clearly (iii) = (i). Note that if m,, = m and C,, = C, then u, =T, ¢,

Lévy’s theorem implies that the sequence (uy) converges weakly to I'y, ¢. Thus (ii) = (iii)
so it suffices to prove (i) = (ii).
Condition (i) implies that
[in(§) = B(§), V& e V™

For any £ € U™ the Fourier transform of the measure &4 puy, is

Ext, (1) = Fin(tE) — MA(tE) = Expu(tE).
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Proposition 1.1.2 implies that {4 is Gaussian and
mn[§n] = mlE], val€] = v[E].

Definition 1.1.23. Let V be a finite dimensional real vector space.

(i) A random vector Z : (Q,8,P) — V is called Gaussian if its distribution Py is
a Gaussian measure on V. The covariance form of Z, denoted by Covy is the
covariance form of its distribution.

(ii) The Gaussian vector Z is called centered, respectively nondegenerate if its distri-
bution is such.

(iii) The real valued random variables (Xi,...,X,) are said to be jointly Gaussian if
the random vector (X7, ...,X,) is Gaussian.

g
Remark 1.1.24. (a) The Covy is a bilinear form on V*. Identifying (V*)* with V in the

canonical fashion we can view Covyz as an element of V' ® V. As such, it can be given the
more compact geometric description

Covz =E[Z®@Z]-E[Z]|®E[Z].

(b) If V is equipped with an inner product, then we can identify Covy with a symmetric,
nonnegative operator Var [X ] uniquely determined by the equalities

(Ul,Var [X]vg) = Cov [v%(X),v%(X)], Yui,v9 € V.
Moreover, if €1, ..., e, is an orthonormal basis of V', then we can write
n
Z =Y Zei, ZcL*(Q8,P)
i=1

and the variance operator of Z is described by the Gramian matrix of the Gaussian random
variables Z; = Z; —E[ Z; ], i =1,...,n. This is the n X n matrix

G(Z1..... 20) = (E[Z:Z;] )Kim.

We see that Z is nondegenerate if and only if the random variables Z are linearly independent.
g
Suppose that X and Y are finite dimensional vector spaces. Given random vectors
X:(Q8P)—> X, Y:(Q,8P)—-Y
we define the covariance form of Y and X to be the bilinear form
nyxiY* x X* =R

given by
Cy x(n,§) = Cov [(n,Y}, <§,X>], YneY™ e X",
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If X and Y are equipped with inner products (—, —)x and respectively (—, —)y, then we
can identify Cov [Y, X ] with a linear operator Cov[Y, X] : X — Y uniquely determined by
the condition

(y,COV[Y,X]x)Y =Cov [(y,Y)y, (z,X)x ], Ve € X, yeY.
The operator Cov[Y, X] is called the covariance operator of Y and X.

Concretely, if (€;)icr and (f;)jes are orthonormal bases of X and respectively Y, and we
set X; := (ei, X)x, Yj := (f;,Y)y, then in these bases the operator Cov[Y, X] is described
by matrix (cji)(jiesxr, Where cj; := Cov[Y}, X;]. Hence

Cov[Y, Xle; = > cjif;.
J

3

Let us observe that Cov[X, X] = Var [ X | and that Cov[X,Y] : Y — X is the adjoint of
Cov[Y, X]
Cov[X,Y] = Cov[Y, X]*
Note that if T': X — U is a linear map between Euclidean spaces, then
Cov]Y, TX] =Cov]Y,X]|oT*:U - Y.
The random vectors X, Y are said to be jointly Gaussian if the random vector
XaY:(Q28P)—>XaY

is Gaussian. If X and Y are equipped with inner products, then X ®Y is equipped the the
direct sum of these inner products and in this case Var [X &) Y] : XY - X DY admits
the bloc decomposition

Var[X] Cov[X,Y]

CovlY,X] Var[Y] |’

We deduce from the above the following very convenient fact.

Var[XEBY] =

Proposition 1.1.25. Suppose that the random vectors X,Y are jointly Gaussian. Then
X,Y are independent iff the covariance operator Cov|Y, X]| is trivial. g

Suppose that W is an m-dimensional real Euclidean space with inner product (—,—).
Denote by S1(W) the unit sphere in V' and by Sym (W) the space of symmetric operators
V — V and by Sym- (V') the cone of nonnegative ones. For A € Sym- (W) we denote
by T'4 the centered Gaussian measure on W with variance A. -

The space Sym(W) is equipped with an operator norm || — ||op
[ Allop := sup [lAw]| = sup Spec (|A]).

lw|=1
There is another trace norm
[ Al[1 := tr(]A]).
Note that for any A € Sym(W') we have
[Allop < [[All1 < m[Agpl-

We have a natural map Sym (W) — Sym.,(W), A — A2, 'We will need the following
result, [70, Prop.2.1].
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Proposition 1.1.26. For any > 0 and VA, B € Sym (W), such that AYVZ 4 BY2 > 1

1/2

ul A2 = B2 <[] A - B,

(1.1.11)
d

Any continuous function f: W — R with at most polynomial growth defines a map
Syms(W) > 40 9a(f) = [ flw)Ta[dw] € &
w

Lemma 1.1.27. Fiz pug > 0 and suppose that f : V — R is a locally Lipschitz function that
is homogeneous of degree k > 1. Denote by Lip(f) the Lipschitz constant of the restriction
of f to the unit ball, i.e.,

Lip(f) = sup LI
Il <1 |u —

Then there exists a constant C = C'(m, k) > 0 with the following property for and R > 0 and
any A, B € Sym((V') such that

AV L B2 > ol [|AY?lop, B2 ]lop < R

: k
< Llp(f)if(m’ Ly B|Y2. (1.1.12)

|9a(f) = IB(f) |

In other words, A — J4(f) is locally Holder continuous with exponent 1/2 in the open set
Sym. ( Vv ) .

Proof. If we denote by Br(V') the closed ball of radius R, then the homogeneity of f implies

that
[ f(u) — f(v)| < Lip(f)R*||u — v||, Yu,v € Br(W). (1.1.13)
Note that
Ia(f) :/Wf(Al/Qw)rl[dw],
SO
\JA(f)—JB(f)\g/ | f(AYV2w) — f(BY?w) | Ty [dw]
W
1 i g2
:W(/o Pl /2dr> /Sl(v)]f(Alﬁw)—f(Bl/Qw)]volsl(W)[dw]
Conik
(1AY2w]|, ||BY?w| < R)
(1.1.13)

< Cpk Lip(f)R'“/ |AY2 — B2, volgi vy [ dw |
S1(W)

< Gy Lip(f)RE vol [Sl(W)]/ 1AY2 — B2, volg ) [ dw]
S1(W)
R 12 _ Z(m,k ml/QLipf
HA . B”1/ < ( ) ( )
Ho Ho

(1.1<.11) Z(m, k) Lip(f)

Rk
14 = BI5

()
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Remark 1.1.28. Observe that
trA<R*> = | Alop < R.

Set
a := inf Spec(A), b := inf Spec(B).
We have
inf Spec(A'/? + BY/?) = ” 11”1f 1 ((AY2 + BY*)u,u)
> inf Spec(A'/?) 4 inf Spec(B'/?) = Va + Vb > Va + b.
Hence

a+b>ud = A1/2—|—BI/22;10]1.
O

Lemma 1.1.29. Suppose that f : W — R is a continuous function that is homogeneous of
degree k > 1. Set

M(f) := sup |f(w)].
<1

Then there exists C' = C(m, k) > 0 such that YA € Sym,(V)
940 | < Ia(1F) < Clm, k)M ($)| A5 (1.1.14)

Proof. Note that
sup | f(w)| = M(f)R.

lwl<R
As in the proof of Lemma 1.1.27 we have

Ta(lf]) = /Wf(Al/Qw)Fn[dw]

1 > m+k—1_-r2/2 ) / 1/2
= d A cw 1 dw
(27T)m/2 </0 r € r (W) ‘ f( ) ‘VO S1(V) [ ]

=:Ch i

(1A 2] < [|AY2]|op Jw]))
< CogM(IIAY2|IE, vol [ S1(V)] = C(m, k)M (f)]| Allgh*-

O

Corollary 1.1.30. Suppose that f : W — R is a continuous function that is homogeneous
of degree k > 1. Suppose that A, B € Symyo(W) and B < A. Then

195(F) | < I(If1) < C(m, k)M (f)||B]|E? < C(m, k)M (f)||All5)>. (1.1.15)
Proof. Indeed, 0 < B< A = ||B|lop < || Allop- O
Proposition 1.1.31. Let X,, : (,8,P) — U be a sequence of Gaussian vectors valued in
the m-dimensional Euclidean space U. Assume that

(i) for any m < n the vectors X,,, X,, are jointly Gaussian and,

(ii) the vectors X, converge a.s. to a random vector X : (Q,8,P) — U.
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Then X is Gaussian and X, — X in LP, ¥p € [1,00).

Proof. The vectors X,, converge in distribution to X and Proposition 1.1.22 shows that
E[Xn] — IE[X], Var [Xn] — Var [X]

Replacing X,, with X,, = X,, — ]E[Xn] we can assume that Xcentered. Set Y, = X,, — X.
Note that the Gaussian vector (X, — X,,) converges a.s. to Y, as m — oo so Y,, is a Gaussian
vector as well. Moreover Y,, — 0 a.s.. Set ), := Var [Yn] and K, = ||Cpllop- Then K;,, — 0
as n — oo.

Let p € [1,00). Lemma 1.1.29 implies that
B[IY.P] = | [uPTe,du] < Clm.p) K2
U

where C'(m,p) > 0 depends only on m = dimU and p > 1. This proves that Y,, — 0 in LP.
O

1.1.2. Gaussian regression. Suppose that X, Y are two L?- random vectors valued in
the Euclidean spaces X and respectively Y. Denote by Aff(X,Y) the space of affine maps
X — Y. The classical least square approximation gives an explicit description of an affine
map Ap : X — Y such that

E[|Y — AoX|*] <E[[lY — AX|?], VA € Aff(C,Y).
The Y -valued random vector AgX is called the linear regression.

If X,Y are two arbitrary random vectors, then the conditional expectation E[Y || X ] is
some measurable function of X. The next result shows that when X,Y are jointly Gaussian
and X is nondegenerate, there exists a unique affine map Ag such that AgX = E[Y | X ]
Moreover Ay is the solution of the above minimization problem.

Proposition 1.1.32 (Gaussian regression formula). Suppose that X,Y are Gaussian vectors
valued in the Fuclidean spaces X and respectively Y . Denote by mx and respecitvel my the
meand of X and respectively my. Assume additionally that

(i) the random vectors X,Y are jointly Gaussian and,

(ii) X is nondegenerate.
Define the regression operator
Ryx:X =Y, Ryx :=Cov[Y, X]Var[X]™! (1.1.16)
Then the following hold.
(a) The conditional expectation E[Y || X | is a linear function of X described by the linear
regression formula
E[Y || X ] =my — Ry, xmx + RyxX. (1.1.17)
(b) For any x € X
E[Y‘ X = :U] = my — RymeX + Rijl‘.
(¢) The random vector vector Z =Y —E[Y || X | is Gaussian and independent of X. It has

mean 0 and variance operator

Ayx =Var[Y] - Dyx:Y =Y, Dyx = Cov[V,X]Var[X] ' Cov[X,Y].  (1.1.18)
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Moreover, for any bounded measurable function f:Y — R and any x € X we have

E[f(V)|X =2] =E[f(Z+my — Ry xmx + Ryxz)]. (1.1.19)
In particular, if X and Y are centered we have
E[f(Y)|X =2] =E[f(Z+ Ryxz)]. (1.1.20)

Proof. Assume first that both X and Y are centered. Set
Z =Y — RY,XXa

where Ry x is defined in (1.1.16). Assumption (i) implies that Z is also a centered Gaussian
vector.

Let (€;)ier and (f,)aca are orthonormal bases of X and respectively Y. Set

Xi= (e, X)x, Yo:=(fo. Yy, Za:=(fa: D)y,
and
V(X)ij =E[XiX;], Cai =E[YaX;] =Cia, V(Y)ap =E[YaY3].

The matrix (V/(X);; )i,je] describes the variance operator of X, the matrix (V(Y)as )a,BGA
describes the variance operator of Y and the matrix (C’ai)a cAicl defines the covariance
operator Cov[Y, X]. We denote by V(X)i_j1 the entries of Var [ X | ~ and by D, the entries
of Dy x = Cov[Y, X] Var[X]~! Cov[X, Y]. We have

RxyX =3 (3 RaiXi ) Xi ) fa

where
Roi =Y CojV(X);
J
Hence
i J
E[ZaZs] =V (Y)ap — ZjoCaj - Z RaiCig + Z RaiVijRgj.
j i .3

We have

D D RaiVijRsj=) ) ( Y CarV(X),'Vy )Rﬁj
=3 (" Cardii ) Raj = > CarRs, = 3 B3 Cra = Dy = Das.
J k k k

A similar but simpler computation shows that
> RgjCaj = Dga = Dag =Y _ RaiCig.
j i
Thus Ay x = Var [Y] — Dy, x is the covariance operator of Z.

An elementary computation shows that.

E[ZaXi] =0, Va,i
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and assumption (i) implies that X and Z are independent centered Gaussian vectors. Clearly
Z is an X-measurable random vector. If S is and X-measurable event, then

E[ZIp| =E[Z]P[F] =0.

Hence
E[YIF] —E[RKXSIF] :E[ZIF] =0
so that
RyxX =E[Y [ X]
and

E[Y|X =] = Ry xz.
Now let f : Y — R be a bounded measurable function. Then Y = E[Y || X ] + Z, with
E[Y || X |, Z independent. Then

E[f(V)|X=2] =E[f(Z+E[Y | X])| X =]
= E[f(Z%—IE[Y‘ X = x})] = E[f(Z—i— Ryvxx)].
This proves the Proposition 1.1.32 when both X and Y are centered.

We now reduce the general case to the centered case. Consider the centered vectors

X =X—-mx, Y=Y —my.

Then
Ry x = Ry x,
E[Y|X]=my+E[Y|X]=my+E[Y]X]
:my—l-Ry’XX =my — Ry xmx + Ry x X.
If we set
Z:Y—RKX)_(:Y—my—i—RmeX—RyyXX:Y—E[YHX},
then Z is independent of X and thus also of X. O

Remark 1.1.33. (a) Let X, Y, X and Y be as in the above proposition. Assume additionally
that X and Y are centered. Sometimes we will use the notation

Var [Y|X = 0] = Ay x.
Note that
Var [Y|X = 0] = Var [Y] — Cov[Y, X] Var [ X ] ' Cov[X,Y] < Var[Y],  (1.1.21)
since the symmetric operator Cov]Y, X] Var [X } ! Cov[X, Y] is nonnegative.

(b)Suppose that U is another Euclidean space and T : X — U is a linear isomorphism.
Then for any positively homogeneous measurable function f : Y — R we have

E[f(Y)|X=0] =E[f(Y)|TX =0].
To see this is suffices to show that Ay x = Ay 7x This happens iff
Cov]Y, X] Var [ X ] ™" Cov[X,Y] = Cov[Y,TX] Var [ X ] ' Cov[TX, Y].

Indeed,
Cov[Y,TX] = Cov]Y, X|T*, Cov[TX,Y]|=TCov[X,Y],
Var [TX | =T Var [ X |T*.



18 1. Gaussian measures and Gaussian fields

O

Proposition 1.1.34. Suppose that V,U are finite dimensional Euclidean spaces, V is a
centered, V -valued Gaussian vector, and S :' V. — U a linear surjection. Assume that the
U -valued Gaussian vector S(V) is nondegenerate. Define Y =ker S, X =Y. Set

L=(S5)"Y25: v - U.

Denote by X and respectively Y the components of V' along X and respectively Y so that
V=X+Y and LV = LX. Then the following hold

(i) The Gaussian vectors LV and X are nondegenerate.

(ii) The Gaussian vectorsY —E[Y | X ], V—E[V || LV ] andY —E[Y || LV | have the
same distribution and their common variance operator is Ay x :' Y —'Y described
in (1.1.18) . They are nondegenerate if and only if V is nondegenerate. Denote by
LAy x the regression Gaussian measure, i.e., the centered Gaussian measure on'Y
with variance operator Ay x.

(iii) If f : V — R is integrable with respect to the distribution of V', then

E[f(V)|L(V)=0] = /Yf(y)FAY’X [dy] =E[f(Y)|X =0]. (1.1.22)

In particular, if the Gaussian vector V' is nondegenerate and f : V' — (0,00) is a nonnegative,
continuous homogeneous function whose restriction to ker S =Y is nonzero, then

E[f(V)|L(V)=0] = : Sf(y)rAm[dyy > 0. (1.1.23)

Proof. The map S |x: X — U is an isomorphism and S |x (X) = U = S(V). Denote by
P the orthogonal projection onto X. Then X = P(V),Y =V — X and

S(V) = S(PV) = S(X).

Note that S*(U) = X. Set B := SS* : U — U. The operator B is symmetric and positive
definite. Observe that L := B~1/28.

Lemma 1.1.35. The operator of L* induces an isometry U — V' with image
L*(U) = (ker L) = (ker $)* = X.

Moreover LL* = 1.

Proof. Let uy,us € U. We have
(L*ul, L*UQ) = (S*Bil/Qul, S*Bil/z’LLQ)
= (SS*B_1/2’LL1, B_1/2U2) = (B1/2U1, B_I/QUQ) = (ul, UQ).

Note that LL* = B~Y2[[*B~1/2 = 1. 0

If A denotes the variance operator of X, then the variance operator of L(V) = L(X) is
LAL*. Moreover, Cov]Y, L(X)] = Cov[Y, X]L*.
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Denote by @ the variance operator of V. With respect to the decomposition V = X @Y
Q@ has the block form
A C*
Q= [ c B ] , C=Covl]Y,X], B=Var[Y].

Since X is nondegenerate, the operator A is invertible. Form the operator
Ay,x := Var [Y] = Cov[Y, X] Var [ X ] Cov[Y, X] = B— CA~'C"
Then Schur’s complement formula (see [74, Sec.0.8.5] or [139, Prop. 3.9])

1 o] [A4cCcr] [1 —-Aalcr]_[A4 0
-CA™1 1 C B 0 1 B B—-CA~IC*
shows that det ) = det A - det Ay x, so that det Ay x # 0 if and only if det @ # 0, i.e., V is
nondegenerate. Similarly

Ay.rx = Var [Y] — Cov[Y, LX] Var [LX ] Cov[LX, Y]

= B— CL*(LAL*) 'LC* = B— CA™'C* = Ayx.
since LL* = 1. This proves (ii).
From the equality
E[V|X]=E[X+Y|X]=E[Y]X]+X
we deduce
Z=V-E[V|X]=Y-E[Y|X]
so Z is Y-valued and its distribution is the centered Gaussian measure on Y with variance
operator Ay, x. The equality (1.1.22) now follows from the regression formula (1.1.19).

To prove (1.1.23) observe that, since I'a ;- is nondegenerate, we have I'a (0] >0, for
any open subset O of ker L. Choose ¢ > 0 such that the open set { f lker> c} is nonempty.
Then

F@Wlay [dy] > cFAX,Y[{f > c} ﬂkerL] > 0.
ker L
|

Remark 1.1.36. The nondegeneracy of ', ; is important. If I'a, , were concentrated on
a proper subspace Z C ker L, it would still be possible that f is nontrivial yet f |z=0. O

1.1.3. Complex Gaussian variables and vectors. A complex random variable
Z=X+1iY:(Q8P)—~C

is called Gaussian if the random vector (X,Y) = (Re Z,Im Z) is Gaussian. For simplicity in
the sequel we will focus exclusively on centered variables so we will assume X,Y are centered

The variance of the complex Gaussian random variable X +2Y is viewed as a real Gaussian
vectors represented by the 2 x 2-matrix
Var [X ] IE[X Y]
A = Varg [Z ] =
E[X Y] Var [Y]
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However, in this book we will work with a more restrictive concept of complex Gaussian
random variable.

Definition 1.1.37. The complex random variable Z is symmetric if the random variables Z
and ¢Z have the same distribution. O

This means that Varg [Z ] = Varp [iZ ] It is well known that the multiplication by <,
viewed as a real linear operator R? — R? is represented by the 2 x 2-matrix

0 -1
=17 5
Using (1.1.10) we deduce that Z is symmetric iff

A=—JAJ <—JA=AJ

The only symmetric 2 x 2 matrices that commute with J are the scalar multiples of the
identity. Hence Z is symmetric iff X, Y are i.i.d. normal random variables. In this case

Varg [Z} = vlge, v:Var[X] :Var[Y].

An elementary computation shows that Z is symmetric if and only if E[Zz] = 0. In this
case

v = fE[Z Z ]
Proposition 1.1.38. Suppose that Z = (Z1,...,Zy) : (Q,S,IP’) — C" is a centered random
vector satisfying the following condition:
for any uy,...,u, € C the complex random variable
wZ +ug o+ +unZy, (C)
a symmetric complex Gaussian random variables.

Denote by Varc [Z} the complex variance matrix of Z, i.e., the n X n hermitian matriz

Varc [Z] = (E[ijk])

1<j,k<n’

Note that Varc [Z] can be viewed either as a complex linear operator C* — C", or as a
real linear operator R*™ — R?™.

Then the following hold

(i) The random vector Z, viewed as a real random vector (Q,S,IP’) — R?" =2 C", is
Gaussian.

(i) E[Z;Z,x] =0, Vj,k=1,...,n.

iii) Denote b VaI'R Z | the variance oper ator of Z viewed as a real Gaussian vectors.
)
Then

Varg [Z] = %Var@ [Z]

Above, both sides are viewed as real linear operators R™ — R™.
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Proof. (i) Set Xj := Re Zy and Yy = Im Z;. For any complex numbers uy = s — ity the
random variable

Zuka:Z(Ska—i-thk) +iZ(3kYk_thk)
k k k

is a symmetric complex Gaussian variable. This implies that the real random vector
(Xlai/vlv' . 'aXn,Yn)
is Gaussian. and that each of the complex Gaussian variables Zj, is symmetric.

(ii) Set vy = E[ X2 ]| =E[Y}?]. Suppose that u, = 0 for k # 1,2 u; = s; — it;, j = 1,2. The
u1Zy +uaZs = A(s,t) +iB(s,t) is a symmetric complex Gaussian variable. We deduce that
real Gaussian random variables

A(s,t) = s1X1 +01Y1 + 52 Xo + t2Yo and B(s,t) = s1Y1 — t1.X1 + s2Ya — t2Xo
are i.i.d.. Suppose that t1 = so = 0. Then
Var [A] = s%vl + t%’Ug + 281t2E[X1Y2]
= Var [B] = s%vl + t%’l)g — 231t2E[Y1X2 ]

From the equality Var [A] = Var [B] we deduce that

E[X1Y2| = -E[V1X2].
From the equality E[AB ] = 0 we deduce that

E[ X1 X2 | =E[V1Y2].

We can rewrite these equalities compactly as E[21Z2] = 0. Clearly the above argument
shows that E[Zij] = 0 for any j, k.

(iii) For j # k We set
. 1 =
ajr =E[X;Xp], bjr = -E[X;Y], 2k =aj, +ibj, = §E[ijk]
The covariance operator of the two variables Z;, Z; viewed as two-dimensional random vectors
is
E[X;X:] E[X;Y;] ] _ [ ajr  —bjk }
E[Y}X}C] E[YkYk] bj Ak '

The above matrix describes the multiplication by z;;, viewed as a real linear operator C — C.
a

COV[Zj, Zk] =

Definition 1.1.39. A complex random vector Z : (Q,S,]P’) — C™ is called a symmetric
complex Gaussian vector if it satisfies condition (C) in Proposition 1.1.38..

A collection Zy, ..., Z, of symmetric complex random variables is called jointly Gaussian
if the random vector (Z1, ..., Z,) is a complex symmetric Gaussian vector. 0

Remark 1.1.40. Suppose that U is a finite dimensional complex Euclidean space, m = dim¢c U.
Denote by (—, —) the associated Hermitian! inner product. This defines a real inner product.

(ul,ug) :Re<u1,uQ>.

1We adhere to the geometers’ convention that a Hermitian inner product is conjugate linear in the second variable.
Physicists a ssume that the Hermitian inner product is conjugate linear in the first variable.
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Suppose that Z is a U-valued centered random vector that is Gaussian when we view U as a
real vector space. As such Z has a variance A = Varg [Z ] which is a symmetric real linear
operator U — U. Then Z is a symmetric complex Gaussian iff Varg [Z ] is also complex
linear, i.e.,

A(tu) = tAu, Yu e U.
We will denote by Varc [Z ] This complex linear operator.

If (ej )1 <j<m We fix a complex orthonormal basis of V', then Varc [Z ] is represented in
this basis by a complex Hermitian m x m matrix. The collection

€e1,te1,...,€m, ey,

is a real orthonormal basis of U. In this basis, Varg [Z ] is represent by a real symmetric
2m X 2m-matrix O

1.1.4. Gaussian measures on Fréchet spaces. In this brief, mostly expository, subsec-
tion I want to describe a few facts about Gaussian measures on infinite dimensional spaces.
For more details I refer to [21, 144)].

Let me first recall a rather deep and very versatile measurability result. I will state only

a special case that suffices for all the applications I have in mind. For a proof and a more
general version I refer to [36, Sec. 8.6].

Theorem 1.1.41 (Blackwell). Suppose that X is a Polish space, i.e., a complete separable
metric space. Denote by Bx the sigma-algebra of Borel subsets of X. Suppose that § is a
countable family of Borel measurable functions on X that separates points. Then o(F) = Bx,
where o(§) denotes the sigma-algebra generated by §. O

Digression 1.1.42. I want to digress to discuss an infinite dimensional version of the Cramér-
Wold theorem, [79, Cor. 6.5].

Let © be a set and V a vector spaces of functions f : £ — R. Denote by o(V') the
sigma-algebra generated by the collection V. Note that

o(V)=\/ a(F),
Fe2y

where we recall that Eg denotes the collection of finite subsets of a set S. For any F' € 2(‘)/
we have a natural linear map

pr:F =R, Q3w (f(w)),ep € R

Let © be a probability measure on (Q, a(V) ) For any complex valued, bounded measurable
function ¢ we denote by ,u[ga] the integral of ¢ with respect to u.

The measure p is uniquely determined by the marginals pf" = (pp)xp € Prob (RF). In-
deed, the marginal pf” determines the restriction of 1 on o(F) and the collection (o (F) )FGQV

0
is a m-system that generates o (V).

The probability measure uf on R is uniquely determined by its Fourier transform
ot sspan(F) —» C, g~ ,u[eig].

Equivalently the measure pf” is uniquely determined by the distributions of the random
variables g : (Q,0(V)) — R, g € V. Summarizing, we deduce that following result.
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Proposition 1.1.43. Let Q) be a set, V' a vector space of real valued functions on Q. Then a
probability probability measure p on o (V') is uniquely determined by either one of the following
data.

(i) The distributions of the collection of random variables f : Q@ — R, f € V.
(ii) The distributions of the collection of complex random variables etf, fev.

(iii) The Fourier transform

A:V—C, f[f]=p[ef].

For a different proof of this proposition we refer to [46, Sec. 8.1].

To see this principle at work, consider two sets o, 1 and two vector spaces V; € R,
i = 0,1. These vector spaces determine two sigma-algebras o(V;), i = 0,1. Consider the
product space 2 = Qg x Q; equipped with the product sigma-algebra o(Vy) ® o(V;). Let
pi : Qg x Q1 — ; denote the canonical projection. Note that

oc(Vo) @ o(V1) =a(Vp B V)

where Vo H Vi denotes the space p;Vp + pi Vi of functions f : Qg x 1 — R with the following
property: 3f; € V;, i = 0,1 so that
fwo,w1) = fo(wo) + fi(w1), V(wo,w1) € Qo x Q.

Let v be a probability measure on (Qo x Q1,0(Vo) @ o(V7) ) Denote by v; the marginals of
v, vi = (pi)pv, i =0,1.

Suppose that p; is a probability measure on (Qi,d(‘/i)), i = 0,1. To verify that
v = gy X p1 it suffices to check that Vfy € Vg, f1 € V4,

/ i1y [ dugduy | = (/ eifO(WO),uo[dwOD </ e"fl(wl)m[dwl]).
Qox Qo Q1

This completes the digression. O

Recall that a Fréchet space is a vector space X equipped with a countable family of
seminorms

=1l : X =1[0,00), v €N,

such that the function

1
d: X x X —1[0,00), d(xg,x1):= Z?max ( llxo — x1]|u, 1)
veN

defines a complete metric on X. Note that the metric d is translation invariant. A subset
S C X is said to be bounded if

sup ||s]|, < oo, Vv eN.
seS

Example 1.1.44. (a) Banach spaces are Fréchet spaces.
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(b) Suppose that U C R? is an open set. Then for any m > 0 the space C™(U) is a separable
Fréchet space. To see this choose a compact exhaustion (K, ),>1 i.e. countable family of of
compact subsets K|nu C U such that

Vv >1, K, Cint(K,;1) and U K, =U.
v>1

The topology is defined by the seminorms
£l = Sup (If@)|+[Df @)+ + D™ (2)])

The topology determined by these seminorms corresponds to uniform convergence on com-
pacts.

To see that C™(U) separable note that the space of polynomials in d variables with
rational coefficients is dense in C"™(U), [150, Chap. 15, Cor. 4]. 0

Let X be a real separable Fréchet space. In this case the Borel sigma-algebra of X x X
coincides?with the product of sigma-algebras B x

Bxxx =Bx ® Bx.

Since the addition + : X — X — X is continuous it is B x « x =measurable.
We denote by X™* the topological dual of X and by

(—,—): X"xX —>R
the natural pairing
X*x X 3 (&,0) = (6,2) = £(a).
The dual X* is equipped with several useful topologies
o( X", X)cT(X*,X)cCp(X*X). (1.1.24)
e The topology O'(X * X ), also know as the weak™ topology, corresponds to the

uniform convergence on the finite subsets of X.

e The topology T(X * X ), also known as the Mackey topology, corresponds to
uniform convergence on the symmetric, compact convex subsets of X.

e The topology ( X" X ), also known as the strong topology, corresponds to uniform
convergence on the bounded subsets of X.

For a € {o, 7,8} we denote by X the dual equipped with the a(X*, X )—topology. The
Mackey-Arens theorem shows that for a = o, 7, the topological dual of X can be identified
with X; see [136, Sec.IV.3]. This means that a linear function L : X* — R is a( X*, X )-
continuous iff there exists € X such that L(§) = (£, z), V§ € X™.

Proposition 1.1.45. The Borel sigma-algebra of X coincides with the sigma-algebra o(X™)
generated by the family of continuous linear functions £ : X — R.

2There is this the strange Nedoma pathology: if X is a metric space, then the diagonal A C X x X is closed in
the product topology and thus Borel measurable in this topology. However, if the cardinality of X is bigger than the
cardinality of the continuum, then A does not belong to the sigma-algebra Bx ® Bx,so Bx @ Bx C Bxxx-
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Proof. Let {x,}nen be a countable dense subset of X. We assume z,, # 0, ¥n. We deduce
from the Hahn-Banach theorem that for any n € N there exists &, € X* such that &, (z,) = 1.
The collection E = {&, }neny € C(X) separates the points. We have o(Z) C o(X*) C Bx.
Blackwell’s theorem now shows that o(2*) = Bx. O

The Fourier transform of a Borel probability measure p € Prob(X) is the function
i X*—C, i) =E[e*].
Since Bx = o(X™) we deduce from Proposition 1.1.43 that p is uniquely determined by its

Fourier transform. More generally, we have the following result.

Corollary 1.1.46. Suppose that X is a separable Fréchet space and L C X* is a subspace
such that o(L) = o(X*). Let po, p1 € Prob(X). Then
po = 1 <= po(§) = pi(§), V€€ L.
O

Definition 1.1.47. A Borel probability measure I' on the separable Fréchet space X is
called Gaussian if any continuous linear functional £ € X*, viewed as a random variable, is
Gaussian. Equivalently,

&L = Ymiggolg, VE € X7
The Gaussian measure is called nondegenerate if v[¢] > 0, V& € X*\ {0}. It is called centered
if ml¢] = 0, V€ € X*. 0

We see that I' € Prob(X) is centered Gaussian if, V§ € X*

~

(6 = 92, ol =Br[¢] = [ ¢Pr]a]
We deduce that a centered Gaussian measure is uniquely determined by the variance function
Var: X* = R, {— Ep[&2].
Note that Vt € R, V¢, ne X*
Var[té] = ¢* Var[€], Var[¢ + 7] + Var[¢ — ] = 2( Var[¢] + Var[n] ). (1.1.25)

Proposition 1.1.48. Let X be a separable Fréchet space and p € Prob(X). Denote by R
the “rotation”
1 1

R:XxX = XxX, Rlzo,z1) = (ﬁ(xo—xl),—z(xﬁxl)).

Then the following are equivalent.
(i) The measure p is Gaussian.
(i) p®p = Ry(p x p)

Proof. For i = 0,1 we denote by p; the natural projection X x X > (xg,z1) — x; € X. If
e X" andi=0,1, then weset § =&op; € (X x X)*. Set v:= Ryu(n® p). Note that

1
So—61), LoR=—(&+&)

§oo R= 7

1
7!
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(i) = (ii) To show p ® pu = v we use Corollary 1.1.46. We have to show that if 4 is Gaussian

then
VéEne X' / eHotm) gy, = </ eigdu> (/ eindu> . (1.1.26)
XxX X X

Proof of (1.1.26) We have

/ et&o+m) g, — / ei(ﬁoOR(xo7$1)+W1°R(xo’zl))ﬂ Q [ dxodry }
XxX XxX

_ / o5 (€+n)(@0) ~(e=n)(@1) 1@ p] droda: |
XxX

_ </ €;§<s+mdu> o </ eé(sn)d@
X X
_ olen/a —vle—n/a (1125) _ofe)/a—ofn/2) _ ( / eiﬁdu> < / eindlu> ‘
X X

(ii) = (i) To show that p is Gaussian it suffices to show that for any £ € X*, the random
variable € : (X, u) — R is Gaussian. Note that the random variables

0, &1 (X x X, p@pu) - R

are independent copies of X, i.e., they are independent and they have the same distribution
as €. According to Polya’s Theorem 1.1.8 it suffices to show that the random variables £ and
a= %(51 + &) have the same distribution, i.e.,

E[e"] =E[e*], VteR.
We have
E[eito‘] — / e%(fO“‘fl)(xval)M ® M[dl’od$1] :/ 6’1:75510]%(:60,501)” ® ﬂ[dx()dxl]
XxX XxX

(v =Ryu(p® p))
_ / @)y [ dagday |
XxX

(v=p®pn

:/ eitﬁ(ml)p@)p[dazod:ﬂl} :/ eitf(z),u[dz:] = E[eitg].
XxX X

O

Corollary 1.1.49. Suppose that X is a separable Fréchet space, i € Prob(X) and £L C X*
is a subspace such that o(L) = Bx. Then the following are equivalent.

(i) The measure p is centered Gaussian,
(ii) For any & € V' the random variable € : (X, u) — R is centered Gaussian.

Proof. Clearly (i) = (ii) so it suffices to prove (ii) = (i). For each £ € £ we denote by v[¢]
the variance of £. It satisfies the equalities (1.1.48). Using Proposition 1.1.48 it suffices to
show that p®@p=v =Ryu(p®p). Since Bxxx =Bx @ Bx = 0(L) ® 0(L) we can use the
strategy outlined in Digression 1.1.42 so it suffices to show that

VE&,ne L / ¢Heotm) gy, — </ eigd,u) (/ ei”du> . (1.1.27)
XxX X X
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Since £ +n, & —n € L, we deduce that £ + n,& — n are Gaussian variables as well and the
proof of (1.1.26) carries over with no modification to this situation as well. 0

Remark 1.1.50. The Corollaries 1.1.46 and 1.1.49 may suggest that a Gaussian measure I"
is nondegenerate iff £ is a nondegenerate Gaussian random variable for any £ € £. Example
1.2.20 will show that this is not the case. O

The covariance form of a centered Gaussian measure I' on a separable Freéchet space X
is the continuous, symmetric bilinear form

Cr: X*"x X" =R, C’p(g,n):Ep[g-n]:/Xg(x)n(x)l“[dx].

Note that each ¢ € X* is a function on X that is L? with respect to the measure I'. This
determines a tautological linear map

Tr: X* — L*(X,I) (1.1.28)

that associates to each continuous linear functional £ : X — R its [-a.s. equivalence class.
The map Tt induces a continuous map X* — L?(X,T); see [21, Lemma 3.2.1] or [151,
Thm.3(3)]. As such, it has a continuous dual map

Ty L3(X,T) — (X5)* = X.

T

More precisely T{:§ is the linear functional v on X ™ such that
u(n) =E[&n], Vne X*. (1.1.29)
We denote by Rr the composition
Rr :=T{Tr : X* — X. (1.1.30)
The map Rr : X* — X is uniquely determined by the conditions
(n, Br¢) = Cr(&,n) =Er[&n], V& ne X",

Note that ker Rpr = ker Tt and these maps are injective iff I' is nondegenerate.
For a proof of the following fundamental fact we refer to [47, Sec. 3|, [60, Sec.1] or [144,
Sec. 3.2.2].

Theorem 1.1.51 (Fernique). Let I' be a centered Gaussian measure on the separable Fréchet
space X defined by a sequence of seminorms (|| — ||,)v>0. Fiz v >0 ro =ro(v) > 0 such that

T[{]|z]ly < ro}] =q>%.

Set X
q
A= Alrg,q) = — 1 (7>
(r0.0) = 53 hox (1
Then, for any r > ro we have Fernique’s inequality
C[{llzlly > r}] < roe ", (1.1.31)

In particular

/ eo‘H”C”?'F[dx] < o0, Ya < A, (1.1.32)
X



28 1. Gaussian measures and Gaussian fields

and

[ lalrfas] <. (1.1.33)
X

Condition (1.1.33) implies that the map
Tr: X* — L*(X,T)

is continuous with respect to the weak* topology on X*. The dual T} : L*(X,I') — X is
continuous with respect to the weak topology on X. The closed graph theorem [150, Chap.
17, Cor.6] implies that it is also continuous with respect to original strong topology on X.
We set

HY := Rp(X*) = T} Tr(X ) C X.

The space HB is a pre-Hilbert space with respect to the inner product

(ngvRFn)F = EF[E”L V§777 € X"
The operator T1* defines an isometry
Tp - Tr(X*) € L*(X,T) — HP
and thus extends by continuity to X7, the closure in L?(X,T') of Tr(X*). We denote by Hp
the image of this extension
Hr =T¢(X{) C X. (1.1.34)
The resulting map T} : X1 — Hr is a surjective isometry so Hr is the completion of H?

with respect to the norm || — ||r induced by the inner product (—, —)p. The Hilbert space
Hr is called the Cameron-Martin space associated to the Gaussian measure T'.

We have the following result, [21, Prop. 3.1.9].
Proposition 1.1.52. Let (&,)nen be a sequence in X* that separates the points in X. Then

they span a dense subspace of XT., so X1 is separable. In particular, the span of the family
(Rp(gn) )nEN 1s dense in Hr. O

For a proof of the following nontrivial result we refer to [21, Thm. 3.6.1].

Theorem 1.1.53 (Support theorem). Let I' be a centered Gaussian measure on the sepa-
rable Fréchet space X. Then the support of I' is the closure of Hr in X. This means that
F[ cl(Hp)] =1 and for any open set U that intersects Hr, F[U] > 0. O

Corollary 1.1.54. Let I' be a centered Gaussian measure on the separable Fréchet space X .
Then the following are equivalent.

(i) The measure I' is nondegenerate.

(ii) The Cameron-Martin space Hr is dense in X.

(iii) For any nonempty open subset O C X, F[O] > 0.
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If T" is a finite dimensional real vector space and S is a subspace of V', then it is not hard
to see that either I'[ S| =0 or I'[ S ] = 1. Xavier Fernique [60, Sec.1] proved that a similar
result holds in infinite dimensions.

Theorem 1.1.55 (Zero-one law). Suppose that T’ is a Gaussian measure on the separable
Fréchet space X. If'Y C X is a Borel measurable subspace then either F[Y} =0 or
rjy|=1. O

Proposition 1.1.56. Suppose that Y, X are separable Fréchet spaces andi:Y — X is a
continuous linear injection with closed range. We have a pushforward map

i : Prob(Y) — Prob(X).

(i) A Borel probability measure u € Prob(Y') is (centered) Gaussian if and only if its
pushforward iyp is a (centered) Gaussian probability measure on X.

(ii) If T is a Gaussian probability measure on X such that F[z(Y)] = 1, then there
exists a Gaussian measure on'Y such that I' = iyp.

Proof. We have a dual map i* : X* — Y*, £ — £ oi. The Hahn-Banach theorem shows
that this map is onto.

(i) Note that ixp is Gaussian iff V€ € X™* the pushforward &4 (ipp) = (€ 0 )4 p is Gaussian.
Since i* is onto, this happens iff nyp is Gaussian, Vn € Y, i. e., p is Gaussian.

(ii) For a Borel subset B C Y we set
p[B]:=T[i(B)].
Then p € Prob(Y') and ixpu =I'. We deduce from (i) that p is Gaussian. 0

Theorem 1.1.53 has an immediate but useful consequence.

Proposition 1.1.57. Let X be a separable Fréchet space. Fix a family of seminorms
(I = llv)v>0 defining the topology of X. Let (zn)n>0 be a sequence in X and (cp)n>0 @
sequence of positive real numbers such that

chHmnHV < o0, V.
n>1

Denote by Y the closure of the span of (zp)n>1. Let (An)n>1 be a sequence of indepen-
dent standard normal random variables defined on the probability space (2,8,P). Then the
following hold.

(i) There exists a negligible subset N € 8 such that the series
Z Ap(w)enzy
n>1
converges in X to an element in'Y for any w € Q\ N.

(i) The map S : Q —'Y defined by

Ap(w)enon, Q\N,
S(w) = Yot An(W)enTn, w € Q\
0, weN
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is Borel measurable and the push-forward I's := S4IP is a nondegenerate Gaussian
measure on 'Y .

(iii) For any nonempty open subset O CY, IP’[S € O} > 0.

Proof. (i) We will show that the random scalar series
Z | Anlenl|zally
n

is a.s. convergent for any v. According to Kolmogorov’s two-series theorem this happens if
the positive random variables X? = |A,| - ¢, | zy ], satisty

Z]E[XZ] < oo and ZE[(XZ)Q} < 00.
n>1 n>1

Now observe that
2

1 > x2/2

ZE[X};] = \/Zch\an,, < 0o
n>

n>1

and

YE[CG)?] =) chllzall} < oo

n>1
(ii) Define S, : Q@ =Y

S Ap(w)egzr, w e Q\N,

The maps 5,, are measurable since the addition operation on a separable Fréchet space is
a measurable map. The map S is measurable since for any £ € Y* the function (£, S) is
measurable as limit of the measurable functions (¢, S,,).

To see that I'g is a Gaussian measure let £ € Y*. Then
(€, 5(w)) = lim (£, 5,).
The random variables

<§7 Sn> = Z Ancn<£7 xn>
k=1

are Gaussian as sum of independent Gaussians. Since the limit of Gaussian random variables
is also Gaussian we deduce that (¢, 5) is Gaussian with variance

vle] = 3" 2| (€ @) |-
n>1

Since (z,,) spans a dense subspace of Y, we deduce that for any £ € Y™* \ 0 such there exists
n such that (£, z,) # 0. This proves that I'g is nondegenerate. Part (iii) now follows from
Theorem 1.1.53. g
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1.1.5. Mercer kernels. Classically, [97], a Mercer kernel on a compact interval I of the
real axis is a continuous symmetric function K : I x I — R such that the associated integral
operator

£ K[f], K[f)(s) = / K (s, 1) f(t)dt

is symmetric and nonnegative definite. It this subsection we will survey some properties of a
generalization of this classical concept.

Definition 1.1.58. Let T be a metric space. A Mercer kernel on T is a continuous function
K : T x T — R satisfying the following properties.

(i) K(s,t) = K(t,s), Vs,t € T.

(ii) For any t1,...,t, € X the symmetric matrix (K (t;,¢;))
definite.

1<ij<n 18 nonnegative

O

Example 1.1.59. Let T be a compact metric space. Denote by F the Banach space C°(T)
equipped with the sup norm. Suppose as in [15] that U C F := C°(T) is vector subspace
equipped with a norm || — || making it into a separable Banach space and such that the
natural inclusion U — F is continuous. If (¢,),en is a dense subset of T' the evaluation
maps Ev; € F* separate the points in F' and, according to Blackwell’s Theorem 1.1.41,
they generate the Borel sigma-algebra of F'. These evaluation maps also define continuous
linear functionals on U that, a fortiori, separate the points in U so they also generate the
Borel sigma algebra of U.

Suppose that I' is a centered Gaussian measure on U. We deduce from Proposition 1.1.52
that the collection ( Ev; ) (e Sbans a dense subspace of Ut.. For every t € T we obtain a

continuous function Ky = K} = RrEvy; € U C CO(T). The continuous function K} is
uniquely defined by the equality

K!'(s) = BEv, (Ktr) = / Ev,(u) - Evg(u)T'[du].
U

We set K''(t,s) := K} (s). The resulting function
K':TxT =R, (ts)— K'(z,y)
is called the covariance kernel of the Gaussian measure.

The covariance kernel KT : T x T — R is a Mercer kernel. Property (ii) follows from the
fact the symmetric matrix (K (ti,t5) )1 <ij<n is the variance operator of the Gaussian vector
U— R, u— (ulty),...,u(t,)) € R™
The Cameron-Martin space Hr can be identified with the Reproducing Kernel Hilbert Space

(RHKS) determined by the covariance kernel KT. We refer to Appendix B.5 and the refer-
ences therein for more information about this concept. a

Let us conclude with a simple way of recognizing Mercer kernels. Observe that if
K : T xT — R is a continuous symmetric function,

K(s,t) = K(t,s), Vz,y € M,
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then for any finite Borel measure u on M it induces a bounded symmetric operator
(K] = [K], : L*(T, p) = L*(T, ),
1.1.35
/ K(t,s) [ds] ( )

Note that the function K is a Mercer kernel if and only if for any ¢q,...,t, € Tand p =), d;,
the operator [K], is nonnegative definite, i.e.,

([KJuf ] ) pogppy 2 0, Vf € COT).

Denote by Meas(T") the collection of finite Borel measures on T and by Prob(T') the collection
of Borel probability measures on M. A measure p € Meas(T) is called diffuse if M[U] >0
for any nonempty open subset U C T'

Proposition 1.1.60. Let K : TxT — R be a symmetric continuous function. The following
are equivalent.
(i) The function K is a Mercer kernel.
(ii) The operator [K], is nonnegative definite for any p € Meas(T).
(i) The operator K], is nonnegative definite for any p € Prob(T).
(iv) The operator [K], is nonnegative definite for any difffuse measure probability p € T

Proof. Clearly (ii) = (i), (iii) , (iv).

Denote by Px collection of measures @ € Meas(T') such that [K], is nonnegative definite.
Observe that if f : M — [0,00) is a nonnegative continuous function and p € Pk, then
fu € Pr. This shows (ii) <= (iii). Hence it it suffices to show that (i) = (iii) and (iv) =
().

The dominated convergence theorem shows that for any u € Meas(M) and f € L*(M)
we the function [K], is continuous and

sup | (K] f(x) | < / swp | Ko y)llf @)l dy] = 1K e[ M1 lz2r
xeM M zy€E

so [K], defines a continuous linear operator L*(T, ) — C(T), YV € Meas. We deduce from

this that if (u,,) € Pk is a sequence of measures converging weakly to a measure p € Meas(M )

then u € Pg. In other words, Pg is closed under the topology of weak convergence of finite

measures.

Denote by Probg(T") the collection of discrete probability measures on M. More precisely,
i € Probg(T) iff there exist a finite set F* C M and a function w : F' — [0, 00) such that

Zw(t) =1, u= Zw t)0y
ter ter

The Krein-Milman theorem shows that any p in Prob(T') is the weak limit of a sequence of
discrete probability measures; see [52, Sec. 10.1] or [142, Ex.8.16].

(i) = (iii) Since K is a Mercer kernel we deduce that Probg(M) € Pg and the above discussion
shows that Prob(M) C Pk.
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(iv) = (i). Fix a non-atomic probability measure . We will show that Probg(T") C Px. Let

fy = Z w(t)ds € Probo(T)
ter

For t € F we denote by B,(t) the open ball of radius r centered at t. For v € N, v > 1/r,
choose a nonnegative continuous function f, : T — [0, 00) with the following properties

fv C By, (t), fu®p|ds| = , VxeF.
supp UF () /Bm ([ ds] = w(z), Ve

Then f,pu € Px and f,p converges weakly to p,, as v — oo so that u,, € Prk.

1.2. Gaussian fields

1.2.1. Random fields a.k.a. stochastic processes. This subsection has a rather modest
goal namely to introduce some basic terminology and facts concerning stochastic processes.
For more details we refer to two classic sources, [45, 68].

To put it simply, a stochastic process is a family of random quantities valued in the same
measurable space. In this book I will typically use the term random maps when referring to
stochastic proceses.

Definition 1.2.1. Fix a finite dimensional vector space U and a set T. An U-valued random
field or random map on T (or parametrized by T') is a map

X:OxT—-U, (wt)— Xu(t) eU,
where (2,8, P) is a probability space, and for any ¢ € T, the map
Do>w—X,(t) e U

is measurable. When U = R, the random field X is also known as a random function. O

Here is an alternate viewpoint. Denote UT the space of functions f : T — U. If
X:OxT—-U, (wt)— X,(t) eU,

then for any w € Q we have a map X,, € UT, t — X, (t). The maps X,, are called the sample
maps of of the random map X. We thus obtain a map

Ox:Q=UT, dx(w)=X,.
For every t € T' we have a natural projection
Ev,:UT U, f— f(b).

These maps determine a sigma-algebra on UT, namely the smallest sigma-algebra such that
all the maps Ev; are Borel measurable. We denote it by B%}. A map

U:(Q,8,P) -UT, w— 1,
is measurable if and only if, for any ¢ € T, the induced map
Q23w Evy(V,) =Y,(t) eU

is measurable. This shows that the map ®x is measurable.
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Conversely, any measurable map ® : (2, 8,P) — U7 defines a map
Xo:QxT — U, (Xé)w(t) - q)w(t)
which is a random field in the sense of Definition 1.2.1(i). The pushforward probability
measure FxIP on U7 is called the distribution of the random field Xg.

Denote by 2T the collection of finite subsets of T. For any F € 21" we denote by 7p
the natural projection UT — UF'. Equivalently, mp(X) is the restriction to F of a function
X : T — R. Moreover, if Fy C F5 are two finite subsets of T' we denote by Pp, g, the natural
projection U2 — U that maps a function F» — U to its restriction to F.

Any probability measure p on B%’} determines a family of probability measures pup on
BE, F € 2T, up = (np)up. This is a projective family i.e., it satisfies the compatibility

U 0 #
conditions
((‘])Fl,FQ)#/J’FQ = Uy, VF, C Fs. (1.2.1)

Kolmogorov’s existence theorem shows that conversely, given any projective family of prob-
ability measures pp : BE- — [0,1], F € 2{, there exists a unique probability measure
p: BE —[0,1] such that

pp = (mp)gp, VF.
Thus the distribution of a random field X is uniquely determined by the distributions of the
finite dimensional random vectors

Xp:Q—=U", we (X(t)) Fe2f.

teF”

Definition 1.2.2. Let (2, 8,P) be a probability space, T' a set, and U a finite dimensional
real vector space. Consider stochastic processes

XY :QxT - U, (t,w)— X,(t), Y,(t).

(i) The process Y is said to be a modification or version X, and we denote this X ~ Y,
if for any t € T there exists a negligible subset N; such that

Xo(t) = Yo(t), Ywe Q\N,.

(ii) The processes X,Y are said to be indistinguishable, and we denote this X ~ Y, if
there exists a negligible subset N such that

Xo(t) =Y,(t), VteT, Ywe Q\N.

(iii) The processes X,Y are said to be stochastically equivalent, and we denote this
X ~; Y, if they have the same distribution, i.e., for any F € Qg the random
vectors X and Yr have the same distribution.

O
Note that =, ~, ~, are equivalence relations and
XY — X~Y = X~ Y
Suppose that U is equipped with an inner product with norm ’ — ‘ and T is a metric space.

Suppose that p is a o-finite Borel measure on T" and

X:(Q8,P)xT—U.
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In many applications we would be interested to know if the sample maps X, : T — U
have additional compatibility properties with the additional metric and measure-theoretic
structures on the parameter space T'. In such situations measurability issues could become
tricky. Let me mention two such issues

The first issue can be easily missed. It appears for example when we define random
variables as a.s. limits of other random variables. Observe that

fr9: (Q,S,]P’) — R,

are P-a.s. equal and f is measurable, then we can conclude that ¢ is also measurable if and
only if § is P-complete. To deal with this issue we will adhere to the following convention.

# Unless stated otherwise, the probability spaces (2,8,P) used throughout this book will be
tacitly assumed P-complete.

To explain the second issue suppose that X is a random function defined on an open
subset T of R™. We will have to consider quantities of the type sup,cp X (t), where B is
some Borel subset of T'. If B is uncountable this quantity may not be measurable. This is a
bit more subtle. To explain how to handle it we need a bit more terminology.

Definition 1.2.3. Let (T, d) be a metric space and X an U-valued random field on T
X:(,8P)xT U

(i) The random field X is called separable if there exists a countable separant, i.e., a
countable dense set D C T and a P-negligible subset N C 2 such that, for any
t €T, any € > 0 and any w € Q \ N we have

Xo(t) €cl ({Xu(s), seDNBAL) }).

(ii) The random field X said to be stochastically continuous if for any ty € T, the
random variable X () converges in probability to X (¢9). More explicitly, this means
that for any tg € T and any € > 0

lim P[| X () — X(to) | > ] =0.

t—to
(iii) The random field X is called measurable if the map X is § ® Bp-measurable.

(iv) The metric space T is called convenient if it is locally compact and separable.

O

The topology of a convenient metric space T can be defined by a complete metric whose
balls are relatively compact.

Let us observe that if the random function X : © x T' — R is separable, then T is
separable and for any Borel subset B C T the function

Q3w sp(w) :=sup Xy(t) € (—o0, x|
teB

is measurable since

sp(w) = sup X,(t).
teBND
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Indeed, since T is separable, the set B can be covered by countably many balls B,, (z,) and

supX =sup sup X.
B n BNBy, (zn)

The separability of the random map X implies that supgn By, (zn) X is measurable for any n.
We have the following result [45, Sec.I1.2], [68, Sec. 4.3].

Theorem 1.2.4. Suppose that T is a convenient space X : (Q,8,P) x T — U is a stochasti-
cally continuous process. Then for any o-finite measure p on B the random field X admits
a separable modification Y : QxT — U with the following additional property: there exists a
P® p-negligible set 2 € 8 @ By such that P@u[ 2] = 0 and the restriction of Y to (AxT)\Z
18 8 @ Br-measurable. O

Definition 1.2.5. Let X : Q x T — U, (w,t) — X,(t) € U be a random field, where U is
a finite dimensional Euclidean space and T is a convenient metric space. We say that X is
continuous if for any w € 2 the sample map

Tot— X,(t)eU

is continuous. The process is called a.s. continuous if it is indistinguishable from a continuous
process.

If T is an open subset of a finite dimensional Euclidean space we can define in a similar
fashion the concept of a.s. C* random map. a

There exists sufficient conditions guaranteeing that a random map X admits a modifica-
tion that is a.s. continuous. We mention here Kolmogorov’s famous continuity theorem. For
a proof we refer to [138, Thm. 10.1], or [144, Thm. 2.5.3].

Theorem 1.2.6 (Kolmogorov). Suppose that T = [a1,b1] X - -+ X [an, by] C R™ and
X:QxT—-U

is a random field valued in the finite dimensional Fuclidean space U. If there exists C' > 0,
p € [l,00) and r € (0,1] such that

E[1X(s) = X(0)[P] < C| s —¢]"",
then for any o € (0,r], the random field admits a modification that is a.s. a-Holder continu-
ous. O
For more refined results of this kind we refer to [87, Chap. 11].

Example 1.2.7. (a) Suppose that Ay, 41, . .., A, are independent random variables, T =R = U.
Define the random function

n
X:R—oR, X(t)=) Apth.
k=0

This is an example of random polynomial. Clearly X is a.s. smooth.

(b) Suppose that A,,, By, n € Z>, are independent mean zero L2-random variables defined on
the same probability space (€2, 8,P). For simplicity we assume Var [An] = Var [Bn] =: vy,
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Vn € N. Consider the random Fourier series
X :Qx[0,21] > R, X,(0)= A+ Z (Ap(w) cos(nb) + By (w) sin(nd) ). (1.2.2)
neN

Kolmogorov’s one-series theorem shows that if
S E[AL]+D E[Br] =2) v, <o,
n n n

then, for any 6 € [0, 27] there exists a negligible subset Ny C € such that Vw € Q \ Ny the
series

Z (Ap(w) cos(nb) + By (w) sin(nb) )
neN

is convergent. We could redefine X (6) on Ny to be 0 and we get indeed a family of random
variables on {2 parametrized by 6.

The covariance kernel of this random function is
K, p) = Zvncos (n(0—¢)).
n>0

However, in our applications we would like the sample functions 6 — X,,(6) to be well behaved
for most w and the above approach may prevent this from happening since the set

U
0

need not be negligible. For the applications we have in mind a less sophisticated ad-hoc
approach will suffice. Here is a taste of this approach.

The functions uy, () = sinnf and v, (#) = cosnfd belong to the Banach space C([0,2n])
with sup-norm || — ||. Moreover ||u,| = ||vn]| = 1, ¥n. For the series to converge a.s. in
C([0,2n)) it suffices that the series

> (14l +Bal)

neN

be a.s. convergent. For this to happen it suffices that
> P[|An] > 1/n? ] + > P[|Bn] > 1/n*] < oo
n n

Indeed, if the above inequality holds, then we deduce from the Borel-Cantelli lemma that
P[|A,| > 1/n*i0.] =0=P[|B,| > 1/n’i.0.].
Thus for w outside a negligible set we have
|Ap(w)| < 1/n? and |B,(w)| < 1/n?,

for all but finitely many n’s.

Thus, the coefficients A,, and B,, are highly concentrated near 0 for n large, thus they
are very likely to be very small and we could expect that the random Fourier series describes
a function that a.s. continuous. O
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1.2.2. Gaussian random fields. Let U be a finite dimensional real Euclidean space and
T. A Gaussian random field is random field X : (Q,8,P) x T'— U such that, for any finite
subset F' C T, the random vector ( Xp(t) )teF c UY is Gaussian.
Definition 1.2.8. Let X : (©,8,P) x T'— U be a Gaussian field on the set T'.
(i) The Gaussian field X is called centered if X (t) is a centered Gaussian vector for
any t € T

(i) We say that X is ample® if the Gaussian vector X (t) € U is nondegenerate for any
teT.

(iii) Given k € N, we say that X is k-ample if for any distinct points t1,...,t; € T, the
Gaussian vector
X(t) e @ X(ty) € U"
is nondegenerate.
(iv) The Gaussian field X is called or co-ample if it is k-ample for any k € N.
(v) When U = R we say that X is a Gaussian function.

O

Example 1.2.9. The random function Z ( 2+sint ), Z standard normal random variable, is
ample but not 2-ample since it is periodic. The random function Z sint is not even ample.0

Suppose for simplicity that U is equipped with an inner product. For any finite subset
F C T distribution of the random vector X g is uniquely determined by its mean and variance.

The mean is the function
T>t—E[X(t)] €U.

The variance of Xp is a symmetric operator Var [XF] U S U IfF = {t1,...,tn},

then Var [X F} has the block decomposition
Var [XF] = (K(ti,tj))

1<i,j<n
where
K(ti, t;) = Cov [ X (t;), X (t;) | € Hom(U,U).
The resulting function
K:T xT — Hom(U,U), (s,t)+— K(s,t)

is called the covariance kernel of the Gaussian field X. Recall that Q(J; denotes the collection
of finite subsets of T'.

Proposition 1.2.10. Let U be a finite dimensional Euclidean space, T a set and K a map
K:TxT — Hom(U,U).
The following are equivalent.

(i) There exists a centered Gaussian field X : Q x T — U with covariance kernel X.

3We use the term ample since this property closely related to the ampleness condition in algebraic geometry. Many
authors refer to ample fields as nondegenerate
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(ii) For any F € 2T C T the operator
Kp:U" - U",

given by the block decomposition (JC(f, f’)) s symmetric and nonnegative.

f'er

Proof. The implication (i) = (ii) follows form the fact the variance of a centered Gaussian
measure on UY is a symmetric nonnegative operator.

Suppose that K satisfies (ii). For any finite subset F' C T we denote by I' the centered
Gaussian measure on UY with variance Varp = Kp. The collection T' r, F € Qg is projective
in the sense of (1.2.1). Invoking Kolmogorov’s existence theorem we deduce that there exists
a unique probebility measure I'r on UT such that, YF € Qg,

Lp = (rp)sI'r
where 7mr denotes the natural projection. The random field
Ev:U'xT - U, (u:T —U)— Evi(u) = u(t)

is centered Gaussian with covariance kernel K. O

If T is a metric space and the map ¢ — X(t) is continuous in probability, then the
covariance kernel X is a Mercer kernel in the sense of Definition 1.1.58.

Example 1.2.11. Suppose that T' = [a1,b1] X -+ X [an,bp] CR" and X : Q@ x T — U is
a centered Gaussian field such that the covariance kernel (s,t) — XK(s,t) is Lipschitz. For
s,t €T, X(t) — X(s) is a Gaussian vector with variance operator

Agp = Var [ X(s) — X(t)] = K(t,t) — K(s,t) — K(t, s) — K(¢,¢)
Then, for any k£ € N we have
E[[X(s) = X ()] = (2k — 1)t r AF,
Observe that
[Asell < 1K@ 1) = K(s, )| + 1K (E, 5) — K(s, )]

since (s,t) — K(s,t) is locally Lipschitz we deduce that for any box B C ¥ 3C = C(B) > 0
such that

|Ast|| < C(B)|s —t|, Vs,te B.
Then
tr A¥, < (dim U)* || Ag, )"
We deduce that for k > n
E[[IX(s) = X(8)|[ < Culs — t/F < Cals — "+, Vst € B,

and Kolmogorov’s continuity theorem implies that the process admits a Holder continuous
modification if its covariance kernel is Lipschitz continuous. O

When X is Gaussian we can improve Kolmogorov’s continuity result, Theorem 1.2.6.
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Theorem 1.2.12 (Dudley). If T is a compact subset of a Euclidean space R and there
exists C' > 0, and a > 0 such that

E[|X(s) - X)) < —C

< Vs, t €V,
| log|s —t|

14+a?

then X admits a modification that is a.s. continuous. O

For a proof of this result we refer to [1, Sec. 1.4], [48] or [146, Chap.1].

We can use the above result to produce sufficient conditions guaranteeing that the above
Gaussian field is a.s. C*, but they tend to be cumbersome; see e.g. [1, Thm.1.4.2]. Let us
first sketch the broad contours of the argument in [1, Thm.1.4.2].

In order not to be distracted by heavy formalism we consider only the case n = 1 and
dimU = 1 so that X is a Gaussian function of one real variable t.

Note that if X is to be a.s. C, then, as t — tg, the difference quotient ﬁ (X(t)—X(to))
needs to converge in probability and thus in any LP. The derivative X'(¢) is also a Gaussian
function and we have

E[X'()X(s)] = 0,K(s,t), E[X'(£)X'(s)] = 92,K(s,t) (1.2.3)

so K is at least twice differentiable in certain directions. To keeps things simple we assume
that X is C2. Note that for tg,#; € R and hg, hy € R\ {0}

JMEHXﬁm+%%aﬂmn@mm+hn—X@g”
= holhl (CK(to + ho,t1 + h1) — K(tg + ho,t1) — K(to, t1 + h1) + x(to,h))

1 t1+h1 t1+h1
= < / 8513<(t0 + h(), 81)d81 - / 8319<(t0, 31)d31 )
hohi \ Jy, t

1 tith to+ho ,
- 02, o K(s0,51)d )d
hohy /t1 (/to 50,51 (s0,51)dso )ds1

= (95 s X So,Sl)dS()dSl =X to,ho;tl,hl .
hoha [to,to+ho] X [t1,t1+h1] . ( ( )

The covariance kernel X : (R x R* )2 — R extends by continuity to a Mercer kernel

X:x2 5 R, X:=R2

This defines a Gaussian field on R? and, if the kernel X is locally Lipschitz, then X is a.s.
C'. This happens for example when X is C3. More generally, if X € C**1, then X is a.s.
C*. A similar results holds if X depends on several Euclidean variables.

Definition 1.2.13 (Jets). For any function f € C*(#) we define its /-th jet at v to be the
vector

Jef(v) = f(v) ® Df(v) @ - & D'f(v),
where DFf(v) denotes the k-th order differential of f at v viewed as a symmetric k-linear
form on V. g
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Theorem 1.2.14 (Nazarov-Sodin). Fiz £ € Ny and o € (0,1). Suppose that ¥ is an open
subset of R™ and X : Q x ¥ — R is a centered Gaussian function with covariance kernel XK.

Assume that
K e CH*2(V x V).

Fiz a ball B C ¥, r < dist(B,07) and set
By, :={ve¥;dist(v,B) <r}.
Then the following hold.
(i) The random function X is a.s. CH®.
(ii) The L-th jet J, X (v) is a Gaussian vector for any v € V.
(iii) For every closed ball B C ¥ and for every compact set S C ¥ that contains B in

interior, there exists a constant C = C(vol|B],r,m,{,a) > 0 such that

E[ X[l ceacs ]| < C|| X ||t (1.2.4)

C2£+2(B+TXB+T)>

where C*% denotes the spaces of functions that are k times differentiable and the
k-th differential is Hélder continuous with exponent .

O

For a proof we refer to [104, Appendix A.9].

Definition 1.2.15. Fix £ € N and 0 < k < £. Suppose that V is an open subset of R and
X : Q xV — Ris a centered Gaussian function that is a.s. C*. The random functiion is said
to be Ji-ample if, for any v € V the Gaussian vector J; X (v) is nondegenerate. O

Example 1.2.16 (Random linear combinations of maps). Suppose that T' = R and (X )o<k<n
are independent standard normal random variables. Then

X(t) =) Xit"
k=0

is a centered Gaussian random function. It is a random polynomial of degree < n so it is a.s.

continuous. Its covariance kernel is the function
n

K:RxR—=R, K(s,t)=> (st)".
k=0
(b) Suppose that U is a finite dimensional Euclidean space, T is a metric space and
fl,...,fN:T—>U
are continuous functions satisfying the geometric ampleness condition

vte T, span{ fi(t),...,[n(t) } =U.

If Xy,..., Xy are independent standard normal random variables, then

X(t) =Y Xpfr(t)
k=1

is an ample continuous Gaussian field. g
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Example 1.2.17 (Random trigonometric polynomials with given Netwon polyhedron). De-
note by T™ the m-dimensional torus T = R /(27Z)™. For ¢ € Z™ and 6 € R™ we set

(£,0) == 101 + - - + L,

and

‘f} = max |0k

Fix N € N and a convex polyhedron P C R™ satisfying the following properties.
e The vertices of P are lattice points, i.e., points in Z™.
e The origin is contained in the interior of P, 0 € int P.
e The polyhedron is symmetric with respect to the origin, i.e., x € P<—= —x € P.
Denote by < the lexicographic order on R where & < y iff there exists j such that z; < y;

and x; = y;, Vi < j. The lexicographic order is a total (linear) order and ¢ < y<—=—y < —=x.
Fix independent standard normal random variables

Ag‘, BE, {0, k>0

and set .
A07 l= 07
Zlﬁ‘: %(A[—’LB[), f:>- 0,
L(A_p+iB_g), I=0.

