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Introduction
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Notation and
conventions

• We set N := Z>0, N0 := Z≥0.

• For n ∈ N we set In := {1, 2, . . . , n}.

• For n ∈ N we denote by Sn the group of permutations of In.

• We set R+ := [0,∞).

• For x ∈ R we set ⌊x⌋ := maxZ ∩ (−∞, x], ⌈x⌉ := minZ ∩ [x,∞).

• x ∧ y := min(x, y), x ∨ y := max(x, y).

• i :=
√
−1

• If X is a finite dimensional Euclidean space, we denote by Sym(X) the space of
symmetric operators X →X.

• Given an ambient set Ω and a subset A ⊂ Ω we denote by IA : Ω → {0, 1} the
indicator function of A,

IA(ω) =

{
1, ω ∈ A,
0, ω ̸∈ A.

• Given a subset A of a set Ω we denote by Ac its complement (in Ω).

• For any set Ω we denote by 2Ω the collection of all the subsets of Ω.

• For any set Ω we denote by 2Ω0 the collection of all the finite subsets of Ω.

• We will denote by |S| or #S the cardinality of a set S.

• If T is a topological space, then we denote by BT the σ-algebra of Borel subsets of
T .

• We denote by λ the standard Lebesgue measure on R and by λn the standard
Lebesgue measure on Rn.
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iv Notation and conventions

• We denote by ωn the volume of the unit ball in Rn and by σn−1 the “area” of the
unit ((n− 1)-dimensional) sphere in Rn.

ωn =
1

n
σn−1, σn−1 =

2Γ(1/2)n

Γ(n/2)
=

2πn/2

Γ(n/2)
.

The probabilistic notations are those in [115].

A measurable space is a pair (Ω, S), where S a sigma-algebra of subsets of the set Ω. A
measured space is a triplet (Ω, S, µ), where (ω, ]S) is a measurable space and µ : S → [0,∞]
is a measure.

If Φ : (Ω0, , S0) → (Ω1, S1) is a measurable map between measurable spaces and µ0 is a
measure on S0, then the pushforward of µ0 by Φ is the measure Φ#µ0 on S1 defined by

Φ#µ0
[
S1
]
= µ0

[
Φ−1(S1)

]
, ∀S1 ∈ S1.

Also, we will often use the notation{
Φ ∈ S1

}
:= Φ−1(S1).

The probability spaces are measured spaces (Ω, S,P), such that P
[
Ω
]
= 1.

Most of the time we will stick to the convention to capitalize the names of random
variables. The expectation of a random variable X is denoted by E

[
X
]
. The conditional

expectation of Y givenX is denoted by E
[
Y ∥X

]
. If Y is valued in a finite dimensional vector

space Y and X in a finite dimensional vector space X, then there exists a Borel measurable
map F : X→ Y such that F (X) = E

[
Y ∥X

]
. We set

E
[
Y
∣∣X = x

]
:= F (x).

The distribution of a random variable X : (Ω, S,P) → X, X finite dimensional vector space,
is denoted by PX and it is the pushforward of P by X, PX = X#P. More explicitly

PX
[
B
]
= P

[
{X ∈ B}

]
, ∀B ∈ BX.

Let V be a finite dimensional real vector space. The Euclidean topology on V is the topology
defined by a norm on V . Since all the norms on V are equivalent, the Euclidean topology is
well defined. Denote by BV the sigma-algebra of Borel subsets of V , i.e., the sigma-algebra
generated by the subsets open in the Euclidean topology. We denote by Prob(V ) the set of
Borel probability measures on V . We let ⟨−,−⟩ denote the natural pairing between a vector
space and its dual

⟨−,−⟩ : V ∗ × V → R, ⟨ξ, v⟩ = ξ(v).

If H is a Hilbert space with inner product (−,−)H then the Gramian matrix determined by
the vectors x1, . . . , xN ∈ H is the N ×N matrix

G(x1, . . . , xN ) =
(
(xi, xj)H

)
1≤i,j≤N .

Given a topological space X and a vector space V we denote by V X the product bundle over
X with fiber V .

V X =
(
V ×X → X

)
.
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Chapter 1

Gaussian measures and
Gaussian fields

The random functions we consider in this book are Gaussian. Most of the time they are de-
scribed by Fourier/eigenfunction series with coefficients independent normal variables. Since
we are interested mostly in geometric questions it is important to have coordinate free de-
scription of basic facts of Gaussian analysis.

1.1. Gaussian measures

1.1.1. Finite dimensional Gaussian measures and vectors.

Definition 1.1.1. Let m ∈ R and any v > 0. The Gaussian measure on R with mean m
and variance v is the measure Γ = Γm,v ∈ Prob(R) given by

Γm,v
[
dx
]
=

1√
2π
e−

(x−m)2

2v γm,v(x)λ
[
dx
]
, Γm,v(x) =

1√
2π
e−

(x−m)2

2v ,

where λ denotes the Lebesgue measure on R. ⊓⊔

It is not hard to observe that, as v ↘ 0, the measure Γm,v converges weakly to δm, the
Dirac measure concentrated atm. For this reason we will refer to δm as the Gaussian measure
of mean m and variance 0, and we set Γm,0 := δm. Observe that for any m ∈ R and any
v ≥ 0 we have ∫

R
xΓm,v

[
dx
]
= m,

∫
R
(x−m)2Γm,v

[
dx
]
= v.

A Gaussian measure on R is called nondegenerate if it is absolutely continuous with respect to
the Lebesgue measure λ. Equivalently, the Gaussian measure is nondegenerate iff its variance
is nonzero. For v ≥ 0 we set

Γv := Γm=0,v.

For any c ∈ R we denote by Rc the rescaling map Rc : R → R, Rc(x) = cx. A simple
computation shows that

(Rc)#Γv = Γc2v, ∀c ∈ R, , v ≥ 0. (1.1.1)

1



2 1. Gaussian measures and Gaussian fields

The measure Γ1 is called the canonical Gaussian measure on R. The ratio

Γ1

[
(x,∞)

]
γ1(x)

, x > 0

is called the Mills ratio and it satisfies the Mills ratio inequalities [19]

x

x2 + 1
γ1(x) ≤ Γ1

[
(x,∞)

]
≤ 1

x
γ1(x), ∀x > 0. (1.1.2)

The Fourier transform of a Borel probability measure µ on R is the function

µ̂ : R→ C, µ̂(t) =

∫
R
eitxµ

[
dx
]
.

Lévy’s theorem shows that a sequence (µn)n∈N of probability measures on R converges weakly
to a probability measure µ if and only if

lim
n→∞

µ̂n(t) = µ̂(t), ∀t ∈ R.

We have

Γ̂m,v(t) = eitm−vt2/2, ∀t ∈ R. (1.1.3)

Proposition 1.1.2. Suppose that the sequence (µn)n∈N of Gaussian measures on R converges
weakly to a probability measure µ. Then µ is Gaussian and

lim
n→∞

m[µn] = m[µ], lim
n→∞

v[µn] = v[µ]

where m[−] and v[−] denote the mean and respectively the variance of a Gaussian measure.

Proof. Setmn = m[µn], vn = v[µn]. Let us first prove that the sequence (mn)n∈N is bounded.

We argue by contradiction. Then a subsequence converges to ±∞. For simplicity we
assume mn →∞. (The case mn → −∞ is dealt with in a similar fashion.). Then

µn
[
(−∞,mn]

]
=

1

2
, ∀n.

Fix c ∈ R such that

µ
[
(−∞, c]

]
>

1

2
and µn

[
(−∞, c]

]
→ µ

[
(−∞, c]

]
. (1.1.4)

There exists N = N(c) such that, ∀n ≥ N mn > c. We deduce that for any n > N(c).

1

2
= µn

[
(−∞,mn]

]
≥ µn

[
(−∞, c]

]
.

Letting n→∞ we deduce

µ
[
(−∞, c]

]
= lim

n→∞
µn
[
(−∞, c]

]
≤ 1

2
.

This contradicts the choice (1.1.4). Hence the sequence (mn) is bounded.

Next, we prove that the sequence vn is also bounded. Indeed, if it were not bounded,
then lim sup vn =∞. Observe that for any a < b we have

µ
[
(a, b)

]
=

1√
2πvn

∫ b

a
e−

(x−mn)2

2vn dx ≤ 1√
2πvn

∫ b

a
dx ≤ (b− a)√

2πvn
.



1.1. Gaussian measures 3

The Portmanteau Theorem implies that ∀a < b

0 ≤ µ
[
(a, b)

]
≤ lim inf

n→∞
µn
[
(a, b)

]
≤ lim inf

n→∞

(b− a)√
2πvn

= 0.

This is impossible.

Hence on a subsequence nk we have mnk
→ m ∈ R, vnk

→ v ∈ [0,∞). Hence, ∀t ∈ R,

µ̂(t)(ξ) = lim
k→∞

µ̂nk
(t)

(1.1.3)
= lim

k→∞
eimnk

t−
vnk

t2

2 = eimt−
vt2

2 .

Hence µ̂ = Γ̂m,v. This proves that µ is also Gaussian. Moreover, we proved that any subse-
quence of (µn) contains a sub-subsequence (µnj ) such that m[µnj ] and v[µnj ] converge to m∞
and respectively v∞. Since µnj converges weakly to mu = Γm,v we deduce Γm,b = Γm∞,v∞ .
This proves

m[µn]→ m[µ], v[µn]→ v[µ].

⊓⊔

Proposition 1.1.3. The space of polynomials in one variable with real coefficients is dense
in L2(R,Γ)

Proof. We follow the elegant argument in [93, Sec.V.1.3]. It suffices to show that if f ∈ L2(R,Γ)
and ∫

R
f(x)xnΓ

[
dx
]
= 0, ∀n = 0, 1, 2, . . .

then f = 0 Γ-a.s.. Observe that∫
R
|x|αetxΓ

[
dx
]
<∞, ∀t ∈ R, ∀n ≥ 0.

Since
(
|x|αetx

)2
= |x|2αe2tx, we deduce that for any t ∈ R any α ≥ 0 the function x 7→ |x|αetx

is in L2(R,Γ).
For z = t+ is ∈ C we set

F (z) :=

∫
R
eizxf(x)Γ

[
dx
]
.

The above discussion shows that F (z) is well defined and z 7→ F (z) is an entire function.
Moreover

F (n)(0) = in
∫
R
f(x)xnΓ

[
dx
]
= 0, ∀n = 0, 1, . . . .

We deduce from unique continuation that F is identically zero. In turn, this implies that f
is a.s. 0 since an L2 function is uniquely determined by. ⊓⊔

Proposition 1.1.4 (Gaussian integration by parts). Suppose that f, g ∈ C1(R) and there
exists p > 0 such that

sup
x∈R

(
|f ′(x)|+ |g′(x)|

)(
1 + |x|

)−p
<∞.

Then ∫
R
f ′(x)g(x)dΓ

[
dx
]
=

∫
R
f(x)

(
− g′(x) + xg(x)

)
Γ1

[
dx
]
. (1.1.5)
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Proof. For any L > 0 we have∫ L

−L
f ′(x)g(x)Γ

[
dx
]
=

1√
2π

∫ L

−L
f ′(x)g(x)e−x

2/2dx

(integrate by parts)

=
1√
2π
f ′(x)g(x)e−x

2/2
∣∣∣x=L
x=−L

− 1√
2π

∫ L

−L
f(x)

d

dx

(
g(x)e−x

2/2
)
dx

=
1√
2π
f ′(x)g(x)e−x

2/2
∣∣∣x=L
x=−L

− 1√
2π

∫ L

−L
f(x)

(
g′(x)− xg(x)

)
e−x

2/2

=
1√
2π
f ′(x)g(x)e−x

2/2
∣∣∣L
x=−L

−
∫ x=L

−L
f(x)

(
g′(x)− xg(x)

)
Γ1

[
dx
]
.

The equality (1.1.5) follows by letting L→∞. ⊓⊔

Definition 1.1.5. Suppose that (Ω, S,P) is a probability space. A random variable

X : (Ω, S,P)→ R

is called Gaussian if its distribution PX ∈ Prob(R) is a Gaussian measure. Note that in
this case the mean and the variance of X coincide with the mean and variance of PX . The
random variable is called centered iff it has mean 0. It is called nondegenerate if its variance
is nonzero. ⊓⊔

If X is a Gaussian random variable with mean m and variance v, then its characteristic
function has the description.

ΦX(t) := E
[
eitX

]
= P̂X(t) = eimt−

vt2

2 .

In particular, this shows that the distribution of a Gaussian random variable is uniquely
determined by its mean and variance.

Remark 1.1.6. Note that if X,Y are independent Gaussian variables and a, b ∈ R, then
aX + bY is also Gaussian since

ΦAX+bY (t) = ΦaX(t)ΦbY (t) = eiamX t−
a2vXt2

2 eimY t−
b2vY t2

2

= exp

(
i(amX + bmy)t−

(a2v2X + b2vY )t
2

2

)
.

⊓⊔

The following result is a direct consequence of Proposition 1.1.2.

Proposition 1.1.7. Suppose (Xn)n∈N is a sequence of Gaussian random variables defined on
the same probability space, and Xn converges in distribution to a random variable X. Then
X is also a Gaussian random variable and

E
[
Xn

]
→ E

[
X
]
, Var

[
Xn

]
→ Var

[
X
]
.

⊓⊔
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Definition 1.1.5 has one æsthetic deficiency: it is not quite “coordinate free”. The next
results addresses this issue.

Theorem 1.1.8 (G. Polya). Suppose that X is a random variable. The following are equiv-
alent.

(i) The random variable X is centered Gaussian.

(ii) If X,Y are i.i.d., then X and 1√
2

(
X + Y

)
have the same distribution.

(iii) If X,Y are i.i.d., then for any θ ∈ [0, 2π], the random variables (cos θ)X +(sin θ)Y
have a distribution independent of θ.

⊓⊔

The implications (i) =⇒ (iii) =⇒ (ii) immediate. The tricky implication is (ii) =⇒
(i). For a proof we refer to [30, Thm. 3.1] or [144, Thm. 2.2.3].

The next characterization highlights the close connection between the concepts of Gauss-
ian random variables and the concept of independence. For a proof we refer to [59, Sec.XV.8].

Theorem 1.1.9 (Bernstein). Suppose that X,Y are independent random variables. The
following are equivalent.

(i) The variables X, Y are Gaussian.

(ii) The variables X + Y and X − Y are independent.

⊓⊔

Corollary 1.1.10. Let X be a a random variable and Y an independent copy of it. Then
the following are equivalent.

(i) The random variable X is centered Gaussian.

(ii) The random vectors (X,Y ) and
(

1√
2
(X + Y ), 1√

2
(X − Y )

)
have identical distribu-

tions.

⊓⊔

Proposition 1.1.11. Suppose that X is a centered Gaussian random variable with variance
v = E

[
X2
]
. Then the following hold.

∀p ∈ [1,∞) E
[
|X|p

]
=

(2v)p/2√
π

Γ
( p+ 1

2

)
, (1.1.6)

E
[
etX

]
= evt

2/2. (1.1.7)

In particular,

E
[ ∣∣X ∣∣ ] = (2v/π)1/2, (1.1.8)

∀k ∈ N, E
[
X2k−1

]
= 0, E

[
X2k

]
= vk(2k − 1)!!, (1.1.9)

where (2k − 1)!! := 1 · 3 · · · (2k − 1).

Proof. Set Y := v−1/2X. Then Var
[
Y
]
= 1 and

E
[
|X|p

]
= vp/2E

[
|Y |p

]
, E

[
etX

]
= E

[
e
√
vtY
]
.
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We have

E
[
|Y |p

]
=

1√
2π

∫
R
|y|pe−y2/2dy =

2√
2π

∫ ∞

0
|y|pe−y2/2dy

(r = y2/2, y =
√
2r)

=
2√
2π

∫ ∞

0
(2r)p/2e−r

dr

(2r)1/2
=

2√
2π

∫ ∞

0
(2r)

p−1
2 e−rdr

=
2(p+1)/2

√
2π

∫ ∞

0
r

p+1
2

−1e−rdr =
2p/2√
π
Γ
( p+ 1

2

)
.

For p = 1 we have

E
[ ∣∣Y ∣∣ ] =√ 2

π
Γ(1) = (2/π)1/2.

Since the distribution of X is symmetric we deduce

E
[
X2k−1

]
= 0, ∀k ∈ N.

On the other hand,∑
n≥0

tn

n!
E
[
Y n
]
= E

[
etY
]
=

1√
2π

∫
R
ety−y

2/2dy =
et

2/2

√
2π

∫
R
e−

(y−t)2

2 dy = et
2/2.

Hence

E
[
Y 2k

]
=

(2k)!

2kk!
= (2k − 1)!!.

⊓⊔

Definition 1.1.12. Let V be a finite dimensional real vector space space. A Borel probability
measure µ ∈ Prob(V ) is called Gaussian if for every linear functional ξ ∈ V ∗, the induced
random variable ξ : (V,BV , µ)→ R is Gaussian with mean mµ[ξ] and variance vµ[ξ], i.e.,

Pξ
[
dx
]
= Γmµ[ξ],vµ[ξ]

[
dx
]
.

The Gaussian measure µ is called centered if mµ[ξ] = 0, ∀ξ ∈ V ∗. We denote by Gauss(V )
the set of Gaussian measures on V and by Gauss0(V ) the subset of centered ones. ⊓⊔

Example 1.1.13. The Borel measure on Rn given measure

Γ1n := Γ0,1 ⊗ ...⊗ Γ0,1 =
1

(2π)n/2
e−

∥x∥2
2 λ

[
dx
]
, ∥x∥2 =

n∑
k=1

x2k,

is a Gaussian measure called the canonical Gaussian measure. Above λ
[
−
]
denotes the

canonical Lebesgue measure on Rn.
To see this consider the coordinate maps

X1, . . . , Xn : Rn → R, Xi(x1, . . . xi) = xi.

We view the maps Xi as a random variable defined on the probability space (Rn,BRn ,Γ1n).
The measure Γ1n is the joint distribution of X1, . . . , Xn. In particular, these random variables
are independent standard Gaussian with mean 0 and variance one. Using Remark 1.1.6 we
deduce that for any ξ ∈ Rn the random variable ξ1X1 + · · ·+ ξnXn is also Gaussian.
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More generally, if U is finite dimensional real Euclidean space with inner product (−,−)
and associated norm ∥ − ∥, then

ΓU

[
du
]
= (2π)−

dimU
2 e−

1
2
∥u∥2λU

[
du
]

is a Gaussian measure called the canonical Gaussian measure associated to the metric. Above
λU denotes the natural Lebesgue measure on U . More precisely,

λU = T#λ

where T : RdimU → U is any isometry.

To see this fix orthonormal coordinates u1, . . . , un on U , n = dimU . In these coordinates

Γ
[
du
]
= (2π)−

n
2 e−

1
2
(u21+···+u2n)λ

[
du1 · · · dun

]
= Γ1n

[
du1 · · · dun

]
.

⊓⊔

Let µ be a Gaussian measure on V . Note that the map V ∗ ∋ ξ → mµ[ξ] ∈ R is linear
and hence it defines an element in the bidual

mµ ∈ V ∗∗ := Hom(V ∗,R) = Hom
(
V ∗,R

)
.

Since V is finite dimensional, the natural map J : V → V ∗∗ is an isomorphism we can identify
mµ ∈ V ∗∗ with an element of V determined by by the equalities

⟨ξ,mµ⟩ := mµ[ξ], ∀, ξ ∈ V ∗.

Equivalently,

mµ =

∫
V
vµ
[
dv
]
.

Define the covariance form Cµ of the Gaussian measure µ on V to be the map

Cµ : V ∗ × V ∗ → R, (ξ, η) 7→ Cov
[
ξ, η

]
:= Eµ

[
(ξ −m[ξ])(η −m[η])

]
.

It is not hard to see Cµ is a nonnegative definite symmetric bilinear operator on V ∗.

Definition 1.1.14. The Fourier transform of a measure µ ∈ Prob(V ) is the function

µ̂ : V ∗ → C, µ̂(ξ) = Eµ
[
eiξ
]
=

∫
V
ei<ξ,x>µ[dx]

⊓⊔

Proposition 1.1.15. A Borel measure µ on V is a Gaussian measure on V if and only if there
exists a vector m ∈ V and a symmetric nonnegative definite bilinear function C : V ∗×V ∗ → R
such that

µ̂(ξ) = ei⟨ξ,m⟩− 1
2
C(ξ,ξ), ∀ξ ∈ V ∗.

Proof. Indeed, suppose that µ is Gaussian. Then, for any t ∈ R, ξ ∈ V ∗,

µ̂(tξ) = E
[
eitξ

]
= Φξ(t) = eitmµ[ξ]−

t2vµ[ξ]

2 ,

Letting t = 1, we deduce

µ̂(ξ) = eimµ[ξ]− 1
2
Cµ(ξ,ξ).

Conversely, if

µ̂(ξ) = ei⟨ξ,m⟩− 1
2
C(ξ,ξ),
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then for any ξ in V ∗ and t ∈ R we have

Φξ(t) = µ̂(tξ) = eit⟨ξ,m⟩− t2C(ξ,ξ)
2 ,

proving that ξ is Gaussian with mean ⟨ξ,m⟩ and variance C(ξ, ξ). ⊓⊔

Corollary 1.1.16. A Gaussian measure on V is uniquely determined by its mean and co-
variance. Hence, we denote by Γm,C the Gaussian measure with mean m and covariance
C.

Proof. Proposition 1.1.15 shows that the Fourier transform of a Gaussian measure is uniquely
determined by the mean and covariance, while the measure is uniquely determined by its
Fourier transform. ⊓⊔

Suppose that the vector space V is equipped with an inner product (−,−). The inner
product induces an isomorphism

↓ : V → V ∗, v 7→ v↓, ⟨v↓, u⟩ = (v, u), ∀u, v ∈ V.

Classically, this isomorphism is referred to as lowering the indices. Its inverse is given by

↑ : V
∗ → V, (ξ↑, u) = ⟨ξ, v⟩, ∀ξ ∈ V ∗, ∈ V.

and it is classically referred to as raising the indices.

If µ is a Gaussian measure on V , then its covariance form

Cµ : V ∗ × V ∗ → R

can be identified with a selfadjoint operator Varµ : V → V uniquely determined by the
equality

(u,Varµ v) = Cµ(u
↓, v↓).

We will refer to Varµ as the variance (operator) of the measure µ.

Concretely, if (ei) is a basis of V orthonormal with respect to the inner product (−,−),
then X =

∑
iXiei an Varµ is described in this basis by the symmetric matrix (vij) where

vij = Cµ(Xi, Xj) = Cov
[
Xi, Xj

]
.

Note that the variance operator of the canonical Gaussian measure on V is 1V .

Remark 1.1.17. The variance operator defined above depends on the choice of inner product
whereas the covariance form does not. This aspect is important in geometric applications
and we want to discuss it in some details.

Let µ be a centered Gaussian measure on the real vector space U of dimension N . Fix
two inner products on U ,

(−,−)i : U ×U → R, i = 0, 1.

We denote by Vari the variance operator of µ defined in terms of the inner product (−,−)i.
We want to relate Var0 and Var1.

Fix an isometry of Euclidean spaces T :
(
U , (−,−)1

)
→
(
U , (−,−)0

)
and set G = T ∗T .

Then
(
Tu, Tv

)
0
=
(
u,v

)
1
and G : U → U is the unique operator that is symmetric and

positive definite with respect to inner product (−,−)0 and satisfies

(u,v)1 = (Gu,v)0, (u,v)0 =
(
G−1u,v

)
1
, ∀u,v ∈ U .
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Then for any v,w ∈ U we have(
v,Var1w

)
1
=

∫
U

(
v,u

)
1

(
w,u

)
1
µ
[
u
]

=

∫
U

(
Gv,u

)
0

(
Gw,u

)
0
µ
[
u
]
=
(
Gv,Var0Gw

)
0
=
(
v,Var0Gw

)
1
.

We deduce that Var1 = Var0G. ⊓⊔

Let V be a finite dimensional vector space. For v0 ∈ V we denote Tv0 the translation
operator

Tv0 : V → V, v 7→ v + v0.

For any Gaussian measure µ ∈ G (V ) the pushforward (Tv0)#µ is a Gaussian measure with
mean Tv0mµ = mµ + v0.

Suppose that V0 and V1 are two finite dimensional vector spaces and µ0 is a Gaussian
probability measure on V0. If A : V0 → V1 is a linear map, then we see that the pushforward
measure A#µ0 =: µA is Gaussian on V1 with mean mµA = Amµ and covariance form

CµA : V ∗ × V ∗ → R, CµA(ξ1, η1) = Cµ(A
†ξ1, A

†η1),

where A† : V ∗
1 → V ∗

0 is the adjoint of A defined by

⟨A†ξ1, v0⟩ = ⟨ξ1, Av0⟩, ∀v0 ∈ V0, ξ1 ∈ V ∗
1 .

Indeed, let ξ1 ∈ V ∗
1 , then (ξ1)#µA = (ξ1)#(A#)µ = (ξ1 ◦A)#µ and observe that

ξ1 ◦A = A†ξ1 ∈ V ∗
0 .

Hence,

Pξ1 = Γm[A∗ξ1],Cµ(A†ξ1,A†ξ1)[dx]

Remark 1.1.18. Suppose thatU0,U1 are Euclidean spaces and µ ∈ G (U0). If A : U0 → U1

is a linear operator then the variance operator of µA = A#µ is

VarµA = AVarµA
∗ : U1 → U1. (1.1.10)

In particular, if C : U0 → U0 is a symmetric, nonnegative operator and C1/2 denotes
its nonnegative square root, then the probability measure ΓC := (C1/2)#ΓU0 is Gaussian,
centered and its variance is C. We deduce that for any u0 ∈ U the pushforward of ΓU0 via

the affine map Tu0C
1/2 is a Gaussian measure with variance C and mean u0. Thus, for any

symmetric nonnegative operator C on U0, and any m ∈ U0, there exists a unique Gaussian
measure µ on U0 with mean m and variance C. We denote it by Γm,C . More precisely,

γm,C = (Tm ◦
√
C)#ΓU0 . ⊓⊔

Definition 1.1.19. Let V be a finite dimensional vector space and µ a Gaussian measure
on V . We say that µ is nondegenerate if µ

[
O
]
̸= 0, for any open subset O ⊂ V . ⊓⊔

Proposition 1.1.20. Let V be a finite dimensional vector space and µ ∈ G(V ) the following
are equivalent.

(i) The measure µ is nondegenerate.
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(ii) The covariance form Cµ is nondegenerate , i.e.,

Cµ(ξ, η) = 0, ∀η ∈ V ∗⇐⇒ ξ = 0.