We denote by Py the dilated polygon Py = N - P. We have a random trigonometric
polynomial

Xn@=>" Z 00 = Ay + > V2( Apcos(l,0) + Bysin(l,0)). (1.2.5)
ZEPN [GPN
750

The Newton polyhedron of Xy is a.s. Py.

The random trigonometric polynomial Xy (6) is a centered Gaussian function with co-
variance function

ZEPN [EPN

If we set 7:= 0 — J we deduce

K(0,8)= > m (1.2.6)

Note that 7+ Sy(7) is an even function. For any multi-index a € ZT, and any € R"

m m
la| == Zaj, = H .
j=1 k=1

we set

We have
02Sn(0) = > dlole, (1.2.7)
lePN
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Using Riemann sums one can show that

lim — —z'o“ a: “dx .
N—o0 Nm+|a\

S
We can be a bit more precise. The results in [26] show that
925N (0) = gl N™Hely [ P](1+O(1/N)) as N — . (1.2.8)
We deduce that
Var [ Xn(0)] = X(6,6) = Sn(0) = N™vol [P](1+ O(1/N)).

—

Hence Xy (0) is nondegenerate for any g'if N is sufficiently large. In other words X is ample
for N > 0.

The random trigonometric polynomial Xy is C*. If ey,..., ey, denotes the canonical
basis of R™, then we have a.s.

99, Xn(0) = lim Xn(0+ he;) — Xn(0)) (1.2.9)

h(
The variables in the right-hand-side of the above equality are Gaussian. Hence the limit is
also Gaussian and the convergence to the limit holds in any LP, p € [1,00). This proves
that the gradient VX (0) is an R™-valued Gaussian field. Then same argument shows that
Xn, VX are jointly Gaussian.

If |af is odd, then 09Sn(0) = 0 since P is symmetric with respect to the origin. The

equality (1.2.9) implies that
Cov [ 99, Xn(0), Xn () ] = 0, Sn(0) =0

so that Cov [Xn(g), VXN(H)] = 0. Thus Xy () and VX x(6) are independent for any 6.

The covariance kernel of VX x () and VX (@) is given by the linear operator

XV(0,9): R" - R™
described by the m x m matrix
KV (0, B)ij = E[ 99, XN (0)0p, XN ()] = 00,05, K(0, ).

The variance operator Var [VX N (5)} is described by the symmetric m x m with entries

09,0,K(0, 8 ) 55 = =07, SN (0) ~ pyj [ PIN™? ‘s N — o, (1.2.10)

TTJ
where

,Uij[P] = / x;xjd.

P
The matrix of moments
M(P) := (pi;| P )1§z’,jgm (1.2.11)

is the Gramian matrix of the functions ¢; : P — R, ¢;(z1,...,2m) = x;, i = 1,...,m, with
respect to the inner product in L?(P,A). These functions are linearly independent since

the interior of P is nonempty. Thus the matrix M (P) of moments is invertible. From the
asymptotic equality equality

—

Var [VX,,(0)] ~ N""?M(P) N — oo (1.2.12)
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the Gaussian map V Xy is ample for all N sufficiently large. In particular, this also shows
that Xy is Ji-ample if IV is large.

A similar argument shows that for any k£ € N, Xy is Jy-ample if IV is sufficiently large.
O

1.2.3. Gaussian fields and Gaussian measures. The concepts of Gaussian fields and
Gaussian measures are intimately related. In this subsection we describe mainly through
examples different facets of this relationship.

Example 1.2.18. Suppose that M is a compact metric space.
Suppose that I' is a Gaussian measure on F' = C(M). We obtain a probability space
(F,Bp,I') and a random Gaussian function
E':FxM =R, (fx)— Ej(z) =Evy(f) = f(z).

This is a centered Gaussian random Gaussian function that is, tautologically, continuous,
i.e., for any f € F' the sample map x — f(x) is continuous. Since the map ET is continuous
it is also Borel measurable so the associated random function is measurable in the sense of
Definition 1.2.3.

The covariance kernel of this random function coincides with the covariance kernel of the
Gaussian measure I' constructed in Example 1.1.59. In particular, it is a Mercer kernel

K':Mx M —R=Er|[Ev,Ev, |.

Let us point out that the Gaussian measure I' can also be viewed as a Gaussian random
function on F*
T Fx F* 5 R, Os(¢) = (¢, f).
There is a natural map M — F*, Ev: M — F* 2+ Ev,. The random function E' is the
pullback of ®' by Ev,
E"'(z) = ®"( Ev, ).
Conversely, suppose that
U:(Q,8,P)x M =R, (wt)— ¥y(x)

is a centered Gaussian random function that is a.s. continuous. Thus there exists a negligible

subset N € 8 such that, Yw € Q \ N the function M > z — ¥, (x) is continuous. Modify ¥

so that ¥, : M — R is identically zero for w € N. We obtain a measurable map
P:Q0—-RY Q5w+~ X, eRT,

whose image is contained in C(M). Since the Borel sigma-algebra of F = C(M) is the

restriction of the product sigma-algebra ’Bﬁ{[ we deduce that ¥ defines a measurable map
U:(Q,8,P)— (F,Br), wU,,.

We will show that p = W4P is a Gaussian measure on F'.

Denote by £ the subspace of F* spanned by the evaluation maps Ev,, x € M. The ran-
dom function ¥ is Gaussian so, for any finite subset {x1,...,2,} C M and any ¢1,...,¢, € R,
the random variable ¢; ¥ (t1) + - - - 4+ ¢, ¥(¢,,) is Gaussian. In other words, if

fZZCkEVtk S

k=1
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then (£, ¥) is Gaussian, i.e. {xp is Gaussian. Since 0(£L) = o(F*) = Bp, we deduce from
Corollary 1.1.49 that p is centered Gaussian. By construction, the processes (\I'(a:) )m ey and
(EF<H?) )J:EM have the same distribution.

Arguing in a similar fashion one can show that if U is a finite dimensional Euclidean
space, then any a.s. continuous centered Gaussian field ¥ : M — U determines a centered
Gaussian measure I" on the Banach space C'(M,U) and conversely, any Gaussian measure
on this Banach space is determined in this fashion.

In this case for any z € M and u* € U we have an evaluation map
Ev,- : CM,U) =R, [~ (f(a:),u*),

where (—, —) denotes the inner product on U. The sigma-algebra generated by these con-
tinuous functionals generates the Borel sigma algebra of C(T',U). For any xg,z1 € M, the
covariance operator

qu/(.iCl,CC[)) U —-U
is uniquely determined by the equality

(uh fK\I/((El, 1’0)11,0) = EF[ val|u1 vao|uo ] = COVF [ EV:L‘1|u17va0\u0 ]7

Yug,u; € U. O

Example 1.2.19. Let M be smooth, compact connected m-dimensional submanifold of a
Euclidean space U. Denote by g the induced metric on M and by vol, the volume measure
determined by g. Set F = C°(M). We can use the metric to define a sup-like norm on
C1(M) and we denote by F the resulting Banach space.

The inclusion F'; — F' is continuous. Suppose that I' is a Gaussian measure on F';. We
obtain as before a Gaussian process

E':FixM =R, (f,z)— Ev.(f)
It is tautologically C' and its covariance kernel coincides with the covariance kernel of the

Gaussian measure I'.

Conversely, any centered Gaussian C'-field ¥ : Q x O — R determines as in Exam-
ple 1.2.18 a Gaussian measure I' on F'; = C'(M) such that the processes (\Ifx) and

(E"(z) )weM have the same distribution.

zeM

Their common distribution is determined by the covariance kernel X of W,
K:MxM—=R, K(zo,z1) =E[U(20)¥(z1) |.

Fix two tangent vectors v; € T,,M C U, i = 0,1. Let us observe that the directional
derivatives 0y, ¥ (zo) and 0,, ¥(x;) are jointly Gaussian.

To see this choose smooth paths «; : (—1,1) — M, i = 0, 1, such that
7i(0) = zi, %i(0) = v;.
Then
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The random vectors on the right-hand-side are Gaussian and converge pointwisely the left-
hand-side. We deduce from Proposition 1.1.31 that this convergence is in any LP, 1 < p < 0o
and the limit is also a Gaussian vector. Moreover

B[00, W(r0)¥(e1) ] = Jim 5 (B[ W(o(n)¥(a1)] — B[ ¥(ro)¥(ar)] )

= }L{}% (K(vo(h), 1) — K(z0,21) ) = OueK (20, 21).
Arguing similarly we deduce
E[ 9y ¥ (20)00, (1) | = Oy, K(z0, 21). (1.2.13)
O
Example 1.2.20. Consider a random Taylor series of the form
X:Qx[-1L,1] 5 R, X(t) = Aoco+ Y Ancafult), (1.2.14)

n>2

where the coefficients A,, are independent centered Gaussians, f,(t) = t", and the positive
real numbers cg, co, .. ., satisfy
D e < o (1.2.15)
n>2
Note that

sup |fn(t)] <1, Vn.
te[—1,1]

We deduce from Proposition 1.1.57 that the random series (1.2.14) converges a.s. in the
Banach space Fg = C ( [—1,1] ) and defines a Gaussian measure 'y on this space. In particular
X is a continous Gaussian random function.

The Stone-Weierstrass theorem shows that

V =span {1, fo(t), f3(t),... }
is dense in this Banach space. Proposition 1.1.57 implies that the induced Gaussian measure
is nondegenerate. Proposition 1.2.23 implies that X is k-ample, for any k € N.

Suppose now that the sequence (¢,) satisfies the more stringent requirement

> nen < 0. (1.2.16)

n>2
We have

sup ‘f;(tﬂ <n, Vn,
te[—1,1]

we deduce from Proposition 1.1.57 that the random series (1.2.14) converges a.s. in the Banach
space F'1 := Cl( -1, 1]) and defines a Gaussian I'; measure on this space. This Gaussian
measure is degenerate since P[ f/(0) # 0] = 0.

If we denote by £ the span in F* of the linear functionals Evy, ¢t € (—1,1), then
(L) = Bp. Moreover, any £ € £\ {0} is a nondegenerate Gaussian random variable since
I’y is nondegenerate. On the other hand, the linear functional {y € F7 given by & (f) = f'(0)
is degenerate. a
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Theorem 1.2.21. Fix ¢ € Ny and « € (0,1). Suppose that V is an open subset of R™ and
X :QxV =R is a centered Gaussian function with covariance kernel K. Assume that

K e CH*2(Vx V).

Then X is a.s. C%* and for every p € [1,00) and every box B C 'V there exists a constant
Cp = Cp(B,V, ¢, ) > 0 such that

p+1
E[IX]| < Cpl| K | ez (1.2.17)

Ctop) )

where C* denotes the spaces of functions that are k times differentiable and the k-th differ-
ential is Holder continuous with exponent c.

BxB)’

Proof. For simplicity, we denote by || — || the norm || — [[t.a(p) and we set

Z(K) := H:KHCQ”?(BXB)'

According to (1.2.4) there exists a constant C' = C'(B,V, ¢, «) > 0 such that
E[|IX]] < CZ(K)2
From Markov’s inequality we deduce that
CZ(K)/?
p[Ix| > ¢) < AT
If we choose g := 4CZ(K)/?, then we deduce that

1
P[|IX]|>ro] < T

The restriction X |p induces a Gaussian measure I' on C%®(B). Fernique’s inequality (1.1.31)
applied to I' shows that there exists a universal constant 8 > 0 such that

,ﬁf 5 52
P[|X] >7) <rge = roe” A", A:r—Q.
0

Then N .
B{IXI7) =p [ B[IX0 > r)ar <pro [ 77 A
0 0

(s =Ar? r = T)

_ pro [T P/2=1,=5 g — O P
- 24r/2 |, P

=I'(p/2)
O

Definition 1.2.22. Suppose that M is a compact metric space, U a finite dimensional
Euclidean space and ¥ : Q x M — U is a continuous Gaussian field. We say that U is
strongly nondegenerate if the induced Gaussian measure I'y on the Banach space C°(M,U)
is nondegenerate. O

Proposition 1.2.23. Suppose that ¥V : Q x M — U is a strongly nondegenerate continuous
Gaussian field. Then ® is co-ample, i.e., it is k-ample for any k € N.
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Proof. Let x1, ...,z be k distinct points in M and © € U* an open set. The map
Evy, .z CO(M,U) - U, F s (F(21),...,F(xg))

is continuous so O = Ev;! (0) is an open subset of C°(M,U). If we denote by 'y the

L1y Th

Gaussian measure on C°(M,U) induced by ®. Then
P[(W(z1,...,¥(z)) €0] =Ty [0] >0

since I'y is nondegenerate. O

1.2.4. Random series. Historically, the first random functions were constructed as random
Fourier series or random Taylor series, [77]. For Gaussian functions this not just a peculiar
way of constructing them. It is a feature of this class of random functions as most of them
have a description as sums of random series. More precisely we have the following result,
[21, Thm. 3.5.1].

Theorem 1.2.24. Sppose that T" is a centered Gaussian measure on a separable Fréchet space
X with Cameron-Martin space Hr. Denote by X+ the closure of X* in L?>(X,T). The map
T{ : Xt — Hr in (1.1.34) is a surjective isometry. For any h € Hp we set

b= (TF) 'he Xt C L*(X,T),

Fiz a complete orthonormal system (hy)nen @n Hp. Then there exists a T'-negligible subset
N C X such that for any x € X \ N

x = Z T () o,
neN

where the above convergence is in the topology of X. O

The goal of this subsection is elaborate on this result and see how it looks in concrete
situations.

Let T be a compact metric space. The distribution of the (centered) Gaussian function
onT
UV:QxT =R, (w,t)— Pyu(t)
is uniquely determined by its covariance kernel
K:TxT—R, Kz,y) =E[¥(z)¥(y)].

Note that K satisfies the following conditions.

(i) K(s,t)=K(t,s), Vs,t €T.

(ii) For any ti,...,t, € M the symmetric matrix (K(ti,tj))

definite.

1<ij<n 18 nonnegative

Conversely, Kolmogorov’s existence theorem shows that any function K : T x T — R
satisfying (i) and (ii) is the covariance kernel of a centered Gaussian function ¥ on M.

Proposition 1.2.25. The following are equivalent.

(i) The Gaussian random function V is stochastically continuous; see Definition 1.2.3.

(ii) The covariance kernel is continuous.
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Proof. (i) = (ii). If (sp,tn) — (s,t), then ¥(s,) — ¥(s) and ¥(t,) — ¥(¢) in probability,
and thus also in L2. We deduce that

lim K(sp,tn) = lim E[U(s,)U(t,) | =E[U(s)U(t) | = K(s,1)

n—o0 n—o0

(ii) = (ii) Note that
E[(U(tn) = W(t))*] = K(tn, tn) — 2K (tn, ) + K(t,t) = 0 as n — oo,
0

Thus, if ¥ is stochastically continuous its covariance kernel is a Mercer kernel. If K
satisfies additional conditions such as the one in Dudley’s Theorem 1.2.12, then ¥ admits a
modification that is continuous. In particular in this case K is continuous and thus it is a
Mercer kernel.

Let us point out that not every stochastically continuous Gaussian function admits a
continuous modification; see e.g. [1, Cor. 1.5.5] or [17]. However, if we know a priori that ¥
is a continuous Gaussian function, then this Gaussian function can be described as the sum
of a certain random series of functions. Here are the details.

Denote by F' the Banach space C(T') and let F'; C F be a subspace equipped with a
norm that makes it into a Banach space and the inclusion F'; — F' is continuous. E.g., F';
could be C1(T) if T were a compact smooth manifold.

Suppose that

UV:QOxT =R, (w,z)— Uy,(x)
is a centered Gaussian function such that, Vw € Q the functions ¥,,(—) belongs to F';. Denote
by K its covariance kernel. In particular, K is a Mercer kernel.

Arguing as in Example 1.2.19 we deduce that ¥ defines a Gaussian measure I" on F;
whose covariance kernel coincides with the covariance kernel of W. Moreover, for any s € T
the function K : T — R, K4(t) = K(s,t) belongs to F.

Let Hr denote the Cameron-Martin space of I'. Recall that Hr C F'1. As explained in
Appendix B.5, Hr is the closure of the vector space

span {KS; ERS T}
with respect to the inner product
(K, Ki) = K(s,t), Vs,teT.
Equivalently, if we denote by Hy the closure in L?(£2, 8, IP) of the span of the random variables
(w(t) )teT, then the map
Hy > V(t) — Ky € Hr
induces a Hilbert space isomorphism Ey, : Hy — Hr; see Example B.5.5. For each h € Hr we
denote h the unique random variable in Hy that corresponds to i under this isomorphism.
More formally, h = E'(h). The space Hr is separable. If (hy,),en is a complete orthonormal
basis of Hr, then (hn) is a sequence of independent standard normal random variables in
L?(,8,P).

We then have the following nontrivial probabilistic result.
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Theorem 1.2.26 (Karhune-Loeéve expansion). Suppose that (hy)nen is an orthonormal basis
of Hr. Then the random series of functions in Fy

Sw) =Y hn(w)hy
n>1

converges a.s. in the norm of F1 and it is a.s. equal to V. O

For a proof we refer to [1, Thm. 3.1.1], [69, Thm. 2.6.10], or [144, Thm. 4.1.1].
Using the covariance kernel of W one can explicitly describe an orthonormal basis of Hr.

Fix a diffuse finite Borel probability measure g on T'. Recall that this means that
H[U ] > ( for any open subset of T'. Suppose that K is an arbitrary Mercer kernel on T'.
As described in (1.1.35), the covariance kernel K defines a symmetric nonnegative definite
integral operator

(Kl : L*(T, p) = L*(T, ).

This operator is compact, symmetric and nonnegative. Each nonzero eigenvalue is positive
and has finite multiplicity. Let (A,)n>1 be these nonzero eigenvalues repeated according to
their multiplicities. We choose an orthonormal system of L?(M, ) consisting of eigenfunc-
tions of K], corresponding to these nonzero eigenvalues

1, m=n,

(Wnnens [Klutbn = A, /T¢n<t>¢m<f>ﬂ[dﬂ:5m:{o m 4 n.

Since [K],(L*(T)) C C(T) we deduce that each 1, is continuous.

Theorem 1.2.27 (Mercer). The following hold.

(i) The series
> At (8)tn(t)

n>1
converges uniformly and absolutely to K(x,y).

(ii) The operator [K], is trace class and

tr[K]y = An = /TK(t,t),u[dt].

n>1

(iii) The collection (en = \/Ewn)neN is a complete orthonormal basis of the RKHS
space Hy determined by K. In particular, if K is the covariance kernel of a Gauss-
tan measure I' on F1 as in Theorem 1.2.26, then this collection is a complete
orthonormal basis Hr = Hg .

(iv) A function
f(t) = Z Cn"/)n(t) € LZ(Ta :u)

n>1

Z§—<oo.

n>1""

belongs to Hy iff

S
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For a proof we refer [125, Prop.11.8, Thm. 11.18].

Example 1.2.28. It is instructive to see how this works in a simple yet fundamental example.
Let

K :]0,1] x [0,1] = R, K(s,t) = min(s,1).
It is clearly continuous and symmetric. It is nonnegative definite since
K(s,t) = (I[QS],I[OM )LQ([OJD, Vs, t € [0, 1].
It defines a centered Gaussian process X : (£2,8,P) x [0,1] — R satisfying
E[X(s) — X(#)|*] = K(t,t) — 2K (s,t) + K(s,5) = [t — 5.
According to Kolmogorov’s continuity theorem it admits a continuous version. This version

is the Brownian motion.

Let us find the eigenvalues of [K] = [K]pep, where Leb denotes the Lebesgue measure.
The equality [K]i) = A\ reads

t 1
A (t) :/O sw(s)ds—i—t/t Y(s)ds, Vte[0,1] ¢ e L*([0,1]). (1.2.18)

If A = 0 we deduce from Lebesgue’s differentiation theorem that ¢ = 0 a.e. so ker[K] = {0}.
If A > 0 we deduce from (1.2.18) that ¥ € C* and ¢(0) = 0. Derivating (1.2.18) we
deduce

1
MY/ (t) = t(t) — t(t) + / (s)ds, (0) = 0.

Derivating again we deduce that

so that

P(t) = Asin(ut), p:= \%

If sin ut is an eigenfunction, then for any ¢ € [0, 1] we have the equality

1 t 1
—5 sinut = / ssin(us)ds + t/ sin(us)ds
H 0 t

t 1 [t t 1 1 COS [t
= ——cos(ut) + — [ cos(pus)ds + — cos ut — — cos p = —; sin it — .
u w Jo u u u 7
This implies cos 4 = 0, i.e., u = (n — %)ﬂ', n € N. Thus the spectrum of K is
4
A= ———55, €N
" (2n —1)272 "

and consists of simple eigenfunctions

1
Y (t) = sin ((2n — 1)7t/2), /0 U (t)2dt = %

The RKHS space Hg consists of functions f € C?([0,1]) N L?([0,1]) such that f(0) = 0

and
Zn2‘ (fa¢n)L2‘2<oo-

neN
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We recognize above the square of the norm of the Sobolev space L'2([0,1]) consisting of
absolutely continuous functions with L? derivative. Hence

Hi = {feL?([0,1]); f(0)=0}.
If (X,)nen is a sequence of independent standard normal variables, we deduce from Theorem

1.2.26 and Theorem 1.2.27 that the random series

2v/2sin ((2n — 1)7t/2)
2 Xn (2n — )7

n>1

converge a.s. in L1? and, in particular uniformly on [0, 1]. The limit is the Brownian motion.
O

We conclude this subsection with a simple application of Mercer kernels that we will use
in the future.

Proposition 1.2.29. Let (M,g) be a smooth compact connected m-dimensional manifold
and

K:MxM-—R

a Mercer kernel on M. Set pu := voly. Suppose that for some £ € N the operator [K],, induces
a continuous operator

(K, : L2(M, ) — C*(M).
(This happens if, e.g., K € C*(M x M).) Let (Ay)n>1 be the nonzero eigenvalues of [K],
repeated according to their multiplicity and let (1) be an orthonormal system of eigenfunc-
tions corresponding to these eigenvalues. Fix a sequence (X, )nen of independent standard
normal random variables. Then the following hold.

(i) For anyn € N, 1, € C*(M) and

C:= Sug Allvonlloeary < oo (1.2.19)
ne
(ii) The random series
> XnArtn (1.2.20)
n>1

converges a.s. in C*(M).

Proof. (i) Note that

= Aimn c (M),

If we denote by C the norm of the bounded operator [K], : L2(M, u) — C*(M) we deduce
that

Mllnllceany = K wnllceary < Clivnll Lz = C-
(ii) We deduce from (i) and Theorem 1.2.27(ii) that
Z Aol ceqary < CZ An < 00.
neN neN

The conclusion now follows from Proposition 1.1.57. g



1.2. Gaussian fields 53

Remark 1.2.30. Proposition 1.2.29 is more restrictive than Theorem 1.2.26, but it does not
require the a priori knowledge that K is the covariance kernel of a Gaussian C*-function on
M.

The covariance kernel of the Gaussian C*~-function defined by (1.2.20) is K**, where K*"
is defined inductively as

K (z,y) = (K« K ) (z,y) :2/ K™ (2, 2)K (2, y)p[ dy].
M

If we apply Theorem 1.2.26 to the kernel K** we obtain Proposition 1.2.29. However, we
could do this only because Proposition 1.2.29 guarantees that K ** is the covariance kernel of
a Gaussian C*-function. O

Example 1.2.31 (Random Fourier series). Consider the m-dimensional torus T™ := (R/Z )"

equipped with its flat metric. Denote by § = (61,...,0™) € (R/Z)™ the resulting angular
coordinates. The Laplacian? of the flat metric g; = (df')? +-- -+ (d6™)? on T™ has the form

A=->"0;.
i=1

We set ug = 1 and, for £ = (1,...,0n) € Z™\ {0}, we define uzve s R™ — R

—

uz(g) = V2 cos 27 ([, 6), vy = V2sin 2 (7, 6).

These functions are eigenfunctions of the Laplacian operator

A=Y .
j=1

More precisely,

Consider as in Example 1.2.17 the lexicographic order < on R™. The collection
{ug vy LkeZ™ k=0, (=0}

is complete orthonormal system of L?(T™).

Pick an even Schwartz function a € §(R) such that a(0) = 1. We will refer to such a
function as amplitude. For R > 0 (meant to be large) set

— —

FR(§) = FR(@) = R*m/2<A0u0 +3 a(|2nl|/R)(ApuAf) + Bpg9)) ) (1.2.21)
70
where Ay Bp are independent standard normal random variables. Since a is even, the

function b(t) := a(/[¢|) is also Schwartz so R™ 3 & — a([¢]) = b([¢]?) € R is Schwartz
and O(m)-invariant.

4Throughout this book the Laplacian is the geometers’ Laplacian and it is a nonnegative operator.
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Since a is a Schwartz function we deduce from Proposition 1.1.57 that the above series

converges a.s. in any C*(T). If we define Zy by

A07 Z: 07
Zp= 55 (Ag—iB;), (-0, (1.2.22)
Z 0=<0.
then we have
R6) = Z (|2xZ|/R)Z200). (1.2.23)
ezm™

Since af |27/ /R) decays very fast as |€\ — oo we deduce from Kolmogorov’s two-series

theorem that for any v € N the random series
> a(12rl/R) Ml eglIEw oy
lezm
converges a.s. and thus the series
> a([2nl]/R) Zyey
lezm
converges a.s. in C”(Tm). In particular, this shows that the Gaussian function F is a.s

smooth. Its covariance kernel is
=R Y a(|2rll/R)% D (1.2.24)

CH(P+7.¢) =
lezm
Define wq = wqm : R™ = R, wqe(§) = a( €] )2, and denote by w, the Fourier transform of wy,

@) = | e a(le) g

Using Poisson’s summation formula (B.2. 6) we deduce

GR(()O+T ?) ym Z wa
kezm

)R). (1.2.25)

Observe that CF is the Schwarz kernel of the smoothing operator a( VA )2, h=R™' and

thus the associated Gaussian function is a.s. smooth.
For example if a(t) = e /4, then w, = ¢ 1¢I*/2 and we deduce from Proposition 1.1.15

that
~ m/2 —|¢l2 >, _R2|f—7
Wo(x) = (2m)™2e 6112 el(g g) = Z o B2 |k—7?/2
kezm

We can think of F either as a function on T™, or as a Z™-periodic function of R™. If we

formally let R — oo in the equality
R™PES (@) =) a[2nl]/R) Zed6)
lezm
we deduce
- ?
Woo(0) = lim R™2F0) = > ZeAh).

R—o00
lezm
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The series on the right-hand-side is a.s. divergent but we can still assign a meaning to W,
as a random generalized function, i.e., a random linear functional

lezm
A simple computation shows that for any functions fy, f1 € C°(T™)

Cov [Woo(fO)ono(fl)] = Z (f0’€Z)L2(Tm,gl)(f1’€[)L2(Tm,gl) - (fo’fl)L2(Tm,gl)'
Lezm
The last equality shows that W, is the Gaussian white noise on T™ driven by the volume
measure voly, ; see [67]. In other words, one could think of the family (WR = R™/ 2pR
as a white noise approximation.

)R>0

Here is another more geometric way of constructing FaR. For R > 0 meant to be large,
we denote by Ap the Laplacian of the metric gr = R2g;. Observe that

vol [M,gr] = R™vol [M,g1] = R™, Ap=R*A;.

Note that the torus (T™, ggr) is isometric to the torus R™/(RZ)™ so as R — oo it starts to
resemble® more and more like R” with the canonical metric. Set

ukg R~ m/2uk, v~ =R~ m/2v~

The collection
{uE, U?; EEO, F>—0}
is a complete L?(M, gr)-orthonormal system of real eigenfunctions of Ar. Moreover
Arul = \i(R), Apvl = MA(R)WE, \(R) = R7?| 2rk |?
Then . . 5
F(0) = a(0)Aoug’ (6) + Y a(M{R)'?) (A (8) + B (0)).
-0
Let me give an idea of the statistical meaning of the large parameter R.

Suppose for example that a is supported on the interval [—1,1] and even better, it is a
smooth approximation of the (discontinuous) indicator function I|_; ;). Then the random
series (1.2.21) is a random finite linear combination of eigenfunctions of the Laplacian on
T™ corresponding to the eigenvalues satisfying vA < R. To put it differently, the random
function R™/2FR defines a Gaussian measure I'g on the Féchet space C°°(T™) and the vector
space spanned by the eigenfunctions corresponding to the eigenvaluess A < R? is contained in
the support of I'r. As R — oo the the support of I'g increases and it covers more and more
of the space C*°(T™). Moreover, since a(A\/R) — a(0) as R — oo some of the bias towards
eigenfunctions corresponding smaller eigenvalues built-in the the definition of Ff starts to
dissipate and, intuitively, in the white noise limit we reach an unbiased sampling of all the
smooth functions on T™. This last claim is only a nonrigorous guiding motivation.

Finally let me give a third, functional analytic description of the function F.%.

As R — oo the Gaussian measure I'g converges in some sense to ', the Gaussian white
noise. This white noise in fact a measure of C~°°(T"), the topological dual of the Fréchet
space C°(T™). The elements of C~°°(T™) are commonly known as generalized functions, or

SFor centuries people thought that Earth was flat, i.e., it resembled R2.
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distributions. For a more in depth look at this aspect we refer to [67, Chap. III]. Consider
the smoothing operator a( h\/Z), h = R~'. Then
R™2FR = a(/A)W

where W is a generalized function with distribution I's. Note that when a(z) = e~ and

t = h'/2, then a( h\/Z) = ¢ A _ the heat operator. a

1.2.5. Stationary and isotropic Gaussian fields. Fix a centered, complex valued, ran-
dom function F : R™ — C that is L?-continuous, i.e.,

lim || F(s) = F(t) ||, =0, VteR™
In particular, the covariance kernel of F,
X=R"xR™—C, K(z,y)=E|[F(z)F(y)]
is continuous.
Suppose that G is a Lie group that acts on R™,
GxR™—-R" GxR">(g,x) > g-xeR™
We say that F' is G-invariant if for any x1,--- ,x, € R™ and any g € G the random vectors
(F(g-21),...,F(9-xn)) and (F(z1), -, F(zy))
have identical distributions.
A necessary condition for this to happen is
X(g-z,g9-y)=K(xz,y), VgeG, = yecR"

The first interesting case is when G is the group of translations G = ( R™ + ) The centered
random function F is called homogeneous or stationary if it is invariant with respect to the
group of translations, i.e., for any x1,--- ,x, € R™ and any t € R™ the random vectors

(Ft+x1),....,F(t+x,)) and (F(z1), -, F(xn))
have identical distributions. In particular
K(t+wt+y)=K(xz,y), Vt,z,ycR™
This happens iff and only if there exists a continuous function K : R™ — C such that
K(x,y)=K(x—y), Ve,y e R™. (1.2.26)

A centered random function on R™ is called wide sense stationary if its covariance kernel
satisfies (1.2.26). This imposes severe restrictions on K because for any x1,...,x, € R" the

hermitian n x n-matrix ( K (z; — x;) )1<ij<n has to be nonnegative definite.
The continuous functions K : R™ — C with this property are called nonnegative definite.

They have a Fourier theoretic characterization.

Theorem 1.2.32 (S. Bochner). Let K : R™ — C be a continuous function. The following
are equivalent.

(i) The function K is nonnegative definite.
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(ii) There exists a finite Borel measure pu on R™ such that

K@)= [ éuli]

O

For a proof we refer to [132, 1.24], [134, Sec. 1.4] or [142, Thm. 9.17]. The measure
u above is uniquely determined by the function K via the inverse Fourier transform in the
space of tempered distributions. It is called the spectral measure of the wide sense stationary
random function.

Observe that if F is a centered L?-continuous real Gaussian function, then F is stationary
iff it is wide sense stationary.

Example 1.2.33. Suppose that Z is a centered symmetric complex® Gaussian random vari-
able and ® : R™ — C is a nonzero continuous function. We obtain a random function
F(x) = Z®(x). A simple computation shows that if this function is wide sense stationary iff
there exist £ € R™ and A € C\ {0} such that ®(x) = Ae¥&®); see [157, Sec.7] for details.
The covariance kernel of this function is

K(x,y) = | A H6m ).

The spectral measure is ‘ A {255.

Consider now a simple linear combination of random functions of the above type
G(m) — Zl€i<€1’w> + Z2€7:<€27w>.

The random function G is wide sense stationary iff E[Zl Zz] = (. In this case the spectral
measure is

E[|Z1|2]5£1 +E‘ |Z2|2]6§2‘
The random function G is real valued iff & = —¢&1, Zy = Z;. In this case

1
G(t) =X COS<£1,$> —{—}/18111<£1,$>, AR= §(X1 — Y] )
O

Example 1.2.34. Consider the Gaussian real function Ff defined by (1.2.21) discussed in
Example 1.2.31. We recall that a : R — R is an amplitude, i.e., an even Schwartz function
such that a(0) =1 and

F@) = B2 Aguo + Y a( | 2702 |) (Apugdd) + Broyf)) )
-0
=R a(|20l|/R) Zgef0), eff) = 0,
lezm
We think of FF as a function on R™ that is periodic with respect to the lattice Z™. Equiva-
lently, we can think of it as a function on the m-dimensional torus T = R™/Z™. We have
seen in in Example 1.2.31 that is a.s. smooth. Its covariance kernel is given by (1.2.24)

el@,.¢)=R™ Y a(|2nl|/R)’ef0 — 3).
ZGZ’!YL

6See Definition 1.1.37.
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Hence FF is stationary and CR(?) =CR(7+3,p) is given by

=R™™ " a(|2nl|/R)%ef7).
fezm
If we set

ulde] = par[de] == R™™ > a(|2nl|/R)%, ;] de],

lezm
KEG) = [ 86Tl d] = [ 67 ] de].

Thus pq r is the spectral measure of this homogeneous random function.
We deduce from (1.2.25) that

CR() = Y a(| 20l |/R)*e 20D = N Ko (k- PR).

fezm kezm

we deduce that

where

Ko@) = Gy a(a) = o [ e Ea(je])

We can rewrite this in a more conceptual form.
We introduce the lattice Ag = (QWR_lz)m and its dual Lr = (RZ)m. We set « := TR
and we deduce
CERz)=R™ Y a(w)?@® = Y K, (t-z). (1.2.27)
weAR telpr

Note that Kf( x, y) CR( R~ Yz —1vy) ) is the covariance kernel of the stationary Gaussian
function

ol (z) = FF (R 'z)
that is periodic with respect to the lattice Lg = (RZ)™. Set
K&x) .= Kf(o,m) = C’f’(R‘lm).

We have
K@) - Koz)= ) Kiz-t)
teLp\{0}
Since w, is a Schwartz function we deduce that
lim K=K, inCF(R™), Vk € N. (1.2.28)

R—o0

More precisely, for every ball B C R™, every £ € N, and every N > 0 there exists
C = C(k,N, B) > 0 such that

VR>1: [|K—Kallcupg < CRTY. (1.2.29)
O

The Gaussian function F': R™ — R is called isotropic if it is homogeneous and invariant
with respect to the natural action of the orthogonal group O(m) on R™. If Kp is the
covariance kernel of I’ then there exists a one-variable function K g such that

Kr(z,y)=EKr(lz—yl), Yo,y eR™
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Example 1.2.35. Suppose that a: R — R is an even Schwartz function such that a(0) = 1.
Consider the finite Borel measure p € Meas(R™)
1 2
M[df] = Ma[df] = Wwa,m(f))\[df]a wa,m(f) = a( ’f‘) :
Its characteristic function is the nonnegative definite function
) 1 1 ; 2
K — i) Tdge] = —— = / &) Alde]. (1.2
@) = [ Culae) = o) = g [ FEa(j)Alde). (1230

Clearly Kq(z) is an O(m)-invariant, real valued Schwartz function. Then Kq(x —y) is the
covariance kernel of a real valued, smooth isotropic Gaussian function ® = ®; on R™ with
spectral measure fi,.

A good example to have in mind is a(t) = e~**/4. Then a(t)? = e **/2, and

K,(x) = 1 / €i<£’m>€_§df - e_@
)= G Jen TR
Thus K is in this case the density of the canonical Gaussian measure I'y on R™. In this
case U(t) = We*t/?

Since wq,m > 0 in an open neighborhood of the origin, we deduce from [153, Thm. 6.8]
that if x1,...,xy € R™ are distinct points, then the symmetric N x N matrix

(Ka(xi — ;) )1§i,j§N

is positive definite. This matrix is the variance matrix of the Gaussian vector

(<I>a(a:1), Ce ,(I)a(:BN)).

Hence, for any distinct points x1,...,xy € R"?, the above Gaussian vector is nondegenerate.
In other words, ®, is co-ample in the sense of Definition 1.2.8.

Observe that for any multi-indices a € (Z>0)", |a| = |3|, we have

E(0°®q(2)0"®o(x) ) = 020) Koz — Y)loy

= A Saéﬁ,ua[dﬁL £ = g0 gom
This shows that for any k£ € N and any € R" the variance the Gaussian vector ( 0°P4(x) )

|a|=k

is the Gramian matrix of the functions (fo‘) with respect to the inner product in

la|=k
L?*(R™, g ). Since a(0) = 1 we deduce that the functions £* are linearly independent in
Lz(Rm, ,ua) so the determinant of their Gramian matrix is nonzero. Hence the Gaussian
vector

Oo(z) ® DOy(x) @ - - - ® DFD, ()
is nondegenerate, for any k € N and any © € R™. Above, D/®,(x) denotes the j-th order
differential of 4 at * € R™. In other words ®, is Jx-ample for any k£ € N.

In Example 1.2.34 above we proved that the (RZ )m—periodic function
ol(z) = FF (R 'z)

converges in distribution to the smooth isotropic function ®,, i.e., the covariance kernel of
@It converges in C* to the covariance kernel of ®,.
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For R > 0 we set
ap(t) :=a(t/R), VtER.
Consider the finite Borel measure p € Meas(R™)

1 _ 1 2
o' [d€] = (i Ve (B )A[dg] = @y /R Aldg].
Its characteristic function is the nonnegative definite function
R(,y_ 1 / i(Ex) 2
Ri(x) = @) Jon © a( |€|/R)"dE. (1.2.31)

We set w := R71¢ in (1.2.31) and we deduce

R™ .
ﬁf(m) = (27.‘-)m /I%m 6"'R<W@)a( |w| )dev

so that
#l(z) = RK.(Rx).

We deduce that &5 (@ — y) is the covariance kernel of the Gaussian function
WE(z) := R0, ( Ra).

We want to investigate the behavior of ﬁf(m) as R — oo. For example, in the special case
a(t) = e **/* we have
1 ||
— e w?, h=R!
(27Th2)m/2

This is the density of the Gaussian measure I'j2; which converges to the Dirac measure Jg
as R — oo.

fal(x) =

Since Kq(x) is O(m)-invariant and smooth it has the form W¥(|z|*) for some smooth
function ¥ : [0,00) — R. According to Schoenberg’s characterization theorem [153, Thm.
7.13], the function ¥ must be completely monotone. In particular, ¥ is non-increasing,
nonnegative and convex, [153, Lemma.7.3]. Using the Fourier inversion formula we deduce

Ky (z)dz = a(0)* = 1.
Rm
This implies that K is the density of a probability measure on R™. The rescaled mea-
sures ﬁf(w )dsc converge weakly to the Dirac measure dg. To use a terminology favored by
physicists, we have
RGR( x) — 6(x),
where §(x) is Dirac’s mysterious Delta function. In particular,
ﬁf(az —y) = i(x —vy).

In other words, as R — oo, the Gaussian random function W converges in some sense to a
Gaussian random “function” W whose covariance kernel is K°(x —y) = 6(x — y). This is
the Gaussian noise on R™ driven by the Lebesgue measure.

Formally this is a random generalized function or, equivalently, a Gaussian probability

measure on a space of generalized functions or distributions on R™. The concept of white
noise is discussed in detail in [67, Sec.II1.4]. O
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1.2.6. Gaussian random sections of a vector bundle. The concept of random section
is not an artificial generalization. The main object of investigation of this book requires it.
Suppose for example that M is a smooth, connected manifold and

P:OxM-—->R

is a C* random function on M, k > 1. Then the differential d® should be viewed as a random
section of the cotangent bundle T* M. Its zeros are the critical points of ®

Consider a more general problem. Suppose that M is a smooth, compact, connected
m-~dimensional manifold and 7 : £ — M is a smooth real vector bundle of rank r. For each
x € M, the fiber E, = 7=1({z}) of E has a natural structure of real vector space of dimension
r.

From a set theoretic point of view, we can regard E as a family (Ez )x M of real vector
spaces of dimension r. Loosely speaking, a random section of E is a family (\I'(a:) )x M of
random vectors ¥(z) : (Q,8,P) — E,.

This definition is not satisfactory since we are interested in regularity properties of random
sections. We are interested only in Gaussian random sections so we take a different approach
suggested by Example 1.2.18. This was pioneered by P. Baxendale [15]. For different but
related approach we refer to [111, Sec. 1.2].

Denote by C*(E) the vector space of sections of E that are k-times continuously differ-
entiable. We need to define on C*(E) a structure of separable Banach space and to do so we
need to make some choices.

e Fix a smooth Riemannian metric g on M.

e Fix a smooth h metric on E. We denote by (—, —)g, the induced inner product on
E,.

e Fix a connection (covariant derivative) V/ on E that is compatible with the metric
h.

We will refer to such choices as standard choices. There are several geometric objects
canonically induced by these choices; see [114, Sec. 3.3].

First, the metric g determines a a Borel measure vol, on M, classically referred to as
the volume element or the wvolume density. Next, the metric determines the Levi-Civita
connection V9 on TM. The metric g also determines metrics on all the tensor bundles
TM®P@(T*M)®? and the connection V¢ determines connections on these bundles compatible
with the metrics induced by g. To ease the notational burden we will denote by V9 each of
these connections.

Similarly, the metric & induces metrics in all the bundles E®? @ (E*)®? and the connection
V" determines connections on these bundles compatible with the induced metrics. We will
denote by ’ — ‘x the Euclidean norms in any of the spaces (T M)®? @ E®P. We define the

jet bundle”
k

Jk(E) =P T MY o E. (1.2.32)
j—0

"The jet bundle can be defined invariantly without relying on choices of connections and, as such, its is merely an
affine bundle. For the applications I have in mind I do not need such a generality. For details I refer to [135].
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The connections V9 and V" induce a connection V = V9" on the bundle (T*M)®* @ E
V:CH(T*M)** @ E) —» C°((T"M)** ' o E).
We denote by V? the composition
CM(E) S Y (T*M@E) S - S (T M) e E) S O (T"M)® @ E).
For every section ¢ € C*(E) we define its k-th jet
k

Te(¥) = Jp (¥, V) = P VFy

k=0

q
lullen =D IV 4,
=0

where
IV7u| = sup | VVu(z) |
zeM

The norm || — ||c» depends on the standard choices, but different standard choices yield
equivalent norms. The resulting normed space is a separable Banach space. Fix one such
norm and denote by C*(E) the resulting separable Banach space.

For every x € M and u, € E, we have evaluation maps
Ev, : C*(E) = E,, Ev,.(¢) =(z) € E,
and
Eviu, i C*E) 2 R, Evgy, (V) = (¥(@),ur)p -
The evaluation map Ev, 4, is a continuous linear function and thus defines and element in
the dual C*(E)*. Set
L= span{ Eviu,; vE€M, u, € B, }

If we choose a dense countable set X C M and for each z € X a basis {e1(x),...,e,(x)} of
E, we deduce that the countable collection

{ Evie2; €X, 1<:1< r}
separates the points in C* (E) and, according to Blackwell’s Theorem 1.1.41, it generates the
Borel-sigma algebra of C*(E).

Definition 1.2.36. A centered Gaussian measure on C*(E) is a Borel probability measure
I" such that V¢ € £ the random variable ¢ : C¥(E) — R is centered Gaussian. O

Equivalently, if we denote by T the disjoint union
T=|J{z} x E.,
zeEM
then I' is centered Gaussian iff the random process
Er: (CHE),T)xT =R, (¢;2,u;) > Evyy, ()

is centered Gaussian. Corollary 1.1.46 shows that the measure I' is uniquely determined by
the distribution of the process I'.



1.2. Gaussian fields 63

Inspired by statistical physicists, we will often refer to Gaussian measures on C*(E) as
Gaussian ensembles of C* sections.

Definition 1.2.37. Suppose that £ — M is a smooth vector bundle over the smooth compact
manifold of dimension m. Fix n > 0 and set X = C"(E).

(i) A centered Gaussian C"-section of F is a measurable map
¥ (Q,8,P) = (X,Bx), w1,
whose distribution I' = Py is a Gaussian measure on X.
(ii) Let k& € N. The Gaussian section ¥ is called k-ample if for any distinct points
z1,...2r € M the Gaussian vector
\I’(pl)GB"'@\IJ(pk) EExl@'”GBExk
is nondegenerate. The Gaussian section ¥ is said to be ample if it is 1-ample.

(iii) Let £ < n. The Gaussian section VU is called Ji-ample if there exists a smooth
connection V on FE such that, the associated k-th jet Ji(V¥,V) is ample, i.e., for
any x € M, the Gaussian vector

Je(V(z)) € J(B)y=E, @ TIM@E& & (T M%) o E (1.2.33)
is nondegenerate.

O

Let us point out that if condition (iii) above holds for one smooth connection, then it
holds for all smooth connections.
For each xo,z1 € M we have two Gaussian vectors U(z;) : Q@ — E,., i = 0,1, and we
define
K(x1,x0) := Cov [\I/(:cl), ‘Il(xg)] € Hom (Ewo, E,, ) >~ Er, ® By,
where we recall that Cov [ ¥(xz1), U () | denotes the covariance operator of the jointly Gauss-
ian random vectors ¥(zy), U(xp).
The distribution I' is uniquely determined by the distribution of the process Er which
in turn is uniquely determined by the collection (iK(xl, x0) )xo’xl e+ This collection can be

conveniently encoded as an integration kernel.
Consider the product M x M with its two canonical projections
MEM<xMD M, 2« (z1,20) = 0.
Form the bundle
EXE*=niE®@myE".
Note that
(ERE"), .= e ® E; = Hom (B, By, ).

Then X is intrinsically a section of X E*. It is k-times differentiable and defines an integral
operator

(K] : LQ(E) — L2(E), [(Klu(x) = / K(z,y)u(y) voly [dy]
M

Arguing as in the proof of Proposition 1.1.60 we deduce that this is a symmetric, nonnegative
definite operator. The Karhune-Loeve expansion continues to hold in this case as well and we
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deduce that any Gaussian C*-section of E can be described as a random series of C-sections
with coefficients independent random normal variables. Often in our applications X is the
kernel of a smoothing operator.

Example 1.2.38. Any centered Gaussian measure I' on C*(E) tautologically defines a cen-
tered Gaussian random section of E given by the identity map 1 : C¥(E) — C*(E).

I want to point out a rather confusing fact. A fixed (deterministic) section ¢ of E can
also be viewed as a random section once we fix a Gaussian measure on C*(E). There will be
arguments that will require juggling these two points of view. a

Example 1.2.39. Let £ — M be a smooth vector bundle equipped with a metric and a
connection compatible with this metric. Suppose that V' C C*(FE) is a finite dimensional space
of C*-sections of E, v1,...,¢n is a basis of V and X;,..., Xy are independent standard
normal random variables defined on the probability space (€2, 8,P). Then the random linear
combination

N
V= X
=1
is a centered Gaussian C*-section. To see this consider the maps

X0V, wenV, Q3ws )XW €V
J

Then ¥ = iy 0 X , where iy : V < C¥(E) is the canonical inclusion. It is the composition of
measurable maps and it is obviously centered Gaussian. Its covariance kernel is

K (w1, 20) = > _ (1) @ 5(20) € Eay @ Eu
J
For each z € M we have a map

A, RY 5 E,, RVNsu— Zujwj(x).
J
Then
KY(x,x) = A, A% € End(E,).
We see that ¥ is ample iff A, is onto, Vax € M.

More invariantly, note that for any € M we have an evaluation map Ev, : V — E,,
V 3 v = v(z) € Ey. The Gaussian section ¥ is 0-ample iff these evaluation maps are onto,
Vo € M. Algebraic geometers would say that the space of sections V is ample.

There is a more invariant way of describing this example. Fix an inner product on V'
so V becomes a Euclidean space. Let I'yy the canonical Gaussian measure on this Euclidean
space. Then iy : (T'y) — CF(E) is a random section. If 11, ... 1y is an orthonormal basis
of V, then for any 1 € V' we have

n
U=iv(y) =Y X0y X)) = (d,4),.
j=1
Foe every x € M we have an evaluation map Ev, : V — E, and the variance operator of

U(z) is Var [¥(z)] = Ev, Ev}. We see that ¥ is ample if Ev, : V — E, is onto for all
ze M. O
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1.2.7. The differential geometry of a Gaussian ensemble. Let M be a smooth con-
nected m-dimensional manifold and £ — M a rank r smooth real vector bundle over M.
Following [111], we will show that a smooth Gaussian random section of E canonically defines
a metric on F and a connection compatible with the metric. Additionally, we will provide a
probabilistic interpretation of this connection and its curvature.

A section C' € C* ( ERX E) defines a family of bilinear maps
Cpq:Epx E;— R, p,ge M,

since (EX E)pq) = Ep ® Eq = (E;, ® E ). Such a section is called symmetric if for any
P,q € M and any £ € Ep, n € Eg we have

Cp,q (&m) = Cq,p(’% £).

Definition 1.2.40. A C*-correlator on E is a symmetric section C' € Ck(E X E) such that
Cp,p is positive definite for any p € M. O

Example 1.2.41. (a) Suppose that M is a properly embedded submanifold of the Euclidean
space U. Then the inner product (—, —)y on U induces a correlator C € C*°(T*M R T*M)
defined by the equalities

Coy(X,)Y)=(X,Y)y, Ve,ye M, XeT MCU, YeT,MCU.

(b) Let ¥ be an ample, centered Gaussian C2-section of E. The random section W defines a
covariance form

CY e CHERE), CY(p,q) = Cup)ug):
where Cy(p) w(q) 15 the covariance form of the jointly Gaussian vectors ¥(p), ¥(q). Clearly,
CY(p, q) is symmetric. Since ¥ is ample, for any p € M, the Gaussian vector ¥(p) is

nondegenerate and and thus its variance Cg: p is positive definite. Hence C"Y is a correlator
on F. O

Definition 1.2.42. A correlator C € C*( EX E) is called stochastic if it is the covariance
form of an ample Gaussian C*-section of E. O

Let C € C¥(EX E) be a correlator where k& > 1. By definition, it induces a metric on

E* and thus, by duality, a metric on E. We will denote these metrics by (—, —)g+c and

respectively (—, —)g,c. When no confusion is possible we will drop the subscript £ or E*
from the notation. To simplify the presentation we adhere to the following conventions.

(i) We will use the Latin letters i, 7, k to denote indices in the range 1,...,m = dim M.

(ii) We will use Greek letters «, 3,7 to denote indices in the range 1,...,r = rank (F).
Using the metric (—, —)¢ we can identify Cy 4 € Ep ® Ey with an element of
Tey € EL® E; = Hom(Ey, Ey).

We will refer to T, as the tunneling map from E, to E, associated to the correlator C.
Note that Tz = 1p,. If we denote by T, , € Hom(FEy, E;) the adjoint of Ty, 4 with respect
to the metric (—, —)g,c, then the symmetry of C implies that

o
Ty7m - Tm,y‘
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Lemma 1.2.43. Fiz a point py € M and local coordinates (z*)1<i<m in a neighborhood O of
Do in M. Suppose that e(x) = (€q(2))i1<a<r s a local (—, —)c-orthononomal frame of E|o.
We regard it as an isomorphism of metric bundles e : Rly — El|o where R{y denotes the trivial
bundle over O with fiber R",
Ry: (R"x0—0).
. We obtain a smooth map
T(e): 0 x 0 — Hom(R"), (z,y) > T(€)zy = e(®) Ty e(y).

Equivalently, T(e)y,, makes commutative the diagram below.

T(e)ay

R" «+—— R"
e(z)k [e(y) (1.2.34)
E, —— E
Ty
Then, for anyi=1,...,m, the operator

0T (€)aylo=y : R, = Ry,

18 skew-symmetric.

Proof. We identify O x O with an open neighborhood of (0,0) € R x R with coordinates

(2%,97). Introduce new coordinates z° := 2 — 9, s := 2/ + 3/, so that 0,: = 0,: + 0. We

view the map T'(e) as depending on the variables z, s. Note that

T(Q)QS =1, T( ) —z,8 — T( )z ,87 Vz,s.
We deduce that
95T (e)lo,s = 05T (e)lo,s = 0,
Oy T(€)lo,s = 0T (e)lo.s + 0siT(€)]o,s = 0T (€)lo.s,
(a:piT(Q)’QS )* = 0T (e)"lo,s = —0:,T(€)]o,s + 0T (€)0,s = —0piT'(€)]0,s-

O

Given a coordinate neighborhood with coordinates (z*) and a local isomorphism of metric
vector bundles (local orthonormal frame) e : Rf, — E|o as above, we define the skew-
symmetric endomorphisms

Ii(e) : Ry = Ry, i=1,...,m=dimM, TI(e), = —OxiTLyh:y. (1.2.35)
We obtain a 1-form with matrix coefficients I'(e) := >, I';(e)dy’. The operator
Ve =d+T(e) (1.2.36)

is then a connection on R{; compatible with the natural metric on this trivial bundle. The
isomorphism e induces a metric connection e, V€ on F|g.

Suppose that f : Ry — E|o is another orthonormal frame of Ey related to e via a
transition map
g:0—-0(r), f=e-g.
Then
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We denote by d, the differential with respect to the x variable. We deduce
F(i)y = _me(.f)m,y|:r=y

= —(dag (), T(€)yy 9(4) — 97" 1) (daT(€)z) Loy (v)
\:/]1—/
=g ' (Wdg(w)g~ () - 9(w) + 97 WT(e)yg(y) = 9(v) 'dg(y) + 97 (V)T (e)yg(v)-
Thus
I'(e-g) =g 'dg+g 'I(e)g.
This shows that for any local orthonormal frames e, f of E|o we have

e Ve =f Vi
We have thus proved the following result.

Proposition 1.2.44. If E — M is a smooth real vector bundle, then any correlator C' on M
induces a canonical metric (—, —)c on E and a connection VC compatible with this metric.
More explicitly, if O C M is an coordinate neighborhood on M and e : Rly — El|o is an
orthogonal trivialization , then V¢ is described by

Ve =d+ Z T;(e)dz’,

where the skew-symmetric r x r-matriz T;(e) is given by (1.2.35). We will refer to VC as
the correlator connection. O

Remark 1.2.45. Suppose that we fix local coordinates (x°) near a point p, such that
z'(py) = 0. We denote by P, the parallel transport of V¢ from 0 to X along the line
segment from 0 to z. Then

Poo = 1g, = To0, 04iProle=0 = —T(0) = 0,i T 0lx=0-

We see that the tunneling map T ¢ is a first order approximation at 0 of the parallel transport
map P, o of the connection ve. O

When the correlator is stochastic, this connection can be given a probabilistic description.
Fix an ample Gaussian measure I' on C*(E). Denote by C' € C*( EKR E) its correlator and
by V¢ the connection it determines on E. As we mentioned earlier, a section v € CH(E)
has a dual incarnation: a deterministic one, as a section of F and a probabilistic one, as an
element of the probability space (Ck (E), I‘).

Fix a point pj, a coordinate neighborhood O of p, in M and orthonormal framings
e :RY — El|o as in Lemma 1.2.43. We get a random map ® : O — R™, ®(z) = e(z) 19 (y);
see diagram (1.2.34). By definition, the covariance form of v (x) is given by the metric on
E,. The map e(x) is an isometry so that the variance operator of ®(x) is 1gm. Thus

0pi T (€)ayla=y = Rawz-@(r),@(w)

where R_ _ is the regression operator (1.1.16) . We deduce from the regression formula
(1.1.17) and Proposition 1.2.44 that
VOO (z) = d0(z) — E[d®(z) || ®(z)]. (1.2.37)

In particular we deduce the following result.
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Corollary 1.2.46. For any ¢ € C*(E), and any x € M, the random vector Vi (x) is
independent of the random vector ¢(x). O

In [53, Prop. 1.1.3] it is shown that there is only one connection V on E, compatible
with the metric induced by the correlator C' such that, for any x € M, the random vector
V&)(x) is independent of the random vector 1(z). The authors refer to this connection as
the LeJan-Watanabe or L-W connection.

Proposition 1.2.47. Suppose that C' is a stochastic correlator on E defined by an ample
Gaussian ensemble C? random sections of E. Denote by w a random section in this en-
semble. Fiz a point py, local coordinates (z') on M mear p, such that x'(p,) = 0 Vi, and
a local (—, —)c-orthonormal frame (eq(z)) of E in a neighborhood of p, which is is
synchronous at p,

1<a<lr

Vulp, =0, Va.
Denote by F the curvature of VC,

F =Y Fj(x)da' Ada?, Fij(x) € End(Ep,).
ij

Then Fj;(0) is the endomorphism of Ep, which in the frame e, (py) is described by the r X r
matriz with entries

Faﬂw(O) = E[@xiua(x)aijg(:L‘) ] lo=0 — E[Bgﬁjua(:c)@xiuB(w) ] lo=0, 1< a,8<r (1.2.38)
where uy(x) is the random function

ua(z) == (u(z),eq(z) ),

Proof. The random section u has the local description
U= ua(r)eq(z).
(0%

Then T'(x,y) is a linear map E, — E, given by the r x r matrix
T(.’L‘, y) = (Taﬁ($7 y) )ISQ,BST’ Ta,@(xv y) = E[Ua(l’)U5(y) ] .

The coefficients of the connection 1-form I' = ), I';dz! are endomorphisms of E, given by
r x r matrices [;j(z) = (Typgpi(z) )1<a <, More precisely, we have

Lopli(z) = —E[ Opiua(z)ug(z) . (1.2.39)
Because the frame (e, (z) ) is synchronous at 2 = 0 we deduce that, at py, we have I';(0) = 0
and

F(py) = Fij(z)da’ Ada! € End(Ep,) ® A°Tpy M, Fij = 0,:T(py) — 0,sTi(py)-
1<J
The coefficients Fj;(x) are r X r matrices with entries F,3;;(7), 1 < o, 8 < 7. Moreover,

Fopij(0) = 05 Tap5(0) — 9,5 L031i(0)
(1.2.39)

= 8$1E[8ziua(x)u5($) ) la=0 — 8$iE( Opitia(x)ug(z) ) la=0
= E( 92 itta(@)up(x) |lo=o + E[ Dyitia (2)dpsug(2) | lo=o
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—E[&iiﬂ uo(z)ug(x) ] lo=0 — E[@xjua(x)axiuMm) ] le=0
= E[@ziua(x)ﬁijB(az) ] lo=0 — IE( Opitta ()0 iug(x) ] lz=0-
a

Example 1.2.48. Suppose that ® : M — R is a Gaussian C3-function on the smooth
manifold M such that the differential d® is an ample Gaussian C?-section of T*M. The
correlator of d® defines a metric on T'M and a connection compatible with it. This turns
out to be the Levi-Civita connection of the correlator metric; see [114, Sec. 4.2.5]. For an
alternate description of this connection we refer to [1, Sec.12.2].

As a special case, suppose that M is a compact smooth submanifold of the Euclidean
space U. Denote by (—, —) the inner product on U and by I' the canonical Gaussian measure
on U. We obtain a Gaussian function on M,

O:UxM-—-R, UxM> (u,z) — Py(x) = (u,x).

The differential d® is an ample® Gaussian section of T*M and the correlator metric on TM
is the induced metric on M.

In this case the curvature formula (1.2.38) implies Theorema Egregium stating that the
curvature is an intrisic invariant of the submanifold. The classical approach to Theorema
Egregium goes through the second fundamental form of M. The probabilistic approach
bypasses this object. However, the second fundamental form has many other fundamendal
uses. For details I refer to [114, Sec. 4.2.5]. 0

8Can you see why?






Chapter 2

The Gaussian Kac-Rice
formula

Suppose that U and V are two Euclidean spaces of the same dimension, ¥ C V an open
subset of V, and ® : ¥ — U a centered Gaussian map that is a.s. C*, with k to be specified
later. “Typically”, the zero set of ® is discrete so that for any compact subset K C ¥
the set {® = 0} N K is finite. We denote by Zx or Z|K, ®] its cardinality. In this section
we investigate the basic invariants of this random variable: expectation, variance and higher
momentums. The Kac-Rice formula is essentially a description of these invariants as integrals
of certain densities over ¥. However, before we state and prove this formula there are a few
technical but important issues to address.

2.1. Generic transversality

Suppose U and V are two real Euclidean spaces of dimensions
d=dimU < D :=dimV.

Let ¥ C V be an open set.

Definition 2.1.1. Suppose that X : @ x ¥ — U is a C* random field. We say that X
satisfies the standard conventions if

e the probability space (2, 8,P) is P-complete, and
e For any 0 < j < k, the j-th differential

DX :Qx ¥ — Sym’ (V,U)

is 8 ® By-measurable and separable; see Definition 1.2.3. Above Sym’(V,U)
denotes the space of symmetric j-linear maps V7 — U.

O
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For example, if I" is a Gaussian measure on Q = C¥(#,U), and 8 is the I'-completion of
the Borel sigma-algebra of €, then the resulting random field Ev' : Q x ¥ — U satisfies the
standard conventions; see Example 1.2.18.

1= [n the sequence will tacitly assume that the random fields satisfy the standard conventions.

Let me recall a classical transversality result frequently used in differential topology [71,
Chap.3]. The origin 0 € U is a regular value of most F' € C°°(¥#,U) and thus for a “typical”
F the level set F'~1(0) is a submanifold of codimension d = dim U and we do not expect it
to intersect a submanifold of ¥ of dimension < d. The next result is a quantitative version
of this fact.

Lemma 2.1.2 (Bulinskaya). Suppose that
X:(Q8P)xV—=U, QXY 3 (w,v)—~ Xy(v) €U
is an a.s. C' Gaussian random field. Assume that X is ample, i.e.,
for any v € ¥ the Gaussian vector
Qow— X,(v)eU (Ap)
s nondegenerate.

Fixug € U and let K C ¥ be a compact set of Hausdorff dimension < d =dimU. Then the
sett

A:={weQ; JveK such that X(v)=ug } (2.1.1)
1s negligible.

Proof. Ifollow the argument in the proof of [1, Lemma 11.2.10]. Denote by X' the differential
of X, by || — || the Euclidean norms on U and V, and by || — [lop the operator norm on
Hom(V,U). Let

Co(v) = | Xul + 1 X5(0) [lop-
For every compact set S C 'V we set

Cu(S) :=sup Cy(v).
veS

Fernique’s inequality (1.1.32) shows that C(S) € L' so P[C(S) < oo | = 1. Hence, for every
e > 0, there exists M, = M.(S) > 0 such that

P[C(S) < M.] >1—e. (2.1.2)

Choose S to be a closed ball of radius r > 0 centered at vy and contained in V and set
C(vg,r) == C(S). We deduce from the mean value theorem that

| Xw(v) — Xo(vo)|| < Cpu(vo,r) - 1.

IThe measurability of A is tricky. Consider the space X := Q X ¥ equipped with the product o-algebra. The map

X3 (w,v) kS (Xw(v),v) € U x ¥ is measurable as composition of measurable maps

ax VX oty xy B U x v,

The subset Z := ®~1({ug} x K) is measurable in X. If we denote by 7 the natural projection X —  then A = 7(2)
and according to [36, Prop. 8.4.4] it is S-measurable if 8 is P-complete.
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For r < dist(K, dV) we set
Cu(K,r) = sup Cy(vo,r) < Cy(K,), K, :={veV;dist(v,K) <r},

voEK
and
oscy(r) == sup || Xw(v1) — Xy (v2)]|-
v1,v2€ K,
o1 —ve | <r
Note that

08¢y (1) < Cy(K,7)r.
Consider the event
E.(r) := { oscy(r) < M(K;) 7T }.
We set M (r) := M.(K,). We deduce from (2.1.2) that
P[E.(r)] >1—e.

Pick a sequence h, N\ 0. Since K has Hausdorff dimension < d, its d-dimensional Hausdorff
measure is zero, and we deduce that there exists a sequence of radii r, \, 0 and, for any n,
there exists a finite collection of closed balls (By, ;)je.,, of radii 7, ; < ry, covering K, such

that 4
Z (Tnd') S hn
Jj€Jn

Set
Ay = {w €Q; Jve KN B, ; such that X, (v) = uo} C A,.
where A is defined as (2.1.1). Fix € > 0 and r > 0 sufficiently small. Then

PlA] <) P[AnjNE(rn) | +P[Ec(ra)] <> P[An;NEe(ra)] +e. (2.1.3)
J J
Denote by vy, ; the center of B, ;. Observe that A,; # () iff there exists v such that
v —vp, || <7y and X (v) = ug. On E.(r,) we have
H X (vp,j) — uo H = H X(vn;) — X(v) H < M(ry) g
This shows that
An,j N Eg(rn) C { H X(Und) — Uo H < ME(TH) Tn,j }
Denote by wy the volume of the unit d-dimensional Euclidean ball, by px(,) the probability
density of X (v) and set

L := sup sup px () (u).
veKy uelU

The ampleness ssumption (Ag) implies L < co. We deduce
B X(ong) 0| < Molr)rag }] < LeraMelr) o
—_————

n?j’
=:Ec(rn)
and
ZIP’[An’j NE:(rn) | <Ec(rp) erlw- < Ee(rp)hn < Eo(r1)hn.
J J
Now choose n such that Z.(r1)h, < e to conclude from (2.1.3) that

P[A] < 2e, Ve>0.
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Theorem 2.1.3. Suppose that (2, 8,P) is a probability space and
X:Qx¥ =>U, QxV>3 (w,v)— Xy(v)eU
is Gaussian field with the following properties.

(i) The random field X is a.s. C?.

(ii) The Gaussian vector
V:OxVxU\{0} 2U xV, (w,v,u)— (Xu(v), X (v)*)

nondegenerate for any v € ¥. Above, X/, (v)* : U — V denotes the adjoint of the
differential X,(v) : V.= U of X,, at v.

Then 0 € U is a.s. a regular value of X, i.e.,
P[{w; 0 is a regular value of X, : V- U }]| = 1.
Proof. Fix a closed ball B C V and denote by S(U) the unit sphere in U. Let us show that

a.s., 0 is a regular value of X|p. This means that for any solution v € B of X = 0 the adjoint
of the differential X'(v) is one-to-one, i.e., the equation

Y(v,0) =0 X(v) =0, X'(v)a=0,

has no solution (v,u) € B x S(U). Since dim B x S(U) < dim(U x V') we deduce from
Bulinskaya’s Lemma 2.1.2 that this happens a.s.

O

Theorem 2.1.3 can be substantially improved when dimU = dim V'
Theorem 2.1.4. Suppose that dimV = dimU = d, (Q,8,P) is a probability space and
X:QxV->U, OQxV3 (w,v)—= X,w) eU
is an ample C' Gaussian field. Then 0 € U is a.s. a reqular value of X.
Proof. We follow the approach in [7, Sec.4]. Fix a closed ball B C V. Consider the quantities

1
wgrd

T= lim\%lfTT, T (w) := Ha[{v e B; | X(v)|| <r}],

where H,; denotes the d-dimensional Hausdorff measure on V. In this case it coincides with
the Lebesgue measure. Denote by J, the Jacobian of the map X at v,

Jy = \Jdet (X'(0)X"(0)" ).