Proof. Clearly it suffices to consider only centered Gaussian measures. Fix an inner product
on V so we can identify Cµ with a symmetric operator C : V → V . Set n = dimV and fix
an orthonormal basis of V that diagonalizes C,

C = Diag(λ1, . . . , λn).

Using this basis we identify V isometrically with Rn. We have

µ = (C1/2)#Γ1n = (C1/2)#
(
Γ1 ⊗ · · · ⊗ Γ1

)
=
(
(R√

λ1
)#Γ1

)
⊗ · · · ⊗

(
(R√

λn
)#Γ1

) (1.1.1)
= Γλ1 ⊗ · · ·Γλn .

We see that

µ is nondegenerate⇐⇒
∏
i

λi ̸= 0⇐⇒C is invertibe.

⊓⊔

Remark 1.1.21. Suppose that µ is centered Gaussian measure on the Euclidean space U
with inner product (−,−). Denote by C the variance operator of µ, C ∈ Sym(U). The proof
of Proposition 1.1.20 shows that the measure µ is supported on (kerC)⊥, i.e., µ

[
O
]
= 0, for

any open subset in U \ (kerC)⊥.
The argument used in the proof of Proposition 1.1.20 shows that if µ is nondegenerate and

thus C is invertible, then µ is absolutely continuous with respect to the Lebesgue measure
λU and

µ
[
du
]
=

1√
det(2πC)

e−
1
2
(C−1u,u)λU

[
du
]
. ⊓⊔

Proposition 1.1.22. Let U be a finite dimensional Euclidean vector space with inner product
(−,−). Suppose that (µn)n∈N a sequence of Gaussian measures on U . We set mn := m[µn],
Cn := Varµn. The following are equivalent.

(i) The sequence (µn) converges weakly to a probability measure µ∞.

(ii) The sequences (mn) and (Cn) converge.

(iii) The sequence (µn) converges weakly to a Gaussian measure µ∞.

Proof. Clearly (iii) ⇒ (i). Note that if mn → m and Cn → C, then µn = Γmn,Cn

Γ̂mn,Cn(ξ)→ Γ̂m,C(ξ), ∀ξ ∈ U∗.

Lévy’s theorem implies that the sequence (µn) converges weakly to Γm,C . Thus (ii) ⇒ (iii)
so it suffices to prove (i) ⇒ (ii).

Condition (i) implies that

µ̂n(ξ)→ µ̂(ξ), ∀ξ ∈ V ∗.

For any ξ ∈ U∗ the Fourier transform of the measure ξ#µn is

ξ̂#µn(t) = µ̂n(tξ)→ µ̂(tξ) = ξ̂#µ(tξ).
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Proposition 1.1.2 implies that ξ#µ is Gaussian and

mn[ξn]→ m[ξ], vn[ξ]→ v[ξ].

⊓⊔

Definition 1.1.23. Let V be a finite dimensional real vector space.

(i) A random vector Z : (Ω, S,P) → V is called Gaussian if its distribution PZ is
a Gaussian measure on V . The covariance form of Z, denoted by CovZ is the
covariance form of its distribution.

(ii) The Gaussian vector Z is called centered, respectively nondegenerate if its distri-
bution is such.

(iii) The real valued random variables (X1, . . . , Xn) are said to be jointly Gaussian if
the random vector (X1, . . . , Xn) is Gaussian.

⊓⊔

Remark 1.1.24. (a) The CovZ is a bilinear form on V ∗. Identifying (V ∗)∗ with V in the
canonical fashion we can view CovZ as an element of V ⊗ V . As such, it can be given the
more compact geometric description

CovZ = E
[
Z ⊗ Z

]
− E

[
Z
]
⊗ E

[
Z
]
.

(b) If V is equipped with an inner product, then we can identify CovZ with a symmetric,
nonnegative operator Var

[
X
]
uniquely determined by the equalities(

v1,Var
[
X
]
v2
)
= Cov

[
v↓1(X), v↓2(X)

]
, ∀v1, v2 ∈ V.

Moreover, if e1, . . . , en is an orthonormal basis of V , then we can write

Z =
n∑
i=1

Ziei, Zi ∈ L2
(
Ω, S,P

)
and the variance operator of Z is described by the Gramian matrix of the Gaussian random

variables Ẑi = Zi − E
[
Zi
]
, i = 1, . . . , n. This is the n× n matrix

G
(
Ẑ1, . . . , Ẑn

)
=
(
E
[
ẐiẐj

] )
1≤i,j≤n

.

We see that Z is nondegenerate if and only if the random variables Ẑi are linearly independent.
⊓⊔

Suppose that X and Y are finite dimensional vector spaces. Given random vectors

X : (Ω, S,P)→X, Y : (Ω, S,P)→ Y

we define the covariance form of Y and X to be the bilinear form

CY,X : Y ∗ ×X∗ → R

given by

CY,X(η, ξ) = Cov
[
⟨η, Y ⟩, ⟨ξ,X⟩

]
, ∀η ∈ Y ∗, ξ ∈X∗.
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If X and Y are equipped with inner products (−,−)X and respectively (−,−)Y , then we
can identify Cov

[
Y,X

]
with a linear operator Cov[Y,X] : X → Y uniquely determined by

the condition (
y,Cov[Y,X]x

)
Y
= Cov

[
(y, Y )Y , (x,X)X

]
, ∀x ∈X, y ∈ Y .

The operator Cov[Y,X] is called the covariance operator of Y and X.

Concretely, if (ei)i∈I and (f j)j∈J are orthonormal bases of X and respectively Y , and we
set Xi := (ei, X)X , Yj := (f j , Y )Y , then in these bases the operator Cov[Y,X] is described
by matrix (cji)(j,i)∈J×I , where cji := Cov[Yj , Xi]. Hence

Cov[Y,X]ei =
∑
j

cjif j .

Let us observe that Cov[X,X] = Var
[
X
]
and that Cov[X,Y ] : Y → X is the adjoint of

Cov[Y,X]

Cov[X,Y ] = Cov[Y,X]∗.

Note that if T : X → U is a linear map between Euclidean spaces, then

Cov[Y, TX] = Cov[Y,X] ◦ T ∗ : U → Y .

The random vectors X,Y are said to be jointly Gaussian if the random vector

X ⊕ Y : (Ω, S,P)→X ⊕ Y

is Gaussian. If X and Y are equipped with inner products, then X ⊕Y is equipped the the
direct sum of these inner products and in this case Var

[
X ⊕ Y

]
: X ⊕ Y →X ⊕ Y admits

the bloc decomposition

Var
[
X ⊕ Y

]
=

[
Var

[
X
]

Cov[X,Y ]
Cov[Y,X] Var

[
Y
] ]

.

We deduce from the above the following very convenient fact.

Proposition 1.1.25. Suppose that the random vectors X,Y are jointly Gaussian. Then
X,Y are independent iff the covariance operator Cov[Y,X] is trivial. ⊓⊔

Suppose that W is an m-dimensional real Euclidean space with inner product (−,−).
Denote by S1(W ) the unit sphere in V and by Sym(W ) the space of symmetric operators
V → V and by Sym≥0(V ) the cone of nonnegative ones. For A ∈ Sym≥0(W ) we denote
by ΓA the centered Gaussian measure on W with variance A.

The space Sym(W ) is equipped with an operator norm ∥ − ∥op
∥A∥op := sup

∥w∥=1
∥Aw∥ = supSpec

(
|A|
)
.

There is another trace norm

∥A∥1 := tr(|A|).
Note that for any A ∈ Sym(W ) we have

∥A∥op ≤ ∥A∥1 ≤ m∥Aop∥.

We have a natural map Sym≥0(W ) → Sym≥0(W ), A 7→ A1/2. We will need the following
result, [70, Prop.2.1].
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Proposition 1.1.26. For any µ > 0 and ∀A,B ∈ Sym≥0(W ), such that A1/2 +B1/2 ≥ µ1

µ
∥∥A1/2 −B1/2

∥∥
1
≤
∥∥A−B ∥∥1/2

1
, (1.1.11)

⊓⊔

Any continuous function f : W → R with at most polynomial growth defines a map

Sym≥0(W ) ∋ A 7→ IA(f) :=

∫
W
f(w)ΓA

[
dw
]
∈ R.

Lemma 1.1.27. Fix µ0 > 0 and suppose that f : V → R is a locally Lipschitz function that
is homogeneous of degree k ≥ 1. Denote by Lip(f) the Lipschitz constant of the restriction
of f to the unit ball, i.e.,

Lip(f) := sup
∥u∥,∥v∥≤1

u ̸=v

|f(u)− f(v)|
∥u− v∥

Then there exists a constant C = C(m, k) > 0 with the following property for and R ≥ 0 and
any A,B ∈ Sym≥0(V ) such that

A1/2 +B1/2 ≥ µ01, ∥A1/2∥op, ∥B1/2∥op ≤ R∣∣ IA(f)− IB(f)
∣∣ ≤ Lip(f)RkC(m, k)

µ0
∥A−B∥1/2op . (1.1.12)

In other words, A 7→ IA(f) is locally Hölder continuous with exponent 1/2 in the open set
Sym>0

(
V
)
.

Proof. If we denote by BR(V ) the closed ball of radius R, then the homogeneity of f implies
that [

f(u)− f(v)
∣∣ ≤ Lip(f)Rk∥u− v∥, ∀u,v ∈ BR(W ). (1.1.13)

Note that

IA(f) =

∫
W
f
(
A1/2w

)
Γ1
[
dw
]
,

so ∣∣ IA(f)− IB(f)
∣∣ ≤ ∫

W

∣∣ f(A1/2w
)
− f

(
B1/2w

) ∣∣ Γ1[ dw ]
=

1

(2π)m/2

(∫ ∞

0
rm+k−1e−r

2/2dr

)
︸ ︷︷ ︸

Cm,k

∫
S1(V )

∣∣ f(A1/2w
)
− f

(
B1/2w

) ∣∣ volS1(W )

[
dw
]

(∥A1/2w∥, ∥B1/2w∥ ≤ R)
(1.1.13)

≤ Cm,k Lip(f)R
k

∫
S1(W )

∥A1/2 −B1/2∥op volS1(V )

[
dw
]

≤ Cm,k Lip(f)Rk vol
[
S1(W )]

∫
S1(W )

∥A1/2 −B1/2∥1 volS1(V )

[
dw
]

(1.1.11)

≤ Z(m, k) Lip(f)Rk

µ0
∥A−B∥1/21 ≤ Z(m, k)m1/2 Lip(f)Rk

µ0
∥A−B∥1/2op .

⊓⊔
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Remark 1.1.28. Observe that

trA ≤ R2 =⇒ ∥A∥op ≤ R.

Set

a := inf Spec(A), b := inf Spec(B).

We have

inf Spec(A1/2 +B1/2) = inf
∥u∥=1

(
(A1/2 +B1/2)u,u

)
≥ inf Spec(A1/2) + inf Spec(B1/2) =

√
a+
√
b ≥
√
a+ b.

Hence

a+ b ≥ µ20 =⇒ A1/2 +B1/2 ≥ µ01.
⊓⊔

Lemma 1.1.29. Suppose that f : W → R is a continuous function that is homogeneous of
degree k ≥ 1. Set

M(f) := sup
∥w∥≤1

|f(w)|.

Then there exists C = C(m, k) > 0 such that ∀A ∈ Sym≥0(V )∣∣ IA(f) ∣∣ ≤ IA(|f |) ≤ C(m, k)M(f)∥A∥k/2op . (1.1.14)

Proof. Note that

sup
∥w∥≤R

|f(w)| =M(f)Rk.

As in the proof of Lemma 1.1.27 we have

IA(|f |) =
∫
W
f
(
A1/2w

)
Γ1
[
dw
]

=
1

(2π)m/2

(∫ ∞

0
rm+k−1e−r

2/2dr

)
︸ ︷︷ ︸

=:Cm,k

∫
S1(W )

∣∣ f(A1/2w
) ∣∣ volS1(V )

[
dw
]

(∥A1/2w∥ ≤ ∥A1/2∥op∥w∥)

≤ Cm,kM(f)∥A1/2∥kop vol
[
S1(V )

]
= C(m, k)M(f)∥A∥k/2op .

⊓⊔

Corollary 1.1.30. Suppose that f : W → R is a continuous function that is homogeneous
of degree k ≥ 1. Suppose that A,B ∈ Sym≥0(W ) and B ≤ A. Then∣∣ IB(f) ∣∣ ≤ IB(|f |) ≤ C(m, k)M(f)∥B∥k/2op ≤ C(m, k)M(f)∥A∥k/2op . (1.1.15)

Proof. Indeed, 0 ≤ B ≤ A =⇒ ∥B∥op ≤ ∥A∥op. ⊓⊔

Proposition 1.1.31. Let Xn : (Ω, S,P) → U be a sequence of Gaussian vectors valued in
the m-dimensional Euclidean space U . Assume that

(i) for any m < n the vectors Xm, Xn are jointly Gaussian and,

(ii) the vectors Xn converge a.s. to a random vector X : (Ω, S,P)→ U .
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Then X is Gaussian and Xn → X in Lp, ∀p ∈ [1,∞).

Proof. The vectors Xn converge in distribution to X and Proposition 1.1.22 shows that

E
[
Xn

]
→ E

[
X
]
, Var

[
Xn

]
→ Var

[
X
]
.

Replacing Xn with X̄n = Xn − E
[
Xn

]
we can assume that Xcentered. Set Yn = Xn −X.

Note that the Gaussian vector (Xn−Xm) converges a.s. to Yn as m→∞ so Yn is a Gaussian
vector as well. Moreover Yn → 0 a.s.. Set Cn := Var

[
Yn
]
and Kn = ∥Cn∥op. Then Kn → 0

as n→∞.

Let p ∈ [1,∞). Lemma 1.1.29 implies that

E
[
|Yn|p

]
=

∫
U
|u|pΓCn [du

]
≤ C(m, p)Kp/2

n ,

where C(m, p) > 0 depends only on m = dimU and p ≥ 1. This proves that Yn → 0 in Lp.
⊓⊔

1.1.2. Gaussian regression. Suppose that X, Y are two L2- random vectors valued in
the Euclidean spaces X and respectively Y . Denote by Aff(X,Y ) the space of affine maps
X → Y . The classical least square approximation gives an explicit description of an affine
map A0 : X → Y such that

E
[
∥Y −A0X∥2

]
≤ E

[
∥Y −AX∥2

]
, ∀A ∈ Aff(C,Y ).

The Y -valued random vector A0X is called the linear regression.

If X,Y are two arbitrary random vectors, then the conditional expectation E
[
Y ∥X

]
is

some measurable function of X. The next result shows that when X,Y are jointly Gaussian
and X is nondegenerate, there exists a unique affine map A0 such that A0X = E

[
Y ∥X

]
.

Moreover A0 is the solution of the above minimization problem.

Proposition 1.1.32 (Gaussian regression formula). Suppose that X,Y are Gaussian vectors
valued in the Euclidean spaces X and respectively Y . Denote by mX and respecitvel mY the
meand of X and respectively mY . Assume additionally that

(i) the random vectors X,Y are jointly Gaussian and,

(ii) X is nondegenerate.

Define the regression operator

RY,X : X → Y , RY,X := Cov[Y,X] Var[X]−1 (1.1.16)

Then the following hold.

(a) The conditional expectation E
[
Y ∥X

]
is a linear function of X described by the linear

regression formula

E
[
Y ∥X

]
= mY −RY,XmX +RY,XX. (1.1.17)

(b) For any x ∈ X
E
[
Y
∣∣X = x

]
= mY −RY,XmX +RY,Xx.

(c) The random vector vector Z = Y − E
[
Y ∥X

]
is Gaussian and independent of X. It has

mean 0 and variance operator

∆Y,X = Var
[
Y
]
−DY,X : Y → Y , DY,X = Cov[Y,X] Var[X]−1Cov[X,Y ]. (1.1.18)
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Moreover, for any bounded measurable function f : Y → R and any x ∈X we have

E
[
f(Y )

∣∣X = x
]
= E

[
f
(
Z +mY −RY,XmX +RY,Xx

) ]
. (1.1.19)

In particular, if X and Y are centered we have

E
[
f(Y )

∣∣X = x
]
= E

[
f
(
Z +RY,Xx

) ]
. (1.1.20)

Proof. Assume first that both X and Y are centered. Set

Z =: Y −RY,XX,

where RY,X is defined in (1.1.16). Assumption (i) implies that Z is also a centered Gaussian
vector.

Let (ei)i∈I and (fα)α∈A are orthonormal bases of X and respectively Y . Set

Xi := (ei, X)X , Yα := (fα, Y )Y , Zα := (fα, Z)Y ,

and

V (X)ij := E
[
XiXj

]
, Cαi := E

[
YαXi

]
= Ciα, V (Y )αβ := E

[
YαYβ

]
.

The matrix
(
V (X)ij

)
i,j∈I describes the variance operator of X, the matrix

(
V (Y )αβ

)
α,β∈A

describes the variance operator of Y and the matrix
(
Cαi

)
α∈A,i∈I defines the covariance

operator Cov[Y,X]. We denote by V (X)−1
ij the entries of Var

[
X
]−1

and by Dαβ the entries

of DY,X = Cov[Y,X] Var[X]−1Cov[X,Y ]. We have

RX,YX =
∑
α

( ∑
i

RαiXi

)
Xi

)
fα,

where

Rαi =
∑
j

CαjV (X)−1
ji .

Hence

Zα = Yα −
∑
i

RαiXi, Zβ = Yβ −
∑
j

RβjXj ,

E
[
ZαZβ

]
= V (Y )αβ −

∑
j

RβjCαj −
∑
i

RαiCiβ +
∑
i,j

RαiVijRβj .

We have ∑
i

∑
j

RαiVijRβj =
∑
i

∑
j

( ∑
k

CαkV (X)−1
ki Vij

)
Rβj

=
∑
j

( ∑
k

Cαkδkj

)
Rβj =

∑
k

CαkRβk =
∑
k

RβkCkα = Dβα = Dαβ.

A similar but simpler computation shows that∑
j

RβjCαj = Dβα = Dαβ =
∑
i

RαiCiβ.

Thus ∆Y,X = Var
[
Y
]
−DY,X is the covariance operator of Z.

An elementary computation shows that.

E
[
ZαXi

]
= 0, ∀α, i
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and assumption (i) implies that X and Z are independent centered Gaussian vectors. Clearly
Z is an X-measurable random vector. If S is and X-measurable event, then

E
[
ZIF

]
= E

[
Z
]
P
[
F
]
= 0.

Hence
E
[
Y IF

]
− E

[
RY,XSIF

]
= E

[
ZIF

]
= 0

so that
RY,XX = E

[
Y ∥X

]
and

E
[
Y
∣∣X = x

]
= RY,Xx.

Now let f : Y → R be a bounded measurable function. Then Y = E
[
Y ∥X

]
+ Z, with

E
[
Y ∥X

]
, Z independent. Then

E
[
f(Y )

∣∣X = x
]
= E

[
f
(
Z + E[Y ∥X]

)∣∣X = x
]

= E
[
f(Z + E[Y

∣∣X = x])
]
= E

[
f(Z +RY,Xx)

]
.

This proves the Proposition 1.1.32 when both X and Y are centered.

We now reduce the general case to the centered case. Consider the centered vectors

X̄ := X −mX , Ȳ = Y −mY .

Then
RY,X = RȲ ,X̄ ,

E
[
Y ∥X

]
= mY + E

[
Ȳ ∥X

]
= mY + E

[
Ȳ ∥ X̄

]
= mY +RY,XX̄ = mY −RY,XmX +RY,XX.

If we set

Z̄ = Ȳ −RY,XX̄ = Y −mY +RY,XmX −RY,XX = Y − E
[
Y ∥X

]
,

then Z̄ is independent of X̄ and thus also of X. ⊓⊔

Remark 1.1.33. (a) LetX, Y ,X and Y be as in the above proposition. Assume additionally
that X and Y are centered. Sometimes we will use the notation

Var
[
Y |X = 0

]
:= ∆Y,X .

Note that

Var
[
Y |X = 0

]
= Var

[
Y
]
− Cov[Y,X] Var

[
X
]−1

Cov[X,Y
]
≤ Var

[
Y
]
, (1.1.21)

since the symmetric operator Cov[Y,X] Var
[
X
]−1

Cov[X,Y
]
is nonnegative.

(b)Suppose that U is another Euclidean space and T : X → U is a linear isomorphism.
Then for any positively homogeneous measurable function f : Y → R we have

E
[
f(Y )

∣∣X = 0
]
= E

[
f(Y )

∣∣TX = 0
]
.

To see this is suffices to show that ∆Y,X = ∆Y,TX This happens iff

Cov[Y,X] Var
[
X
]−1

Cov[X,Y ] = Cov[Y, TX] Var
[
X
]−1

Cov[TX, Y ].

Indeed,
Cov[Y, TX] = Cov[Y,X]T ∗, Cov[TX, Y ] = T Cov[X,Y ],

Var
[
TX

]
= T Var

[
X
]
T ∗.
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⊓⊔

Proposition 1.1.34. Suppose that V ,U are finite dimensional Euclidean spaces, V is a
centered, V -valued Gaussian vector, and S : V → U a linear surjection. Assume that the
U -valued Gaussian vector S(V ) is nondegenerate. Define Y = kerS, X = Y ⊥. Set

L = (SS∗)−1/2S : V → U .

Denote by X and respectively Y the components of V along X and respectively Y so that
V = X + Y and LV = LX. Then the following hold

(i) The Gaussian vectors LV and X are nondegenerate.

(ii) The Gaussian vectors Y −E
[
Y ∥X

]
, V −E

[
V ∥LV

]
and Y −E

[
Y ∥LV

]
have the

same distribution and their common variance operator is ∆Y,X : Y → Y described
in (1.1.18) . They are nondegenerate if and only if V is nondegenerate. Denote by
Γ∆Y,X

the regression Gaussian measure, i.e., the centered Gaussian measure on Y
with variance operator ∆Y,X .

(iii) If f : V → R is integrable with respect to the distribution of V , then

E
[
f(V )

∣∣L(V ) = 0
]
=

∫
Y
f(y)Γ∆Y,X

[
dy
]
= E

[
f(Y )

∣∣X = 0
]
. (1.1.22)

In particular, if the Gaussian vector V is nondegenerate and f : V → (0,∞) is a nonnegative,
continuous homogeneous function whose restriction to kerS = Y is nonzero, then

E
[
f(V )

∣∣L(V ) = 0
]
=

∫
kerS

f(y)Γ∆Y,X

[
dy
∣∣ > 0. (1.1.23)

Proof. The map S |X : X → U is an isomorphism and S |X (X) = U = S(V ). Denote by
P the orthogonal projection onto X. Then X = P (V ), Y = V −X and

S(V ) = S(PV ) = S(X).

Note that S∗(U) = X. Set B := SS∗ : U → U . The operator B is symmetric and positive

definite. Observe that L := B−1/2S.

Lemma 1.1.35. The operator of L∗ induces an isometry U ↪→ V with image

L∗(U) = (kerL)⊥ = (kerS)⊥ = X.

Moreover LL∗ = 1U .

Proof. Let u1, u2 ∈ U . We have

(L∗u1, L
∗u2) = (S∗B−1/2u1, S

∗B−1/2u2)

= (SS∗B−1/2u1, B
−1/2u2) = (B1/2u1, B

−1/2u2) = (u1, u2).

Note that LL∗ = B−1/2LL∗B−1/2 = 1. ⊓⊔

If A denotes the variance operator of X, then the variance operator of L(V ) = L(X) is
LAL∗. Moreover, Cov[Y, L(X)] = Cov[Y,X]L∗.
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Denote by Q the variance operator of V . With respect to the decomposition V = X⊕Y
Q has the block form

Q =

[
A C∗

C B

]
, C = Cov[Y,X], B = Var

[
Y
]
.

Since X is nondegenerate, the operator A is invertible. Form the operator

∆Y,X := Var
[
Y
]
− Cov[Y,X] Var

[
X
]−1

Cov[Y,X] = B − CA−1C∗

Then Schur’s complement formula (see [74, Sec.0.8.5] or [139, Prop. 3.9])[
1 0

−CA−1
1

]
·
[
A C∗

C B

]
·
[
1 −A−1C∗

0 1

]
=

[
A 0

B − CA−1C∗

]
shows that detQ = detA · det∆Y,X , so that det∆Y,X ̸= 0 if and only if detQ ̸= 0, i.e., V is
nondegenerate. Similarly

∆Y,LX = Var
[
Y
]
− Cov[Y,LX] Var

[
LX

]−1
Cov[LX, Y ]

= B − CL∗(LAL∗ )−1
LC∗ = B − CA−1C∗ = ∆Y,X .

since LL∗ = 1U . This proves (ii).

From the equality

E
[
V ∥X

]
= E

[
X + Y ∥X

]
= E

[
Y ∥X

]
+X,

we deduce

Z = V − E
[
V ∥X

]
= Y − E

[
Y ∥X

]
so Z is Y -valued and its distribution is the centered Gaussian measure on Y with variance
operator ∆Y,X . The equality (1.1.22) now follows from the regression formula (1.1.19).

To prove (1.1.23) observe that, since Γ∆X,Y
is nondegenerate, we have Γ∆X,Y

[
O
]
> 0, for

any open subset O of kerL. Choose c > 0 such that the open set
{
f |kerL> c

}
is nonempty.

Then ∫
kerL

f(y)Γ∆Y,X

[
dy
]
> cΓ∆X,Y

[
{f > c} ∩ kerL

]
> 0.

⊓⊔

Remark 1.1.36. The nondegeneracy of Γ∆Y,X
is important. If Γ∆Y,X

were concentrated on
a proper subspace Z ⊂ kerL, it would still be possible that f is nontrivial yet f |Z= 0. ⊓⊔

1.1.3. Complex Gaussian variables and vectors. A complex random variable

Z = X + iY :
(
Ω, S,P

)
→ C

is called Gaussian if the random vector (X,Y ) = (ReZ, ImZ) is Gaussian. For simplicity in
the sequel we will focus exclusively on centered variables so we will assume X,Y are centered

The variance of the complex Gaussian random variableX+iY is viewed as a real Gaussian
vectors represented by the 2× 2-matrix

A = VarR
[
Z
]
:=

 Var
[
X
]

E
[
XY

]
E
[
XY

]
Var

[
Y
]
 .
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However, in this book we will work with a more restrictive concept of complex Gaussian
random variable.

Definition 1.1.37. The complex random variable Z is symmetric if the random variables Z
and iZ have the same distribution. ⊓⊔

This means that VarR
[
Z
]
= VarR

[
iZ
]
. It is well known that the multiplication by i,

viewed as a real linear operator R2 → R2 is represented by the 2× 2-matrix

J =

[
0 −1
1 0

]
.

Using (1.1.10) we deduce that Z is symmetric iff

A = −JAJ ⇐⇒JA = AJ

The only symmetric 2 × 2 matrices that commute with J are the scalar multiples of the
identity. Hence Z is symmetric iff X,Y are i.i.d. normal random variables. In this case

VarR
[
Z
]
= v1R2 , v = Var

[
X
]
= Var

[
Y
]
.

An elementary computation shows that Z is symmetric if and only if E
[
Z2
]
= 0. In this

case

v =
1

2
E
[
ZZ̄

]
.

Proposition 1.1.38. Suppose that Z = (Z1, . . . , Zn) :
(
Ω, S,P

)
→ Cn is a centered random

vector satisfying the following condition:

for any u1, . . . , un ∈ C the complex random variable

u1Z + u2Z2 + · · ·+ unZn (C)

a symmetric complex Gaussian random variables.

Denote by VarC
[
Z
]
the complex variance matrix of Z, i.e., the n× n hermitian matrix

VarC
[
Z
]
:=
(
E
[
ZjZ̄k

] )
1≤j,k≤n.

Note that VarC
[
Z
]
can be viewed either as a complex linear operator Cn → Cn, or as a

real linear operator R2n → R2n.

Then the following hold

(i) The random vector Z, viewed as a real random vector
(
Ω, S,P

)
→ R2n ∼= Cn, is

Gaussian.

(ii) E
[
ZjZk

]
= 0, ∀j, k = 1, . . . , n.

(iii) Denote by VarR
[
Z
]
the variance operator of Z viewed as a real Gaussian vectors.

Then

VarR
[
Z
]
=

1

2
VarC

[
Z
]
.

Above, both sides are viewed as real linear operators Rn → Rn.
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Proof. (i) Set Xk := ReZk and Yk = ImZk. For any complex numbers uk = sk − itk the
random variable ∑

k

ukZk =
∑
k

(
skXk + tkYk

)
+ i
∑
k

(
skYk − tkXk

)
is a symmetric complex Gaussian variable. This implies that the real random vector(

X1, Y1, . . . , Xn, Yn
)

is Gaussian. and that each of the complex Gaussian variables Zk is symmetric.

(ii) Set vk = E
[
X2
k

]
= E

[
Y 2
k

]
. Suppose that uk = 0 for k ̸= 1, 2 uj = sj − itj , j = 1, 2. The

u1Z1 + u2Z2 = A(s, t) + iB(s, t) is a symmetric complex Gaussian variable. We deduce that
real Gaussian random variables

A(s, t) = s1X1 + t1Y1 + s2X2 + t2Y2 and B(s, t) = s1Y1 − t1X1 + s2Y2 − t2X2

are i.i.d.. Suppose that t1 = s2 = 0. Then

Var
[
A
]
= s21v1 + t22v2 + 2s1t2E

[
X1Y2

]
= Var

[
B
]
= s21v1 + t22v2 − 2s1t2E

[
Y1X2

]
.

From the equality Var
[
A
]
= Var

[
B
]
we deduce that

E
[
X1Y2

]
= −E

[
Y1X2

]
.

From the equality E
[
AB

]
= 0 we deduce that

E
[
X1X2

]
= E

[
Y1Y2

]
.

We can rewrite these equalities compactly as E
[
Z1Z2

]
= 0. Clearly the above argument

shows that E
[
ZjZj

]
= 0 for any j, k.

(iii) For j ̸= k We set

ajk := E
[
XjXk

]
, bjk := −E

[
XjYk

]
, zjk = ajk + ibjk =

1

2
E
[
ZjZ̄k

]
The covariance operator of the two variables Zj , Zj viewed as two-dimensional random vectors
is

Cov[Zj , Zk] =

[
E
[
XjXk

]
E
[
XjYk

]
E
[
YjXk

]
E
[
YkYk

] ] = [ ajk −bjk
bjk ajk

]
.

The above matrix describes the multiplication by zjk viewed as a real linear operator C→ C.
⊓⊔

Definition 1.1.39. A complex random vector Z :
(
Ω, S,P

)
→ Cn is called a symmetric

complex Gaussian vector if it satisfies condition (C) in Proposition 1.1.38..

A collection Z1, . . . , Zn of symmetric complex random variables is called jointly Gaussian
if the random vector (Z1, . . . , Zn) is a complex symmetric Gaussian vector. ⊓⊔

Remark 1.1.40. Suppose thatU is a finite dimensional complex Euclidean space,m = dimCU .
Denote by ⟨−,−⟩ the associated Hermitian1 inner product. This defines a real inner product.(

u1,u2

)
= Re

〈
u1,u2

〉
.

1We adhere to the geometers’ convention that a Hermitian inner product is conjugate linear in the second variable.

Physicists a ssume that the Hermitian inner product is conjugate linear in the first variable.
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Suppose that Z is a U -valued centered random vector that is Gaussian when we view U as a
real vector space. As such Z has a variance A = VarR

[
Z
]
which is a symmetric real linear

operator U → U . Then Z is a symmetric complex Gaussian iff VarR
[
Z
]
is also complex

linear, i.e.,
A(iu) = iAu, ∀u ∈ U .

We will denote by VarC
[
Z
]
This complex linear operator.

If
(
ej
)
1≤j≤m we fix a complex orthonormal basis of V , then VarC

[
Z
]
is represented in

this basis by a complex Hermitian m×m matrix. The collection

e1, ie1, . . . , em, iem

is a real orthonormal basis of U . In this basis, VarR
[
Z
]
is represent by a real symmetric

2m× 2m-matrix ⊓⊔

1.1.4. Gaussian measures on Fréchet spaces. In this brief, mostly expository, subsec-
tion I want to describe a few facts about Gaussian measures on infinite dimensional spaces.
For more details I refer to [21, 144].

Let me first recall a rather deep and very versatile measurability result. I will state only
a special case that suffices for all the applications I have in mind. For a proof and a more
general version I refer to [36, Sec. 8.6].

Theorem 1.1.41 (Blackwell). Suppose that X is a Polish space, i.e., a complete separable
metric space. Denote by BX the sigma-algebra of Borel subsets of X. Suppose that F is a
countable family of Borel measurable functions on X that separates points. Then σ(F) = BX ,
where σ(F) denotes the sigma-algebra generated by F. ⊓⊔

Digression 1.1.42. I want to digress to discuss an infinite dimensional version of the Cramér-
Wold theorem, [79, Cor. 6.5].

Let Ω be a set and V a vector spaces of functions f : Ω → R. Denote by σ(V ) the
sigma-algebra generated by the collection V . Note that

σ(V ) =
∨

F∈2V
0

σ(F ),

where we recall that 2S0 denotes the collection of finite subsets of a set S. For any F ∈ 2V0
we have a natural linear map

pF : F → RF , Ω ∋ ω 7→
(
f(ω)

)
f∈F ∈ RF .

Let µ be a probability measure on
(
Ω, σ(V )

)
. For any complex valued, bounded measurable

function φ we denote by µ
[
φ
]
the integral of φ with respect to µ.

The measure µ is uniquely determined by the marginals µF = (pF )#µ ∈ Prob
(
RF
)
. In-

deed, the marginal µF determines the restriction of µ on σ(F ) and the collection
(
σ(F )

)
F∈2V

0

is a π-system that generates σ(V ).

The probability measure µF on RF is uniquely determined by its Fourier transform

µ̂F : span(F )→ C, g 7→ µ
[
eig
]
.

Equivalently the measure µF is uniquely determined by the distributions of the random
variables g :

(
Ω, σ(V )

)
→ R, g ∈ V . Summarizing, we deduce that following result.
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Proposition 1.1.43. Let Ω be a set, V a vector space of real valued functions on Ω. Then a
probability probability measure µ on σ(V ) is uniquely determined by either one of the following
data.

(i) The distributions of the collection of random variables f : Ω→ R, f ∈ V .

(ii) The distributions of the collection of complex random variables eif , f ∈ V .

(iii) The Fourier transform

µ̂ : V → C, µ̂
[
f
]
= µ

[
eif
]
.

⊓⊔

For a different proof of this proposition we refer to [46, Sec. 8.1].

To see this principle at work, consider two sets Ω0,Ω1 and two vector spaces Vi ⊂ RΩi ,
i = 0, 1. These vector spaces determine two sigma-algebras σ(Vi), i = 0, 1. Consider the
product space Ω = Ω0 × Ω1 equipped with the product sigma-algebra σ(V0) ⊗ σ(V1). Let
pi : Ω0 × Ω1 → Ωi denote the canonical projection. Note that

σ(V0)⊗ σ(V1) = σ(V0 ⊞ V1)

where V0⊞V1 denotes the space p∗0V0+p
∗
1V1 of functions f : Ω0×Ω1 → R with the following

property: ∃fi ∈ Vi, i = 0, 1 so that

f(ω0, ω1) = f0(ω0) + f1(ω1), ∀(ω0, ω1) ∈ Ω0 × Ω1.

Let ν be a probability measure on
(
Ω0 × Ω1, σ(V0)⊗ σ(V1)

)
. Denote by νi the marginals of

ν, νi := (pi)#ν, i = 0, 1.

Suppose that µi is a probability measure on
(
Ωi, σ(Vi)

)
, i = 0, 1. To verify that

ν = µ0 × µ1 it suffices to check that ∀f0 ∈ V0, f1 ∈ V1,∫
Ω0×Ω1

ei(f0(ω0)+f1(ω1))ν
[
dω0dω1

]
=

(∫
Ω0

eif0(ω0)µ0
[
dω0

])(∫
Ω1

eif1(ω1)µ1
[
dω1

])
.

This completes the digression. ⊓⊔

Recall that a Fréchet space is a vector space X equipped with a countable family of
seminorms

∥ − ∥ν : X → [0,∞), ν ∈ N,

such that the function

d : X ×X → [0,∞), d(x0, x1) :=
∑
ν∈N

1

2ν
max

(
∥x0 − x1∥ν , 1

)
defines a complete metric on X. Note that the metric d is translation invariant. A subset
S ⊂X is said to be bounded if

sup
s∈S
∥s∥ν <∞, ∀ν ∈ N.

Example 1.1.44. (a) Banach spaces are Fréchet spaces.
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(b) Suppose that U ⊂ Rd is an open set. Then for any m ≥ 0 the space Cm(U) is a separable
Fréchet space. To see this choose a compact exhaustion (Kν)ν≥1 i.e. countable family of of
compact subsets K|nu ⊂ U such that

∀ν ≥ 1, Kν ⊂ int(Kν+1) and
⋃
ν≥1

Kν = U.

The topology is defined by the seminorms

∥f∥ν = sup
x∈Kν

(
|f(x)|+ |Df(x)|+ · · ·+ |Dm(x)|

)
The topology determined by these seminorms corresponds to uniform convergence on com-
pacts.

To see that Cm(U) separable note that the space of polynomials in d variables with
rational coefficients is dense in Cm(U), [150, Chap. 15, Cor. 4]. ⊓⊔

Let X be a real separable Fréchet space. In this case the Borel sigma-algebra of X ×X
coincides2with the product of sigma-algebras BX

BX×X = BX ⊗BX .

Since the addition + : X → X → X is continuous it is BX×X=measurable.

We denote by X∗ the topological dual of X and by

⟨−,−⟩ : X∗ ×X → R

the natural pairing

X∗ ×X ∋ (ξ, x) 7→ ⟨ξ, x⟩ := ξ(x).

The dual X∗ is equipped with several useful topologies

σ
(
X∗,X

)
⊂ τ

(
X∗,X

)
⊂ β

(
X∗,X

)
. (1.1.24)

• The topology σ
(
X∗,X

)
, also know as the weak* topology, corresponds to the

uniform convergence on the finite subsets of X.

• The topology τ
(
X∗,X

)
, also known as the Mackey topology, corresponds to

uniform convergence on the symmetric, compact convex subsets of X.

• The topology β
(
X∗,X

)
, also known as the strong topology, corresponds to uniform

convergence on the bounded subsets of X.

For a ∈ {σ, τ, β} we denote by X∗
a the dual equipped with the a

(
X∗,X

)
-topology. The

Mackey-Arens theorem shows that for a = σ, τ , the topological dual of X∗
a can be identified

with X; see [136, Sec.IV.3]. This means that a linear function L : X∗ → R is a
(
X∗,X

)
-

continuous iff there exists x ∈X such that L(ξ) = ⟨ξ, x⟩, ∀ξ ∈X∗.

Proposition 1.1.45. The Borel sigma-algebra of X coincides with the sigma-algebra σ(X∗)
generated by the family of continuous linear functions ξ : X → R.

2There is this the strange Nedoma pathology: if X is a metric space, then the diagonal ∆ ⊂ X ×X is closed in
the product topology and thus Borel measurable in this topology. However, if the cardinality of X is bigger than the

cardinality of the continuum, then ∆ does not belong to the sigma-algebra BX ⊗ BX , so BX ⊗ BX ⊊ BX×X .
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Proof. Let {xn}n∈N be a countable dense subset of X. We assume xn ̸= 0, ∀n. We deduce
from the Hahn-Banach theorem that for any n ∈ N there exists ξn ∈ X∗ such that ξn(xn) = 1.
The collection Ξ = {ξn}n∈N ⊂ C(X) separates the points. We have σ(Ξ) ⊂ σ(X∗) ⊂ BX .
Blackwell’s theorem now shows that σ(Ξ∗) = BX . ⊓⊔

The Fourier transform of a Borel probability measure µ ∈ Prob(X) is the function

µ̂ : X∗ → C, µ̂(ξ) = E
[
eiξ
]
.

Since BX = σ(X∗) we deduce from Proposition 1.1.43 that µ is uniquely determined by its
Fourier transform. More generally, we have the following result.

Corollary 1.1.46. Suppose that X is a separable Fréchet space and L ⊂ X∗ is a subspace
such that σ(L) = σ(X∗). Let µ0, µ1 ∈ Prob(X). Then

µ0 = µ1 ⇐⇒ µ̂0(ξ) = µ̂1(ξ), ∀ξ ∈ L.

⊓⊔

Definition 1.1.47. A Borel probability measure Γ on the separable Fréchet space X is
called Gaussian if any continuous linear functional ξ ∈ X∗, viewed as a random variable, is
Gaussian. Equivalently,

ξ#Γ = γm[ξ],v[ξ], ∀ξ ∈X∗.

The Gaussian measure is called nondegenerate if v[ξ] > 0, ∀ξ ∈X∗ \{0}. It is called centered
if m[ξ] = 0, ∀ξ ∈X∗. ⊓⊔

We see that Γ ∈ Prob(X) is centered Gaussian if, ∀ξ ∈X∗

Γ̂(ξ) = e−v[ξ]/2, v[ξ] = EΓ

[
ξ
]
=

∫
X
ξ(x)2Γ

[
dx
]

We deduce that a centered Gaussian measure is uniquely determined by the variance function

Var : X∗ → R, ξ 7→ EΓ

[
ξ2
]
.

Note that ∀t ∈ R, ∀ξ, η ∈ X∗

Var[tξ] = t2Var[ξ], Var[ξ + η] + Var[ξ − η] = 2
(
Var[ξ] + Var[η]

)
. (1.1.25)

Proposition 1.1.48. Let X be a separable Fréchet space and µ ∈ Prob(X). Denote by R
the “rotation”

R : X ×X → X ×X, R(x0, x1) =
( 1√

2
(x0 − x1),

1√
2
(x0 + x1)

)
.

Then the following are equivalent.

(i) The measure µ is Gaussian.

(ii) µ⊗ µ = R#(µ× µ)

Proof. For i = 0, 1 we denote by pi the natural projection X ×X ∋ (x0, x1) 7→ xi ∈ X. If
ξ ∈X∗ and i = 0, 1, then we set ξi = ξ ◦ pi ∈ (X ×X)∗. Set ν := R#(µ⊗ µ). Note that

ξ0 ◦R =
1√
2

(
ξ0 − ξ1

)
, ξ1 ◦R =

1√
2

(
ξ0 + ξ1

)
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(i) ⇒ (ii) To show µ⊗ µ = ν we use Corollary 1.1.46. We have to show that if µ is Gaussian
then

∀ξ, η ∈X∗ :

∫
X×X

ei(ξ0+η1)dν =

(∫
X
eiξdµ

)(∫
X
eiηdµ

)
. (1.1.26)

Proof of (1.1.26) We have∫
X×X

ei(ξ0+η1)dν =

∫
X×X

ei(ξ0◦R(x0,x1)+η1◦R(x0,x1))µ⊗ µ
[
dx0dx1

]
=

∫
X×X

e
i√
2
((ξ+η)(x0)−(ξ−η)(x1))µ⊗ µ

[
dx0dx1

]
=

(∫
X
e

i√
2
(ξ+η)

dµ

)
n

(∫
X
e

−i√
2
(ξ−η)

dµ

)
= e−v[ξ+η]/4e−v[ξ−η]/4

(1.1.25)
= e−v[ξ]/2−v[η/2] =

(∫
X
eiξdµ

)(∫
X
eiηdµ

)
.

(ii) ⇒ (i) To show that µ is Gaussian it suffices to show that for any ξ ∈ X∗, the random
variable ξ : (X, µ)→ R is Gaussian. Note that the random variables

ξ0, ξ1 : (X ×X, µ⊗ µ)→ R

are independent copies of X, i.e., they are independent and they have the same distribution
as ξ. According to Polya’s Theorem 1.1.8 it suffices to show that the random variables ξ and
α = 1√

2
(ξ1 + ξ0) have the same distribution, i.e.,

E
[
eitα

]
= E

[
eitξ

]
, ∀t ∈ R.

We have

E
[
eitα

]
=

∫
X×X

e
it√
2
(ξ0+ξ1)(x0,x1)µ⊗ µ

[
dx0dx1

]
=

∫
X×X

eitξ1◦R(x0,x1)µ⊗ µ
[
dx0dx1

]
(ν = R#(µ⊗ µ))

=

∫
X×X

eitξ(x1)ν
[
dx0dx1

]
(ν = µ⊗ µ)

=

∫
X×X

eitξ(x1)µ⊗ µ
[
dx0dx1

]
=

∫
X
eitξ(x)µ

[
dx
]
= E

[
eitξ

]
.

⊓⊔

Corollary 1.1.49. Suppose that X is a separable Fréchet space, µ ∈ Prob(X) and L ⊂X∗

is a subspace such that σ(L) = BX . Then the following are equivalent.

(i) The measure µ is centered Gaussian,

(ii) For any ξ ∈ V the random variable ξ : (X, µ)→ R is centered Gaussian.

Proof. Clearly (i) ⇒ (ii) so it suffices to prove (ii) ⇒ (i). For each ξ ∈ L we denote by v[ξ]
the variance of ξ. It satisfies the equalities (1.1.48). Using Proposition 1.1.48 it suffices to
show that µ⊗ µ = ν = R#(µ⊗ µ). Since BX×X = BX ⊗BX = σ(L)⊗ σ(L) we can use the
strategy outlined in Digression 1.1.42 so it suffices to show that

∀ξ, η ∈ L :

∫
X×X

ei(ξ0+η1)dν =

(∫
X
eiξdµ

)(∫
X
eiηdµ

)
. (1.1.27)
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Since ξ + η, ξ − η ∈ L, we deduce that ξ + η, ξ − η are Gaussian variables as well and the
proof of (1.1.26) carries over with no modification to this situation as well. ⊓⊔

Remark 1.1.50. The Corollaries 1.1.46 and 1.1.49 may suggest that a Gaussian measure Γ
is nondegenerate iff ξ is a nondegenerate Gaussian random variable for any ξ ∈ L. Example
1.2.20 will show that this is not the case. ⊓⊔

The covariance form of a centered Gaussian measure Γ on a separable Freéchet space X
is the continuous, symmetric bilinear form

CΓ : X∗ ×X∗ → R, CΓ(ξ, η) = EΓ

[
ξ · η

]
=

∫
X
ξ(x)η(x)Γ

[
dx
]
.

Note that each ξ ∈ X∗ is a function on X that is L2 with respect to the measure Γ. This
determines a tautological linear map

TΓ : X∗ → L2(X,Γ) (1.1.28)

that associates to each continuous linear functional ξ : X → R its Γ-a.s. equivalence class.
The map TΓ induces a continuous map X∗

τ → L2(X,Γ); see [21, Lemma 3.2.1] or [151,
Thm.3(3)]. As such, it has a continuous dual map

T ∗
Γ : L2(X,Γ)→ (X∗

τ )
∗ = X.

More precisely T ∗
Γξ is the linear functional u on X∗ such that

u(η) = E
[
ξη
]
, ∀η ∈X∗. (1.1.29)

We denote by RΓ the composition

RΓ := T ∗
ΓTΓ : X∗ →X. (1.1.30)

The map RΓ : X∗ →X is uniquely determined by the conditions

⟨η,RΓξ⟩ = CΓ(ξ, η) = EΓ

[
ξη
]
, ∀ξ, η ∈X∗.

Note that kerRΓ = kerTΓ and these maps are injective iff Γ is nondegenerate.

For a proof of the following fundamental fact we refer to [47, Sec. 3], [60, Sec.1] or [144,
Sec. 3.2.2].

Theorem 1.1.51 (Fernique). Let Γ be a centered Gaussian measure on the separable Fréchet
space X defined by a sequence of seminorms (∥−∥ν)ν≥0. Fix ν ≥ 0 r0 = r0(ν) > 0 such that

Γ
[
{∥x∥ν ≤ r0}

]
= q >

1

2
.

Set

A := A(r0, q) =
1

24r20
log
( q

1− q

)
.

Then, for any r > r0 we have Fernique’s inequality

Γ
[
{∥x∥ν > r}

]
≤ r0e−Ar

2
. (1.1.31)

In particular ∫
X
eα∥x∥

2
νΓ
[
dx
]
<∞, ∀α < A, (1.1.32)
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and ∫
X
∥x∥2νΓ

[
dx
]
<∞. (1.1.33)

⊓⊔

Condition (1.1.33) implies that the map

TΓ : X∗ → L2(X,Γ)

is continuous with respect to the weak* topology on X∗. The dual T ∗
Γ : L2(X,Γ) → X is

continuous with respect to the weak topology on X. The closed graph theorem [150, Chap.
17, Cor.6] implies that it is also continuous with respect to original strong topology on X.
We set

H0
Γ := RΓ(X

∗) = T ∗
ΓTΓ(X

∗) ⊂X.

The space H0
Γ is a pre-Hilbert space with respect to the inner product(

RΓξ,RΓη
)
Γ
= EΓ

[
ξη
]
, ∀ξ, η ∈X∗.

The operator T ∗
Γ defines an isometry

T ∗
Γ : TΓ(X

∗) ⊂ L2(X,Γ)→ H0
Γ

and thus extends by continuity to X∗
Γ, the closure in L

2(X,Γ) of TΓ(X
∗). We denote by HΓ

the image of this extension

HΓ = T ∗
Γ

(
X∗

Γ

)
⊂X. (1.1.34)

The resulting map T ∗
Γ : X∗

Γ → HΓ is a surjective isometry so HΓ is the completion of H0
Γ

with respect to the norm ∥ − ∥Γ induced by the inner product (−,−)Γ. The Hilbert space
HΓ is called the Cameron-Martin space associated to the Gaussian measure Γ.

We have the following result, [21, Prop. 3.1.9].

Proposition 1.1.52. Let (ξn)n∈N be a sequence in X∗ that separates the points in X. Then
they span a dense subspace of X∗

Γ, so X∗
Γ is separable. In particular, the span of the family(

RΓ(ξn)
)
n∈N is dense in HΓ. ⊓⊔

For a proof of the following nontrivial result we refer to [21, Thm. 3.6.1].

Theorem 1.1.53 (Support theorem). Let Γ be a centered Gaussian measure on the sepa-
rable Fréchet space X. Then the support of Γ is the closure of HΓ in X. This means that
Γ
[
cl(HΓ)

]
= 1 and for any open set U that intersects HΓ, Γ

[
U
]
> 0. ⊓⊔

Corollary 1.1.54. Let Γ be a centered Gaussian measure on the separable Fréchet space X.
Then the following are equivalent.

(i) The measure Γ is nondegenerate.

(ii) The Cameron-Martin space HΓ is dense in X.

(iii) For any nonempty open subset O ⊂X, Γ
[
O
]
> 0.

⊓⊔



1.1. Gaussian measures 29

If Γ is a finite dimensional real vector space and S is a subspace of V , then it is not hard
to see that either Γ

[
S
]
= 0 or Γ

[
S
]
= 1. Xavier Fernique [60, Sec.1] proved that a similar

result holds in infinite dimensions.

Theorem 1.1.55 (Zero-one law). Suppose that Γ is a Gaussian measure on the separable
Fréchet space X. If Y ⊂ X is a Borel measurable subspace then either Γ

[
Y
]
= 0 or

Γ
[
Y
]
= 1. ⊓⊔

Proposition 1.1.56. Suppose that Y ,X are separable Fréchet spaces and i : Y → X is a
continuous linear injection with closed range. We have a pushforward map

i# : Prob(Y )→ Prob(X).

(i) A Borel probability measure µ ∈ Prob(Y ) is (centered) Gaussian if and only if its
pushforward i#µ is a (centered) Gaussian probability measure on X.

(ii) If Γ is a Gaussian probability measure on X such that Γ
[
i(Y )

]
= 1, then there

exists a Gaussian measure on Y such that Γ = i#µ.

Proof. We have a dual map i∗ : X∗ → Y ∗, ξ 7→ ξ ◦ i. The Hahn-Banach theorem shows
that this map is onto.

(i) Note that i#µ is Gaussian iff ∀ξ ∈X∗ the pushforward ξ#(i#µ) = (ξ ◦ i)#µ is Gaussian.
Since i∗ is onto, this happens iff η#µ is Gaussian, ∀η ∈ Y ∗, i. e., µ is Gaussian.

(ii) For a Borel subset B ⊂ Y we set

µ
[
B
]
:= Γ

[
i(B)

]
.

Then µ ∈ Prob(Y ) and i#µ = Γ. We deduce from (i) that µ is Gaussian. ⊓⊔

Theorem 1.1.53 has an immediate but useful consequence.

Proposition 1.1.57. Let X be a separable Fréchet space. Fix a family of seminorms
(∥ − ∥ν)ν≥0 defining the topology of X. Let (xn)n≥0 be a sequence in X and (cn)n≥0 a
sequence of positive real numbers such that∑

n≥1

cn∥xn∥ν <∞, ∀ν.

Denote by Y the closure of the span of (xn)n≥1. Let (An)n≥1 be a sequence of indepen-
dent standard normal random variables defined on the probability space (Ω, S,P). Then the
following hold.