Since U and V are Euclidean spaces of the same dimension we have J,, = ‘ det X'(v) ‘

Since X is ample we deduce that the random variable T" defined above is a.s. finite. We
set
2°:={FveB, X(v)=0, J,=0}.
We will show that P[ 2 # 0] = 0. Set
X ) — X - X' )
M = sup X () op, N(e) = sup 1L FD = lo) = K)o
veB veB, 0< |0 <e 9]

Both random variables M and N(¢) are a.s. finite and N(e) — 0 a.s. as € N\, 0.
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Let vy € Z°. Lemma 2.1.2 shows that vy € int B a.s.. Set
Ko :=ker X'(vg) C V, k:=dimKj.
Since J,, = 0 we deduce that £ < d =dim V. Any vector © € V decomposes as
v =19+ 0", 0 € Ky, v € Ky
Then
1X (o + 0) || < [|X (vo + b0 + 0) = X (v +0) | + [|1X (vo + o)

< Mljo* | + llol N (llaoll).
Let £ > 0 such that N(e) < 1 and suppose that

oo]| < e, |Jot|| < eN(e). (2.1.4)
We deduce that

| X (vo + 90 +95)|| < r(e) := (M +1)eN(e).
The polydisk
P.:={veB; v=uvy+0, o satisfies (2.1.4) }

is a.s. contained in B for € > 0 sufficiently small. Thus

1
Tre) = W}Cd[{v €B; X <r(e)}] > Wf}fd[Pa]
d k
= Conj;gzj\i(i\)fie) = constN(s)k*d — 00 as e \(0.
Hence
2° £ 0 C{T = o},
so]P’[Zs:@]:l. O

Remark 2.1.5. To better understand the idea behind the above proof it helps to have in
mind the following elementary yet suggestive example. Consider the map
F:R* 5 R?% F(z,9) = (z,9°).
Then
To={|F|<r}={a?+y* <r?} DS = {|a| <272, |y <2741},
and Hy (S,) = 273/4r3/2, Hence
Ho(T)

— 2 273412 Ao asr N\ 0.
or

O

Corollary 2.1.6. Let ¥ be an open subset of the Euclidean space V. Suppose that F : ¥V — R
is a C? Gaussian function that such that its differential is ample, i.e., for any v € ¥ the
Gaussian vector dF(v) € V is nondegenerate. Denote by Hessp(v) the Hessian of F at v.
Then F' is a.s. a Morse function, i.e.,

P[{3v, df(v) =0, detHessp(v)=0}]=0.
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Remark 2.1.7. Sard’s transversality theorem requires a bit of regularity. Suppose that
F:V = UisaCFmap. In[57, Thm. 3.4.3] it is shown that if & > dim V — dim U, then
the set of critical values of F' is negligible in U. However, if £ < dim V' — dim U, then there
exist C*-maps V — U for which the set of critical values is not negligible in U’; see [57, Sec.
3.4.4].

In geometry the generic transversality is traditionally obtained as follows. Suppose that
N is a positive integer and

F:RVNxV—SU, (\v)— F(v)
is a C*-map, k > dim V —dim U. We view it as a family in C*(V, U) parametrized by A € RY.
We assume that the family is sufficiently large, i.e., satisfies the ampleness condition
0 is a regular value F. (%)

Then
Z={(\v) eRY xV; F\(v) =0}

is a C* manifold and the natural projection 7 : Z — R™, (\,v) — X is a C* map. Since
dimZ — N = dimV — dim U we deduce from Sard’s theorem that most A € RY are regular
values of . One can show that for such A, 0 is a regular value of F)\. Thus, a regularity
assumption together with an ampleness condition on the family guarantee that 0 is generically
a regular value of F).

However, we cannot expect such genericity assuming only C'-regularity.> For example,
H. Whitney [154] has constructed a C'-function f : R? — R whose set of critical values
contains a nontrivial interval centered at 0.

Consider the random Gaussian function X + f, X standard normal random variable,
Then the probability that 0 is a regular value of X + f is < 1.

The above geometric argument has a probabilistic counterpart. Fix independent standard
normal random variables A1,..., Ay and form the random Gaussian map

Fy=> Ap(w)F,
k

where Fj, € C"(#,U), r >dimV —dimU.

Equivalently, consider the standard Gaussian measure on A = RY and think of A as a
probability space and of F' as a random map

F:Ax? »U, (\v)=F\(v) =Y MF(v).
k

Observe that a sufficient condition for F' to satisfy the ampleness condition (x) is that for
any v € ¥ we have

U =span { Fi(v),...,Fn(v) }.
This condition also implies that F', viewed as a Gaussian random map, is ample.

We deduce from Sard’s theorem that for Lebesgue almost every A € A, the point 0 € U
is a regular value of

N
F\ = Z e F.
k=1

2I am indebted to Michele Stecconi for pointing out this fact.
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This implies that 0 a regular value of F for A in a set of Gaussian probability 1.

This argument was recently generalized by A. Lerario and M. Stecconi [88] as follows.
Denote by E the Fréchet space E = C”"( ¥,U). Fix a Gaussian measure I on F, denote by
Hr the associated Cameron-Martin space and by Sr its closure in E. Equivalently, St is the
topological support of I'. In particular, F[S[‘] = 1. Assuming that 0 € U is a regular value
of the map

Ev:SrxV—U, Ev(F,v)=F(v),
then

I'[{0 is a a regular value of F} | = 1.
In Theorem 2.1.3 we approached generic regularity using a different approach. Let N be a
(large) positive integer and suppose that, for each v € V the collection of C''-maps

{ Fk(v)v F/(U);— }1§k§N
spans the vector space U x Hom(U, V). If we define
N
F) = Z)\ka, A=\, y) €RY,
k=1
then we see that the family (F)),cpn satisfies (). However, if dim V' —dim U > 1, then the
maps F) have less regularity than required by Sard’s theorem.

O

2.2. The Gaussian Kac-Rice formula

We now have all the ingredients needed to prove the Gaussian Kac-Rice formula. We start
by stating and proving several local versions of this version and then we will explain how
these local results can be patched together to obtain a global version.

2.2.1. Local Kac-Rice formula. Suppose that U,V are real Euclidean spaces of the same
dimension m and ¥ is an open subset of V. We will investigate the zero sets of Gaussian
Cl-maps F : ¥ — U. Before we do this we need to describe some basic properties of such
zero sets of deterministic C'-maps. We need to introduce a bit of terminology.

A compact subset B C V is called a box subordinated to the Fuclidean coordinates
(v',...,v™) on V if there exist real numbers aj < by, k = 1,...m, such that

B = {U; ok e lak, by, Vk= 1,...m}.
It is called nondegenerate if ap < by, Vk. A subset is called a box if it is a box subordinated
to a choice of Euclidean coordinates.
For any map F : V — U and any Borel set S C ¥
Z[S,Fl:=#{vesS; F(v)=0}.

Lemma 2.2.1 (Continuity of roots). Suppose B C ¥ is a boz, and F : V — U is a C'-map
satisfying the following conditions.

(i) 0 € U is a regular value of F'.

(ii)

;= inf .
ros= inf If@)] >0
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Suppose that (F,),en is a sequence of Ct-maps that converge in C1(V,U) to F. Then
lim Z|B,F,] = Z[B, F] < .

V—00

Proof. Since 0 is a regular value and F~1(0) N 9B = () we deduce from the inverse function
theorem function that F' has a finite number of zeros in B, none of them located on 0B. Set

2=FY0)NnB={v,...,0}, n=#2Z, Z,=F,0)NB.
Using the inverse function theorem we can choose § > 0 sufficiently small such that

e The open ball Bs(v;) is contained in B, Vi,
e the closures of the balls Bs(v;) are disjoint, and

e the restriction of F' to each of the open balls Bs(v;) is a diffeomorphism onto its
image.
Set
n
C:=B Bs(v;), 7o := inf |F .
\ &:{ 5(vi), o= inf [F(v)]
Since F), converges uniformly to F' on the compact set C' we deduce that there exists 1y > 0
such that
Vv > vy, inf |[|[F,(v)]| > r9/2 > 0.
velC

Thus, for v > 1y

n
2, C | Bs(vy).

i=1

Set
Z,,,i =2Z,N B(;(vi).

We claim that for each ¢ = 1,...,n, there exists v; > 0 such that #2,; =1, Vv > v;. We
argue by contradiction. Suppose that there exists a subsequence Z,, ; such that #2Z,, ; > 2.
To ease the notation we will write 2y, ; instead of Z,, ;.

Let vox, vk € 2k, Vox 7 Vi, Upon extracting subsequences we can assume that v
and vy ; converge to Up oo, V1,00 € €l B5(v;). Clearly F(vg o) = F(v1,00) = 0 and, since F' has
a single zero, v;, in ¢l Bs(v;) we deduce

Vo k, V1,k — V; as k — 00.

Consider the unit vectors

1
wy = —————— (V1 g — Vo )-
Tors — ol )

Upon extracting a subsequence we can assume that wjg converges to the unit vector w. Since
the differential F’(v;) is invertible we deduce that F’'(v;)w # 0. Choose a linear functional
¢ : U — R such that

E(F'(vi)w) =1. (2.2.1)
Consider now the scalar functions fi(v) := £(F,(v)). From the mean value theorem we
deduce that there exists a point pi on the line segment [vg g, v1 ] such that

0= fr(vrk) = fe(vor) = llvie — vorlldfi(pr) (wi ) = llvrk — vorllE(Fy, (pr)wr ).
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In other words
§(F,, (pr)wy) =0, Vk.
Note that p — v;. Letting k — oo we deduce £(F’(vi)w) = 0. This contradicts (2.2.1). O

Corollary 2.2.2 (Kac’s counting formula). Suppose that F : V — U is a C'-map and the
box B satisfy the assumptions in Lemma 2.2.1. For v € V we denote by F'(v) the differential
of F at v and by Jp(v) its Jacobian Jp = det (F'(v)F'(v)*). Forr >0 we set
/BI{|F|<7~}JF(U)dU'
Then, for r > 0 sufficiently small we have Z|B, F| = Z[B, F,r]. In other words

Z|B,F] = h{‘% Z|B,F,r]. (2.2.2)

Z|B,F,r]:= ol

Proof. For u € U we set Iy, := F' — u so that Fy = F'. Using Lemma 2.2.1 we deduce that
lim Z[B, F,| = Z[B, F].
u—0
There exists rg > 0 such that
#F Y w)Nn B =#F10)N B, Y|ul < ro.
Using the coarea formula (A.1.10) we deduce that

/ Jp(v)dv = / #F Y (u)du = war? x #F~1(0) N B.
B0{||F||<r} {llull<r}

O

Corollary 2.2.3. Suppose that X : Q x ¥ — U is an ample C' Gaussian field, i.e.,
the Gaussian vector X (v) is nondegenerate for any v. Then for any box B C ¥ the map
w > Z[B, X,] is measurable.

Proof. The map w — (X, X)) is measurable. Since 0 is a.s. a regular value of X we deduce
from Kac’s counting formula that
Z|B,X,1/n] —» Z|B, X] as..

Since X satisfies the standard conventions the function Z[B, X, 1/n] is measurable so Z[B, X]|
is measurable as a.s. limit of measurable functions defined on a complete probability space.
g

Corollary 2.2.4. Fixz a box B C V. Suppose that X,, : Q@ xV — U 1is a sequence of Gaussian
Cl-random fields such that X,(v) is a nondegenerate Gaussian vector for any n and any

vEY and X, = X a.s. in Cl(“I/,U). Then
Z[B, X,] — Z[B, X] as..

# For any Borel subset S of an Fuclidean space and any compactly supported continuous

function ¢ : V. — R we set
/ p(v)dv := / w(v))\[dv],
S S
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where X is the Lebesgue measure. This apparent excess of pedantism is fully justified. Soon
we will replace V' with a manifold and the measure A will have to be replaced with the measure
determined by a 1-density on the manifold. The above convention is meant to keep the reader
alert.

Theorem 2.2.5 (Local Kac-Rice formula). Let U and V' be Euclidean spaces of the same
dimension m and ¥ C 'V open. Suppose that

X:QxV->U, QxV3 (w,v) = X,w) eU

is a Gaussian C1-field satisfying the ampleness condition (Ag), i.e., X (v) is a nondegenerate
Gaussian vector for any v € V.

If B CV is a bozx, then
E[Z[B,X]] = /BE[JX(U)\X(v) =0]px((0)dv < oo, (KR)

where Jx(v) denotes the Jacobian of X at v € V and IE[JX(U)}X(U) = 0] denotes the
conditional expectation of Jx(v) given that X (v) = 0. We will refer to the function

v prr(v) =E[Jx(v)| X(v) = 0]px)(0)
as the Kac-Rice density of X.

Proof. We follow the approach in [12, Sec. 6.1] and [7, Sec. 5]. We will need the following
technical result.

Lemma 2.2.6. Denote by X the space CY(V,U) equipped with the topology of uniform con-
vergence on compacts of maps and their first order derivatives.

For any ug € U, vg € V, and any bounded continuous function o : X — R the condi-
tional distribution Pu(x)|x (vg)=u, 15 well defined as a probability measure on R and depends
continuously on ug in the topology of weak convergence of measures.

Proof. From Proposition 1.1.32 (Gaussian regression formula)we we deduce that any v € V
we have

X (v) = Rx(v),x(v0)X (v0) + Z(v,0),
where the random variable Z(v,v) is independent of X (vg) and the regression operator
Rx(v),X (vo) 18 given by (1.1.16). We have
Zw(’U, UO) = Xw(v) - RX(U),X(’U())XW(UO)'
Hence, for any w the map v — Z,,(v,vg) is also C*. The resulting map V 3 vy — Z,(—,vp) € X
is continuous for any w.

Fix a continuous and bounded function « : X — R. Then the real number

a(Xw) = a( Rx, (=), Xu(wo) U0 + Zu(—,v0) )

depends continuously on (ug,vg) for any w and, since « is bounded, we deduce from the
Dominated Convergence Theorem and the regression formula that

E[OK(X)‘X('U(]) = U(]] = E[Q(RX,X(UO)UO —{—Z(—,’Uo))]

depends continuously on (ug, vp). O
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/ ,

1(2n) 1n

A

Figure 2.1. The graphs of F,, (top) and the graph of G, (bottom).

Let F' : [0,00) — [0, 1] be the continuous piecewise linear function such that
0 <1/2
F)={" =12
1, =z>1.
For n € N we set F,(z) = F(nz) and G,(x) =1 — F(z/(2n)). The functions F,, and G,, are
depicted in Figure 2.1. For v € V we set
dy = dist (U,GB),

and we denote by J, the Jacobian of X at v. For u € U and n € N and ® € CL(7,U) we
set

CH®,B):= >  Fu(Ja))Gn(Ja(v))Fn(dy).

ve€E®P~(u)NB
Lemma 2.2.7. Let X = CY(¥,U). Then the following hold.

(i) For any uw € U the map X > ® — CJ(P, B) is continuous
(ii) For any ® € X the map u— CJ(P, B) is continuous.

We proceed assuming the validity of the above lemma. We set

Cy(B):==Cy(X,B) = Z Fn(Jv)Gn(Jv)Fn(dv)a (2.2.3)
veX~H(u)NB
Qi (B) = C(B)Gr(CL(B) ).
These are measurable as compositions of measurable functions X — R with X : Q — X.

Note that C}}(B) is the number of solutions v of the equation X (v) = u in the compact
(random) set

1
K, = {UGB: Jordy > — ngzn}.
2n
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Intuitively, CI(B) counts the solutions v of X (v) = u located in B for which that Jacobian J,
is not too small, not too large and they are not too close to the boundary of B. The quantity
Q7'(B) is a sort of truncation of CJ'(B). Note that QII(B) = 0 whenever C}'(B) > n.

Let g : U — [0,00) be a continuous, compactly supported function. The coarea formula
(A.1.10) implies that

[ sQUBI = [ L ELI)Ga 1) ()G (Ch(B))o( X (0)) o
U B

The standard assumptions guarantees that the above quantities are measurable. These ran-
dom variables are bounded since the various integrands are bounded. E.g., Q1 (B) < 2n.
Taking expectations we deduce

/Ug(u)E[QS(B)]du:/BE[JUFR(JU)Gn(Jv)Fn(dv)Gn(C;L((U)(B))g(X(v))]dv

= /Ug(u) (/BE[Jan(Jv)Gn(Jv)Fn(dv)Gn(C;Z((v)(B) ) } X(U) = u]dv> pX(v)(u)du'

Since the above equality holds for any continuous compactly supported function g we deduce
E[Qu(B)] = /BE[Jan(Jv)Gn(Jv)Fn(dv)Gn(C;g(v)(B) ) X (W) =ulpx)(u)dv (2.2.4)

for almost every u € U. To prove that the above equality holds for any v we will show that
both sides of (2.2.4) depend continuously on w.

The random function u — CJ}(B) = C}}(X, B) is a.s. continuous since
ur C7 (D)
is continuous for any ® € X. Consider

ay X = R, o(P) := Jo(v)Fp(Jo(v)Gn(Jo(v)) Fn(dv)Gn(Cg(v) )

<2n

For fixed v it depends continuously with respect to ® in the topology of X. We can rewrite
the right-hand-side of (2.2.4) as

/BE[aZ(X)‘ X(v) = u]px(v)(u)dv.

Corollary 2.2.4 and Lemma 2.2.6 show that the integrand depends continuously on u. Clearly
it is bounded uniformly in u. The Dominated Convergence Theorem shows that the above
integral depends continuously on u. Hence

E[Qu(B)] = /BIE[Jan(Jv)Gn(Jv)Fn(dv)Gn(C’}(v)(B) )| X (v) = u]px()(u)dv, (2.2.5)
for every u € U. In particular, for u = 0 we deduce

E[QF(B)] :/BE[Jan(Jv)Gn(Ju)Fn(du)Gn(C}(v)(B))‘X(v):O]px(v)(O)dv. (2.2.6)

Bulinskaya’s Lemma 2.1.2 and the Transversality Theorem 2.1.4 imply that 0 is a.s. a
regular value of X and the equation X (v) = 0 has no solutions on dB. We deduce that

Qy(B) N Z[B,X] as n — oc.
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Since F,, G, 1 we can use the Monotone Convergence Theorem in (2.2.6) as n — oo and
deduce (KR) assuming the validity of Lemma 2.2.7. Observe that Lemma 2.2.6 shows that
the map

B>v— E[Jx(v)| X(v)=0] €R

is continuous and, since X (v) is nondegenerate for any v, we deduce that
/ E[ Jx (0)] X(0) = 0]pxe) (0)dv < oo.
B

Proof of Lemma 2.2.7. The proof is similar to the proof of Lemma 2.2.1. Fix &y € X and
ug € U. For each n € N we consider the compact set

1
K, = {v € B; dist(v,0B) > 1/n, o < Jg,(v) < 2n}.
n

Note that K, C int(K, 1), Vn. Let
Zn(®0) = ©5 1 (ug) N K.

Observe that if v € Z,,(®p), then the differential ®{(v) is invertible so and the inverse function
theorem implies that there exists an open neighborhood O, of such that ®; Yug) O, = {v}.
Hence Z,,(®g) is a closed subset of a compact set consisting of isolated points so Z,(®g) is
finite

Zn(®0) == {v1,...,vn}
Invoking the inverse function theorem we deduce that there exist r > 0 and pairwise disjoint
open sets 01, ..., 0, with the following properties.

e v €O Cint K1, Ve=1,...,n. We set

0:= LnJ Og.
k=1
e The restriction of & to Oy is a diffeomorphism onto the open ball B, (ug) C U.
Suppose that |[|®, — ®o||c1(p)y — 0 as v — oo. We claim that
IN>0: Yv>N, &, (u)NK,CO.
We argue by contradiction. Suppose that there exists a subsequence v, / oo and and
Wy, € D, (ug) N K, \ O, Vm (2.2.7)

Upon extracting a subsequence we can assume that w,,, converges to w. € K,. Letting
m — oo in the equality ®,, (w,,,) = up we deduce ®o(ws) = up € O. This contradicts
(2.2.7).

Arguing as in the proof of Lemma 2.2.1 we conclude that there exists N > 0 such that for
any ¥ > N and any k = 1,...,v the equation ®,(v) = ug has at most one solution v € Oy.

Let us now observe that for v sufficiently large the equation ®,(v) = ug has one solution
v € Q. This is an immediate consequence of the theory of degree of a continuous map; see
e.g. [119, Chap.1]. Indeed, if B,, (v;) is a small closed ball centered at vi and contained in
Ok, then for v sufficiently large

sup  [|®,(v) — uol| >0
vE€I By (vk)
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and
+1 = deg (®, By, (vg),0) = li_>m deg (@, By, (vx),0).

This proves that for any continuous function ¢ : B — R such that supp ¢ C K,, we have

lim Y p)= Y ()

vedy (uo) ’UE‘I)O_I(’LLO)

This proves the first part of Lemma 2.2.7. The second follows from the above first part
applied to the maps ®, = &g — (u, — ug), where u, — ug. O

This completes the proof of the local Kac-Rice formula g

Recall the random variable

ZIB,X,r] =

/BI{X|<7~}JX(U)dU

wgrd
that appears in Kac’s counting formula (2.2.2)

Z[B, X] = lim Z[B, X, 1].
r™\0

Proposition 2.2.8. Let X as in Theorem 2.2.5. Assume additionally that X is 0-ample,
i.e., for any v € V the Gaussian vector X (v) is nondegenerate. Then

E|Z[B,X]|=1lmE| Z[B,X
218, X]] = lim E[ 218, X,1]]
In particular Z[B, X,r] — Z[B, X] in L' as r \, 0.

Proof. Using Fubini’s formula we deduce

E[Z[B,X,TH = ! /BE[I{|X<T}JX('U)]dU

wde
Note that
E[I(x<rJx(v)] = /IulqE[JX(u)\ X (v) = u]p oy (u)du,
so that
E[Z[B,X,r]] = w;rd /B ( /u|<TIE[JX(v)‘X(v) :u}px(v)(u)du>dv

a0 )

wyr

=:p(u)
The regression formula shows that the integrand u — ¢(u) is continuous on |u| < r so that

lim ! / @(u)du:gp(()):/IE[JX(U)}X(U):0}px(v)(0)dv:E[Z[B,X]].
Ju|<r B

N0 wgrd

The statement about the L'-convergence follows from the Lebesgue-Vitali theorem on uniform
integrability; see e.g. [115, Sec. 3.2.2] or [137, Thm. 16.6]. O
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Remark 2.2.9. (a) The assumptions in Theorem 2.2.5 are less stringent than in the Gaussian
Kac-Rice formula [1, Cor.11.2.2]. Theorem 2.2.5 requires only the 0-ampleness of X whereas
[1, Cor.11.2.2] requires Jj-ampleness. This is due to the different strategy used in [1] to prove
(KR).

(b) There are many generalizations of the local Kac-Rice formula (KR). First, one can
slightly relax the Gaussian assumption; see [1, 7, 143]. These generalizations do not seem
too practical for two reasons. First, the various conditions imposed on the random field
are difficult do verify in the non-Gaussian case. Then, the computation of the conditional
expectation in the KR-density is nearly impossible in the non-Gaussian case.

There exist other generalizations, of a more geometric nature. Consider a Gaussian field
F:7v U, dmV <dimU,

and M C U, a submanifold of dimension dimU — dim V', then one expects that the map
F is a.s. transversal to M so one expects that F~'(M) is discrete and we can ask what is
the expectation of its cardinality. This problem is discused in great detail in a much greater
generality in M. Stecconi’s dissertation [143].

If mg := dimU < m; := dim V, then the preimage F~1(0) is typically a submanifold of
¥ codimension mg. We can then ask what is the E[ Hp,, —m, (F~1(0)) |, the expectation of the
volume of F~1(0), where H;, denotes the k-dimensional Hausdorff measure. This situation is
addressed in [7, 12]. 0

2.2.2. A weighted local Kac-Rice formula. Let X be as in Theorem 2.2.5. Using [79,
Lemma 3.1] and Theorem 2.2.5 we deduce that the correspondence

By — Z[S, X]
is a locally finite random measure, i.e.,
(i) for any S € By the map
(Q,8,P) 3w Z[S, X,] € [0, 0]

is measurable, and

(ii) for any w € € the map
By 35— Z[5, X,] € [0, 0]
is a measure that is finite on the compact subsets of ¥.

We refer to Appendix C.2 for more information about locally finite random measures.
The integral of continuous, compactly supported function ¢ € C’gpt(”I/) with respect to this
random measure produces a random variable

For any compactly supported measurable function ¢ : ¥ — R we set
ZlpX) = [ ol)Zlde X = Y o),
v veX—1(0)

More generally, for any nonnegative measurable function f : ¥ — [0,00) we can define
Z[f, X] in a similar way so Z[B, X| = Z[Ip, X].

We have the following variant of the Kac-Rice formula.
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Theorem 2.2.10 (Weighted local Kac-Rice formula). Let X be as in Theorem 2.2.5 and
0 € CO (V). Then

E[Z[p, X]] = A@(v)pﬁR(v)dv < 00, (2.2.8)
where

picr(v) = E[ Jx(0) | X (v) = 0]px(,)(0)
is the Kac-Rice density of X.

Proof. Decomposing ¢ = ¢4+ — ¢_ we can assume that ¢ > 0. Using partitions of unity we
can reduce everything to the special case when supp ¢ is contained in a box B C #. Now
run the argument in the proof of the local Kac-Rice formula with the term Cj/(B) in (2.2.3)
replaced by

Cr@) = > @) Fu(Jy)Gn(Jy)Fn( dist(v,0B)).

veX ~1(u)
Note that formally C'(B) = C'(1Ip). O

Suppose that F': ¥ — R is a Morse function. In particular, F is at least C2. We denote
by dF its differential. We view it as a map

dF : vV — V*.
We set
¢[—, F| := Z[—,dF).
Hence, for any Borel subset S C 7,
€[S, F]=#{ves; dF(v)=0}.
For any continuous function ¢ : B — R we set
e[o.F] = [ p)eldnFl= 3 elo),
1 dF (v)=0
Corollary 2.2.11. Suppose that F : ¥ — R is a C? Gaussian function satisfying the 1-
ampleness condition
for any v € ¥ the Gaussian vector
Q3w—dF,eV*
1s nondegenerate.

Then F is a.s. Morse and for any function ¢ € CO (7)) we have

cpt

E[€[p, F]] =E[ Z[p,dF]]
= ///]E“det Hessr(v)] ‘ dF (v) = 0]par@w) (0)e(v)dv < oco.

The quantity E||det Hessp(v)| |dF(v) = OdeF(U) (0)dv is the Kac-Rice density of dF O

(2.2.9)

We conclude this subsection with another version of the local Kac-Rice formula which
counts the zeros of a
emphrandom map inside a random set.
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Theorem 2.2.12. Let U, V and W be Fuclidean spaces such that dimU = dimV = m.
Let 7 C V be open. Suppose that

XY : OxV-oUodW, OQxV3 (wv)— X,(v)dY, eUdW,

is a C'-Gaussian field satisfying the standard conditions such that, for any v € ¥, the
Gaussian vector
Qsw—»Xy(v)eY,(v)eUas W

is nondegenerate. For each v € ¥ we denote by J, the Jacobian of X at v,

Jy = \Jdet (X/(0)X"(0)7).
Suppose that C C W' is a nondegenerate box in W . Then, for any box B C ¥V

E[Z[BnY 1(0C), X)]] :[BE[JUIC(Y(U))\X(U)zo]pX(v)(O)dv (2.2.10a)

— /B (/CE[Jv\X(v) =0,Y(v) zw}Py(v)[depX(v)(o)dv_ (2.2.10b)

Proof. We know that a.s. the equation X (v) = 0 has no solutions on 9B and 0 is a regular
value of X. Let us show that a.s. there exist no solution of of X (v) = 0 such that Y (v) € 9C.

Consider the Gaussian field
F:VeoW UV, (v,w)— (X(v),Y(v)—w).
Since the Gaussian vector X (v) @ Y (v) is nondegenerate, so is F'(v,w). Set K := B x 9C.

The Hausdorff dimension of K is < dim(V @& W) and Bulinskaya’s Lemma 2.1.2 implies
that a.s. the equation F'(v,w) = 0 has no solution in K. Thus, with probability 1, there
exists no v € B such that X (v) = 0 and Y (v) € 0C.

Denote by C° the interior of C' and by E the complement of C° in W. We set
B dist(w, E)
 dist(w, Cy,) + dist(w, E)

Cpi={weW; dist(w,E) >1/n} and 7,(w)

Note that n,(w) ' Ic(w), Yw € W. Thus as n — o0
Y m(Y() A #XH0)NnBNYTHC), as.
veX~1(0)NB
The fact that almost surely X has no zero in B NY~1(dC) plays a key role in the above
equality.
Forve?,ucU,neN,®ec CY{¥,U)and ¥ € CL (¥, W) we set
d, := dist(v, 0B),
Co(@,0,B) = > no(T())Fu(Ja(0))Gn(Ja(v))Fn(dy)
ve®—1(u)NB
An immediate modification of the proof of Lemma 2.2.7 yields the following continuity result.
Lemma 2.2.13. The functions
CHV,U) x CHV, W) > (D,0) s C™(D, T, B)

and u — CJ(P, V) are continuous. 0
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We set
Cl'B):=ClX,Y,B) = M (Y (0) ) Fo(Jy)Gr(Jy ) Fr(dy ), (2.2.11)

veX~1(u)NB
Qu(B) = Ci(B)Gn(Ci(B)).
These are measurable as compositions of continuous functions C*(7,U) x CY(¥,W) — R.

The argument in the proof of Theorem 2.2.5 now carries through without any conceptual
changes and yields (2.2.10a). O

The argument in the above proof can be used to produce the following version of Theorem
2.2.12.

Corollary 2.2.14. Let U, V and W be Euclidean spaces such that dimU = dimV = m.
Let 7 C V be open. Suppose that

X:OxV->U, QxV>3 (w,v)— X,) eU,
Y:OQxV->W, QxV>3 (w,v)— X,(v) €U,
are C-Gaussian fields such that, for any v € ¥ the Gaussian vector

AQow—= X, 0Y, cUDW.

is nondegenerate. For any any functions f C Cpt(”//) C’Cpt(W) we set
Zf,9: X,Y] = Z f (v)).
veEX
Then
B[ 217 X.Y)] = [ E[g(Y(0))| X(0) = 0] f(0hpxc 0)do (2.2.120)

= /// (/WE[JU’ X(0) =0,Y(v) = w]g(w)Py () [dw]) F(0)px () (0)dv (2.2.12b)
O
Suppose that F' : ¥ — R is a Morse function and B C ¥ is a nondegenerate box. We

denote by D(F|p) the discriminant set of F|p, i.e., the set of critical values of F' |g. The
discriminant measure of F|p is the pushforward

Dpr = Fye[— = C[F'(t)N B, Fls.
teR
The discriminant measure is concentrated on D(F|g). For ¢ € C’gpt( ) we set
Dprle] = / et)Dpr(d] = > ¢(F(v)).
R dF(v)=0
veB

When F' is random, Dp, F[gp] is a random variable.

Corollary 2.2.15. Suppose that F : ¥ — R is a C? Gaussian function satisfying the Ji-
ampleness condition
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for any v € ¥ the Gaussian vector
Qsw—F,¢dF, c R V"
18 nondegenerate.

Then F' is a.s. Morse and, for any box B C ¥ and any function p € Cgpt
E[Dprls]] =

- /B < /R E[| detHessp(v) | | dF(v) =0, F(v) :t}w(t)PF(v)[dﬂ) Par () (0)dv.

(R) we have

(2.2.13)

2.2.3. Global Kac-Rice formula. Suppose that (M,g) is smooth, compact® connected
m-~dimensional Riemannian manifold and £ — M is a smooth real vector bundle of rank
m = dim M. We assume additionally that F is equipped with a metric A and a connection
VE compatible with the metric h. Denote by Vect(M) the space of smooth vector fields on
M and by vol, the volume measure on M determined by the Riemann metric g.

We set End(F) := E® E* — M. This is a smooth vector bundle over M whose fiber
over a point x € M is
E, ® E; = End(E,).
Suppose that u: M — E is a C'-section of E. For each point g € M we have a linear map
VEU: TyoM — Eyy, TooM 3 v VEu(zg) := V])E(vu(:cg),

where X, € Vect(M) is any smooth vector field on M such that X,(xo) = v. Let us observe
that if u(x¢) = 0 and V°, V! are two connections on E, then

VOu(zo) = Viu(zo).
Indeed, if we set A = V! — VY then 4 is a section of T*M ® End(E). Then
Viu(zo) — Vou(xo) = A(X,)u(z) = 0.
Thus, at every zero x( of the section u, the linear map
TooM — Eyy, v Vyu(xo).

is independent of the connection V on E. Following the custom in algebraic geometry we
will refer to this map as the adjunction map of u at x¢ and we will denote it by adj, (xg). A
zero xq of u is called nondegenerate if the adjunction map adj(xg) is invertible.

Theorem 2.2.16 (Global Kac-Rice formula). Suppose that (M, g) is smooth, compact con-
nected m-dimensional Riemannian manifold and E — M is a smooth real vector bundle of
rank m = dim M. Fiz a smooth metric h on E and a connection V¥ compatible with the
metric h.

Let U be a Gaussian random section of E — M that is a.s. C1 and satisfies the ampleness
condition

Va € M, the Ey-valued Gaussian vector ¥(x) is nondegenerate. (2.2.14)

Then the following hold.

(i) The zeros of ¥ are a.s.-nondegenerate.

3The compactness is not needed but it is the only situation we will deal with in this book.
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(ii) For any continuous function ¢ : M — R we set
Zpw = Y ola)
W(x)=0

Then the Z[p, ¥] is measurable and

E[Z(cp,\Il)] = /ME[JvE\I,(I) ‘\I/(J}) = O]pq,(x)(o)cp(x) volg [dx] (2.2.15)

Above, py(y) denotes the probability density of the nondegenerate Gaussian vector
U(z) and Jypy(g) denotes the Jacobian of the linear map VEU(x) : T,M — E,
computed in terms of the inner product g, on T, M and h, on E,.

Proof. Clearly, the left-hand side of (2.2.15) is independent of the various choices: the metric
g on M, the metric h on E and the connection V¥. We first prove that the right-hand side
of this equality is also independent of these choices.

1. Independence of the connection. This is easy. Given that ¥(z) = 0 we have
VE () = adjy ()
and the right-hand side is independent of any connection on FE.
2. Independence of the metric g. Suppose that g', ¢° are two Riemann metrics on M,

then there exists a smooth endomorphism S of T'M that is symmetric and positive definite
with respect to the metric ¢° and such that

9" (X,Y)=¢"(SX,Y)
Then
volg [dx] = y/det Sy - volgo [d:c],
Denote by Ji the jacobian of L, : VFu(x) : T,M — E, computed with respect to the inner

product g% on T, M and the inner product h, on E,. The inner products g* determine two
Lebesgue measures A, on T, M related by the equality

g4
AgL [dv] = +/det S, - Ago [dv].
The inner product h, determines a Lebesgue measure Ay, on E;. The equality (A.1.6) shows

that
Ay = - (La)#Agi -

Hence
Jgg . (Lx)#Ag = J% . (Lx)#)\gglg = (J%\/det Sx) . (Lx)#)\gg
so that )
Jy = ——=1J.
o /detS,
Hence

\/(;TE[JQI U(x) = 0]/det S, voly, [ dz]
et Sy

proving that the right-hand side of (2.2.15) is independent of the metric g.

E[J%‘ U(z) =0]voly [dx] =

3. Independence of the metric h. Let h°, h! be two metrics on E. We denote by Var’(z)
the variance operator of W(z) determined by the inner product h?(x) on E,. The probability
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density of WU(x) depends on the inner product on E,. We denote by pfp(x) the probability
density of ¥(x) determined by the inner product h’(z). We have
1

- \/det (27 Var'(z)) .

There exists a smooth endomorphisms G of F¥ which is symmetric and positive definite with
respect to h? and such that

hl(u,v) = hO(Gu,v)
for any smooth sections u,v of E. As explained in Remark 1.1.17 we have
Var!(z) = Var®(z)G(x)

so that
1

1 0
0) = — .
P\p(x)( ) dot G(x)p\p(x)
Using the same notations as in the proof of the independence of g we have
i = Jb - (La)#Ag,, i=0,1
and
)\hglg =\ det G($)Ahg
from which we deduce that J! = \/det G(z) - J2. Hence
1
E[Jp| ¥ (x) = 0]py,(0) = V/det G(2)E[ J)| ¥(x) = 0] —==py,(0).

VG(z)

The point of the above exercise is clear: if we could prove (2.2.15) for some convenient choices
of g, h, V¥, then we would have a proof for any choices of g, h, VE.

Using partitions of unity we can reduce (2.2.15) to the case when ¢ is supported on a
open subset O C M with the following properties.
e The open subset O is diffeomorphic to an open subset ¥ C R™.

e The restriction of E to O is trivializable. Fix one such trivialization, E|g = R
Here Ry denote the trivial vector bundle over O with fiber R .

Then we can identify the restriction to O of the section ¥ with a random Gaussian map
¥ : ¥ — R™. Suppose now that the restriction of g to O corresponds to the Euclidean metric
on ¥, the restriction of h to E|g corresponds to the trivial metric on the trivial bundle R},
and the restriction of V¥ to E|g corresponds to the trivial connection on RY.

In this case (2.2.15) reduces to the local Kac-Rice formula (2.2.8).

Remark 2.2.17. The equality (2.2.15) displays a remarkable phenomenon: the quantity

E[Jgry(m)| ¥(z) = 0]py(a)o)p (@) voly [ dr]
is independent of the various geometric choices: the metrics on M and F and the connection
on E. It depends only on the ample Gaussian C' section W. Since this quantity is something
one can integrate over a manifold it is called a 1-density in geometric parlance; see [114,
Sec.3.4]. Thus the global Kac-Rice formula describes explicitly a canonical 1-density on M



92 2. The Gaussian Kac-Rice formula

whose integral over a Borel subset gives the expected number of zeros of ¢ in that Borel
subset. We will refer to it as the Kac-Rice 1-density.

= A word of warning! The concept of 1-density is not to be confused with the concept of
density used in analysis and in physics. For example, a 1-density on a Riemann manifold
(M, g) is essentially a measure v on M that is absolutely continuous with respect to the
volume measure vol, determined by the metric g.

The analysts’ and physicists’ density is the Radon-Nicodym derivative dff—glg, also called
the density of v relative to vol;. When working on R™ with the usual Euclidean metric, then
dvol, is the Lebesgue measure the concepts of 1-density and density tend to be confused. In
geometry this confusion could lead to erroneous conclusions.

We could have formulated the Kac-Rice formula in the language of 1-densities from the
start. We chose not to do so since the concept of 1-density is not widely known and can
obscure the simple nature of this result in concrete situations. O

Let us mention a few immediate consequences of the global Kac-Rice formula.

Corollary 2.2.18. Suppose that U is an ample Gaussian C'-section of the smooth vector
bundle E — M of rank m = dim M . Then, for any compact set K C M, the expected
number of zeros of VU inside K 1is finite. a

Corollary 2.2.19. Suppose that (M, g) is a compact Riemannian manifold and F : M — R
is a Gaussian C? function such that the random section dF : M — T*M is ample. Denote
by V9 the Levi-Civita connection on T*M. Then the following hold.

(i) The function F is almost surely a Morse function, i.e., all its critical points are
nondegenerate.

(ii) For any continuous function ¢ : M — R we have

E[Z(p,dF)] = /M ¢(2)E[ Hessp(2)| df (z) = 0] pay(a) (0) volg [dz ],

where the Hessp(x) is Hessian of f at x, Hessp(x) = VIdF (x).
O

Remark 2.2.20. In the above corollary we need not have fixed a metric. As explained in
Subsection 1.2.7, the Gaussian function F' defines both a metric on 7% M (hence a metric
g™ on M) and a connection on 7% M compatible with it. This connection is the Levi-Civita
connection of the metric ¢g°®*. We could have described the Kac-Rice 1-density entirely in

terms of g°". a

Similarly, Corollary 2.2.15 has a global counterpart.

Corollary 2.2.21. Suppose that (M, g) is a compact Riemannian manifold and F : M — R
is a C? Gaussian function such that,

for any p € M the Gaussian vector F/(p)®dF(p) € R&T; M is nondegenerate.
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Denote by Dp the discriminant measure of F'

= > 5F => #{p:F(p)=t, dF(p)=0}5;.

dF (p)= teR
Then F' 1is a.s. Morse and, for any function ¢ € C’Cpt( ), we have
E[ Dr[y]]
= / (/ [ | det Hessp(x ’dF =0, F(z) =t ]ot)Pp [dt]) Par(z)(0) voly [dz].
M R
(2.2.16)
O

2.3. Applications

In the immortal words of Yogi Berra “in theory there is no difference between theory and
practice. In practice there is.” The applications of the Kac-Rice formula are good illustrations
of the above principle. It this section we will show how the Kac-Rice formula works in some
concrete situations. We start with the 1-dimensional situation. Even in this simplest of the
situations we will reach beautiful geometric conclusions.

2.3.1. Some one-dimensional applications. Suppose that I C R is an open interval of
the real axis and F' : I — R is a centered C! Gaussian function such that for any ¢ € I the
Gaussian random variable F'(t) is nondegenerate. Let K : I x I — R be the covariance kernel
of F(t), i.e

K(t,s) =E[F(t)F(s)], Vs, tel.
Since F(t) is nondegenerate we have K (t,t) > 0, Vt. We set Z[F| := Z[I, F], i.e., Z[F] is the
number of zeros of F'in I.

The local Kac-Rice formula implies that

E[Z[F]] = /IE[]F’(t)\ |F(t) = 0]pp@ (0) dt. (2.3.1)

=:pt

We need to clarify the nature of the integrand p; in the above equality. Observe first that

PO = K 0)

Observe next that F'(t) is a continuous Gaussian function with covariance kernel
E[F'(t)F'(s)] = 0L K(t, s).
Note also that
E[F'(t)F(t)] = 0K (t,s)s=t.
The Gaussian regression formula (1.1.20) shows that
E[|F'(t)|F(t)=0] =E[| X|]
where X is a centered Gaussian random variable with variance,

O K (t,5)%_
=Rt 5)my - P
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Hence

(1.1.8)

E[|F'(t)] |F(t) =0] (20,/m)"2,

and

, (8§tK(t, $)K(t,s) — 9, KL, 5)2>1/2
t p—

— 2
K(t, 5)2 a \/as,t log K(t, 5)¢=s,

e (2.3.2)
E[Z[F]] = /Iptdt.

™

Example 2.3.1 (Kac polynomials). Suppose that F'(¢) is a random polynomial of the form
n
F(t)=Fu(t) = Y Apth,
k=0

where the coefficients are independent standard normal random variables. In this case the
covariance kernel is
1— ( 8t)n+1
K(s,t) = ————.
(s:%) 1—st

Denote by Z,, the numbers of real roots on F,.

Such random polynomials are referred to as Kac polynomials, the Kac in Kac-Rice. They
were first considered by M. Kac [76] in 1943 when he proved the first version of (2.3.2). More
precisely he showed that

(n+1)%*"

E[Zn] - i/ﬂg\/mdt’ fn(t) = (tQ i 1)2 - (t2n+2 _ 1)2' (233)

For example,

hlt) = 1 I
T o2 612 e+

and
E[Zn] ~ 0.5055.

In particular, we deduce that
1
P[Zy;>0] = 51{«:[22} ~ 0.25.
In [76] M. Kac proved the rather surprising result
2
E[Z,] = =logN 4+ O(1), asn — oo.
T

This can be a bit refined; see [51, Sec.2.5]. More more precisely, there exists a universal
constant C' > 0 (C' & 0.6257...) such that as n — oo we have

2 2
Zn==|1 — 1/n?). 2.3.4
7T(ogn%—C’+ﬂﬂ>+O( /n*) (2.3.4)

The results in [44] imply that the expected number of critical points of F,,(t) is also of the
order logn as n — oo. a
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Example 2.3.2 (The Kostlan statistics). Consider the Kostlan random polynomials
n
Fo(t) =) Xit",
k=0

where the coefficients X are independent normal random variables with mean zero and

variances
Var [Xk] = <Z>

Denote by Z,, the number of real zeros of F),. In this case the covariance kernel is

n

K(s,t)=Y_ <Z> (st) = (1+ st)N

k=0

and we have

Ns
log K(s,t) = N log(1 t log K(s,t) =
og K(s,t) og(1l + st), Oylog K(s,t) et
N Vi
2 _ _ /a2 _
O3 log K (s,t) = A+s)2 pt = \/(9st log K (s,t)|s=¢ = T

The Kac-Rice formula implies that the expected number of zeros is

]:2\/N/°° 1 _
™ Jo

142
We see that the Kostlan random polynomials have, on average, more real zeros than the Kac
random polynomials. O

E[Z,

Example 2.3.3 (The Legendre statistics). Recall that the Legendre polynomials are
obtained from the sequence of monomials (¢ )k>0 by applying the Gramm-Schmidt procedure
with respect to the inner product in L?([—1, 1], dt).

Concretely, the degree n Legendre polynomial is

pu(t) = ,/2”; L), ta(t) = 27}n!%(t2 I (2.3.5)

We can construct a random polynomial

N
Fx(t) = Xipk(t),
k=0

where X} are independent standard normal random variables, Vk. Using the Christoffel-
Darboux theorem [145] we deduce that its covariance kernel is given by

N+1 ) ENJrl(t)»gN(S) —ENH(S)KN(t).

N
Kn(s,t) = Zpk(s)pk(t) = I _ s .
k=0

M. Das [42] has shown that the expected number of zeros of Fiy(t) in [—1, 1] is asymptotic to
%N for large N. The Legendre ensemble displays an even stronger bias towards a relatively
large number of real roots. The reason is that the number of zeros of the Legendre polynomial

£, goes to co as n — oC. O
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I want to describe two nice geometric applications of the 1-dimensional Kac-Rice formula.
My presentation follows [116].

Example 2.3.4. Suppose that C is a smooth closed curve on the unit n-dimensional sphere
S"={ (o, 21,...,2y) ER"™ 2 +af+ - +a2 =1}

Denote by L its length. By Equator in S™ we mean an (n — 1)-dimensional sphere obtained
by intersecting S™ with a hyperplane through the origin. An Equator divides the sphere into
two parts called hemispheres. Using the Kac-Rice formula we will prove, in one stroke, two
related facts.

(i) If L < 2m, then this curve is entirely contain in some hemisphere.

(ii) If L > 2w, then there exists an Equator of the sphere that intersects the curve in
at least four points.

The case n = 2 of (i) seems to be part of the folklore of mathematics; see e.g. [149,
Problem 1.10.4]. The case n = 2 of (ii) was proved more recently, in a 2008 American
Mathematical Monthly paper, [72]. The authors refer to it as a 1969 conjecture of Hugo
Steinhaus. Here is a probabilistic proof of these facts.

Parametrize C by arclength, [0,L] > s — x(s) 1= (zo(s),...,zn(s)) € R, Since
C C S™ we have |x(s)| = 1, Vs, where | — | denotes the natural Euclidean norm. Moreover,
since this is arclength parametrization we have |2/(s)| = 1, Vs.

Any vector u € R™"! determines a linear functional £, : R"™! — R, £, (z) = (u,z),
where (—,—) is the canonical inner product in R"*1. To prove (i), we have to show that
there exists u # 0 such that the restriction of ¢,, to C has no zeros. To prove (ii), we have
to show that there exists u # 0 such that the restriction of £, to C has at least four zeros.

The restriction of 4,, to C' can be identified with the function fy, : [0, L] — R, fu(s) = (u, z(s)).
Choose independent standard random variables (Ug)o<k<pn and form the random Gaussian
function

Fy:[0,L] =R, Fy(s)=Y Uiris).
=0

Its covariance kernel is K (s,t) = (x(s), z(t)). We deduce

ar = (2(t),2(t)) = e =1, b = Ki(s,0)],_, = (2(1).2'(t)) = %%lw(t)lz =1,

Ct = 2/75(37t)‘5:t = |x/(t) ‘2 =1

The ampleness of Fyy follows from the equality a; = 1. We can apply the Kac-Rice formula
to deduce that the expected number of zeros of Fy; is Z¢g = %

To reach the conclusions (i) and (ii) we need an additional input, topological in nature.
Observe that if f,, has only nondegenerate zeros, then it has an even number of them. Indeed,
a nondegenerate zero of f,, corresponds to a point where the curve C' crosses the hyperplane
{€y, = 0} transversally from one side to the other. Since the curve is closed, it must cross
this hyperplane an even number number of times.

The ampleness condition a; > 0 implies that the zeros of Fy; are almost surely nondegen-
erate. Thus, almost surely, the function Fyy has an even number of zeros.
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If L < 27, then Z¢o < 2, and the probability that the number of zeros of Fyy is < 2 is
positive. Since Fyy has an even number of zeros we deduce that the probability that Fy; has
no zeros is positive. This proves (i).

If L > 2w, then Zo > 2. Hence, the probability that Fy; has more than two zeros is
positive and we deduce that the probability that Fyy has at least four zeros is positive. This
proves (ii). 0

Example 2.3.5 (Fary-Milnor). Suppose that

[0, L] 3 5= 7(s) = ((5),y(s), 2(s)) € R
is the arclength parametrization of a smooth knot K in R3. Here, by knot I understand a
smoothly embedded S in R3.

Consider a random linear function
H:R3>—> R, H(z,y,2) = Az + By + Cz,

where A, B, C are independent standard normal random variables with mean zero and vari-
ance 1. Denote by u(H) = u(A, B,C) the number of critical points of the restriction of H
to the knot. These are the points on the knot where the vector (A, B, () is perpendicular to
the tangent vector to the curve at that point.

The restriction of H to the K is described the Gaussian random function
F(s) = Ax(s) + By(s) + Cz(s).
Note that the critical points of H|g correspond to the zeros of the derivative.
F'(s) = Ax'(s) + By/(s) + CZ/(s)
The derivative F’(s) is a Gaussian random function with covariance kernel
K (s1,82) = o' (s1)"(s2) + ¢/ (s1)y (s2) + 2'(51)2' (52) = T(51) ® T(s2),
where (T, N, B) is the Frénet frame along the curve and e denotes the standard inner/dot
product in R3. We have
05, K (51,52) = T(s1) @ T'(s2) = k(s2)T(s1) @ N(s2),
where x denotes the curvature of the curve. Similarly

0% . K(s152) = k(s1)k(s2)N(s1) @ N(s2).

5152

We deduce
K(s,s) =1, 0,K(s,5) =0, 0%, K(s,s)=k(s)%, ps=|r(s)|

S$189
Hence the ampleness assumption is satisfied. The Kac-Rice formula implies that the critical
points of H|g are almost surely nondegenerate. They come in two types: local minima and
local maxima. We denote by m4 (H) the number of local minima/maxima of H|x. Then,
almost surely, m_(H) = my(H) and u(H) = m_(H) + my(H). The Kac-Rice formula
(2.3.2) implies that
1

L
1
E[pH)] =2E[m(H)] = 77/0 |k(s)|ds = s the total curvature of the curve.

This result was first proved independently by I. Fary [56] and J. Milnor [100]. In particular,
Milnor, who was an undergraduate at the time, used this to prove a conjecture of K. Borsuk
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roughly stating that to knot a curve you need to bend it quite a bit. More precisely, if the
total curvature is < 47 , then the knot K is the unknot. O

2.3.2. The distribution of critical points. Things get substantially more involved for
Gaussian functions of several variables, but in certain cases we can still say something that
is meaningful.

Example 2.3.6 (Random trigonometric polynomials with given Netwon polyhedron). Con-
sider the random Gaussian trigonometric polynomial

Xn(0) = Xn(61,...,0m)

defined in Example 1.2.17. Its covariance kernel is

K(0,0) = Sn(0—¢) =Y oo,
lePy
Above Py = N - P, where P is a fixed Newton polyhedron, i.e., a convex polyhedron in R™,
with vertices lattice points, containing the origin in the interior and symmetric about the

origin. For m = 1 and P = [—1, 1] the number of zeros of Xy were first investigated by S.
O. Rice [131], the Rice in Kac-Rice.

Denote by Zy or Z(Py) the number of critical points of Xy on the torus T™ = (R/27Z )™
or equivalently, the number of zeros of its gradient Gy = VXy on the box B,, := [0, 27]™
We have seen in Example 1.2.17 that G is ample for all N sufficiently large. We deduce
from the Kac-Rice formula (KR) that

—

E[Zy] —/B E[|det Hessx, (0)] ‘VXN(ﬁ) = 0]pvxy(6)(0)d0

The computations in Example 1.2.17 show that the above integrand is independent of 6. We
have
1 (1.2.12) 1

- \/det(2m) Var [ VX (0)  VAt@mNTEM(P) (2.3.6)

~ (2m) 2 (det M(P))ANTMMER2 N o0,

Pvxy(9)(0)

The Hessian Hy () = Hessx, (f) is a Gaussian vector valued in the space Sym(R™) of
symmetric m x m-matrices. This is a Euclidean space of dimension m(m + 1)/2 with inner
product

(A, B) = tr(AB).

On Sym(R"™) we can use the orthonormal coordinates (wij )1<Z.<j<m, where

Aiiv Z:jv
(4) =
wi(4) {\@Am i # J.

The variance operator Var [H N(§)] is given by the matrix
Q(N) = (Q(N)jire )i<i<j<m,
1<k<I<m

where

Q(N)ijike = E | w;;(Hy)wie(HN) |
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Consider the quadratic functions g;; : P — R
x?, i=j

Gy ) = {x@:m i3]
ilyj, .

We denote by Q(P) the Gramian matrix of the collection (qz-j) with respect to the

m(m+1 m(m+1
(m41) , mlm1),

1<i<j<m

inner product on L2(P,A). This is a nondegenerate symmetric matrix of size
From the equalities

—

E[ Hy (0)i;Hn (0)ke | = 5,6,05,6,58(0 = &) g_5 = 027,57, SN (0)
and (1.2.7) we deduce that
QN) ~ N™HQ(P)(1+ O(1/N)),

To compute the conditional expectation E[\det Hy(0 ) |VX N ] I plan to use the
Gaussian regression formula so we need to find the correlatlon operato rCy Note
that

Hy (6), VX (6)

E[ Hn (0)ij05, XN (0)] = 030,05, 580 — &) =02 Sn(0) = 0.

Hence the Gaussian vectors Hg(f) and VXy(f) are independent. Denote by Covy the
centered Gaussian measure on Sym(R") with variance Q(N). We deduce

E[ | det Hy ()| | VXn(6) = 0] =/ | det A[Tguy)[dA]
Sym(R™)
(A — N(m+4)/23)
_ Nm(m+4)/2/ ‘ det B }er(mH)Q(N) [dB].
Sym(R™
Observing that N—(m+4)Q(N) ~ Q(P) as N — oo we deduce

E[|det Hy(0)] | VXN (0) = 0] ~ Nm<m+4>/2/ | det B [Tg(p[dB].
Sym(R™)
The last integral is strictly positive since the Gaussian random matrix Q(P) is nondegenerate.

Putting together all of the above we deduce that as N — oo we have

E[Zn] ~ vol(Bm) x (27r)—m/2( det M(P) )_1/2N—m(m+2)/2

x Nmim+4)/2 / | det B |Tg(py[dB]
Sym(R™)

\ detB}FQ(P)[dB]> N
ym(R™)

~ (27T)m/2( det M (P) )71/2 (/
S
vol(Py)

~ (2m)™2( det M(P)) "/ </s ® )’ detB’FQ(P)[dB]) vol(P)
ym(R™

= K(P)vol(Py),

where

B (27T>m/2
oE) = (det M(P))"? vol(P) </Sym(ﬂw> | det B[ T [dB])
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The results of Bernshtein [18] and Kouchnirenko [82] imply the very rough upper bound
Z(Pn) <mlvol (Pyn) as. (2.3.7)
The result we have just proved shows that as N — oo, E[Z N] has the same order of growth

as vol (PN) indicating that the mean of Zy is close its theoretical max.

In [107] we computed the constant K (P) for various polyhedra P. As a special case let
us mention the polygon in R? with six vertices

(1,1),(-1,-1),(1,0),(-1,0),(0,1),(0,—1).
Its area is 3, so the inequality (2.3.7) predicts that Z(P) < 6 a.s..

V.I. Arnold has proved in [8] that this inequality is sharp, i.e., sup Z(P) = 6 a.s.. He
achieved this using topological techniques that allowed him to conclude that there exists a
trigonometric polynomial with Newton polygon P which is Morse and has exactly 6 critical
points.

In [107] I proved that

E[Z(P)] = 4?” ~ 4.188

Hence, with positive probability, there must exist trigonometric polynomials with Newton
polygon P and at least 5 critical points. The random trigonometric polynomial X;(P) is a.s.
Morse so it has an even number of critical points almost surely. Hence, the probability that
there exists a Morse polynomial X;(P) with exactly 6 critical points is positive. O

Example 2.3.7 (Isotropic Gaussian functions). This example might seem rather special, but
as we will see later on, it is rather universal.

Consider the smooth isotropic Gaussian function ® = ®, on R" constructed in Example
1.2.35. We recall its construction.

We fix an amplitude a, i.e., an even Schwartz function a € §(RR) such that a(0) = 1.
Consider the finite measure p, € Meas (Rm)

1 2
Nu[df} = qu(f))‘[dg]a wq(§) = wa,m(g) = a( |£|) .
The function @, is determined by the covariance kernel
1 .
Ko(@y) = Koo y). Kole) = oo [ el 235)
2m)™ Jrm
The Gaussian function ®, is a.s. smooth, isotropic and pq is its spectral measure. We set
Ci=C—, Q)= > o (2.3.9)
Vdq(x)=0

Thus, €,[B] is the number of critical points of ®, in B. I want to compute E[&,[B]] for a
box B C R™.

For any multi-indices «, 8 € (Zzo )m we have
E[0°®a(2)0 ®a(y) ],_, = 050, K (@, y)| 2=y
1 1811 4lel+18] (2.3.10)
— e [ e aiea
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For any multi-index a € (Zxo )m we set

1
M = “padE] = o “a(|¢])?d
e [ emlie] = e [ enalie)
We say that the multi-index o = (o, ..., o) is even if o is even for any j = 1,...,m. The
multi-index « is called odd if it is not even. The radial symmetry of a( €| ) implies that
M =0 if « is odd. (2.3.11)
Using spherical coordinates on R™ we deduce that for any o we have
1 R
M = T (/0 P 1+°‘|a(r)2dr> X /Sm_lga volgm-1 [d€] . (2.3.12)
=ma

Note that m,, is independent of a. In particular, my is the “area” off the unit sphere S™~ 1.

If we let ag := (27)"/2¢~ 7, then
M = g’ye—‘ﬂQ/?dg - (Qw)m/Z H/ §“J‘I‘[d§],
Rm™ Jo1/R

where I' denotes the Gaussian measure on R with mean zero and variance 1. If « is even,
a = 2k, then

m
Mo ULV 2mym2 T (26 — .
j=1
On the other hand, using (2.3.12) we deduce

M;’g . /OO Tm+2‘/£‘—1e—7'2/2d7a — \/zmz‘{/ ’x‘m+2|fﬁ|—lr[dx:|
0 R

(1.16) 2|n|+m/271m2ﬁr( k] +m/2).
Hence
- _ olelm/2- 1HJ 12k — )N _ 21_[j:1 I'(k; +1/2) (2.3.13)
L( |k +m/2) L (|x]+m/2)
For every k € Z>( we set
Ii(a) ::/ rRa(r)?dr.
0
We deduce 2] 1 12)
. Ki +
27)"MME. = 21 j=1_ 7 2.3.14
( ﬂ-) 2K m—1+2|n|(a) F( ‘ﬁ‘ n m/2) ( )
We set
Sm ::/ pa[d€], dp = A Eualde], hp = i 1€ pa dE]. (2.3.15)
Then 2
2™
a(|€])?de = Ln—1(a) = (2m)™ s, 2.3.16
[ atleD o 1(a) = (2n) (23.16)

/ 53 a([¢]) zdf = mIerl(a) = (2m)"dy, VY9, (2.3.17)
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2 (277)7”/2 .
/ &Feia(e))?d T(m /2+2)Im+3(a) = (27)"hm, Vj #k, (2.3.18)
/ Eja(l¢])?de = m%%(tﬁt) = 3(27) " hym, V. (2.3.19)

Using (2.3.10) and (2.3.11) we deduce that for any & € R™ the Gaussian vectors V®q(x) and
Hesso, () are mdependent. Hence, the Kac-Rice density
pa(x) = E[| det Hesso, ()| | VOa(x) = 0]pya, () (0)

simplifies to
pa(x) = E[ | det Hessg, ()| ]pv%(m) (0).
Using (2.3.10)and (2.3.17) we deduce that the variance operator of V®(x) is
Var [V®(z)] = dmly, Ve eR™ (2.3.20)
In particular, this show that V®, is an ample random field and thus ®, is a.s. Morse.

As explained in Example 2.3.6, the space Sym(R"™) of real symmetric m x m matrices is
equipped with an inner product (A, B) = tr(AB). The linear functions

lij,wij : Sym([R™) =R, 1<i<j<m,
Qg s L= j)
0ii(A) = aii, wii(A) = 2.3.21
5(4) = 0y, wiy(4) {ﬁ L (2321)
define coordinates on Sym(R™). Additionally (w; )
to the above inner product. We set

Lij(m) := £;;( Hessa,(x) ), Qj(x) = wi;( Hessp,(x) ). (2.3.22)

I<i<j<m are orthonormal with respect

Then )
E[aizj@a(x)aikxﬂ)u(m)] = @ /Rm &i&i&kEoal(1€1?)dE, i <4, k<L

Note that if ¢ < j, then the above integral is nonzero iff (i, 7) = (k,¢) in which case

E[ Lij(x)Lye(x) | = E[ (82, ®a(z))’]

2¢2q( ¢ )dg L

If i = j then the above integral is nonzero iff k£ = ¢, in which case we deduce from (2.3.18)
and (2.3.19)

h 1#£k
2 2 m 3
E[axi(ba(x)axk(ba(m)] - {3hm, 1 = k.

The above equalities can be rewritten in the more compact form
E[ Lij(®) Lie(x) | = b ( 6550k + 0ije + 0iedsr ), Vi < j, k < L. (2.3.23)

These equalities show that the off diagonal entries of Hessg, are i.i.d., and also independent
of the diagonal entries. The diagonal entries have identical distributions but are dependent.
The parameter h,, describes the various variances and covariances.

The Gaussian measure on Sym(R"") determined by these covariance equalities is invariant
with respect to the action by conjugation of O(m) on Sym(R™). This corresponds to the
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fomshm i Appendix C.1. For ease of

Gaussian ensemble of random matrices denoted by S
Ron s ham
m In particular this proves that

notation we set Shm = 8m
= (27dym) " *Egny, [ | det H| ]

Ve € R™, pa(x) = pa(0) (2.3.24)

We deduce from the Kac-Rice formula (KR) that for any box B

E[¢,[B]] = /Bpa(a:)/\[dm] — pa(0)A[ B] = (2ndn) /g, [|det H| A B]

(X = (2hm)/2H)
m/2
N E—

Lemma C.1.2 with u = v = % implies that

3 (m+3 22
1/2[\detHH: gF( 5 )\/»/perll/Q (z)e” 2z du,

where pn ,,(A) denotes the normalized 1-point correlation function of the Gaussian Orthogonal

Ensemble GOEY, = 5?\}”; see Appendix C.1.
Using the equality (C.1.10) we deduce that

n1/2pn,1/2 ( n1/2y) = pn,1/2n(y)7

_ (m+1)y?
2

so that
Y

1 _z? 1
/Rpm+1,1/2($)€ rdz = ﬁ/HRPmH,M(ZJ)G

NG
5 \1/2
- <m+1> /Pm+1,2(m+1) <y)r<mil> [dy].

We deduce form (C.1.15) that

V2
/R P, 2(7nl+1) (y)r 2(7n1+1) [ dy ]

~ — as m — O0.
™

Hence
E[€[B]] = Cr(a)A[ B] (2.3.25)
where
Cm(a) = pa(o)
s (m+3\ [ hm \"™* 1/2 (2.3.26)
:22F< 2 > <7mlm> (m—|—1> /Rpm“’2<m+1> )F(mlﬂ)[dy}

/2 1/2
~2§F<m+3>< > ( ) as m — oo
2 m +

8) we deduce

D(L+m/2) | Tnss(@) _ 2Unss(@)
CE+m/2) " Tnn(@)  (m+ Dl (@)

Using (2.3.17) and (2

3.1
o _
dm
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Hence

o ~ 22 (B0 (13

] m/2
oS I y3(a) T m+3 m~ 2 asm — oo.
(m + 2)I41(a) 2

The constant Cy,(a) tends to grow very fast as m — oo, but its large m behavior depends on
the tail of the amplitude a. Roughly speaking, the slower the decay at co of a the faster the
growth of C,,(a). Here are some examples. Appendix B.4 contains their proofs.

o If a(t)2 = e, then

(2.3.27)

log Cp(a) ~ % logm as m — oo.

o If
a(t)? = exp(—(log ) log(logt) ), Vt > 1,
then
log Cn(a) ~ %€m+2(€2 —1), as m — oo.
e FixC>0and > 1. If
a(t)® = exp(—C(logt)* ), Vt > 1,
then
Z(0) =

meao-1, as m — o0,

log Cm(a) ~

a—1
where Z(a, C) is a positive constant depending explicitly on o and C.

O

Example 2.3.8 (Random Fourier series). Fix an amplitude a, i.e., and even Schwartz func-
tion a € §(R) such a(0) = 1 and consider the Gaussian function F*(f) defined in in Example
1.2.31. More precisely,

) = B2 ( Aguo + Y a( | 20|/ R) (Agu @) + Brod)) ).
7-0
where Az Bg, v >0, k= 0 are independent standard normal random variables. We view FuR
as a Z™-periodic random smooth function on R™.

As in the previous example we set

wa(é) = wa,m(g) = Cl( ‘ § ‘ )27
and define as in (2.3.8)

Ka(w) = gamie@) = [ 6ug (e

In (1.2.25) we showed that the covariance kernel CZ of Ff* admits the description

LS Gu((F-7)R)

2 m
(2m) kezm

Cle+7,¢) =Cl(F) =
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304

204

—204

Figure 2.2. Samples of F* form =1, a(t) = e . At the top R =10 and at the bottom R = 100.

=K.(7R)+ Y K.((k—7)R).
kezZm™\0

/

—i&n(7)
I want to investigate the distribution €[ —, Fff] of critical points of F.

The random function F is highly oscillatory as R ,* 0o so we expect that it will have
more and more critical points as R increases; see Figure 2.2.

Before we proceed further we need to introduce some terminology. We will denote by
O( R*OO) any quantity ¢(R) such that, for any N € N, we have

q(R) = O(R_N) as R — oo.
Fix a box B C [0,1]™ C R"™. Since K, is a Schwartz function we deduce that for any
multi-index o € (Zxg )m

92 KE(0) = RN K, (0) + O(R™™)), as h\,0. (2.3.28)
We have

—

E[0FF(0)0LFE(@)] = 9205eE (6, ¢),
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and thus
E[0°F(0)0° F () |5, = 05058(6,8)5_5 = (=102 C(0).
Observe that since CX(7) = CE(—7) we have
aaBeR (g = _
950:C, (0,8); ;=0
if || + |8] is odd. Hence
VFf(g) and Hesspr (5 ) are independent Gaussian vectors for any 0. (2.3.29)
We deduce from (2.3.28) that

(—1)P1g2tP R (0) = R\a|+|5\(<_1)\ﬂ|a?+6Ka<0) L O(R) )
On the other hand,

(—)IP1027 K o(0) = E[ 0°®a(0)0°@a(0) ] 5

Hence
Var [R™'VE]] = Var [V®, | + O(R™*)
and
Var [ R~ Hesspr | = Var [ Hessg, | + O( R™).
We have computed the covariances Var [Vfba] Var [ Hessg, ] in Example 2.3.7.
We set
¢l .= ¢[-, FH.