(i) There exists a negligible subset N ∈ S such that the series∑
n≥1

An(ω)cnxn

converges in X to an element in Y for any ω ∈ Ω \N.

(ii) The map S : Ω→ Y defined by

S(ω) =

{∑
n≥1An(ω)cnxn, ω ∈ Ω \N,

0, ω ∈ N
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is Borel measurable and the push-forward ΓS := S#P is a nondegenerate Gaussian
measure on Y .

(iii) For any nonempty open subset O ⊂ Y , P
[
S ∈ O

]
> 0.

Proof. (i) We will show that the random scalar series∑
n

|An|cn∥xn∥ν

is a.s. convergent for any ν. According to Kolmogorov’s two-series theorem this happens if
the positive random variables Xν

n = |An| · cn∥xn∥ν satisfy∑
n≥1

E
[
Xν
n

]
<∞ and

∑
n≥1

E
[
(Xν

n)
2
]
<∞.

Now observe that

E
[
|An|

]
= 2

1√
2π

∫ ∞

0
xex

2/2dx =

√
2

π
,

∑
n≥

E
[
Xν
n

]
=

√
2

π

∑
n≥1

cn∥xn∥ν <∞

and ∑
n≥

E
[
(Xν

n)
2
]
=
∑
n≥1

c2n∥xn∥2ν <∞.

(ii) Define Sn : Ω→ Y

Sn(ω) =

{∑n
k=1Ak(ω)ckxk, ω ∈ Ω \N,

0, ω ∈ N.

The maps Sn are measurable since the addition operation on a separable Fréchet space is
a measurable map. The map S is measurable since for any ξ ∈ Y ∗ the function ⟨ξ, S⟩ is
measurable as limit of the measurable functions ⟨ξ, Sn⟩.

To see that ΓS is a Gaussian measure let ξ ∈ Y ∗. Then

⟨ξ, S(ω)⟩ = lim
n→∞

⟨ξ, Sn⟩.

The random variables

⟨ξ, Sn⟩ =
n∑
k=1

Ancn⟨ξ, xn⟩

are Gaussian as sum of independent Gaussians. Since the limit of Gaussian random variables
is also Gaussian we deduce that ⟨ξ, S⟩ is Gaussian with variance

v[ξ] =
∑
n≥1

c2n
∣∣ ⟨ξ, xn⟩ ∣∣2.

Since (xn) spans a dense subspace of Y , we deduce that for any ξ ∈ Y ∗ \ 0 such there exists
n such that ⟨ξ, xn⟩ ̸= 0. This proves that ΓS is nondegenerate. Part (iii) now follows from
Theorem 1.1.53. ⊓⊔
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1.1.5. Mercer kernels. Classically, [97], a Mercer kernel on a compact interval I of the
real axis is a continuous symmetric function K : I × I → R such that the associated integral
operator

f 7→ K[f ], K[f ](s) =

∫
I
K(s, t)f(t)dt

is symmetric and nonnegative definite. It this subsection we will survey some properties of a
generalization of this classical concept.

Definition 1.1.58. Let T be a metric space. A Mercer kernel on T is a continuous function
K : T × T → R satisfying the following properties.

(i) K(s, t) = K(t, s), ∀s, t ∈ T .

(ii) For any t1, . . . , tn ∈ X the symmetric matrix
(
K(ti, tj)

)
1≤i,j≤n is nonnegative

definite.

⊓⊔

Example 1.1.59. Let T be a compact metric space. Denote by F the Banach space C0(T )
equipped with the sup norm. Suppose as in [15] that U ⊂ F := C0(T ) is vector subspace
equipped with a norm ∥ − ∥U making it into a separable Banach space and such that the
natural inclusion U → F is continuous. If (tn)n∈N is a dense subset of T the evaluation
maps Evtn ∈ F ∗ separate the points in F and, according to Blackwell’s Theorem 1.1.41,
they generate the Borel sigma-algebra of F . These evaluation maps also define continuous
linear functionals on U that, a fortiori, separate the points in U so they also generate the
Borel sigma algebra of U .

Suppose that Γ is a centered Gaussian measure on U . We deduce from Proposition 1.1.52
that the collection

(
Evt

)
t∈T spans a dense subspace of U∗

Γ. For every t ∈ T we obtain a

continuous function Kt = KΓ
t = RΓEvt ∈ U ⊂ C(T ). The continuous function KΓ

t is
uniquely defined by the equality

KΓ
t (s) = Evs

(
KΓ
t

)
=

∫
U
Evt(u) ·Evs(u)Γ

[
du
]
.

We set KΓ(t, s) := KΓ
t (s). The resulting function

KΓ : T × T → R, (t, s) 7→ KΓ(x, y)

is called the covariance kernel of the Gaussian measure.

The covariance kernel KΓ : T ×T → R is a Mercer kernel. Property (ii) follows from the
fact the symmetric matrix

(
K(ti, tj)

)
1≤i,j≤n is the variance operator of the Gaussian vector

U → Rn, u 7→
(
u(t1), . . . , u(tn)

)
∈ Rn.

The Cameron-Martin space HΓ can be identified with the Reproducing Kernel Hilbert Space
(RHKS) determined by the covariance kernel KΓ. We refer to Appendix B.5 and the refer-
ences therein for more information about this concept. ⊓⊔

Let us conclude with a simple way of recognizing Mercer kernels. Observe that if
K : T × T → R is a continuous symmetric function,

K(s, t) = K(t, s), ∀x, y ∈M,
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then for any finite Borel measure µ on M it induces a bounded symmetric operator

[K] = [K]µ : L2(T , µ)→ L2(T , µ),

[K](f)(t) =

∫
M
K(t, s)f(s)µ

[
ds
]
.

(1.1.35)

Note that the functionK is a Mercer kernel if and only if for any t1, . . . , tn ∈ T and µ =
∑

i δti
the operator [K]µ is nonnegative definite, i.e.,(

[K]µf, f
)
L2(T ,µ)

≥ 0, ∀f ∈ C0(T ).

Denote by Meas(T ) the collection of finite Borel measures on T and by Prob(T ) the collection
of Borel probability measures on M . A measure µ ∈ Meas(T ) is called diffuse if µ

[
U
]
> 0

for any nonempty open subset U ⊂ T

Proposition 1.1.60. Let K : T×T → R be a symmetric continuous function. The following
are equivalent.

(i) The function K is a Mercer kernel.

(ii) The operator [K]µ is nonnegative definite for any µ ∈ Meas(T ).

(iii) The operator [K]µ is nonnegative definite for any µ ∈ Prob(T ).

(iv) The operator [K]µ is nonnegative definite for any difffuse measure probability µ ∈ T

Proof. Clearly (ii) ⇒ (i), (iii) , (iv).

Denote by PK collection of measures µ ∈ Meas(T ) such that [K]µ is nonnegative definite.
Observe that if f : M → [0,∞) is a nonnegative continuous function and µ ∈ PK , then
fµ ∈ PK . This shows (ii) ⇐⇒ (iii). Hence it it suffices to show that (i) ⇒ (iii) and (iv) ⇒
(i).

The dominated convergence theorem shows that for any µ ∈ Meas(M) and f ∈ L2(M)
we the function [K]µ is continuous and

sup
x∈M

∣∣ [K]µf(x)
∣∣ ≤ ∫

M
sup
x,y∈M

∣∣K(x, y)||f(y)|µ
[
dy
]
= ∥K∥C(M×Mµ

[
M
]1/2∥f∥L2(M,µ)

so [K]µ defines a continuous linear operator L2(T , µ)→ C(T ), ∀µ ∈ Meas. We deduce from
this that if (µn) ∈ PK is a sequence of measures converging weakly to a measure µ ∈ Meas(M)
then µ ∈ PK . In other words, PK is closed under the topology of weak convergence of finite
measures.

Denote by Prob0(T ) the collection of discrete probability measures onM . More precisely,
µ ∈ Prob0(T ) iff there exist a finite set F ⊂M and a function w : F → [0,∞) such that∑

t∈F
w(t) = 1, µ =

∑
t∈F

w(t)δt.

The Krein-Milman theorem shows that any µ in Prob(T ) is the weak limit of a sequence of
discrete probability measures; see [52, Sec. 10.1] or [142, Ex.8.16].

(i)⇒ (iii) SinceK is a Mercer kernel we deduce that Prob0(M) ∈ PK and the above discussion
shows that Prob(M) ⊂ PK .
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(iv) ⇒ (i). Fix a non-atomic probability measure µ. We will show that Prob0(T ) ⊂ PK . Let

µw =
∑
t∈F

w(t)δt ∈ Prob0(T )

For t ∈ F we denote by Br(t) the open ball of radius r centered at t. For ν ∈ N, ν > 1/r,
choose a nonnegative continuous function fν : T → [0,∞) with the following properties

supp fν ⊂
⋃
t∈F

B1/ν(t),

∫
Br(t)

fν(t)µ
[
ds
]
= w(x), ∀x ∈ F.

Then fνµ ∈ PK and fνµ converges weakly to µw as ν →∞ so that µw ∈ PK .

⊓⊔

1.2. Gaussian fields

1.2.1. Random fields a.k.a. stochastic processes. This subsection has a rather modest
goal namely to introduce some basic terminology and facts concerning stochastic processes.
For more details we refer to two classic sources, [45, 68].

To put it simply, a stochastic process is a family of random quantities valued in the same
measurable space. In this book I will typically use the term random maps when referring to
stochastic proceses.

Definition 1.2.1. Fix a finite dimensional vector space U and a set T . An U -valued random
field or random map on T (or parametrized by T ) is a map

X : Ω× T → U , (ω, t) 7→ Xω(t) ∈ U ,

where (Ω, S,P) is a probability space, and for any t ∈ T , the map

Ω ∋ ω → Xω(t) ∈ U

is measurable. When U = R, the random field X is also known as a random function. ⊓⊔

Here is an alternate viewpoint. Denote UT the space of functions f : T → U . If

X : Ω× T → U , (ω, t) 7→ Xω(t) ∈ U ,

then for any ω ∈ Ω we have a map Xω ∈ UT , t 7→ Xω(t). The maps Xω are called the sample
maps of of the random map X. We thus obtain a map

ΦX : Ω→ UT , ΦX(ω) = Xω.

For every t ∈ T we have a natural projection

Evt : U
T → U , f 7→ f(t).

These maps determine a sigma-algebra on UT , namely the smallest sigma-algebra such that
all the maps Evt are Borel measurable. We denote it by BT

U . A map

Ψ : (Ω, S,P)→ UT , ω 7→ Ψω

is measurable if and only if, for any t ∈ T , the induced map

Ω ∋ ω 7→ Evt(Ψω) = Ψω(t) ∈ U

is measurable. This shows that the map ΦX is measurable.
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Conversely, any measurable map Φ : (Ω, S,P)→ UT defines a map

XΦ : Ω× T → U , (XΦ)ω(t)− Φω(t)

which is a random field in the sense of Definition 1.2.1(i). The pushforward probability
measure F#P on UT is called the distribution of the random field XΦ.

Denote by 2
T
0 the collection of finite subsets of T . For any F ∈ 2

T
0 we denote by πF

the natural projection UT → UF . Equivalently, πF (X) is the restriction to F of a function
X : T → R. Moreover, if F1 ⊂ F2 are two finite subsets of T we denote by PF1,F2 the natural

projection UF2 → UF1 that maps a function F2 → U to its restriction to F1.

Any probability measure µ on BT
U determines a family of probability measures µF on

BF
U , F ∈ 2

T
0 , µF := (πF )#µ. This is a projective family i.e., it satisfies the compatibility

conditions

(PF1,F2)#µF2 = µF1 , ∀F1 ⊂ F2. (1.2.1)

Kolmogorov’s existence theorem shows that conversely, given any projective family of prob-
ability measures µF : BF

U → [0, 1], F ∈ 2
T
0 , there exists a unique probability measure

µ : BT
U → [0, 1] such that

µF = (πF )#µ, ∀F.
Thus the distribution of a random field X is uniquely determined by the distributions of the
finite dimensional random vectors

XF : Ω→ UF , ω 7→
(
X(t)

)
t∈F , F ∈ 2T0 .

Definition 1.2.2. Let (Ω, S,P) be a probability space, T a set, and U a finite dimensional
real vector space. Consider stochastic processes

X,Y : Ω× T → U , (t, ω) 7→ Xω(t), Yω(t).

(i) The process Y is said to be a modification or version X, and we denote this X ∼ Y ,
if for any t ∈ T there exists a negligible subset Nt such that

Xω(t) = Yω(t), ∀ω ∈ Ω \Nt.

(ii) The processes X,Y are said to be indistinguishable, and we denote this X ≈ Y , if
there exists a negligible subset N such that

Xω(t) = Yω(t), ∀t ∈ T , ∀ω ∈ Ω \N.

(iii) The processes X,Y are said to be stochastically equivalent, and we denote this
X ∼s Y , if they have the same distribution, i.e., for any F ∈ 2

T
0 the random

vectors XF and YF have the same distribution.

⊓⊔

Note that ≈,∼,∼s are equivalence relations and

X ≈ Y =⇒ X ∼ Y =⇒ X ∼s Y.

Suppose that U is equipped with an inner product with norm
∣∣ − ∣∣ and T is a metric space.

Suppose that µ is a σ-finite Borel measure on T and

X :
(
Ω, S,P)× T → U .
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In many applications we would be interested to know if the sample maps Xω : T → U
have additional compatibility properties with the additional metric and measure-theoretic
structures on the parameter space T . In such situations measurability issues could become
tricky. Let me mention two such issues

The first issue can be easily missed. It appears for example when we define random
variables as a.s. limits of other random variables. Observe that

f, g :
(
Ω, S,P

)
→ R,

are P-a.s. equal and f is measurable, then we can conclude that g is also measurable if and
only if S is P-complete. To deal with this issue we will adhere to the following convention.

✍ Unless stated otherwise, the probability spaces (Ω, S,P) used throughout this book will be
tacitly assumed P-complete.

To explain the second issue suppose that X is a random function defined on an open
subset T of Rm. We will have to consider quantities of the type supt∈BX(t), where B is
some Borel subset of T . If B is uncountable this quantity may not be measurable. This is a
bit more subtle. To explain how to handle it we need a bit more terminology.

Definition 1.2.3. Let (T , d) be a metric space and X an U -valued random field on T .

X : (Ω, S,P)× T → U

(i) The random field X is called separable if there exists a countable separant, i.e., a
countable dense set D ⊂ T and a P-negligible subset N ⊂ Ω such that, for any
t ∈ T , any ε > 0 and any ω ∈ Ω \N we have

Xω(t) ∈ cl
( {

Xω(s), s ∈ D ∩Bε(t)
} )
.

(ii) The random field X said to be stochastically continuous if for any t0 ∈ T , the
random variable X(t) converges in probability to X(t0). More explicitly, this means
that for any t0 ∈ T and any ε > 0

lim
t→t0

P
[ ∣∣X(t)−X(t0)

∣∣ > ε
]
= 0.

(iii) The random field X is called measurable if the map X is S⊗BT -measurable.

(iv) The metric space T is called convenient if it is locally compact and separable.

⊓⊔

The topology of a convenient metric space T can be defined by a complete metric whose
balls are relatively compact.

Let us observe that if the random function X : Ω × T → R is separable, then T is
separable and for any Borel subset B ⊂ T the function

Ω ∋ ω 7→ sB(ω) := sup
t∈B

Xω(t) ∈ (−∞,∞]

is measurable since

sB(ω) = sup
t∈B∩D

Xω(t).
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Indeed, since T is separable, the set B can be covered by countably many balls Brn(xn) and

sup
B
X = sup

n
sup

B∩Brn (xn)
X.

The separability of the random map X implies that supB∩Brn (xn)
X is measurable for any n.

We have the following result [45, Sec.II.2], [68, Sec. 4.3].

Theorem 1.2.4. Suppose that T is a convenient space X : (Ω, S,P)×T → U is a stochasti-
cally continuous process. Then for any σ-finite measure µ on BT the random field X admits
a separable modification Y : Ω×T → U with the following additional property: there exists a
P⊗µ-negligible set Z ∈ S⊗BT such that P⊗µ

[
Z
]
= 0 and the restriction of Y to (Ω×T )\Z

is S⊗BT -measurable. ⊓⊔

Definition 1.2.5. Let X : Ω × T → U , (ω, t) 7→ Xω(t) ∈ U be a random field, where U is
a finite dimensional Euclidean space and T is a convenient metric space. We say that X is
continuous if for any ω ∈ Ω the sample map

T ∋ t 7→ Xω(t) ∈ U

is continuous. The process is called a.s. continuous if it is indistinguishable from a continuous
process.

If T is an open subset of a finite dimensional Euclidean space we can define in a similar
fashion the concept of a.s. Ck random map. ⊓⊔

There exists sufficient conditions guaranteeing that a random map X admits a modifica-
tion that is a.s. continuous. We mention here Kolmogorov’s famous continuity theorem. For
a proof we refer to [138, Thm. 10.1], or [144, Thm. 2.5.3].

Theorem 1.2.6 (Kolmogorov). Suppose that T = [a1, b1]× · · · × [an, bn] ⊂ Rn and

X : Ω× T → U

is a random field valued in the finite dimensional Euclidean space U . If there exists C > 0,
p ∈ [1,∞) and r ∈ (0, 1] such that

E
[
∥X(s)−X(t)∥p

]
≤ C

∣∣ s− t ∣∣n+pr,
then for any α ∈ (0, r], the random field admits a modification that is a.s. α-Hölder continu-
ous. ⊓⊔

For more refined results of this kind we refer to [87, Chap. 11].

Example 1.2.7. (a) Suppose thatA0, A1, . . . , An are independent random variables, T = R = U .
Define the random function

X : R→ R, X(t) =

n∑
k=0

Akt
k.

This is an example of random polynomial. Clearly X is a.s. smooth.

(b) Suppose that An, Bn, n ∈ Z≥0, are independent mean zero L2-random variables defined on
the same probability space (Ω, S,P). For simplicity we assume Var

[
An
]
= Var

[
Bn
]
=: vn,
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∀n ∈ N. Consider the random Fourier series

X : Ω× [0, 2π]→ R, Xω(θ) = A0 +
∑
n∈N

(
An(ω) cos(nθ) +Bn(ω) sin(nθ)

)
. (1.2.2)

Kolmogorov’s one-series theorem shows that if∑
n

E
[
A2
n

]
+
∑
n

E
[
B2
n

]
= 2

∑
n

vn <∞,

then, for any θ ∈ [0, 2π] there exists a negligible subset Nθ ⊂ Ω such that ∀ω ∈ Ω \ Nθ the
series ∑

n∈N

(
An(ω) cos(nθ) +Bn(ω) sin(nθ)

)
is convergent. We could redefine X(θ) on Nθ to be 0 and we get indeed a family of random
variables on Ω parametrized by θ.

The covariance kernel of this random function is

K(θ, φ) =
∑
n≥0

vn cos
(
n(θ − φ)

)
.

However, in our applications we would like the sample functions θ 7→ Xω(θ) to be well behaved
for most ω and the above approach may prevent this from happening since the set⋃

θ

Nθ

need not be negligible. For the applications we have in mind a less sophisticated ad-hoc
approach will suffice. Here is a taste of this approach.

The functions un(θ) = sinnθ and vn(θ) = cosnθ belong to the Banach space C
(
[0, 2π]

)
with sup-norm ∥ − ∥. Moreover ∥un∥ = ∥vn∥ = 1, ∀n. For the series to converge a.s. in
C
(
[0, 2π]

)
it suffices that the series ∑

n∈N

(
|An|+ |Bn|

)
be a.s. convergent. For this to happen it suffices that∑

n

P
[
|An| > 1/n2

]
+
∑
n

P
[
|Bn| > 1/n2

]
<∞.

Indeed, if the above inequality holds, then we deduce from the Borel-Cantelli lemma that

P
[
|An| > 1/n2 i.o.

]
= 0 = P

[
|Bn| > 1/n2 i.o.

]
.

Thus for ω outside a negligible set we have

|An(ω)| ≤ 1/n2 and |Bn(ω)| ≤ 1/n2,

for all but finitely many n’s.

Thus, the coefficients An and Bn are highly concentrated near 0 for n large, thus they
are very likely to be very small and we could expect that the random Fourier series describes
a function that a.s. continuous. ⊓⊔
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1.2.2. Gaussian random fields. Let U be a finite dimensional real Euclidean space and
T . A Gaussian random field is random field X : (Ω, S,P)× T → U such that, for any finite
subset F ⊂ T , the random vector

(
XF (t)

)
t∈F ∈ UF is Gaussian.

Definition 1.2.8. Let X : (Ω, S,P)× T → U be a Gaussian field on the set T .

(i) The Gaussian field X is called centered if X(t) is a centered Gaussian vector for
any t ∈ T .

(ii) We say that X is ample3 if the Gaussian vector X(t) ∈ U is nondegenerate for any
t ∈ T .

(iii) Given k ∈ N, we say that X is k-ample if for any distinct points t1, . . . , tk ∈ T , the
Gaussian vector

X(t1)⊕ · · · ⊕X(tk) ∈ Uk

is nondegenerate.

(iv) The Gaussian field X is called or ∞-ample if it is k-ample for any k ∈ N.
(v) When U = R we say that X is a Gaussian function.

⊓⊔

Example 1.2.9. The random function Z
(
2+ sin t

)
, Z standard normal random variable, is

ample but not 2-ample since it is periodic. The random function Z sin t is not even ample.⊓⊔

Suppose for simplicity that U is equipped with an inner product. For any finite subset
F ⊂ T distribution of the random vectorXF is uniquely determined by its mean and variance.

The mean is the function

T ∋ t 7→ E
[
X(t)

]
∈ U .

The variance of XF is a symmetric operator Var
[
XF

]
: UF → UF . If F = {t1, . . . , tn},

then Var
[
XF

]
has the block decomposition

Var
[
XF

]
=
(
K(ti, tj)

)
1≤i,j≤n

where

K(ti, tj) = Cov
[
X(ti), X(tj)

]
∈ Hom(U ,U).

The resulting function

K : T × T → Hom(U ,U), (s, t) 7→ K(s, t)

is called the covariance kernel of the Gaussian field X. Recall that 2T0 denotes the collection
of finite subsets of T .

Proposition 1.2.10. Let U be a finite dimensional Euclidean space, T a set and K a map

K : T × T → Hom(U ,U).

The following are equivalent.

(i) There exists a centered Gaussian field X : Ω× T → U with covariance kernel K.

3We use the term ample since this property closely related to the ampleness condition in algebraic geometry. Many

authors refer to ample fields as nondegenerate
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(ii) For any F ∈ 2T0 ⊂ T the operator

KF : UF → UF ,

given by the block decomposition
(
K(f, f ′)

)
f,f ′∈F is symmetric and nonnegative.

Proof. The implication (i) ⇒ (ii) follows form the fact the variance of a centered Gaussian
measure on UF is a symmetric nonnegative operator.

Suppose that K satisfies (ii). For any finite subset F ⊂ T we denote by ΓF the centered
Gaussian measure on UF with variance VarF = KF . The collection ΓF , F ∈ 2T0 is projective
in the sense of (1.2.1). Invoking Kolmogorov’s existence theorem we deduce that there exists
a unique probebility measure ΓT on UT such that, ∀F ∈ 2T0 ,

ΓF = (πF )#ΓT

where πF denotes the natural projection. The random field

Ev : UT × T → U , (u : T → U) 7→ Evt(u) = u(t)

is centered Gaussian with covariance kernel K. ⊓⊔

If T is a metric space and the map t 7→ X(t) is continuous in probability, then the
covariance kernel K is a Mercer kernel in the sense of Definition 1.1.58.

Example 1.2.11. Suppose that T = [a1, b1] × · · · × [an, bn] ⊂ Rn and X : Ω × T → U is
a centered Gaussian field such that the covariance kernel (s, t) 7→ K(s, t) is Lipschitz. For
s, t ∈ T , X(t)−X(s) is a Gaussian vector with variance operator

As,t = Var
[
X(s)−X(t)

]
= K(t, t)−K(s, t)−K(t, s)−K(t, t)

Then, for any k ∈ N we have

E
[
∥X(s)−X(t)∥2k

]
= (2k − 1)!! trAks,t

Observe that

∥As,t∥ ≤ ∥K(t, t)−K(s, t)∥+ ∥K(t, s)−K(s, s)∥.

since (s, t) 7→ K(s, t) is locally Lipschitz we deduce that for any box B ⊂ V ∃C = C(B) > 0
such that

∥As,t∥ ≤ C(B)|s− t|, ∀s, t ∈ B.

Then

trAks,t ≤ (dimU)k∥As,t∥k

We deduce that for k > n

E
[
∥X(s)−X(t)∥2k

[
≤ C1|s− t|k ≤ C2|s− t|n+1, ∀s, t ∈ B,

and Kolmogorov’s continuity theorem implies that the process admits a Hölder continuous
modification if its covariance kernel is Lipschitz continuous. ⊓⊔

When X is Gaussian we can improve Kolmogorov’s continuity result, Theorem 1.2.6.
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Theorem 1.2.12 (Dudley). If T is a compact subset of a Euclidean space RN and there
exists C > 0, and α > 0 such that

E
[
∥X(s)−X(t)∥2

]
≤ C∣∣ log |s− t| ∣∣1+α , ∀s, t ∈ V ,

then X admits a modification that is a.s. continuous. ⊓⊔

For a proof of this result we refer to [1, Sec. 1.4], [48] or [146, Chap.1].

We can use the above result to produce sufficient conditions guaranteeing that the above
Gaussian field is a.s. Ck, but they tend to be cumbersome; see e.g. [1, Thm.1.4.2]. Let us
first sketch the broad contours of the argument in [1, Thm.1.4.2].

In order not to be distracted by heavy formalism we consider only the case n = 1 and
dimU = 1 so that X is a Gaussian function of one real variable t.

Note that if X is to be a.s. C1, then, as t→ t0, the difference quotient
1

t−t0

(
X(t)−X(t0)

)
needs to converge in probability and thus in any Lp. The derivative X ′(t) is also a Gaussian
function and we have

E
[
X ′(t)X(s)

]
= ∂tK(s, t), E

[
X ′(t)X ′(s)

]
= ∂2stK(s, t) (1.2.3)

so K is at least twice differentiable in certain directions. To keeps things simple we assume
that K is C2. Note that for t0, t1 ∈ R and h0, h1 ∈ R \ {0}

1

h0h1
E
[ (
X(t0 + h0)−X(t0)

)(
X(t1 + h1)−X(t1)

) ]
=

1

h0h1

(
K(t0 + h0, t1 + h1)−K(t0 + h0, t1)−K(t0, t1 + h1) +K(t0, t1)

)
=

1

h0h1

( ∫ t1+h1

t1

∂s1K(t0 + h0, s1)ds1 −
∫ t1+h1

t1

∂s1K(t0, s1)ds1

)
=

1

h0h1

∫ t1+h1

t1

( ∫ t0+h0

t0

∂2s0,s1K(s0, s1)ds0

)
ds1

=
1

h0h1

∫
[t0,t0+h0]×[t1,t1+h1]

∂2s0,s1K(s0, s1)ds0ds1 =: K̂
(
t0, h0; t1, h1

)
.

The covariance kernel K̂ :
(
R× R∗ )2 → R extends by continuity to a Mercer kernel

K̂ : X2 → R, X := R2.

This defines a Gaussian field on R2 and, if the kernel K̂ is locally Lipschitz, then X is a.s.
C1. This happens for example when K is C3. More generally, if K ∈ C2ℓ+1, then X is a.s.
Cℓ. A similar results holds if X depends on several Euclidean variables.

Definition 1.2.13 (Jets). For any function f ∈ Cℓ(V ) we define its ℓ-th jet at v to be the
vector

Jℓf(v) = f(v)⊕Df(v)⊕ · · · ⊕Dℓf(v),

where Dkf(v) denotes the k-th order differential of f at v viewed as a symmetric k-linear
form on V . ⊓⊔
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Theorem 1.2.14 (Nazarov-Sodin). Fix ℓ ∈ N0 and α ∈ (0, 1). Suppose that V is an open
subset of Rm and X : Ω× V → R is a centered Gaussian function with covariance kernel K.
Assume that

K ∈ C2ℓ+2
(
V× V).

Fix a ball B ⊂ V , r < dist(B, ∂V ) and set

B+r :=
{
v ∈ V ; dist(v,B) ≤ r

}
.

Then the following hold.

(i) The random function X is a.s. Cℓ,α.

(ii) The ℓ-th jet JℓX(v) is a Gaussian vector for any v ∈ V .

(iii) For every closed ball B ⊂ V and for every compact set S ⊂ V that contains B in
interior, there exists a constant C = C(vol[B], r,m, ℓ, α) > 0 such that

E
[
∥X∥Cℓ,α(B)

]
≤ C

∥∥K∥∥1/2
C2ℓ+2(B+r×B+r)

, (1.2.4)

where Ck,α denotes the spaces of functions that are k times differentiable and the
k-th differential is Hölder continuous with exponent α.

⊓⊔

For a proof we refer to [104, Appendix A.9].

Definition 1.2.15. Fix ℓ ∈ N and 0 ≤ k ≤ ℓ. Suppose that V is an open subset of Rm and
X : Ω×V→ R is a centered Gaussian function that is a.s. Cℓ. The random functiion is said
to be Jk-ample if, for any v ∈ V the Gaussian vector JkX(v) is nondegenerate. ⊓⊔

Example 1.2.16 (Random linear combinations of maps). Suppose that T = R and (Xk)0≤k≤n
are independent standard normal random variables. Then

X(t) =

n∑
k=0

Xkt
k

is a centered Gaussian random function. It is a random polynomial of degree ≤ n so it is a.s.
continuous. Its covariance kernel is the function

K : R× R→ R, K(s, t) =
n∑
k=0

(st)k.

(b) Suppose that U is a finite dimensional Euclidean space, T is a metric space and

f1, . . . , fN : T → U

are continuous functions satisfying the geometric ampleness condition

∀t ∈ T , span
{
f1(t), . . . , fN (t)

}
= U .

If X1, . . . , XN are independent standard normal random variables, then

X(t) =

N∑
k=1

Xkfk(t)

is an ample continuous Gaussian field. ⊓⊔
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Example 1.2.17 (Random trigonometric polynomials with given Netwon polyhedron). De-

note by Tm the m-dimensional torus Tm = Rm/(2πZ)m. For ℓ⃗ ∈ Zm and θ⃗ ∈ Rm we set

⟨ℓ⃗, θ⃗⟩ := ℓ1θ1 + · · ·+ ℓmθm,

and ∣∣ ℓ⃗ ∣∣ := max
i≤k≤m

|ℓk|.

Fix N ∈ N and a convex polyhedron P ⊂ Rm satisfying the following properties.

• The vertices of P are lattice points, i.e., points in Zm.
• The origin is contained in the interior of P , 0 ∈ intP .

• The polyhedron is symmetric with respect to the origin, i.e., x ∈ P ⇐⇒ − x ∈ P .

Denote by≺ the lexicographic order on Rm where x ≺ y iff there exists j such that xj < yj
and xi = yi, ∀i < j. The lexicographic order is a total (linear) order and x ≺ y⇐⇒−y ≺ −x.
Fix independent standard normal random variables

A
ℓ⃗
, B

k⃗
, ℓ⃗ ⪰ 0, k⃗ ≻ 0

and set

Z
ℓ⃗
=


A0, ℓ⃗ = 0,
1√
2

(
A
ℓ⃗
− iB

ℓ⃗

)
, ℓ⃗ ≻ 0,

1√
2

(
A−ℓ⃗ + iB−ℓ⃗

)
, ℓ⃗ ≺ 0.

We denote by PN the dilated polygon PN = N · P . We have a random trigonometric
polynomial

XN (θ⃗) =
∑
ℓ⃗∈PN

Z
ℓ⃗
ei⟨ℓ⃗,θ⃗⟩ = A0 +

∑
ℓ⃗∈PN

ℓ⃗≻0

√
2
(
A
ℓ⃗
cos⟨ℓ⃗, θ⃗⟩+B

ℓ⃗
sin⟨ℓ⃗, θ⃗⟩

)
. (1.2.5)

The Newton polyhedron of XN is a.s. PN .

The random trigonometric polynomial XN (θ⃗) is a centered Gaussian function with co-
variance function

K
(
θ⃗, φ⃗

)
=
∑
ℓ⃗∈PN

cos⟨ℓ⃗, θ⃗ − φ⃗⟩ =
∑
ℓ⃗∈PN

ei⟨ℓ⃗,θ⃗−φ⃗⟩.

If we set τ⃗ := θ⃗ − φ⃗ we deduce

K
(
θ⃗, φ⃗

)
=
∑
ℓ⃗∈PN

ei⟨ℓ⃗,τ⃗⟩

︸ ︷︷ ︸
=:SN (τ⃗)

(1.2.6)

Note that τ⃗ 7→ SN (τ⃗) is an even function. For any multi-index α ∈ Zm≥0, and any x ∈ Rn
we set

|α| :=
m∑
j=1

αj , xα :=

m∏
k=1

xαk
k .

We have

∂ατ SN (0) =
∑
ℓ⃗∈PN

i|α|ℓ⃗α. (1.2.7)
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Using Riemann sums one can show that

lim
N→∞

1

Nm+|α|SN (0) = i|α|
∫
P
xα dx︸ ︷︷ ︸

=:µα
[
P
] .

We can be a bit more precise. The results in [26] show that

∂ατ SN (0) = i|α|Nm+|α|µα
[
P
](

1 +O(1/N)
)

as N →∞. (1.2.8)

We deduce that

Var
[
XN (θ⃗)

]
= K

(
θ⃗, θ⃗

)
= SN (0) = Nm vol

[
P
](

1 +O(1/N)
)
.

Hence XN (θ⃗) is nondegenerate for any θ⃗ if N is sufficiently large. In other words XN is ample
for N ≫ 0.

The random trigonometric polynomial XN is C∞. If e1, . . . , em denotes the canonical
basis of Rm, then we have a.s.

∂θiXN (θ⃗) = lim
h→0

1

h

(
XN (θ⃗ + hei)−XN (θ⃗)

)
(1.2.9)

The variables in the right-hand-side of the above equality are Gaussian. Hence the limit is
also Gaussian and the convergence to the limit holds in any Lp, p ∈ [1,∞). This proves

that the gradient ∇XN (θ⃗) is an Rm-valued Gaussian field. Then same argument shows that
XN ,∇XN are jointly Gaussian.

If |α| is odd, then ∂ατ SN (0) = 0 since P is symmetric with respect to the origin. The
equality (1.2.9) implies that

Cov
[
∂θiXN (θ⃗), XN (θ⃗)

]
= ∂τiSN (0) = 0

so that Cov
[
Xn(θ⃗),∇XN (θ⃗)

]
= 0. Thus XN (θ⃗) and ∇XN (θ⃗) are independent for any θ⃗.

The covariance kernel of ∇XN (θ⃗) and ∇XN (φ⃗) is given by the linear operator

K∇(θ⃗, φ⃗) : Rm → Rm

described by the m×m matrix

K∇(θ⃗, φ⃗)ij = E
[
∂θiXN (θ⃗)∂φjXN (φ⃗)

]
= ∂θi∂φjK(θ⃗, φ⃗

)
.

The variance operator Var
[
∇XN (θ⃗)

]
is described by the symmetric m×m with entries

∂θi∂φjK(θ⃗, φ⃗
)
θ⃗=ϕ⃗

= −∂2τiτjSN (0) ∼ µij
[
P
]
Nm+2 as N →∞, (1.2.10)

where

µij
[
P
]
=

∫
P
xixjdx.

The matrix of moments

M(P ) :=
(
µij
[
P
] )

1≤i,j≤m (1.2.11)

is the Gramian matrix of the functions ℓi : P → R, ℓi(x1, . . . , xm) = xi, i = 1, . . . ,m, with
respect to the inner product in L2(P,λ). These functions are linearly independent since
the interior of P is nonempty. Thus the matrix M(P ) of moments is invertible. From the
asymptotic equality equality

Var
[
∇Xn(θ⃗)

]
∼ Nm+2M(P ) N →∞ (1.2.12)
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the Gaussian map ∇XN is ample for all N sufficiently large. In particular, this also shows
that XN is J1-ample if N is large.

A similar argument shows that for any k ∈ N, XN is Jk-ample if N is sufficiently large.
⊓⊔

1.2.3. Gaussian fields and Gaussian measures. The concepts of Gaussian fields and
Gaussian measures are intimately related. In this subsection we describe mainly through
examples different facets of this relationship.

Example 1.2.18. Suppose that M is a compact metric space.

Suppose that Γ is a Gaussian measure on F = C(M). We obtain a probability space
(F ,BF ,Γ) and a random Gaussian function

EΓ : F ×M → R, (f, x) 7→ EΓ
f (x) = Evx(f) = f(x).

This is a centered Gaussian random Gaussian function that is, tautologically, continuous,
i.e., for any f ∈ F the sample map x 7→ f(x) is continuous. Since the map EΓ is continuous
it is also Borel measurable so the associated random function is measurable in the sense of
Definition 1.2.3.

The covariance kernel of this random function coincides with the covariance kernel of the
Gaussian measure Γ constructed in Example 1.1.59. In particular, it is a Mercer kernel

KΓ :M ×M → R = EΓ

[
EvxEvy

]
.

Let us point out that the Gaussian measure Γ can also be viewed as a Gaussian random
function on F ∗

ΦΓ : F × F ∗ → R, Φf (ξ) = ⟨ξ, f⟩.
There is a natural map M → F ∗, Ev :M → F ∗, x 7→ Evx. The random function EΓ is the
pullback of ΦΓ by Ev,

EΓ(x) = ΦΓ
(
Evx

)
.

Conversely, suppose that

Ψ : (Ω, S,P)×M → R, (ω, t) 7→ Ψω(x)

is a centered Gaussian random function that is a.s. continuous. Thus there exists a negligible
subset N ∈ S such that, ∀ω ∈ Ω \ N the function M ∋ x 7→ Ψω(x) is continuous. Modify Ψ
so that Ψω :M → R is identically zero for ω ∈ N. We obtain a measurable map

Φ : Ω→ RM , Ω ∋ ω 7→ Xω ∈ RT ,

whose image is contained in C(M). Since the Borel sigma-algebra of F = C(M) is the
restriction of the product sigma-algebra BM

R we deduce that Ψ defines a measurable map

Ψ : (Ω, S,P)→
(
F ,BF

)
, ω 7→ Ψω.

We will show that µ = Ψ#P is a Gaussian measure on F .

Denote by L the subspace of F ∗ spanned by the evaluation maps Evx, x ∈M . The ran-
dom function Ψ is Gaussian so, for any finite subset {x1, . . . , xn} ⊂M and any c1, . . . , cn ∈ R,
the random variable c1Ψ(t1) + · · ·+ cnΨ(tn) is Gaussian. In other words, if

ξ =

n∑
k=1

ck Evtk ∈ L,
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then ⟨ξ,Ψ⟩ is Gaussian, i.e. ξ#µ is Gaussian. Since σ(L) = σ(F ∗) = BF , we deduce from
Corollary 1.1.49 that µ is centered Gaussian. By construction, the processes

(
Ψ(x)

)
x∈M and(

EΓ(x)
)
x∈M have the same distribution.

Arguing in a similar fashion one can show that if U is a finite dimensional Euclidean
space, then any a.s. continuous centered Gaussian field Ψ : M → U determines a centered
Gaussian measure Γ on the Banach space C(M,U) and conversely, any Gaussian measure
on this Banach space is determined in this fashion.

In this case for any x ∈M and u∗ ∈ U we have an evaluation map

Evx|u∗ : C(M,U)→ R, f 7→
(
f(x),u∗ ),

where (−,−) denotes the inner product on U . The sigma-algebra generated by these con-
tinuous functionals generates the Borel sigma algebra of C(T ,U). For any x0, x1 ∈ M , the
covariance operator

KΨ(x1, x0) : U → U

is uniquely determined by the equality(
u1,KΨ(x1, x0)u0

)
= EΓ

[
Evx1|u1

Evx0|u0

]
= CovΓ

[
Evx1|u1

,Evx0|u0

]
,

∀u0,u1 ∈ U . ⊓⊔

Example 1.2.19. Let M be smooth, compact connected m-dimensional submanifold of a
Euclidean space U . Denote by g the induced metric on M and by volg the volume measure
determined by g. Set F = C0(M). We can use the metric to define a sup-like norm on
C1(M) and we denote by F 1 the resulting Banach space.

The inclusion F 1 → F is continuous. Suppose that Γ is a Gaussian measure on F 1. We
obtain as before a Gaussian process

EΓ : F 1 ×M → R, (f, x) 7→ Evx(f)

It is tautologically C1 and its covariance kernel coincides with the covariance kernel of the
Gaussian measure Γ.

Conversely, any centered Gaussian C1-field Ψ : Ω × O → R determines as in Exam-
ple 1.2.18 a Gaussian measure Γ on F 1 = C1(M) such that the processes

(
Ψx

)
x∈M and(

EΓ(x)
)
x∈M have the same distribution.

Their common distribution is determined by the covariance kernel K of Ψ,

K :M ×M → R, K(x0, x1) = E
[
Ψ(x0)Ψ(x1)

]
.

Fix two tangent vectors vi ∈ TxiM ⊂ U , i = 0, 1. Let us observe that the directional
derivatives ∂v0Ψ(x0) and ∂v1Ψ(x1) are jointly Gaussian.

To see this choose smooth paths γi : (−1, 1)→M , i = 0, 1, such that

γi(0) = xi, γ̇i(0) = vi.

Then [
∂v0Ψ(x0)
∂v1Ψ(x1)

]
= lim

h→0

1

h

[
Ψ
(
γ0(h)

)
−Ψ(x0)

Ψ
(
γ1(h)

)
−Ψ(x1)

]
.
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The random vectors on the right-hand-side are Gaussian and converge pointwisely the left-
hand-side. We deduce from Proposition 1.1.31 that this convergence is in any Lp, 1 ≤ p <∞
and the limit is also a Gaussian vector. Moreover

E
[
∂viΨ(x0)Ψ(x1)

]
= lim

h→0

1

h

(
E
[
Ψ(γ0(h))Ψ(x1)

]
− E

[
Ψ(x0)Ψ(x1)

] )
= lim

h→0

(
K(γ0(h), x1)−K(x0, x1)

)
= ∂v0K(x0, x1).

Arguing similarly we deduce

E
[
∂v0Ψ(x0)∂v1Ψ(x1)

]
= ∂v0∂v1K(x0, x1). (1.2.13)

⊓⊔

Example 1.2.20. Consider a random Taylor series of the form

X : Ω× [−1, 1]→ R, X(t) = A0c0 +
∑
n≥2

Ancnfn(t), (1.2.14)

where the coefficients An are independent centered Gaussians, fn(t) = tn, and the positive
real numbers c0, c2, . . . , satisfy ∑

n≥2

cn <∞. (1.2.15)

Note that

sup
t∈[−1,1]

|fn(t)| ≤ 1, ∀n.

We deduce from Proposition 1.1.57 that the random series (1.2.14) converges a.s. in the
Banach space F 0 = C

(
[−1, 1]

)
and defines a Gaussian measure Γ0 on this space. In particular

X is a continous Gaussian random function.

The Stone-Weierstrass theorem shows that

V = span
{
1, f2(t), f3(t), . . .

}
is dense in this Banach space. Proposition 1.1.57 implies that the induced Gaussian measure
is nondegenerate. Proposition 1.2.23 implies that X is k-ample, for any k ∈ N.

Suppose now that the sequence (cn) satisfies the more stringent requirement∑
n≥2

ncn <∞. (1.2.16)

We have

sup
t∈[−1,1]

∣∣ f ′n(t) ∣∣ ≤ n, ∀n,
we deduce from Proposition 1.1.57 that the random series (1.2.14) converges a.s. in the Banach
space F 1 := C1

(
[−1, 1]

)
and defines a Gaussian Γ1 measure on this space. This Gaussian

measure is degenerate since P
[
f ′(0) ̸= 0

]
= 0.

If we denote by L the span in F ∗ of the linear functionals Evt, t ∈ (−1, 1), then
σ(L) = BF . Moreover, any ξ ∈ L \ {0} is a nondegenerate Gaussian random variable since
Γ0 is nondegenerate. On the other hand, the linear functional ξ0 ∈ F ∗

1 given by ξ0(f) = f ′(0)
is degenerate. ⊓⊔
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Theorem 1.2.21. Fix ℓ ∈ N0 and α ∈ (0, 1). Suppose that V is an open subset of Rm and
X : Ω× V→ R is a centered Gaussian function with covariance kernel K. Assume that

K ∈ C2ℓ+2
(
V× V).

Then X is a.s. Cℓ,α and for every p ∈ [1,∞) and every box B ⊂ V there exists a constant
Cp = Cp(B,V, ℓ, α) > 0 such that

E
[
∥X∥p

Cℓ,α(B)

]
≤ Cp

∥∥K ∥∥ p+1
2

C2ℓ+2(B×B)
, (1.2.17)

where Ck,α denotes the spaces of functions that are k times differentiable and the k-th differ-
ential is Hölder continuous with exponent α.

Proof. For simplicity, we denote by ∥ − ∥ the norm ∥ − ∥Cℓ,α(B) and we set

Z(K) :=
∥∥K ∥∥

C2ℓ+2(B×B)
.

According to (1.2.4) there exists a constant C = C(B,V, ℓ, α) > 0 such that

E
[
∥X∥

]
≤ CZ(K)1/2.

From Markov’s inequality we deduce that

P
[
∥X∥ > t

)
≤ CZ(K)1/2

t
.

If we choose r0 := 4CZ(K)1/2, then we deduce that

P
[
∥X∥ > r0

]
<

1

4
.

The restriction X|B induces a Gaussian measure Γ on Cℓ,α(B). Fernique’s inequality (1.1.31)
applied to Γ shows that there exists a universal constant β > 0 such that

P
[
∥X∥ > r

)
≤ r0e

−βr2

r20 = r0e
−Ar2 , A =

β2

r20
.

Then

E
[
∥X∥p

]
= p

∫ ∞

0
rp−1P

[
∥X∥ > r

)
dr ≤ pr0

∫ ∞

0
rp−1e−Ar

2
dr

(s = Ar2, r =
√

s
A )

=
pr0

2Ap/2

∫ ∞

0
sp/2−1e−sds︸ ︷︷ ︸
=Γ(p/2)

= Cpr
p+1
0 .

⊓⊔

Definition 1.2.22. Suppose that M is a compact metric space, U a finite dimensional
Euclidean space and Ψ : Ω × M → U is a continuous Gaussian field. We say that Ψ is
strongly nondegenerate if the induced Gaussian measure ΓΨ on the Banach space C0(M,U)
is nondegenerate. ⊓⊔

Proposition 1.2.23. Suppose that Ψ : Ω×M → U is a strongly nondegenerate continuous
Gaussian field. Then Φ is ∞-ample, i.e., it is k-ample for any k ∈ N.
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Proof. Let x1, . . . , xk be k distinct points in M and O ∈ Uk an open set. The map

Evx1,...,xk : C0(M,U)→ Uk, F 7→
(
F (x1), . . . , F (xk)

)
is continuous so Ô = Ev−1

x1,...,xk

(
O
)
is an open subset of C0(M,U). If we denote by ΓΨ the

Gaussian measure on C0(M,U) induced by Φ. Then

P
[ (

Ψ(x1, . . . ,Ψ(xk)
)
∈ O

]
= ΓΨ

[
Ô
]
> 0

since ΓΨ is nondegenerate. ⊓⊔

1.2.4. Random series. Historically, the first random functions were constructed as random
Fourier series or random Taylor series, [77]. For Gaussian functions this not just a peculiar
way of constructing them. It is a feature of this class of random functions as most of them
have a description as sums of random series. More precisely we have the following result,
[21, Thm. 3.5.1].

Theorem 1.2.24. Sppose that Γ is a centered Gaussian measure on a separable Fréchet space
X with Cameron-Martin space HΓ. Denote by X∗

Γ the closure of X∗ in L2(X,Γ). The map
T ∗
Γ : X∗

Γ → HΓ in (1.1.34) is a surjective isometry. For any h ∈ HΓ we set

ĥ :=
(
T ∗
Γ

)−1
h ∈X∗

Γ ⊂ L2(X,Γ),

Fix a complete orthonormal system (hn)n∈N in HΓ. Then there exists a Γ-negligible subset
N ⊂X such that for any x ∈X \N

x =
∑
n∈N

ĥn(x)hn,

where the above convergence is in the topology of X. ⊓⊔

The goal of this subsection is elaborate on this result and see how it looks in concrete
situations.

Let T be a compact metric space. The distribution of the (centered) Gaussian function
on T

Ψ : Ω× T → R, (ω, t) 7→ Ψω(t)

is uniquely determined by its covariance kernel

K : T × T → R, K(x, y) = E
[
Ψ(x)Ψ(y)

]
.

Note that K satisfies the following conditions.

(i) K(s, t) = K(t, s), ∀s, t ∈ T .

(ii) For any t1, . . . , tn ∈ M the symmetric matrix
(
K(ti, tj)

)
1≤i,j≤n is nonnegative

definite.

Conversely, Kolmogorov’s existence theorem shows that any function K : T × T → R
satisfying (i) and (ii) is the covariance kernel of a centered Gaussian function Ψ on M .

Proposition 1.2.25. The following are equivalent.

(i) The Gaussian random function Ψ is stochastically continuous; see Definition 1.2.3.

(ii) The covariance kernel is continuous.
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Proof. (i) ⇒ (ii). If (sn, tn) → (s, t), then Ψ(sn) → Ψ(s) and Ψ(tn) → Ψ(t) in probability,
and thus also in L2. We deduce that

lim
n→∞

K(sn, tn) = lim
n→∞

E
[
Ψ(sn)Ψ(tn)

]
= E

[
Ψ(s)Ψ(t)

]
= K(s, t)

(ii) ⇒ (ii) Note that

E
[ (

Ψ(tn)−Ψ(t)
)2 ]

= K(tn, tn)− 2K(tn, t) +K(t, t)→ 0 as n→∞.

⊓⊔

Thus, if Ψ is stochastically continuous its covariance kernel is a Mercer kernel. If K
satisfies additional conditions such as the one in Dudley’s Theorem 1.2.12, then Ψ admits a
modification that is continuous. In particular in this case K is continuous and thus it is a
Mercer kernel.

Let us point out that not every stochastically continuous Gaussian function admits a
continuous modification; see e.g. [1, Cor. 1.5.5] or [17]. However, if we know a priori that Ψ
is a continuous Gaussian function, then this Gaussian function can be described as the sum
of a certain random series of functions. Here are the details.

Denote by F the Banach space C(T ) and let F 1 ⊂ F be a subspace equipped with a
norm that makes it into a Banach space and the inclusion F 1 ↪→ F is continuous. E.g., F 1

could be C1(T ) if T were a compact smooth manifold.

Suppose that

Ψ : Ω× T → R, (ω, x) 7→ Ψω(x)

is a centered Gaussian function such that, ∀ω ∈ Ω the functions Ψω(−) belongs to F 1. Denote
by K its covariance kernel. In particular, K is a Mercer kernel.

Arguing as in Example 1.2.19 we deduce that Ψ defines a Gaussian measure Γ on F 1

whose covariance kernel coincides with the covariance kernel of Ψ. Moreover, for any s ∈ T
the function Ks : T → R, Ks(t) = K(s, t) belongs to F 1.

Let HΓ denote the Cameron-Martin space of Γ. Recall that HΓ ⊂ F 1. As explained in
Appendix B.5, HΓ is the closure of the vector space

span
{
Ks; s ∈ T

}
with respect to the inner product(

Ks,Kt

)
= K(s, t), ∀s, t ∈ T .

Equivalently, if we denote by HΨ the closure in L2(Ω, S,P) of the span of the random variables(
Ψ(t)

)
t∈T , then the map

HΨ ∋ Ψ(t) 7→ Kt ∈ HΓ

induces a Hilbert space isomorphism Eψ : HΨ → HΓ; see Example B.5.5. For each h ∈ HΓ we

denote ĥ the unique random variable in HΨ that corresponds to h under this isomorphism.

More formally, ĥ = E−1
Ψ (h). The space HΓ is separable. If (hn)n∈N is a complete orthonormal

basis of HΓ, then
(
ĥn
)
is a sequence of independent standard normal random variables in

L2(Ω, S,P).
We then have the following nontrivial probabilistic result.
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Theorem 1.2.26 (Karhune-Loève expansion). Suppose that (hn)n∈N is an orthonormal basis
of HΓ. Then the random series of functions in F 1

S(ω) =
∑
n≥1

ĥn(ω)hn

converges a.s. in the norm of F 1 and it is a.s. equal to Ψω. ⊓⊔

For a proof we refer to [1, Thm. 3.1.1], [69, Thm. 2.6.10], or [144, Thm. 4.1.1].

Using the covariance kernel of Ψ one can explicitly describe an orthonormal basis of HΓ.

Fix a diffuse finite Borel probability measure µ on T . Recall that this means that
µ
[
U
]
> 0 for any open subset of T . Suppose that K is an arbitrary Mercer kernel on T .