Fix a box B C [0,1]™. Since Ff' is stationary, the Kac-Rice density ngﬁ is constant and
we deduce
E[¢[B]] = E[|det Hess pr(0)| |py rro) (OA[ B].

We have
E[|det Hessr (0)] | = RQmE[ |det R™2 Hess o (0)] 1,
Pyvir)(0) = R"pp-1ypr)(0) + O(R™>).
Hence
E[¢f[B]] = R*™E[ | det Hess -z (0)] [pr-1v (o) (0)A[ B]
Since

E[|det R~* Hesspr(0)] 1Phv R (0)(0) = E[| det Hessg, (0)| | pva, (0) + O(R™)
we deduce
E[¢f[B]] = R™(E[&[B]] + O(R™™)

= R"Cyn(a)vol [B] + O(R™>). (23.30)
More generally, if f € CO((R™) we have
B[ ef(f]] = E[ |det Hess p(0) [y (0) | Fladda
R (2.3.31)

= R"(C(a) + O(R™) ) [ fa)da.
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2.3.3. The distribution of critical values. Consider the isotropic Gaussian function
®, : R™ — R whose critical points were investigated in Example 2.3.7.

We recall that a € §(R) is an even Schwartz function such that a(0) = 1. The function
®, is determined by the covariance kernel

Kz, y) =Ko(z—y), Ko(x)= /Rm ei<f’m>pa[d£], (2.3.32)

where the spectral measure p, € Meas (Rm) is given by

ol de] = el ©A[dE . wn(6) = wan(€) = a(I1)"

The random function ®, is a.s. Morse. We set €4 = €[—, ®4]. Thus, for each box B C R™,
€4[B] is the number of critical points of ®, inside B. According to (2.3.25) we have
E[€[B]] = Cin(a)A[ B],

where Cyy, (a) is the positive constant described explicitly in (2.3.26) and X[ B | is the (Lebesgue)
volume of B. In particular, €4[B] is a.s. finite. We denote by D g the random measure on
the real axis

Dpq:i= Z S (a) € Meas (R)
z€BNVE(0)
I will refer to ® g o as the discriminant measure of ®4|p. It is supported on the set of critical

values of ®,|p. In singularity theory this set is usually referred to as the discriminant locus*
of ®,.

For every Borel set C' C R we have
Dpa|C] = Z Io(®u(x)) =#{xe B; Vou(x)=0, Po(x) e C}.
zE BNV, (0)
Note
Dpa[R] =¢[B].
This subsection is devoted to an investigation of the random measure D, g. Note that the
expectation

v[C] =E|Dpa[C] ] (2.3.33)
is a Borel measure on R. It describes the expected number of the critical values of ®4|p that
are located in C. Set

Hessq(x) := Hessg, (x), = € R™.
In Example 1.2.35 we proved that ®, is Ji-ample so the Gaussian vector

W(x) = Wy(x) = @q(x) & VOu(2) (2.3.34)
is nondegenerate for any x € R™.

The Gaussian random variable ®4(x) has variance

4The term “locus” is meant to suggest that this set has additional structure. In algebraic geometry it is a a scheme.
In our looser context the additional structure is a measure supported on this set.
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Hence

0 dnly
We can thus invoke (2.2.10b) to deduce that if C' C R is a compact interval, then

w[C] = [ r(@)(@lpea,(0)da.

Var [W(z)] = [ smo 0 ]

where

r(xz) = | E[|Hessa(z)||VPa(x) =0, ®u(x) =t ]|Pg, ()] dt].

S~

As shown above Py, () = I's,,, V&. We deduce from Fubini’s theorem that

va[ C] :/Cpa(t)I‘sm[dt], (2.3.35)

where
pa(t) = /BE[ | Hessq ()| !@a(m) =t, V() = 0]pye, () (0)dz

B2 (2md ) [ B[ Hessa(e)| W (@) = (1,0)]da (2.3.36)
B
— (27d,, ) "*E[| Hessa ()| | W (2) = (¢,0) ] vol [ B].

At the last step I have used the stationarity of @, that implies that the integrand in the
second equality is independent of . To compute the above conditional expectation I will
rely on the Gaussian regression formula.

The variance of Hess, is given by (2.3.23)
E[ Lij(z) Lre(x) | = hm (650K + 0irdje + 600k ), Vi < j, k <L
where L;j(bx), and €;;(x) are defined by (2.3.22). Set
W= Wo, Wi,...,Wpn), Wo=®4(x), Wj=0s;Pua(x).

Denote by Hess;(x) the random symmetric matrix with variance given by the regression
formula

Var [Iﬁsa(m)] = Var | Hessq(x) | — Cov [ Hessq(x),Y | Var [W]_l Cov [ W, Hessq() |
Set B o B o
L = &-j(Hessa(az) ), Q= wij(Hessa(:c) ),
Cijla :=Cov [, W,], 1<i<j<m, 0<a<m.
If we write

~1
Var [W} = (tab>0§a7b§m’

then
E[ﬁz]ﬁkg] = E[QZJ<:I:)Q]€@(CC)] — Z Cij|atabck£\b- (2337)
a,b=0
Since Hessq(x) and V®,(x) are independent we deduce

C’ma:O, Vazl,...,m.
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Hence
1

m

E[S;5k ] = E[Sij(a)Eke(@) ] ~
Observe that if ¢ # j, then

_\/i
Cijlo = @ /Rm &iga([€?)dé = 0.
Moreover

1
Cjjlo = o /Rm Ea([¢]?)dE = —dp.

We deduce from (2.3.37) and (2.3.38) that

- - d? o
E[LijLke ] = (hm - S’”) 0ij0ke + han (Oikj0 + 0iesr ), Vi < j, k <. (2.3.39)
-~
=Um
These equalities determine a O(m)-invariant Gaussian measure I, 5, on Sym(R™); see
(C.1.3). In Appendix C.1 the probability space ( Sym(R™), Ly, b, ) obtained in this fashion
is denoted by S?nm’hm.

To apply the Gaussian regression formula (1.1.20) we need to use the regression operator

Ryess,,w = Cov [ Hess,, W] Var [W]fl :R™T 5 Sym(R™).

We have
t
0 At
RHessa,W . == Cll\osrinlt]lm = _T]lm
0
Using the regression formula we deduce
dmt
E[ | Hessq ()| ’W(m) = (t, 0)] = / det A— ——| Ty, n. [dA]. (2.3.40)
Sym(R™) Sm

This is where things get tricky. If we are “lucky” and u,, > 0, then we can us Lemma C.1.2 to
reduce the to express the last integral in terms of the better understood one-point correlation
function of the Gaussian ensemble GOEY, = §%v.

Remark 2.3.9. Before we proceed let first investigate if this is a well founded worry. Set

R Sm
Gm = gm(a) = 2
m
Then
1 -1
U = o (1 — > — hyy I
dm dm

Thus, u,, is negative iff ¢, < 1.
Using (2.3.16), (2.3.17) and (2.3.17) we deduce
m_ I—1(a)Lpn43(a)
m+ 2 Im+l(a)2

Ry (a)

gm(a) =
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The Cauchy-Schwarz inequality shows that R,,(a) > 1 for any m and any a so

m
This shows that for m large g, is very close to the critical threshold 1. However as shown in

Example B.4.1, the quotient g,,(a) could be < 1. This happens for example if a(t) = e . 0

We distinguish three cases.

A upy > 0 so that g, > 1. ‘ Using (2.3.35), (2.3.36) and (2.3.40) we deduce that

v[C] = (zwdm)—m/zvol[B]/CEWMH det A_tim |r., [at]

Making the change in variables A = v/h,;, A we deduce
td td
_m m/2 m
Egup.tn | | det(A || = B, || det (4 Smh%) i

and

c A\ .
= () [ |00 (4= ) s

(t=si’y)

e\ d
() L - )

m'*m

m/2
(85) Lo el ) 1o

For every ¢ € R we denote by R, the rescaling map R.: R — R, ¢t — ct. We set

- 1
Rs;nlﬂ ) #Va

%o = orrE] ¢
We deduce that for any Borel subset C C R

N 12 - m/2 y e—Y>/2
D[ C] = [ s1/2C] = <2wdm> /CES%MHdet(A—m)Hmdy.

om(y)

To keep the presentation clean I will drop from our notation the dependence of 7, on mul-
tiplicative constants. Thus 7, o< u means that 7y = Zu where Z is some positive constant.
This can be determined from the equality

where Cy,(a) is determined by (2.3.25) and (2.3.26). We define &, by the equality

2K 'ziqm_lzs—m
m Im dgn’

so that u,, = 25mhm.-
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Observe that the density of o,,(y) is given by
y2
(4) = Bz [ | det( 4 - —=1 )He_7 (2.3.42)
o = 2k, 1 - — 0.
m\Y §2" i m o
(A = qmA)
2
P[4 (A-010) || 7
- Kmdqm,9m € -
Gm ™ g2rmam.q Ylilm \/%
2
Y
(C114) —m 3 m+1 m—+3 e 2z
B 4,28 20 T (52 ) (0100 2 0
3 g
m+ta 1 m + e 'z
=22 gl (2> <0'r—"r_z+1,qm * V2kmam ) (Y) Vo
where ,
9m+1,v($) = pm+1’v($)€%,
Hence

and p,, denotes the normalized 1-point correlation function described in Appendix C.1.

/V\u [ dy] X ( 0m+1,qm * Y2kmgm )(y)r [ dy] .
Note that ¢, — 1 = 2k,q, SO

(2.3.43)
ot = ! ’iiﬂﬁ fid
(V2hmam * m+1,qm)(y) = \/TT% Re mam P 1,q,, (€)€4am dx
1 @@ ?y0? 2 —1/2 @@ ?y0? 2
= \/W /R € drm pm+1’Qm(q'r17{2t )6 4 dt = \/41/;_7 R e drm pm+171(t)6 4 dt
m m
Hence
y2 q,;l/Q 2 (et *y—1)2 42
(s * O ) )e™T = e [ S
m
—1/2 1/2
ﬁ . (Qm / t)2 . 3/2 _ Hth - (Qm 2y~ t)2 - Qﬁmy2
4 4tm 2 4K,
(gm* + 26m = 1)
— _(y - Qf;zlt)2 - ’{th
4k2, ’
so that

1 _=am 02 2
(V2kmam * 07—7’_1+1,qm)(y) = m /Re twm pmy11(t)e Eliqy
m4Ym
1 (=92 1
f e 4Kkm, /2
T o

_ 2/4 1 (w92
dn)”s eqms/ds:/e
mn ) \/47”<'7QO R
We deduce

T Pm+1,1/qm(3)€7qm52/4d3-
x 0

m+1,1/qm * fyz'ﬁm(y) [dy]a

Ta[ dy]
where

(2.3.44)
_ _£
9m+1,v(t) = pm+17’0(t)6 4v

(2.3.45)
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B.‘ Uy = 0 so that ¢, = 1.‘ This is obtained from the previous case by letting ¢, \, 1 or,
equivalently, x,, \, 0. We have

ﬁa[dy] o «9;+171(y) [dy], (2.3.46)

C.‘ Um < 0 so that ¢, < 1. ‘In this case I will follow the same strategy as in [108]. We modify
the original function by adding an independent random quantity to it

¢, = Xcm + @4
where X, is a centered Gaussian random variable with variance ¢, and independent of ®,.
Fix a box B C R™.
Note that V&, = V&, and Hessg = Hessg,. However, the additive constant X, affects

the critical values. However the discriminant measure ©, = @a’ g of &, is related to the
discriminant measure ®, via the convolution equation

@a - ]'-‘Cm * @a.

Since the Fourier transform of a Gaussian measure is a nowhere zero function, we deduce
that the above equality uniquely determines ©, given ©,. The covariance kernels of V@,
and Hessg coincide with the respective covariance kernels corresponding to ®4. However

E[@a(m)] = 3m = Cm + Sm, Ve R™

This changes the distribution of the conditioned Hessian Hess, () to

d2
<hm - 8’”) 8ijOke + han (Oindje + Oiedjn ) Vi < j, k <AL (2.3.47)
. m
Observe that
d2
U, = B [ 1 — —2 .
o= (1705
Set
— hmdm _ hinsm  hmem _ T hinem

Since ¢, < 1 we can choose ¢, such that §,, = 1. More precisely, we let

cm = (1 — qn)d2 h L. (2.3.48)
In this case ¢, = 1. For any Borel set C' C R we set

fia[C] =E[Ds][C]]. (2.3.49)
We deduce as in case B that

1 ~ —
Wﬁsﬁ/w“ o< O (y)[dy], (2.3.50)

The three cases discussed above can be compactly described by a single statement.
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Theorem 2.3.10. We set
hon s
gm ‘= %7 T'm ‘= maX(LQm) € [1,00),
m

Tm — 1

G 1= Max (O, (1-— qm)dgnh,;l ), Sm = Sm + Cm, 2Km = .
m

We set <i>a = X¢,, + @y, where Xi is a centered Gaussian variable with variance &, and
independent of .
For a fized box B C R™, denote by D, the discriminant measure of ®q |B' For any Borel
subset C' C R define
ia[C] = E[QQ[C] ]
Then the following hold.

(i) The correspondence C' — [1a[C] is a finite Borel measure on R and fiq| R] = Cp,(a) vol | B],
where Cp(a) is determined by (2.3.25) and (2.5.26).

(i1) If we set

~ 1 5
Vam ‘= W:Rs;lm““’
then,
Da 00,1 1 * V20 (1) [dy ], (2.3.51)
where .
t

Oi1,0(t) = Pmaro(t)e .
g

Remark 2.3.11. (a) Suppose ¢, < 1 and ¢, is given by (2.3.48). Then for any Borel set
C C R we have

fa[C] = /RE[@a[C] X, =] = pa*To, [C],
so that
fra = pa * T,

Passing to Fourier transforms we see that the above equality determines iy uniquely in terms
of [ig. In this case

1= _ Smhm _ Smhm

SO

5 (2.3.41)
1< Sm 1 < m+ 2
Sm dm m
Thus, for m large §,, and s,, are roughly of same size.
t2

(b) When ¢, > 1, then x,,, = 1, §,, = s, and iRsfl/z,ua o vol [B]pm+171(t)€7?. O

In turns out that, under sufficiently general conditions, the probability measures

LIPS
% = =V .
am Cm (a) a,m

resemble Gaussian measures for large m.
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Smhm
dz,

Theorem 2.3.12. Suppose that r,;, = max ( 1, ) = max ( l,qm) has a limit as m — o0,

r= lim ry, € [1,00].
m—0o0

Then, as m — 00, Vgm converges weakly to the Gaussian measure I'r+1, where 7”;—1 =1if
T

T = OQ.

Proof. Set v, := 14, We have

_ 1
Uy = Kimem—irlaﬁ * Yrm=1 dy, (2.3.52)
where
_ _rma?
9m+1,%(/\) - pm+1aﬁ()\)e b
and

rm)\2
Km:/RQT_nJrLl *Vw(y)dy:/Ra;H,l()‘)d)‘:/RpmH,:()‘)64d)\~

™m ™m ™m

We set
Ry () == pm_H%(x), Ry () := %I{MSQ}M.
Fix ¢ € (0,2). In Proposition C.1.4 we proved that
lim sup ‘}_%m(:c) — Roo(z) | =0, (2.3.53a)

and
sup ‘Rm(x) — Roo(z) | = O(1) as m — <. (2.3.53b)

"mT4 Tm, _ Tm— Tm _rmA2
Pm+1,i(>\) = ERWL (\/ m)\> ) 9m+1,%()\) - ERm (\/ m)\> e 4 .

We now distinguish two cases.

Then

Case 1. 7 = limy, 00 ' < 00. In particular, r € [1,00). In this case we have

— A2
sz,/m/Rm(,/””A> e A,
m R m

and using (2.3.53a)-(2.3.53b) we deduce
— ™m 2 r 2 4
lim | Rn (,/””A) e~ dN = Rm(O)/eidr = Roo(0)4/ 2.
m—oo Jp m R r

4
Ky ~ K, = Rso(0)4/ =T asm — oo (2.3.54)
m

Hence

Now observe that
1 1

0, (N[dr] = B ()70 ) e g
Ky, mth  R(0) m- ) \ax

= et () T L)
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Using (2.3.53a) and (2.3.53b) we conclude that the sequence of measures
1
0 4
K! ml g
converges weakly to the Gaussian measure 2. Using this and the asymptotic equality (2.3.54)
in (2.3.52) we deduce

(M) [dX]

lim Uy, = Y2 % Yre1 = Yra1.
m—0o0 T T T

Case 2. limy,—so0 m = 00. In this case we have

9;“,#@)[&] = %Rm (ﬁA) T2 [dA].

Lemma 2.3.13. The sequence of measures

Z%(M”u>vzw
m Tm

converges weakly to the measure Rs,(0)dg.

Proof. Fix a bounded continuous function f : R — R. Observe first that

Jm | (Rm ( ::Z/\> ~ Re (ﬁx)) JL 2 [dA] =0. (2.3.55)

N~

—LUm

Indeed, we have

o], () e (23)) s

Vi
=:D!,
+/ <Z?m (M””A) ~R < ””A)) FOOT 2 [d)]
N>/ m o m T
=:D!
Observe that
D}, < sup | Rp(z) — Roo(2) | ST 2 [dA]
lz|<c \A|<c¢{£m m
and invoking (2.3.53a) we deduce
lim D!, = 0.

m—ro0

Using (2.3.53b) we deduce that there exists a constant S > 0 such that

D;gs/ T [dA].
A>ef  ™m

On the other hand, Chebyshev’s inequality shows that

2
v [dA] < —.
fooe ) < 2
Hence
lim D) = 0.

m—r0o0
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This proves (2.3.55).

The sequence of measures v_2 (A)dA converges to dy so that

™m

Roo(0)f(0) = Tim [ Roo(0)f(A)y 2 (A)dA.

m—r0o0 R ™m

Using (2.3.55) and the above equality we deduce that the conclusion of the lemma is equivalent

’ L <R°°(0) — R (\/gA» fOT 2 [dA] =o. (2.3.56)

=F,

To prove this we decompose F;,, as follows.

Fp = /|>\<mzlf . <ROO(O) —Roo< %A)) JOVT = [dA]

Vrm
—F,
T'm
+ Ry (0) — R —A ML 2 | dA
/|>\|>m_211\/@n( o) ( m))f()rfn }
=:F"

Observe that

F,ln < sup ‘ROO(O) - Roo(x) ‘/ 1

1l /m
la|<m ™4 A<m™1

Since R is continuous at 0 we deduce

lim F', = 0.

m—ro0

Since Ry and f are bounded we deduce that there exists a constant S > 0 such that

Fl <S8 'z [d)].
" Al>m~ T [

T

[—

H

On the other hand, Chebyshev’s inequality shows that

2
T dh | < ——.
/)\|>m_411\/ﬂ %’”[ ] S m

e
Hence
lim F)) =0.
m—r0o0
This proves (2.3.56) and the lemma. O
Lemma 2.3.13 shows that
4
K~ K = /= Roo(0),

m

and .
i Kime;zﬂ,é()‘)[d)‘] = do[N]]
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On the other hand,
lim *ym[d)\} = I‘[d)\],

m—o0 rm

so that

lim v, =g *x 71 = 71-
m—0o0

O

Remark 2.3.14. Note that for any Borel subset C' C R, the number v, [ C] is the expected
proportion of critical values of
1

Ve
located in C'. For large m the bulk of these critical values are located in an interval of size

O(1) centered at the origin. Thus, the bulk of critical values of ®, + X, is located in an
interval of size O( \ /sm) centered at the origin. Recall that

1
(27)" 20 (m/2)

o+ Xe,, ) |5

Sm = Sm(a) = Iy—1(a)

The large m behavior is sensitive to the choice of amplitude; see Appendix B.4. For example,
if a(t) = /2, then
1
Sm(a) = W

However if
1
a(t) = exp ( ~3 log(t) log(log t)), vt > 1,

then

log sy (a) ~ ™! as m — oo.

2.3.4. A probabilistic computation of a Mehta integral. Recall that GOE?, v > 0

no
is the Gaussian ensemble of symmetric n x n matrices A = (ai;)1<i j<n Where the entries

(aij )1 <i<j<n 2T€ independent centered Gaussian variables with variances
Ela} ] =2v, E[aj] =v, Vi, Vj <k (2.3.57)

As detailed in Appendix C.1, the normalized 1-point correlation function py, ,(z) of GOE;, is
the function py, : R — [0, 00) uniquely determined by the equality

%EGOEg[trf(X)] _/Rf(A)Pn,v()\)d/\a

for any bounded Borel measurable f : R :— R. For example, if f = Iz, B C R, then

[ peci

is the expected fraction of eigenvalues of a random symmetric matrix X located in B.
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One can show that for any bounded Borel measurable function function F' : Sym(R") — R
that is invariant with respect to the conjugation by orthogonal transformations we have

Ecore [F(X)] = an(v) /m F( Diag(A1,...,\n)) H 1A = A He—g Ay -+ dAn).
1<i<j<n i=1
=:Qn,v(X)
Then
po() = an(v)  Qual@ e A,

m >\2
Zm=Zm(1/2) := /Rm I =Xl e 2 ldh - dnl.
=1

1<i<j<m
The integral in the right-hand-side is known as Mehta integral. I will prove that

mmfl F(ﬂ) 37mmfl +3
Zm = (27)% ]1;[0 r(3;2) — 2% g F(%) (2.3.58)

This equality was first proved in 1960 by M. L. Mehta, [95]. Later Mehta observed that
this integral was known earlier to N. G. de Brujin [28]. It was subsequently observed that
Mehta’s integral is a limit of the Selberg integrals, [5, Eq. (2.5.11)], [61, Sec. 4.7.1].

The goal of this subsection is to provide a probabilistic computation of the Mehta integra.l
follow the approach in [117]. The strategy is easy to describe. We argue inductively. An
immediate direct computation shows that

Z, = / e 2t = (2m)'/2.
R

To compute the ratio % we observe that the eigenvalues of A € Sym(R™*!) coincide with

the critical values of the restriction to the unit sphere of the quadratic function & — (Ax, x).
The Kac-Rice formula will provide a description of the mean distribution of these critical
values which will lead to an explicit evaluation of % Here are the details.

For each A € Sym(R™*!) we obtain a quadratic function
1
qa: R™ SR, qA(x) = 5(14:13,33).
We denote by @ 4 its restriction to the unit sphere
5" = {@ e R, o] =1}

Above, (—,—) and || — || denote respectively the canonical inner product and its associated
norm on R7+1,

When A runs in the Gaussian ensemble GOEy, ,; we obtain a Gaussian function
O=0,4:5" =R

This is invariant under the natural O(m + 1)-action on S™. As shown in [105, Ex.1.20], the
function ® 4 is Morse for generic A, where genericity is understood in Baire categoric terms.

Lemma 2.3.15. The Gaussian function ® 4 is a.s. Morse.
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Proof. It suffices to show that the Gaussian section V® 4 of T'S™ is ample. Let @ € S™. If
Proj, : R™1 — R™*!

the orthogonal projection onto 7,.5™, then

V&4 (x) = Proj, Ax = Ax — (x, x)x.
The map

Sym(R™) 5 A Az ¢ R™H!

is onto and thus the map

Sym(R™™!) 5 A — Proj, Ax € T,,S™

is also onto, thus proving that the gradient V®4(x) is nondegenerate since the Gaussian
ensemble GOE,,, 11, is nondegenerate. O

Consider the spectral measure of A,
o= Z mult(A)dy.
A€Spec(A)
The discriminant measure of 2® 4 is
Da= Y. bop,() = (2Ba)4C[—, 4]
Vo 4 (x)=0

The critical values of 2® 4 are precisely the eigenvalues of A and the critical points are the
unit eigenvectors of A. The function is Morse iff A is simple, i.e., its eigenvalues are distinct.
In this case to each critical value of A there corresponds exactly two critical points. Hence

Dp =204 as..

Then for any Borel subset C C R we have
1
We will determine E[D4[C']] using the Kac-Rice formula (2.2.13) .

For ¢ € S™ we denote by Hesss(x) the Hessian of &4 at & viewed as a symmetric
operator T,S™ — T,S5". Here the Hessian is defined in the sense of Riemann geometry

Hessgy = V(V®y),
where V& 4 is the gradient of ® 4, i.e., the metric dual of the differential d® 4, and V denotes
the Levi-Civita connection of the round metric.

Denote by (z°,2!,...,2™) the canonical Euclidean coordinates on R™*!1. Since ®, is
O(m+ 1) invariant, the distribution of the random operator Hess4(x) is independent of « so
it suffices to determine it at any point of our choosing. Suppose that « is the north pole

m:n:(l,O,...,m)ERm+1.

Then T5,S™ = {2° = 0} and @, := (&',...,2™) are orthonormal coordinates on T;,S™. The
coordinates x, also define local coordinates on S™. More precisely the upper hemisphere

ST::{azESm; :c0>0}
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admits the parametrization

'~ x(z) = (2%(z.),2%) € S™, 2%(zs) = V1 — ||z
In these coordinates the round metric on S™ satisfies

gij (@) = 6ij + O Hac*||2) near n. (2.3.60)

In particular, the Christoffel symbols ng(m*) vanish at x, = 0. On the upper hemisphere we
will view ® 4 as a function of x,.

If A = (aij)o<i,j<m, then in the coordinates @, we have

1 1 & . .
@A(CE) = 5&00(1— ||:B*H2) +§Zajj(x3)2+ Z ajkxja:k,
j=1 0<j<k<m
15 1 — N2 gk
:§a00+52(ajjfaoo)(m) + Z ajrr’ v,
j=1 0<j<k<m
m .
dCI’A(ac*) r.=0 — Zaojdxj.
j=1
Since A € GOEy, ,, covariance kernel of ® 4 is
1 v
Ka(n,2) = E[@4(m)®a@)] = 1 (1~ ul? )Eady] = 2 (1~ 2. ]?).

Denote by A, the m x m matrix A, = (a;j)1<i<m. Note that A, € GOE},. Using (2.3.60)
and (??) we deduce that

Hessa(n) = Ayx — agoli,.

N

Since agp is independent of A, we deduce from (C.1.5) that Hesss(n) € g2 , where 85, is

the O(m)-invariant Gaussian ensemble defined by (C.1.3). If we set

Lii? 1= j)
Li; = /4;;( Hessa(n) ), Q;; = w;;i( Hessa(n)) = ,
J J( A( )) J J( A( )) {\/ﬁLij, i <
where ¢;; and w;; are defined by (2.3.21), then
E[LijLM] = 21)52']'5“ + U((Sik(sjz + 5ié(sjk)7 V1 <4,7,.k 0 <m. (2.3.61)

Note that V®4(n) = (ao1,- .., aon) is independent of ®4(n) and Hessa(n). The estimates
(2.3.60) show that, in the coordinates x, we have

ao1
Vou(n) = : and Hessg(n) = Ay — agolm,
ao,m
where A, is the m x m matrix A, = (a;j)1<i<m. Note that A, € GOE},.
Since A € GOE} ,; we deduce from (C.1.3) that

Var [®4] = vl (2.3.62)
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Set .
5a00
Dy(n ao1
W= ganon | =]
aom
Note that
Var [W] = Diag (5,20, 2v ). (2.3.63)
\_\WT—J

Clearly the matrix Var [W] is invertible, proving that ® 4 that ® is Jj-ample.

Denote by Hessy(n) the random symmetric matrix with variance given by the regression
formula

Var [I‘?SSA(TL)} = Var | Hess4(n) | — Cov [ Hessa(n), W] Var [W]_l Cov [ W, Hess(n) .
Set

Lij = £;;(Hessa(n) ), Qi := w;;(Hessa(n)),

and

Cijlk = COV[Qz‘ka]v 1<i<ij<m, 0<k<m.
Note that
and

1 1
Ciijo = §E[(am‘ — ago)aoo | = _51@[@(2)0} - _o.

If we write

Var [W]_l _ (tab)OSa,bgm’
then
- m 2
B[ ] = B[ Q@) Qu(@)] = 3 CijatasCrap = E[ Qs (2)%e() ] = ~CijioCirap-

a,b=0

For i # j L
E[QifY; | = E[Qii(x)Qj5(z) | — 20 =0,
E[EZ'LQZ] = 21}7
E[Q0k ] = E[Q(@)Qe(x) ], V1 <k <L

We deduce that L

Hessy € GOEY, . (2.3.64)

The regression operator
RHess ,,w = Cov [ Hess 4, W] Var [W_l] : R™! 5 Sym(R™)
is
wo

wq
— 72w0]lm.

Wm
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We set H =Hessy. Using the regression formula (1.1.19) we deduce

E[|Hessa(n)| |W(n) = (t/2,0)] (2.3.64)

EGOEmv [ | det( — Ut)| ]

Since 2® 4(n) = ago is Gaussian with variance 2v, we deduce from the Kac-Rice formula

(2.2.13) that, for any Borel subset C' C R, we have

B[94[C]] = [ palla[dt],

C
where

pa(t) = /ng[|HeSSA(m)| }2<I)A(a:) =t, VPy(x) = O]pv¢A(m)(O)dm

(2.3.62)

3. (27rv)m/2/ E[|Hessa()| | W () = (¢/2,0) | da
Sm

= (2mv) —m/2 E[|Hessa(n)| |[W(n) = (t/2,0) ] vol [ S™]

= (2mv) ™?vol [ S™ |Egomy [ | det(H — vt)]].
In the proof of Lemma C.1.1 we showed

mt1 w22 Ly
2 e 4v

Ecory, | det(H —vt)| | = (2v) Pm+1,0(vt).

m

Assume now v = 1. Hence

2 mt1 VA
Egop: [ det(H —t)|]] =eT272 7 12 ;Hpmﬂ,l(t)-

m

2
Since T'y[dt ]| = e~ T \/d%r we deduce from (2.3.65) that

Zm

E[D4[C]] = (27) ™25 vol[sm]z’"“/cpmﬂ,l(t)ﬁ.

Vim
On the other hand, we deduce from (2.3.59) that

(mi—l)E[@A[CH = Q/Cpm-i-l,l(t)dtv
so that
(277)_m/22m7+1 vol [S™] Z,ni1 _1/2
(m+1) Z,, UM =2
Using the fact that
vol [Sm] T i
m+1 ( 3)

we deduce

Zmt1 _ ( 2+ ) ) 2(2W)m:i(1477)1/2 _ 23/3F<L+3)

L e 9% 2

Since Z1 = (27)"/? we deduce immediately the equality (2.3.58)

m— 1

Zmzzll_[ g+1_22 HF<]+3)

J=1

(2.3.65)

(2.3.66)
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2.4. Higher momentums

As in previous section suppose that F : ¥ — U is an ample Gaussian C'-field, where U is a
real Euclidean space, ¥ is an open subset of the Euclidean space V and dimU = dimV = m.

2.4.1. A preview. For any Borel subset B C ¥ we denote by Z[B] = Z[B, F] the number
of zeros of F inside B. The question we will address in this section concerns the finiteness of
the various momentums of F'. The first nontrivial case has to do with the variance of Z[B].
Which conditions on F' will guarantee the finiteness of the variance of Z[B] when B is say a

box in ¥'7?

We approach this using a simple trick. Consider the random field
F\ Y x VYV = U x U7 (7)1,?)2) — (F(Ul),F(Ug)).

Note that Z[B]? = Z (ﬁ, B x B) so we may try to apply the local Kac-Rice formula to the
Gaussian field F. There is a an immediate obstacle on our way, namely, the Gaussian field
F fails to be ample along the diagonal
A= {(vl,vg) e ¥ v =uv }
since the U x U Gaussian vector ( F(v), F(v) )| is degenerate!
We are forced to remove the diagonal. We set 7.2 := 72\ A, B2 := B2\ A. Then

Z[B%F,] = z|B)* - Z|B] = Z[B|(Z[B] - 1) = (Z[B]),.

Above, for any z € R and k € N we denote by (z); the falling factorial®
k—1

(@) =a(z—1)- (@ —k+1) =[x -7

Jj=0

We will attempt to use the Kac-Rice formula for the random field F ly2. Tt is not clear yet
that this Gaussian field is ample, we hope it is, and apply formally the Kac-Rice formula to
deduce

E[2[B?] - E[ 2(B]]

— /BQEH det (F'(v1) - F'(v2) ) | || F(v1) = F(v2) = 0]ppuy)@r(e)(0)dvidvs. (2.4.1)

Recall that )

)=
\/det (27rVar [F(v1) @F(W)])

We see that as (v, v2) approaches (v, v), the Gaussian vector F'(vq) @ F(v2) approaches the
degenerate gaussian vector F'(v) @ F(v). Hence the variance of F(v1) @ F(v2) degenerates
as (v1,v2) approaches the diagonal so the term pp(,,)eF(v,)(0) is guaranteed to explode near
the diagonal. This raises the issue of finiteness of the integral in (2.4.1).

PF(v1)@F(vs) (0

Now that we are guaranteed a headache, let us recall that we still do not know wether
the Gaussian vector F'(v1) @ F'(v3) is nondegenerate if v1 # vo. Fortunately, under additional
assumptions of F' this will be the case.

5This is sometimes referred to as the Pohamer symbol
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In the next, warm-up, subsection we show that, under reasonable assumptions, the vari-
ance is finite. The key idea in the proof is the gauge invariance of the Kac-Rice density.

More precisely suppose that
vV:M—FE

is an ample random Gaussian section of the real vector bundle £ — M, where M is a smooth
manifold. Suppose thatnthe dimension of M is equal to the rank of E. Then, for any gauge
transformation (or linear automorphism) ¢ : £ — E, the random Gaussian section g(¥) is
also ample and we have a tautological equality of random measures

Z[- 0] = Z[ -, g(®)].

For illustration purposes suppose that M is the plane, M = R?, and F is the trivial rank
2-bundle. Then the section ®(x) = |z|>¥(x) over the punctured plane is gauge equivalent to
W, but the Kac-Rice formula suggests that the Kac-Rice density of ® might blow-up at the
origin since
p@(m)(o) = p\a:\Q\I!(x)(O) = ‘a"|74p\11(:v)(0)
On the other hand,
pu(@) = pa(@), @+ 0

since Z[S,\IJ] = Z[—,g(\I/)] = Z[—,@], for any Borel subset S C R?\ 0. The gauge
transformation g(x) = |z|?1ge desingularizes ® in the sense that ® = ¢gW¥ and ¢ is much
better behaved section.

This argument can be slightly generalized. Suppose that we are given two real vector
bundles Fy, B — M If ¥g: M — Ej is a Gaussian random section of the real vector bundle
FEy — M, and T : Ey — F; is a bundle isomorphism, then the Gaussian random section T'W

has the same zero set as Wy. However, with a bit of luck, the renormalized section T'Wy may
be better behaved and free of degenerations of the type mentioned above.

2.4.2. Variance estimates. It has been known for some time that under certain conditions
the number of zeros in a box of a Gaussian field F' has finite variance, [3, 16, 55, 66]. In
this warm-up subsection we use the ideas in the above references to obtain such estimates
for the variance in terms of the covariance kernel. Here an in the sequel

Suppose that U and V' are finite dimensional real Euclidean spaces of the same dimension
mand ¥ C V is an open set. If f: ¥ — U is a C*-map, we denote by f(k)(v) its k-th
differential at v € ¥. We view f*)(v) as an element of Sym* (V' U), the space of symmetric
k-linear maps V¥ — U.

Let F : ¥ — U be a Gaussian random field whose covariance kernel Kp is C%. In
particular, this implies that F' is a.s. C2.

For any box B C ¥ we denote by Zp the number of zeros of F'in B, i.e., Zp = Z[B, F].
Let 72 := 72\ A, where A is the diagonal. Define B2 in a similar fashion. Consider the
random field

F=925UaU, F(v,v)=F(vg) ® F(v1).
Note that
Z|F,B? = Zp(Zp —1).
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Suppose that F|p is 2-ample, i.e., for any v = (vg,v1) € B2 the Gaussian vector F(vo)® F(v1)
is nondegenerate. We deduce from the local Kac-Rice formula (KR) that E| Zp | < oo, and

E[ZB(ZB — 1)] = /;2 pg)(vo,vl)dvodvl,

where pg) is the Kac-Rice density

P (v, v1) = E[ | det F' (vg) det F'(v1)] | F(vo) = F(v1) = 0]y, 0, (0): (2.4.2)
Note that .
pﬁ(’uo,vl)a)

) — )
\/det (27 Var[F(vo) @ F(v1)])

SO Df(u, Ul)(O) explodes as (vg,v1) approaches the diagonal since F'(v) @& F'(v) is degenerate

for any v € ¥. Thus the function pg) (vo, v1) might have a non-integrable singularity along

the diagonal so [2129] could be infinite.

We want to show that this is not the case and a bit more. We will use the gauge-change
trick outlined in the introduction to his section.

Proposition 2.4.1. Fiz a box B C ¥ and r < dist(B,¥). Denote by S = S(r,B) the
compact set set

S={ve?; dist(v,B) <r }.
Suppose that F|B is C?, 2-ample and Ji-ample, i.e., for any v € B the Gaussian vector
(F(v), F'(v)) is nondegenerate. Define

wr : B2 5 R, wi(z,y) = | —y[" 2P (z,y).

There exists a constant C(m,vol[B],r) > 0, that depends only on m, vol[B] and r such that

3m—1/2

sup |wr(p) | < C(m7V01[B]’T)”:KFHCG(SXS)'

pEB2

(2.4.3)

In particular Var [ZB] < 00.

Proof. T will use a modification of the arguments in [16, Sec. 4.2]. For any vg,v; € B,
vo # v1, the Gaussian vector F'(vg,v1) = F(vo) @ F(v1) is nondegenerate. We denote by

PF(vo),F(v;) the probability density of F'(vo,v1).
We set

‘ -

r() = flor —woll, E(v) = - )(F(Ul) — F(vo))-

—~
S

Note that
F(v) =0<= F(v) = Z(v) = 0.
Denote by A(v) the linear map U? — U? given by

01 g I P [ 9 el ERC

Thus
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The gauge transformation A(v) desingularizes F. Denote by Z(v) the Gaussian vector
(F(v0),E(v)) -

The Gaussian regression formula implies that
E[|det F'(vo) det F'(v1)| | F(vg) = F(v1) =0]
= E[|det F'(vo) det F'(v1)] | Z(v) = 0].
Note that

1
PF(vg),F(v1) =
T det (2n VarlF(wo) & F(ur)))

1
" det AJ/det (27 Var[F(vn) & Z(v))))
We deduce that for any u € B2 we have

P2 (©) := r(v) ""E[ | det F'(vo) det F' (v1)] | Z(v) = 0] pry)azw) (0)- (2.4.5)

=7(v) """ PFwe)@Ew) (0)-

Lemma 2.4.2. There exists a constant C = C(m,vol[B],r) > 0 depending only on m and
vol[B] and r < dist(B,07) such that, for i = 0,1, and any v € B2

| B[ det F(u3)[?] Z(2) = 0] | < Clm, vol[B], )| Xz, 5 r(w)

Proof. It suffices to consider only the case 7 = 0 since
F(vy) =Z2(v) =0<= F(vn1) =Z(v) = 0.
Set

v=uv(v):= @(vl —wv), Z=2Z(v).

Let f(t) = F(vo + tv). Since F(v) is a.s. C? we deduce from the first order Taylor approxi-
mation with integral remainder that

F(vy) — F(v) = f(r) — £(0) =rf'(0 /f” t)dt = 0, F(vg) + /f”t (r—t)dt.

~~

Hence
r0,F(vog) = F(vg) — F(vy) = W
Hence, for any p > 1 we have
E[|[ro,F(v)P | Z =0] =E[|F(v) — F(v1) —W|P|Z=0] =E[|[W|’| Z =0].

The random variable W is a centered U-valued Gaussian vector. We deduce that for any
p > 1 we have

|E[|0,F(vo)|P| Z =0]]| = T%IE[ WPz =0]"
Note that . )
Wi< [ 1 @lot =i < FIPleas)
We deduce that

op

4
)
| Var [W] ], < ZE[IFIeqs)].



2.4. Higher momentums 127

Using Corollary 1.1.30 we deduce that
2
E[[W[?|Z = 0] < Cm.p)rE[||F 12z ],

where C(m,p) is a universal constant that depends only on the dimension m and on p. We
will continue to denote by the same symbol C(m,p) various positive constants that depend
only on m and p. We deduce

|E[8,F(v0)| Z=0]|" < C(m,p)r’E[ HF”%Q(B) ]p/2. (2.4.6)

Extend v to an orthonormal basis {v = ey, es,...e,} of V. Using Hadamard’s inequality
[74, Cor. 7.8.2] we deduce

| det F'(vo) | = | det (De, F(v0), Dey F(v0), - - -, De,, F(v0) ) |

< |9, F(vo) | [T | 9 F (vo) |-

k=2
Using Holder’s inequality we deduce
m
E[| det F'(v) |*|Z =0 ] < [ E[|0e Flwo) [P | 2 = 0] ]
k=1

For £k =2,...,m we have
Var [ e, F(vo) | Z = 0] < Var [ 9e, F(vo) |

and

| Var [9e, F(v0) ] ||, < Cm)|KFllc2(mx)-
Using again Corollary 1.1.30 we deduce that for £ = 2,...,m we have

2m L
E[| 0, F(vo) | [Z=0]" < C(m)|KFllo2(pxp)-
Using (2.4.6), we deduce that
E[| det F'(vo) || Z=0] < C(m)r 2E[I1F N2 () NIKFIE By -

Invoking (1.2.4) we conclude that

E[[|F 22 ] < Clm,vol[Bl,r)|I K |[¢o(sxs):
This completes the proof of Lemma 2.4.2. O

Lemma 2.4.2 implies
E[|det F'(vg) det F'(v1)| | Z(v) = 0]
<E[| det F'(vo) |*|Z(w) = 0] |"*E[| det F'(v1) || Z(v) = 0] |'/*
< C(m, vol[B, 1) || K [ gisyr (0) 72
Hence ) U
P (v) < COm)||K || fragdasyr(@)? ™ SUD Pr()3=(e) (0) (2.4.7)

Moreover
SUP Pr(vy)az(w) (0) < CM)|IKIEE 5y py < COM) K| E sxs)-

This completes the proof of Proposition 2.4.1. O
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We can extract from the above proof a more precise result. For any box B in a Euclidean
space V we set

q(B) ::/ r(v)* " dvodv .
B2

Note that q(B) is a translation invariant and for any ¢t > 0, q(tB) = t"*2q(B). In particular,
if B is is the cube B. = [0, ¢|™, then

m—+2

q(B.) = q(B1)c™t? = C(m)q(B1) vol [ B.] ™ .
Corollary 2.4.3. Let V be an open subset of V. For each r > 0 there exists a function
§: (0,00) = (0,00)

with the following property: for any mg > 0, any box B C ¥ and any Gaussian field
F:QxV—U such that

dist(B,0%) <,

the covariance kernel Kp is C,

the restriction of F' to B is 2-ample,
and || X o

sxs) < Mo

we have
Hp%?, HLl(BxB) < 8r(mo)a(B).
O

Remark 2.4.4. One can show that if F is a.s. C?, then the function wp in Proposition
2.4.1 admits an extension to a continuous function on the radial blow-up of B? along the
diagonal. a

2.4.3. An analytic digression: Kergin interpolation. The one-dimensional case of this
technique goes back to Newton.

Suppose that f : R — R is a continuous function and 1, ...,x, are distinct points on
the real axis. We define inductively the divided differences fx1], flz1,x2],..., flz1,...,2p]
by setting

f[x} :f(x)v Vl’ER,
fl1] = fl2]

floy, xo] = = flz2, 1],
Tr1 — T2
Flat, @, 5] = fler, mo] — flwa, ws]  flas, wa] — f[331,332]7
xr1 — T3 T3 — 1
f[x17x27 cee )xkuxk-l-l] = f[xl’ — ’xk] — f[x2’ — 7xk+1] cee
Tl — Tg+1
For simplicity we will write = (z1,...,2p) and f[z] = f[z1,...,xp]. For distinct z1,...,z,
we have the following more explicit description (see [99, Sec. 1.3])
n
T
Flotse . ] = Fzy)

o My — )
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If f € CP, then we have an alternate integral representation of f|xzo,...,z,] called Hermite-
Genocchi formula

1 S92 Sp—1
flxo,z1, ..., xp) :/0 dsl/o d53~-/0 f(p)(y(g))dsp, (2.4.8)

where
y(s) =y(s1,...,8p) = (1 —s1)xo+ (s1 — s2)@x1 + - + (Sp—1 — Sp)Tp,
1>s12>2--2>8,2>20.
We refer to [24, Thm. 1.9] or [99, Sec. 16] for a proof. Note that this formula assumes that
f is p-times differentiable. We can rephrase (2.4.8) in more revealing terms as follows.

Consider the simplex

p
Ay = { (tost1,...,tp) € [0,1]PTL; Ztk =1 }
k=0

The symmetric group &,41 acts on A, by permuting the variables ¢, ...,t,. Moreover, A,
is equipped with an Euclidean volume element vol[ — ] induced by the Euclidean inner
product. The volume element vol [ — ] is invariant with respect to the action of &,

We view A, as graph of the function tg =1 — ({1 +--- +t,). We can use (t1,...tp) as
local coordinates and we deduce

vol [dty -+ - dt, ] = /1 + |Vito]2dty ... dt, = \/p + 1dt; ... dtp.

We have
p+1
vol [Ap} =+/p+1 /t1,...,tp20 dty---dt, = P
bttt tp<1
_1
p!
Let .
dt| := ol |dt| =dt;---dtp,
Mp[ ] \/mv [ ] 1 P
so that ,up[Ap] = ﬁ. Given z = (zg, x1,...,7,) € RPT we define

P
oz Ay = R, 0y(t) = Zthk.
k=0

If we make the linear change in variables s = t,_p41 +---+1t,, 1 <k <p, tg =1 — 51, then
for any continuous function u : R — R we have

/ U(O'g(t) )Mp[dt] = /h S0 U(O-Q(t) )dtl e dty
& Y,

1 S9 Sp—1
:/ dsl/ d33'~/ u(y(s))dsy,
0 0 0

y(s) = (1 —s1)xo+ (s1 —s2)x1 + -+ + (sp—1 — Sp)xp
Then (2.4.8) can be rewritten as

flz] = /A f(p)(ag(t) )Mp[dt]- (2.4.9)
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The measure j, is invariant under the action of the symmetric group &,41 so the right-
hand-side of the above equality is symmetric in the variables xzg,...,z,. It also depends
continuously on them and it is well defined even if some of them coincide!

This allows us to define flxg,z1,...,zp] even if the numbers zy,...,z, are not pairwise
distinct provided that f € CP. For example,

f[I1,$1] = lim f[gclvx?] = f/(xl)v
T2—T1
fla, 1] — (1)
Tro — 1
More generally, if the function f(z) is C*, then the function g(z) = f[z, x9] is C*~1 and
flz1, x2] — flxs, z2]

flw1, 22, 23] = glo, 23] = .
xr1 — I3

fler, xy,20] =

In general, for distinct z, z1, ..., zp, we have the equality (see [99, Sec. 1.1])

p—1
f@)=flz)+) (& —a1)- (@ —zj) fler, - 2]
=1 (2.4.10)

@ —z1) (= xp) flo, 1, .. 2p).

The term Py, .. ., f(z) is a polynomial of degree < (p — 1) in 2 and the above formula is
called Newton’s interpolation formula. The above equality shows that

le,...,mpf(xi) = f(xz), Yi=1,...,p.

As mentioned earlier, the divided difference f[z1,..., x| is well defined even if the numbers
x1,...,Tp are not pairwise distinct and thus (2.4.10) holds for any =, z1,...,x, € R, provided
that f € CP. Note that if 21 = -+ = zy,, then (2.4.10) implies that

1
aI;P$1,...,a}mf(xl) = Eaff(xl) YO0 < k < m.

If we set
[:L’o}m = Xg,...2Q,
then
1 G i1
P[xo]m(z)ZZ(-_1)|f (l’—fL‘o) :
=1 T

is the degree m — 1 Taylor polynomial of f at zg.

Let us observe that for f continuous and injective
z: I, :z{l,...,p}—>]R

the polynomial () = P, f is the Lagrange interpolation polynomial, i.e., the unique polyno-
mial @ of degree < p — 1 such that

Qx;) = flay), Yi=1,...,p.
This proves that P, is a linear projector, i.e.,

Pif=P,f €eR[z], VfeCR),
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and that P, is invariant under the action of &, on RP. Moreover, for any I C I, we have

P.f(z;) = f(zg).

The continuous dependence z — P, shows that, for any x € R? and any I C I, the map P,
is a symmetric linear projector of CP~1(R), i.e., for any permutation ¢ € &,

Pf = Pyf = Py f, ¥f € C""\(R), (2.4.11)
and
P, =P,,. (2.4.12)
Formula (2.4.9) is the basis of the higher dimensional generalization of the above classical
facts, [81, 98|.

Fix an m-dimensional Euclidean space V and ¥ C V an open conver subset. Given a
function f € CP(¥) and 1 < k < p, the k-th differential of f at v € ¥, denoted by D f(v),
is a symmetric k-linear form on V',

D*f(v) € Symy,(V).

Given v = (vg, v1,...,v) € Y51 we define
) ) ) k:

k
oy = 0'5 Ay =Y, ou(t) = Ztivi,
1=0

and
b= [ DFF(oule) [ at] € Symy (V)
k
Given vg,v1,...,v, € ¥ we define the Kergin interpolator of f to be the polynomial of degree
<pinu,
P
Py vy, f(v) = f(v0) + Z flvos .-, vg] (v — Vg, ...,V — Vp_q ) (2.4.13)
eSym, (V)

For example, when p = 1 we have

1
Py, f(v) = f(vo) + flvo, v1](v —vo) = f(vo) + /0 w—vo) f (1 = t)vg + tvy )dt, (2.4.14)

where 9, denotes the directional derivative in the direction w.

Suppose that f is a ridge function, i.e., there exists a CP-function g : R — R and a linear
form & € V* such that f(v) = g(§ (v) ) Informally, a ridge function depends on a single
linear coordinate. Then

flvo, ..o =g, &), & =¢&r), 0<k<p.
In particular,
Py, f(V) = Pgyg,9(2), ©=¢&(v)
Thus
Po,...opf(vr) = f(vr), YO<E<p, (2.4.15)
for any function f that is a linear combination of ridge functions. The linear span of

ridge functions contains the space of polynomials (see [24, Lemma 9.11]) which is dense
in CP(¥,R), so (2.4.15) holds for any f € CP(¥).
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A similar argument shows that Py, . v, f is symmetric in the variables vg, v1, ..., vp.
Given ¢ < p and v = (vg, v1,...,vp) € ¥PH we set [v], := (vo,...,v,). We have
P, Py = Py, (2.4.16)

Indeed, this is true when d = 1 and thus it is true for arbitrary d and f a ridge function.
The conclusion follows by linearity and density. In particular, when ¢ = p the above equality
shows that P, is a projector. For this reason we will also refer to P, as Kergin projector.

Let p > 1. We denote by Poly, [V] the vector space of polynomials maps V. — R of
degree < p. Define

mg - YPTL S N, my(vo, v, - . ,Mp) = #{ ky wp =u; }
We refer to m;(v) the multiplicity of v; in v = (vo,...,vp), i.e., the number of terms of the
sequence of points vy, ..., v, equal to v;. We have the following result, [81, 98].

Theorem 2.4.5. Let v € ¥PTL. The map
P,:CM(V)— Poly,, [V] cCCP(7), [ Pyf,
18 a linear continuous projector, i.e., Pi = P,. It depends continuously on w. Moreover, for
any 1 =20,1,...,p and any multi-index o € Ng such that |a] < m;(p) we have
0Py f(v;) = 0% f(vi). (2.4.17)
O

The Kergin interpolator extends in an obvious way to maps F := CP(¥,U), where U is
a Euclidean space of dimension n. We will denote by Poly, [V, U] the space of polynomial
maps V — U of degree < p. More precisely

P ePoly, [V, U] <=V e U*, &(P)ePoly, [V].

For any v € ¥P*1 the interpolator P,G is the unique polynomial map ¥ — U of degree < p
such that, for any linear functional £ € U* we have

f(PgG) = ng(G)'

More explicitly, using Euclidean coordinates (v',...,v™) on V and Euclidean coordinates
(ul,...,u™) on U we can view F is an n-tuple of functions
Gl
G = : ,
Gn
and then
pP,G!
P,G = :
pP,G"

A differential 1-form on ¥ can viewed as a map ¥ — V¥, and in particular, we can speak of
the Kergin interpolator of a differential 1-form.

We have the following result of Gass and Stecconi [66, Lemma 2.5] stating that the Kergin
interpolator of an exact form is also exact.
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Lemma 2.4.6. Let u* = (v§,v,...,v3) € ¥P*and f € CPTI(¥). Then for anyk =0,1,...,p
and any i,j € {1,...,m} we have

Oy (Pu0yif ) = 0,4 (Ppedyi ).
In other words the polynomial vector field
Vi, o, Vi) = PV f = (Py0y f, ..., Py0y, f)
is a gradient vector field, i.e., there exists a polynomial h € Ry 4 [ V] such that Vh = PV f.

Proof. We first prove that the lemma is true for ridge functions. By choosing the Euclidean

coordinates (u',...,u?) carefully this means that f(u) has the form f(u',..., u?) = f(u).
In this case the Lemma is obvious since P, f it is a polynomial of degree p in u!. The general
case follows from the density in CP*1(U) of the linear span of ridge functions. O

2.4.4. Multijets. In this and next subsection we will described the desingularization pro-
cess devised by Ancona and Letendre and explain how it can be used to provide sufficient
conditions that guarantee the finiteness of higher momentums of Z[B, F)|. It is based on the
concept of multijet introduced by Ancona and Letendre [4].

In truth, we will present only a special case of their construction that suffices for our
purposes. To keep the flow of arguments uninterrupted we will omit the proofs of certain
technical results from real algebraic geometry. These proofs use “standard”® facts from real
algebraic geometry. A reader familiar with this subject would have little trouble accepting
these results.

As in the previous subsections U,V are real Euclidean spaces of the same dimension m.
Fix k € N, k£ > 2. For any n € N we set

L, :={1,...,n}.
For any finite set I we have the space V! consisting of maps I — V and a configuration
space ’
er(v)ycvt

consisting of injective maps I — V. For I = I}, we set C,(V) := Cp, (V). We denote by A
the “fat” diagonal
A=Apy=VFE\ ey V).
Let 2¥ = P*(V) denote the space of polynomial maps f : V — R of degree < k — 1. Note
that
P/ dimV 41
dim P*(V) = < , )

We can equip P¥ with the inner product
(P.Q)= [ PWQEITy[dv], ¥P.Q € ?*
\%
where I'y, is the canonical Gaussian measure on the Euclidean space V.

61 include Hironaka’s resolution of singularities theorem among these “standard” facts.
7Conﬁguration of distinct points in V' labelled by I.
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Each v € €3 (V) defines a surjective map
Ev,: 2" 5 RY fes (f(o1),..., f(or)).

We denote its kernel by K,. It is a codimension-k subspace of 2% We denote by Gry, the
Grassmannian of codimension-k subspaces of 2. We thus have a smooth cokernel map map

cok : 6,(V) — Grg, % > v+ cok(v) = K; e Grt.
Set
L,:P—>RF L,= (EVQEVZ)*U2 Ev,.
As explained in Lemma 1.1.35, the map Lj : R* — Pk is an isometry whose image is cok(v).

Let T — Gry, be the tautological vector bundle whose fiber over S € Gry is S. We
denote by Projg the orthogonal of P onto S.

Denote by B%k(s) the trivial bundle over (V') with fiber R¥. The maps Ly define vector
bundle isomorphism
L* : Ry — cok* T*.
Equivalently, we have a commutative diagram

k L
Reryy —— T*

(gk(V) —_— Grk

cok
where the vertical maps define vector bundles and, for each v € €*(V'), the induced map
Ly :RY — T’éok< ) = cok(v) = K is a linear isometric isomorphism.

We denote by ¥ the graph of cok, ¥ C %(V) x Gr¥. We have a commutative “roof’
X

N

(V) Gr”

cok

where 7, II are the natural projections.
We denote by S the closure of ¥ in V¥ x Gr¥. We have a natural projection
Y Vk7
that is algebraic in nature. We can be more precise [4, Sec. 5.1].
Proposition 2.4.7. The following hold.

(i) X is a smooth real algebraic manifold and the projection m : ¥ — €,(V) is a
diffeomorphism.

(ii) S is a real algebraic variety and the map m : Yo VFE s proper and surjective.

(iii) The singular locus of & is contained in A : 771(A) = £\ %, where we recall that
A € V¥ denotes the “fat” diagonal.

O
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Invoking Hironaka’s (embedded) resolution of singularities theorem one can prove the
following result, [4, Sec. 5.1] or [38, Thm. 6.37].

Theorem 2.4.8. There exists a smooth manifold W and a proper smooth map
R:W — VFx Gr*
with the following properties.
(i) S = R7Y(E) C W is smooth.
(ii) dim W = dim V* x dim Gry, dim S = dim%;(V) = km = kdim V.

(iii) The set W* =W \ R (€, x Gry ) is open and dense in W and the restriction of
R to W* is a diffeomorphism onto C, X Gry.

(iv) The set X* := R™(X) is open and dense in 32 and the restriction of R to R~ (Z)—=3%
1$ a diffeomorphism onto 3.

(v) The map 7t := mo R : S — VF is smooth and proper. We will refer to the set
A :=77Y(A) as the exceptional locus.

O

We set 7 := 7o R and II = II o R so that we have a commutative diagram

3
7N
vk 2% I GrF
The manifold 3 can be viewed as the graph of a multivalued map
cok : o 1: V¥ -5 Gr
whose restriction to €% (V) is the map cok.

The pair (f), R) with the above properties is called a resolution of cok and is not unique.
We fix a resolution and we denote it by (€%, R). We set

T :=moR, ‘KA,::%?;C\A,
and we can identify ‘KA,: with €% (V') using the diffeomorphism 7 : ‘57;“ — %). For any v € VP

we will denote by © a point in #~!(v) € CK;. If v € €,(V), there is only one ¢ € % such that
m(2) = v.
Pulling back T* via I we obtain a rank k-vector budle over ‘é,
My = 11(TF) = G,

The vector bundle .#}, is the bundle of k-multijets. The fiber of My over v € %?;C is

M (8) = cok (#(2) ) = Kz
To a function f € C*(V') we can associate a C''-section of the trivial bundle @k& (see page
iii) namely the family of Kergin projectors

Cé]; SV Pﬁ@)f e 7"
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This projects to a C! section ug[f] of the bundle of multijets .4,
1k f1(2) = Brojp ) Paca)f € My(2).
Note that for any v € €*(V') we have
Evy(f) = 0= pylf] () = 0.

More generally, given a finite dimensional Euclidean space U we have a space P*(U) = P*(V,U)
of polynomials maps V' — U of degree < k — 1. For each v € V* we have a surjection
Ev, : P*(U) — U*,

with kernel K,(U). This is a subspace of P*(U) of codimension kdimU. We denote by
cokys(v) its orthogonal complement in P*(U). Denote by Gry(U) the Grassmannian of
subspaces of dimension kdim U in P¥(U) and by T*(U) — Gry(U) the tautological vector
bundle.

We have a cokernel map
COkU : (fk — Grk(U)
with graph ¥ C €, x Grg(U). Fix a resolution (CKAk, fR) of cokys as before

‘We obtain a trivial vector bundle

PHU) . = (PHU) x G > G),

and a bundle of multijets

M (U) =11 (TH(U)) — @’“(U)%Ak.

The fiber of #},(U) over v is
M (U)(2) = coky (7(2) ).

To a Ck-map F : V — U we can associated a multijet j[F]. This is a C'-section of the
multijet bundle defined by

pk[F(2) = Brojg ) Page) (F)-
Note that
dim%,(V) = kdimV = km, rank #,(U) = km

The map F' defines a map
PR vk S UR Py, o) = (F(or,. .. Flo) ) € UR
Observe that if v € €, € V¥, then
Ev,(F**) = Ev, (P,F).
Thus, over €, the map F** and the map
v Up(v) = Ev, (P,F) e U
have the same zero sets. Note also that ¥p(v) =0 iff P, € K, that is, iff
F*k(p) := Projyyy PuF = 0.
Thus, over €, the maps F** and Fxk have the same zero sets. By definition,

k[ F)(2) = FX*(#(2)).
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The map 7 restricts to a bijection
{(1(F) =0} NG — {F** =0} NG
In particular, if dimV =dimU and B C V is a box, then
Z|[BE, F*) = Z[# Y(BF), u(F)].
Let us observe that we have a metric isomorphism of vector bundles
J1:U" 1 gy = Mp(U) ‘ﬁfl(Bic)’
induced by the surjective morphism of product vector bundles,

Ev,: 2"U) ., — Uk, 9= ((EvyEv))/?Ev, )", v=#().

The bundle isomorphism J~! := M (U) | B Uika is the desingularizing renormalization
we mention at the end of Subsection 2.4.1.

2.4.5. Higher momentums. Suppose that
F:(Q8P)x¥ —=-U, (wv)— F,(v)eU,
is a U-valued Gaussian random map. We assume that the probability space (22,8,P) is
complete and the map (w,v) — F,(v) is measurable.
The description (2.4.13) of the Kergin projector and the measurability assumption on F’
show that (w,v) — P,F, € P¥(U) is a well defined C! Gaussian field.

Example 2.4.9. Suppose that £k = 2. Then
1
PQ(F)(U) = F(Uo) + F[vo,vl](v - ’UO) = F(Uo) —+ / 8(1)71;0)F( (1 — t)UQ + tvg )dt.
0

If vo # v1, ¥ = [[v1 — vol|, ¥ = L(v1 — vp), then

1 1
F[vg,vl](u):/o 8,,F(vg—|—t(v1—v0))dt:/0 Oy F (v + trv )dt

= 1/(: %F(vo—l—su)ds: %(F(m) — F(vg)).

r

We recognize here the vector Z(v) we used in the proof of Proposition 2.4.1. Note that
F(Uo) = F(Ul) = 0<:>F(’U0) =0= F[Uo,vl]
In this case P?(U) consists of affine maps
v P(v) =ug+Tv, T € Hom(V,U).
Then
EVEP = (u() + Tvg, u1 +T1)1)
The
PeKy,<=Tvy=Tvi =—ug, (vi —vg €kerT, Tvy= —up

The kernel K,(U) can be identified with (v; — vo)* ® U, where (v; — vg)* denotes the
orthogonal complement in V' of the line spanned by v; — v9. We have a natural isometric
isomorphism U* — K, (U)*. O
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Lemma 2.4.10. Let k > 1. Suppose that V is an open, convex subset of the Fuclidean space
V and F : ¥ — U satisfies the F is a.s. C* and Jy_1-ample. Then for anyv € ¥ there exists
an open convex neighborhood O, of v in ¥ such that the restriction of F to O, is k-ample.

Proof. We set

W]k == (v,...,v) € VX
k

Then the Gaussian vector described by the Kergin projector Py, . (F) is nondegenerate be-
cause it coincides with the degree k —1 Taylor polynomial of F' at v and this is nondegenerate
as a Gaussian vector since F'is Jj_i-ample.

Since P, depends continuously on v we deduce that there exists an open convex neigh-
borhood O, of v in ¥ such that, for any v € OF, the Gaussian vector P,(F) is nondegenerate.
Since the evaluation map

Ev, : P*(U) — U*, Evy(P) = (P(v1),...,P(vg)),
is surjective we deduce that the restriction of F' to O, is k-ample since

Ev, (Py(F)) = (F(v1),...,F(v)), Yo e ¥\ A.

In the remainder of this section I will assume that F is C* and J,_i-ample.
The thin diagonal of 7%, denoted by Ay, is the subset
Ag ::{ye"//k; v1:~--:vk}.
Equivalently, Ag is the image of ¥ in #* via the diagonal map u > [u]g. Set

0:= ] ok

veY

The set O is an open neighborhood of the thin diagonal and, for any v € O, the Gaussian
vector P, (F') is nondegenerate.

The multijet random section p[F] is a.s. C1. For any o € O := #71(0) the Gaussian

vector ui[F](2) is nondegenerate as the image of the nondegenerate vector P,(F), v = 7(2),
via the linear surjection 2*(U) — coky (v).

Using the global Kac-Rice formula (2.2.15) we deduce that for any compact set
K cO:=a"10),

the number of zeros of ui(F') in K has finite mean, i.e.,
E[ Z[K, u(F)]] < .

Suppose that B is a small box, i.e., a box contained in some O,. Then B*¥ C O and the set
BF:=#"1(BP) C O

is compact. Rercalling the falling factorial notation, (z)y = z(z—1) -+ (z —k+1), we deduce

B[(Z(8.11),] = E[Z(F*7. B)]

— E[ Z(up[F,7 1 (B?)) ] <E[Z(p[F], BP)] < oo.
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In general, for any box B C U there exists a sufficiently fine subdivision B;);c; so that each
box of the subdivision is small. Bulinskaya’s Lemma implies that
Z[B,F| =) _Z[B;,F] as,
el
and we conclude that Z[B, F] € L* for any box B C U.
We have thus proved the following result.
Theorem 2.4.11. Let k € N. Suppose that U,V are real Euclidean spaces of the same

dimension, ¥ C V is an open set and F : ¥ — U is a C* Gaussian field satisfying the
Jr_1-ampleness condition

k—1
for any v € ¥V the Gaussian vector @F(k) (v) is nondegenerate. (2.4.18)
=0
Then for any box B C ¥ we have Z[B, F| € L*. 0

Corollary 2.4.12. Let k € N, k > 1. Suppose that V is real Euclidean spaces of dimension
m, ¥ CV isan open set and ® : ¥ — R is a C*¥T1 Gaussian field satisfying the Ji,-ampleness
condition

k

for any v € ¥ the Gaussian vector @F(j)(v) is nondegenerate. (2.4.19)
j=0

Denote by €[B, ®] the number of critical points of ® inside the box B. Then €[B,®]| € LP.O

Remark 2.4.13. (a) The proof of Theorem 2.4.11 extends to the case of random variables

Z[‘PvF] = Z SO(U)> ZBS Cgpt(nj/)
F(v)=0

They are L* if the assumptions of Theorem 2.4.11 are satisfied.

(b) L. Gass, M. Stecconi [66] have given an alternate proof Theorem 2.4.11 that avoids the
usage of Hironaka’s resolution of singularities theorem, but also relies in a veiled form on the
idea of multijet.

(¢) The multijet bundle described in this section is a simplified version of the construction of
Ancona and Letendre, but it is based on the same technique they introduced in [4].

The random multijet p;[F] we described above is nondegenerate only on an open neigh-
borhood O of #71(Ap). It is possible that this neighborhood does not contain the entire
exceptional locus A = 771(A).