As described in (1.1.35), the covariance kernel K defines a symmetric nonnegative definite
integral operator

[K]µ : L2(T , µ)→ L2(T , µ).

This operator is compact, symmetric and nonnegative. Each nonzero eigenvalue is positive
and has finite multiplicity. Let (λn)n≥1 be these nonzero eigenvalues repeated according to
their multiplicities. We choose an orthonormal system of L2(M,µ) consisting of eigenfunc-
tions of [K]µ corresponding to these nonzero eigenvalues

(ψn)n∈N, [K]µψn = λnψn,

∫
T
ψn(t)ψm(t)µ

[
dt
]
= δmn =

{
1, m = n,

0, m ̸= n.

Since [K]µ
(
L2(T )

)
⊂ C(T ) we deduce that each ψn is continuous.

Theorem 1.2.27 (Mercer). The following hold.

(i) The series ∑
n≥1

λnψn(s)ψn(t)

converges uniformly and absolutely to K(x, y).

(ii) The operator [K]µ is trace class and

tr[K]µ =
∑
n≥1

λn =

∫
T
K(t, t)µ

[
dt
]
.

(iii) The collection
(
en =

√
λnψn

)
n∈N is a complete orthonormal basis of the RKHS

space HKdetermined by K. In particular, if K is the covariance kernel of a Gauss-
ian measure Γ on F 1 as in Theorem 1.2.26, then this collection is a complete
orthonormal basis HΓ = HK .

(iv) A function

f(t) =
∑
n≥1

cnψn(t) ∈ L2(T , µ)

belongs to HK iff ∑
n≥1

c2n
λn

<∞.

⊓⊔
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For a proof we refer [125, Prop.11.8, Thm. 11.18].

Example 1.2.28. It is instructive to see how this works in a simple yet fundamental example.
Let

K : [0, 1]× [0, 1]→ R, K(s, t) = min(s, t).

It is clearly continuous and symmetric. It is nonnegative definite since

K(s, t) =
(
I [0,s], I [0,t]

)
L2([0,1])

, ∀s, t ∈ [0, 1].

It defines a centered Gaussian process X : (Ω, S,P)× [0, 1]→ R satisfying

E
[
X(s)−X(t)|2

]
= K(t, t)− 2K(s, t) +K(s, s) = |t− s|.

According to Kolmogorov’s continuity theorem it admits a continuous version. This version
is the Brownian motion.

Let us find the eigenvalues of [K] = [K]Leb, where Leb denotes the Lebesgue measure.
The equality [K]ψ = λψ reads

λψ(t) =

∫ t

0
sψ(s)ds+ t

∫ 1

t
ψ(s)ds, ∀t ∈ [0, 1] ψ ∈ L2

(
[0, 1]

)
. (1.2.18)

If λ = 0 we deduce from Lebesgue’s differentiation theorem that ψ = 0 a.e. so ker[K] = {0}.
If λ > 0 we deduce from (1.2.18) that Ψ ∈ C∞ and ψ(0) = 0. Derivating (1.2.18) we

deduce

λψ′(t) = tψ(t)− tψ(t) +
∫ 1

t
ψ(s)ds, ψ(0) = 0.

Derivating again we deduce that

λψ′′(t) = −ψ(t), ψ(0) = 0,

so that

ψ(t) = A sin(µt), µ :=
1√
λ
.

If sinµt is an eigenfunction, then for any t ∈ [0, 1] we have the equality

1

µ2
sinµt =

∫ t

0
s sin(µs)ds+ t

∫ 1

t
sin(µs)ds

= − t
µ
cos(µt) +

1

µ

∫ t

0
cos(µs)ds+

t

µ
cosµt− 1

µ
cosµ =

1

µ2
sinµt− cosµ

µ
.

This implies cosµ = 0, i.e., µ =
(
n− 1

2

)
π, n ∈ N. Thus the spectrum of K is

λn =
4

(2n− 1)2π2
, n ∈ N

and consists of simple eigenfunctions

ψn(t) = sin
(
(2n− 1)πt/2

)
,

∫ 1

0
ψn(t)

2dt =
1

2
.

The RKHS space HK consists of functions f ∈ C0
(
[0, 1]

)
∩ L2

(
[0, 1]

)
such that f(0) = 0

and ∑
n∈N

n2
∣∣ ( f, ψn )L2

∣∣2 <∞.
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We recognize above the square of the norm of the Sobolev space L1,2
(
[0, 1]

)
consisting of

absolutely continuous functions with L2 derivative. Hence

HK :=
{
f ∈ L1,2

(
[0, 1]

)
; f(0) = 0

}
.

If (Xn)n∈N is a sequence of independent standard normal variables, we deduce from Theorem
1.2.26 and Theorem 1.2.27 that the random series∑

n≥1

Xn
2
√
2 sin

(
(2n− 1)πt/2

)
(2n− 1)π

converge a.s. in L1,2 and, in particular uniformly on [0, 1]. The limit is the Brownian motion.
⊓⊔

We conclude this subsection with a simple application of Mercer kernels that we will use
in the future.

Proposition 1.2.29. Let (M, g) be a smooth compact connected m-dimensional manifold
and

K :M ×M → R
a Mercer kernel on M . Set µ := volg. Suppose that for some ℓ ∈ N the operator [K]µ induces
a continuous operator

[K]µ : L2(M,µ)→ Cℓ(M).

(This happens if, e.g., K ∈ Cℓ(M ×M).) Let (λn)n≥1 be the nonzero eigenvalues of [K]µ
repeated according to their multiplicity and let (ψn) be an orthonormal system of eigenfunc-
tions corresponding to these eigenvalues. Fix a sequence (Xn)n∈N of independent standard
normal random variables. Then the following hold.

(i) For any n ∈ N, ψn ∈ Cℓ(M) and

C := sup
n∈N

λn∥ψn∥Cℓ(M) <∞. (1.2.19)

(ii) The random series ∑
n≥1

Xnλ
2
nψn (1.2.20)

converges a.s. in Cℓ(M).

Proof. (i) Note that

ψn =
1

λn
Kψn ∈ Cℓ(M).

If we denote by C the norm of the bounded operator [K]µ : L2(M,µ) → Cℓ(M) we deduce
that

λn∥ψn∥Cℓ(M) = ∥[K]µψn∥Cℓ(M) ≤ C∥ψn∥L2(M) = C.

(ii) We deduce from (i) and Theorem 1.2.27(ii) that∑
n∈N

λ2n∥ψn∥Cℓ(M) ≤ C
∑
n∈N

λn <∞.

The conclusion now follows from Proposition 1.1.57. ⊓⊔



1.2. Gaussian fields 53

Remark 1.2.30. Proposition 1.2.29 is more restrictive than Theorem 1.2.26, but it does not
require the a priori knowledge that K is the covariance kernel of a Gaussian Cℓ-function on
M .

The covariance kernel of the Gaussian Cℓ-function defined by (1.2.20) is K∗4, where K∗n

is defined inductively as

K∗n+1(x, y) =
(
K∗n ∗K

)
(x, y) :=

∫
M
K∗n(x, z)K(z, y)µ

[
dy
]
.

If we apply Theorem 1.2.26 to the kernel K∗4 we obtain Proposition 1.2.29. However, we
could do this only because Proposition 1.2.29 guarantees that K∗4 is the covariance kernel of
a Gaussian Cℓ-function. ⊓⊔

Example 1.2.31 (Random Fourier series). Consider them-dimensional torus Tm :=
(
R/Z

)m
equipped with its flat metric. Denote by θ⃗ = (θ1, . . . , θm) ∈ (R/Z)m the resulting angular
coordinates. The Laplacian4 of the flat metric g1 = (dθ1)2+ · · ·+(dθm)2 on Tm has the form

∆ = −
m∑
i=1

∂2θi .

We set u0 = 1 and, for ℓ⃗ = (ℓ1, . . . , ℓm) ∈ Zm \ {0}, we define u
ℓ⃗
, vℓ : Rm → R

u
ℓ⃗
(θ⃗) =

√
2 cos 2π⟨ℓ⃗, θ⃗⟩, v

ℓ⃗
=
√
2 sin 2π⟨ℓ⃗, θ⃗⟩.

These functions are eigenfunctions of the Laplacian operator

∆ = −
n∑
j=1

∂2θj .

More precisely,

∆u
ℓ⃗
= |2πℓ⃗|2u

ℓ⃗
, ∆v

ℓ⃗
= |2πℓ⃗|2v

ℓ⃗
, |ℓ⃗|2 =

m∑
i=1

ℓ2i .

Consider as in Example 1.2.17 the lexicographic order ≺ on Rm. The collection{
u
ℓ⃗
, v

k⃗
; ℓ⃗, k⃗ ∈ Zm, k⃗ ≻ 0, ℓ⃗ ⪰ 0

}
is complete orthonormal system of L2(Tm).

Pick an even Schwartz function a ∈ S(R) such that a(0) = 1. We will refer to such a
function as amplitude. For R > 0 (meant to be large) set

FR(θ⃗) = FRa (θ⃗) = R−m/2
(
A0u0 +

∑
ℓ⃗≻0

a
( ∣∣ 2πℓ⃗ ∣∣/R)(A

ℓ⃗
u
ℓ⃗
(θ⃗) +B

ℓ⃗
v
ℓ⃗
(θ⃗)
) )
, (1.2.21)

where A
ℓ⃗
, B

k⃗
are independent standard normal random variables. Since a is even, the

function b(t) := a
(√
|t|
)
is also Schwartz so Rm ∋ ξ 7→ a

(
|ξ|
)
= b

(
|ξ|2

)
∈ R is Schwartz

and O(m)-invariant.

4Throughout this book the Laplacian is the geometers’ Laplacian and it is a nonnegative operator.
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Since a is a Schwartz function we deduce from Proposition 1.1.57 that the above series
converges a.s. in any Ck(T). If we define Z

ℓ⃗
by

Z
ℓ⃗
:=


A0, ℓ⃗ = 0,
1√
2

(
A
ℓ⃗
− iB

ℓ⃗

)
, ℓ⃗ ≻ 0,

Z̄−ℓ⃗, ℓ⃗ ≺ 0.

(1.2.22)

then we have

FRa (θ⃗) = R−m/2
∑
ℓ⃗∈Zm

a
( ∣∣ 2πℓ⃗ ∣∣/R )Z

ℓ⃗
e2πi⟨ℓ⃗,θ⟩. (1.2.23)

Since a
(
|2πℓ⃗|/R

)
decays very fast as |ℓ⃗| → ∞ we deduce from Kolmogorov’s two-series

theorem that for any ν ∈ N the random series∑
ℓ⃗∈Zm

a
(
|2πℓ⃗|/R

)2 ∥ e
ℓ⃗
∥2Cν(Tm)

converges a.s. and thus the series ∑
ℓ⃗∈Zm

a
(
|2πℓ⃗|/R

)
Z
ℓ⃗
e
ℓ⃗

converges a.s. in Cν
(
Tm
)
. In particular, this shows that the Gaussian function FRa is a.s.

smooth. Its covariance kernel is

CRa
(
φ⃗+ τ⃗ , φ⃗

)
= CRa (τ⃗) = R−m

∑
ℓ⃗∈Zm

a
(
|2πℓ⃗|/R

)2
e2πi⟨ℓ⃗,τ⃗⟩. (1.2.24)

Define wa = wa,m : Rm → R, wa(ξ) = a
(
|ξ|
)2
, and denote by ŵa the Fourier transform of wa,

ŵa(x) =

∫
Rm

e−i⟨ξ,x⟩a
(
|ξ
)2
dξ.

Using Poisson’s summation formula (B.2.6) we deduce

CRa (φ⃗+ τ⃗ , φ⃗) =
1

(2π)m

∑
k⃗∈Zm

ŵa

(
(k⃗ − τ⃗)R

)
. (1.2.25)

Observe that CRa is the Schwarz kernel of the smoothing operator a
(
ℏ
√
∆
)2
, ℏ = R−1, and

thus the associated Gaussian function is a.s. smooth.

For example if a(t) = e−t
2/4, then wa = e−|ξ|2/2 and we deduce from Proposition 1.1.15

that

ŵa(x) = (2π)m/2e−|ξ|2/2, CRa (θ⃗, φ⃗) =
∑
k⃗∈Zm

e−R
2 |⃗k−τ⃗ |2/2

We can think of FRa either as a function on Tm, or as a Zm-periodic function of Rm. If we
formally let R→∞ in the equality

Rm/2FRa (θ⃗) =
∑
ℓ⃗∈Zm

a
(
|2πℓ⃗|/R

)
Z
ℓ⃗
e
ℓ⃗
(θ⃗)

we deduce

W∞(θ⃗)
?
= lim

R→∞
Rm/2FRa (θ⃗) =

∑
ℓ⃗∈Zm

Z
ℓ⃗
e
ℓ⃗
(θ⃗).
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The series on the right-hand-side is a.s. divergent but we can still assign a meaning to W∞
as a random generalized function, i.e., a random linear functional

C∞(Tm)→ R, W∞(f) =
∑
ℓ⃗∈Zm

Z
ℓ⃗

(
f, e

ℓ⃗
(θ⃗)
)
L2(Tm)

.

A simple computation shows that for any functions f0, f1 ∈ C∞(Tm)

Cov
[
W∞(f0),W∞(f1)

]
=
∑
ℓ⃗∈Zm

(
f0, eℓ⃗

)
L2(Tm,g1)

(
f1, eℓ⃗

)
L2(Tm,g1)

=
(
f0, f1

)
L2(Tm,g1)

.

The last equality shows that W∞ is the Gaussian white noise on Tm driven by the volume
measure volg1 ; see [67]. In other words, one could think of the family

(
WR = Rm/2FRa

)
R>0

as a white noise approximation.

Here is another more geometric way of constructing FRa . For R > 0 meant to be large,
we denote by ∆R the Laplacian of the metric gR = R2g1. Observe that

vol
[
M, gR

]
= Rm vol

[
M, g1

]
= Rm, ∆R = R−2∆1.

Note that the torus (Tm, gR) is isometric to the torus Rm/(RZ)m so as R → ∞ it starts to
resemble5 more and more like Rn with the canonical metric. Set

uR
k⃗
= R−m/2u

k⃗
, vR

ℓ⃗
= R−m/2v

ℓ⃗
.

The collection {
uR
k⃗
, vR

ℓ⃗
; k⃗ ⪰ 0, ℓ⃗ ≻ 0

}
is a complete L2(M, gR)-orthonormal system of real eigenfunctions of ∆R. Moreover

∆Ru
R
k⃗
= λ

k⃗
(R), ∆Rv

R
ℓ⃗
= λ

ℓ⃗
(R)vR

ℓ⃗
, λ

k⃗
(R) = R−2

∣∣ 2πk⃗ ∣∣2
Then

FRa (θ⃗) = a(0)A0u
R
0

(
θ⃗
)
+
∑
ℓ⃗≻0

a
(
λ
ℓ⃗
(R)1/2

)(
A
ℓ⃗
uR
ℓ⃗

(
θ⃗
)
+B

ℓ⃗
vR
ℓ⃗

(
θ⃗
) )
.

Let me give an idea of the statistical meaning of the large parameter R.

Suppose for example that a is supported on the interval [−1, 1] and even better, it is a
smooth approximation of the (discontinuous) indicator function I [−1,1]. Then the random
series (1.2.21) is a random finite linear combination of eigenfunctions of the Laplacian on

Tm corresponding to the eigenvalues satisfying
√
λ ≤ R. To put it differently, the random

function Rm/2FRa defines a Gaussian measure ΓR on the Féchet space C∞(Tm) and the vector
space spanned by the eigenfunctions corresponding to the eigenvaluess λ ≤ R2 is contained in
the support of ΓR. As R→∞ the the support of ΓR increases and it covers more and more
of the space C∞(Tm). Moreover, since a(λ/R) → a(0) as R → ∞ some of the bias towards
eigenfunctions corresponding smaller eigenvalues built-in the the definition of FRa starts to
dissipate and, intuitively, in the white noise limit we reach an unbiased sampling of all the
smooth functions on Tm. This last claim is only a nonrigorous guiding motivation.

Finally let me give a third, functional analytic description of the function FRa .

As R→∞ the Gaussian measure ΓR converges in some sense to Γ∞, the Gaussian white
noise. This white noise in fact a measure of C−∞(Tm), the topological dual of the Fréchet
space C∞(Tm). The elements of C−∞(Tm) are commonly known as generalized functions, or

5For centuries people thought that Earth was flat, i.e., it resembled R2.
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distributions. For a more in depth look at this aspect we refer to [67, Chap. III]. Consider

the smoothing operator a
(
ℏ
√
∆
)
, ℏ = R−1. Then

Rm/2FRa = a
(
ℏ
√
∆
)
W

where W is a generalized function with distribution Γ∞. Note that when a(x) = e−x
2
and

t = ℏ1/2, then a
(
ℏ
√
∆
)
= e−t∆ - the heat operator. ⊓⊔

1.2.5. Stationary and isotropic Gaussian fields. Fix a centered, complex valued, ran-
dom function F : Rm → C that is L2-continuous, i.e.,

lim
s→t

∥∥F (s)− F (t) ∥∥
L2 = 0, ∀t ∈ Rm.

In particular, the covariance kernel of F ,

K = Rm × Rm → C, K(x,y) = E
[
F (x)F̄ (y)

]
is continuous.

Suppose that G is a Lie group that acts on Rm,

G× Rm → Rm, G× Rm ∋ (g,x)→ g · x ∈ Rm.

We say that F is G-invariant if for any x1, · · · ,xn ∈ Rm and any g ∈ G the random vectors(
F (g · x1), . . . , F (g · xn)

)
and

(
F (x1), · · · , F (xn)

)
have identical distributions.

A necessary condition for this to happen is

K
(
g · x, g · y

)
= K

(
x,y

)
, ∀g ∈ G, x,y ∈ Rm.

The first interesting case is when G is the group of translations G ∼=
(
Rm,+

)
. The centered

random function F is called homogeneous or stationary if it is invariant with respect to the
group of translations, i.e., for any x1, · · · ,xn ∈ Rm and any t ∈ Rm the random vectors(

F (t+ x1), . . . , F (t+ xn)
)

and
(
F (x1), · · · , F (xn)

)
have identical distributions. In particular

K
(
t+ x, t+ y

)
= K

(
x,y

)
, ∀t,x,y ∈ Rm.

This happens iff and only if there exists a continuous function K : Rm → C such that

K(x,y) = K(x− y), ∀x,y ∈ Rm. (1.2.26)

A centered random function on Rm is called wide sense stationary if its covariance kernel
satisfies (1.2.26). This imposes severe restrictions on K because for any x1, . . . ,xn ∈ Rn the
hermitian n× n-matrix

(
K(xi − xj)

)
1≤i,j≤n has to be nonnegative definite.

The continuous functions K : Rm → C with this property are called nonnegative definite.
They have a Fourier theoretic characterization.

Theorem 1.2.32 (S. Bôchner). Let K : Rm → C be a continuous function. The following
are equivalent.

(i) The function K is nonnegative definite.
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(ii) There exists a finite Borel measure µ on Rm such that

K(x) =

∫
Rm

ei⟨ξ,x⟩µ
[
dξ
]

⊓⊔

For a proof we refer to [132, I.24], [134, Sec. 1.4] or [142, Thm. 9.17]. The measure
µ above is uniquely determined by the function K via the inverse Fourier transform in the
space of tempered distributions. It is called the spectral measure of the wide sense stationary
random function.

Observe that if F is a centered L2-continuous real Gaussian function, then F is stationary
iff it is wide sense stationary.

Example 1.2.33. Suppose that Z is a centered symmetric complex6 Gaussian random vari-
able and Φ : Rm → C is a nonzero continuous function. We obtain a random function
F (x) = ZΦ(x). A simple computation shows that if this function is wide sense stationary iff

there exist ξ ∈ Rm and A ∈ C \ {0} such that Φ(x) = Aei⟨ξ,x⟩; see [157, Sec.7] for details.
The covariance kernel of this function is

K(x,y) =
∣∣A ∣∣2ei⟨ξ,x−y⟩.

The spectral measure is
∣∣A ∣∣2δξ.

Consider now a simple linear combination of random functions of the above type

G(x) = Z1e
i⟨ξ1,x⟩ + Z2e

i⟨ξ2,x⟩.

The random function G is wide sense stationary iff E
[
Z1Z̄2

]
= 0. In this case the spectral

measure is
E
[
|Z1|2

]
δξ1 + E

∣∣ |Z2|2
]
δξ2 .

The random function G is real valued iff ξ2 = −ξ1, Z2 = Z̄1. In this case

G(t) = X1 cos⟨ξ1,x⟩+ Y1 sin⟨ξ1,x⟩, Z1 =
1

2

(
X1 − iY1

)
.

⊓⊔

Example 1.2.34. Consider the Gaussian real function FRa defined by (1.2.21) discussed in
Example 1.2.31. We recall that a : R → R is an amplitude, i.e., an even Schwartz function
such that a(0) = 1 and

FRa (θ⃗) = R−m/2
(
A0u0 +

∑
ℓ⃗≻0

a
( ∣∣ 2πℏℓ⃗ ∣∣)(A

ℓ⃗
u
ℓ⃗
(θ⃗) +B

ℓ⃗
v
ℓ⃗
(θ⃗)
) )

= R−m/2
∑
ℓ⃗∈Zm

a
( ∣∣ 2πℓ⃗ ∣∣/R )Z

ℓ⃗
e
ℓ⃗
(θ⃗), e

ℓ⃗
(θ⃗) := e2πi⟨ℓ⃗,θ⃗⟩.

We think of FRa as a function on Rm that is periodic with respect to the lattice Zm. Equiva-
lently, we can think of it as a function on the m-dimensional torus Tm = Rm/Zm. We have
seen in in Example 1.2.31 that is a.s. smooth. Its covariance kernel is given by (1.2.24)

CRa (θ⃗, φ⃗) = R−m
∑
ℓ⃗∈Zm

a
( ∣∣ 2πℓ⃗ ∣∣/R )2e

ℓ⃗
(θ⃗ − φ⃗).

6See Definition 1.1.37.
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Hence FRa is stationary and CRa (τ⃗) = CRa (τ⃗ + φ⃗, φ⃗) is given by

Cℏ
a (τ⃗) = R−m

∑
ℓ⃗∈Zm

a
( ∣∣ 2πℓ⃗ ∣∣/R )2e

ℓ⃗
(τ⃗).

If we set

µ
[
dξ
]
= µa,R

[
dξ
]
:= R−m

∑
ℓ⃗∈Zm

a
( ∣∣ 2πℓ⃗ ∣∣/R )2δ

2πℓ⃗

[
dξ
]
,

we deduce that

KR
a (τ⃗) =

∫
Rn

e−i⟨ξ,τ⃗⟩µa,R
[
dξ
]
=

∫
Rn

ei⟨ξ,τ⃗⟩µa,R
[
dξ
]
.

Thus µa,R is the spectral measure of this homogeneous random function.

We deduce from (1.2.25) that

CRa (τ⃗) =
∑
ℓ⃗∈Zm

a
( ∣∣ 2πℓ⃗ ∣∣/R )2e−2πi⟨ℓ⃗,τ⃗⟩ =

∑
k⃗∈Zm

Ka

(
(k⃗ − τ⃗)R

)
,

where

Ka(x) =
1

(2π)m
ŵa(x) =

1

(2π)m

∫
Rm

e−i⟨ξ,x⟩a
(
|ξ|
)2
dξ.

We can rewrite this in a more conceptual form.

We introduce the lattice ΛR =
(
2πR−1Z

)m
and its dual LR =

(
RZ

)m
. We set x := τ⃗R

and we deduce

CRa (R
−1x) = R−m

∑
ω∈ΛR

a
(
ω
)2
ei⟨ω,x⟩ =

∑
t∈LR

Ka

(
t− x

)
. (1.2.27)

Note that KR
a

(
x,y

)
:= CRa

(
R−1(x−y)

)
is the covariance kernel of the stationary Gaussian

function

ΦRa (x) = FRa
(
R−1x

)
that is periodic with respect to the lattice LR = (RZ)m. Set

KR
a (x) := KR

a

(
0,x

)
= CRa

(
R−1x

)
.

We have

KR
a (x)−Ka(x) =

∑
t∈LR\{0}

Ka

(
x− t

)
.

Since ŵa is a Schwartz function we deduce that

lim
R→∞

KR
a = Ka in Ck

(
Rm

)
, ∀k ∈ N. (1.2.28)

More precisely, for every ball B ⊂ Rm, every k ∈ N, and every N > 0 there exists
C = C(k,N,B) > 0 such that

∀R > 1 :
∥∥KR

a −Ka

∥∥
Ck(B)

≤ CR−N . (1.2.29)

⊓⊔

The Gaussian function F : Rm → R is called isotropic if it is homogeneous and invariant
with respect to the natural action of the orthogonal group O(m) on Rm. If KF is the
covariance kernel of F then there exists a one-variable function KF such that

KF

(
x,y

)
= KF

(
|x− y|

)
, ∀x,y ∈ Rm.
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Example 1.2.35. Suppose that a : R→ R is an even Schwartz function such that a(0) = 1.

Consider the finite Borel measure µ ∈ Meas(Rm)

µ
[
dξ
]
= µa

[
dξ
]
=

1

(2π)m
wa,m

(
ξ
)
λ
[
dξ
]
, wa,m

(
ξ
)
= a
(
|ξ|
)2
.

Its characteristic function is the nonnegative definite function

Ka

(
x
)
=

∫
Rm

ei⟨ξ,x⟩µ
[
dξ
]
=

1

(2π)m
ŵa(x) =

1

(2π)m

∫
Rm

ei⟨ξ,x⟩a
(
|ξ|
)2
λ
[
dξ
]
. (1.2.30)

Clearly Ka(x) is an O(m)-invariant, real valued Schwartz function. Then Ka

(
x− y

)
is the

covariance kernel of a real valued, smooth isotropic Gaussian function Φ = Φa on Rm with
spectral measure µa.

A good example to have in mind is a(t) = e−t
2/4. Then a(t)2 = e−t

2/2, and

Ka(x) =
1

(2π)m

∫
Rm

ei⟨ξ,x⟩e−
|ξ|2
2 dξ =

1

(2π)m/2
e−

|x|2
2 .

Thus Ka is in this case the density of the canonical Gaussian measure Γ1 on Rm. In this
case Ψ(t) = 1

(2π)m/2 e
−t/2.

Since wa,m > 0 in an open neighborhood of the origin, we deduce from [153, Thm. 6.8]
that if x1, . . . ,xN ∈ Rm are distinct points, then the symmetric N ×N matrix(

Ka(xi − xj)
)
1≤i,j≤N

is positive definite. This matrix is the variance matrix of the Gaussian vector(
Φa(x1), . . . ,Φa(xN )

)
.

Hence, for any distinct points x1, . . . ,xN ∈ Rn, the above Gaussian vector is nondegenerate.
In other words, Φa is ∞-ample in the sense of Definition 1.2.8.

Observe that for any multi-indices α ∈
(
Z≥0

)m
, |α| = |β|, we have

E
(
∂αΦa(x)∂

βΦa(x)
)
= ∂αx ∂

β
yKa(x− y

)∣∣
x=y

=

∫
Rm

ξαξβµa
[
dξ
]
, ξα := ξα1

1 · · · ξ
αm
m

This shows that for any k ∈ N and any x ∈ Rn the variance the Gaussian vector
(
∂αΦa(x)

)
|α|=k

is the Gramian matrix of the functions
(
ξα
)
|α|=k with respect to the inner product in

L2
(
Rm, µa

)
. Since a(0) = 1 we deduce that the functions ξα are linearly independent in

L2
(
Rm, µa

)
so the determinant of their Gramian matrix is nonzero. Hence the Gaussian

vector

Φa(x)⊕DΦa(x)⊕ · · · ⊕DkΦa(x)

is nondegenerate, for any k ∈ N and any x ∈ Rm. Above, DjΦa(x) denotes the j-th order
differential of Φa at x ∈ Rm. In other words Φa is Jk-ample for any k ∈ N.

In Example 1.2.34 above we proved that the
(
RZ

)m
-periodic function

ΦRa (x) = FRa
(
R−1x

)
converges in distribution to the smooth isotropic function Φa, i.e., the covariance kernel of
ΦRa converges in C∞ to the covariance kernel of Φa.
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For R > 0 we set

aR(t) := a(t/R
)
, ∀t ∈ R.

Consider the finite Borel measure µ ∈ Meas(Rm)

µRa
[
dξ
]
=

1

(2π)m
wa,m

(
R−1ξ

)
λ
[
dξ
]
=

1

(2π)m
a
(
|ξ|/R

)2
λ
[
dξ
]
.

Its characteristic function is the nonnegative definite function

KRa
(
x
)
=

1

(2π)m

∫
Rm

ei⟨ξ,x⟩a
(
|ξ|/R

)2
dξ. (1.2.31)

We set ω := R−1ξ in (1.2.31) and we deduce

KRa
(
x
)
=

Rm

(2π)m

∫
Rm

eiR⟨ω,x⟩a
(
|ω|
)2
dω,

so that

KRa (x) = RKa

(
Rx

)
.

We deduce that KRa
(
x− y

)
is the covariance kernel of the Gaussian function

WR
a (x) := Rm/2Φa

(
Rx

)
.

We want to investigate the behavior of KRa (x) as R → ∞. For example, in the special case

a(t) = e−t
2/4 we have

KRa (x) =
1

(2πℏ2)m/2
e−

|x|2

2ℏ2 , ℏ = R−1

This is the density of the Gaussian measure Γℏ21 which converges to the Dirac measure δ0
as R→∞.

Since Ka(x) is O(m)-invariant and smooth it has the form Ψ
(
|x|2

)
for some smooth

function Ψ : [0,∞) → R. According to Schoenberg’s characterization theorem [153, Thm.
7.13], the function Ψ must be completely monotone. In particular, Ψ is non-increasing,
nonnegative and convex, [153, Lemma.7.3]. Using the Fourier inversion formula we deduce∫

Rm

Ka(x)dx = a(0)2 = 1.

This implies that Ka is the density of a probability measure on Rm. The rescaled mea-
sures KRa

(
x
)
dx converge weakly to the Dirac measure δ0. To use a terminology favored by

physicists, we have

KRa
(
x
)
→ δ(x),

where δ(x) is Dirac’s mysterious Delta function. In particular,

KRa
(
x− y

)
→ δ(x− y).

In other words, as R→∞, the Gaussian random function WR
a converges in some sense to a

Gaussian random “function” W∞ whose covariance kernel is K0(x− y) = δ(x− y). This is
the Gaussian noise on Rm driven by the Lebesgue measure.

Formally this is a random generalized function or, equivalently, a Gaussian probability
measure on a space of generalized functions or distributions on Rm. The concept of white
noise is discussed in detail in [67, Sec.III.4]. ⊓⊔
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1.2.6. Gaussian random sections of a vector bundle. The concept of random section
is not an artificial generalization. The main object of investigation of this book requires it.
Suppose for example that M is a smooth, connected manifold and

Φ : Ω×M → R

is a Ck random function onM , k ≥ 1. Then the differential dΦ should be viewed as a random
section of the cotangent bundle T ∗M . Its zeros are the critical points of Φ

Consider a more general problem. Suppose that M is a smooth, compact, connected
m-dimensional manifold and π : E → M is a smooth real vector bundle of rank r. For each
x ∈M , the fiber Ex = π−1({x}) of E has a natural structure of real vector space of dimension
r.

From a set theoretic point of view, we can regard E as a family
(
Ex
)
x∈M of real vector

spaces of dimension r. Loosely speaking, a random section of E is a family
(
Ψ(x)

)
x∈M of

random vectors Ψ(x) : (Ω, S,P)→ Ex.

This definition is not satisfactory since we are interested in regularity properties of random
sections. We are interested only in Gaussian random sections so we take a different approach
suggested by Example 1.2.18. This was pioneered by P. Baxendale [15]. For different but
related approach we refer to [111, Sec. 1.2].

Denote by Ck(E) the vector space of sections of E that are k-times continuously differ-
entiable. We need to define on Ck(E) a structure of separable Banach space and to do so we
need to make some choices.

• Fix a smooth Riemannian metric g on M .

• Fix a smooth h metric on E. We denote by (−,−)Ex the induced inner product on
Ex.

• Fix a connection (covariant derivative) ∇h on E that is compatible with the metric
h.

We will refer to such choices as standard choices. There are several geometric objects
canonically induced by these choices; see [114, Sec. 3.3].

First, the metric g determines a a Borel measure volg on M , classically referred to as
the volume element or the volume density. Next, the metric determines the Levi-Civita
connection ∇g on TM . The metric g also determines metrics on all the tensor bundles
TM⊗p⊗(T ∗M)⊗q and the connection∇g determines connections on these bundles compatible
with the metrics induced by g. To ease the notational burden we will denote by ∇g each of
these connections.

Similarly, the metric h induces metrics in all the bundles E⊗p⊗(E∗)⊗q and the connection
∇h determines connections on these bundles compatible with the induced metrics. We will
denote by

∣∣ − ∣∣
x
the Euclidean norms in any of the spaces (T ∗

xM)⊗q ⊗ E⊗p. We define the

jet bundle7

Jk(E) :=
k⊕
j−0

T ∗M⊗j ⊗ E. (1.2.32)

7The jet bundle can be defined invariantly without relying on choices of connections and, as such, its is merely an

affine bundle. For the applications I have in mind I do not need such a generality. For details I refer to [135].
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The connections ∇g and ∇h induce a connection ∇ = ∇g,h on the bundle (T ∗M)⊗k ⊗ E

∇ : C1
(
(T ∗M)⊗k ⊗ E

)
→ C0

(
(T ∗M)⊗k+1 ⊗ E

)
.

We denote by ∇q the composition

Cm(E)
∇→ Cm−1

(
T ∗M ⊗ E

) ∇→ · · · ∇→ C1
(
(T ∗M)⊗q−1 ⊗ E

) ∇→ C0
(
(T ∗M)⊗q ⊗ E

)
.

For every section ψ ∈ Ck(E) we define its k-th jet

Jk(ψ) = Jk(ψ,∇) =
k⊕
k=0

∇kψ

∥u∥Ck =

q∑
j=0

∥∇jψ∥,

where

∥∇ju∥ = sup
x∈M

∣∣∇ju(x) ∣∣
x
.

The norm ∥ − ∥Ck depends on the standard choices, but different standard choices yield
equivalent norms. The resulting normed space is a separable Banach space. Fix one such
norm and denote by Ck(E) the resulting separable Banach space.

For every x ∈M and ux ∈ Ex we have evaluation maps

Evx : Ck(E)→ Ex, Evx(ψ) = ψ(x) ∈ Ex
and

Evx,ux : Ck(E)→ R, Evx,ux(ψ) =
(
ψ(x), ux

)
Ex
.

The evaluation map Evx,ux is a continuous linear function and thus defines and element in

the dual Ck(E)∗. Set

L := span
{
Evx,ux ; x ∈M, ux ∈ Ex

}
.

If we choose a dense countable set X ⊂ M and for each x ∈ X a basis {e1(x), . . . , er(x)} of
Ex we deduce that the countable collection{

Evx,ei(x); x ∈ X, 1 ≤ i ≤ r
}

separates the points in Ck(E) and, according to Blackwell’s Theorem 1.1.41, it generates the
Borel-sigma algebra of Ck(E).

Definition 1.2.36. A centered Gaussian measure on Ck(E) is a Borel probability measure
Γ such that ∀ξ ∈ L the random variable ξ : Ck(E)→ R is centered Gaussian. ⊓⊔

Equivalently, if we denote by T the disjoint union

T =
⋃
x∈M
{x} × Ex,

then Γ is centered Gaussian iff the random process

EΓ :
(
Ck(E),Γ

)
× T → R, (ψ;x,ux) 7→ Evx,ux(ψ)

is centered Gaussian. Corollary 1.1.46 shows that the measure Γ is uniquely determined by
the distribution of the process Γ.
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Inspired by statistical physicists, we will often refer to Gaussian measures on Ck(E) as
Gaussian ensembles of Ck sections.

Definition 1.2.37. Suppose that E →M is a smooth vector bundle over the smooth compact
manifold of dimension m. Fix n ≥ 0 and set X = Cn(E).

(i) A centered Gaussian Cn-section of E is a measurable map

Ψ : (Ω, S,P)→
(
X,BX

)
, ω 7→ Ψω

whose distribution Γ = PΨ is a Gaussian measure on X.

(ii) Let k ∈ N. The Gaussian section Ψ is called k-ample if for any distinct points
x1, . . . xk ∈M the Gaussian vector

Ψ(p1)⊕ · · · ⊕Ψ(pk) ∈ Ex1 ⊕ · · · ⊕ Exk
is nondegenerate. The Gaussian section Ψ is said to be ample if it is 1-ample.

(iii) Let k ≤ n. The Gaussian section Ψ is called Jk-ample if there exists a smooth
connection ∇ on E such that, the associated k-th jet Jk(Ψ,∇) is ample, i.e., for
any x ∈M , the Gaussian vector

Jk
(
Ψ(x)

)
∈ Jk(E)x = Ex ⊕ T ∗

xM ⊗ E ⊕ · · · ⊕
(
T ∗
xM

⊗k )⊗ E (1.2.33)

is nondegenerate.

⊓⊔

Let us point out that if condition (iii) above holds for one smooth connection, then it
holds for all smooth connections.

For each x0, x1 ∈ M we have two Gaussian vectors Ψ(xi) : Ω → Exi , i = 0, 1, and we
define

K(x1, x0) := Cov
[
Ψ(x1),Ψ(x0)

]
∈ Hom

(
Ex0 , Ex1

) ∼= Ex1 ⊗ E∗
x0 ,

where we recall that Cov
[
Ψ(x1),Ψ(x0)

]
denotes the covariance operator of the jointly Gauss-

ian random vectors Ψ(x1),Ψ(x0).

The distribution Γ is uniquely determined by the distribution of the process EΓ which
in turn is uniquely determined by the collection

(
K(x1, x0)

)
x0,x1∈M . This collection can be

conveniently encoded as an integration kernel.

Consider the product M ×M with its two canonical projections

M
π1←M ×M π0→M, x1 ← (x1, x0)→ x0.

Form the bundle

E ⊠ E∗ = π∗1E ⊗ π∗0E∗.

Note that (
E ⊠ E∗ )

(x1,x0)
= Ex1 ⊗ E∗

x0
∼= Hom

(
Ex0 , Ex1

)
.

Then K is intrinsically a section of E⊠E∗. It is k-times differentiable and defines an integral
operator

[K] : L2(E)→ L2(E), [K]u(x) =

∫
M

K(x, y)u(y) volg
[
dy
]

Arguing as in the proof of Proposition 1.1.60 we deduce that this is a symmetric, nonnegative
definite operator. The Karhune-Loève expansion continues to hold in this case as well and we
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deduce that any Gaussian Cℓ-section of E can be described as a random series of Cℓ-sections
with coefficients independent random normal variables. Often in our applications K is the
kernel of a smoothing operator.

Example 1.2.38. Any centered Gaussian measure Γ on Ck(E) tautologically defines a cen-
tered Gaussian random section of E given by the identity map 1 : Ck(E)→ Ck(E).

I want to point out a rather confusing fact. A fixed (deterministic) section ψ of E can
also be viewed as a random section once we fix a Gaussian measure on Ck(E). There will be
arguments that will require juggling these two points of view. ⊓⊔

Example 1.2.39. Let E → M be a smooth vector bundle equipped with a metric and a
connection compatible with this metric. Suppose that V ⊂ Ck(E) is a finite dimensional space
of Ck-sections of E, ψ1, . . . , ψN is a basis of V and X1, . . . , XN are independent standard
normal random variables defined on the probability space (Ω, S,P). Then the random linear
combination

Ψ =
N∑
j=1

Xjψj

is a centered Gaussian Ck-section. To see this consider the maps

X⃗ : Ω→ V, ω 7→ V, Ω ∋ ω 7→
∑
j

Xj(ω)ψj ∈ V

Then Ψ = iV ◦ X⃗, where iV : V ↪→ Ck(E) is the canonical inclusion. It is the composition of
measurable maps and it is obviously centered Gaussian. Its covariance kernel is

KΨ(x1, x0) =
∑
j

ψj(x1)⊗ ψj(x0) ∈ Ex1 ⊗ Ex0

For each x ∈M we have a map

Ax : RN → Ex, RN ∋ u 7→
∑
j

ujψj(x).

Then

KΨ(x, x) = AxA
∗
x ∈ End(Ex).

We see that Ψ is ample iff Ax is onto, ∀x ∈M .

More invariantly, note that for any x ∈ M we have an evaluation map Evx : V → Ex,
V ∋ v 7→ v(x) ∈ Ex. The Gaussian section Ψ is 0-ample iff these evaluation maps are onto,
∀x ∈M . Algebraic geometers would say that the space of sections V is ample.

There is a more invariant way of describing this example. Fix an inner product on V
so V becomes a Euclidean space. Let ΓV the canonical Gaussian measure on this Euclidean
space. Then iV : (ΓV ) → Ck(E) is a random section. If ψ1, . . . , ψN is an orthonormal basis
of V , then for any ψ ∈ V we have

Ψ = iV (ψ) =

n∑
j=1

Xj(ψ)ψj , Xj(ψ) =
(
ψ,ψj

)
V
.

Foe every x ∈ M we have an evaluation map Evx : V → Ex and the variance operator of
Ψ(x) is Var

[
Ψ(x)

]
= EvxEv∗

x. We see that Ψ is ample if Evx : V → Ex is onto for all
x ∈M . ⊓⊔
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1.2.7. The differential geometry of a Gaussian ensemble. Let M be a smooth con-
nected m-dimensional manifold and E → M a rank r smooth real vector bundle over M .
Following [111], we will show that a smooth Gaussian random section of E canonically defines
a metric on E and a connection compatible with the metric. Additionally, we will provide a
probabilistic interpretation of this connection and its curvature.

A section C ∈ Ck
(
E ⊠ E

)
defines a family of bilinear maps

Cp,q : E∗
p × E∗

q → R, p, q ∈M,

since (E ⊠ E)(p,q) = Ep ⊗ Eq
∼=
(
E∗

p ⊗ E∗
q

)∗
. Such a section is called symmetric if for any

p, q ∈M and any ξ ∈ E∗
p, η ∈ E∗

q we have

Cp,q(ξ, η) = Cq,p(η, ξ).

Definition 1.2.40. A Ck-correlator on E is a symmetric section C ∈ Ck
(
E⊠E

)
such that

Cp,p is positive definite for any p ∈M . ⊓⊔

Example 1.2.41. (a) Suppose thatM is a properly embedded submanifold of the Euclidean
space U . Then the inner product (−,−)U on U induces a correlator C ∈ C∞(T ∗M ⊠ T ∗M)
defined by the equalities

Cx,y(X,Y ) = (X,Y )U , ∀x,y ∈M, X ∈ TxM ⊂ U , Y ∈ TyM ⊂ U .

(b) Let Ψ be an ample, centered Gaussian C2-section of E. The random section Ψ defines a
covariance form

CΨ ∈ Ck
(
E ⊠ E

)
, CΨ(p, q) = CΨ(p),Ψ(q),

where CΨ(p),Ψ(q) is the covariance form of the jointly Gaussian vectors Ψ(p),Ψ(q). Clearly,

CΨ(p, q) is symmetric. Since Ψ is ample, for any p ∈ M , the Gaussian vector Ψ(p) is
nondegenerate and and thus its variance CΨ

p,p is positive definite. Hence CΨ is a correlator
on E. ⊓⊔

Definition 1.2.42. A correlator C ∈ Ck
(
E ⊠ E) is called stochastic if it is the covariance

form of an ample Gaussian Ck-section of E. ⊓⊔

Let C ∈ Ck(E ⊠ E) be a correlator where k ≥ 1. By definition, it induces a metric on
E∗ and thus, by duality, a metric on E. We will denote these metrics by (−,−)E∗,C and
respectively (−,−)E,C . When no confusion is possible we will drop the subscript E or E∗

from the notation. To simplify the presentation we adhere to the following conventions.

(i) We will use the Latin letters i, j, k to denote indices in the range 1, . . . ,m = dimM .

(ii) We will use Greek letters α, β, γ to denote indices in the range 1, . . . , r = rank (E).

Using the metric (−,−)C we can identify Cx,y ∈ Ex ⊗ Ey with an element of

Tx,y ∈ Ex ⊗ E∗
y
∼= Hom(Ey, Ex).

We will refer to Tx,y as the tunneling map from Ey to Ex associated to the correlator C.
Note that Tx,x = 1Ex . If we denote by T ∗

x,y ∈ Hom(Ey, Ex) the adjoint of Tx,y with respect
to the metric (−,−)E,C , then the symmetry of C implies that

Ty,x = T ∗
x,y.
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Lemma 1.2.43. Fix a point p0 ∈M and local coordinates (xi)1≤i≤m in a neighborhood O of
p0 in M . Suppose that e(x) = (eα(x))1≤α≤r is a local (−,−)C-orthononomal frame of E|O.
We regard it as an isomorphism of metric bundles e : RrO → E|O where RrO denotes the trivial
bundle over O with fiber Rr,

RrO :
(
Rr × O→ O

)
.

. We obtain a smooth map

T (e) : O× O→ Hom(Rr), (x, y) 7→ T (e)x,y = e(x)−1Tx,ye(y).

Equivalently, T (e)x,y makes commutative the diagram below.

Rr Rr

Ex Ey
u

e(x)

u
T (e)x,y

u
e(y)

u
Tx,y

. (1.2.34)

Then, for any i = 1, . . . ,m, the operator

∂xiT (e)x,y|x=y : Rry → Rry,

is skew-symmetric.

Proof. We identify O × O with an open neighborhood of (0, 0) ∈ R × R with coordinates
(xi, yj). Introduce new coordinates zi := xi − yi, sj := xj + yj , so that ∂xi = ∂zi + ∂si . We
view the map T (e) as depending on the variables z, s. Note that

T (e)0,s = 1, T (e)−z,s = T (e)∗z,s, ∀z, s.

We deduce that

∂siT (e)|0,s = ∂siT (e)|∗0,s = 0,

∂xiT (e)|0,s = ∂ziT (e)|0,s + ∂siT (e)|0,s = ∂ziT (e)|0,s,(
∂xiT (e)|0,s

)∗
= ∂xiT (e)

∗|0,s = −∂ziT (e)|0,s + ∂siT (e)|0,s = −∂xiT (e)|0,s.
⊓⊔

Given a coordinate neighborhood with coordinates (xi) and a local isomorphism of metric
vector bundles (local orthonormal frame) e : RrO → E|O as above, we define the skew-
symmetric endomorphisms

Γi(e) : RrO → RrO, i = 1, . . . ,m = dimM, Γi(e)y = −∂xiTx,y|x=y. (1.2.35)

We obtain a 1-form with matrix coefficients Γ(e) :=
∑

i Γi(e)dy
i. The operator

∇e = d+ Γ(e) (1.2.36)

is then a connection on RrO compatible with the natural metric on this trivial bundle. The
isomorphism e induces a metric connection e∗∇e on E|O.

Suppose that f : RrO → E|O is another orthonormal frame of EO related to e via a
transition map

g : O→ O(r), f = e · g.
Then

T (f)x,y = g−1(x)T (e)x,yg(y).
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We denote by dx the differential with respect to the x variable. We deduce

Γ(f)y = −dxT (f)x,y|x=y
= −

(
dxg

−1(x)
)
x=y
· T (e)y,y︸ ︷︷ ︸

=1

·g(y)− g−1(y)
(
dxT (e)x,y

)
|x=yg(y)

= g−1(y)dg(y)g−1(y) · g(y) + g−1(y)Γ(e)yg(y) = g(y)−1dg(y) + g−1(y)Γ(e)yg(y).

Thus

Γ(e · g) = g−1dg + g−1Γ(e)g.

This shows that for any local orthonormal frames e, f of E|O we have

e∗∇e = f∗∇
f .

We have thus proved the following result.

Proposition 1.2.44. If E →M is a smooth real vector bundle, then any correlator C on M
induces a canonical metric (−,−)C on E and a connection ∇C compatible with this metric.
More explicitly, if O ⊂ M is an coordinate neighborhood on M and e : RrO → E|O is an
orthogonal trivialization , then ∇C is described by

∇C = d+
∑
i

Γi(e)dx
i,

where the skew-symmetric r × r-matrix Γi(e) is given by (1.2.35). We will refer to ∇C as
the correlator connection. ⊓⊔

Remark 1.2.45. Suppose that we fix local coordinates (xi) near a point p0 such that
xi(p0) = 0. We denote by Px,0 the parallel transport of ∇C from 0 to X along the line
segment from 0 to x. Then

P0,0 = 1E0 = T0,0, ∂xiPx,0|x=0 = −Γi(0) = ∂xi,0Tx,0|x=0.

We see that the tunneling map Tx,0 is a first order approximation at 0 of the parallel transport
map Px,0 of the connection ∇C . ⊓⊔

When the correlator is stochastic, this connection can be given a probabilistic description.
Fix an ample Gaussian measure Γ on Ck(E). Denote by C ∈ Ck

(
E ⊠E

)
its correlator and

by ∇C the connection it determines on E. As we mentioned earlier, a section ψ ∈ Ck(E)
has a dual incarnation: a deterministic one, as a section of E and a probabilistic one, as an
element of the probability space

(
Ck(E),Γ

)
.

Fix a point p0, a coordinate neighborhood O of p0 in M and orthonormal framings
e : RmO → E|O as in Lemma 1.2.43. We get a random map Φ : O→ Rm, Φ(x) = e(x)−1ψ(y);
see diagram (1.2.34). By definition, the covariance form of ψ(x) is given by the metric on
Ey. The map e(x) is an isometry so that the variance operator of Φ(x) is 1Rm . Thus

∂xiT (e)x,y|x=y = R∂xiΦ(x),Φ(x)

where R−,− is the regression operator (1.1.16) . We deduce from the regression formula
(1.1.17) and Proposition 1.2.44 that

∇CΦ(x) = dΦ(x)− E
[
dΦ(x) ∥Φ(x)

]
. (1.2.37)

In particular we deduce the following result.
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Corollary 1.2.46. For any ψ ∈ Ck(E), and any x ∈ M , the random vector ∇Cψ(x) is
independent of the random vector ψ(x). ⊓⊔

In [53, Prop. 1.1.3] it is shown that there is only one connection ∇ on E, compatible
with the metric induced by the correlator C such that, for any x ∈ M , the random vector
∇Cψ(x) is independent of the random vector ψ(x). The authors refer to this connection as
the LeJan-Watanabe or L-W connection.

Proposition 1.2.47. Suppose that C is a stochastic correlator on E defined by an ample
Gaussian ensemble C2 random sections of E. Denote by u a random section in this en-
semble. Fix a point p0, local coordinates (xi) on M near p0 such that xi(p0) = 0 ∀i, and
a local (−,−)C-orthonormal frame

(
eα(x)

)
1≤α≤r of E in a neighborhood of p0 which is is

synchronous at p0,

∇Ceα|p0
= 0, ∀α.

Denote by F the curvature of ∇C ,

F =
∑
ij

Fij(x)dx
i ∧ dxj , Fij(x) ∈ End(Ep0

).

Then Fij(0) is the endomorphism of Ep0
which in the frame eα(p0) is described by the r× r

matrix with entries

Fαβ|ij(0) := E
[
∂xiuα(x)∂xjuβ(x)

]
|x=0 − E

[
∂xjuα(x)∂xiuβ(x)

]
|x=0, 1 ≤ α, β ≤ r, (1.2.38)

where uα(x) is the random function

uα(x) :=
(
u(x), eα(x)

)
C
.

Proof. The random section u has the local description

u =
∑
α

uα(x)eα(x).

Then T (x, y) is a linear map Ey → Ex given by the r × r matrix

T (x, y) =
(
Tαβ(x, y)

)
1≤α,β≤r, Tαβ(x, y) = E

[
uα(x)uβ(y)

]
.

The coefficients of the connection 1-form Γ =
∑

i Γidx
i are endomorphisms of Ex given by

r × r matrices Γi(x) =
(
Γαβ|i(x)

)
1≤α,β≤r. More precisely, we have

Γαβ|i(x) = −E
[
∂xiuα(x)uβ(x)

]
. (1.2.39)

Because the frame
(
eα(x)

)
is synchronous at x = 0 we deduce that, at p0, we have Γi(0) = 0

and

F (p0) =
∑
i<j

Fij(x)dx
i ∧ dxj ∈ End(Ep0

)⊗ Λ2T ∗
p0
M, Fij = ∂xiΓj(p0)− ∂xjΓi(p0).

The coefficients Fij(x) are r × r matrices with entries Fαβ|ij(x), 1 ≤ α, β ≤ r. Moreover,

Fαβ|ij(0) = ∂xjΓαβ|j(0)− ∂xjΓαβ|i(0)
(1.2.39)
= ∂xjE

[
∂xiuα(x)uβ(x)

)
|x=0 − ∂xiE

(
∂xjuα(x)uβ(x)

)
|x=0

= E
(
∂2xjxiuα(x)uβ(x)

]
|x=0 + E

[
∂xiuα(x)∂xjuβ(x)

]
|x=0
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−E
[
∂2xixjuα(x)uβ(x)

]
|x=0 − E

[
∂xjuα(x)∂xiuβ(x)

]
|x=0

= E
[
∂xiuα(x)∂xjuβ(x)

]
|x=0 − E

(
∂xjuα(x)∂xiuβ(x)

]
|x=0.