The more sophisticated multijet constructed in [4] is nondegenerate over an open neigh-
borhood of the exceptional locus. This allowed the authors to prove the more refined result,
namely, that the expectation of k-th combinatorial momentum of the random measure

Z[-, F]= Y &
F(v)=0

(see [4, Sec. 6.3]) is a Radon measure over UP.
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The small box localization trick has allowed us to bypass that more sophisticated mul-
tijet construction, but we proved an apparently weaker result, namely, for any compactly
supported continuous function ¢ on U the random variable

Zlp, F| = /Vgo(v)up[dv]
is k-integrable. However, as shown in [4, Prop. 6.25], these properties are equivalent. O

Example 2.4.14. Fix an even Schwartz function a € $(R) and consider the isotropic Gauss-
ian function ®, on R™ introduced in Example 1.2.35. Its spectral measure is

1 2

pal d¢] = gmallel) de.
As we have seen in Example 1.2.35 this function is a.s. smooth, k-ample and Jg-ample for
any k € N. For any box B C R™ we denote by &€,[B] the number of critical points of ®, in

B. We deduce from Corollary 2.4.12 that €,[B] € LP, Vp € [1,00). O

2.4.6. Some abstract ampleness criteria. We proved that the number of zeros of a
Gaussian map has finite k-th momentum assuming two things: the map is C*¥ and Jj_-
ample. The goal of this subsection is to describe some simple guaranteeing various ampleness
properties of Gaussian fields. We begin we an abstract technical result that will be be our
main tool for detecting ampleness.

Proposition 2.4.15. Suppose that U is a Banach space with norm || — ||, T is a compact
metric space N € N and

G:UNXT —1[0,00), (u,...,un,t)— Gui,...,uy,t) € [0,00)
is a continuous function. We define

Gy :UN = [0,00), Gi(uy,...,uy,t):= Itni%lG(ul,...,uN,t).
€

Suppose that there exist v1,...,vx € U such that G.(v1,...,on) = 19 > 0. Then, for any
r € (0,79), there exists € = e(r) > 0 such that

Yui,...,uy €U, Yi=1,...N, |ui—uv| <e= Gi(uy,...,un) >r.

In particular if
UycUyC---

18 an increasing sequence of finite dimensional subspaces of U whose union is a dense subspace
of U, then there exists v € N and

Ul yy--- s UNpy € U,

such that G*(ulﬁy, ceey qul,) > 0.

Proof. We argue by contradiction. Suppose there exists 1 € (0,79) and sequences in U

(iw),epp ©=1,..., N,
such that
lim ||u;, —vi]] =0, Vi=1,...,N,
V—r0Q
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and
G*(ul,lh ) uN,l/) < 1, V.
Next choose t, € T such that
G(Ul,ya cee ,UNJ,,t,,) = G*(Ul,ua cee 7uN,l/)
Upon extracting a subsequence we can assume that ¢, converges in T' to some point ¢o,. Then

r > liminfG*(uLy, .. ,uN,V) = liminfG(uLy, ... ,uNy,,,tV)
V—00 V—00

:G(Ul,...,vN,too) > 1o >T1.
|

With T a compact metric space as above, let E — T be a rank r topological real vector
bundle over T' equipped with a continuous metric h. For ¢ € T' we denote by | — |; the norm
on the fiber E; induced by h. The space C°(E) of continuous sections E is a Banach space
with respect to the norm

ue C(E).

lull := sup | u(?) [,
teT

Definition 2.4.16. An ample Banach space of sections of E is a Banach space U C C°(E)
continuously embedded in C°(E) such that there exist vq,...,vy € U such that
VteT, span{u(t), u € U} = F.

Let £ € N. We say that the Banach space U is k-ample if for any distinct pointsty,...,tx € T
the map
Usu—u(t)®--Pu(ty) € By, ®--- @ Ey,

is onto. O

Example 2.4.17. The space C°(E) is a k-ample Banach space of continuous sections of
E — T for any k € N. If T is a compact smooth manifold and £ — T is a smooth vector
bundle, then each of the spaces C*(E), ¢ € N, is a k- ample Banach space of sections of F
for any k£ € N. O

Corollary 2.4.18. Let E — T be a real metric vector bundle over the compact metric space
T Suppose that U C C°(E) is an ample Banach space of sections
[]1 C U2 .

s an increasing sequence of finite dimensional subspaces of U such that

Us = J U

veN

is dense in U. Then there exists v € N, for any t € T, the evaluation map
Ev;:U, — E; is onto.
Proof. Using the compactness of T and the openess of the surjectivuty condition we can
find vq,...,vxy € U such that
vt e T, span{v(t),...,un(t) } = Ey.
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For every uq,...,uny € U and t € T define

N
Sul,...,uN,t : RN — Eta Sul,...,uN,t(a:) = Za:k:uk(t)
k=1

and
G(u1,...,un,t) = det (Sul,nwuN,tS:l,...,uN,t) > 0.
Note that
span { uy(t),...,un(t) } = By <= G(uy,...,un,t) > 0.
Thus

G(ui,...,un,t) >0 <= Ev;: span{ul,...,uN} Cc U — E; is onto.
The resulting map G : U™ x T — [0, 00) is continuous and, using the notation in Proposition
2.4.15,
G*(vl, . ,UN) > 0.

Using Proposition 2.4.15, we deduce that there exists v € N and u1,,...,un, € U, such
that

G*(Ul,m ey uNy,,) > 0.
Hence
Ev; : span{ul,...,uN} CcU — E;isonto, VteT.
A fortiori, this implies that
Ev;:U, — E;isonto, VteT.
O

Corollary 2.4.19. Let E — T be a real metric vector bundle over the compact metric space
T. Suppose that U C CY(E) is a 2-ample Banach space of sections, Uy C Us--- is an
increasing sequence of finite dimensional subspaces of U such that

UOO:UU,,

veN

is dense in U. Then, for any open neighborhood O of the diagonal A C T x T, there exists
v eN, for any (t1,t2) € T?\ O, the evaluation map

Evy 4, : Uy — Ey, @ Ey, is onto.

Proof. For t € T? and u € U we set
u(t) == u(t1) ® u(te), Er= E, & Et,, Evi(u) = u(t).
Using the compactness of T \ O and the openess of the surjectivity condition we deduce that
Juq,...,vy € U, such that V¢ € T? \ O, span { vi(t),...,on(t) } = E}.

For every ui,...,uy € U and t € T? define

N
Suunt RY — By, Su,.unt(®) = ka’uk(t)
k=1

and
G(ul,...,uN,z) :det(Sul,”_MNiS* > 0.

UL, UN L ) -
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Note that
span { ui(t),...,un(t) } = Ey <= G(uy,...,un,t) > 0.
Thus
G(ui,...,un,t) >0 <= Evy: span{ul,...,uN} C U — E; is onto.
The resulting map G : U™ x (T2 \ (‘)) — [0,00) is continuous and, using the notation in
Proposition 2.4.15, we have G« (v1,...,vn) > 0.
Proposition 2.4.15, shows that there exists v € N and w1 ,,...,un, € U, such that
G*(Ul,m R 7UN,V) > 0.
Hence
Evizspan{ub...,uN} Cc U — L is onto, V§ET2\O.
A fortiori, this implies that
Ev, : U, — E; is onto, Vt € T?\ 0.

|

Proposition 2.4.20. Suppose that E — T is a topological metric vector bundle over the
compact metric space T. Let X C CO(E) be an ample Banach space of sections of E embedded
continuously in C°(T).

Suppose that (un)nen is a sequence of sections in X such that span {un, ne N} is dense
i X and exists o > 0 such that

lunllo = O(n%) as n — oc. (2.4.20)

Fiz a sequence of positive real numbers (An)n>0 such that

lim inf 2 > 0, (2.4.21)

n—oo nf

for some 5 > 0. Let a € 8§(R) be an even Schwartz function such that a(0) = 1. Fiz a
sequence of i.i.d. standard normal random variables (Xy,)n>0. Then the following hold.

(i) For any h > 0 the random series
D a(hdn) Xnun (2.4.22)
neN
converges a.s. in X. Denote by ®" the resulting continuous Gaussian section of E.

(ii) There exists hg such that Yh > ho the Gaussian section ®" is ample.
Proof. (i) Since a is a Schwartz function we deduce from (2.4.20) and (2.4.21) that
> Ja(hAn) [lualx < 00, YA >0

n—oo

The convergence of the random series (2.4.22) follows from Proposition 1.1.57.

(ii) For A > 0 we set
Np:={neN; a(th) #0}
and denote by Y the closure in X of
span { Up; N € Np, }
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According to Proposition 1.1.57 the above random series defines a nondegenerate Gaussian
I measure on the Banach space Y.

Set
U, = span{ul,...,uy }
Since a(0) = 1, we deduce that
Iro >0, V|t| <o, |a(t)|>1/2.
Hence, for any v € N there exists i = h(r) > 0 so that
Vh < h(v), 1%?%& A, < 7o,
ie.,
U, CY" VYh>hv).
Corollary 2.4.18 implies that there exists vy € N such that
vteT, Ev,:U,, — E; is onto.
Set fig = h(vp) such that U, ¢ Y Vi < hg.
We will show that for any t € T and any % < fig, the Gaussian vector ®"(t) is nondegen-
erate, i.e., for any open set O C Ej, ]P’[(I)h(t) € O] > 0. Equivalently, this means
I"[ Ev;'(0)] > 0.

Since I'" is a nondegenerate Gaussian measure on Y, it suffice to show that the open subset
Ev; ' (0) € Y" is nonempty. This is indeed the case since Ev; *(0) N U,, # 0. O

Corollary 2.4.21. Suppose that E — M is a smooth real vector bundle over the compact
smooth manifold M. Fix a smooth Riemann metric g on M, a smooth metric h on E and
a smooth connection V on E compatible with h. Let k € N and suppose that (¢n)nen 1S a
sequence of C* sections of E that span a dense subset of C*(E). Suppose that

[Pnllcrie) = O(n®) asn — oo, (2.4.23)

for some a > 0. Fiz a sequence of positive numbers (Ap)nen satisfying (2.4.21). Let (Xp)nen
be a sequence of i.i.d. standard normal random variables and suppose that a € §(R) is an
even Schwartz function such that a(0) = 1. Then the following hold.

(i) For any h > 0 the random series
> a(hdn) Xnén (2.4.24)
neN
converges a.s. in CF(E). Denote by ®" the resulting C* Gaussian section of E.
(ii) There exists hy > 0 such that, Yh < hy, the Gaussian section " s J-ample.

(iii) For every point x € M, there exists an open neighborhood O, of x in M such that,
for any h < hg, the restriction of ®" to O, is k-ample.

Proof. (i) This follows from Proposition 2.4.20.

(ii) Consider the jet bundle Ji(E) — M; see (1.2.32). We have a continuous linear
CH(E) = CU(JNE)), ¢ Ji(o, V).
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Denote by U the image of this map. It is a closed® subspace of CO( JF(E) ) Then the random
series

> a(hdn) XnJi(6n)

neN

converges a.s. uniformly to J;(®"). Now observe that U is an ample Banach space of sections
of J¥(E). Indeed, using smooth partitions of unity we can find v1,...,¢n € CF(E) such
that, for any z € M,

span { Ji(¢1(2), ..., Jk(¥n) (@) } = Jk(E)e.
Proposition 2.4.20 now implies that J(®") is an ample Gaussian section of J,(E). The

statement (iii) follows from (ii) by invoking Lemma 2.4.10. 0

Corollary 2.4.22. Fiz an even Schwartz function a € 8(R) and consider the random Fourier
series Ff defined in (1.2.21). We regard it as a random smooth function on the torus
™ = (R/Z)m. Then for any k € R there exists Ry > 0 such that, for any R > Ry the
function FE is Jy-ample. a

Lemma 2.4.23. Suppose that E — M is a smooth real vector bundle over the compact
smooth manifold M. Fix a smooth Riemann metric g on M, a smooth metric h on E and a
smooth connection on E compatible with h. Let k € N and suppose that (¢n)nen s a sequence
of C* sections of E that span a dense subset of C*(E). Set

U, = span{gﬁl,...,qﬁy}.
Then there exists vy > 0 such that Vv > vy the following hold.
(i) For anyt € M and any v > vy the map
U, 3 uw Ji(u)e € J1(Er)

is onto. Above, Ji(u); is the 1-jet of uw at t, Ji(u)y = u(t)®Vu(t) € E;®Ty M Q Ey.
(ii) For anyt € M?\ A the map

U, >uw u(t) € Et
18 onto.
Proof. The space C*(E) is Ji-ample and arguing as in the proof of Corollary 2.4.18 so there
exists 11 € N such that for any v > 11 and t € M the map
Uy S U Jl(u)t € Jl(E)t

is ample.

The argument at the beginning of Subsection 2.4.5 shows that there exists an open neigh-
borhood O of the diagonal A € M? such that Vv > vy and any £ € O\ A the map

U, >uw u(t) € E;

is onto.

8Here we are using the classical fact that if a sequence of C-function (u,) has the property that both (uy) and
their differentials (du,,) converge uniformly to u and respectively v, then u is C! and du = v.
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Corollary 2.4.19 implies that there exists 1y > 0 such that Vv > vy and any t € M 2 \ O
the map

U,2>u—u(t) € By

is onto. Then vy = max(v1, /2) has all the claimed properties. O

Corollary 2.4.24. Fiz an even Schwartz function a € 8(R) and consider the random Fourier
series Ff defined in (1.2.21). We regard it as a random smooth function on the torus
™ = (R/Z)m. Then there exists h = hgo > 0 such that, for any h < hga the function
Fl' is Jy-ample and VE! is 2-ample. O

2.5. Laws of large numbers

Markov’s weak law of large numbers states that if (X,,)nen is a sequence of mean zero, L2
i.i.d. random variables and

then
1
NSN — 0 in LQ.
The proof is very simple. The i.i.d. condition shows that
Var [512\7] = N Var [ Xy |.

This result can be substantially strengthened by relaxing the i.i.d. assumption to a weak
correlation assumption. Namely, the same conclusion is valid if we assume only that there
exists a sequence of nonnegative real numbers (cg)x>o converging to zero such that

Cov [ Xy, Xn ] < c(|m —nl).
In this subsection we prove of a similar result for multiparameter familes of random variables
( Xy )ZeNm‘

2.5.1. An abstract law of large numbers for multiparameter familes of random
variables. Fix m € N. Suppose that we have an even continuous function p : R™ — (0, 00)
that decays sufficiently fast to 0 as |z| — co. Then

/ p(w—y)da:dy:NZm/ pN(u—v)dudv
NBxNB BxB

where py(x) = p(Nx). Observing that py(x) — 0 almost everywhere on B we deduce from
the dominated convergence theorem that

/ pN(u—v)dudv—>0
BxB

as N — oo. Hence

/ p(w—y)dwdyzo(NQm) as N — oo
NBxNB

In fact we can be more precise.
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If we use Fubini theorem and integrate p along the m-planes orthogonal to the ‘diagonal
Ay ={x =y} C NB x nB we deduce that

/ p(x — y)dzdy < Cvoly, [AN] /
NBxNB

o Np(w)da: < C’Nm/ p(x)de.
z|<

|| <N

If we specialize further, p(x) = ﬁ, p >0, p# m, then

/ p(ac)d:v _ O(Nmax(m—p,()) )
|le|<N

so that
| pla—yydady = O or0)),
NBxNB

> plk—1)

(k Ol <1

The sum

is a very rough Riemann sum approximation of the above integral when B = [0,1]Y. The

next results show that if p(x) = ﬁ, then this Riemann sum is also o( N*™) as N — cc.
Denote by |x|; the ¢! norm of © € R™,

m

@y o= |ayl.

j=1
The following technical elementary result is the key to the abstract law of large numbers for
multiparameter families.

Lemma 2.5.1. Fizm € N. For any N € N we set Ry, := I x I'.
(i) If m > 1, then there exists a constant K = K(a,p,m) > 0 such that

1
- < KN?"#®)  k(p) = min(p, 1).
N s

(ii) If m =1, then there exists a constant K = K(a,p) > 0 such that

N2m—£(p) 1
Z 1 S K y D 7é )
o Wralk—ap =7 | Nlogh,  p=1.

Proof. (i) m > 1. For any N € N define
Dy = {(E,@ €RN,; Fj=1....m, kj=4;}, Ry :=Rn, \ Dnm-
Note that

=

m
Dy =|JDl, Dy ={(k0)eRn; ki=14}.
=1
For1<i; <--- <1 <m we have
#(D%n---ND%) = NI,

Using the Inclusion-Exclusion Principle we deduce that

m
m
#DN — 71 p—l( >N2m—2r+1 S 2mN2m—1‘
>

r=1
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Z 1 _ Z 1 n 1
ey (Ol k)T iy (Lball=ki)" - gicy, (1t all=kL)”

Note that
Yn < #Dy < 2mN2?m-1

To estimate Zy we first analyze the structure of the region R};. Denote by R; the reflection

1 Y1 1 Y

R; :R™ x R™ — R™ x R™, @ = @

L Tm  Ym | L Tm  Ym |

Denote by G, the direct product of cyclic groups
Gm=(2/22)" ={€=(e1,...,€m); & =0,1}.
The group G, acts freely on R},
& (k,0)=R(k,0), R°*=R"---R&p.
We denote by GE the positive chamber of R%;,
Ch={ (kD) €Ry: ¢; >kj, V1<j<m},
and we observe that

€+:‘J”](}, TN::{(k,f)EHNXHN; €>k3}

J réef.

€eGm

We have

The function p is Gm—invariant SO

1
ﬁZ (1—|—a|£ k:\ Z ﬁ (1+a\Z—E!1)p
) N

eeGm, (Ef Ree+

(k,f)eek

“apll B ()G 2 )

(k0T N
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. Now observe that

—1N—-k
(€ — k p/m pr/m

To proceed further we need to use the following result.
Sublemma 2.5.2. Let r € R. Then for any M € N

1 r+1
M r >0,

1 MT+1+1 r € (—1,0)
Sy (M) = i< (M) = { T T
(M) := 33" < ur(M) log M + 1 r——1

2, r < —1.

Proof. Using approximations by Riemann sums for the integral

we deduce
r+1 (MT—H )7 r >0,
+1 _
s < @D >0 Jag (MU -1) 41, e (-1,0),
L(M)+1, r<Q0 1+ log M, r=—1,
\r+1\(1 - MTH) +1, r<-1.
1 1
ML 20,
< r—}-erJrl’ re (_170)7
| 1+logM, r=-1,
25 r < —1.
O
Suppose that p # m. Using Sublemma 2.5.2 we deduce that
N—k 1 B
—p/m _ — W(N_k)l p/m_}_]_’ p/m< 17
J S (N~ B)
j=1 2 1 <p/m.
Next, using the sublemma again we deduce
N 1 a2-p/m
S (N - k) < { e N pfm <
2N 1 <p/m.
Hence
1 a2-p/m
5 (1ot [T e,
(k.O)ETN 2N 1< p/m.
and thus
1 om N2m—p’ <m,
In= 3. = S < C(m, a,p) b= (2.5.1)
(k,£)eRy,
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If p = m, then Sublemma 2.5.2 implies that

N—-k
i <ua(N —k)=1+1log(N — k),
j=1
and
N
> (1+1log(N —k)) =N +log N!.
k=1

The conclusion follows from Stirling’s formula which implies that
log N! = O(NlogN).
(ii) Suppose that p = 1. Then

1 1
—— =N +42 <k<tl<n——m——
2 Utalk=qp " 2. ="+ alk—)r
kf=Ix 1
N-1
2 1 2 N —
<N+ — Z = —
O e (€= k) i
o N-1 k N-1
SR SPIE ERIE Y S
k=1 j=1" k=1
The conclusion now follows exactly as in (i). O

Lemma 2.5.3. Fiz m € N. For any N € N we set Ry, := I} x Iy}. For any o > 0 and
any p > m there exists a constant K = K(a,p,m) > 0 such that
1
> < KN™.

R DHERN,, (1+alf =)

Proof. We argue by induction. The case m = 1 is covered in Lemma 2.5.1 (ii). Define

L 1
pm : N X N™ = (0,00), pm(k,0) = (1+a|l§—a1)p‘

For any region R C N™ x N™ we set
S(R, pm) = Z pm(E,[)
(k,H)eRr
For any N € N define
Dy = { (£, 0) € Ryms Fj=1,....,m, kj=4;}, R =R, \ Dy,
We have

S( :RN,mn Pm ) = S( DN,my Pm ) + S( :R}k\[,mv pm)
The inequality (2.5.1) implies that

S(W&m, pm) < KN™.

As before we have

Dy = |J Dy Diyn={ (k.0 € Ry, ki=0:}.
i=1
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Using Inclusion-Exclusion Principle we deduce

S(DNmopm) =D (P > S(DE,, NN Do)
p=1 1<) < <ip<m
= Z(_l)p—l <m>S(D]1Vm N---N D€V7m7pm)
p=1 b
= Z<_1)p71 (Z;)S(RN,m—papm—p) < Z (T;)S(RN,m—pvpm—p)

(use the induction assumption)
m
<Ky <m> N™P < K(N +1)™ < 2"KN™.
p_
O

Corollary 2.5.4. Consider a family of random wvariable (XZ)ZeNM defined on the same
probability space (2, 8,P) such that there exist constants C,c,p > 0, p # m, such that
C -
‘COV[XE,XZ]|§ == vk, L e N™,
(1+alk—1],)

Then, as N — oo, the averages
1
An(X) = o > (X -E[Xz]) —0
kelp
in L? and a.s..

Proof. Suppose first that m > m. Then
E[AN(X)?] =O(N™™).

ZN_m<oo,

N>1

If m > 2, then

and we deduce that for any € > 0

1
SB[ dx]>c] <5 3 Jax | <

N>1 N>1
so Ay — 0 a.s.. If m =1 the conclusion follows from [90, Thm.10].

If p < m we have E [ An (X)Q] = O( N1 ) The a.s. convergence follows from the Strong
Law of Large Numbers [101, Thm. 4]. For » € N we denote by C, the lattice cube I5}. Set
N, =27+,

Then

wi= o |E[XGXF [ Y B[] | < KNP
E,ZEC'T+1\C’T E7[€C'r+1
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where K > 0 is a universal constant. We deduce that
(r+ 1 (r + 1
<K
SO, <y
r>0 r>0
According to [101, Thm. 4], this implies that Ax(X) — 0 a.s.. O

For latter use we want to mention a version of Corollary 2.5.4 for “pyramidal” arrays.

Corollary 2.5.5. Let m > 2. Consider a family of random variable (Xéy )NeN, ferm defined

on the same probability space (2, 8,P) such that there exist constants C,ac > 0,p > m such

that
C

(1—|—a\k5 f| p7

| Cov [ XY, x| < VN € N Vk, 0 € bI.

Then, as N — oo
1
AN(X) =~ d (XY -E[x)N])—=o0
kelp
in L? and a.s..

Proof. Lemma 2.5.3 implies E[ Ay(X)?] = O(N™™). Now conclude as in the proof of
Corollary 2.5.4. O

2.5.2. Critical points of isotropic Gaussian functions. Fix an even Schwartz function
a € 8(R) and consider the isotropic Gaussian function ¢, on R™ introduced in Example
1.2.35. Its spectral measure is

Nu[df] =

Its covariance function is determined by

Ku(o) = g [, 7 allel)'a

As we have seen in Example 1.2.35 this function is a.s. smooth and N-ample for any N € N.

—~

Consider the associated critical random measure €, = €[—, ®,]; see (2.3.9). Thus, for
any box B C R™, Q:a[B } is the number of critical points of ®, in B. As shown in Example
2.4.14 &,[B] has finite moments of any order. According to (2.3.25)

E[€[B]] = Cin(a) voly, [ B],
where C,(a) is the universal constant described explicitly in (2.3.26).

Fix numbers ay, .. .,a, > 0 and denote by B the box [0,a1] x - -+ [0, an]. For £ € N™ we
denote by Bj the box

BZ: H [(6] — 1)aj7€jaj].

j=1
For N € N we denote by By the box

m
H 0,Naj].



2.5. Laws of large numbers 153

Theorem 2.5.6. As N — oo, the random variable

1
v &l N - B]
in L? and a.s. to the (deterministic) constant

E[€4[B]] = Cym(a) vol [ B].

Proof. Recall that Iy = {1,..., N}. From Bulinskaya’s Lemma 2.1.2 we deduce that
G[N-B] = ¢[By.
ferp

Set thz Q:Q[B

] —E[€[B;]]. We have to show that the averages

4
o 2 X
ety
converge a.s. and L? to 0. We will deduce this from Corollary 2.5.4.
We set o o
C(k,0) := Cov [ €4[B;], &[B] | = E[ X;X;], Vk, 0 eI}.
As explained in Example 2.4.14,
E[¢[BFP] < co, Wp € [1,00), VL€ N™.
Notice that since @4 is a stationary Gaussian function we deduce from Corollary 2.4.12 that
E[C[BJ"] =E[&[BJ], Vpe[l,00), £eN™
and we deduce from Holder’s inequality that
3K, = Ki(a,m) > 0: |C(k,0) | < Ky, Vk,0€N™ (2.5.2)
To proceed further we define
d:R™ xR™ 5 R, B(x,y) = Po(x) + Pu(y)

and we set

~

H(z,y) := Hessg(z,y), H(x):= Hessg, ().
We denote by € the critical random measure ¢[—, @] Thus, for any Borel subset
B eR™ x R™,
@[E] is the number of critical points of ® in B. Note that if B; N By = 0, then

~

C[B; x By = €,[B;]¢a[B]

SO

E[C.[B]¢.[B]] = E[€[B; x Bj].

We compute E[@[BE x B Z] ] using the Kac-Rice formula. We first need to verify that V® the
ampleness condition (Ap).

Lemma 2.5.7. For any x,y € R™, x # y, the Gaussian vector Vzﬁ(az, y) is nondegenerate.
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Proof. We have

R Var [ V,(x) ] Cov [ V®q(z), VP4(y) |
Var [V®(z,y) | =
Cov [V, (y), V() ] Var [ V@, (y) |

As shown in (2.3.20), for any @ € R" we have

Var [VOu(x) | = dnlpm, dm= | &lpa[de].
Rn

We have
Cov [ V4(2), VOu(y) ] = (02,0, Kalz — ), 10,

and

(02,0, Kao(z —y) = / i e HE@Y ey [ de]. (2.5.3)
Since @, is stationary it suffice to consider only the case = 0. On the other hand, ®,
is O(m)-invariant so, up to a rotation we can assume that * —y = —tey, t # 0, where
{e1,...,en} is the canonical basis of R”. Hence

00K —y) = [ et de)

Let us observe that if j # k, then either j # 1, or k # 1. Suppose j # 1. The function
e“fl{jfk is odd with respect to the reflection &; — —¢&; so

O, 0y Ka(z,y) = /R "¢ ppal dE] =0, Vi # k.

If j = k, then

Vm(J) 1= O, 0y, Ko(,y) = /

RTYL

el de] = [ cos(ir) e

m

and we deduce’
)| < [ | costten) |Gl de] < [ ualde] = d.

After a reordering

(8x1<I>a(a:), ey 0p, @), 0y, Pu(y), . . . Oy, Pa(y) )
1
(axl (Da(w)a 8y1 (Dﬂ(y)7 st 781‘m(1)a(a:)7 aqu)a(y) )

we see that

Var [VEI\’(CCJ/)] = @ [ di@) d’g(j) } .

Jj=1 mn

:%
Note that, for each j, the symmetric matrix Vj is positive definite since

det V; = d%, — dpn(5)* > 0.

9At this point we use the fact that a([€)| > 0 for |¢| sufficiently small.
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Suppose that BN B; = (). We deduce from Lemma, 2.5.7 that V(Is(ac, y), is nondegenerate
for any (x,y) € By, X By. We can the apply the Kac-Rice formula to deduce that

E[€[B; x Bj]] = E[ €[B;]¢a[B] ]
_ /BﬂXBAE“detﬁ(w,y)\ VE(@.y) = 0]pg .y (0) Al dady], 250

=p(x,y)
if BE N Bzz 0.

For & € R™ we denote by ‘ T ‘OO the sup-norm of «

|| = max |z
o0 1<i<m

Note that }x‘l §m‘:1:‘oo and BEHBZ:Q)if‘E—Z‘OO>1. Hence,
|E—Z‘1>m:>BEﬂBZ:@.
Hence

E[C[Br|¢:[B] ] :/BﬂXBHIE“detﬁ(w,y) VO(@, ) = 01Dy gy (0) A dudy ],

-~

(2.5.5)

=p(z,y)
if ‘ k— Z‘l > m.
Let us now express [ €4[Bg] |E[ €a[Bj] as an integral over By x By Choose an inde-
pendent copy ¥, of ®,. We set

O(x,y) = Po(x) + Vo(y), H(z,y):= Hessz(z,y).

Then
E[QG[BEHE[Q:CI[B[H = E[Q:%[BE X BZH
:/Ba E] det H(@,y) | | VO(@,y) = 0]pgg ) (0) Al dwdy] (2.5.6)
Y =p(z,y)

if ’E—Z’l > m. Thus
Cov [€4[B.], &[BJ] = / (Pl@,y) — Pz, y))A| dedy] (2.5.7)
BEXBZ
To proceed further, we need a few simple technical results that seem to be part of the
mathematical folklore, but whose proofs seem difficult to locate in the existing literature.
For every z € R™ we set
T(z):= Y _ |0°Ka(2)|.
o] <4
Since K is a Schwartz function we deduce that
T(z)=0(|z|7>) as|z|1 = .

This means that
Vp >0, T(z) =0(|z|{") as|z|1 — oo.
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Observe that

Var [V%(w,y)} = { Var [Vofba(ac)] Var [V()(I)a(y)] ] = dmlom,
and
R Var [ V®,(x) | Cov [V®q(x), VP4(y) |
Var [V@(m,y)] =

Cov [V@a(y), V@a(w)} Var [Vq)a(y)]

) 0 Cov [ V®q(z), VPal(y) ]

= Var [V@(w,y)] + :
Cov [ V@q4(y), VPq(x) 0
= R;,(amy)

In particular

Var [V@(az,y)]_l = ( Var [V(T)(xay)] + Ry(z,y) >_1

= Var [V&v)(m,y)]_l ( 1+ Var [Vé(m,y)]_lRV(%y))il'

Hence
| Var [VO(z,y)] — Var [VO(x,y)] [, = [Rv(@,9)]op = O(T(@—y)).  (2538)
Since Var [ V®(z,y) ] is independent of  and y
| Var [VO(z,y)] " — Var [VO(z,y)] " |, = O(T(z—y)). (2.5.9)
Note that
var )] =[Oy |

Since @, is stationary, Var [H(m, y)] is independent of x and y. We have
Var [ H(x) | Cov [H(z), H(y) ] ]

Var [ﬁ(w,y)] =
Cov[H(y),H(z)]  Var[H(y)]

B 0 Cov [H(:I:),H(y)]
= Var [H(az,y)] +
Cov [H(y),H(az)] 0
=Ry (z,y)
We deduce
| Var [ H(z,y)] - Var [H(@,y) ] ||, = IRa (@, y)llp = O(T(x —y)). (2.5.10)

We denote by H (x,y)” the Gaussian random matrix
Define H(x,y)" similarly. The distributions of H(z,y)” and H(x,y)" are determined by the
Gaussian regression formula (1.1.16).

Since H(z,y) and V®(x, y) are independent we deduce
Var [ﬁ(w,y)b] = Var [ﬁ(m,y)}
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From (1.1.16) we deduce

— Cov [ﬁ(az, y), V®(z,y) ] Var V:I\)(cc,y)]fl Cov [V:I\)(zc,y), ﬁ(m,y)]

= Var[H(z,y)’ | + Ru(.y)
— Cov [Ef(:c, y), Vo(z, y) | Var [V:I;(:B,y)]_ Cov [V:I;(:B,y), fl(w,y)]
Now observe that
Cov [f[(m,y),vfﬁ(m,y)] =0(T(x—-1y)).
Since Var [V:I;(:I:, y) | is independent of @ and y we deduce from (2.5.9) that
Cov [ﬁ(m,y),V&D(m,y)] Var [V&J(m,y)]_l Cov [V&D(m,y),fl(m,y)} =0(T(x—vy)),

Hence

sup || Var [ H H(x,y)’ lop < o0, (2.5.11)
zFY

Since Var [fl (z, y)] is independent of x, y we deduce that there exists pp > 0 such that

Var [f[(w,y)b] > uol, Ve #y.
We deduce from (2.5.11) and (1.1.12) that

‘ E[|det A (z,y)"|] — E[|det H(z,y)"|] ‘ = O(T(z — y)V/?). (2.5.12)
Using (2.5.8) we deduce

‘pwi(w,y) (0) T PY3(a ,y)(o) ‘

- (2.5.13)
= (277)_’"/2‘ det Var [V®(z,y) ]|~ —detVar[VCD z,y) ] ‘ =0(T(xz—1y)).
We can now estimate the right-hand-side of (2.5.7). Note that if B; N B[: () we have
sup O(T(E—_)):O(\E—ﬂfoo).

(m,y)EBEXB[
We deduce from (2.5.8), (2.5.9), (2.5.12), (2.5.13) and the regression formula (1.1.20) that

sup | p(z,y) — pla,y) | =O0(|k—0|7), |k—C|,>m. (2.5.14)
(x,y)€B; x By

The above estimate coupled with (2.5.2) implies that, for any p > 0, there exists a positive
constant C' = C(p) > 0 such that

- C -
|C(E, )| < (?) o, V(K f) € N x N™.,
(1+1k—41)
Theorem 2.5.6 now follows from the above estimate and Corollary 2.5.4. O

Remark 2.5.8. To put Theorem 2.5.6 in its proper perspective consider the rescaled function
WE(z) = R™/?®4( R ).

In Example 1.2.35 we showed that that WX approaches the Gaussian white noise in distri-
bution as R — co. We will refer to the R — oo-limits as white noise limits.
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We set € = ¢[—~WE]. Since V®q4(y) = 0 iff VW (y/R) we deduce that for any R > 0
and any box B we have

¢B] = €i[R- B).

Set
L R
Q«R = ﬁ@a .
Theorem 2.5.6 shows that as N — oo,
1
Var [ £n[B]] =O(N™™), £n[B]= ~n CallV - Bl = Cin(a) vol [B].

This suggest that in the white noise limit the random measures £y converge in some sense
to a deterministic measure, namely a multiple of the Lebesgue measure. In particular, this
shows that as R — oo, the critical points of ®, g are, with high confidence, close to being
uniformly distributed. We can be more precise.

As explained in Appendix C.2, the stationarity of €, alone implies the existence a non-
negative integrable random variable €, such that, for any box B, we have

1

~m CalV B] = vol [B]

a.s. and in L!; see (C.2.3). The random variable &, is called the asymptotic intensity of the
stationary random measure €, and has an ergodic description. If 'y is the unit cube in R™

the

1
¢* = lim / Cq[C1 — x]dx,
N—)ooVOl[NB] NB

where the above limit exists a.s. and L' according to Wiener’s ergodic theorem. Above, B is
any box of R™ containing the origin in the interior. Theorem 2.5.6 shows that its asymptotic
intensity ¢, is the constant Cp,(a). O

For any compactly supported continuous function f € Cgpt(Rm) we set

Salfl=R [ feklar) = o Y f@)

R V& r(x)=0

When m = 1, M. Ancona and T. Letendre [3, Thm. 1.16] (see also [65, Thm.1.6]) proved
that

MM%Q@AﬂWmMW

for any f € C9;(R). Our next result shows that this also holds for m > 1.
Before we state and prove this fact more precisely let us make a few simple observations.
Note that « is a critical point of ®, iff N~z is a critical point of

eWXN. If we set
fn(z) = f(N'z).

then we deduce

el = Gl = O ix(a)
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Using the weighted local Kac-Rice formula (2.2.8) we deduce

E[£n[f]] = Nlm/R fx (@) E[ | det Hessg, | | Voo(2) = 0]pya, (0) da.

=pa(x)

In Example 2.3.7 we proved that p,(x) is independent of & and p,(0) = Cy,(a). Hence

Blenifl] = S [ puieiin 2 Cutw) [ sy

Corollary 2.5.9. Fiz f € C’gpt(]Rm). Then as N — oo

Ln[f] = Cm(a) (x)dz a.s. and in L?.
Rm

Proof. Note that if f € C’gpt(Rm) is nonnegative and

f(x)dx =1,
Rm

then the sequence py(x) = N—lmfN(:I:) = ﬁf(:l:/]\f) is asymptotically stationary,
lim !goN(a:)—goN(:c—y)’d:c:O, Yy € R™.
N—oo Rm

Theorem C.2.2 implies that
Lnlfl =€ | flz)de
Rm
a.s. and in any L'. This is Corollary 2.5.9. O

Remark 2.5.10. (a) The Gaussian function ®, defines a Gaussian measure T' on C?(R™).
The additive group R™ acts on C?(R™) by translations Ty, € € R™, T, F(y) = F(y — x).

Since the Gaussian function @, is stationary, the translations T, are I'-preserving. Since
the spectral measure of ®, is absolutely continuous with respect to the Lebesgue measure,
the above action of R™ is ergodic; see [20] or [104, App. C]. In the case m = 1, Theorem
2.5.6 is a consequence the ergodicity of the random function ®,. We refer to [37, 152] for
details.

(b) The key to the proof Theorem 2.5.6 was the estimate
Var [€,[NB]] =O(N™) as N — oo. (2.5.15)

One can show something stronger; see [2, 112, 118]. More precisely, there exists a positive
constant V;,(a) that depends only on m and a such that such that, for any f € Cg.;(R™) we
have

Var [ £g[f]] ~ Vi (a)R™™ /Rm f(x)%*dx as R — oo. (2.5.16)

The random variables £y[f] a Central Limit Theorem [2]. For any nonzero f € CO(R™)
the random variables

N™2( £qlf] - E[rl/]])

converge in distribution to centered Gaussian random variable with variance

Vin(a) o f(x)?de.
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In the next subsection I will prove a version of (2.5.16) in a more sophisticated situation.

In the proof of Theorem 2.5.6 I have deliberately chosen to prove only the weaker estimate
(2.5.15) since it has afforded me the possibility to illustrate how Corollary 2.5.4 works in a
simple situation with few extra analytical complications. This corollary is quite flexible and
the main steps of the strategy we used in the proof of Theorem 2.5.6 work in much the
more general situations of random functions on compact Riemannian manifolds discussed in
Chapter 4. a

2.5.3. Critical points of random Fourier series. Fix an amplitude a € $(R). This
means that a is even and satisfies a(0) = 1. Consider the random random Fourier series
FR:R™ — R defined by (1.2.21),

FR) = B2 ( Agug + 3" a( |20l |/R) (Apud ) + Bpod#)) )

750

— R—m/2 Z |27T€‘/R Z_€27rz<€6)
lezm

where we recall that (4;), are i.i.d. standard normal variables

o iezm (B[)Zezm

— —

ugd0) = V2cos2r (L, 0, vy=2sin2n(l,0).

and > is the lexicographic order on R™: x < y iff there exists j such that z; < y; and

z; = yi, Vi < j. The complex Gaussian variables (Zj);_,. are defined as in (1.2.22). As
explained in Example 1.2.31, the random function R"/ 2FE converges in distribution to the
Gaussian noise on the flat torus. For this reason we will refer to the R — oo limist as white

noise limits.

The covariance kernel of Ff? is GR(G @) = CE(F), where 7 =  — @ and we deduce from
(1.2.27) that

CR _ p-m Z }27r€‘/R 2 _2m<g7> (1225 Z K 'F')R), (2.5.17)
fezm kezm

and
o) — 1 Gl 2
Ko@) = 5o /Rm a(l¢l) Al dg].

We can interpret Ff in two ways, either as a Z™-periodic stationary Gaussian function on
R™ or as a Gaussian random function on the torus T™/Z™.

We set ®f(x) = FF(x/R). We think of ®F as a (RZ)™-periodic random function on R™.
This is an isotropic random function with covariance kernel X2 (x,y) we set

K i(z) = % (0,x) = O (z/R).
We deduce from (2.5.17) that

= > Kq(x— Rk).

kezm
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Clearly, VFE(y) = 0 iff V®F(Ry) = 0 so, for any box B = [a,b]™ C R™, and any
f € CO(R™), we have

e[ B8] = ¢[RB,FF], €[ £.FR] — ] fn,0f].
where fr(z) = f( R 'x). In Example 2.3.8 we proved the equality (2.3.30)

E[¢[B,Ff]] = R™(Cp(a)vol [B] + O(R™™)),
and (2.3.31),

¢[f FR] = Rm<Cm(a) +0(R—°°)) /m f(a)de,
where C),(a) is defined in (2.3.26). In [112] we proved thﬂ;t that there exists a constant
C!(m) > 0 such that if B =[0,7]™ r € (0,1/2) we have

lim R Var [€[B, F)Y]] = C},(a)A\[ B]. (2.5.18)

R—o0
The proof of (2.5.18) in [112] is very laborious and computationally intensive.

The first result of this subsection is a functional version of (2.5.18). We achieve this using
a less computational, more robust and more conceptual technique. One consequence of this
asymptotic estimate is a (functional) strong law of large numbers concerning the random
measures €[—, FN], N € N.

First some notation. Denote by |—| the Euclidean norm on R™ and by | — |« the sup-norm
on R™. For &g € R™ and r > 0 we set

B (zo) :=={x e R™; |z| <71}, BX(z0) :={xzeR™ |z <7}
Clearly B (zg) C B2°(xo).
The function F? is Z™-periodic and for r € (0,1/2) the ball BX°(0) is contained in the
interior of a fundamental domain of the Z™-action since | — Y|oo < 2r < 1 and |l > 1,
V¢ € Z™ \ 0. This reflects the fact that the injectivity radius of the flat torus T = R™/Z™

is < % so B,(0) can be viewed as a geodesic ball. We can now state the main technical result
of this paper.

Theorem 2.5.11. Fiz an amplitude a, a positive integer m € N and a radius ro € (0,1/2).
There ezists a constant V. = Vy,(a) > 0 that depends only on m and a such that, for any
continuous function f : R™ — R with support contained in By, (0), we have

lim R~ Var [€[f, F¥]] = V,u(a) (x)%de. (2.5.19)

R—o00 Rm

Before we present the proof of this theorem let us discuss some of its consequences.

Consider the normalized random measures
- 1

A function then we deduce that for any f € CO((R™), supp f € By,(0), we have

lim E[€R[f]] = Cim(a) f@)A]dz], (2.5.20)

R—o00 Rm

and

Var [€g[f]] ~ Vip(a)R™™ f(z)%*dz as R — oc. (2.5.21)
R
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Since FF is stationary, the same is true for any continuous function f with support contained
in By, (o). Indeed, this follows by applying (2.5.21) to the function f(x) = f(x — xo).

Using finite partitions of unity we can represent any f € Cpt(]Rm) as a finite sum of
functions supported in Euclidean balls of radius ro and we deduce from (2.5.19) that

Vf e Co(R™), Var [€g[f]] =O(R™) as R — oo.
If m > 2, then

Z—<oo
NeN

The Borel-Cantelli lemma and (2.5.21) imply that for any nonnegative f € C, Cpt (R™) we have

N—oo

lim €x[f] = Cn(a) - f(x)A[dz] as. and in L2 (2.5.22)

Thus, in the white noise limit (R — oo), the critical points of F¥ will equidistribute with
probability 1. In the case m = 1, this law of large numbers is proved in the recent work of
L. Gass [65, Thm. 1.6].

We can rephrase the equality (2.5.22) as a law as large numbers. We refer to Appendix
C.2 for the various concepts of convergence of random measures. The equality (2.5.22) and
Theorem C.2.1 imply the following result.

Corollary 2.5.12 (Strong Law of Large Numbers). In white noise limit (N — oc) the
random measures N%Q[—,Fcfv] converge vaguely a.s. and L? to the deterministic measure
C(a)X. In particular, for any bounded Borel subset S C R™ we have

i N—Q[S FN] = Crn(a)A[S]

a.s. and L?. O

In [113] we proved that in white noise limit the random measures €[ —, F¥ | also satisfy
a Central Limit Theorem. More precisely, for any r € (0,1)

1 N N
7 (€B,, FN ]~ E[e[B3,. F] )
converges in distribution to a centered normal random variable with nonzero variance.

As explained in Appendix C.2, each stationary random measure 9 on R™ has an asymp-
totic intensity 9t. This is a random variable defined by the ergodic limit (C.2.3)

1 —
li = 5.
Jim IINC] ———IM[NC] =9, (2.5.23)

where C' C R™ is any compact convex subset of R™ containing the origin in the interior.
The random measure 9 = €[—, ®,] is stationary and the results of the previous subsection
show that the asymptotic intensity of €[—, ®,] is the constant &pa = Cp(a).
For fixed N > 0, the random function q)éVO is (RZ)m—periodic and we deduce that for
any N € N we have
C[N By, ®ff] = N™€[B)y, DF.
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Hence 1
R Ry (2523) 5
C[Bj’%o/%(l)a} = 1E>nooN @[NBR/Q,QJ ]
where abﬁa denotes the asymptotic intensity of the stationary random measure €[—, <I>év0].

Hence

Qt(DR vol [BR/Q]

1 1

_ ol = o
QbaR qu R/Q’ ] VOHB?/Q]Q[ R/Q’ ]
Corollary 2.5.12 shows that
lim (’:q,N—(’:@a—C (a),
N—o00

a.s. and L2.

Proof of Theorem 2.5.11. We follow the strategy in [62]. We split the proof of Theorem
2.5.11 into several conceptually distinct parts.

1. The key estimate. The following technical result will play a key role.

Lemma 2.5.13. Fiz a box B = BSO/Q(O) = [—ro/2,70/2]™, ro € (0,1). Then the following
hold.

(i) For any ¢ € Ny and any p > m there exists C = C(p,m,l,a) > 0, independent of
R, such that, VR > 2

H Kf - Ko HCZ(RB) <CR7P

(ii) For any £ € Ny and any p > m there exists C = C(p,m,{,a) > 0, independent of
R, such that, VR > 2, Vx,y € RB

C
(1+|m—y[oo)p'

| D'Kf(x —y)| <

Proof. (i) Denote by T,-K, the translate
ToiKa(x) = K (z — Rk).
We have
Kiz) - Kuo(z)= ) TgKa(z
kezm\0
Now observe that VR > 0, V& € RB, and any kezm \ 0 we have
@ = RE| > Nk| = |z] > R(]k|, —r0/2).

Since K4 and all its derivatives are Schwartz functions we deduce that for any p > m, and
any k€ Z™\ 0

H ‘TREKG HC"(NB) < C(p,m,¢, a)R_p( ‘ E‘QQ — T0/2)_p.
The last expression is well defined since r < 1 < ‘ k {Oo for any Eegm \ 0. Hence
| K = Kooy < Com LR S0 (K| —ro/2)

kezm\0

The above series is convergent since p > m.
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(ii) Note that Vo,y € RB we have ‘:c —y ‘OO < Rrg. Set z := & — y. We discuss only the
case £ = 0. The general case can be reduced to this case by taking partial derivatives.

Using (i) we deduce that

C =sup sup |Kf(z)| < 0

R ‘z‘ <ro
oo

and thus, VR > 2, V‘ z |oO < 1,

Assume now that ‘ z !OO > ro. We have
Ki(z) = Ko(z)+ ) TpiKa(z
kezm\0
and thus,
| K@) < K@) [+ 3 |TpeKa(2) ]
kezm\0
Since K4(x) is Schwartz we deduce that there exists a constant C' = C(p, a) such that

Cp
5 +C Y
(1+‘z‘ Fezmo 1+’z—sz’

We have ’z ‘OO < Rry and

}z_zz;’\ooz\z\oo(R“;‘oo_l)z\z}m(;mw_l)

Thus

1 —p 1, - —p
Z (1+‘Z—Rg‘m)p§}z‘w Z (%}k‘oo_1>

kezm\0 kezm\0

<o

2. An integral formula. Set
B = BT‘()/Q( ), fr(z):= f(z/R),

ZR(f) = ) = €lfn, @), Z[f] = C[f, .
Denote by paR the Kac-Rice density of V@f and by p, the Kac-Rice density of V®,; see
(2.2.9). Since both ®f and ®, are stationary random functions we deduce that both pf and
pa are constant functions.
The covariance functions KX(z) and K,(z) are even, so the odd order derivatives of

these functions vanish at 0. This implies that the Gaussian vectors Hessgr(0) and VoLl 0)
are independent. A similar phenomenon is true for ®,. Thus, the conditional expectations
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in the Kac-Rice formula are usual expectations. Using Lemma 1.1.27 and Lemma 2.5.13(i)
we deduce that for any € R™

sup | pg'(@) — pa(@) | = [ pF(0) = pa(0) | = O(R™), (2.5.24)
zcRB
where O(R™°) is short-hand for O(R™?), Vp > 0 as R — oco. We deduce that

R (E[2700)] ~E(Z171]) = R [ fala) (o£(0) = pul0) ) =

- /B F()(p(0) = pal0) )dy = O(R™).
We need to introduce some additional notation.
o O = D,
e For any R € (0, 00| we define
PR, d:R™ x R™ - R,
oF(z,y) = 3F (2) + 0F(y), T(x,y) = Ca(z) + Tuly),
el .= ¢, (/135]7 Hp(x,y) := Hessgr(x,y), Hgr(x) := Hessgr(x).

e Choose an independent copy WE of ®% and for R € (0, ] set

oF(z,y) = 0l (x) + Vi(y), Hp(z,y) = Hessz(z,y),

¢k = ¢[—, oM.
e For R € (0,00) define
B2 R XR™ SR, fi(e,y) = fr(®)fr(y)

and set |[f|[ := |[fllcogm)-
e Set
X=R"xR"\A={(z,y) eR"xR"; z#y}.
Observe that the random function on %R(w,y) is stationary with respect to the action of
R?™ on itself by translation, while @5 is stationary with respect to the diagonal action by
translations of R™ on R" x R™,
To(x,y) = (v+z,v+y), Yo,z,yecR"
We have
CHIx fR°] = > fr(@)fry) = Z7(f* = Z"[f?).
Ve (2)=Vei(y)=0,
TF#Y
Bulinskaya’s lemma implies that

P[3z: V@4(x)=V¥(z)=0]=0

and we deduce

H I fr’] = > fr(x) fr(Y)
VR )=V (y)=0,
zF#y

= > fr(@) frly) = C[f, O8] e[f, U7, as.

Vo (x)=V T (y)=0
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Hence
E[e[f, eFelf, vl)] =E[c[f, ]| - E[e[f, vE]] = E[e[f, @F)]?
so that
E[eR[Ixf5]] - E[€l[Ix 5] = E[ 2% ()] - E[ 2" [f))” —E[ 27[f?)]

=Var [ ZR[f]]
We have seen that
lim RT™E[Z[f%]] = Cm(a) [ f*(z)dz

R—o0 Rm™
so we have to show that
I(R) :=E[CR[Ix Y] ~E[CR[Ixf5Y]] ~ cR™™ as R — oo (2.5.25)

for some constant ¢ € R.

According to Corollary 2.4.24, there exists Ry > 0 such that for R > Ry, the gradient
Vq)aR is 2-ample and ®p is Ji-ample so, for R > Ry the gradient V@R(m, y) is nondegenerate
for any x # y and the random vector (@f(x), V@f) is nondegenerate for any © € R". As
shown in Example 1.2.35 this is true also for R = oo, where we recall that ®3° = @f.

We can apply the Kac-Rice formula and we deduce that for any R > Ry we have
E[eR[TxfR?]

myRm

:b\R(wvy)

The gradient V@R(m, y) is nondegenerate for any «, y and invoking Kac-Rice again we obtain
E[ € [IxfR"]]

- /R i \AEUdetﬁR(m,y)\IVéR(m,y)zo}pV@(W)(O) FE2 (2, y)A [ dady]. (2:5:27)
myRmMm

=pr(x,y)

The function pgr(x,y) is independent of «, by since the random function R is stationary.
Thus

1) = [ (Prla.) = r(e,)) fu(e) fuly)A] dwdy]
(2.5.28)
- /x|,y§m0/2, (Pr(z,y) — pr(2,y) ) fr(2) fR(Y)A[ dedy |.
TFy

Let us observe that for any  # y we have
Jim (Pr(@,y) = pr(@,y) ) = (Poo(@,y) = Poo(@, 1) ).
— 00

Moreover

lim fr(x) = f(0)

R—o0

uniformly on compacts.
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3.0ff-diagonal behavior. Note that
~ Var | Hg(x) 0
Var [ Hp(,y)] = [ [ 0 | Var [ Hg(y) |

For every z € R™ we set

Tr(z) =Y _ |0°K}(z)|.

<4
Lemma 2.5.13(ii) shows that for every p > 0 there exists C), = Cp(a, m,r) > 0 such that, VR,
V‘ z ‘OO < Nr
VN, V|z|_ < Rro, Tr(z) <Cp(1+4|2]| )" (2.5.29)
We want to emphasize that C, is independent of R.
Observe next that

=~ [ Var [Vol(z) 0
is independent of  and y.
R Var [V@f(m)] Cov [V(I)f‘(m), V@f(y)]
Var [ VO£ (z,y) | =
Cov [V@aR(y), V@f(m)] Var [V@aR(y)]
_ 0 Cov [VOE(z), VOL(y) |
= Var [VO'(z,y)] + { ]
Cov [Vl (y), VOli(x)] 0
=&&(zy)

Hence
H Var [V@R(a},y)] — Var [V%R(m,y)] Hop = HE@(m,y)Hop = O(TR(a: - y) ), (2.5.30)

where || — ||op denotes the operator norm. Above and in the sequel, the constant implied by
the Landau symbol O is independent of R as long as x,y € RB. In particular

Var [V@R(m,y)]_l = ( Var [V&)R(m,y)] + Eg(m,y) )71
(2.5.31)

= Var [V:I;R(x,y)]*l < 1+ Var [V%R(a:,y)]flﬁg(w,y))
We have shown in (2.3.20) that there exists an explicit positive constant d,, such that
Var [V®q(x) | = dplm, Va.
Then Var [ VO®Z(z) | = Var [ V®E(0) ], V& € R™ and
Var [V@F(0) | = dplm +O(R™™).
The variance Var [V;I;R(m, y)] is independent of  and y and
Var [ VO#(z,y) | = Var [VOE(0)] @ Var [VOE(0)] = dinlam + O(R™™).  (2.5.32)

From (2.5.31) and (2.5.32) we conclude that there exists Cy > 0, independent of R > Ry,
such that

~ 1 1
” Var [V‘I’R($,y)] 8@($,y)Hop < 57 Va:,y € RBv ‘x - y|00 > 007
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and thus
=R -1 =R —1
| Var [VO"(x,y)] " — Var [VO"(z,y) | Hop (2.5.33)
=O(Tr(x—y)), Yo,y € RB, |x —y|o > Co.

Note that since ®% is stationary, Var [HR(m, y)] is independent of x and y.

R Var [ Hp(x) ] Cov [ Hr(z), Hr(y)]
Var [ Hr(z,y) | =
Cov [HR(y),HR(m)} Var [HR(y)]
N 0 Cov [ Hi(z), Hr(y) |
= Var [ Hp(z,y) | +
Cov [Hp(y), Hr(x) | 0
= ng(w,y)

We deduce
| Var [ Hp(2,y)] — Var [ Hr(z,y)] ||, = €5 (@, ) lop = O(Tr(z —y)).  (25.34)
We denote by H r(x,y)” the Gaussian random matrix
Hg(z,y)’ = Hr(x,y) — E[ Hr(z,y) | VO (2, y)].
We define H r(x, )’ similarly
Hy(w,y)’ = Hr(x,y) — B[ Hp(w,y) | VO (z,y) ]

The distributions of H r(x,y)’ and H r(x,y)’ are determined by the Gaussian regression
formula (1.1.18).

We have

Cov [ Hr(z,y), V&' (z,y)] =

Cov [Hp(x), VOE(x)| Cov|[Hg(x), VOE(y)] ]

Cov [Hg(y),VON(z)] Cov[Hg(y), VOLi(y)]

Cov [ Hg(0), VOE(0)] Cov [ Hp(x), VOE(y)] ]

Cov [ Hr(y), V@l (x)] Cov[Hg(0),V@L(0)]

The covariance Cov [ Hg(0), V®Z(0) | involves only third order partial derivatives of K N at
0, and these are all trivial since K is an even function. Hence

) i 0 Cov [ Hg(z), VL (y) ]
Cov [ Hp(z,y), V& (x,y) ] =
Cov [ Hr(y), V& (z) ] 0
Similarly
Cov [ Hp(z), VoI ()] 0

Cov [ETR(x,y),VEJR(:c,y)} = =0.
0 Cov [ Hg(y), VOLi(y)]
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Lemma 2.5.13(ii) implies that
| Cov [fIR(cc,y), V@R(w,y)] Hop =O(Tr(z—y)),
| Cov [ﬁR(w,y), V@R(w,y)] Hop =O(Tr(z—1y)).
Since Var [V&)N (z,y) | and we deduce from the regression formula (1.1.18) that
Var [ﬁR(w,y)] = Var [fIR(w,y)b] +O(Tr(z—y)),
Var [ﬁR(m,y)] = Var [fIR(m,y)b] +O(Tr(z —y)).
The regression formula (1.1.18) shows that
Var [.FAIR(:B,y)b] = Var [fIR(a: y) |
— Cov [fIR(a:,y), V@R(w,y)] Var [V;I;R(a:, y)] Cov V@R(a: Y), HR(ZB, y)].
= Var [ﬁR(a) y)’ | +O(Tr(z—1y))
— Cov [ITIR(m,y),VC/ISR(m,y)] Var [V@R(m,y)] Cov [V@R(a: Y), HR(a:,y)]

Since Cov [fIR(:c,y),V;I\DR(m,y)} = O(Tr(z — y)) we deduce from (2.5.32) and (2.5.33)
that there exists C7 > 0, independent of R > Ry, such that

Cov [ﬁR(:c, Y), V@R(m, y)] Var [V@R(w,y)]fl Cov [V@R(m,y), ﬁR(w,y)]
= O(Tr(z,y)), Vx,y € RB, |z —y|s > Ci,
and thus
H Var [ﬁR(w,y)b} — Var [fIR(a:,y)b] Hop
=O(Tr(x—y)), Vo,y € RB, | — ylo > C2 = max(Cy, C1).

Since Var [fIR(a:, y) | = Var [ Hg(0) ] & Var [ Hg(0) | we deduce from Lemma 2.5.13(i) that
there exists pg > 0 such that

Var [ﬁR(w,y)b] > nol, VR > Ry.
Note also that (2.5.30) implies that there exists C3 > 0, independent of R > Ry, such that
sup || Var [ Hr(z,y)" | [lop = O(1)

Lemma 1.1.27 implies that
(E[ | det Hp(z,y)’|] — E[ | det Hp(z,y)"|] ‘ = O(Tr(z —y)'/?). (2.5.35)
Using (2.5.33) we deduce that there exists Cy > 0, independent of R > Ry, such that
’pv@a(%y) (0) — pv&;R(m’y) (0) ‘

= (27r;m/2‘ det Var [V@R(az,y)]*l — det Var [V@R(w,y)]fl ) (2.5.36)

= O(TR(az — y)), Ve,y € RB, | — y|leo > Cy.
We can now estimate the right-hand-side of (2.5.28). For any x,y € RB

O(TR(cc—y)) (2:5.29) O(|cc—y‘;op/2), Vp > 0.
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Using (2.5.33), (2.5.34), (2.5.35) and (2.5.36) that we conclude that there exists C5 > 1,
independent of R > Ry such that, for any p > m,

Yo,y € RB, |& —ylx >Cs, | pr(x,y) — pr(x,y) | =0(|z —y 12y, (2537)

:AR(muy)

Since the random function @f is stationary, we deduce that for any x,y,z € R™ such that
x # y we have

Ap(r+ 2,y +2) = Ap(z,y)
so pr(x,vy), pr(x,y) and Agr(x,y) depend only on y — .

4. Conclusion Assume now that x,y € RB and | — y|s < C5. Denote by X the radial-
blowup of R™ x R™ along the diagonal. It is diffeomorphic to the product R™ x §™~1 x [0, 00).

Choose new orthogonal coordinates (£,7) given by

=z +y, n=w—y<:>w=%(§+n)7 yzé(f—n)

then
|z —yl =Inl, dedy=2"""d¢dn.
Note that if ,y € supp fg, then |z|, |y| < Rro/2 and thus

1 1
x,y €supp fr = [¢], |n] < 5’5 +n| + §|§ —n| < Rry. (2.5.38)

The natural projection  : X > R™ x R™ can given the explicit description
R™ x ™1 % [0,00) 3 (&, v,7) — (€,1) = (£,rv) € R™ x R™.
Set for R € (Ry, 00] we set
wr(@,y) = & — y|" *pr(x,y).
Lemma 2.5.13(i) implies that for any C' > 0

sup  sup | Ko sy < o0
RE(Ro,OO}

We deduce from Proposition 2.4.1 and Lemma 2.5.13 that

sup sup | wg(z,y)| < oco. (2.5.39)
RE(Ro,o0) ®,y€RB
0<|z—y|<Cs

It is easy to see that pr o m admits a continuous extension to the blow-up. Using (2.5.37)
and (2.5.39) we deduce that for any p > 0 there exists a constant K}, > 0, independent of R,
such that

& — y" | Ar(,y) | < Kp(1+ |z —y|) """, Yo,y € RB (2.5.40)

Set
5R(§7 77) = AR( 7-['(é.7 77) )
Since Ag(«x,y) depends only on y —  we deduce that dr(§,n) is independent of £. We have

— X2 _ X2
I(R) —AAR(w,y)fR (sc,y)d:cdy—/mlﬁyimo/2 Ar(z, y)[r"(x,y)dxdy
z#yY
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(25.38) 1

= 22m/ el<Rro, rm_l(sR(f,rV)fR(g—i_rV)fR(f QTV)dTVOISmfl[dV]df

lv|=1,r€(0,Rro)
(g = 2RC7 6R(§7 7,V) = 5R(07 TV))

R Fm—
O Lo, 0 6 G )
=:J(R)
Note that

Sr(0,rv) = prrv/2,—rv/2) — pr(rv /2, —rv/2)
and for r > 0, |v| =1 fixed

P}im 6r(0,71) = 000(0,7) = Poc(rv/2, =11 /2) — poc (11 /2, =11 /2).
—00

We deduce from (2.5.38) and (2.5.39) that for any p > 0 there exists K, > 0 such that for
any R > Ry , |¢| <710/2, [v| =1 and r < Rry we have

| tor(0,rv) £(C+ 25 )£ (= 55 ) | S BRllAI(L4+7) 7

The constraint r < Rrq is not really necessary since, according to (2.5.38) the left-hand side
of the above inequality vanishes if r > Ry, |¢| < r0/2 and |v| = 1. For p > m we have

/<|< /2 (/(-0 gm-1 (1 + r)*PerJdrvolsmﬂ [dy) d¢ < oo.
=70 00X .Sm—

The dominated convergence theorem implies that J(R) has a finite limit as R — oco. More
precisely

: - m—1 2
]%gréo J(R) = /|C§ro/2 (/’7;017“ o0 (0,7) f(Q) drvolsm1[du]> dg.

This concludes the proof of Theorem 2.5.11. O






Chapter 3

Central limit theorems

3.1. Gaussian Hilbert spaces

3.1.1. Basic definitions and examples.

Definition 3.1.1. A Gaussian linear space is a real vector space X consisting of (real)
Gaussian random variables defined on the same probability space (£2,8,P). If the vector
space X is closed in L?(€2,8,P), then we say that X is a Gaussian Hilbert space. O

Example 3.1.2. Suppose that X is a Fréchet space with dual X* and I' is a Gaussian
measure on X. Then the map

Ev: X x X* >R, Ev,(§) =¢(x)
is a centered Gaussian process parametrized by X™*. The associated Gaussian Hilbert space

X3 is the closure in L?(X,T) of the range the tautological map Ty : X* — L2(X,I‘)
defined in (1.1.28). 0

Example 3.1.3 (The Main Example). Suppose that
X:(Q8P)xT =R, (w,t)— X,(t)
is a centered Gaussian field parameterized by the set 7. The closure in L?(£2, F,P) of the vec-

tor spaces spanned by the collection (X (t) ) is called the Gaussian Hilbert space associated
to the centered Gaussian field (Xy)ter.

teT
O

Definition 3.1.4. An isonormal Gaussian process is a triplet (H, X, W), where X is a Gauss-
ian Hilbert space, H is a Hilbert space and W : H — X is an isomorphism of Hilbert spaces.
The map W is called the white noise map of the isonormal process. O

Remark 3.1.5. If (H, X, W) is an isonormal Gaussian process, then the collection (W (k) )
is a centered Gaussian process parametrized by H. Its covariance kernel is

K:HxH—R, K(hi,ho) = (h1,h2),,, Vhi,hs € H.

heH

H?

173
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Conversely, given a Hilbert space we can use Kolmogorv’s existence theorem to conclude that
there exist Gaussian processes W on H with the above covariance kernel. We denote by X
the Gaussian Hilbert space associated to this process as in Example 3.1.3 . Then the induced
map W : H — X is linear. Indeed, for any h,h' € H

E[ (W (h+h)=W(h)=W(H))(W(h+h')—W(h)—W(H'))] =o.

This proves that the resulting triplet (H, W, X) is an isonormal Gaussian process. O

Example 3.1.6. To a separable Gaussian space X we can non-canonically associate many
isonormal processes. Note first that there is a tautological one (X, X, 1).

A complete orthonormal basis (X,,)nen determines a Hilbert space isomorphism
Fourier : o — X, {3 3 ¢ = (¢p)nen — Fourier (g) = Z cnXn.

neN
O

Example 3.1.7. Let us analyze a special case of The gaussian space described in Example
3.1.2.

Suppose that H is a separable, real Hilbert space with inner product (—, —)g, and T is
a centered Gaussian measure on H; see Definition 1.1.47.

For any h € H, the linear functional Ly : H — R, Lp(x) = (h,z)qy, is a centered
Gaussian random variable. In particular, the collection (Lp)nep is a Gaussian random field
parameterized by H. We denote by C(hi, h2) the covariance of Ly, Lp,,

C(h1, h2) = E[ Ly, L, .

This defines an inner product on H*, the topological dual of H. As explained in [39], there
exists a symmetric, nonnegative trace class operator Q) : H — H such that

C(hl, hz) = (th, ho )H’ Vhi,hy € H.
Assume for simplicity that ker @ = 0.

To this Gaussian measure we can associate the Gaussian Hilbert space Hy. defined as the
closure in L2(H,T') of the vector space spanned by (Lj)ser. One could think of the elements
of Hy as measurable linear functionals H — R.

Note that we have a continuous map with dense image
L:H — Hy, h— Ly. (3.1.1)

The Hilbert space Hy. is canonically isomorphic with H as a Hilbert space. To construct this
isomorphism consider the dense subspace Q/2H and the map

W:QY?H - L*(H,T), QV?H>z—W, := Lg-1/2,-
Clearly the image of W is equal to the image of the map L in (3.1.1). Observe that
E[Wme] = (21,22)H, V21,22 € Q_1/2H.

This shows that the map W extends by continuity to an isometry W : H — Hp.. This isomor-
phism of Hilbert spaces is called the white noise map. Observe that the triplet (H, Hf, W)
is an isonormal Gaussian process.
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The subspace QY2H C H is the Cameron-Martin space defined in (1.1.34). If we identify
H with its topological dual we observe that H* = H C Hp then Q'Y?H can be identified
with the Cameron-Martin space of the Gaussian process (Ly); see Appendix B.5.

We fix an orthonormal (ej)ren (complete) basis of H consisting of eigenvectors of @,
Qe, = Apen, n €N,

The collection of linear functionals

1
We, = 7)%[/6”, neN
is an orthonormal basis of the associated Gaussian Hilbert space Hfy. |

Definition 3.1.8. Suppose that X C L?(Q2,8,P) is a Gaussian Hilbert space. We denote
by 8x the o-subalgebra of 8§ generated by the collection of random variables X € X and we
define

F(X) = L*(Q,8%,P) C L*(Q,8,P).
For reasons that will become clear a bit later, we will refer to F(X) as the Wiener chaos of
X. 0

Example 3.1.9. Suppose that T" is a compact metric space and I' is a Gaussian measure on
the Banach space X = C(T"). We have a Gaussian stochastic process

X:(X,Bx,D)xT =R, X xT53(ft)— Xs(t):=Evy(f) = f(t).

The Gaussian Hilbert space X determined by this process is the closure in L? ( X,Bx, I‘) of

the subspace spanned by X (t), t € T. Blackwell’s theorem implies that the sigma-algebra
generated by ( Ev, ) coincides with the Borel sigma-algebra Bx and thus

F(X)=L*(X,Bx.T).

teT

O

3.1.2. Hermite decompositions. To understand what happens when we pass from a
Gaussian Hilbert space X to its Wiener chaos F(X) we consider first the simplest possible
case, dim X = 1.

Example 3.1.10 (Hermite polynomials). Consider the standard Gaussian measure P = T°
on ) =R,

T[dr] :\/127769622)\[@5].

As explained in Example 3.1.2, this tautologically defines a one-dimensional Gaussian Hilbert
space X spanned by the identity function 1g : R — R.

In this case 8§ = Sy is the o-algebra By of the Borel subsets of R and 8y = Bgr. Moreover,
we have and isomorphism

L*(R,T) - F(%), L*(R,T)> F+s Folg.
We see that the Wiener chaos F(X) is much larger than X.

A convenient complete orthogonal basis of F(X1) = L?(R,T) is given by the Hermite
polynomials (Hy)n>o0, 93, V.1.3].
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To define these polynomials we introduce the creation operator 6, : C*°(R) — C*°(R),

22 22

6 f(z) = —ez0y(e 2 f(z)) = —0uf(x) + zf(x). (3.1.2)

The creation operator is the formal adjoint with respect to the inner product in L?(R,T') of
the annihilation operator, namely the usual differential operator d,. More precisely,

/f T dr] /f b9(x)T[dr], Vf.g € CX(R).

The above equality is a direct consequence of the Gaussian integration-by-parts formula
(1.1.5).

The n-th Hermite polynomial is defined by
H,(z)=4,1. (3.1.3)
Let us observe that the operators 0,, d, satisfy the Heisenberg identity
[0, 0] = 030 — 0,0, = 1.

Using this iteratively we deduce

O Hy(z) =nHp—1(z), Vn €N, (3.1.4a)
6:0:Hy(z) = —H)!(z) + zH),(z) = nH,(z), Vn € N. (3.1.4b)
(e” T ) = (-1)"Hy(z)e 2. (3.1.4¢)

From the defining equation (3.1.3) we deduce

Hy () = 0o Hy 1 (x) = —H,y (%) + 2 Hp 1 () (3:-L46)

we thus we obtain the three-term recurrence relations
Hyi1(z) = 0, Hp(x) = —H) () + xHy,(z), ¥Yn > 0. (3.1.5a)
Hy,(x) =2H,—1(x) — (n— 1)Hp—o(x), Vn >2. (3.1.5b)

—(n—1)Hp—o(z) + xHp—1(x),

For example,
Hy(z) =1, Hy(z) ==z, Hy(z)=2>—1, H(z)=2>— 3z,
Hy(z) = 2* —62° +3, Hs(zx)=2°—102> + 152, Hg(z) = 2% — 152% + 452% — 15.
More generally,
1\
0 %!((nl_)zr)!x"—?r. (3.1.6)
Observe that the leading coefficient of Hy(z) is 1. We have

o (2)] < zn: <T’;> P (;)mﬂ _ (\}5 + m)n, vz € R. (3.1.7)

m=0
From the equalities (3.1.3) and (3.1.4a) we deduce that the collection (H,,),>¢ is orthogonal
in L2(R,T),

r—=

/H )T [ dz ] = 6pmn!. (3.1.8)

In particular,

/Hm(:L‘)I‘[d:n] = / Hp(z)Ho(x)T [dz] =0, Vm > 0. (3.1.9)
R R
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Proposition 1.1.3 shows that the collection (H,)n,>0 spans a dense subspace in L*(R,T).
Hence, any f € L?(R,T') admits a Fourier-Hermite decomposition

£ = el Hu(e), enlf) = /R J(2) Ho(2)T [ da .

n>0
Let us point out that if g € C*°(R) has the property that
g® e L*(R,T), Vk >0,

then we have the following expansion in L*(R,T)

1
g(x) =) —Er[g™ ] Hn(x), (3.1.10)
n>0
where [E,, denotes the expectation with respect to the probability measure I'. If in the above
equality we choose
t:pfﬁ

9(x) = gi(x) = 77,
then, for any ¢ € R, we have

d" 2 . 2 N
(@) =T, Eplg"] = the " /et‘”F[dx] ALT) n
o R
This proves that
t" 42
ZHn(x)ﬁ = eta; t2 = gt(l’), (3111)
n>0 ’

where the above series converges in L?(R,T') for any ¢ € C. The estimates (3.1.7) show that
the above series also converges uniformly for (z,t) on the compacts of R x C. O

Remark 3.1.11. There is no consensus in the existing literature on the canonical definition
of Hermite polynomials since many authors use different normalizations as canonical. To help
the reader navigate these “canonical” choices we want to describe a one-parameter family of
“canonical” Hermite polynomials that contains most these choices. Our presentation follows
closely [83, Sec. 9.3] to which we refer for proofs and more details.

For each p > 0 and = € R we set

mn w2

Hy(elp) = (=) 5 e 5.
The function H,(x|p) is a degree n polynomial in x called the nth Hermite polynomial with

parameter p.

The exponential generating function of the sequence (Hn(x, ) )n>0 is
12 1
H,(t,x) = e!®7 2" = Z aHn(x|p)t". (3.1.12)

n>0
Thus Hy,(x) = Hy(z|p = 1). Moreover,
_1
H,(z|p) = p”/QHn(xp 2). (3.1.13)

In particular this shows that the leading coefficient of H,,(z|p) is 1 for any p. Using (3.1.4a)
we deduce
O Hy(x|p) = nHy—1(x|p). (3.1.14)
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Note that )
t 1
O, Hy(t,x) = —§Hp(t,l‘) = —§8§Hp(t,az).

Thus the polynomials H,, (z|p) satisfy the backwards heat equation

<8p + %aﬁ )Hn(x\p) —0, ¥n>0. (3.1.15)
O

Suppose that ¥ C L%(Q,8,P) is a separable Gaussian Hilbert space. Fix a complete
orthonormal base (X,),>1 of X. In particular, we have

E[Xin] = 0;; = the Kronecker 9,

and thus the random variables (X,,),>1 are independent. Additionally, the o-algebra gener-
ated by the collection (X,,) coincides with the o-algebra Sx.

Consider the space RY of real sequences z = (x1,29,...) equipped with the product

measure
=T [dz, ],
neN
defined on the Borel o-algebra BY of the space RY equipped with the product topology.

For n € N we denote by 7, the natural projection
RY 5 R, 2z (z1,...,2,)
and we set B,, := 71',;1 ( Brn ) Then
BN =\/ B,.
neN
The L?-martingale convergence theorem implies' that the union of the subspaces
L*(RN,B,,TY), neN,

is a dense subspace of L2(]RN, BN I‘N).

We have a natural map

X:0-RY v (X1(w), Xo(w),..., ).

Then
Sx = o(X1,Xo,...,)=X"1(BY),

and X4 (P) = T'N. Moreover (see [35, Cor.I1.4.5]), a function f : © — R is Sx-measurable if
and only if there exists a BN-measurable function F : RN — R, such that

fw) =F(Xi(w), Xo(w),...), Ywe Q.
Additionally, f € (%) iff F € L2(RY, TV) and
/ f(w)’P[dw] = / F(z)’TV[dz].
Q RN
This yields an isomorphism of Hilbert spaces
F(X) = L*(Q,8x,P) — L*(RY,TY).

1One could use the Monotone Class Theorem to reach the same conclusion, but the details would fill-up more
space.
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We can construct an orthonormal basis of L2(RN, ') as follows. For any multi-index
a=(ay,a,...) € NY
such the aj = 0 for all k sufficiently large, we consider the multi-variable polynomial

H,(z) := H He, (21), == (21,79,...) € RY.
keN

The collection H, thus obtained is a complete orthogonal basis of L*(RY,T'N) and (3.1.8)
shows that

o0
2
| Ho |l e gy = @l = T T el (3.1.16)
k=1
3.1.3. Wick’s formula. Suppose that X1,..., X, are jointly Gaussian, centered real ran-
dom variables, i.e., the real random vector X = (Xi,...,X,,) is centered Gaussian. Wick’s

formula provides an explicit description of the expectation E[Xl = -Xn} in terms of the
variance operator Var [X ] of the Gaussian vector X.

Let us first observe that
(-D)"E[X1- X, ] =E[(-X1) - (-Xn) | =E[ X1+ X, ],
where the second equality is due to the symmetry of distribution Px of X, i.e., for any Borel
subset B of R"
P[{X € -B}| =P[{X € B}|.

In particular, this shows that

E[ X1+ X, ] =0 if nis odd. (3.1.17)
To explain how to compute the expectation E [ X1 Xy ] in terms of the covariances E [ X X; ]
we need a bit of combinatorial terminology.

Let V be a finite set. A Feynman diagram on V is a graph with vertex set V' such that
any vertex is connected to at most one other vertex. In other words, a Feynman diagram is
a partial matching of the vertices in V. We denote Feyn(V') the set of Feynman diagrams
with vertex set V.

Given I' € Feyn(V') we denote by E(I") the set of edges of I and by J(I") the set of isolated
vertices I, i.e., vertices not connected to any other vertex. The rank of a Feynman diagram
is the number of its edges, r(I') := #&E(I"). We have

#V = 2r(T) + #9(I).
A diagram is called complete if it has no isolated vertices, J(T") = ().
We denote by Feyn” (V') the subset of Feyn(V') consisting of diagrams of rank r. We
denote by Feyn*(V') the set of complete Feynman diagrams. We set I, := {1,...,n} and

Feyn(n) := Feyn(l,,), Feyn"(n):= Feyn"(I,) etc.

Lemma 3.1.12.
0, n=2m+1,
2m -1, n=2m

# Feyn™(n) = {
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n!

#Feyn"(n) = (TL TL2T> X #Feyn*(Qr) = (n n27’> (27‘ — 1)” = m

Proof. Only the case n = 2m is nontrivial. Here is how one generates all the complete
diagrams with 2m vertices X1,..., Xom.

Take the vertex X; and pair it with one of the remaining (2m — 1) vertices. There are
(2m — 1) possibilities. Once X is paired, we are left with (2m — 2) vertices and there are
# Feyn, (2m — 2) complete Feynman diagrams on (2m — 2) vertices. Hence

# Feyn*(2m) = (2m — 1) x # Feyn*(2m — 2).
In general

#Feyn"(n) = Z #Feyn* (I,\ S) = <n _n2r> x # Feyn*(2r).

Scl,
#S=n—2r

If we set

we deduce from (3.1.6) that

Hy(x) =Y (=17 > 2™ =) (=1)"dn(r)z" ™" (3.1.18)

r=0 I'eFeyn”(n) r=0

Suppose we are given a jointly Gaussian family of centered random variables (X, ),ecv .
For I' € Feyn(V') we define the random variable

w(l) =w@)[(X)wev] = | [ wle)] - [ X

ecE () veI(I)

where for any edge e = [v1, vs] of I we define its weight to be the covariance w(e) = E[ Xy, Xy, |.
Note that if T is complete, then w(T") is deterministic, i.e., a real constant. If () denotes the
Feynman diagram with no edges, then

w(d) = H X,.
veV

Proposition 3.1.13 (Wick’s formula). Suppose that V is a finite set and (Xy)vey is a jointly
Gaussian family of centered random variables. Then

Elw@®] = > w) (3.1.19)

I'eFeyn* (V)
Proof. We can assume that V = 1,,, n = #V. Note that if n is odd, then the sum in the
right-hand-side of (3.1.19) is trivial. This agrees with (3.1.17)
To prove (3.1.19) we first observe that

n
E[X;--- X L9
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Next, we observe that t1 X7 + -+ - + ¢, X,, is a centered Gaussian variable with variance

vty ta) = Y BIXiXjltit; = Y E[X7]2+2)  E[X;X]tit;.
j=1

ij=1 i<j
If we let n = 2k, we deduce from (1.1.9) that

2k k
E[ (1 X1+ + tor Xor)** ] = (2k — 1)”(2 E[Xin]titj> -
ij=1

so that

k k
k-1 9% &
ELX KXokl = ot By Btgg im0 | 2 ELX XSt

3,7=1

_ (Qkk:!) (2722;)1!)” Z w(T) = Z w(T).

I'eFeyn*(n) I'eFeyn*(n)
O

Example 3.1.14. Suppose that the random variables Y7, Y5 are centered and jointly Gau-
sian. We set v; = E[Yf ], c= ]E[Y]_YQ]. Applying Wick’s formula to the Gaussian vetor
X = (1,71, Y1,Y3) we deduce
E[Y?Y2 ] = 3vic.
Similarly
E[Y?YF ] = vivg + 2%
O

3.1.4. The Wiener chaos decomposition. Fix a probability space (£2,8,P) and a sepa-
rable Gaussian Hilbert space X C L?(2,8,P). We want to describe a coordinate independent
orthogonal decomposition of the Wiener chaos F(X) that is closely related to the coordinate
dependent Hermite decomposition described in Subsection 3.1.2.

Proposition 3.1.15. The vector space

spanR{§1~--§n; neN, &,...,& € i{}
is dense in F(X) = L*(Q, 8%, P).
Proof. Fix a complete orthonormal basis X1, Xa,..., X,,... of X. I will prove that
Pe = spanC{Xf” X0 o neN) ag, .. an € No}
is dense in F(X)c = F(X) @ ¢F(X). I follow the approach in [75, Thm.2.6].
Denote by erC the closure of P¢ in F(X)c. We will prove prove that F(X)c C 53@. Set

v, :span{Xl,Xg,...,Xn,}, V=]V

n>1

The result follows from the following two facts.

A. X € F(X)c = F(X) +iF(X) for any X € X.
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Proof. Let X € X. Then
(o.] .k
iX _ Tk
e = Z k!X )
k=0
where the above series converges in L?(£,8,P). This proves that X € F(X)c.

B.If Z € F(X)c and E[ Ze** | =0, VX €V, then Z = 0.

Proof. We set
gjn = O'(Xl,Xg, e ,Xn),
so we get a filtration of og-algebras F1 C Fo C - -+ such that

Sx=\/ Fun. (3.1.20)
n=1

Suppose that Z € F(X)c and E[Zeix] =0,VX € X. We set
Zn =E[Z] F].

The definition of conditional expectation implies that

E[Z,etX] =0, VX € V,.
Now observe that since Z, € L?(Q, F,,P) we have

Zn(w) = u( X1 ()., Xn(w))
for some ¢ € L2(R™,T"). We deduce that
E[on(X1,..., Xp)et Xt 4inXn ] — 0 wgy 4, € R
In other words, the Fourier transform of the complex valued measure
on(x1,. .. ,a:n)l"[dxl] --~Fn[dmn]

is trivial so that ¢, = 0. Hence Z, =0, Vn € N, i.e.,

E[Z|F,] =0, VneN.
Using (3.1.20), we deduce from the Martingale Convergence Theorem

Z :E[ZHSX] :nli_)rgoE[ZH&'“n] =0.

For n € Ny we define P, (X) to be the closure in F(X) of the subspace
{p(ﬁl,...,ﬁm); m>0, &,...,6m €X, peR[xy,...,zn], degpgn}.

Proposition 3.1.15 shows that the vector space
PX) = [ Pal®),
n>0

is dense in F(X). Clearly P,_1(X) C P,(X). We denote by X the orthogonal complement
of Pp,—1(X) in P (X). We deduce that

F(X) :@36" (3.1.21)

n>0
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where the direct sum in the right-hand-side indicates a Hilbert-complete direct sum, i.e.,
e X =6 = (Gnzo, G0 €X™, D[l < oo
n>0 n>0

The decomposition (3.1.21) is called the Wiener chaos decomposition of F(X). We will denote
by Proj,, the orthogonal projection F(X) — X. Note that

X% = span{1}

S0
Vn>0, VEeX™, E[F|=E[F-1]=0.
Example 3.1.16. Suppose that X is the 1-dimensional Gaussian Hilbert space generated by
a standard Gaussian random variable £ with mean 0 and variance 1. In this case
P (X) = spang { Hp(§); k<mn}.
Since E[H;(&)Hy(€)] = 0 for j # k, we deduce that
X™ = span { H, (&) }.
Moreover, (3.1.10) implies that, Vn > 0 we have
[n/2]

n __ g n n—=k _ n 27 .
o=y BECEACE > (5, ELE¥ | Ha-as(© (3122
[n/2]
(1.1.9) , n
273 - (5 )t
In particular,
Proj,,(¢€") = Hy(E). (3.1.23)

If X is a separable Gaussian Hilbert space and X = (X,)n,>1 is a complete orthonormal
basis of X, then the computations at the end of Subsection 3.1.2 show that the collection
Hy(X1,...,Xm), m €N, a € NJ", is an orthogonal basis of F(X) O

3.1.5. Wick products and the diagram formula. Fix a probability space (£2,8,P) and
a separable real Gaussian Hilbert space X C L?(€,8,P). Denote by F(X) the Wiener chaos
of X, and consider the Wiener chaos decomposition

F(x) =P xm
n>0
We have bilinear maps
%:m: X %Zn: % %:(m-i-n):’ %:m: X %Zn: 9 (57 77) ’_> é' ° ,'7 — Projm+n(€n)'

Remark 3.1.17. If X = (Xj)r>1 is a complete orthonormal basis of X, and «, 8 € Ny are
such that || = m, |B| = n, then

Ho(X) @ Hy(X) = Horp(X). (3.1.24)
Indeed,

Ho(X) e Hg(X) = Y o Hy(X).
[v[=m
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Now observe that for any multi-index v such that |y| = m +n, and v # o + § the coefficient
of X8 in H,(X) is 0, while the coefficient of X*# in H,, 5(X) is 1. 0

Definition 3.1.18. Fix a polynomial P € R[xy,...,z,] of degree m. For any &1,...,&, € X,
the random variable Proj,, P(&;---&,) € X™ is called the Wick polynomial associated to
P(&,...,&,) and it is denoted by : P(&; -+ &) . O

Theorem 3.1.19. Let X be a separable Gaussian Hilber space and &1,...,&, € X. Then

b = Y (=) M), (3.1.25)
r
where the summation is over all the Feynman diagrams with vertices labelled by &1, ...,&,.

Proof. Denote by L(1,...,&,) the left-hand-side of (3.1.25) and by R(&1,...,&,) its right-
hand side. Observe that both L and R are symmetric, multi-linear forms in the variables
&1, ..., &, and thus

L(&1,...,&) = R(&1,...,&), V&,...,6<=L(&....6 )=R(&,...,¢), VE€X, Var[¢] =1.

Let £ € X such that Var [5] = 1. Then

Then
R(E....)=3 (-1 3 eV g
n r>0 ~y€Feyn” (n)

Hence

n n
O
Corollary 3.1.20. Suppose that &1,...,&, € X is an orthonormal system, i.e.,
E[&¢& ] =0y, Vi, j.
Then for any o € Nj we have
DY = e = Hy (&1, -, 6n)-
Proof. Set m := |a|. Since the random variables &1, ..., &, are independent, we deduce that

n

E[Hp(61, .. &) Ha 1, )] = [ [ EBLHp, (§)Ho, (§)], VB, v € 22
j=1

We deduce from the orthogonality of the Hermite polynomials that the collection

(Hﬁ(gb cee agn) )|5|Sm
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is an orthogonal basis of P, (&1, . ..,&,). In particular, we have a unique linear decomposition
£ =) cgHs(9), (3.1.26a)
[Bl<m
%= ) egHp(E). (3.1.26b)
|8]=m

For any multi-index § such that |8| = m, the coefficient of ¢ in the right-hand-side of
(3.1.26a) is cg. We deduce that cg = 0 for all § such that |3| = m and § # «. The conclusion
of Corollary 3.1.20 is now obvious. O

Corollary 3.1.21. The space
span{: &€+ &n iy £, 6n € XY

1s dense in X .
Proof. Follows from Example 3.1.16 and Corollary 3.1.20. O

Corollary 3.1.22. Suppose that X = (Xi)r>1 is a complete orthonormal basis of X. Then
the collection
Ha(i), o€ N(I?, la] = n,

is an complete orthogonal basis of X*™.

Proof. Let &1,...,&, € X. Then
Gobn= ) caX®, X=][Xx5,
nN

a€eNg
|a|=n

where the above series converges in L?. We deduce
b= Y caHa(X).

a€eNgy
lor|=n

Theorem 3.1.23 (Diagram Formula). Consider an array of random variables
A={&eX; 1<i<k, 1<j<4}

Denote by Feyn [A] C Feyn(A) the collection of Feynman diagrams with vertices in A and
compatible with the array structure of A. This means that no edge connects vertices situ-
ated on the same row of the array A. Denote by Feyn* [A] the subcollection of Feyn [A]
consisting of complete diagrams. Fori=1,...,k we set

£;
7j=1

In other words, Y; is the Wick product of the variables situated on the i-th row. Then

E[Yi-Y]= >  w), (3.1.27a)
eFeyn® [A]



186 3. Central limit theorems

ViYe= Y w@):= Y Proj_gmw). (3.1.27b)

Proof. I follow the approach in [75, Thm. 3.12, 3.15]. Denote by A’ the i-th row of the array
A and by Feyn*(A) the collection of all complete Feynman diagrams with vertices in the array,
not necessarily compatible with the array. I want to emphasize that Feyn* [A] C Feyn*(A).

Theorem 3.1.19 implies that
V= Y (),

I';€Feyn(A?)

k

YY) = H Z (—1)" Ty (1)

i=1 \ I';€Feyn(A?)

k
= > (~)Z= @ [ w(ra),
(T1,...,T'x)EFeyn(Al) x--- X Feyn(AF) i=1
so that
X k
E[Y;-- Y] = Z (=1)Zi=1"TIE H“’(Fi)] )
i=1

(T1,....0%)EFeyn(AL) x - xFeyn(AF)

Given (I'1,...,Tt) € Feyn(A') x --- x Feyn(AF) we denote by Feyn*(I'1,...,T) the subcol-
lection of Feyn* (A) consisting of diagrams that contain I'y U --- Uy as a subdiagram.

We deduce from Wick’s formula (3.1.19) that

k
E [H w(l“i)] = > w(I).

I"eFeyn*(T'1,...,['k)

Hence
E[Y;- Y] = Z w(I) Z (—1)Zi=a ()
IVeFeyn™* (T'y,...,['k) (T'y,...,Tx)EFeyn(Al) x - x Feyn(A*)
i u---urycr’
=:5(I)

For any IV € Feyn*(T'1,...,I'y) we have
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Given I" € Feyn*(A) we denote by I'" N A’ the subdiagram of I” consisting only of edges
connecting vertices on the i-th row of A. We have

S;(T") = Z (—1)r@),
I;CcI/nA?

Now observe that S;(I'") = 0if I'NA? # () and it is = 1 otherwise. Indeed, if r = 7(I"NA%) > 0

then
o=y =3 (-l = zr:(—l)j <r> =0.

FiCF/ﬂAi Scl, j=0 J
Thus

/ *
() = 1, I’ € Feyn* [A],
0, I" € Feyn*(A)\ Feyn* [A].

This proves (3.1.27a).

Denote by L, respectively R the left-hand-side respectively the right-hand-side of the
equality (3.1.27b). For any random variables

nl,...,nmESpan{&jE%,; 1< <k, 1§j§€i}

we denote by A, the array obtained from A by adding an extra row consisting of the variables
Ny-esNm- Set Z := (:m1 - M :). Then (3.1.27a) applied to A, implies that we have

E[LZ]) = E[RZ]<=E[(L - R)Z] = 0.
The equality (3.1.27b) now follows from Corollary 3.1.21. O
Example 3.1.24. Let us apply the diagram formula in the special case when the array
A = (&) consists of two rows of lengths ¢; < ¢ and and &; = &, Vi = 1,2,j = 1,...,4;,
E[fQ] = 1. Then
Yi = Hy,(§)

and we deduce
=N IANYY
O © = X Honare© =3 () () Horaoa )
I'eFeyn [A] r=0

More generally, assume the array has two rows, but the variables on the first row are equal to
&1, while the variables on the second row are equal to £o, E[ff] = E[§%] = 1. If ¢ := E[&1&9],
then

)4
b to r : Ly —r plo—r
(6062 = ZJ() <> Projy, gy o (€0 7ERT). (3.1.28)
If /4 = 03 = ¢, then (3.1.27a) implies that
20
E[ Hy, (§1)H, (62) ] = ¢! ( €>c‘. (3.1.29)
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The equality (3.1.27b) implies® that for any positive integer n there exists a constant
C(n) > 0 such that for any X € P,,(X) we have

[ Xl < C)IX] 22
In particular, this shows that the bilinear map
XM X X3 (X,Y) > X oY i= Proj,, ,(XY) € xmtm

is continuous. Corollary 3.1.22 now implies that the multiplication e satisfies the associativity
property

(Con)el=Ce(ne(), VEe X neX™, (eX™, Y, m,neN. (3.1.30)
Indeed, (3.1.24) shows that the above equality is true for

&1,¢ € { Ha(X); a€ZZ, |a|<oo}.

The general case follows from the multi-linearity and continuity of (3.1.30) in &, 7, {. A similar
argument shows that

Cen=mnel, YEcX™ neX™. (3.1.31)
We thus obtain a structure of commutative and associative R-algebra on X called the Wick
algebra of X. The product e is called the Wick product. Note that for &1, ...,&,, € X we have

51.....£m:;§1...€m:
In general, if

§= ng n= Zﬁm §ny M € X,

n>0 n>0
then

Eon:i=> [ D> &en
n>0 \j+k=n

Example 3.1.25 (The Wick exponential). Suppose that X € X and v = Var [X] Define
the Wick exponential
1
X LY.
ret = E . X"

n>0
Using (3.1.23) we deduce

S XN ,Un/QHn(v—l/2X) (3-1:.13)

The equality (3.1.12) implies

peX = X Tv/2 = X g VarlX] (3.1.32)

If X,Y € X, then
( ceX )( ceY ) — X HY =5 (Var[X]+Var[Y])
Then
E[( CeX )( . )] :E[eX—l-Y]e—%(Var[X}+Var[Y])
(X +Y is centered Gaussian)
a1

1 (VarlX+Y]-Var[X]-Var[Y]) _ E[XY]

2See [75, Lemma 3.44] for details.
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O

3.1.6. Fock spaces. We have shown that the Wiener chaos is a Hilbert space equipped
with a structure commutative and associative algebra. In this subsection we will describe a
general procedure that associates to an abstract separable Hilbert space H, a bigger space
equipped with a structure of commutative and associative algebra. This bigger space is called
the Fock space of H and plays an important role in quantum field theory, [147, Chap.3]. We
will show that the Fock space of a Gaussian Hilbert space is naturally isomorphic as a Hilbert
space and as algebra with the Wiener chaos.

The construction of the Fock spaces is based on the tensor product of two separable
Hilbert spaces Hi, Hy defined as follows.

Construct first the algebraic tensor product H; ® Ho. The universality property of the
tensor product implies that there exists a unique inner product (—, =) g, m, of H; ® Hy such
that, for any x;,y; € H;, i = 1,2, we have

(:E1 T2, Y1 & yz)H1®H2 = (z1,y0)m - (T2,92) Hy-

We denote by Hi®Hs the completion of H; ® Hy with respect to the norm defined by the
above inner product. The Hilbert space Hi®Hj is called the (analytic) tensor product of the
Hilbert spaces Hy, Ho.

Theorem 3.1.26. Suppose that (M;, M;, u;), i = 1,2, are two measured spaces such that the
Hilbert spaces H; = LQ(Mj,J\/[juj) are separable.®> Then there exists a unique isomorphism
of Hilbert space

H\®Hsy — L*( My x Mo, 1 ® s,

such that

fi&fa = (iR fo: My x My = R), fi R folxy,x2) = fi(z1)foz2).
a

For a proof and more details we refer to [130, Thm. II.10], or the original source, [103].

The tensor product of two separable Hilbert spaces Hi, Ho can also be realized as the
space of Hilbert-Schmidt bilinear functionals v : H; X Hy — R. This means that for any
complete orthonormal bases (em,)m>1 of Hy and (fy,)n>1 of Ha we have

5™ fulems fu)l? < 0.

m,n>1

The tensor product of Hilbert spaces enjoys the usual commutativity and associativity
properties
H\®Hy = Hy®Hy, (Hi®H)®H; = H1®(Ho@H3).
Given a separable Hilbert space H we denote by H®" its algebraic n-th symmetric product,
i.e., the subspace of H®™ consisting of elements fixed by the obvious action of the symmetric
group &,,. The closure of H®" in H®" is denoted by H®™ and it is called the analytic n-th
symmetric power of H.

3E.g.7 this happens when the sigma-algebras M; are countably generated and the measures p; are sigma-finite.
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Note that we have a natural projector Sym : H®" — H®" defined by

1
Sym[z; ® -+ ® xy,] = Z To(1) @+ @ To(n), VT1,...,Tn € H.

foe6,
For xq,...,z, € H we set
1O Oy = \/mSym[l‘l @ ®xn] = L Z Lo(1) K- ® Lo(n)- (3133)
\/HO'EGTL
Note that
" =1 O- 0z = Vnla®"
———
and
1297)|? = n!||z|*". (3.1.34)
This is a manifestation of a more general phenomenon.
Lemma 3.1.27. If ey,...,e, is an orthonormal system in H and o = (aq,...,q,) € N
We set
V=1 O 0O DO Oey =€ O @ el
aq an
Then
[ = [lef* © - - @ e[| = al = (a1)) -~ (an!) = | Ha*. (3.1.35)

Proof. For any multi-index o € N we define an a-coloring, or a coloring of type «, to be a
map 7 : I = I, such that

#r k) =ap, Vk=1,...,n.

Think of 7 as defining a coloring of || objects with n colors eq,..., e, so that exactly oy
objects have color e;. We denote by P, the set a-colorings. Hence

o al!
o (ol Y _lal
Qly...,Qn ap!- - ap!

The symmetric group &), acts transitively on P,
Pa 2 xG) 3 (m,0) > moo € P,
and the stabilizer of an a-covering 7 is isomorphic to
Ga =06, X - X G,,,.
To each ™ € P,(E) we associate the element
er = €r(1) @ ® ex(lal) € HEl,

Let us observe that
laf
(eﬂv ew’) = H (eTr(k)a Cr' (k) )H = Opnr, VT, T € Pa.
k=1
Then H" |
GOa __ k=1 Y-
VTP
Tl'efpoc
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so that

n 2
||e®a||2 _ (Hkﬁyﬁk') <a1 ‘04‘ an) _ (Oél!) . (an')

The above lemma implies* that we have continuous bilinear map
®: HO™ « O _y H@(m+n)

defined by

XOY:= (”;m> Sym(X®Y)

_ (” ;m> Sym(Sym(X) ® Sym(Y)),

VX € HO™ Y € HO™,
Proposition 3.1.28. Let ni,n2,n3 €N and X; € H™,i=1,2,3. Then
(X10X2)0X3=X10(X20X3).

Proof. Set a = (n1,n2,n3), n = ny + ny + n3. We can assume that
H = L*(I)=L*(I,\), I=][0,1].
Then
X; € LP(I™) = L*( 1™, A% ) = H¥™,
The symmetric tensor product H®™ is isomorphic as a vector space with the subspace of
symmetric functions in L2(I i )
The symmetric group &, acts on I™ by permuting the coordinates. Thus, for

t::(tl,-..,tn), JEGn

we set

For F € L?(I™) we have
Sym(F)(t) = % S Flo-t).

T 0€G,
We set G := &,,. We introduce the following notation.
e (31 is the subgroup of G that permutes only the first n; variables in (¢1,...,t,).
e (33 is the subgroup of G that permutes only the last ng variables in (¢1,...,%,).

e (9 is the subgroup of G that permutes only the middle ny variables in (¢1,...,t,).

G2 is the subgroup of G that permutes only the first ny +ng variables in (t1,...,t,)
e G 3 is the subgroup of G that permutes only the last no+n3 variablesin (¢1,...,t,).

4The details are straightforward and not particularly illuminating.
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We have inclusions
Hy, = GLQ xG3 CG, Hr : =Gy x Gz’g C G.
For any subgroup H C G we denote by H\G the set or orbits of the left-hand action of H

on G. We have the following commutative diagram of surjective maps.

o\

H\G » Hp\G (3.1.36)

ANPL

*
Above {x} denotes a generic singleton, and L;, Ry are the canonical projections onto the
corresponding spaces of orbits.

For any surjective map ® : A — B, A, B finite sets, and any F' : A — R we denote by
®,(F') its summation along the fibers of ®. More explicitly, ®,(F) is the function B — R
defined by

For each t € I"™ we have a function

1
F - G—)R, Ft(g) = EXI ‘XXQlXX?)(gt)
Note that
Sym ( X1 X X K X3 )(t 'ZFt = pu(Fy)
geG

Let Hy, - g € HL\G. Then
(L1)«Fy(HL - ) = — h;{jL X1 M Xy K X3(hg-t)
= (n1+5‘2)'n3 Sym(X; X X5) X X3(gt)
The colorings of type a = (ny + ng,n3) are maps 7 : I, — {1,2} such that
#7171 (1) =ny +ng and #11(2) = ns.
The group G acts on the space P,
PaxG>3 (m,g)—mog, VT €Py, g€ G=6,.
We obtain a bijection Hp\H — P,
Hp-g—myog
where g € P, is defined by
mo(i) = {1’ P
2, ni+ng <i<n.

For m € P, we set
Tt = (tr101) ta1(2)
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where for any subset J = {j1,...,Jk} C L, j1 < -+ < Jk, we set

ty = (tjp . ’tjk)‘
We deduce that

Pu(Fy) = (L2)y(L1)s Fy = W > Sym(X; R Xp) K X3(7-t)
TEPq
= #3) > Sym(X; K Xp) K X3(7-t) = Sym ( Sym(X; K X,) K X3)(t).

* 1€Pq

Since pyx = (Lg o L1)* = (L2)« o (L1)«, we deduce
Sym (X7 K X, X X3)(¢) = Sym ( Sym(X; K X5) K X3)(t)

Using the right-hand-side of the diagram (3.1.36) we deduce in a similar fashion that
Sym (X1 X Xy X X3 )(t) = Sym ( X; K Sym(X, X X3) ) (¢).

Hence
Sym ( Sym(X; X X5) X X3) = Sym (X1 X Sym(X; X X3))

On the other hand,

ni + ng

~1/2
> X1 0 Xo
ni

Sym(X1 X X2) = (

n 2 N 2
Sym( Sym(XlﬁXg)&Xg) = (X1 ®X2)®X3
ni + ng ni

n —1/2

= < > (X1 0X2) ® Xs.
niy,n2,n3

Similarly

n

—-1/2
) X1 0 (X2 e X3).
ni,n2,n3

Sym ( X; ¥ Sym(X; X X3)) = <

We obtain in this fashion a graded associative and commutative algebra
P ae".
n>0
Its completion
@ 0n
n>0
is called the Fock space of H and it is denoted by F'(H).

Example 3.1.29. Suppose that H = L?*(T, M, 11), where M is countably generated and y is
sigma-finite. Observe that we have a Hilbert space isomorphism

H®m§L2(Tm7M®m“u®m)’ f1®"‘®fm'_>f1&"'®fm
fllg"'gfm(tlv"’tm):fl(tl)"'fm(tm)'
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Denote by M®" C M®" the o-algebra generated by the &,-invariant measurable functions
T™ — R. consisting of &,,-invariant M®"-measurable subsets. We set
1
o = E,u@” s M — [0, ).

Observe that L2(T, M, u)®" can be identified with the closed subspace
LT, M ™), C LA(T", ME™, u&)

consisting of symmetric L?-functions F : T — R.

The orthogonal projection onto L2(T™, M®", u®")g, is the symmetrization operator

n

1
F s Sym(F), Sym(F)(t,...,tn) = — > Fltoys- s togm)-
T 0EG,

For any fi,...,fn € LQ(T,J\/[,M) define

1@ fr: T" =R,

(fi@-® fn)(t1,. . tn) :i=n!Sym(fi K- X f,)(t1, ..., tn) (3.1.37)
= > 1 Alow))- = D 11 fom -
weG, k=1 ce6, k=1

Clearly, f1 ©® -+ ® f is & -invariant.
Lemma 3.1.30. If {f1,..., fa} C L*(T, 1) is an orthonormal system and o € N", then

lf1@--© /1@ ©fu® @ ful7a(ppial yolaty = b
—_—— —_— )

aq Qn

Proof. We argue as in the proof of Lemma 3.1.27. For any coloring 7 : I}, — I, of type «
we set

|al

FTI'(t].’ ce 7t\a|) = H fw(k)(tk)
k=1

We have
e 00 fo -6 f =a E F;
—_—— —_——

a1 an 71'6?0(

Observe that the collection (Fy)recp, is orthogonal, and

1
1 Exll L2 (agled yolaty = lall’ V€ Pa.

Hence

1
1f1©@ - @f1©® @ fn® @ fullspal yoraly = (a!)Qw#ﬂ’a =al.

a1 Qn
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We thus obtain a Hilbert space isomorphism

W, (T, )™ = LA(T™, MO, i) (3.1.38)
uniquely determined by the requirement
V(OO fa) =[1 @@ fn, Vfi,..., fu€ L*(T, M, p). (3.1.39)
Note that
— Fdu®" = i‘ Sym(F)du®" = Sym(F)dpu®™.
n! Jrn n! Jpn T
g

Remark 3.1.31. Let I denote the unit interval, B o-algebra of the Borel subset of I and A
the Lebesgue measure on B. For any positive integer n we denote by A,, the simplex

Ap={(t1,...,tn) €™ z1 <ap <~ <y }.

The map

1

LA(I™,Bra, =X°") > f = fly € L*(Apm, Ba, A®")

n! An "

induces a isometric linear isomorphism from the subspace of symmetric functions
1
2 ® ®
L (I”,B ",m)\ ”)GH.

to L?(Ap, Ba,, A%™). 0

Suppose that X C L?(Q2,F,P) is a separable Gaussian Hilbert space. We have a linear
map )
O, : X0 5 xm™ (3.1.40)
naturally determined by the correspondences
SO O &e -0 =8

Corollary 3.1.20, (3.1.16) and (3.1.35) imply that if &, ..., &, is an orthonormal system in X,
then

Vall| sym[6 @ @&l =G0 0kl =& |. (3.1.41)
We obtain isometries ©,, : X®” — X and thus an isomorphism of graded Hilbert spaces
0:F(X)— JF(X). (3.1.42)

The associativity (3.1.30) shows that © is actually an isomorphism of algebras. We have thus
proved the following result.

Proposition 3.1.32. The Fock space of a separable Gaussian spaces X equipped with the ®
product is isomorphic to the Wiener chaos of X equipped with the Wick product. O

If X1, %5 C L?(Q, 7, P) are two Gaussian Hilbert spaces, then any bounded linear operator
A : X1 — X9 induces bounded linear operators

A9 O L %97 p e N
uniquely determined by the requirements

AP (6 0 0&) = (A&) O 0 (AL,), YEi,...,&n € X1.
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In particular A®? = 1. Moreover
1A= = [l A]".
If ||A|| <1, the operators A®™ combine to a bounded linear operator
F(A): F(X;) = F(X2).
We deduce that if |A| < 1, then A induces a bounded linear operator A : F(X;) — F(X3)
uniquely defined by the equalities
Ao o&y)=(Abr) e o (L), Ver,... & € X1
Note that
‘LAH:: L,
and we have a commutatiove diagram

F(x1) =2 F(x,)

In particular, a unitary isomorphism 7T : X; — X; induces a canonical unitary isomor-
phism
T :F(X1) - F(X1)
which preserves the Wick algebra structure.

Example 3.1.33. Consider the one-dimensional Gaussian Hilbert space X spanned by a
standard normal random variable £. In this case

F(X) = L*(R,T).
Any linear operator X — X has the form r1, and it is a contraction provided |r| < 1.
Any f € L*(R,T) has the form
1 1
76 = X hH©), fu= BLHOHAO] = o [ f@)H ()T ().

n>0
Since : £ := H,(£) we deduce that r1H,(¢) = r"H,(¢) and
rLf =1L | > fHa(€) | =D farHa(€).
n>0 n>0

The operator r1 : L2(R,T) — L%(R,T), |r| <1 is called the Mehler transform. It is an
integral operator with kernel

,,,,TL
M (,y) = D Hn(2)Hn(y) — € L*(R?, T'%%).
n>0 )
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The above series converges uniformly for (z,y,r) on the compacts of R? x (—1,1). We denote
by M, the integral operator r1. Consider the function

A" /\xfﬁ
g () :ZHn(x)H:e z.
n>0
Observe that for |r| < 1 we have M, gy = g,». This equality determines M, (x,y) uniquely.
Consider the function

B 1 (rz)? — 2ray + (ry)?
Mr(m,y)—ﬁexp (_ 2(1—7‘2) ) .

A direct but tedious computation shows that®

/RMT(:c,y)gA(y)dM(dy) = gra(x)

so that

1 (rz)® = 2ray + (ry)?
;Hn(x)Hn(y)m = TTQGXP <— 2(1 — r2) , V] < 1.

The function M,.(z,y) = M, (z,y) is called the Mehler kernel.
The family of operators T} := eit\ll, t > 0 is called the Ornstein-Uhlenbeck semigroup. O

3.1.7. Gaussian white noise and the Wiener-1t6 integral. Suppose for ease of presen-
tation that (T,M, u) is a convenient® probability space, i.e.,
e The sigma-algebra M is countably generated, and
e The probability measure p is complete and non-atomic.
We recall that an atom of a measure p is a measurable set A such p [ A} > (0 and, for any

measurable set B C A, either M[B] =0, or ,u[B] = ,u[A]. A measure is called non-atomic
if it has no atoms.

Any non-atomic measure p enjoys the following property, [22, Cor.1.2.10]: for any mea-
surable set A such that M[A] > 0, and for and 0 < ¢ < ,LL[A], there exists a measurable set
B C A such that M[B] =c.

Let us point out that if (T, M, u1) is convenient, then L'(T, M, ) is separable. Convenient
spaces are rather special.

Theorem 3.1.34. Suppose that (T, M, u) is a convenient probability space. Then there exists
a measurable function
®: (T,M) — ([0,1], B ),
with the following property.
(i) ®pp = X = the Lebesgue measure on [0, 1].
(ii) The p-completion of @‘1(3[0,1]) 1s equal to the p-completion of M.

5For a more conceptual approach we refer to [75, Example 4.18], [93, V.1.5] .
6The convenient spaces appear in literature with different monikers: standard, perfect, Lebesgue-Rokhlin.
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For proofs and more details we refer to [23, Thm. 9.3.4] or [93, Thm. IV.4.6.2].

Definition 3.1.35. A (real) Gaussian white noise driven by the convenient probability space
(T, M, i) is a centered Gaussian process W parametrized by M

Qx M3 (w,A)—W,[A] €R
with covariance kernel

Ky (A, B) =E[W[A] W[B]] :/IAIBdu:u[AmB], VABEM.  (3.1.43)
T
Above (Q,S,]P’) is a probability space. O

Proposition 1.2.10 guarantees the existence of Gaussian white noises.

Fix a Gaussian white noise W driven by (7, M, u). Observe that if Ay,... A, € M are
pairwise disjoint, then the Gaussian random variable W[Al ] s W[An} are independent
since they are jointly Gaussian and uncorrelated. Observe next that

VA,BeM, ANB=0: W[A]+W|[B]|=W[AUB] as. (3.1.44)
Indeed
E[(W[AUB]-W[A] -W[B])*] =E[W[AUB]*| +E[W[A]*] +E[W[B]?]
—2E[W[AUB|W[A]]| -2E[W[AUB|W|B]]
G [AUB] +u[A] + [ B] —2(u[A] +u[B]) =0.
More generally, if (Ay,),n is a sequence of pairwise disjoint sets in M and

A= A,

neN

wiA] Z%W[An]

where the above convergence is L?. Kolmogorov’s one-series theorem implies that the series
also converges a.s..

then

Remark 3.1.36. One might be tempted to think that the random function (W[A] )
admits a modification that is a random measure, i.e., for any w €  the correspondence

M>A—W,[A]eR

is a signed measure. This is not the case. The correct way to view W is as a stochastic
measure, i.e., a measure valued in the Hilbert space of random wvariables LQ(Q,S,IF’). We
refer to [84] for a very detailed discussion of the distinction between these two concepts. O

AeM

Denote by Elem (T,M) the vector space of M-measurable elementary functions on T,
ie.,
Elem (T,J\/[) = spanR{IA; A€ M}
Using the equality (3.1.44) we deduce that

Y aila, =D bdp, =Y a;W[A;] = bW [By].
J k J k
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We thus have a well defined map
Jw : Elem (T, M) —>L2(Q 8 ]P’)
Elem (T,M) 3 f =Y a;I4, — Jw [ f Za] i] € L*(9,8,P).
J
Moreover,

/ f2dp. (3.1.45)

Since the centered Gaussian random variables W[ ] are independent the random variable
JW[ f ] is centered Gaussian.

Since Elem (T, M) is dense in L*(T,M, pu) we deduce from (3.1.45) that Jy extends to
an isometry
Jw: L*(T,M, ) — L*(Q,8,P)
This isometry is called the Wiener integral with respect to the white noise W. Traditionally
one uses the alternate notation

/f ] =3w[/].

Since Jyy is an isometry, its image Xy is a closed subspace of L2(Q, S,IP’). Each X € Xy is
a centered Gaussian random variable since it is a limit of centered Gaussian variables of the
form JW[ f ], f € Elem (T, M) Hence Xy is a Gaussian Hilbert space called the Gaussian
Hilbert space associated to the white noise W.

Conversely, each separable Gaussian Hilbert space is associated to a Gaussian white noise
on (T, M, p). Indeed, let X C LQ(Q, 3, IP’) be a separable Gaussian Hilbert space. The Hilbert
space L?(T, M, i) is separable so there exists a (non-canonical) Hilbert space isomorphism

J:L*(T,M, 1) = X.
Then the map
WM — L?(Q,8,P), Me A W[A]=J[I4] € L*(Q,8,P)
is a Gaussian white noise on (T, M, ), and J = Jyy.

Suppose that X is a separable Gaussian Hilbert space and J : L?(T,M,u) — X is a
Hilbert space isomorphism with associated Gaussian white noise W.

The isometries (3.1.40) yield isometries
O ¢ LA(T, M, p1)®™ — X™, Vn € Ny.
Using the isometries ¥,, defined in (3.1.38) of Example 3.1.29 we obtain isometries

—1 ~
Jn  L2(T™, MO, 1®™) 2 L2(T, M, p) O O xin, (3.1.46)
For example, if
3.1.37 1
F=Sym(fild B f)(tsta) 57 D00 Sty ),
then )
3.1.39
v, () )ﬁﬁ@---@fm

1

TlF) = [ f) e e d[f] = (T[A] TR 0).
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For F € L*(T™, M®" ®") we define its multiple Wiener-Ité integral of F to be the random
variable

Jn[F | :=nlJ,| Sym(F)].

Often one uses the integral notation
/ Fdw™ = / F(ty, .. ta)W[dt] - W[dta] == 3.[F], VF: M" R,

In particular, if F' € L2(T™, M®") is symmetric, then

[ F| =nlJy[Fl<=J,|F]| = 1/n Fdw™.

nl

Note that if
F(ti, o tn) = filt) - futa), f1,-., fn € DM, M, p),
then we obtain the important equality
Tn[ AR R f] =0 [Sym (AR Kfp) | =:J[fi] T [fa] = (3.1.47)
This equality uniquely determines the multiple Wiener-It6 integral.
Note that since .J,, is an isometry we deduce that for any F' € L2(M™, M", u®") have

E[[3.[F] ]| =E|[[3u[Sym (F)] "] =E | [ntsu[Sym (F)][*]

2
= ||n!Sym (F) HLQ(MHM@,I) = n!|| Sym[F]H%Q(Mn,u@n) < n!\|FH%2(Mn7N®n).
We observe that any X € F(X) has a unique orthogonal decomposition
X=Yo(m]=% [ maw
n>0 n>0 7 M"
where Fj, : T" — R are symmetric L?-functions. Moreover
2 2 2 2
E[X :| - Zn'H F?’L HLQ(M"I,M@)") = Z(n') ||F7LHL2(M'”,/L©”)'
n>0 n>0

Remark 3.1.37. There are many normalization conditions involved in the definition of the
multiple It6 integrals and there is danger of confusion since different authors use different
conventions.

In [123], the Hermite polynomials have a normalization different from the one we use in
this book which is the more commonly used.

If F:T" — R is a symmetric function, then I,,(F'), as defined in [75] or [123] coincides
with the multiple integral Jn[F } defined above.

The operator J,, that we have described in this section coincides with the operator I,
defined in [75], or the operator I defined in [92]. O

Example 3.1.38. (a) Suppose that f,g € L*(T,M, x). Then

T2f(;v)g(y)W[d:c]W[dy] =T0[fRg] =T1[f]3]g].
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We set X :=7J1[f], Y :=3J1[g] so that X,Y € X. Then using Wick’s formula (3.1.25) we
deduce

F@)g(y)W[de]W[dy] = XY —E[XY]

~ ([ s@wlas)) ([ awwian) )~ [ sorawuar

Thus, the stochastic Fubini formula gets a correction term.
(b) Suppose that f,g € L2(T,J\/[,,u). Set X = 31[f], Y = 31[9]. Assume for simplicity
that || X||z2 = [|[Y]|z2 = 1.

[ £ @)a( o)W [dar W [dao ]W [dyy W [ ]

=((XeX)o(YeoY):)=(Ha(X)Ho(Y):)=(: X°Y??)
Consider the diagram with vertices
X, X,Y,Y
If c=E[ XY |, then using Wick’s formula (3.1.25) we deduce
P XPY? = XY - (X2 + Y24+ 4eXY ) + 207 4+ 1.
Observe that if ¢ = 0, then
X?Y? — (X?+Y? +4cXY ) +2¢% + 1 = Hy(X)Ho(Y) = Hy5(X,Y).

(c) Suppose that fi1,...,fr € LQ(T, M,u) is an orthonormal family. Set X; := Jl[fj].
Then

Inytogmy | (AR R )RR (fr B R f) | = Hyy (X1) - Hpy (Xp).

ni Nk

O

Suppose that X is a separable Gaussian Hilbert space and J : L?(T,M,u) — X is a
Hilbert space isomorphism with associated Gaussian white noise W.

If F:T? — R is an integrable function we define the contraction

CF ::/F(t,t)u[dt].
T

More generally, if F': T™ — R and 1 <14 < j < n we define the contraction Cy;F : "2 5 R
to be

CZ]F / tl,..., ._t]_t,u[dt]

Given a Feynman diagram I' € Feyn(n) we set

H Ce,

ec&(T

where for any edge e = (i,7) of I we set Ce = C’ij.
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Lemma 3.1.39. Suppose we are given functions F; € L*(T™), i = 1,..., k. We define

k
F=RR---RFE:T"-R, n=>» n,

=1
k

F @-H(X)Fk(tu,...,tlnl;... ;tklv"'atknk) = HFj(tj17"'7tjnk)'
j=1

For any Feynman diagram I' compatible with the array

we have

k
| Cr(Fr & - B F) || pogpgn-seimny < T E5 Il o
j=1

Proof. We use induction on k. The case kK = 1 is trivial since I' has no wedge and thus
Cr(F)=F.
For k = 2, we can assume, after relabeling the variables, that the (I") edges of I" connectd
the vertices (1,7) and (2,7), 7 =1,...,r. Then for
term " "eT™ " seT"
we have

CoF(E, ) = / Fi(s, ') Fa(s, ") [ ds

T

and thus, by Cauchy-Schwarz

cor.f < ([ Ay as)) ([ Ree?) )

Integrating the remaining variables (¢',t") we deduce
lor@) 7 < IR 2 | B 7.
This disposes of the case k = 2.
For k > 2 we set
Fi=fX. .. .-XF}.
Denote by I'y the subdiagram of I' consisting of the edges that have one vertex on the first

row, (1,7), 1 <j <nq, and denote by I's the subdiagram of I' determined by the edges of I'
that connect points on rows different from the first row.

We than have
Cr(F) = Cr, (Fi R Cr,(Fy) ).

Thus, using the inequality established for £ = 2 and the induction assumption we reach the
desired conclusion. O

Suppose we are given functions F; € L2(T"),i=1,...,k. We set
Y; = JnZ[FZ] = Tlni[Sym(Fi)} ex™, 1<i<k.

From the Diagram Formula (Theorem 3.1.23) we deduce via a simple density argument (see
[75, Thm. 7.33| for details) the following important result.
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Theorem 3.1.40. We set n:=nj + -+ + ng. Denote by A the array
(1,7), 1<i<k, 1<j<n,
Then
VioYi= Y Jpom|[Cr(AR---RF)], (3.1.48)
I'eFeyn [.A]
In particular
EVi--Yi]= >  Cr(RiR---RF). (3.1.49)
I'eFeyn* [A]

Proof. Lemma 3.1.39 shows that all the contractions and stochastic integrals are well defined.
From the definition of the multiple Wiener-It6 integrals we deduce that the right-hand side
of (3.1.48) defines a continuous multilinear map

k
[Tz, w) — 5(x).
=1

Thus it suffice to verify the equality (3.1.48) in the special case when each f; is a monomial

filt, oo tm,) = fir(ta) -+ fim, (tm,)-

This special case follows immediately from the diagram formula (3.1.27a). O

Remark 3.1.41. Theorem 3.1.40 corresponds to [92, Thm. 5.3] where it is referred to as
the Diagram Formula. a

Suppose that F; € LQ(T”Z‘), i = 1,2, are symmetric functions and r < min(ni,ny). We
define Fy X, Fy : T™Mtm2=2r 4 R

F1 |ZT Fg(tl, e ,tnlfr,sl, .. .,SnQ,T) = / Fl((tl, .. .tnlfr,t)FQ(t,Sl,. . .SnQ,r)ur[dt].

The equality (3.1.48) in the case k = 2 can now be rewritten as

min(ni,ng)

I [FL]0ns [B2] = Y r!(m) <"2>3n1+n22T[F1 R, Fy]. (3.1.50)

T T
r=0

Digression 3.1.42. The multiple Wiener-Ito integral can be given a constructive description
that justifies the terminology integral. 1 describe below the contours of this construction. For
details refer to [94, §VI.2] or [123, §1.1.2].

Suppose that (7, M, p) is a convenient probability space and W is a Gaussian white noise
driven by (7, M, ). Denote by X the Gaussian space generated by W. Assume that M is
generated by the measurable sets M, n € N. I secretly think that 7' = [01,] and M = Byg ;.

For N € N we denote by My the sigma-subalgebra of M generated by My,..., My.
We set My := {0, T}. For any N > 0, the sigma-subalgebra My consists of finitely many
measurable subsets of T' and hence it corresponds to the sigma-algebra generated by a finite,
measurable partition of T'. I secretly think that My is the sigma algebra, generated by the
partition

(k=127 N k27N), k=1,....2¥ -1, [1-27N1].
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The parts of this partition are precisely the atoms of y|y, . Moreover,

MogCMyC--- and M = \/MN.
N>0

Denote by Ay the set of atoms of |y, . Fix p € N and set
o ®,
ME; = M.
Each of the sigma-subalgebras MY, is finite and its set of atoms is

Anp:=AN X - X AN .
P
Set
Hyyp = L*(TP, MR, p®P), H, = L*( TP, M®P, 7).
Any function F' € Hy,, is constant on the set of atoms Ay, and we denote by F(a) its
value on the atom a € Ay,. Then

F= Z F(a)lq

acANp

and
2 2
IFl3. = > F(a)*u®"[a].
QGAN,p
The symmetric group &, acts in the obvious way on the set of atoms @ = a1 x---xa, € An.
More precisely, for o € &,,.

o-g:aa(l)x---xaa(p).

For a € Ay, we denote by Stab(a) the stabilizer of @ with respect to the action of &,. More
explicitly,
Stab(a) := {0 €&p; o-a=a}.

We set
Npi={a€Ay,; Stab(a)={1}}, A(]JV,p = ANy \ Al
Note that
a=ay X--- xapeA?\Lp(:)Eli;éj a; = a;.
We set

Xnp={F €Hyy F(a)=0, Vac A}, },
We have natural inclusions iy : Hyp, < Hy41,p. Note that iN(Xva) C XNt1p-
For F' € Xy we set

Wn[Fl= ) Fl@Wla], W[a]=W[a]---W[a,] € F(X).

acAy,
The Gaussian random variables W[al ] e W[ap] are independent elements of X so that
Wla] € x”
and thus J, v [ F ] € X7 Since &, acts freely on Ay, and
W[a-g] = W[g], Va € Ay,, Yoe G,
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we deduce

Ipn[F] =0 Sym(F)] = > l| > F(o-a)| W[a].
acAy , oe6yp

~

The operators J, y are compatible with the inclusions in : Xy, — Xni1,p, ie., for any
N > 0, the following diagram is commutative

IN

jp,N\‘ ‘/jp,Nﬂ
X

We have thus constructed a well defined map
Iy Xp = X7, X, = | Xnp € LP(TP, M®P, 7).
N>0
We set F = Sym(F). Then
WF B[ F]=3[F]-5[F]= ) F@F@)W[a]W[d]

a,a’'€Ay

Now observe that
p / .
E[W[Q}W[Q’H _ {M [QL a € 6;‘; a,

0, otherwise.

We deduce
I5F1F=p Y Flapula] =p |2 <] FIL.
acAy ,
We have thus produced a bounded linear map
Jp: X, = X7

Using the fact that p is non-atomic one can show that X, is dense in H), so J, : X, — XV
admits a unique extension as a bounded linear map J, : H, — X'7".

We need to explain why in the above proof we have the avoided the atoms @ = a1 x---xa,
that intersect the diagonal, i.e., a; = a; for some ¢ # j.

To see what goes wrong consider the simplest case p = 2, T'= [0, 1] and p = A. The map

J5 should be a map

Jp: L*(T?) = X%, F s 33 F]
In particular,

E[3,[F]] = 0.
Clearly, for any non-negligible Borel subset B C T', we have
E[W[BxB]]=Var [W[B]] =A[B] #0.
We set
[(k—1)27" k27™), 1<k<2",
Apn = _
{[1—2”,1], k=n,
and
A, = {al,na---aGQ”,n }, An = O'(An)
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For each F € L*(T?) we set F,, =E[ F || An2]| € L*(T? Ap2). Then
Fo= Y F(a),

QEATL,Q

and the Martingale Convergence Theorem shows that F), converges in L? to F. One might
be tempted to set
JQ[F] = nlg{.lo Z F(Q)W[g]
QeAn,2
Suppose that F' = Ir2. Note that for any a € A,, we have

E[W[axa” :Var[W[aH :2—71’ VaGAn
Var[W[aXa]] :3.272n_2*2n:2.272n:272n+1‘

In this case If we set

Sp = E W[a X a],
ﬂ,eAn
then

E[S,=1]=1, Var[S,]=2""""
and we deduce from the Borel-Cantelli lemma that .S,, converges a.s. to 1 as n — co. Note
that S,, € Hy, \ X,. Thus

BTy Ano] = 3 Wla] =S+ Y Wlal

It is not difficult to see that
S Wila] = W[T]* -1 - m(W[T]).

QEA;;’2
In general, given F' € L?(T?) we set
Fp=> Fu(axa)laxa,
acA,
then

li F2 = [ FAxX
Jim Var[12) = [ Pag,

where A : T — T? is the diagonal map. For a more in-depth discussion of this aspect and
generalizations we refer to [54, 84, 127].

When T' = [0, 1], M = Bg 1}, # = A one can give an alternate description of the multiple
Wiener-1t6 integrals. Fix a Brownian motion (B(t))icp,1) and denote by X the Gaussian
spaces spanned by the random function ¢ — B(t). The white noise W is the more familiar
white noise W = dB(t) and the isomorphism is given by the It6 integral

L*([0,1]) > f = 31 (F) —/1f(t)dB(t).
0

Note that
B(t) =31 [Ty
Above, we interpret f(t) as a predictable process in the obvious way.



3.2. Malliavin calculus 207

For n > 1 we set
An:{(tlaatn)ﬂ t1§t2§§tn}

As observed in Remark 3.1.31 the restriction to 4A,, induces isomorphism
1
L2(T™, =A%) — L*(An, A%™).
n!

One can prove that

In[Fl(t, .. t) =30 [ F] = /tldB(sn)/tn dB(sn_l).../tlF(sl,...,sn)dB(sl).

tn—1 0
(3.1.51)

I want to highlight the main ideas in the proof of the above equality referring for details to
[75, Thm.7.5].

The proof of (3.1.51) is inductive. For any (t1,...,tn, € Ap_1), any F € LQ(An), and
any t € [0,1] define F; : A,y — R
f(tb"'atnfl)t)’ tZtn—la
0, t<tp—1.

Ft(t17' --,tn—l) = {

One shows that for any n > 2

3 [ F] :/Olﬁnl[Ft]dB(t)

where the right-hand-side is an It6 integral of a predictable process. The above equality is
linear and continuous in F' so it can be reduced to the case when F' is the indicator of a box
contained in A,,. In this case it can be verified by direct computation. O

3.2. Malliavin calculus

3.2.1. The Malliavin gradient and Gaussian Sobolev spaces. Suppose H is a sepa-
rable real Hilbert space, and X C L?(€, 8, P) is a separable real Gaussian Hilbert space.

e We denote by L%(€) the space of $x-measurable functions f : @ — R modulo a.s.
equality.

e For p € [1,00] we denote by L% () the subspace of L§(2) consisting of p-integrable
functions equipped with the usual LP-norm. Note that F(X) = L%(1).

e We denote by L%(Q, H) the space of Sy-measurable maps f : Q — H modulo a.s.
equality, and by L5(Q, H) the subspace L%(Q,H ) consisting of maps f: Q — H
such that || f| € L4(€2). The norm in this space is

1
E[ | fI5]7.
The space L$($, H) is equipped with a bilinear map
[—, =g« LY (L H) x LY(Q, H) — LY (),
[fo 9l (W) == (f(w),g(w) ), Vg€ L%(Q H).

e A function f : R™ — R is called admissible if it is smooth and its derivatives, of
any order, have at most polynomial growth.

(3.2.1)
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e A function f : R®™ — H is called admissible if it is smooth and its derivatives, of
any order, have at most polynomial growth.

The random variables F' = LO%(Q) are commonly referred as (nonlinear) functionals.
They all can be non-uniquely expressed as

F=p(X,....,Xn,...)
where ¢ : RN — R is measurable and X,, € X, Vn.
We will construct various Banach subspaces Lox(Q). These depend only on X.
Definition 3.2.1. Let X C LQ(Q, S,IP’) be a separable real Gaussian Hilbert space.

() We denote by 2(X) C LE(€2) the set of random variables of the form f(X7,..., X,,),
where m € N, f: R"™ — R is an admissible function, and X1,...,X,, € X.

(ii) We denote by P(X) C 2(X) the set of random variables of the form P(X1,..., X,,),
where P : R™ — R is a polynomial in m variables with real coefficients and
Xi,..., X X

(iii) Suppose that H is a separable Hilbert space. We denote by (X, H) the subspace of
Lgi( Q, H) spanned by random vectors of the form f(X,..., X,,) where f : R" — H
is admissible.

O
Note that if (X,,)n> is a complete orthonormal system of X, then for any k¥ € N and
any ni, . ..,n; € Ng the polynomial H,, (X1) - Hp, (X)) belongs to L5 (), Vp € [1,00). In
particular,
P(X),A(X) € L5 (Q), Vpe[1,00).

Arguing exactly as in the proof of Proposition 3.1.15 we deduce the following result

Proposition 3.2.2. The spaces P(X) and A(X) are dense in L% (Q) for any p € [1,00). O
For X € X and f(X1,...,X;) € A(X) we define Dy f(X1,...,X,) € LY() by setting
DXf(Xla s 7Xm>(w) = Z f(Xl(w)v s 7Xm(w) )(Xja X)%v (322)

where (—, —)x denotes the inner product in X, (X,Y)x = E[ XY ]. We have the a.s. equality
Dxf := gii%é(f(Xl +e(X1, Xz, X + (X, X)x ) — f( X1, X)) ) (3.2.3)
From the definition (3.2.2) it is not clear whether the equality
f(Xq,.. .. Xm) =9g9(Y1,...,Y,) € A(X),
where f and g are admissible, implies that
Dxf(X1,...,Xm) = Dxg(Y1,...,Y,) € L%(Q), VX € X.
This is indeed the case, but the proof is more involved. The key fact is that the a.s. equality
f( X, ..., Xm) =g(Y1,...,Y,) € A(X)
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implies that for any X € X we have
F(X1+ (X, X))z, X+ (X, X))z ) =9( Y1+ (X, Y1)z, .., Yo + (X, )z ).

For details we refer to [75, Thm.14.1& Def.15.26]. We will have more to say about this in
Digression 3.2.9.

Given f(X1,...,Xn) € A(X), define Df(X1,...,X;n) € LY (2, X)

O (X () Xonlw) ) X5 (). (3.2.4)

Df(Xy,....Xn)(w) = oz,

Equivalently, D f is the unique Sx-measurable map 7' : Q — X such that
[T,X],=Dxf as., VX € X.

The resulting operator f(Xi,...,Xmn) — Df(Xy,...,X,) is called the Malliavin gradient or
derivative.

Example 3.2.3. Let X € X. Then DX is the constant map 2 — X, w +— X. For this reason

we will rewrite (3.2.4) in the form

Df(X1,. ., Xm)(w) = Zgé(xl(w),...,xm(w))pxj. (3.2.5)

This notation better conveys the nature of the two factors -2 Fm (X 1(w), ..., Xm(w)) and DXj.
The first is a scalar, while the second is an element of X. Note also that

DxF = [DF,DX |, € LY(9)
where [—, —|x is the bilinear form (3.2.1). 0

For a positive integer k and f(X1,...,X,,) as above we define
DFF(X1,..., Xp) € L3 (9, X°P)
by setting
k . ce .
DFf(Xy,..., X Z a:c“ — _8% (X1(w),..., Xp(w) )DX;, ® -+ ® DX,

01500 =1

Remark 3.2.4. Arguing as in Lemma 3.1.27 we deduce that

Z 835@1 : axzk (X1(w),..., Xm(w))DX;, ®---® DX;,

110yl =1

=Vk! Z aagf(Xﬂw),...,Xm(w))(DX1)®a1@...@(DXm)eam

aeNg?,

la|=k

1

= Z ﬁagf(Xl(w);...,Xm(W))Sym[(DX1)®a1®...®(DXm)®am]. O

aeng,
la|=k

Observe that the class 2(X) contains the algebra generated by the polynomials H,,(X),
X € X. Arguing as in the proof of Proposition 3.1.15 we deduce that 24(X) is dense in
L5 (Q,P), Vg € (1,00).



210 3. Central limit theorems

Proposition 3.2.5. Let k € N and g € (1,00). Then the operator
DF  A(X) € LL(Q) — LL(Q,X°P)

1s closable.

Proof. We follow closely the proof of [121, Prop.2.3.4]. We consider only the case k = 1.

Let F,G € A(X) and X € X such that || X||;2 = 1. Note that FG € A(X). We can
assume that

F=f(X1,....X), G=g(X1,...,Xpn).
where {X1,..., X, } C X is an orthonormal system, X; = X, and f, g are admissible. Then,
setting h = fg we deduce

h 12+-»-+z%
E[[DFG) X ]y] = @02 [ D e T
Rn 855]_
(integrate by parts along the z1-direction)
i+t

:(QW)_”/Q/ zih(z1,...,an)e” 2 doe=E[XFG].

Clearly D(FG) = G(DF) + F(DG). We deduce the following Gaussian integration by parts
formula

E[G[DF,X],] =-E[F[DG,X |, ] +E[XFG], VX € X. (3.2.6)
Using the notation (3.2.2) we can rewrite the above equality in the more suggestive form
E[(DxF)G| =E[F(-Dx + X)G], VX € X. (3.2.7)

The above equation extends by linearity to all X € X, not necessarily of L?-norm 1.
Now let (F},) be a sequence in A(X) such that the following hold.

(i) F, — 0in L(Q).
(ii) The sequence DF), converges in the norm of L% (€2, X) to some n € L%(, X).

We have to show that n = 0 a.s.. Let X € X, G € 2(X). Since F,, — 0 in L? and XG
and [DG,X]36 belong to L1 we deduce from (3.2.6) that

E[G[”vX]x] = nILH;OE[G[DFmX}x]

=— lim B[ F,[ DG, X ] ]+ lim E[ XF,G] =0.

n—oo

Thus
E[G[U,X]x] =0, VG eA(X), X eX.
Since 2(X) is dense in any L", r € [1,00), we deduce that
VX eX, (n,X)x=0 as..
Thus, if (eg)ren is an orthonormal basis of X, there exists a negligible set N C Q such that
[n,en]x(w) =0, "neN, we Q\N.
Thus n =0 a.s. O
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Definition 3.2.6. Let k € N and ¢ € [1,00). We define the Gaussian Sobolev space D*4(X)
to be the closure of 2A(X) with respect to the norm

. ;
|Flloea = | SSE[IDFIL, || 0
§=0

Remark 3.2.7. According to Proposition 3.2.5, the operator D* can be consistently extended
as a continuous operator

DF . DP9(X) — LL(Q, X°P).
The space D¥9(X) is the domain of the closure of the unbounded operator
D* (%) C LL(Q) — LL(Q, X°7),
i.e., the closure of A(X) in the graph norm of D*. In particular, the space A(X) is dense in
DF49(X), Yk > 0, q € [1,00).
The space D¥2(X%) is a Hilbert space with inner product

k
(F,G)prz = Y _E[[DIF, DG, ]
j=0
g

Remark 3.2.8. Let (2,8, IP’) be a probability space. Suppose that (T, M, i) is a convenient
probability space and
W H:=L*(T,M,u) — L*(Q,8,)

is a Gaussian white noise. Its image is a Gaussian Hilbert space X. If F' € DY2(X) then its
gradient is an element in

L?(Q,8%,PX) 2 L*(Q,8x,PH) 2 L*(QAxT,P®Rpu)
and thus it can be identified with a stochastic process parametrized by T. We denote by
D, F this stochastic process.
Any functional F' in the n-th Wiener chaos X*™ can be written as multiple Wiener integral
F=9[fu]=1[ foltr,....toa)W][dty]---W]dty],
Tn
where f,, € L? [T, men, on ) The gradient DF' can be identified with the stochastic process

DiF =Jp 1| fu(—.1) ] :/Tn_1 Sa(te, .t )W [dty ] - W [ dby—1 ]

I refer to [123, Sec 1.2.1] for a proof and more information on this point of view. 0

Digression 3.2.9. The usual Sobolev spaces can be defined in two equivalent, yet qualita-
tively different ways: as completions of spaces of smooth functions with respect to Sobolev
or by directly describing the regularity conditions that characterize the functions belonging
to a given Sobolev space.

Similarly, the Gaussian Sobolev spaces Dk’p(% ) can be given an alternate definition by
describing explicitly the regularity properties a random variable in LO%(Q) needs to satisfy in
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order to belong to D*P. T digress to offer the reader an idea of this approach. I follow closely
[75, Chap.15] to which we refer for proofs and more details.

A random variable Z € L}(Q2) can be described non-uniquely as
Z(w) = f(X1(w),..., Xn(w),...)

where f : RV — R is a measurable function and X,, € X, Vn. Suppose we are given another
such description of Z
Z:g(Yl,...,Yn,... )

with ¢ : RV — R a measurable function and Y;, € ¥, Vn. One can show that for any X € ¥
we have
(X1 +E[X1X],... . Xn+E[ XX ],... ) =g+ E[1X],... . Yo +E[Y, X ],... ).
The key fact behind this equality is the identity
Elo(Xi +E[X1X],..., Xo +E[ X, X])] =E[ :e¥ 1 o(X1,....X,,) ]

for any n € N and any bounded measurable function ¢ : R® — R. Above, : eX : denotes the
Wick exponential defined in Example 3.1.25 . We then have a well defined linear map

px : Lz () = Lz (9)
given by
pr(Xl,...,Xn,... ) = f(Xl —i—E[XlX},,Xn—I—E[XnX], )
This is also a morphism of algebras, i.e.,
px(2122) = px(Z1)px(Z2), VX € X, VZ1,Z, € L3(9Q).
Moreover, px,+x, = PX; © PXo, VX1,X2 € X. This map is called the Cameron-Martin shift.
It satisfies many other pleasant properties [75, Thm. 14.1].
Given F € L%(Q2) and X € X we say that the directional derivative Ox F exists if the
difference quotients
1
n (pxF —F)

converge in probability as ¢ — 0. The limit is the directional derivative Ox F. If f € Cl( R”)
X, X1,...,X, € X, then

Oxf(X1,....Xy) :ZE[XkX]aaﬂi(X17...,Xn).
k=1

A functional F' € LgE(Q )) is said to have a gradient if there exists G € L%(Q, X ) such that
for any X € X the directional derivative Ox F exists and

oxF = [G’X]x a.s..
If this happens we set DF := G.

A random variable F' € L%(Q) is said to be absolutely continuous along X € X, or X-
a.c. if there exists a version of t — p;x I’ such that for any w € §2 the function t — pyx F(w)
is absolutely continuous. We say that F' € LOX(Q) is ray absolutely continuous or ray a.c. if
it is X-a.c for any X € X We denote by @1’0(%) the space of functionals F' € LO(Q) that
are ray a.c. and admit a gradient.
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Following [75, Def. 15.59] we define D'? to be the the subspace of @1’0(%) consisting of
functionals F such that DF € LP. The space D? ( %) is equipped with an obvious Sobolev-
type LP-norm. The fact that the normed space Iﬁ)l’p(%) is isomorphic to the Banach space
Dlvp(%) in Definition 3.2.6 requires some work. For details we refer to [75, Thm. 15.104].

The space DLP ( X ) has certain technical advantages. In particular, it leads naturally to
the following result with important applications.

Theorem 3.2.10. Suppose that F € DYP(X), p € [1,00), is a non-constant random variable.
Then its distribution is absolutely continuous with respect to the Lebesgue measure on R. 0O

For a proof I refer to [75, Thm. 15.50]. Yet other approaches to this absolute continuity
theorem can be found in [25], [94, Thm. II1.7.1] or [140].

Let me mention a few things about a special case of Gaussian Hilbert spaces arising
frequently in stochastic analysis. Suppose that I' is a Gaussian measure on the separable
Fréchet space X. It has an associated Gaussian Hilbert space X. More precisely, X = X1,
the closure of the image of the tautological map

Tr : X* - L*(X,T)

defined in (1.1.28). Concretely X1 can be identified with the quotient of X* modulo I'-a.s.
equality. In this case (Q,S,IP’) = (X,BX,I‘). For X € X the Cameron-Martin shift 7x
coincides with the pullback induced by a measurable map of 7x : X — X.

In (1.1.34) we defined Cameron-Martin space Hr = T(X) C X of I'. For X € X define
x : X = X, 7x(x) =2+ 11 X.
Then, for any F' € X*, the Cameron-Martin shift px F' is given by

(1.1.29)
] =

px(F)=F+E[XF F+F(TfX) = 7x(F).

Recall that F' not really a function, but an equivalence class of functions modulo equality
I-a.s. Thus if F = F' T-a.s., but F # F’, it is possible that F/(z + T3X ) # F'(z + T3X)
I'-a.s.. This not the case.

The classical Cameron-Martin theorem [32] shows that the measure (7x)4I" is absolutely
continuous with respect to I'. More precisely
(tx)gD[dz] = eX(m)_%HX”LZ(XvUI‘[dx].
For modern presentations we refer to [21, Sec. 2.4] or [144, Sec. 3.3.1].

If X =R*"and I' =TI, then X = R", and for any X € R", the Cameron-Martin shift
7x : R™ — R" is the translation

R">v— v+ X ecR"
It X = C’( [0,1] )) and I' is a Gaussian measure on X, then the linear functionals
Ev,: C([0,1]) = R, Evi(f) = f(1)

span a dense subspace of the associated Gaussian Hilbert space XT.. The associated Cameron-
Martin space is the same of the associated Cameron-Martin space of the continuous Gaussian

process ( Ev; )te[o,l}‘
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For example, if I" is the Wiener measure on C'([0, 1]), then the Gaussian process (Evi);c(o,1)
is the Brownian motion.

As explained in Example B.5.5, to each £ € X™* we can naturally associate a continuous
function h¢ : [0,1] = R, he(t) = E[{ Evy |, Vt. We obtain a translation

Te: X = X, fr f+he

We deduce that
‘J’E Evi(f) =Evi(f) + Evi(he) = Evi(f) + E[vat ]

ie.,

T¢Ev; =Ev,+E[(Evy |.
Since the collections Ev; span a dense subspace of X1 we deduce that

Vn e Xt ‘.]'2‘77 = 17+IE[§7]].
Thus, the pullback induced by the translation in X by h¢ is the Cameron-Martin shift p.

This ends the digression. a

Example 3.2.11. Suppose that X is a finite dimensional Gaussian Hilbert space, dim X = n.
Fix an orthonormal basis X1,...,X,. Then
|=|?
L3(Q) = L*(R",Ty[dz]), T1[dz] = (2r)"%e 2 da.

If f € C*>°(R™) is a function such that is derivatives of any order have at most polynomial
growth, then the Malliavin gradient D f(X7,..., X,,) corresponds to the differential of f

n
of
df = ——dxp.
f=> A g,
k=1
Furthermore, the Gaussian Sobolev space corresponds to the weighted Sobolev space W4 ( R™ T'y )
equipped with the norm
q
I£lowa = | 3 [ o5 s@pr:fas] ) 0
R
|| <k
Proposition 3.2.12. Let f € F(X), p € N. Recall that Proj,, denotes the orthogonal projec-
tion onto the n-th chaos X™. The following statements are equivalent.
(i) F € DP2(X).
(i)
anH Proj,, F||* < oc.
n>0
Outline of proof. Fix an orthonormal basis X = (Xj)>1 of X. We have
Proj,, = Z ca(f)Ha(X).
a€Np, |a|=n
From the equality (3.1.4b) we deduce that

BjHa(x)ang(x)F(dx) = Oéj(Ha, Hﬁ )L2

v (r)’
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This implies that
IDHGI72 = laf| Hal 2.

In particular, we deduce that
X CDY(X), [|Fl3ie = (14+n)|F|2., VF € X™.

The proposition is now an immediate consequence of the above fact. O

Example 3.2.13. For any n € N, and any p € Ny, the n-th chaos X is contained in
DP2(X). O
Since 2A(X) is dense in in D9(X) we obtain the following useful result.

Proposition 3.2.14 (Chain Rule). Suppose that o : R™ — R is a C'-function with bounded
derivatives. Then for any Fy,. .., F, € DY we have o(F, ..., F,) € D'? and

)
Do(F, ..., Fn Z—‘p Fi,...,Fpn)DFEy,. (3.2.8)

g
The Chain Rule holds in the more general case when ¢ is a Lipschitz function, [123,
Prop. 1.2.4].

Proposition 3.2.15 (Extended Chain Rule). Suppose that ¢ : R™ — R is a Lipschitz
function, then for any Fi,...,F, € DY such that the probability distribution of

F=(F,....,Fp):Q—=R",

is absolutely continuous’ with respect to the Lebesque measure on R™, then go(ﬁ) € DY and
(3.2.8) continues to hold with g—i defined a.e. 0

3.2.2. The divergence operator. The divergence operator § is the adjoint of the Malliavin
gradient viewed as a closed unbounded operator
D :D"(X) C L3(Q) — L3(9,X).
Similarly, for p € N, the operator 67 is the adjoint of the closed unbounded operator
DP : DPA(X) C L3(Q) — LE(9,X%P).
The domain Dom(dP) of 4P is the space

{ue 13257 3¢ >0 [E[[D'Fuly, || < C\E[F2], VFeu()}.
If u € Dom(6?), then 6Pu is the unique element in L3(Q) = L3 () such that

E[FéPu] =E[[DF,u] s,], VF € AX). (3.2.9)

TThis assumption is needed to give a precise meaning to gT‘P(ﬁ) since for a Lipschitz function ¢ the partial

derivatives %Z(m) are defined only for x outside a Lebesgue negligible subset N C R™.
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Example 3.2.16. (a) Suppose that dim X = n < co. Fix an orthonormal basis {X1,..., X, }
of X. Let

u=(ut,...,u,) € L3(QR").
Then each u; is a measurable function of (X1, ..., X},). For any admissible function f € C*°(R")
we have

E[f(X1,..., Xp)0u] =B | Y f1 (X1, Xp)ui(Xy, .., X)
j=1

(—0r,uj(x) + zju; )T dx].
1

= [ Y @@ | de= [ )]

n
Jj=

Thus

n

(5(U1, ce ,un) = Z( —8ijj(X1, ce ,Xn) + Xjuj(Xl, ce ,Xn) )
j=1
Observe that in the case n = 1 the divergence operator coincides with the creation operator
(3.1.2).
(b) Suppose that X C L2(Q,8,IP’) is a separable Gaussian Hilbert space and X € X. It is
not hard to verify that DX € Dom(d). We want to compute §DX.

For F € L%(Q) we have
E[FSDX]=E[(Df, DX)x], VA(X).

We can assume that || X||;2 = 1 and that F = f(Xy,...,X,), where {X1,...,X,,} is an
orthonormal system, X = X; and f is an admissible function. We have

E[(Df,DX)zx| = /Rn fo, (@)L (dz) = Rnf(x)azll"ﬂ[dx] = E[FX].
Hence

)(DX)=X, VX € X.
(c) Suppose that F' € %(X) and X € X. Then DxF = [ DF, DX]36 € 2(X). Indeed, we can
assume that F' = f(X1,...,X,,), f admissible, {X1,..., X,,} orthonormal system, X; = X.
Then
[DF,DX |, = fr,(X1,...,Xpn) € A(X).

Observe that

n
1.
D(DxF)=D[DF,DX ], =Y f!,(X1,...,X,)DX; = azXlDQF,
j=1
where for any X € X we denoted by ix the contraction
ix X% 5 x®k-D e N
which is the ®-derivation uniquely determined by the condition
z‘XY:[X,Y]x, VY € X. O

The next result follows immediately from the definition of §. We refer to [121, Prop.
2.5.4] for details.
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Proposition 3.2.17. Let F € DY2(X) and u € Dom(§) such that
E[F|ul}] + E[F?6(u)?] +E[ [ DF,u]%] < oc.
Then
0(Fu) = Féu — (DF,u)x. 0
Example 3.2.18. Suppose that F' € A(X), X € X so that
u=FDX € A(X,X).
Then u € Dom(d) and we deduce from Proposition 3.2.17 that
Su=FX — (DF,DX)x = FX — DyF.
This shows that du € DY? and for any Y € X we have
Dy (6u) = (Dy F)X + FDyX — Dy DxF = (DyF)X + F[ X,Y ], — Dy DxF.
On the other hand
Dyu = DyF ® DX, §(DyFu)= (DyF)X — DxDyF.
Hence
Dy (0u) — d(Dyu) = (DyF)X + F[X,Y |, — DyDxF — (DyF)X + DxDyF
= F(X,Y) +[Dx,Dy]F = F(X,Y) = [u, Y],

where [a, b] denotes the commutator of two elements a, b of an algebra. We have thus proved
the Heisenberg identity

Yu € Dom(8), Y € X [Dy,dlu= [u,Y],. (3.2.10)
O

The operator 67 is closely related to the multiple Ito integrals. We have the following
result.

Proposition 3.2.19. Let Xy,...,X, € X. Then (compare with (3.1.47))

(DX, ®--®@DX,)=6"(Sym[DX; ®--- @ DXp]) =: X1+ Xp : . (3.2.11)
Proof. Fix an orthonormal basis {Y,,},en of X. Clearly it sufficers to prove the result in the
special case when

DX, ®---®@ DX, = (DY)®, acNy, |af=p.
Suppose that f = f(y1,...,yn) is an admissible function. Then
E[ f(Y1,....Yo)6(DY ) | = E[ [ DPf(Y1,....Yn), (DY) | 0, |

From Remark 3.2.4 we deduce

E[[DPf(Y1,...,Ya), (DY) |, ] = Vi1 ) ;!E[a5f<m,...,Yn>[DY@ﬂ,DY@“]x@p]
|8]=p

= VPE[0 (Vi Y] =Vl | 0o )T ]
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(6yk = _8% + Yk 6;51 = Hak (yk))

—f fW)Ha(y)T1 [dy].

Hence

S (DY) = \/]a|lHo (Y

1

Jar

This proves the second equality of (3.2.11). The first one is proved in a similar fashion. 0O

ie.,

6 (Sym[(DY)®%]) = P((DY)®) = Ho(Y) = Y™ - Y2 1

Remark 3.2.20. Using the equalities (3.1.33) and (3.1.40) we deduce that
P(u) = \/p'O,y(u), ¥peN, Yu e X°P.
If we are given a Hilbert space isomorphism
7 LA(M, M, i) — X,
then the resulting map
L2(MP, %) — 20 25 12(Q)

coincides with the multiple Wiener-Ito integral J,,; see (3.1.47). For this reason we set

J,[F] := 6PF = 6*( Sym[F]) = /pl©,( Sym[F]), VF € X%, (3.2.12)

Using the isometry relation (3.1.41) we deduce that
E[3,[FI?] = | 3,IF] | = pllIF |2, VF € X°. (3.2.13)
O

Remark 3.2.21. For any Hilbert space H and any k£ € N we have a Malliavin derivative
DY (X, H) — A(X, H ® X%F)
with adjoint 5’1‘; defined by the equality
E[F[ h,0(GN @u)], | =E[[D*F®h,GN @ u]
VE,G € A(X), h,h' € H, u € X®%. For any p € N we have
DPtl=phoD, §*1 =68 o4

nexen |

Arguing as in the proof of Proposition 3.2.19 one can show
PP (u) = D6P(u), Yu € X @ XOP~Y, (3.2.14)

The above equality generalizes (3.1.4a). In fact, (3.2.14) follows from (3.1.4a). If as in the
previous remark we set

Jpoi1lu] = 6P (u), Vue X @ x0PD,
We can rewrite (3.2.14) as
PIp_1[u] = DI,u], Vu € X @ X001, (3.2.15)
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3.2.3. The Ornstein-Uhlenbeck semigroup. Let X C L?(£2,8,P) be a separable real
Gaussian Hilbert space.

Definition 3.2.22. The Ornstein-Uhlenbeck semigroup is the semigroup of contractions
P, Li(Q) — L%E(Q), t > 0, defined by

T,F = Ze_"t Proj, F, VF € L}3(Q), Vt >0,
n>0

where we recall that Proj, : L?E( Q) — X'™ denotes the orthogonal projection onto the n-th
chaos. O

The above definition shows that T} is indeed a semigroup of selfadjoint L?-contractions.
It is a Cy-semigroup in the sense that

P\r%Ttu =0, Yue L3 (Q).
We want to present an equivalent, coordinate dependent description of this semigroup.
Fix a complete orthonormal basis of X,
X =(X1,Xo0,..., Xp,...).
Observe that the semigroup 7; is uniquely determined by its action on P(X).

Proposition 3.2.23 (Mehler’s formula). Let P : R™ — R be a polynomial in m real variables.
Set

X = (X1,...,Xn).
Then
TIP(X)](w) = / mp(e—t)?(wH 176*2ty)F]1[y}, (3.2.16)

where T'y denotes the canonical Gaussian measure on the Fuclidean space R™.

Proof. It suffices to prove the result in the special case when P(X) = Ho(X), o € NJ*. Tn
this case, the left-hand side of (3.2.16) is equal to

m

T[P(X)](w) = eI Hy (X H ~ He, (X5(1)).

The Fubini theorem shows that the right-hand side of (3.2.16) is equal in this case to

m
H/ H,, (e_th(w) +V1—e2 y)I‘[dy].
j=17%
Thus, to prove (3.2.16) it suffices to prove that
/ H, <e_tac /1 — e 2 y)r[dy] = e ™H,(z), YneNg, t>0, VzeR. (3.2.17)
R

We follow closely the presentation in the proof of [93, Prop. V.1.5.4]. We have the following
useful identities.
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Lemma 3.2.24. Define the linear operator

TpRM}»Mﬂ,EP@%i/PG4x++ 1—r%@FMﬂ,

R
Then the following hold.

(i) The operator Ty is symmetric with respect to the L?(T)-inner product on R[z].
(11) 01y = e*tTt&c.
(iii) T30, = e 0,7}

Proof of Lemma 3.2.24. To prove (i) observe that
(TP, Q) = / / P(e_tx ++vV1—e2 y)Q(az)I‘[dy]I‘[dac] (3.2.18)
R JR
Set a =et, b=+1—e2 so that a® + b> = 1. We have

(TP, Q) = / P(ax + by)Q(z)Ty [ dady|.

RQ

Now consider the orthogonal change in variables

x| b a| |u
y| | —a b v |’
Since I'y is invariant under orthogonal transformations we deduce
/ P(ax + by)Q()Ty [ dzdy | :/ P(0)Q(av + bu)T'1 [dudv | = (P, T,Q).
RQ

R2
This proves (i). The equality (ii) follows by differentiating the definition (3.2.18) of T;[P].
The equality (iii) is obtained from (ii) by passing to adjoints, and using the symmetry of T}
proved in (i). 0
Clearly, T31 = 1. From Lemma 3.2.24(iii) we deduce that
T,H, = Ti6"1 = e ™" Ti1 = e ™ H,.

This concludes the proof of Proposition 3.2.23. O

The semigroup (P;) is a Cy-semigroup of symmetric linear contractions on the Hilbert
space L3(€2). According to Hille-Yosida’s Theorem [126, Sec.1.3] P, has the form P, = e'l,
where L is a closed, densely defined, selfadjoint and nonpositive operator. Moreover, F' is in
the domain of L if and only if the limit

1
lmr(ﬂF—F)
tN\O t

exists in L23€( Q) In this case, LF is the above limit.

Definition 3.2.25. The Ornstein-Uhlenbeck operator is the infinitesimal generator L of the
Ornstein-Uhlenbeck semigroup. a
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Proposition 3.2.26.

Dom(L) = {F € L3(Q); Y _n®||Proj, [|7» < oo } =D>*(X).
n>0

VneN, VFeX™:. LF=-nF=_—6DF.

Proof. Let F € L3(Q). We set F,, = Proj, F. Then

1 et — 1
E(TtF _ F) = ———F.

n>0

Now observe that

e " — 1

T(gn, Vi >0, NeN.
so that )

1 2 2

Rl I LY

n>0
This proves that if
Y Pl Fulfe < oo,
n>0
then

lim © (TtF _ F)
t\O t

exists in L? and it is equal to
d —nt
2 gilimo¢ " Fn = =) nFn
n>0 n>0

Conversely, if the above limit exists in L?, then

. o1 ) ] 1
Proj, <%{%t<TtF — F) > = 11/{]%P1rol]n <t(TtF - F) > = —nkF,.

Thus .

: _ 2 2 2

lm - (TF ~F) ==Y nFy € I = 3w’ Billf: < co.

n>0 n>0

The equality LF = —nF', f € X follows from the above discussion. To prove the equality
0DF = n, F € X™ it suffices to consider only the special case when F' = H,(X1,..., Xk)

where (X) is an orthonormal system and « is a multi-index such that |a| = n. In this case
the equality follows from (3.1.4b). 0

Example 3.2.27. (a) Suppose that dim X = n. By fixing an orthonormal basis X,..., X,
of X we can identify L% () with L?(R™,Ty). Then

Lf=> 02Ff= a0, f =(—A—aV)f,
j=1 j=1

for any functionf € C?(R") with bounded 2nd order derivatives. Above, A is the Euclidean
geometers’ Laplacian. In particular, A is nonnegative. O



222 3. Central limit theorems

Definition 3.2.28. We define L~! to be the bounded operator L' : L%(Q) — Li(Q)
given by

L7'F = —ZlProjn F. O
n

n>1

Note that L~! is a pseudo-inverse of L. More precisely, if F € D*?(X) is such that
E[F] =0, i.e., Projy F' =0, then

L 'LF=LL'F=F.
Proposition 3.2.29. Let F' € D"2(X). Then for any X € X, || X||z2 = 1, we have
o
DxL7'F = —/ e 'TyDxFdt = (L —1)"'DxF. (3.2.19)
0
Proof. It suffices to prove the result in the special case
F=H,(X1,...,Xn),

where {X1,...,X,,} C X is an orthonormal system, X = X, || =n > 0. Note that
DxF = OélHB(Xl, e ,Xm), ﬁ = (011 — 1,0[2,. . .,am).

1 o
— = / e ™Mdt
n 0

Using the identity

we deduce
1 o0 o0 o0
L7 'F = —EF = —/ T,Fdt = Dx L 'F = —/ DxT,Fdt = —/ e 'TyDx Fdt.
0 0 0
On the other hand
_ B 1 1 B
(L—1)"'DxF = (L— 1) a1 Hg] = _WalHﬁ =~ DxF =DxL g

O

Proposition 3.2.30 (Key integration by parts formula). Suppose that F,G € D“2(X) are
non-constant and g : R — R is a C' function with bounded derivative. Then

E[Fg(G)] =E[F]-E[g¢(G) ] +E[J(G) - [DG,—DL™'F]]. (3.2.20)
Proof. Let F| = F — E[F]. Then
E[Fg(G)] =E[F]-E[¢(G) ] +E[ FLg(G)].
Since F| = LL™'F we deduce
E[Fig(G)] =E[LL'Fg(G)] = —-E[6DL™'Fg(G)]

2" E[[DLT R Dy(@)]] "2 ~E[[DLT F4(G)DC], ]

=E[¢(G)[DG,—DL7'F],].
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3.2.4. The hyper-contractivity of the Ornstein-Uhlenbeck semigroup. We know
that (7;) defines a Cp-semigroup of contractions L3 () — L3 ().

Proposition 3.2.31. For anyt > 0 and any p € (1,00) the operator T; defines a contraction
L2(Q) = IZ(Q).

Proof. We limit ourself to proving that
|T:P||rr < ||P||re, VP € P(X).

To see this assume P = P(X), where X = (Xm)m>1 is an orthonormal system in X. Using
Mehler’s formula (3.2.16) we deduce

T,[P(X)](w) = / mp(e—t)?(w)+ 1—ef2ty)1"]1[dy].

Since the function f(x) = aP, x > 0, is convex for p > 1 we deduce from Jensen’s inequality
that

PN P < [ | P(e )+ VI—ey) [Ta[an].

Invoking Jensen’s inequality once again we conclude that

E[|T,PP] < /}RWEHP(e—t)?(w)Jr 1—e2y) [y [ay]

m

= /Rmem’ P(eit:z +v1- e_zty) ’pl“ﬂ(da:)l“]l(dy) = / ‘P(m) ‘prll [dx]v

where at the last step we used the fact that if X, Y are independent standard normal random
variables and a? + b> = 1, then aX + bY is also a standard normal random variable. O

The semigroup 7} satisfies a hypercontractivity property, namely, for any py € (1,00)
there exists a strictly increasing, unbounded function p : [0, 00) — (0, 00) such that pg = p(0)
and, Vt > 0, the operator T; induces a bounded linear map T} : LP* — LP(), We will spend
the remainder of this subsection proving this fact. We denote by I'y the canonical Gaussian
measure on an finite dimensional Euclidean space.

Theorem 3.2.32 (The log-Sobolev inequality). For any n € N, and any f € WL2(R™, T'y)
we have

f(x)log f2(x)Ty[dx ] < 2/ IV f(2)]* T [ da]
Rn Rn

(3.2.21)

+ f?(x)T1[dx ] log < f2(z) Ty [da ] ) ,
R™ Rn

where 0 -log0 := 0.

Proof. We follow the presentation in [21, §1.6]. Assume first that f € Cy°(R"), i.e., f and
all its derivatives are bounded. We distinguish three cases.
A. 3Jc > 0such that f(z) > ¢, Vo € R Set ¢ = f2 so that

1

Vf= mVSD
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and (3.2.21) is equivalent to

1 1
/ gplog«pdrﬂ—/ dI'y log (/ gpdrﬂ> < 2/ ;ywﬁdr. (3.2.22)

Consider the Ornstein-Uhlenbeck semigroup

Ty : L*(R",Ty) — L*(R",Ty).
Using the equality (3.2.16) we deduce that

Ti[p)(x) > ¢, Ve e R", t>0.

Jin Tielog Tyl = | paritog ([ pars)

we see that the left-hand side of (3.2.22) is equal to

/ dt/nTt |log T;[] dT|one.

Taking into account the fact that

d
STl = LTilgl, ¥g € G(®")

—/Oooi/nTt[w] log Ti[ip] dT'y
- [ mnideniaar: - [ [ nldz— i,
—/OOO/HLTt[cp]Ioth[gp]dI‘]l—/OOO/nLTt[gp]dI‘ﬂ.

Since L is symmetric and L1 = 0 we deduce

/ LT,[] dTy = 0.

/gplogcde‘]l—/ <de‘log</ <pd1"1>— / /LTt |log T} [p] Ty
//5DTt ] log T3[p dI‘]l—// (VTile], Vieg Ti[p] ) dTy

:/0 /n Tt[go]WTtkDH dry .

F(t)

Since

we deduce

Hence

Using Lemma 3.2.24 (ii) we deduce
O0r, Ti[p] = e "T[0n, 0], Vi=1,...,n,

so that
ot 1 O
PO = | g 2 (el

=1
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The equality (3.2.16) implies that for any g,h € Cy°(R™) we have
2
Tilg] < Til19l] < llgllz=. (Tilgh])” < Tlg?|Tu[n]".

Hence
Tj@] (Tu0s.0))" = Tjﬂp] (Tt [\/@ 8\%} )2 = [ (3290)2} = (095:0@)2'
o F(t) <e? / ) V;’”erﬂ.

The inequality (3.2.22) follows by integrating the above inequality.

B. f ¢ WLY2(R™T), f > 0 as. . This case follows from case A by choosing a family of
functions f. € C;°(R"), f- > ¢, fe = fin W12 and then letting € \, 0.

The general case, f € WH2(R", T'y), follows from case B applied to |f|. O

Remark 3.2.33. If (2, 8, i) is a probability space and f : Q — [0, 00) is measurable function,
then its entropy with respect to u is

E.[flog f] — E,[f]logE,[f], E.[log(1+ f)] < oo,
Ent,[f] =
+00, E,[log(1+ f)] = oo.

where 0log 0 := 0. Observe that Ent,,(f) is nonnegative and positively homogeneous of degree
1. The log-Sobolev inequality (3.2.21) can be rewritten as

Entr, [f?] < 2/ IV f(2)]’Ty [dz].

n

As explained in [86, Sec.5.1], the log-Sobolev inequality leads to rather sharp concentration
of measure inequalities. O

Theorem 3.2.34 (Hypercontractivity). Let p € (1,00). Define
q(t) :=1+e*(p—1), Vt>0.
Then
1Tefll oy < [[fllze, Vf € LP(R™,T), ¢ >0. (3.2.23)
Note that q(t) > p, ¥t > 0.

Proof. We follow closely the arguments in [21, Thm. 1.6.2]. It suffices to prove the inequality
for smooth functions f € Cp°(R™) such that

c:= zlenll{" f(z) > 0.

Under this assumption the function [0,00) 3 t +— G(t) = ||f| v is differentiable. The
inequality (3.2.23) reads G(t) < G(0) so it it suffices to prove that G'(t) < 0, Vt > 0.

Applying the log-Sobolev inequality to the function f"/2, r > 0, we deduce

rriogsary— 1 [ pravs (og [ pravs) <3 [ (72959 pars
R» T Jrn Rn 2 Rn
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r

= /Rn(w”,w)dr]l =—

r—1
TCESY L fdTy.

2(7‘ — 1) Rn
Hence, Vr > 0,
1
fMlog fdT'y — — frdry <log deI‘]1> < - f””_lLde‘l. (3.2.24)
Rn T Jrn Rn 2(7" — 1) Rn
We set
F(t) := / T;[f]dT.

Then G(t) = F(t)'/9") and we have
() F(t)
G'(t) = G(t (—Q( log F(t) + ———v— | .
(0= G) (-2 tog F1) + -
Since ¢/(t) = 2q(t) — 2 > 0 it suffices to show that

e P
_q(t)F(t)l g F(t) +

<0. (3.2.25)

Observing that

Fi(t) = /n(Tt[f])q(t) (q’(t) log T3 [f] + q(t) LT?[%]) dr

we conclude that (3.2.24) is equivalent to

‘F(t)ql?iF(t) + / ()™ log T f1dTs + j(é)) / (T L, <o.
This is precisely the inequality (3.2.24) with r = q(¢). O

Corollary 3.2.35. Let X C LQ(Q,S,IP’) be a separable Gaussian Hilbert space. Let p > 1,
Then for anyt >0, F € L%(Q] we have

Il o < |Flle, YF € IPX(2), a(t) =1+ p. (3:2.26)
Proof. Follows from Theorem 3.2.34 and the density of P(X) is dense in L5(Q). O
Corollary 3.2.36. Letn € N and F € X™ C L%(Q). Then F € X™ C L%(Q), Vg € [1,00).

Proof. The claim is obviously true for ¢ € [1,2]. Assume that ¢ > 2 Note that T,F = e ™ F.
On the other hand T} F € L?e% ( Q) for any t < 0. Hence, if 1 + 2 > ¢, then e™F € L4. O
We conclude by mentioning, without proof, the Kree-Meyer inequality.

Theorem 3.2.37 (Kree-Meyer). For any p € (1,00), and any k,¢ € Ny, there exist positive
constants c,(k, ) < Cp(k, L) such that

£
pl| Fllprer < (1= L)2 Fllpee < Cpl|Fllpsres, VE € A(X). (3.2.27)
O

For a proof we refer to [21, Sec. 5.6], [93, Chap 2] or [123, Sec. 1.5].
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3.3. The Stein method

3.3.1. Metrics on spaces of probability measures. Let us recall several concepts of of
pseudo-distances on the spaces of Borel probability measures on R%.

Definition 3.3.1. Let 3 be a set of Borel measurable functions R? — R. We denote by
Prob (Rd) the space of Borel probability measures on RY.

(i) We set

Prob (R%, %) := { p € Prob (R?); 3 c L'(R% p) }.

(ii) We say that H is called separating if for any u,v € Prob (Rd)
p=ve=E,[h] =E,[h], Vhe HNL'(RY p)nL' (R v).
(iii) If H is separating and p,v € Prob (Rd, 9-[), we set
distgc(p, v) := sup!EM[h] —E,[h] }
heH
(iv) If (92, 8,P) is a probability space and F,G : Q — R? are random variables whose
probability distributions belong to Prob (Rd, H ), then we set
distgc(F, G) := distg; (Pp,Pg ) = sup|E[h(F) ]| —E[h(G)]|.
heXH

O

It is easy to check that if H is separating, then distg; is indeed a metric on Prob (Rd, H).
Example 3.3.2. (a) If H is the class of functions
I(—oo,c1]><~~~><(—oo,cd]7 c1,...,¢4 €R,

then the resulting metric distsc on Prob (Rd) is called the Kolmogorov distance and it is
denoted by dist ;.

(b) If H is the class of bounded Borel measurable functions h : R? — [0,1], then  is
separating then the resulting metric on Prob (Rd) is called the total variation metric and it
is denoted by distry .

(c) If 3 is the class of Lipschitz continuous functions R? — R satisfying Lip(h) < 1, where
Lip(h) is the (best) Lipschitz constant of h, then H is separating, the resulting metric is
called the Wasserstein metric and it is denoted by distyy.

(d) If 3 denotes the class of Lipschitz continuous functions h : R? — R such that
1Al e + Lip(h) <1,

then J{ is separating, the resulting distance is called the Fortet-Mourier metric and it is
denoted by distrjy.

(e) If 3 C CZ(R?) denotes the class of C?-functions f : R? — R satisfying

[flle2 <1,

then H is separating. We denote by distse the resulting metric on Prob (]Rd ) O
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Remark 3.3.3. (a) Clearly
distg o < distyy, distpys < disty, distge < distwy

Thus
lim diStTv(Fn,F) =0= ILm diStKol(Fn, F) =0.

n—oo

Moreover, if
lim distgo(Fyn, F) =0,
n—oo

then F,, — F in law.

(b) Also, one can prove (see [49, Thm.11.3.3] that F,, — F in distribution of and only
if F,, — F in the Fortet-Mornier metric. It is not hard to see that distse induces on

Prob (]Rd) the same topology as distgys, the topology of convergence in law. Moreover,
(see [34, Thm.3.3]), if N ~ N(0, 1), then

distg o (F, N) < 24/disty (F, N). O

The Stein method provides a way of estimating the distance between a random variable
and a normal random variable. I will present the bare-bones minimum referring to [33, 34,
133] for more details and many more applications. For more recent developments I refer to

[14, 89]. T am following the presentation in [121, Chap.3,4]. It all starts with the following
simple observation.

3.3.2. The one-dimensional Stein method. Suppose that N ~ N(0,1) and g € D"2(R),
ie., g(N),g'(N) € L?. Then
[ (= @)+ 2g(@)Ts(do) = [ 8.9()- 1 Ts(dn) = [ (o) (@11 () 0.
R R R
so that
E[Ng(N)] =E[g'(N)], VgeD"?(R). (3.3.1)

It turns out that the converse is also true.

Lemma 3.3.4 (Stein’s Lemma). A random variable X is a standard normal random variable
if and only if for all g € C*(R) such that ¢’ € L*(R,T'1) and

E[Xg(X)] =E[g'(X)]. (3.3.2)
Proof. The necessity follows from Proposition 1.1.4. To prove the sufficiency use (3.3.2)
with g(z) = 2%, k= 0,1,..., we deduce
E[ X" ] =kE[X*'], VE=0,1,2,....
This proves that
E[X*] :/kal"l(dx), Vk=0,1,2...,

The conclusion follows from the fact that the normal distribution is uniquely determined by
its moments. O

Stein’s lemma suggests that for a random variable X the quantity E[X f(X) — f/(X )]
should give an indication of how far away is the distribution of X from the normal distribution.
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Definition 3.3.5. Let N ~ N(0,1) and h € L*(R,T';). The Stein’s equation associated to h
is the o.d.e.

(@)~ a9(r) = h(z) = [ ha)Ts(de) = hiz) - B(V)) (3.33)
=—6,9() .
We set h (z) := h(x) — E[h(N)] so that
E[h,(N)]=0. =

Observe that Stein’s equation can be rewritten as
eéﬁx(efég(:c)) =h, (z), (3.3.4)
If g1, g2 are two solutions of the linear equation (3.3.4), then
"/ (g1(x) — g2(x) ) = constant.
This implies immediately the following result.

Proposition 3.3.6. The general solution of (3.3.3) has the form

22 22 x 2
9(x) = gpe(z) =cez +e2 / hl(y)e_y?dy, x €R, (3.3.5)
—0oQ
where ¢ € R is an arbitrary real constant. Moreover the solution
2 [T 2
m(@)i=gneo = [ hi@)e Fdy (3:3.6)
—00
is the unique solution g(x) of (3.3.8) such that
22
zgrfooe 2 g(x)=0. (3.3.7)
g

If now F is a random variable, then integrating the equality
gn(@) — xgn(z) = h(z) — E[R(N)]
with respect to the probability distribution of F' we deduce

E[h(F)] - E[h(N)] = E[g(F) - Fu(F)]. (3:38)
Thus, if H is a separating collection of Borel measurable functions h : R — R we deduce
distg¢(F, N) :2u§|E[gZ(F)—th(F)] . (3.3.9)
€

We want to use the above equality to produce estimates on the Wasserstein distance between
two Borel probability measures on R.

Proposition 3.3.7. Let h : R — R be a Lipschitz continuous function. Set K := Lip(h).
Then the function gy, given by (3.3.6) admits the representation

o0 —t
gn(z) = —/ eiE[h(e_t:U +V1—e 2N )N |dt. (3.3.10)
0 1—e2

Moreover, gy, is a C' function and
2
1ghlloo < \[TK (3.3.11)
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Proof. Since 0 < h < 1 we deduce from the equality (3.3.6) coupled with the Mills ratio
inequalities (1.1.2) that g, € C}(R)

2
/
ilelg}gh(w)‘ < \/;K

Clearly 9,h € L*(R,T1). We have g} (z) = h(z) + zgn(z) € D¥(R) so gp € D*?(R). From
the equality —d,9, = ¢’ () — xg(x) = h and we conclude that

—0z0:9n, = O:h a.e. on R.
Using the identity [0, d,] = 1 we deduce —0,0, = —1 — 6,0, = (L — 1). Thus
(L - ﬂ)gh = Ozh.

Since g, €]D*2(R) we deduce

gn = (L —1)"19,n OEY /OOO 1T} [0, h]dt.
Using Mehler’s formula (3.2.16) we deduce

Ti[0zh)(z) = /Rh’(e_tx + V1 —e2ty)T'y(dy).

We set u, := etz 4+ /1 — e~2ly and we observe that for fixed z we have

d du 1 d
h(ug) = b (ug)—— —e 2 B (ug) = B (ug) = —h(ug).
) = V1 )= S )
Hence
1 — —
:ﬁE[h(e th’—F 1—e¢ 2tN)N]

This proves (3.3.10).

Clearly gy, is a C*-function. To prove the estimate (3.3.11), we derivate (3.3.10) we respect
to  and we deduce

[e8) —2t
g%(:ﬂ):—/ %E[h'(e_tw—i— 1—e 2N )N |dt.
0 —
Since |h'| < K we deduce

| g )‘<KE[|N|]/OO Y K\/?/1 v g )?
T - dt = = = =,
n - 0 \/1—6_2t T Jo 2v/1—w ™

O

From the above proposition and the equality (3.3.9) we obtain immediately the following
useful result.



3.3. The Stein method 231

Corollary 3.3.8. Let N ~ N(0,1). Then for any square integrable random variable F we
have

distras (F, N) < distuy (F,N) < sup | E[g/(F) ~ Fg(F)] ‘ (3.3.12)

where o
T = {g e C'R); ||¢'lloo < \/E} (3.3.13)
O

3.3.3. The multidimensional Stein method. The Stein method has a multidimensional
counterpart. To describe it we need to introduce some notation. Denote by £(R™) the space
of bounded linear operators R” — R™. We define the Hilbert-Schmidt inner product on L(R™)
to be

(A,B)us :==tr AB* =) AyBy;, VA, B € L(R").

1,7

The next result generalizes the one-dimensional Stein lemma
Lemma 3.3.9 (Multidimensional Stein lemma). Let d € N and C € L(RY) be a symmetric
operator such that C > 0. Let N = (Ny,...,Ng) be a random d-dimensional vector. Then
the following statements are equivalent.

(i) N ~N(0,C)
(ii) For any C? function f : R — R with bounded first and second order derivatives we
have

E[(N,Vf(N))]=E[(C, Hess f(N)) (3.3.14)

us )

Proof. (i) = (ii). If C' > 0, then the implication follows from an immediate integration by

parts and the equality
1

det(2wC)
The general case follows from the general case applied to the nondegenerate matrices C, = C'+-¢1
and then (carefully) letting ¢ — 0.

(ii) = (i). Fix G ~ N(0,C) independent of N and a C? function f : R? — R as in (ii). We

To(dz) = e 2(C2) g

set
o(t) =E[f(VIN + VI —tG)].
Then
o(1) =E[f(IN)], »(0)=E[f(G)]
and thus .
BN -EL@)] = | ¢
1 d 1 d
:/0 ]E[(Vf(\/fNJr\/l—tG),N)}Q\j%—/o E[(Vf(\/iNjL\/l—tG),G)]N%

Using (3.3.14) we deduce by conditioning on G that, for any 2 € RY, we have
E[(Vf(VIN +V1—tx),N)]| = VIE[(C,Hess f(VIN + V1 —tx) ]

=:hi(xz,t)
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Since G' ~ N(0, O) it satisfies (3.3.14) and, conditioning on IV, we deduce that for any € R?,
we have

E[(Vf(Viz+V1I—tG),G)] =E[(C, Hess f(vViz + VI —1G)) ] -

~~

=:ha(z,t)

Integrating hi(x,t) and he(x,t) respectively with respect to the law of G and the law of N,
and then integrating with respect to ¢ we deduce that

E[f(N)] = E[f(&)],
for any C?-function f : R¢ — R with bounded first and second order derivatives. Since the

class of such functions is separating we deduce that N ~ G ~ N(0,C). O

Definition 3.3.10. Let N ~ N(0,14) and h : R — R a measurable function such that
E[|h(N)|] < co. The Stein’s equation associated to h and NN is the p.d.e.

Lf(@) = -Af(z) —x - Vf(z) = h(z) —E[L(N)], A= 0;. (3.3.15)

Observe that if h : R? — R is a Lipschitz continuous function, then the function

ho (@) = h(z) — E[h(N)] € LX(R%T) and /R hu(@)D(dz) = 0.

Thus, h, lies in the range of the Ornstein-Uhlenbeck operator L : D?2(R%) — D%2(R9) so
there exists a unique function f;, € D?2(R%) such that
Lin(x)=h,(®) and | fu(x)T(dz)=0.
R

More precisely, f, = L~'h = L~ h . We can now state the multidimensional counterpart of
Proposition 3.3.7.

Proposition 3.3.11. Let h: RY — R be a Lipschitz continuous function. Then the function

fon=L'h=L"'h,

is well defined, C? and admits the representation
fu(x) = _/ Tylhy]dt = / E[A(N)—h(e 'z +V1-e 2N )]dt. (3.3.16)
0 0

Moreover, if Lip(h) < K then,
sup || Hess fr() |gs < KVd. (3.3.17)

xR

Proof. Let h, € L?(R% T) be the n-th chaos component of h(z). Then, in L?, we have the
following equalities

hz) = hn(2), hi(e)=) h(z),

n>0 n>1

L7 hy(z) = — %hn(x) =— Z/OOO e () = — /ooTt[hl]dt.
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This proves the first part of (3.3.16). The second part of this equality follows from Mehler’s
formula. The C?-regularity of f; is a consequence of basic elliptic regularity results.

To prove (3.3.17) we observe that

2, f / \/ﬁ B[Oy, h(e @+ VI e 2NN, |t

Thus, if B € £(R?), we have

‘ (B Hess fr(x HS| = Zazmjfh

7]

[ A (St TN ) i
e

00 —2t
< \VhIIOOE[}BN\Rd]/O \/%dtg K\/&,/E[\BN\%(Z],

because ||Vh|s < Kv/d and

o) 67215
|1,
0 \ /1 _ 6—21&
A simple computation shows that
2
E[[BN |5 | = IBls.
This completes the proof of (3.3.17). 0

Proposition 3.3.11 admits the following immediate generalization.

Proposition 3.3.12. Fiz a symmetric positive definite operator C € L(R?). Denote by
Amin(C) and respectively Amax(C) the smallest and the largest eigenvalue of C. Fiz a random
vector N ~ N(0,C) and a Lipschitz continuous function h : R — R. Set K := Lip(h). Then
the function

fu(x) = /OO E[A(N)—h(e'w+V1—e2N)]|dt (3.3.18)
is well defined, it is C? and s;)tisﬁes the Stein’s equation
(c, Hess f () )HS — (¢, V(@) = h(z) — h(N). (3.3.19)
Moreover
dAmax(C)

sup || Hess fu(z) [|[as < K

< 3.3.20)
zeRd Amin (C) (

Main Idea. The above proposition can be obtained from Proposition 3.3.11 by choosing an

orthonormal basis f,..., f, of R? that diagonalizes C,
Cfe=MJSp, k=1,...,d, 0< A <~ < Ag.

The last result implies the following multi-dimensional counterpart of Corollary 3.3.8.
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Corollary 3.3.13. Fix a symmetric positive definite operator C' &€ L(Rd) and a random
vector N ~ N(0,C). If F is a square integrable R%-valued random variable, then

distrr (F, N) < disty (F, N) < sup E[ (C, Hess f(F)) 5 — (F, Vf(F))} ’ (3.3.21)

f€TFq

where Fy consists of the C%-functions f : R? — R satisfying (3.3.20) with K = 1. O

3.4. Wiener chaos limit theorems

The classical central limit theorem states that if (X,),>1 is a sequences of independent
random variables, with mean zero and variance 1 then the random variables

1 v
F,:=— X
v \/;k; k

converge in distribution to a standard normal random variable. It classical proofs rely in an
essential manner on the independence assumption. We will use the methods developed in
the previous sections to prove central limit theorems involving sums of dependent random
variables. The presentation is heavily inspired from the monograph [121]. For a continuously
updated list of applications of this technique we refer to the webpage maintained by Ivan
Nourdin

https://sites.google.com/site/malliavinstein/home

3.4.1. An abstract limit theorem. Fix a separable Gaussian Hilbert space X C L?((2, 8, P).
As usual, we set L3 (Q) = F(X) = L*(, 8%, P) and we denote by Proj, the orthogonal pro-
jection onto the n-th chaos X*™. For any number N € Ny we set

Proj<y = @ Proj,, Projoy =1 —Projcy.
0<n<N
For F € L% () and n € Ny we denote by Var,(F) the variance of Proj, (F). We have
Var(F) = ZVarn(F),
n>1

and we set

N
Var<y := ZVarn [F], Vars y [F] = Z Var, (F) = Var [F] — Varcy [F]
n=1 n>N

We begin by describing a simple sufficient condition guaranteeing the convergence in law to
a normal random variable of a sequence of random variables in Lge( Q )

Proposition 3.4.1. Consider a sequence of random variables (F,),>1 in Li(Q) such that
E[Fy] =0, Vv,
i.e., Projy(F,) = 0, Vv. Suppose that the following hold.

(C1) For any n € N, the sequence of variances Vary, [F,,] converges as v — o0 to a
nonnegative number v,.
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(C2) The sequence

VN :=sup Vars [FV}
v>1

converges to 0 as N — oo. In other words, as N — oo, the “tails” Proj. y F,
converge to 0 in L?, uniformly with respect to v.

(C3) For any N > 0 the sequence of random variables Projy(F,) converges in law to a
normal random variable.

Then the following hold.

(i) The series Y, ~, v, is convergent. We denote by v its sum.

(ii)
lim Var [F,,] = .

V—00

(iii) Asv — oo, the random variable F,, converges in law to a random variable Fso ~ N(0,v).

Proof. (i) Fix e > 0. We can find N(e) > 0 such that for any N > N(e) we have Vy < ¢.
For all n > m > N(g) we have

> Varg [F,] <) Varg [F,] <Vy<e
k=m k>N

which shows that

n

VYn > M > N(e) : kazyli_)IgOZVark[Fy] <e.
k=m

k=m

To prove (ii) observe that for any N > 0 we have

‘ Var[F,,] —v| < Z ‘|Varn [F,,] — Uy,
n<N

+ Z Var, (F,) + Z Un,

n>N n>N
< Z ‘Varn(F,,) —vp| + VN + Z Un
n<N n>N

This proves that
limsup | Var [F,] —v] <V + Y va, YN >0.
V—00 n>N

The conclusion (ii) is obtained by letting N — oo in the above inequality.

(iii) Let X € X, || X| = 1, so that X € N(0,1), /v X € N(0,v). We will show that for any
bounded Lipschitz function h : R — R we have

VILHSOE[h(FV)] =E[h(vVvX)]. (3.4.1)
Observe that if v = 0, we deduce from (ii) that F,, — 0 in L? so F, converges in law to

the degenerate normal random variable with variance 0. Assume v > 0. Without loss of
generality we can assume v = 1.

Fix a bounded Lipschitz function h : R — R and set
K = ||h||s + Lip(h).
For N > 0 we set
Gy~N =Projoy(F)), H,ny=F, — G, N = Proj, y(F,)
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UN = § Up, ON = 4/UN

n<N

so that, as v — oo G, v converges in law to oy X and H, y converges in L? to 0.
|E[1(F)] —E[n(vo X)]| < |E[A(R)] - E[A(G0n)] |

+E[1(Gun)] ~E[h(onX)] | +|E[h(onX)] ~ E[a(vD X)].|
Now observe that
E[| WGy + Hyn) = hGun) |] | < KE[|Hun |] < K| o2,

lim | |2 = 0, Tim \E[h(GV,N)] —E[h(onX)] ’ 0,

so that
limsup| E[A(F,)] ~ E[(X)] | < |E[h(onX)] = E[n(vo X)] |

vV—00

Letting N — oo we deduce

lim
V—00

E[A(F)] - E[r(voX)]| =0,
for any bounded Lipschitz function h. This proves (iii).
O

In the remainder of this section we will explain how to combine the Stein method with
the Malliavin calculus to prove central limit results of the type described in Proposition
3.4.1, with condition C'3 replaced by one that is easier to verify in concrete situations. These
techniques were pioneered by D. Nualart and G. Peccati in [124] and have since generated a
lot of follow-up investigations®; see e.g. [120, 122] and the references therein. We follow the
presentation in the award winning monograph of I. Nourdin and G. Peccati, [121].

3.4.2. Central limit theorem: single chaos. The following proposition is the key result
in the implementation of the Stein method in the Wiener chaos context.
Proposition 3.4.2 (Key abstract estimate). Let F € DY2(X) such that
E[F]=0, E[F?] =1
If g: R — R is a Lipschitz function and K = Lip(f), then

E[g'(F)] ~E[Fg(F)]| < K- |E[ (1~ (DF,-DL7'F),) )] || (3.4.2)

Proof. Note first that ¢’ is defined only a.e.. However, according to Theorem 3.2.10 F is
nonconstant so the law of F' has a density, and thus the random variable ¢'(F) is a.s. well
defined. Using the integration-by-parts formula (3.2.20) with F' = G we deduce

[E[g/(F)] ~B[Fo(F)] | = [E[¢(F)(1~ (DF.-DL7'F), ) ||
<K |B[(1- (DF-DL7'F),)) ]|

8lvan Nourdin maintains a site dedicated to this novel way of approaching limit theorems
https://sites.google.com/site/malliavinstein/home.
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Corollary 3.4.3. Let F € DY2(X) with E[F] =0, E[F?] = 02 > 0. If N ~ N(0,0?), then

. 2 _
disty (F, N) < ,/@ E[|o® — (DF,—DL7'F),|]. (3.4.3)
If, in addition, F € DY4(X), then

E[|o* - (DF,~DL7'F),|] < \/Var[ (DF.~DL'F) . |. (3.4.4)

Proof. The case 0 = 1 follows from Corollary 3.3.8 and the inequality (3.4.2). The general
case of (3.4.3) follows from the case o = 1 applied to the new random variable o' F.

To prove (3.4.4) we observe that

E[|o®— (DF,-DL™'F) || < VE[(o? = (DF,—DLF))?].
From the integration by parts formula (3.2.20) we deduce that
E|(DF,~DL7'F), | = o?,

so that,
E|(0? = (DF,-DL™'F))*| = Var| (DF.~DL7'F),|.

To show that the above variance is finite observe that

E[(DF,~DL™'F)3] < \/IE[HDFH‘H .\/E[HDL—lFHﬂ.

The Kree-Meyer inequalities (3.2.27) imply that the quantities in the right-hand-side above
are finite. O

Remark 3.4.4. The method of proof of Proposition 3.4.2 and the statement of Corollary 3.4.3
rely on the assumption ¢ > 0 which may not be easy to verify in some concrete situations. O

Proposition 3.4.5. Let F € D?(X) such that E[F] = 0, E[F?] = ¢%. If h € C}(R) and
N ~ N(0,0?), then

|E[A(F)] —E[h(N)] | < %||h”||oo~ IEH (DF,~DL™'F),) —02H. (3.4.5)

In particular, if F € DY, then

distes (F, N) < %EH [DF,~DL7'F],) = o*|] < ;\/Var[ [DF,~DL-'F],|. (3.46)

Proof. The results is obviously true if 02 = 0 so we can assume that o > 0. We set

o(t) = \/127_/00 E[h(efoz+ V1 —e2F) |dx.

Note that

so that
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We have

o0 z2
o(t) = E [/ W(etor++1-— e—QtF)xe_2dac]

2
FIE W(eow+v/1-eF) | da.
\/1—6 2t \/27r

Performing an usual integration by parts in the first integral and using the Malliavin inte-
gration by parts formula (3.2.20) in the second integrand we deduce

, e—2to.2E oo i . N 2tF) I2d ]
t) = ——— e ‘oxr+ —e” e 2dx
o0 =7 U_w (
—2t 00 2

e
+
V2T

—2t

E[ 1 (¢ 'ow+ /1= e 2F)(DF,~DL™'F ), |e T dx

e

- \V2m
We deduce

h E[0 (e oz +V1-eF ) - ((DF,—DL’lF)x—UZHe’%dx.

E[h(F)] —E[h(N)]

% et m( —t Z -1 2 -l
= o E[0(eor+V1-e?F) . ((DF,-DL7'F), ~o%) | % dr.
o0 T

We reach the des1red conclusion by observing that

E[ ‘ h”(e*tax V1o e—2tF> H < |B" |0y V.

Observe that when F € ¥'%, ¢ > 0, then F' € D"* and
_ 1
(DF,—DL7'F), = ;HDFH%

In this case we can provide more detailed information. This will require a bit of Ito calculus
and a bit more terminology.

Given p,q € N and r € Ny such that » < min{p, ¢} we define the map

@y : XBP x X80 5 xOPra=2)

to be the unique continuous bilinear map such that
T
(X1® X)) (1®---QY,) = HE[XJYJ] Xr1®--0XpQ0Y,11®--®Y,.

This induces a map
X, : X7 x X015 xOwa-2r)
to be
u,v = Sym[u R v], Yu € X9P, v e X9,
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Remark 3.4.6. If W : L2(T, M, u) — X is a white noise isomorphism, (7, M, 1) convenient
probability space, then we can isometrically identify X®P with the space LQ(TP ,M®P P )
Thus we can view f € X¥®P and g € ¥%9 as L?-functions

f:TP >R, g:T?—R.
Then f ®, g can be identified with the function

fRg: TP " xTTT" 5 R
given by

F® (@41, Tpy Yrg1, - Yg)
=/ ft, . te, g, oo, xp)g(tn, ooyt Yrgt, - .yq)u@)r[dtl - -dtr].
We set ' 3
f¥,g=Sym|[fK,g].

Recall that H®Y denotes the g-the symmetric tensor power of H.

Lemma 3.4.7. Letq e N, ¢>2 and f € LQ(T,M,M)Gq. Set F' = J,[f]. Then the following
hold.

1 : g—1\*_ -
S0P =B() g 3 0 - 0! (17 ) a7 (3.4.72)
r=1
1 2 1 20,12 (4 ? S )2
Var 5||DFH3€ :P r(r!) . (2q—27‘)!Hf®7nf||x®(2q_2r), (3.4.7Db)
r=1
5 3q71 q 2 B
B[F] - 38(F 7] 2 Y2007 (7) 20— 200 178 s
r=1

q—1 ” 9 2q_2r ) (347C)
=@ () (1780 A Woires + (P22 NI s )

q—rT

Var<;\|DF|y§> < qg_ql (IE[F4] —3E[F2]2> < (q—l)VarGHDFH%E). (3.4.7d)

About the proof. Let us point out that (3.4.7b) follows immediately from (3.4.7a) via the
isometry (3.1.40). The inequality (3.4.7d) follows immediately from (3.4.7b, 3.4.7c). Thus it
suffices to prove only (3.4.7a) and (3.4.7c).

To prove (3.4.7a) it is convenient to consider a more general problem, that of finding the
chaos decomposition of
|[DF,DG]|,, F,GeX®
We write F' = J,[f], G = Jplg], f,9 € X9%. Using the polarization trick we can reduce the
problem to the special case
f=X% g=Y% X YeXx E[X?’]|=E[Y?]=1

Thus

F=H,X), DF =qH, 1(X)DX,

G=H,Y), DG =qH,1(Y)DY,

(DF,DG), = ¢°Hy-1(X)Hy1(Y)E[XY].
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The equality (3.4.7a) now follows by invoking (3.1.28), (3.1.29) and the isometry equality
(3.2.13).

The proof of (3.4.7c) requires a bit more work. The hardest part is the 2nd half of this
equality. It is based on the (non-obvious) elementary identity

q—1

2
MBS sy = 2 s + @) X (*) 17 f s, FEXT| (348)

r=1

A convenient way to prove this is to use a white noise isomorphism as in Remark 3.4.6. We
refer to [121, Lemma 5.2.4] for details. O

Corollary 3.4.8 (The fourth moment theorem, [124]). Suppose that F' € X%, ¢ > 2 and
E[F?] = 6% > 0. Then for N € N(0,0) we have

disty (F,N) < i\/Var(;THDF]@> < i\/@q - 2)(1[‘33&};4] - 30—4)' (3.49)

Thus, given a sequence (Fy)n>0 in X', ¢ > 2 and N ~N(0,0) the following statements are
equivalent.

(i) The sequence (Fy)n>0 converges in probability to N .
(i) Asn — oo, E[F?] = E[N?] =c%and E[ F}} | - E[N*] = 30"
(iii) If Fy, = Jg[fnl, fn € X2, then
nh—>ngo angranxG(mz*?T) =0, Vr=1...,¢—-1.

(iv) Var(|[DF,[*)— 0 as n — oc.
Proof. In this case we have
_ 1 2
(pF—DLF) = 1P|

The desired conclusions follow from Corollary 3.4.3, (3.4.7b) and (3.4.7d). O

3.4.3. Central limit theorem: multiple chaoses. The results proved in the previous
subsection have a multidimensional counterpart. The next result, is the multi-dimensional
counterpart of Proposition 3.4.2 and Corollary 3.4.3

Proposition 3.4.9. Fiz d > 2 and let F = (F,...,Fy) be a random vector such that
Fy,...,Fy € DY(X) with E[F;| = 0, i. Let C € L(RY) be a symmetric positive definite
operator and let N ~ N(0,C). Then

d
> E[(Cy— (DF,-DL'F), )’ (3.4.10)

,j=1

dAmax(C)

i FN) <
dlStW( ) )— )\min<c)

Proof. Let M be the random operator M : Q — £(R?) with the (i, j)-th entry given by
M;j := (DF;,—DL™'F)),.
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Arguing as in the proof of Corollary 3.4.3 we deduce that M;; € L? since Fj;, Fj € DY4(X).
For g € C%(R?) such that

dAmax(C
xsuﬂgiH Hess g(x HHS < )\min(é) )
we have
d
‘E[(C, Hess g)us(F) — (F,Vg(F ‘ Z CyRE[02.,.9(F)] = E[Fo,g(F)]
i,j=1 i=1
(use the integration by parts formula (3.2.20))
d d
Y CyE[8, 9(F Z 0z.4,9(F)(DFj, ~DL™' Fy)x |

1,j=1
d
Z CijE[agil‘jg(F)(Cij - (DFJv _DLilFi)%]
ij=1
= !E[(Hessgw),c — M) ]| < B[ Hess g(F) 6] - /ELIC - Mg

VPl €) wa (10— M35 ]

We conclude by invoking Corollary 3.3.13. O

The next result, is the multidimensional counterpart of Proposition 3.4.5 and explains
what to do when the covariance matrix C' is possible degenerate.

Proposition 3.4.10. Fiz d > 2 and let F = (Fy,...,Fy) be a random vector such that
Fi,...,F; € DM(X) with E[F;] =0, i. Let C € L(R?) be a symmetric, nonnegative definite
operator and let N ~ N(0,C). Then for every h € C*(R?) such that ||h"||s < 0o we have

d
1 2
|E[A(F)] —E[A(N)] | < 511 ooy | D E[(Cij— (DF;,~DL-'F).,) } (3.4.11)
ij=1
Proof. Without any loss of generality we can assume IN is independent of the Gaussian
space X. Let h as in the statement of the proposition. For ¢ € [0, 1] we set

U(t) :=E[r(vV1—tF+VtN)].

Then
1
E[h(N)] — E[h(F)] = ¥(1) — ¥(0) :/0 W' (t)dt
We have
1
ZE[@ h(V1T—tF +VtN) <2\/ mF”

At this point we want to use the following elementary but useful identity.
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Lemma 3.4.11. If f = f(y1,...,vq) : R? = R is C' with bounded derivatives, N ~ N(0, 14)
and T, S € L(RY), then

d
E[f(SN)(TN);] =Y E[0,f(SN)(TS")ir], (3.4.12)
k=1

where (TN )i denotes the i-th component of the random vector TN and (T'S*);1, denote the
(i, k)-entry of the matriz T'S*

Proof of the lemma. We have
d
E[f(SN)(TN);] =) E[f(SN)T;N)]
j=1

(5j = 78Nj + Nj)

|M&

F(SN T56,(1)]

(integrate by parts using the equahtles ON; = D 1, Oy ON; Yks Yk = D5 SkilNj)

d d d
=Y Y E[0,f(SN)SKTy] = Y E[0,f (SN TS )it ].
k=1

j=1k=1
O

Now observe that if f : R4 — R is a C'-function with bounded derivatives, and N ~ N(0, 14)
is such that, N = v/CN, then (3.4.12) shows that

d
E[f(N)N;| =E[f(VCN)(VCN);] =Y E[,, f(SN)Ci]. (3.4.13)
k=1

We have
E[@xih(\/mF + \/iN)NZ-] —E, [ ]E[axih(\/mm +VEN)N,

=)

(34.13) \/izd:Em [ CijE[agixjh(mw + \/fN)‘F = :13] ]

—JZCZ]E[ (WFM/ZN)}

Using the integration by parts formula (3.2.20) we deduce

E[&xih(\/ﬁF+ \/EN)Fi] - E$[]E[8Iih(\/mF+ Viz)F;

=

_ \/ﬁzd: E, [ E[agﬂjh(\/ﬁF +Vix)(DF), —DL‘lFZ-)x)N - m} }
j=1

d
—Viz tZE[agmh(\ﬂ —{F+ViN)(DF;, —DL_lFi)x}
j=1
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Hence

d (3.4.14)

= 1i;I/OlE[agixjh(mF+ﬂN)(Cij - (DFj7_DL71E)%)}.
a

We now have (almost) all the information we need to prove the following remarkable
result.

Theorem 3.4.12. Let d > 2 and q1, . ..,qq € N. Consider the d-dimensional random vector
F = (Fl,...,Fd), F; e f:qi:, i=1,...,d.

Let f; € X°% such that 1,,[f;] = F;. Denote by C the covariance matriz of the random vector
F, C;; = E[F;Fj], and let N ~N(0,C). Consider the continuous function

Y:(RxRs0)4 >R>0

given by
d
\Ij(whylv <oy L, yd) = Z 5QiQ,j
ij=1
d ) ) min(g;,q;)—1 i )
F 3 1=d) | Cl lali+ e S ety —2n(Y )il )

ij=1 r=1

and set

m(F) = ¢(m4(F1) - 3m2(F1)2,m2(F1), ce ,77’L4(Fd> — 3m2(Fd)2,m2(Fd) ),
where we recall that my(X) denotes the k-th moment of a random variable X . Note that

w(‘rlvyla"wmdayd) =0.

r1=-=x4=0

Ifh:RY = R is a C? function with bounded second derivatives, then

[E[A(F)] ~ E[h(N)]| < 5|1 |sem(F).

The main ideas. We plan to use Proposition 3.4.10 so we need to estimate from above the
quantities

1 2
= a(DFi,DFj)%) |

Note that C;; = 0if ¢; # ¢;. Thus, we need to produce suitable upper estimates for quantities
of the form

E[(Cy - (DF, —DL_lFi)x)2} —E| (E[FF)]

Ela- L(DRDO):|. Fexv, Gex®, ack
p
This is what the next lemma accomplishes.

Lemma 3.4.13. Let F = TJ,[f], f € X°P and G = Jyg], g € X%, p,q > 1. Suppose that o
is a real constant.
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(i) If p=gq, then
]E[(a— 1(DF,DG)%)Q} < (a—E[FG])*

p
(3.4.15)

4
p—1
=022 7) o= 21 Bpor f1on+ 9By ol

_ 2
5[ (Lor pa )] < (pn?(;_ D (@ = P10l 9 By gllxems

P = p—1\’(q¢-1)’
A= 20) (221) Ok = 20U By Sl + 1 Ry gl )
(3.4.16)

Main idea of the proof. The lemma follows from the identity
min(p,q) p—1\ [q—1
(DF,DG)x:pq 7«21 (T_l)!<r_1> (T_1>Jp+q—2r[f®r9]a

which can be reduced to the equality (3.1.28). For details we refer to [121, Lemma 6.2.1]. O

Using (3.4.7c) we deduce that for any ¢ > 2 and any f € X®? we have

) (w1, 51) - L a1 T?).

Theorem 3.4.12 now follows from the above lemma after some simple algebraic manipulations
O

Hf O in@(?qur) <

Theorem 3.4.12 implies the following remarkable result.

Theorem 3.4.14 (Peccati-Tudor, [128]). Let d > 1 and q1,...,q4 € N. Consider the
sequence of d-dimensional random vectors
F,=(Fin,....,Fqn), FjneX%, j=1,...,d, neN.
Suppose that C € L(R?) is symmetric and nonnegative definite and
lim E[F; . Fj, | =Cij, Vi, j=1,...,d.

n—oo
Then the following statements are equivalent.
(i) The random vector F,, converges in probability to a Gaussian vector N ~ N(0,C).

(ii) For each j = 1,...,d the sequence of random wvariables (Fm)
probability to a Gaussian r.v. N;j ~ N(0,Cj;).

neN CONverges in

O

The above result leads to the following substantial strengthening of Proposition 3.4.1

Theorem 3.4.15. Consider a sequence of random variables (F,),>1 in L%(Q) such that
E[F,] =0, Vv, i.e., Projy(F,) =0, Yv. Suppose that the following hold.
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(C1) For any k € N, Jug, > 0 such that

lim E[ (Projk F,,))Q} = 01 V-

V—00

(C2) The sequence

2
Vi :=sup Z E{ (Projk Fl,) }
v>1
=" k>N
converges to 0 as N — oo.
(C%) For any k € N
4
. . a2
ulggoE[ <Pr0Jk F,,) } = Jvg.
(1)
Then the following hold.

(i) The series Y, <1 vy is convergent. We denote by v its sum.

(i)
lim Var(F,) = v.

V—00
(iii) Asv — oo, the random variable F,, converges in law to a random variable Fso ~ N(0,v).

Remark 3.4.16. (a) The fourth moment theorem (Corollary 3.4.8) shows that the conditions
C1 + Cf are equivalent with the requirement that, ¥p € N, as v — oo the random variables

p
Proj*(F,) )  Proj,[F,]
k=1

converge in probability as ¥ — oo to a normal random variable with mean zero and variance
v1 + -+ -+ vp. This is condition (C3) in Proposition 3.4.1.

(b) If we write
Projy[F)] = Jklfurl, for € XY,
the Corollary 3.4.8 shows that the condition C% is equivalent to

lim ”fy7k®rfy7k”x®(2q—27‘) = 0, vk > 1, Vr=1... , k—1
V—»00

3.5. The number of critical points of Gaussian
functions on Euclidean spaces

Suppose that a : R — R is an even Schwartz function such that a(0) = 1. Consider the
isotropic Gaussian function ®4 defined in Example 1.2.35.

More precisely consider the finite Borel measure p € Meas(R™)

p[de] = pa] d€] = @wa,m(s)x[dﬂ, wom (€) = a(l¢])?.

Its characteristic function is the nonnegative definite function defined by (1.2.30),
i€,z 1 &,z 2
K(z)=K,(z)= / ey [de] = / eEoa( ] ) A de].

The function (z,y) — K a(:c — y) is the covariance kernel of ®,.
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Appendiz A

Differential geometry

A.1l. Jacobians and the coarea formula

At its core, the coarea formula is a sophisticated version of Fubini’s Theorem. To best
understand this we begin with the simplest case.

Recall Fubini’s theorem. Suppose ¢ is a integrable function on R"**. Then

/ o(xt, .. 2" FYdet - da T
Rn+k

:/ </ 90(9517--wwnawnﬂ,---,w"%)dwnﬂ-~~dxn+k>dw1~--dx”.
n RE

We can reformulate this as follows. Set
y=(z',...,2"), =

and define A : R"** — R" (x,y) — y. Then

| oty volueildwdy] = [ ( /.., e volk[dﬂ) vyl (AL

(anrl :L,n+k)

ge ey

where vol; denotes the i-dimensional Lebesgue measure.

Consider now a slightly more general case of a linear map
A:RYE SR (b2 2T TR s (L) = (et ™), (ALL2)

where p1, ..., u, are positive numbers. Applying the Fubini theorem we deduce

/ w1 ezt x"““) voly,yp[dzt - - da:”Jrk]
Rn+k

1 n
Yy Y
= /RWC cp(m, T ,:L‘n+k) vol,yxldy! - - dy™dz™ .. d:z:"+k] (A.1.3)

:/ (/ o(z,y) volk[da:]> vol, [dy].
m\/A"(y)

249
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But for the factor iy - - - pip, the formulee (A.1.1) and (A.1.3) look similar. To give an invariant
meaning to this quantity we need to use the following elementary fact of linear algebra.

Lemma A.1.1. Suppose that U and V are Euclidean spaces, respectively of dimensions
n+kandn (n,k>0), and A:U — V is a linear map. Then there exist Euclidean coor-
dinates x', ..., x" % on U, Euclidean coordinates y*,...,y"™ on V and nonnegative numbers
W1, Uy Such that, in these coordinates the operator A is described by

y = pat, 1<j<n

The numbers 13, . .., u2 are the eigenvalues of the positive symmetric operator AA* : V. — V

so that
1 by = Ja = Vdet AA*.

In particular
A surjective<= J # 0.

The quantity Ja is called the Jacobian of the linear map A. a

Thus, we can rewrite (A.1.3) as

/RHM Ja(x,y)o(x,y) vol, 1k [dedy] = /n (/A—l(y) @(x,y) volg-1(y) [da:]) |[dVi(y)],

(A.14)
where vol4-1(,) denotes the Eucldean volme element on the affine subspace A~l(y). Lemma
A.1.1 shows that (A.1.4) holds for any surjective linear map R % — R”.

Proposition A.1.2. Suppose that U and V' are Euclidean spaces, respectively of dimensions
n+kandn (n,k>0), and A:U — V is a linear map. Then

_ vol, [A(B{J) ]
T el [BY]
where BY denotes the unit ball in U and BY the unit ball in V.

(A.15)

Proof. Choose coordinates (z') on U and (y/) on V as in Lemma A.1.1. If A is not onto
the result is obvious since, then dim A(U) < n. If A is onto, then A( BY ) is isometric to the
ellipsoid

n .
(27)?

E=< xeR"Y E 5 <1

j=1 H;

where the numbers p; are as in Lemma A.1.1. Observe that vol, [E] =[] . O

Remark A.1.3. Suppose that £k =0 so dimU = dim V' = n. Assume that A is onto. Then
the push-forward by A of the Lebesgue measure on U is given by

J

If U and V are equipped with orientations, then we can invariantly define det A and we have
Ja = ’ det A’. O

1
A#}\U = jAv. (A.1.6)
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It is convenient to give a more explicit algebraic description of J4. This relies on the
concept of Gram determinant. More precisely, given a collection of vectors w1, ..., u, in an
Euclidean space U we define their Gram determinant (or Gramian) to be the quantity

G(uy,...,up) = det( (ui,uj)U>

1<i,j<n’
where (—, —)y denotes the inner product in U. Geometrically, \/G(ui,...,uy) is the n-
dimensional volume of the parallelepiped spanned by the vectors w1, ..., uy,,

P(wy,...,w,) = {th'wj; tj €[0,1] }
j=1

Note that G(u1, ..., u,) = 0iff the vectors uq, . . ., u, are linearly dependent and G(uq,...,u,) =1
if the vectors w1, ..., u, form an orthonormal system.
Equivalently

G(ul,...,un): (ul/\---/\un,ul/\---/\un)AnU

where (—, —)any denotes the inner product on A"U induced by the inner product in U.

Lemma A.1.4. Let A : U — V be as in Lemma A.1.1. Fizx a basis f,.1,..., Fnip of
Uy := ker A and vectors uq,...,u, such that Auy,...,Au, span V. Then

G(Auy, ... Aun)G(Ffri1s- s Frar)

JA = : (A.1.7)

G(ulv--' 7un7fn+17"’7fn+k)
Proof. We first prove the result when dim U = dim V. In this case the collection uq, ..., u,
is a basis of U. Fix an orthonormal basis eq,...,e, of U denote by T': U — U the linear

operator e; — wu;. Then
G(uy,...,up) = det T*T,
G(Auy, ... Au,) = det((AT)*(AT)) = | det T*| det AA*|det T| = J3 det TT*.
To deal with the general case, we denote by Py the orthogonal projection onto Uy. Now
define R R
A:U—-V:=VaU, u— Aud® Pu.
we equip V with the product Euclidean structure.
Let us observe that J4 = J;. Indeed, with respect to the (orthogonal) direct sum
decomposition V' =V @ U the operator AA* has the block decomposition
Ad — [ AA* 0 }
* 1y,
so that .
det AA™ = det AA™.
Observe that in A"t*(V @ Uy) we have the equality
Aug A Aug A Frg Ao AN Fre = Aur A= Aug A fri Ao A Frk
so that
G(Aur, ..., A, Af iy Afpir) = G(Aug, ..., Aty Frits - s Frsk)
=G(Au, ... Aun)G(f i1, Frak)-
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Now apply the first part of the proof to deduce that

J,% _ Jg\: G(A\ulw"?;{unagfn—&-lv"' 7A\fn+k) _ G(Aula-' -Aun)G(fn+17"'7fn+k>
A G(ul,...,un,fn+1,...,fn+k) G(ul,...,un,fn+1,...,fn+k)

O

Suppose now that X and Y are C' manifolds of dimensions n 4+ k and respectively n,
k > 0 equipped with Riemann metrics gx and gy. We denote by volyx and voly the volume
measures induced by gx and respectively gy. Let ® : X — Y is a Cl-map. For € X we
denote by ®'(x) the differential of ® at x. This is a linear map

<I>/(u) Tyx — TF(u)Y

The Jacobian of the map & is the function

Jp : X = [0,00), Jo(z)= \/det (O (z)®(x)*),

where @' (2)* : Tp(,)Y — T,U is the adjoint of '(x) determined by the inner products g;°

on T,Y and gg(x) on Ty Y.

Theorem A.1.5 (The coarea formula: version 1). Suppose that ® : X — Y is a C'-map
such that for any x € X the differential ®'(x) is surjective. We denote by Jg(x) the Jacobian
of this map. For any nonnegative Borel measurable function ¢ : X — R we have

/ Jo(z)p(x) volx [ dx | :/ </ o(x) volg-1(y) [dm]) voly [dy], (A.1.8)
X Y \Jo 1 (y)
where volg-1(,) denotes the volume density on the fiber ®~1(y) induced by the restriction of

gx to ®71(y).

Proof. We consider first the case when X is an open subset of R™* with coordinates
(x',...,2"*) equipped with a C'-metric gx, Y is an open subset of R*¥ with coordinates
(v',...,y*) equipped with a metric gy and the map ® is given by

yj:xj, j=1...,n.

We have
voly [dz] = \/Gx(9p1,...,0pm+r) vOlyiy [dat - dm"“’“]
= /Gx(0p1, ..., 0gni) Volysy [dy" -+ - dyFda®t .o dz™ ],
=pPX
volg-1(y) [dz" T+ da™ ] = \/Gx (Oprs1, . ., Dypnsr) VOl [daFh - da™ TR ],

=:pe
where the subscript X indicates that the inner product in the definition of the above Gramm
determinants is the one determined by the Riemann metric on X. Similarly

voly [dy] = \/Gy(8y1, ey Oyn))voly [dy ] = /Gy (¥/(2)0y1, ..., @ (2)0yn)) voly, [dy].

‘PY
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Using the Fubini theorem we deduce that for any nonnegative, measurable function ¢ : X — R
we have

[ ovomx vl [dyt - dyfdat 1 o]
X

:/ (/ pPx P Voly [dm”+1---dz"+k]> py vol, [aly1 . -dy"]
Y \Jol(y)

- / (/ PX 4 pg voly [da™ 1. .dwnﬂc]) voly [dy]
Yy \Je () Pe
= px
_/y (/I)l(y) p¢,¢VOI(b—1(y) [dw]) voly [dy].

Set ¢ = % so that ¢ = Z—;chp. Then the above equality can be rewritten

/qu,(a:)go(x) volx [dx | :/Y (L,_l(y) pxJo () volg-1(,) [da:]) voly [dy].

PoPY
The co-area formula is proved once we show that
J.
PXD 1, e, Jp=2XP2
PaPY PX

The last equality follows from (A.1.7).

The general case of the co-area formula can be reduced to the special case via partition
of unity and the implicit function theorem. O

The above result can be substantially generalized. For a proof of the next result we refer
to [31, Sec.3.3] or [106, Sec. 3]. We denote by H2! the d-dimensional Hausdorff measure on
a Riemann manifold (M, g). If m = dim M, then 3} = voly,.

Theorem A.1.6 (The coarea formula: version 2). Suppose X andY are connected, Riemann
C'-manifolds of dimensions n+k and respectively n, where k > 0. If ® : X =Y is a C'-map
satisfying the Lipschitz condition

dy(q)(l‘l), (I)(iL‘Q)) < LdX(:E1,$2), Vi, x0 € X,

Then for any nonnegative Borel measurable functions a: X — R and B :Y — R such that o
has compact support we have

/X Jo(z)a(z)®*B(x) volx [dx | = /Y (/bl(y) a(m)ﬂ-f,f[dx]) By)voly [dy].  (A.1.9)

The two sides of the above equality are simultaneously finite or infinite. Ifdim X = dimY = n,
then the above equality reads

/}(J@(a:)a(x)@*ﬁ(x) volx [dz ] :/Y q)(%:ya(az) B(y) voly [dy] (A.1.10)
g






Appendix B

Analysis

B.1. The Gamma function

Definition B.1.1 (Gamma and Beta functions). The Gamma function is the function

o

I':(0,00) >R, I'(z) = / t*Letdt. (B.1.1)
0
The Beta function is the function of two positive variables
I'(z)l'(y)

B(x,y) := =——~, z,y > 0. B.1.2
(z,y) Taty) “Y (B.1.2)
g

We gather here a few basic facts about the Gamma and Beta functions used in the text.
For proofs we refer to [85, Chap. 1] or [155, Chap. 12].

Proposition B.1.2. The following hold.

(i) (1) = 1.
(ii) Dz + 1) = 2I'(z), Yz > 0.
(iii) For anyn=1,2,... we have

T(n) = (n— 1)\ (B.1.3)
(iv) D(1/2) = V.

(v) For any x,y > 0 we have Euler’s formula

1 00 z—1
_ x—1 _ y—1 _ u
Bmw—As (1—s) @_A Hﬂﬁgw' (B.1.4)
(vi) For any x € (0,1) we have
T
B(z,l—z)=T'(zx)I'(1l —2) = B.1.
(2.1~ 2) = P(@)(L—2) = " (B.15)
O
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The equality (iv) above reads

VT =T(1/2) = / T et 12y

0

(t=a2 t7 12 =z~ dt = 2zdx)

o0 2 0 2 o0 2 o0 2
= 2/ e Tdx :/ e’ dx—l—/ e Udx :/ e ¥ dx.
0 —00 0 —00

If we make the change in variables x = % so that 22 = % and dxr = %ds, then we deduce

2

1 [ a2

VT = / e 2 dx.
2 )

From this we obtain the fundamental equality

1 g2
— e 2dr=1. B.1.6
\Y4 2 /—oo ( )

The function I'(z) grows very fast as x — oo. Its asymptotics is governed by the Stirling’s
formula

X
Nz +1) =2'(z) ~ V2rz (£> as r — 00. (B.1.7)
e
Note that for n € N the above estimate reads
n! ~ V2mn <2)n as n — oo. (B.1.8)
e

There are very sharp estimates for the ratio

n!

More precisely we have (see [58, I1.9])

o1 <log g, < Ton- (B.1.9)
In other words
logn! =nlogn —n + %logn + %log(27r) + O(n_1 ), asn — oo.

We denote by w,, the volume of the n-dimensional Euclidean unit ball

B":={xeR" |z| <1}, [lz|=1/27+ - +af,
and by o,_1 the “area” of the unit sphere in R"”

sl={xzeR" |z|=1}

Then

On_1= 2r(1/2)" Wy = lan, __raznr (B.1.10)

T T2 T e T (e 1)/2)
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B.2. The Fourier transform and tempered
distributions.

Although the Fourier transform is a well known concept, there is quite a bit of variability in
the conventions of various authors and we have included this section to make sure the reader
is aware of the conventions we use. For proofs and more details we refer to [50, Chap.14]
that served as our main source.

For o € (Zzo)m we set

For any smooth complex valued function v and k, N € N we set
pen(f) = sup (1+[a*) > [0%(
z€eR la|<N
We denote by 8§(R™) the space of Schwartz functions, i.e., complex valued functions u € C*°(R™)
such that py n(u) < oo, Vk, N € N.

The countable collection of seminorms (pk,N) equips $(R™) with a structure of

k,NeN
Fréchet space.
The Fourier transform is the linear map

7 S(R™) - S(R™), ﬁf[u}(s)—/ 6y (n)dz, (€2 ng

m

We will frequently use the alternate notation @(€) := #[u](£). One can show that % is
continuous with respect to the above Fréchet structure.

For j =1,...,m define M, : §(R™) — §(R™), M, [u](z) = zju(x). Then
F oMy, =10;;0F, Fody, =tMg, 0 F. (B.2.1)

Let R : S((R™) — 8(R™) denote the involution Ru(x) = u(—xz). The equalities (B.2.1) show
that the operator R o .7 o.# commutes with M, and 9,, for any j, k. This can be used to
show that there exists a constant c¢ such that

F o F =cl.

The equality (1.1.3) implies that ¢ = (27)~"™. Hence % is a bijection and its inverse is give
by the Fourier inversion formula, ' = (2r)"™R o .7, i..,

u(x) = / ) HET () de. (B.2.2)

For u,v € §(R™) we set

(1, v) = / u(ep(@)dr, (u,v) = {u,7) = / w(z)o(w)dz.

m

We then have the following fundamental equalities
(U, v) = (u,0) (B.2.3a)
(u,v) = 2m) ™ (). (B.2.3Db)
Fort #0 and u € S(Rm), we set
Ryu(x) := u(tx).
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Then
Riu =t ™R, 1. (B.2.4)

If u,v € §(R™), then their convolution

wrole) = [l = pely)dy
is also a Schwartz function and

Fluxv] =Fu] - F[v]. (B.2.5a)

Fluw] = 2r) " F[u] « F[v]. (B.2.5b)

Denote by 8'(R™) the space of linear functionals 8(R™) — C that are continuous with respect
to the Fréchet structure on §(R™). We will refer to the elements of 8'(R™) as tempered
distributions on R™, and we will denote by (—, —) the natural pairing

(= =) :8'(R™) x §(R™) = C, (p,u) = ¢(u).
Note that we have an inclusion

CYR™) < 8'(R™), ws Ly, (Ly,v) = (u,v) :/ u(z)v(z)d.

m

We can extend the Fourier transform to a map .Z : 8'(R™) — 8'(R™) by setting
(Z[¢]u) = (& F[u]).

For example, the Dirac distribution dg is a tempered distribution. Then

(30, u) = (59, 2) = A(0) = / ula)da.

Thus the Fourier transform of §g is the Lebesgue measure A. The Fourier inversion formula
shows that

X = (2m)"d.

Recall that a locally convex topological vector space is called Montel or perfect if every closed
and bounded subset is compact. The space S(]Rm) is Montel; see [67, Sec. 1.3] or [150, Sec.
34.4]. As discussed in Section 1.1.4, there are three remarkable topologies on 8’ (Rm): the
weak*, the Mackey and the strong topology. In the dual of a Montel space any weakly™*
convergent sequence is also strongly convergent.

In this book we use frequently the Poisson summation formula

Vu € §(R™), Ya>0: Zu(Q—WZ):(Qi)m Z ﬂ(a%) (B.2.6)
fezm ¢ : kezm

For a proof we refer to [73, §7.2].

IWe want to emphasize that this is a statement strictly about sequences, not about generalized sequences.
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B.3. Basic facts about spherical harmonics

We survey here a few classical facts about spherical harmonics that we needed in the main
body of the paper. For proofs and more details we refer to our main source, [102].

We denote by H, 4 the space of homogeneous, harmonic polynomials of degree n in d
variables. We regard such polynomials as functions on R%, and we denote by Yn.q4 the subspace
of C°(89~1) spanned by the restrictions of these polynomials to the unit sphere. We have

d+n—1\ (d+n—3
dimﬂ{md:dimyn,d:M(n,d):( +Z )—( 222 )

_2n+d—-2(n+d-2 5 nd—2 s T o0
S on+d—-2\ d-2 (d —2)! '
Observe that

MO,d) =1, M(1,d)=d, M(2,d)— <d;r 1) ~1 (B.3.1)

The space Y, q is the eigenspace of the Laplace operator on S4=1 corresponding to the eigen-
value \,(d) =n(n+d—2).
The Legendre polynomial P, 4(t) of degree n and order d is given by the Rodriguez formula

s/ d\" _
Paalt) = (-1 Rafa)(1 = £ () (1= (B3.2)
where R, (d) is the Rodriguez constant
r(4t 1
Rn(d) =27" ( 2d—)1 =27" d—31
P +57) (n+5%),

where we recall that (z); :=x(x —1)---(x — k+1).
Equivalently, they can be defined recursively via the relations
PO,d(t) =1, Pl,d(t) =1,
(n+d—2)Pyt14(t) — (2n+d—2)tP, 4(t) + nP,_; 4(t) =0, n > 0.

In particular, this shows that

1
P27d(t> - m(dtQ - 1)

The Legendre polynomials are normalized by the equality
Poq(l)=1, Vd>2, n>0.

More generally, for any n > 0, d > 2, and any 0 < 57 < n, we have
d—3

n +j> Dr(1— )" DI(1 + ¢t d
; FET 3 » D=,
J e B

:2"‘jRn(d)<n;j>(”+T)n‘ (“d;g»

V(1) =27 <n;r‘7> (n + ? )j. (B.3.3)

PO = (-1 ()

which implies
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Fix y € S9!, Denote by e the canonical inner product on R%. Then the function
x— Py g(rey)
belongs to the eigenspace 7, 4. Note that arccos(z e y) is the geodesic distance between
d—1
x,y € SN
If (Uk)i<k<m(s,a) is an orthonormal basis of 3(, 4, then we have the addition formula

M(n,d)

Yo,y € ST DT Up(a)Wi(y) =
k=1

M(n, d)
Od-1

P a(zey) (B.3.4)

where o 4_1 denotes the “area” of the unit sphere in R
Denote by P, = P, 4 the ortogonal projection LQ(Sd_l ) — H,, q. Observe that
M(n,d)

Kn(xa y) = J<n,d(xa y) = \Ilk(‘r)\pk(y)
k=1

is the integral kernel of the operator P, i.e., Vf € L?(S%1)

Pn,df(x) = i fKn’d(a:, y) VOlSd—l [dy] .
Theorem B.3.1 (Funk-Hecke formula). Let ¥ € H, 4 and f € C°([~1,1]). Then for any
x € 841 we have

o, @) V) vl S dy ] = A T(2), (B.3.5)
where

1 d—3
M=o [ FOPa) (1) T
O

We want to describe an inductive construction of an orthonormal basis of Y,, 4. We start
with the case d = 2. For any m € Z, we set

cos(m#), m <0 (2m)Y2, m =0 1
m(0) = y tm = m = ) D = —Pm.
em () {sin(m@), m > 0. lomllza {771/2, m > 0. t

Then By o = {®g} is an orthonormal basis of Yg 2, while B,, 2 = {®_,, P, } is an orthonormal
basis of Y, 2, n > 0.

Assuming now that we have produced orthonormal bases B,, 41 of all the spaces Y, 41,
we indicate how to produce orthonormal bases in the harmonic spaces Y, 4. This requires
the introduction of the Legendre polynomials and their associated functions.

For any d > 3, n > 0 and 0 < j < n, we define the normalized associated Legendre
functions

~ 9 i/ i
P! (1) == Cja(l — 22 PU)(1),

where

[n+d—3]d_3< (2n +d — 2) >1/2
Chid = : . B.3.6
g F(%) 24=2ln+d+ j — 3]2j4a—3 ( )
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When d = 3, the above formulae take the form

Py js(t) = \/ w(l — 2y Y ). (B.3.7)

(n+7)!
For any 0 < j < n, and any d > 2 we define a linear map

(-Tn,j,d : 1dj,d—l — 137L,d7 Y — Tn,jd[y]?

TnjdlY (@) = P y(zq) - Y <H:B1,Hw'> :

Ve = (2, zq) € ST ' = (z1,...,24-1) # 0.

Note that for = (x',24) € S9! we have

/]l = (1 = 20" and B y(w0) = Cusall = 2372 P0)(wa) = Cogalla’ VP )
so that
TnjalYl(x) = Cnvjvdpy(ﬁ(wd)?(f”/)a Ve = (x',z4) € ST,

where Y denotes the extension of Y as a homogeneous polynomial of degree j in (d — 1)-
variables. The sets ‘J'n,j,d[BLd_l], 0 < j < n are disjoint, and their union is an orthonormal
basis of Y, 4 that we denote by B, 4.

_1
The space Yo 4 consists only of constant functions and By g = { o, % }. The orthonormal

basis By 4 of Y1 ¢4 obtained via the above inductive process is
_1
Bl,d = { Col‘i, 1 < ) < d} = {O'df201707d113i; 1 < 7 < d} (B.3.8)
The orthonormal basis Bs 4 of Yo 4 is

C1(da? —r?), 1<i<d, Corzj, 1<i<j<d, (B.3.9)

2

where 72 = 23 4+ - + :L‘?l, and the positive constants Cy, C1, Csy are found from the equalities

c [ atlds@)] =Ct [ (@t 2aat 4 1) jds@) = C3 [ ahadjdse) = 1
Sd—1 gd—1 gd—1
aided by the classical identities, (2.3.13)

2F(2h5+1)_..r(2h%+1)

/ Bt |dS(a)| = , h=hi+- +hg (B.3.10)
Sd—1
B.4. Some asymptotic estimates

We want to discuss the large m asymptotics of

him(a)  2L,43(a) (a) = sm(@)hm(a) — m  Ipo1(a)lng3(a)
dn(@) ~ (2L YT B

dp(a)2 m+2  Ipp(a)?

=:Ry,(a)
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for various choices of amplitudes a. Set wq(t) := a(t)?. Recall (2.3.27)

Coola) ~ 25/2 (Z:g)m/?l“ <m;3> -

- m/2
~ 273 ( Lms3(a) > r <m—i—3> m~ 2 asm — oo.
(1 +2) L 11(0) 2

(B.4.1)

Example B.4.1. Suppose that wq(t) = e~t*. In this case

o 1 [ k= 1 k+1
I(a) = the Pdt = = 5T e *ds = =T Erl .
0 2 Jo 2\ 2

Hence Iy = %Ik, vk,

Lpys(a)  m—+2  hy(a)
Lnsi(a) 2 7 dp(a)

1 _m(m+4)
=5 m= (m + 2)2

<1, Vm.

We deduce

5
(2.3.27) 22 m—+3
vJmm 2

) as m — oo,

and Stirling’s formula implies

log Cpy(w) ~ % logm as m — oo. (B.4.2)

Example B.4.2. Suppose that
wq(t) = exp(—(logt)log(logt)), Vt > 1.
Observe that . .
I(a) = / rRw(r)dr + / ¥ exp(—(logr) log(log ) )dr.
This proves that ’ 1
Ix(a) ~ Jg = /100 rk exp(—(logr)log(logr) )dr as k — occ.

Using the substitution r = e! we deduce
Jp = /OO e(k:—l-l)t—tlogtdt.
0
We want to investigate the large A asymptotics of the integral
(o9}
Ty = / et ¢\ (t) = At — tlogt. (B.4.3)
0

We will achieve this by relying on the Laplace method [29, Chap. 4]. Note that
1
Gh(1) = A~ logt — 1, (1) = .

Thus ¢ (t) has a unique critical point
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We make the change in variables ¢t = 7s in (B.4.3). Observe that
et ls —erlslog(erls) = e* s — (A —1)er s —erlog s = €2 Ls(1 — log s)
and we deduce

T\ = 7'/ e ™M) ds, h(s) = s(logs —1).
0

The asymptotics of the last integral can be determined using the Laplace method and we
have, [29, §4.1]

27
—7h(1
Ty ~ 7~ () =V2rre.

Hence

Ji = Tip1 ~ /217 (k + 1)e™*+D) = Vareke! as k — oo.

In this case
lim g, (a) = oo,

m—0o0
and
log (;Lm> ~ Mt — ™2 a5 m — 0.
m
Hence
log Cy,(a) ~ %em"a(e2 —1) as m — oc. (B.4.4)

Example B.4.3. Fix C' > 0 and « > 1. Suppose that
wa(t) = exp(—C(logt)* ),Vt > 1.

Arguing as in Example B.4.2 we deduce that as k — oo

I(a) N/ t" exp( —C(logt)™ )dr :/ o 1E=Cte gy
! 0

Again, set
Ty = /Oo e~ POdt, py(t) == Ct* — AL
We determine the asymptotics of OTA as A — oo using the Laplace method. Note that
(1) = aCto™1 — ).

The function ¢y has a unique critical point

Observe that
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We set g(s) := s — bs. Using the Laplace method [29, §4.2] we deduce

2m 2m
Ty ~ —ag(1) _ a(b—1)
o~ TN \/ag”(l) \/aa(a -1) ¢

1

Hence

@

1
@\ a-1 ga-1T — 1
log T, ~ (AC) % =: Z(a, C)Ao-T,

a—1

ottt (1 (27

m m
2Z(a,C) 1
~———Sma-1 m — oo,
a—1

so that Jlo.C

log Cy(a) ~ m’l)ma&l, m — 00. (B.4.5)

a —_—
Similarly
log Ry, (w) ~ log Tpy, + log Tryya — 21og Thypo
~ Z(oz,C’)(mﬁ +(m+4)aT —2(m+2)aT )
o 4N\ 25 2\ a1
= Z(a,C)maT <1+ <1+7) ! _2<1+7) 1>
m m
o 8 «o o 8aZ(a) 2-a
NZ ,C a—1 — 7(7— ):7 a—1
(a, C)m 2 a—1\a—1 (a—1)2m
Hence
00, a < 2,
lim R, = x {6420 =2, (B.4.6)
m—0o0
1, o> 2.

B.5. Reproducing Hilbert Kernel Spaces

In the more than a century since their appearance on the mathematical scene the Reproducing
Kernel Hilbert Spaces have found applications in diverse areas: complex analysis, numerical
analysis, quantum mechanics, Gaussian processes and machine learning, to name a few. The
goal of this section is to survey, mostly without proofs, some basic properties of such spaces.
Our main sources of inspiration are [9, 125] to which we refer for proofs and more details.

Let X be a set. Recall that RX is the space of functions X — R. For every z € X we
denote by Ev, the evaluation at x, i.e. the linear map
Ev,:R* R, Ev,[f] = f(2).
A (real) Reproducing Kernel Hilbert Space over X, or RKHS henceforth, is a vector subspace
H c R¥X with the following properties
(i) It is equipped with an inner product (—, —)s making it into a real Hilbert space.

(ii) For every z € X the linear functional Ev, : H — R is continuous with respect to
the Hilbert norm.
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From the Riez representation theorem and (ii) we deduce that for every z € X there
exists K, € H such that

(Kz,h,)}( =Ev, [h] = h(x), VYh € H.
The resulting function

K:XxX =R, K(z,y) = K;(y) =Ev, [Kx] = (Ky, Ky)s,
is called the reproducing kernel or the kernel of the RKHS K.

There is a natural map ® : X — H, ®(z) = K,. Note that
In machine learning this map is known as the feature map.

Note that if X is a topological space and K is continuous, then the feature map is
continuous as a map from X to the Hilbert space H. Indeed, for any xzg € X, the function
u: X - R

u(z) = ||®(x) — D(0)|5 = K(z,x) — 2K (2, 20) + K (20, x0)
and

xlggo u(z) = 0.

Example B.5.1. The feature map is a disguised version of a standard geometric construction.
More precisely, given a set X and a finite dimensional vector space V of real valued functions
on X, we get a tautological map

Ev: X - V* z+— Ev,.
The map Ev is injective if and only if the vector space V' separates the points, i.e., Vx,y € X,
Jv € V such that v(x) # v(y).

Fix an inner product (—,—) on V. Since V is finite dimensional, the evaluation maps
Ev, : V — R are continuous with respect to this inner product for any z € X. The pair
(V, (=,—)) is an RKHS.

The inner product induces a dual inner product (—, —)y+ on V*, we can identify V* with
V' and the evaluation map Ev : X — V* 2V is the feature map. The reproducing kernel is

K(z,y) = (Evg, Evy ).

Suppose that X is a subset of a finite dimensional Euclidean space V. The inner product on
V induces a duality isomorphism

Vv v €V, vHu) = (v,u), YueV.
In particular, we get a map
Xsx—ateV™
Assume for simplicity that X is not contained in any proper subspace of V. Then the map
X
Vst R

is one-to-one and we denote by H the image of this map. The inner product on V* induces
an inner product on H,

(vg‘ X’”%‘X)g{ = (U\IO/7U%)V* = (v07vl)v-
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Then H is a RKHS with kernel K(z,y) = (x,y)y and feature map
X — X, wt—)wﬂxeﬂ-ﬁ.
Note that the function Ev, : H — R coincides with a:ﬂ X- O

Observe that the reproducing kernel of a RKHS is a symmetric function, i.e.,

K(z,y) = K(y,x) = (Ko, Ky ) g, Y,y € X, (RK)

Indeed,
K(x,y) = Kx(y) = Evy(Kx) = (KyaKZ)g{'

For any z1,...,z, € X we denote by Gg (z1,...,x,) the symmetric n X n matrix
Gk (21,...,2p) = (K (i, x;) )1§i7j§n'

Observe that

Gk (z1,...,2y) >0, Vn, Va1,...,2, € X. (RK32)
Indeed, Gg(x1,...,zy) is Grammian of the functions K

GK(l’l, sy .Tn) — ( (K:E»La Kxj)g{)lgi,jgn’

and the Grammians are positive semidefinite matrices, i.e., all their eigenvalues are nonneg-
ative.

The rank of Gk (1, ...,x,) is the dimension of the space span {Kml, o Ky, } In par-
ticular, we deduce that if det Gx(z1,z2) # 0 then K., # K,,. We have the following
consequence.

Corollary B.5.2. If the reproducing kernel K of an RKHS H over X satisfies
det G (z1,22) #0, Ve, xe € X, 11 # o, (B.5.1)
then the feature map ® : X — H is injective. a

Definition B.5.3. We define a (reproducing) kernel on a topological space X to be a con-
tinuous symmetric function K : X x X — R satisfying (RKz2). A reproducing kernel on a
set X is a reproducing kernel on X equipped with the discrete topology.

We denote by K(X) the set of kernels on X. We denote by KT (X) the collection of kernels
K such that for any distinct points x1,...,z, € X the symmetric matrix Gg (z1,...,2,) is
positive definite, i.e., all its eigenvalues are positive. O

Theorem B.5.4. Let X be a set.

(i) The set of reproducing kernels X(X) is a convex cone in the vector space of functions
X x X —R.

(ii) If (Kp)nen is a sequence of kernels on X that converges pointwisely to a function
K: X xX =R, then K € X(X).

(iii) If K1, Ko € K(X) then Ky - Ky € K(X).

(iv) If X' is another set, K € X(X), K' € K(X') and we define
K@K : (X xX')x(Xx), K@ K'((z,2'),(y,y)) = K(z,y)K'(z',y)
then K ® K' € K(X x X').
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O

The only non-obvious part of the above result is (iii). It is a consequence of a less pop-
ular result of linear algebra stating that the Hadamard product of two positive semidefinite
symmetric matrices is a positive semidefinite matrix; see [125, Sec. 4.2] . We recall that the
Hadamard product of two matrices A = (aij)1<ij<n, B = (bij)1<i,j<n is the matrix

AxB = (aijbij)

1<ij<n’
The following example of RKHS is in a certain sense universal.

Example B.5.5 (The RKHS of a Gaussian process). We follow the presentation in [69, Sec.
2.61].

Let (Z;)zex be a centered Gaussian process parametrized by a topological space X. We
assume that the covariance kernel
C:XxX =R, Cla,y) =E[Z,7,]
is continuous, i.e., the map
X>z— X, € L*08,P), = — Z,
is continuous.
We denote by Z Gaussian Hilbert space determined by the Gaussian stochastic process
(Zy)zex, i.e., the closure in LQ(S,IP’) of the vector subspace
V = span(Zz)zex.
We define
R:2—RX, Zw— R[Z], R[Z)(x)=E[ZZ,], Yz € X.
Note that the function R[Z] : X — R is continuous since the map
Xox— Z, € L?

is continuous.

Observe also that the map R is injective. Indeed, if for some Zy € Z we have R[Zy](z) = 0,
Vx € X, then IE[ZOZ] =0,VZ € V. Since V is dense in Z we deduce E[ZOZ] =0,VZ € Z,
so Zg = 0.

We denote by 3 the image of R, 3 = R(Z) C C(X) C R¥*. The space ¥ is a Hilbert
space with respect to the inner product

( R[Zo], R[Z\] ). :=E[ZoZ1 ], VR[Z),R[Z1] € K.
The map R is an isomorphism of Hilbert spaces Z — H.

Note that R[Z,| = Cy, Cy(x) = C(z,y) = C(y,z). Since the family (Z,) is dense in Z we
deduce that thefunctions Cy, y € X, span a dense subspace of J.
The map Ev, : H — R, R[Z] — R[Z](z) is continuous with respect to the inner product
(—, —)g since
R(Z)(x) :==E[ZZ,] = ( R|Z],R[Zy] ),,.
We also have a map
F=F¢c: X —>H, z— R[Z,)].
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Observe that for any =,y € X we have
<R[Zx]v R[Zy] > = E[szy] = C(l’, y)

Thus, H is a RKHS and its reproducing kernel is the covariance kernel of the process (Z;)ex-
Note that H C C(X). The feature map of H is F¢. The space H is also known as the
Cameron-Martin space of the Gaussian stochastic process (Z;)zex; see [75, Def. 8.14]. O

It turns out that Example B.5.5 is universal.

Theorem B.5.6 (Moore). Let X be a topological space. For any reproducing kernel K € K(X),
there exists a unique RKHS on H C C(X) whose reproducing kernel is K.

Proof. Eristence. Let K € X(X). The Kolmogorov existence/consistency theorem [115,
Sec. 1.5.2] shows that there exists a centered Gaussian process (Z;)zex with covariance
kernel K.

Uniqueness. Suppose that Hi, Ha € RX are two RKHS’s with kernels K, Ko. We want to
show that if K1 = Ko, then H; = Hs. Set K = K1 = Ko We outline the main ideas referring
for details to[125, Sec. 2.1].
For i = 1,2 we denote by (—, —); the inner product in H; and by || —||;, the corresponding
norm. We set
Vi = Span{Km; reX }
Note that Vi C H; and
(u,v)1 = (u,v)2, Yu,v € Vk.
It is easy to see that Vi is dense in H;. Moreover, if h; € H; and ||v, — hi|l; — 0, then
vp(z) = hi(z), Vo € X. Tt suffices to show that if h € Hy, then h € H,.
Since h € Hy, there exists a sequence (vy,) in Vi such that ||v, — k|1 — 0. Hence (vy,) is
Cauchy in 3;. Since |[v, — vil[1 = [[vn — vim ]2 we deduce that (v,) is also Cauchy in Hs so
there exists h € Hy such that ||v, — k|2 — 0. Now observe that

h(z) = ILm vp(z) = h(z), Vr € X.
Hence h = h € Hs. O

Remark B.5.7. There is a more elementary proof the existence of a RKHS with a given
reproducing kernel K. More precisely denote by V' the subspace of C'(X) spanned by the
functions y — K, (y). Given two functions u,v € V

U = E Ky, v= g vi Ky, u,v; €R,
i J

we define
(u,v) = Zuij(:Ui, Yj)-
1,J
One can show that (—, —) is independent of the decompositions of v and v as linear combi-

nations of functions K, and it is positive definite and thus defines an inner product on V.
We denote by H its completion. We can identify each h € H with a function on X by setting
h(z) = (h, K;), Yz € X. O
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For every K € K(X) we denote by Hy the unique RKHS with reproducing kernel K.
We denote by (—, —)x the inner product on Hy.

We can now describe a few simple examples.
Example B.5.8. Suppose that X is a finite set X = {z1,...,2, } and K € XT(X). We
set G = Gg(x1,...,2,). Fix jointly Gaussian centered random variables Zy,..., Z,, with
covariance matrix G and set

Z:span(Zl,...,Zn).
Let (d;,)1<i<n denote the canonical basis of R¥,
5331({15']) = 51']'7 \V/Z,]
Then the feature map is given by
XTi > Ka:i = ZK(mi,xj)émj S RX.
J

Since (K, Kz;)3c = K(xi, ;) we deduce that in the basis (d,,) the inner product (—, —)s

2

is represented by the matrix by the matrix G1. O

Example B.5.9. Suppose that V' is a Hilbert space with inner product (—,—). Then the
function
K:VxV =R, K(u,v)=(u,v)

is a kernel. The associated RKHS is the topological dual V* ¢ RV equipped with the dual
metric. The feature map is the Riesz representation isomorphism V — V*. O

Proposition B.5.10. Suppose that H is a RKHS over X with reproducing kernel K. If
(e;)ier is a complete orthonormal system of H, then

K(z,y) = ZQ‘(@Q’(?J)-
i€l
Proof. We have
Kx = Z(Kz, ei)g{ei = Zei(x)ei

% )

K(z,y) = (Ku, K)o = Y ei(@)ej(y)(eire)) = Y ei@)eiy).
2 i

O

Definition B.5.11. Let H be an RKHS over X with reproducing kernel K. A collection of
functions (f;)ier in H is called a Parseval frame if

IRI* =D | (B fidoc %, Vf e

O

Clearly, a complete orthonormal collection of JH is a Parseval frame. Parseval frames enjoy
many of the properties of orthonormal bases. However a Parseval frame could have linearly
dependent functions. We have the following useful characterization of Parseval frames.



270 B. Analysis

Theorem B.5.12. Let H be an RKHS over the topological space X with reproducing kernel
K. A collection of continuous functions (f;)icr on X is a Parseval frame of Hy if and only
if
K(z,y) =Y fi)fiy),
el
where the above sum converges pointwisely. O

For a proof we refer to [125, Thm. 2.10, Remark 2.11]. Let us emphasize that above, the
functions f; are not a priori known to belong to H! However, the above result implies that
they span Hx and in fact

h="Y (h, fi)scfi, VheX.

7
For more details we refer to [125, Sec. 2.1].



Appendix C

Probability

C.1. Gaussian random symmetric matrices

We denote by §,, the space of real symmetric m x m matrices. This is a Euclidean space with
respect to the inner product (A4, B) := tr(AB). This inner product is invariant with respect
to the action of the orthogonal group O(m) on §,,.

We define
Qij, Z:j7
&-,wi‘:Sm—)R, EZA = Q;j, U.)Z"A = J
J J J( ) J ]( ) {\/5011']‘, Z<]

The collection (wj;)i<; defines linear coordinates on §,, that are orthonormal with respect to
the above inner product on §,,. The volume density induced by this metric is

vol [dA] =[] dwy; = 22(3) ] de;.

i<j 1<j
The space of O(m)-invariant homogeneous quadratic polynomials ¢ : §,,, — R is spanned by
q1(A) ;= (tr A)? and ¢o(A) := tr A%
An O(m)-invariant homogeneous quadratic polynomial
4(A) = c2(A) + e11(A)

is nonnegative iff the quadratic form
2
Fy:R™ SR, Fy( A, ) :cQZAercl( Z)\k)
k k

is nonnegative. This quadratic form is represented by the matrix
col,y, + 1S, Sij = 1, Vi, j.

Note that S has rank 1 and has only one nonzero eigenvalue m which is simple. We deduce
that

1
c2q2(A) + c1q1(A) 2 0<=c2 > 0,¢; > ——c.

271
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Note that
CQ(]Q(A) + clql(A) = (02 + Cl) Zw?-j + 261 Zwiifjj + o Zw,?] (C.l.l)
J 1<J 1<j
Throughout the book we encountered a 2-parameter family of Gaussian probability measures
on &,,. More precisely for any real numbers wu, v such that

v > 0,mu+ 2v > 0, (C.1.2)

we denote by 87" the space 8y, equipped with the centered Gaussian measure I'y,,[dA |
uniquely determined by the covariance equalities

E[ﬁij(A)fkg(A)] = U(Sijdkg + v(éikéﬂ + 5i45jk); V1<i,j, k£<m. (C.1.3)
In particular we have
E[6] =u+2v, E[lilj;] =u, E[£;]=0v, VI<i#j<m, (C.1.4)
while all other covariances are trivial. The ensemble S?ﬁv is a rescaled version of the Gaussian
Orthogonal Ensemble (GOE) and we will refer to it as GOEY,.
Comparing (C.1.1) with (C.1.4) we deduce that the covariance form of I',, corresponds
to the O(m)-invariant quadratic form caq2(A) + ¢1q1(A), where
co = 2v, c] = u.
The inequalities (C.1.2) guarantee that the covariance form is positive definite so that I';,,
is nondegenerate.
For v > 0 the ensemble 8;;" can be given an alternate description. More precisely a
random A € 85" can be described as a sum
A=B+ X1, BeGOE/, X € N(0,u), B and X independent.
We write this
8% = GOEY, +N(0,u) 1y, (C.1.5)
where + indicates a sum of independent variables.
The probability density dI', , has the explicit description
1

m(m+1)

2m)— 1 /D(u,v)

T,,[dA] = e TAE A o1 [4A ],

where
m
2

D(u,v) = (2@)(m_1)+( )(mu +20),
and

o — 1 1 1y U
S om \mu+2v  2v)  2v0(mu+2v)’
In the special case GOE}, we have u =« = 0 and
1

m(m+1)

e 1 T4 vol [dA]. (C.1.6)
(4mv)~ 4

Tou[dA] =

Note that GOE}T{2 corresponds to the Gaussian measure on Sym(R™) canonically associated
to the inner product (A4, B) = tr(AB).
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We have a Weyl integration formula [5] which states that if f : 8, — R is a measurable
function which is invariant under conjugation, then the value f(A) at A € 8,,, depends only
on the eigenvalues A\j(A) < --- < A\, (A) of A and we have

1 LIV
EGOEUm[f(X)] = Zm(U) - f()‘lay)\m) 1<Z];[<m|>\z—)\]| Zl_[le 4v |d>\1d)\7n|7

::Qm,v()\)
(C.1.7)

where the normalization constant Z,,(v) is defined by

/ 11 |/\—>\\He 4v\d)\1 - dAm|

1<i<j<m

m(m+1)

(20) 4 / 11 |)\—>\|He |d)\1 ] .
1<i<j<m

=Zm
The integral Z,, is usually referred to as Mehta’s integral. Its value was first determined in
1960 by M. L. Mehta, [95]. Later Mehta observed that this integral was known earlier to N.
G. de Brujin [28]. It was subsequently observed that Mehta’s integral is a limit of the Selberg
integrals, [5, Eq. (2.5.11)], [61, Sec. 4.7.1]. We have

m—1 F(j+3)

Z,, = (2m)% H D) Qh (] +3> (C.1.8)

In Section 2.3.4 we describe a probabilistic proof of this equality.

For any positive integer n we define the normalized 1-point correlation function py, ,(x)
of GOE} to be

1
() = —— (T, A2y An)dAy - - - d Ay,
Pn, (x) Zn(U) Rn—1 Q , (CL’ 2 ) 1
For any Borel measurable function f : R — R we have [43, §4.4]
1
EEGOE” tl"f /f pnv (0.1.9)

The equality (C.1.9) characterizes p,,. For example, if f(z) is the indicator set of a Borel
subset B C R, then tr I 5(X) the number of eigenvalues of X located in B so

[ peci

is the expected fraction of eigenvalues in B of a random matrix X in the ensemble GOE} .

Let us observe that for any constant ¢ > 0, if
A € GOEY <=cA € GOES".

Hence for any Borel set B C R we have

/ P20 (T)dr = / Prw(y)dy.
cB B
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We conclude that
P20 (cY) = pow(y), Vn,cy. (C.1.10)
We want to draw attention to a confusing situation in the existing literature on the

subject. Some authors, such as M. L. Mehta [96], define the 1-point correlation function
R, (x) by the equality

EGOE1/2 tl"f / f
so that
Ry (%) = npp1/2(2). (C.1.11)

From the equality

nl/2 1/2

Pn,l/z(n 37) = Pn,1/2n(95)

we deduce
1
Pr,12n(T) = ﬁRn(nl/zw).

The expected value of the absolute value of the determinant of of a random A € GOE}, can
be expressed neatly in terms of the correlation function py,41,,. More precisely, we have the
following result first observed by Y.V. Fyodorov [63] in a context related to ours.

Lemma C.1.1. Suppose v > 0. Then for any c € R we have

c

2
EGOE% [ ’ det(A - Cﬂm)” — 2%(2’0) 2 F (77”0;—3) eﬂperl,v(C). (C.l.l?)

Proof. Using Weyl’s integration formula we deduce

Egory [ |det(A — cl,p, e 4v|c—)\|H|)\ AjldAg - dAn
1<j
2
€ 4v
_Zm/ e 4vHe 4v\c—)\]H])\ AjldAg - dAm

i<j

02
1w L 1
_ 2 Zm1v) Qmito( A, o Am)dAr -+ dAm

Zm('U) Zm+1(v) Rm

5 Za (v) G20z
N € 4v m+1 v _ € 4v v 2 m+1
- Zm (’U) pm+17v(c) Zm pm+17’U(C)

2 (2m)V/20 (3
47(21)) 2 (2)P(3I/‘(2)2)pm+1,v(c):

mt1 2 m+3
= (2v) 2 64”23/2F(T>Pm+1,v(0)-
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The above result was generalized in [10, Lemma 3.2.3] or [11, Lemma 3.3]. To state this
generalization we need to recall some terminology. If u, v € Meas(R) are two finite measures,
then we define their convolution to be the finite measure ug * 1 € Meas(R) defined by

,u*y[B] :/R,u[B—y]u[dy], VB € Bg. (C.1.13)

If u is absolutely continuous with respect to the Lebesgue measure, ,u[dx] = pu(x))\[d:z],
then p x v is also absolutely continuous with respect to the Lebesgue measure and

prv[de] = pyxv(z)A|[dz], pu*u(:r):/Rp(x—y)u[dy].

Lemma C.1.2. Let uw > 0. Then
m+3 (c=2)2 _ 52

Eguw | |det(A —cly,)| | =22(2 r m+1v v 2ud.
sy [1det(4 = e1)|] =28 @01 (M32) o [ sl 0T B

3 m41 m+3
— 28 (20) T () 0 %),

2
(C.1.14)
where )
9;+17v(x> = pm—i—l,v(x)eﬂ'
Let us observe that (C.1.12) can be obtained from (C.1.14) by letting u ™, 0.
Proof. Recall the equality (C.1.5) 83" = GOEY, +N(0,u)1,,. We deduce that
Eguov||det(A —cly,)|] =E[ det(B + (X —c)1)| ]
1 2
= E v | |det(B — (c— X)1,, X =z |e 2udrx
= | Beom, [ det(B — (= X)1,)] | X =a]
1 / _a?
= Ecogey ||det(B — (¢ — x)1y,)| | 2udx
3 m+3 / RE 0)? o2
—23(20)"5° T m41v(C—x)e v T 2udr.
O

The behavior p,, as n — oo is controlled by the following theorem.
Theorem C.1.3 (Wigner’s semicircle law). For any v > 0 the sequence of measures on R
Pnun—1 (x)dx = n%pn’v(n%x)d:r
converges weakly as n — oo to the semicircle distribution
poow()|dx| = I{|z|<2f}2 Vv — 2?|dx|.

O

For a proof we refer to [5, Chap. 2|. For our purposes we need a better understanding
some refinements of Wigner’s semicircle law. The following results were developed Set

Pn(T) = pr1/on(T) = n_l/QRn(nl/Ql‘)a P(T) = Poo,1/2
where R, (x) is the 1-point correlation function R, (z) defined in (C.1.11).
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Proposition C.1.4. Denote by ~,,,-1 the centered Gaussian measure on R with variance

vn~t. Then

Hm | pn(8)Yen—1[ds] = p(0) = —. (C.1.15)

n—oo Jp T

Proof. We follow the approach in [110]. The function R, (z) can be described explicitly in
terms of Hermite! polynomials, [96, Eq. (7.2.32) and §A.9)],

n—1 L
a2
=Ll () o / e(x = t)Pn(t)dt + an(x), (C.1.16)
k=0 R
e e
where 1 2 i
n\T e 2 Hy(z), Hy(z)=(—1)"e"" — (),
Yn(z) = (2nnlym)E () (2) = (~1)"e” (™)
(2) {0’ nez,
a'I’L r)= wn— (I)
oo "€+,
and
%7 x>0
5(3;) = 0, x =0,
—%7 z <0.
From the Christoffel-Darboux formula [145, Eq. (5.5.9)] we deduce

n—1

Z¢k = Z ﬁHk(x)z = zn(nl_l)l(H;L(x)Hn_l(x) - Hn(SU)H;L(‘,B))

Using the recurrence formula H] =2xH, — H,41 we deduce
H)(x)Hp—1(z) — Hy(2)Hy (x) = Hy(x) — Hpo1 (2) Hppa ()

and
k() = W(Hi(@ ~ oot (2) Hpa (@) )
We set (
E () - kn 1 /2y
kn(z) = ﬁ ka
l,(x) = En(\/\/;x) = \1[ n'/2y 2z — ) n(t )dt+an(n1/2x),
Ry(x) = 7 \f ) = pn(z)
so that

Lemma C.1.5.
lim sup |[£,(x)| = 0. (C.1.17)

n—o0 z€R

n [96] the author uses a different convention for Hermite polynomials than the one we use in this book.
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Proof. Using the generating series [145, Eq. (5.5.7)]
o0
TTL
5 T < e
n!
n=0

we deduce that

> 22 ™ (z—27)?
Z (/ 6_2Hn($)d$> — = e’ / e~ dr = V2rel”,
R n: R

n=0
so that
1 2 V2 \/2(2n)!
—— [ e 2 Hyp(x)dx = " and Yon(x)dr = V20! ~ const - ni as n — oco.
(2n)! Jr n! R 2y

Using [43, Thm. 6.55] or [145, Thm. 8.91.3] we deduce that
sup [¢n ()] = O(n™12)

zeR

w"“

and thus

‘ =

) = O(n_%) as n — 0o.

nN
P

sup [an (z)| = O(n™1
zeR

We set
Fn@) =

T

e(z — ) (t)dt.

Using [43, Thm. 6.55 + Eq. (6.26)] we deduce sup,cg |Fp(2)| = O(nfﬁ ). This proves
(C.1.17). 0

Since «,,,—1 converges weakly to the Dirac measure dyp we deduce from the above lemma and
the uniform boundedness principle

[ (u(5) = 066) Jyun [a5] = |

R

_ 1

(kn(s) = p(8) )Von-1[ds] +O(n"12) asn — occ.

Lemma C.1.6.

Figure C.1. The graph of kigs(z), |z| < 2.
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Proof. Denote by wy(s) the density of the Gaussian measure v,,,-1 [ ds |,

n1/2 _ws?

wp(s) = \/ﬂe 2v

Fix ¢ € (0,v/2) so that the interval (—c, c) lies inside the oscillatory regime of H,,(y/nt). We
have

[ (Bats) = p(6) un(s)s
— /||< (kn(s) = p(s) Jwn(s)ds + (n(s) — p(s) )wn(s)ds

[s|>c
< sup [k (5) — ()] + sup [ (Ruls) = p(s))| | wnls)ds.
|s|<e |s|>c [s|>¢
Using the Plancherel-Rotach formulee ([43, Eq. (6.126)], [129], [145, Thm. 8.22.9]) and
arguing as in [61, §7.1.6] or [64, §6.1] we deduce that

lim sup |k, (s) — p(s)| = 0.

n*)OO|S|SC

On the other hand

lim wy(s)ds =0,
n—oo ‘S‘>C

and [145, Thm.8.91.3] implies that
sup |(kn(s) — p(s))] = O(1) as n — <.
[s|>c
O

Since 7,1 [ds] converges to the Dirac measure §yp we deduce again from the uniform bound-
edness principle tha

: V2

lim p(s)wn(s)’){vnfl [ds] = p<0) =

n—oo Jp T

C.2. Random measures

Denote by I\TCES(RT”) the space locally finite of Borel measures p on R™, i.e., M[B] < o0
for any bounded Borel subset B C R™. Each f € C’gpt (R™) defines a map

Ir: Meas(R™) = R, > Ip(p) =plf] = A f@)p[d].
The wvague topology on hTeZs(Rm) is the smallest topology such that all the functions Iy,
fe C’gpt(]Rm) are continuous. As shown in [78, Thm. 4.2], this topology is Polish, i.e., it is
induced by a complete and separable metric. We denote by (M, d) this metric space. The
convergence in this metric is called vague convergence.
A sequence of measure (u,) in M converges vaguely to p € M, and we indicate this as
Un — w, if and only if
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A locally finite random measure on R™ is a Borel measurable map
m (Q,S,]P’) — M.
Its distribution is a Borel probability measure on M, Py € Prob(M).

Recall that a sequence of probability measures yu,, € Prob(M) is said to converge weakly
to p € Prob(M), and we indicate this u,, — p if

lim Fd,un:/ Fdu,
M

n—oo M
for any bounded and continuous function F' : M — R.

A sequence of random measures 9, is said to converge weakly to the random measure 9
if the distributions Py, converge weakly in Prob(X) to Py;. We we use the notation 9t,, — 9
to indicate this. We have the following result, [41, Prop.11.1.VIII], [78, Thm. 4.11].

A subset @ C R™ is called a quasi-boz if it is a product of finite intervals
Q=11 x - x I

The intervals I need not be closed and could have length zero. Note that a quasi-box @ is
a box if all the intervals I are closed and have nonzero lengths.

Theorem C.2.1. Consider a sequence (E)ﬁn )nEN of random locally finite measures on R™.
The following are equivalent.

(i) The sequence M, converges weakly to the random locally finite measure ON.
(ii) For any f € ngt(Rm), the random variables M, | f | converge in distribution to
m[f].
(iii) For any quasi-box Q@ C R™ the random variables M, [Q} converge in distribution
to SJY[Q] .
a

There are other modes of convergence of random measures corresponding to the various
modes of convergence of random variables. Suppose that

M,, M: (2,8,P) M, neN

are random locally finite measures. We say that 9, converges almost surely to 9, and we
indicate this 9%, 3 9, if there exists a P-negligible set N € 8 such that

My (w) = M(w), Yw e Q\N,

i.e.,
My, 25 M= M, [ f] =DM f], Vf € Co(R™).

The convergence M, L% 9 is defined in a similar fashion namely
p LP 0 m
One can show (see [78, Lemma 4.8]) that
m,, =2 im<:>9ﬁn[Q] 25 E)JT[Q], for any quasi-box Q C R™, (C.2.1a)

P P .
m, — fm<:>9ﬁn[Q] - E)JZ[Q], for any quasi-box @ C R™. (C.2.1b)
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The action of R™ on itself by translations induces and action on M = l\fe?as( R™ ),
T R"xM—=>M, R" xM> (x, ) — Tzu,

where ‘J'z/,L[B] = M[B — :L'}, for any Borel subset B C R™. We denote by J the sigma-
subalgebra of By, consisting of Borel subsets of M that are invariant with respect to the
above action. A measure P € Prob (M) is called stationary if it is invariant with respect to
this action.

(Tz)uP =P, Ve e R™.
A random measure 91 is called stationary if its distribution Pgy is stationary.

Wiener’s ergodic theorem [79, Thm. 25.4], [156] shows that if P € Prob (M) is station-
ary, then for any F' € Ll( M, IP’) and any compact convex set C' C R™ containing the origin
in the interior we have

1

P-a.s. and L1

Let C} denote the unit cube in R™. If 91 is a stationary random locally finite measure on
R™ such that IE[im[Cl]] < 00, we define its asymptotic intensity to be the random variable

M:=E[M[C1] || T]
The Wiener’s ergodic theorem applied to the action of Z™ C R™ on M implies (see [78, Th.
5.23] and [148, Thm. 6.4.1]) that for any compact convex subset C' C R™ containing the
origin in the interior we have
1 —
WS.’TI[NC] — M- vol [C] (C.2.3)
a.s. and L!. Moreover, if M[C}] € LP, then the convergence holds also in LP.

A sequence oy € CY (R™), N € N is called asymptotically stationary if

cpt
on >0, / on(x)de =1, VN,
and

N—o0

We have the following result, [78, Thm. 5.24] and [148, Thm. 6.4.1].

lim ‘@N(m)—gpN(m—y)‘dm:(), Vy € R™.
Rm

Theorem C.2.2. IfM[C}] € LP, p € [1,00), and (pN)NeN is asymptotically stationary, then
M[on] — M,

m LP and a.s.. 0
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LeJan-Watanabe, 68

Levi-Civita, 61
convenient

metric space, 35
convenient probability space, 197
convenient space, 203
correlator, 65

stochastic, 65
covariance form, 7, 11, 27
covariance kernel, 38
covariance operator, 12, 63
covariant derivative, 61
creation operator, 176

diagonal
thin, 138
Dirac function, 60
discriminant, 88
measure, 107
locus, 107
discriminant measure, 93
divided differences, 128

exceptional locus, 135

falling factorial, 123
Feynman diagram, 179
complete, 179
rank, 179

Gaussian regression, 15, 80, 93, 109, 156

global Kac-Rice, 89, 138
Hermite-Genocchi, 129
Kac’s counting, 79
local Kac-Rice, 80, 86, 91
Newton interpolation, 130
Poisson summation, 54, 258
Stirling’s, 256, 262
Wick, 180, 186

Fourier transform, 7

Fourier-Hermite decomposition, 177

Fr’echet space, 173
Fréchet space, 22, 23, 257

bounded subset, 23
function

Beta, 255

Gamma, 255

Gamma function, 255

Gaussian
ensemble, 63
field, 38, 173

Hilbert space, 173
integration by parts, 3
measure, 174
Sobolev space, 211
vector, 11
white noise, 55, 198
Gaussian vector, 11
Gaussian field, 38
oo-ample, 38, 47
ample, 38, 41
centered, 38
strongly nondegenerate, 47
Gaussian function, 38
Jg-ample, 41
isotropic, 58
Gaussian measure, 1, 6, 25
canonical, 6
centered, 6, 25
covariance form, 7, 27
covariance kernel, 31, 44
nondegenerate, 25
variance, 8
variance operator, 8
Gaussian regression, 15, 108
Gaussian section
Ji-ample, 63
k-ample, 63
ample, 63
Gaussian variable, 4
centered, 4
characteristic function, 4
complex, 19
complex symmetric, 20, 57
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nondegenerate, 4
Gaussian vector

centered, 11

complex symmetric, 21

nondegenerate, 11
generalized function, 55
Gramian, iv, 11, 43, 99

Hadamard product, 267
Heisenberg identity, 176
Hermite
polynomial, 176
decomposition, 177

polynomial with parameter, 177

Hessian, 75

indicator function, iii
indistinguishable, 34
inequality
AM-GM, 148
Fernique, 27, 47, 72
Kree-Meyer, 226
Mills ratio, 2, 230
isonormal process, 173

Jacobian, 250

jet, 40, 62, 63

jet bundle, 61, 144
jointly Gaussian, 12, 21
jointly gaussian, 11

Kac polynomials, 94
Kac-Rice 1-density, 92
Kac-Rice density, 80, 86
Kac-Rice formula, 97

global, 89

local, 80, 86

local weighted, 159

weighted local, 86
Karhune-Loéve expansion, 49
Kergin

interpolator, 131

projector, 132

lemma
Borel-Cantelli, 37, 162, 206
Bulinskaya, 72, 87, 153
Levi-Civita connection, 61
lexicographic order, 42, 53, 160

measure
diffuse, 32, 50
locally finite, 278
random, 279
random, 198
stochastic, 198
Mehler
kernel, 197
transform, 196
Mehta integral, 273
Mercer kernel, 31, 39, 40, 44, 49
Montel space, 258

multi-index
even, 101
odd, 101

multijets
bundle of, 135

Newton polyhedron, 42
non-atomic measure, 197

Ornstein-Uhlenbeck semigroup, 197

Parseval frame, 269

perfect space, 258

Poisson summation formula, 258
pushforward, iv

quasi-box, 279

random field, 33
a.s. continuous, 36
continuous, 36
distribution, 34
Gaussian, 38
indistinguishable, 34
modification of, 34
sample map of, 33
separable, 35
version of, 34

random function, 33
G-invariant, 56
homogeneous, 56
stationary, 56
wide sense stationary, 56

random map, 33

random measure
locally finite, 279
stationary, 280

ray a.c., 212

regression
formula, 15, 80, 122
operator, 15, 67, 80, 121

Reproducing Kernel Hilbert Space, 264

ridge function, 131
RKHS, 264

sample map, 33

Schwartz function, 57, 257

semicircle distribution, 275

spectral measure, 57, 59, 119

standard choices, 61

standard conventions, 71

Stirling’s formula, 256

stochastic process
stochastically equivalent, 34

symmetrization operator, 194

tempered distribution, 258
theorem
Bochner, 56
Blackwell, 22, 31, 62, 175
Cameron-Martin, 213
Cramér-Wold, 22
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dominated convergence, 82
Dudley, 40, 49
Fernique, 27
Hille-Yosida, 220
Hironaka’s resolution of singularities, 135, 139
Kolmogorov continuity, 36, 51
Kolmogorov existence, 34, 48
Kolmogorov one-series, 37, 198
Krein-Milman, 32
Lévy, 2, 10
Lebesgue differentiation, 51
Lebesgue-Vitali, 84
Mackey-Arens, 24
martingale convergence, 178, 182, 206
Mercer, 50
monotone convergence, 83
Polya, 5, 26
Sard, 76
Schoenberg characterization, 60
Stone-Weierstrass, 46
support, 28
Wiener’s ergodic, 280
Wigner’s semicircle, 275
theorema egregium, 69
topology
Mackey, 24
strong, 24
weak*, 24
tunneling map, 65

vague
convergence, 278
topology, 278

white noise, 198
Gaussian Hilbert space associated to, 199
map, 173

Wick
exponential, 188, 212
formula, 180
polynomial, 184
product, 188

Wiener chaos, 175, 183
decomposition, 183

Wiener-It6 integral, 199
multiple, 200

zero-one law, 29
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