⊓⊔

Example 1.2.48. Suppose that Φ : M → R is a Gaussian C3-function on the smooth
manifold M such that the differential dΦ is an ample Gaussian C2-section of T ∗M . The
correlator of dΦ defines a metric on TM and a connection compatible with it. This turns
out to be the Levi-Civita connection of the correlator metric; see [114, Sec. 4.2.5]. For an
alternate description of this connection we refer to [1, Sec.12.2].

As a special case, suppose that M is a compact smooth submanifold of the Euclidean
space U . Denote by (−,−) the inner product on U and by Γ the canonical Gaussian measure
on U . We obtain a Gaussian function on M ,

Φ : U ×M → R, U ×M ∋ (u,x) 7→ Φu(x) = (u,x).

The differential dΦ is an ample8 Gaussian section of T ∗M and the correlator metric on TM
is the induced metric on M .

In this case the curvature formula (1.2.38) implies Theorema Egregium stating that the
curvature is an intrisic invariant of the submanifold. The classical approach to Theorema
Egregium goes through the second fundamental form of M . The probabilistic approach
bypasses this object. However, the second fundamental form has many other fundamendal
uses. For details I refer to [114, Sec. 4.2.5]. ⊓⊔

8Can you see why?





Chapter 2

The Gaussian Kac-Rice
formula

Suppose that U and V are two Euclidean spaces of the same dimension, V ⊂ V an open
subset of V , and Φ : V → U a centered Gaussian map that is a.s. Ck, with k to be specified
later. “Typically”, the zero set of Φ is discrete so that for any compact subset K ⊂ V
the set {Φ = 0} ∩ K is finite. We denote by ZK or Z[K,Φ] its cardinality. In this section
we investigate the basic invariants of this random variable: expectation, variance and higher
momentums. The Kac-Rice formula is essentially a description of these invariants as integrals
of certain densities over V . However, before we state and prove this formula there are a few
technical but important issues to address.

2.1. Generic transversality

Suppose U and V are two real Euclidean spaces of dimensions

d = dimU ≤ D := dimV .

Let V ⊂ V be an open set.

Definition 2.1.1. Suppose that X : Ω × V → U is a Ck random field. We say that X
satisfies the standard conventions if

• the probability space (Ω, S,P) is P-complete, and

• For any 0 ≤ j ≤ k, the j-th differential

DjX : Ω× V → Symj
(
V ,U)

is S ⊗ BV -measurable and separable; see Definition 1.2.3. Above Symj(V ,U)
denotes the space of symmetric j-linear maps V j → U .

⊓⊔

71
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For example, if Γ is a Gaussian measure on Ω = Ck(V ,U), and S is the Γ-completion of
the Borel sigma-algebra of Ω, then the resulting random field EvΓ : Ω×V → U satisfies the
standard conventions; see Example 1.2.18.

☞ In the sequence will tacitly assume that the random fields satisfy the standard conventions.

Let me recall a classical transversality result frequently used in differential topology [71,
Chap.3]. The origin 0 ∈ U is a regular value of most F ∈ C∞(V ,U) and thus for a “typical”
F the level set F−1(0) is a submanifold of codimension d = dimU and we do not expect it
to intersect a submanifold of V of dimension < d. The next result is a quantitative version
of this fact.

Lemma 2.1.2 (Bulinskaya). Suppose that

X :
(
Ω, S,P)× V→ U , Ω× V ∋ (ω, v) 7→ Xω(v) ∈ U

is an a.s. C1 Gaussian random field. Assume that X is ample, i.e.,

for any v ∈ V the Gaussian vector

Ω ∋ ω 7→ Xω(v) ∈ U (A0)

is nondegenerate.

Fix u0 ∈ U and let K ⊂ V be a compact set of Hausdorff dimension < d = dimU . Then the
set1

A :=
{
ω ∈ Ω; ∃v ∈ K such that X(v) = u0

}
(2.1.1)

is negligible.

Proof. I follow the argument in the proof of [1, Lemma 11.2.10]. Denote byX ′ the differential
of X, by ∥ − ∥ the Euclidean norms on U and V , and by ∥ − ∥op the operator norm on
Hom(V ,U). Let

Cω(v) := ∥Xω∥+ ∥X ′
ω(v)∥op.

For every compact set S ⊂ V we set

Cω(S) := sup
v∈S

Cω(v).

Fernique’s inequality (1.1.32) shows that C(S) ∈ L1 so P
[
C(S) <∞

]
= 1. Hence, for every

ε > 0, there exists Mε =Mε(S) > 0 such that

P
[
C(S) < Mε

]
> 1− ε. (2.1.2)

Choose S to be a closed ball of radius r > 0 centered at v0 and contained in V and set
C(v0, r) := C(S). We deduce from the mean value theorem that

∥Xω(v)−Xω(v0)∥ ≤ Cω(v0, r) · r.

1The measurability of A is tricky. Consider the space X := Ω× V equipped with the product σ-algebra. The map

X ∋ (ω, v)
Φ7→ (Xω(v), v) ∈ U × V is measurable as composition of measurable maps

Ω× V
X×1−→ C1(V , U)× V

Ev×1−→ U × V .

The subset Z := Φ−1({u0} ×K) is measurable in X. If we denote by π the natural projection X → Ω then A = π(Z)

and according to [36, Prop. 8.4.4] it is S-measurable if S is P-complete.
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For r < dist(K, ∂V) we set

Cω(K, r) := sup
v0∈K

Cω(v0, r) ≤ Cω(Kr), Kr := {v ∈ V ; dist(v,K) ≤ r },

and
oscω(r) := sup

v1,v2∈K,
∥v1−v2∥≤r

∥Xω(v1)−Xω(v2)∥.

Note that
oscω(r) ≤ Cω(K, r)r.

Consider the event
Eε(r) :=

{
oscω(r) ≤Mε(Kr) r

}
.

We set Mε(r) :=Mε(Kr). We deduce from (2.1.2) that

P
[
Eε(r)

]
> 1− ε.

Pick a sequence ℏn ↘ 0. Since K has Hausdorff dimension < d, its d-dimensional Hausdorff
measure is zero, and we deduce that there exists a sequence of radii rn ↘ 0 and, for any n,
there exists a finite collection of closed balls (Bn,j)j∈Jn , of radii rn,j < rn, covering K, such
that ∑

j∈Jn

(
rn,j

)d ≤ ℏn.

Set
An,j :=

{
ω ∈ Ω; ∃v ∈ K ∩Bn,j such that Xω(v) = u0

}
⊂ A, .

where A is defined as (2.1.1). Fix ε > 0 and r > 0 sufficiently small. Then

P
[
A
]
≤
∑
j

P
[
An,j ∩ Eε(rn)

]
+ P

[
Eε(rn)

c
]
≤
∑
j

P
[
An,j ∩ Eε(rn)

]
+ ε. (2.1.3)

Denote by vn,j the center of Bn,j . Observe that An,j ̸= ∅ iff there exists v such that
∥v − vnj∥ ≤ rn,j and X(v) = u0. On Eε(rn) we have∥∥X(vn,j)− u0

∥∥ =
∥∥X(vn,j)−X(v)

∥∥ ≤Mε(rn) rn,j .

This shows that

An,j ∩ Eε(rn) ⊂
{∥∥X(vn,j)− u0

∥∥ < Mε(rn) rn,j

}
.

Denote by ωd the volume of the unit d-dimensional Euclidean ball, by pX(v) the probability
density of X(v) and set

L := sup
v∈Kr1

sup
u∈U

pX(v)(u).

The ampleness ssumption (A0) implies L <∞. We deduce

P
[ { ∥∥X(vn,j)− u0

∥∥ < Mε(rn) rn,j
} ]
≤ LωdMε(rn)

d︸ ︷︷ ︸
=:Ξε(rn)

rdn,j ,

and ∑
j

P
[
An,j ∩ Eε(rn)

]
≤ Ξε(rn)

∑
j

rdn,j ≤ Ξε(rn)ℏn ≤ Ξε(r1)ℏn.

Now choose n such that Ξε(r1)ℏn ≤ ε to conclude from (2.1.3) that

P
[
A
]
≤ 2ε, ∀ε > 0.

⊓⊔
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Theorem 2.1.3. Suppose that (Ω, S,P) is a probability space and

X : Ω× V → U , Ω× V ∋ (ω, v) 7→ Xω(v) ∈ U

is Gaussian field with the following properties.

(i) The random field X is a.s. C2.

(ii) The Gaussian vector

Y : Ω× V×U \ {0} → U × V , (ω, v, u̇) 7→ (Xω(v), X
′
ω(v)

∗u̇)

nondegenerate for any v ∈ V . Above, X ′
ω(v)

∗ : U → V denotes the adjoint of the
differential X ′

ω(v) : V → U of Xω at v.

Then 0 ∈ U is a.s. a regular value of X, i.e.,

P
[
{ω; 0 is a regular value of Xω : V→ U }

]
= 1.

Proof. Fix a closed ball B ⊂ V and denote by S(U) the unit sphere in U . Let us show that
a.s., 0 is a regular value of X|B. This means that for any solution v ∈ B of X = 0 the adjoint
of the differential X ′(v) is one-to-one, i.e., the equation

Y (v, u̇) = 0⇐⇒X(v) = 0, X ′(v)∗u̇ = 0,

has no solution (v, u̇) ∈ B × S(U). Since dimB × S(U) < dim(U × V ) we deduce from
Bulinskaya’s Lemma 2.1.2 that this happens a.s.

⊓⊔

Theorem 2.1.3 can be substantially improved when dimU = dimV

Theorem 2.1.4. Suppose that dimV = dimU = d, (Ω, S,P) is a probability space and

X : Ω× V→ U , Ω× V ∋ (ω, v) 7→ Xω(v) ∈ U

is an ample C1 Gaussian field. Then 0 ∈ U is a.s. a regular value of X.

Proof. We follow the approach in [7, Sec.4]. Fix a closed ball B ⊂ V. Consider the quantities

T = lim inf
r↘0

Tr, Tr(ω) :=
1

ωdrd
Hd

[
{v ∈ B; ∥X(v)∥ ≤ r}

]
,

where Hd denotes the d-dimensional Hausdorff measure on V . In this case it coincides with
the Lebesgue measure. Denote by Jv the Jacobian of the map X at v,

Jv =
√
det
(
X ′(v)X ′(v)∗

)
.

Since U and V are Euclidean spaces of the same dimension we have Jv =
∣∣ detX ′(v)

∣∣.
Since X is ample we deduce that the random variable T defined above is a.s. finite. We

set

Zs :=
{
∃v ∈ B, X(v) = 0, Jv = 0

}
.

We will show that P
[
Zs ̸= ∅

]
= 0. Set

M := sup
v∈B
∥X ′(v)∥op, N(ε) := sup

v∈B, 0<∥v̇∥<ε

∥X(v0 + v̇)−X(v0)−X ′(v0)v̇∥
∥v̇∥

.

Both random variables M and N(ε) are a.s. finite and N(ε)→ 0 a.s. as ε↘ 0.



2.1. Generic transversality 75

Let v0 ∈ Zs. Lemma 2.1.2 shows that v0 ∈ intB a.s.. Set

K0 := kerX ′(v0) ⊂ V , k := dimK⊥
0 .

Since Jv0 = 0 we deduce that k < d = dimV . Any vector v̇ ∈ V decomposes as

v̇ = v̇0 + v̇⊥, v̇0 ∈ K0, v̇
⊥ ∈ K⊥

0 .

Then

∥X(v0 + v̇)∥ ≤ ∥X(v0 + v̇0 + v̇⊥)−X(v0 + v̇0)∥+ ∥X(v0 + v̇0)∥
≤M∥v̇⊥∥+ ∥v̇0∥N

(
∥v̇0∥

)
.

Let ε > 0 such that N(ε) < 1 and suppose that

∥v̇0∥ ≤ ε, ∥v̇⊥∥ ≤ εN(ε). (2.1.4)

We deduce that

∥X(v0 + v̇0 + v̇⊥)∥ ≤ r(ε) := (M + 1)εN(ε).

The polydisk

Pε :=
{
v ∈ B; v = v0 + v̇, v̇ satisfies (2.1.4)

}
is a.s. contained in B for ε > 0 sufficiently small. Thus

Tr(ε) =
1

ωdr(ε)d
Hd

[
{v ∈ B; ∥X(v)∥ ≤ r(ε)}

]
≥ 1

ωdr(ε)d
Hd

[
Pε
]

=
const.× εdN(ε)k

ωdεdN(ε)d
= constN(ε)k−d →∞ as ε↘ 0.

Hence

Zs ̸= ∅ ⊂ {T =∞},
so P

[
Zs = ∅

]
= 1. ⊓⊔

Remark 2.1.5. To better understand the idea behind the above proof it helps to have in
mind the following elementary yet suggestive example. Consider the map

F : R2 → R2, F (x, y) = (x, y2).

Then

Tr :=
{
∥F∥ ≤ r

}
=
{
x2 + y4 ≤ r2

}
⊃ Sr :=

{
|x| ≤ 2−1/2r, |y| ≤ 2−1/4√r

}
,

and H2 (Sr) = 2−3/4r3/2. Hence

H2(Tr)

πr2
≥ 2−3/4r−1/2 ↗∞ as r ↘ 0.

⊓⊔

Corollary 2.1.6. Let V be an open subset of the Euclidean space V . Suppose that F : V → R
is a C2 Gaussian function that such that its differential is ample, i.e., for any v ∈ V the
Gaussian vector dF (v) ∈ V is nondegenerate. Denote by HessF (v) the Hessian of F at v.
Then F is a.s. a Morse function, i.e.,

P
[
{ ∃v, df(v) = 0, detHessF (v) = 0 }

]
= 0.

⊓⊔
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Remark 2.1.7. Sard’s transversality theorem requires a bit of regularity. Suppose that
F : V → U is a Ck map. In [57, Thm. 3.4.3] it is shown that if k > dimV − dimU , then
the set of critical values of F is negligible in U . However, if k ≤ dimV − dimU , then there
exist Ck-maps V→ U for which the set of critical values is not negligible in U ; see [57, Sec.
3.4.4].

In geometry the generic transversality is traditionally obtained as follows. Suppose that
N is a positive integer and

F : RN × V→ U , (λ, v)→ Fλ(v)

is a Ck-map, k > dimV −dimU . We view it as a family in Ck(V,U) parametrized by λ ∈ RN .
We assume that the family is sufficiently large, i.e., satisfies the ampleness condition

0 is a regular value F . (∗)
Then

Z =
{
(λ, v) ∈ RN × V; Fλ(v) = 0

}
is a Ck manifold and the natural projection π : Z → RN , (λ, v) → λ is a Ck map. Since
dimZ−N = dimV − dimU we deduce from Sard’s theorem that most λ ∈ RN are regular
values of π. One can show that for such λ, 0 is a regular value of Fλ. Thus, a regularity
assumption together with an ampleness condition on the family guarantee that 0 is generically
a regular value of Fλ.

However, we cannot expect such genericity assuming only C1-regularity.2 For example,
H. Whitney [154] has constructed a C1-function f : R2 → R whose set of critical values
contains a nontrivial interval centered at 0.

Consider the random Gaussian function X + f , X standard normal random variable,
Then the probability that 0 is a regular value of X + f is < 1.

The above geometric argument has a probabilistic counterpart. Fix independent standard
normal random variables Λ1, . . . ,ΛN and form the random Gaussian map

Fω =
∑
k

Λk(ω)Fk,

where Fk ∈ Cr
(
V ,U), r > dimV − dimU .

Equivalently, consider the standard Gaussian measure on Λ = RN and think of Λ as a
probability space and of F as a random map

F : Λ× V → U , (λ,v) = Fλ(v) =
∑
k

λkFk(v).

Observe that a sufficient condition for F to satisfy the ampleness condition (∗) is that for
any v ∈ V we have

U = span
{
F1(v), . . . , FN (v)

}
.

This condition also implies that F , viewed as a Gaussian random map, is ample.

We deduce from Sard’s theorem that for Lebesgue almost every λ ∈ Λ, the point 0 ∈ U
is a regular value of

Fλ =

N∑
k=1

λkFk.

2I am indebted to Michele Stecconi for pointing out this fact.
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This implies that 0 a regular value of Fλ for λ in a set of Gaussian probability 1.

This argument was recently generalized by A. Lerario and M. Stecconi [88] as follows.
Denote by E the Fréchet space E = Cr

(
V ,U). Fix a Gaussian measure Γ on E, denote by

HΓ the associated Cameron-Martin space and by SΓ its closure in E. Equivalently, SΓ is the
topological support of Γ. In particular, Γ

[
SΓ
]
= 1. Assuming that 0 ∈ U is a regular value

of the map
Ev : SΓ × V→ U , Ev(F, v) = F (v),

then
Γ
[
{0 is a a regular value of F}

]
= 1.

In Theorem 2.1.3 we approached generic regularity using a different approach. Let N be a
(large) positive integer and suppose that, for each v ∈ V the collection of C1-maps{

Fk(v), F
′(v)⊤k

}
1≤k≤N

spans the vector space U ×Hom(U ,V ). If we define

Fλ :=
N∑
k=1

λkFk, λ = (λ1, . . . , λN ) ∈ RN ,

then we see that the family (Fλ)λ∈RN satisfies (∗). However, if dimV − dimU > 1, then the
maps Fλ have less regularity than required by Sard’s theorem.

⊓⊔

2.2. The Gaussian Kac-Rice formula

We now have all the ingredients needed to prove the Gaussian Kac-Rice formula. We start
by stating and proving several local versions of this version and then we will explain how
these local results can be patched together to obtain a global version.

2.2.1. Local Kac-Rice formula. Suppose that U ,V are real Euclidean spaces of the same
dimension m and V is an open subset of V . We will investigate the zero sets of Gaussian
C1-maps F : V → U . Before we do this we need to describe some basic properties of such
zero sets of deterministic C1-maps. We need to introduce a bit of terminology.

A compact subset B ⊂ V is called a box subordinated to the Euclidean coordinates
(v1, . . . , vm) on V if there exist real numbers ak ≤ bk, k = 1, . . .m, such that

B =
{
v; vk ∈ [ak, bk], ∀k = 1, . . .m

}
.

It is called nondegenerate if ak < bk, ∀k. A subset is called a box if it is a box subordinated
to a choice of Euclidean coordinates.

For any map F : V→ U and any Borel set S ⊂ V

Z[S, F ] := #
{
v ∈ S; F (v) = 0

}
.

Lemma 2.2.1 (Continuity of roots). Suppose B ⊂ V is a box, and F : V→ U is a C1-map
satisfying the following conditions.

(i) 0 ∈ U is a regular value of F .

(ii)
r0 := inf

v∈∂B
∥f(v)∥ > 0.
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Suppose that (Fν)ν∈N is a sequence of C1-maps that converge in C1(V,U) to F . Then

lim
ν→∞

Z[B,Fν ] = Z[B,F ] <∞.

Proof. Since 0 is a regular value and F−1(0) ∩ ∂B = ∅ we deduce from the inverse function
theorem function that F has a finite number of zeros in B, none of them located on ∂B. Set

Z = F−1(0) ∩B = {v1, . . . , vn}, n = #Z, Zν = F−1
ν (0) ∩B.

Using the inverse function theorem we can choose δ > 0 sufficiently small such that

• The open ball Bδ(vi) is contained in B, ∀i,
• the closures of the balls Bδ(vi) are disjoint, and

• the restriction of F to each of the open balls Bδ(vi) is a diffeomorphism onto its
image.

Set

C := B \
n⋃
i=1

Bδ(vi), r0 := inf
v∈C
∥F (v)∥.

Since Fν converges uniformly to F on the compact set C we deduce that there exists ν0 > 0
such that

∀ν ≥ ν0, inf
v∈C
∥Fν(v)∥ > r0/2 > 0.

Thus, for ν ≥ ν0

Zν ⊂
n⋃
i=1

Bδ(vi).

Set

Zν,i := Zν ∩Bδ(vi).
We claim that for each i = 1, . . . , n, there exists νi > 0 such that #Zν,i = 1, ∀ν ≥ νi. We
argue by contradiction. Suppose that there exists a subsequence Zνk,i such that #Zνk,i ≥ 2.
To ease the notation we will write Zk,i instead of Zνk,i.

Let v0,k, v1,k ∈ Zk,i, v0,k ̸= v1,k. Upon extracting subsequences we can assume that v0,k
and v1,k converge to v0,∞, v1,∞ ∈ clBδ(vi). Clearly F (v0,∞) = F (v1,∞) = 0 and, since F has
a single zero, vi, in clBδ(vi) we deduce

v0,k, v1,k → vi as k →∞.

Consider the unit vectors

wk :=
1

∥v1,k − v0,k∥
(
v1,k − v0,k

)
.

Upon extracting a subsequence we can assume that wk converges to the unit vector w. Since
the differential F ′(vi) is invertible we deduce that F ′(vi)w ̸= 0. Choose a linear functional
ξ : U → R such that

ξ
(
F ′(vi)w

)
= 1. (2.2.1)

Consider now the scalar functions fk(v) := ξ
(
Fνk(v)

)
. From the mean value theorem we

deduce that there exists a point pk on the line segment [v0,k, v1,k] such that

0 = fk(v1,k)− fk(v0,k) = ∥v1,k − v0,k∥dfk(pk)
(
wk
)
= ∥v1,k − v0,k∥ξ

(
F ′
νk
(pk)wk

)
.
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In other words
ξ
(
F ′
νk
(pk)wk

)
= 0, ∀k.

Note that pk → vi. Letting k →∞ we deduce ξ
(
F ′(vi)w

)
= 0. This contradicts (2.2.1). ⊓⊔

Corollary 2.2.2 (Kac’s counting formula). Suppose that F : V → U is a C1-map and the
box B satisfy the assumptions in Lemma 2.2.1. For v ∈ V we denote by F ′(v) the differential
of F at v and by JF (v) its Jacobian JF = det

(
F ′(v)F ′(v)∗

)
. For r > 0 we set

Z[B,F, r] :=
1

ωdrd

∫
B
I{|F |<r}JF (v)dv.

Then, for r > 0 sufficiently small we have Z[B,F ] = Z[B,F, r]. In other words

Z[B,F ] = lim
r↘0

Z[B,F, r]. (2.2.2)

Proof. For u ∈ U we set Fu := F − u so that F0 = F . Using Lemma 2.2.1 we deduce that

lim
u→0

Z[B,Fu] = Z[B,F ].

There exists r0 > 0 such that

#F−1(u) ∩B = #F−1(0) ∩B, ∀∥u∥ < r0.

Using the coarea formula (A.1.10) we deduce that∫
B∩{∥F∥<r}

JF (v)dv =

∫
{∥u∥<r}

#F−1(u)du = ωdr
d ×#F−1(0) ∩B.

⊓⊔

Corollary 2.2.3. Suppose that X : Ω × V → U is an ample C1 Gaussian field, i.e.,
the Gaussian vector X(v) is nondegenerate for any v. Then for any box B ⊂ V the map
ω 7→ Z[B,Xω] is measurable.

Proof. The map ω 7→ (Xω, X
′
ω) is measurable. Since 0 is a.s. a regular value of X we deduce

from Kac’s counting formula that

Z[B,X, 1/n]→ Z[B,X] a.s..

Since X satisfies the standard conventions the function Z[B,X, 1/n] is measurable so Z[B,X]
is measurable as a.s. limit of measurable functions defined on a complete probability space.

⊓⊔

Corollary 2.2.4. Fix a box B ⊂ V. Suppose that Xn : Ω×V→ U is a sequence of Gaussian
C1-random fields such that Xn(v) is a nondegenerate Gaussian vector for any n and any
v ∈ V and Xn → X a.s. in C1

(
V ,U

)
. Then

Z[B,Xn]→ Z[B,X] a.s..

⊓⊔

✍ For any Borel subset S of an Euclidean space and any compactly supported continuous
function φ : V → R we set ∫

S
φ(v)dv :=

∫
S
φ(v)λ

[
dv
]
,
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where λ is the Lebesgue measure. This apparent excess of pedantism is fully justified. Soon
we will replace V with a manifold and the measure λ will have to be replaced with the measure
determined by a 1-density on the manifold. The above convention is meant to keep the reader
alert.

Theorem 2.2.5 (Local Kac-Rice formula). Let U and V be Euclidean spaces of the same
dimension m and V ⊂ V open. Suppose that

X : Ω× V→ U , Ω× V ∋ (ω, v) 7→ Xω(v) ∈ U

is a Gaussian C1-field satisfying the ampleness condition (A0), i.e., X(v) is a nondegenerate
Gaussian vector for any v ∈ V .

If B ⊂ V is a box, then

E
[
Z[B,X]

]
=

∫
B
E
[
JX(v)

∣∣X(v) = 0
]
pX(v)(0)dv <∞, (KR)

where JX(v) denotes the Jacobian of X at v ∈ V and E
[
JX(v)

∣∣X(v) = 0
]
denotes the

conditional expectation of JX(v) given that X(v) = 0. We will refer to the function

v 7→ ρKR(v) = E
[
JX(v)

∣∣X(v) = 0
]
pX(v)(0)

as the Kac-Rice density of X.

Proof. We follow the approach in [12, Sec. 6.1] and [7, Sec. 5]. We will need the following
technical result.

Lemma 2.2.6. Denote by X the space C1(V,U) equipped with the topology of uniform con-
vergence on compacts of maps and their first order derivatives.

For any u0 ∈ U , v0 ∈ V, and any bounded continuous function α : X → R the condi-
tional distribution Pα(X)|X(v0)=u0 is well defined as a probability measure on R and depends
continuously on u0 in the topology of weak convergence of measures.

Proof. From Proposition 1.1.32 (Gaussian regression formula)we we deduce that any v ∈ V
we have

X(v) = RX(v),X(v0)X(v0) + Z(v, v0),

where the random variable Z(v, v0) is independent of X(v0) and the regression operator
RX(v),X(v0) is given by (1.1.16). We have

Zω(v, v0) = Xω(v)−RX(v),X(v0)Xω(v0).

Hence, for any ω the map v 7→ Zω(v, v0) is also C
1. The resulting map V ∋ v0 7→ Zω(−, v0) ∈ X

is continuous for any ω.

Fix a continuous and bounded function α : X→ R. Then the real number

α(Xω) = α
(
RXω(−),Xω(v0)u0 + Zω(−, v0)

)
depends continuously on (u0, v0) for any ω and, since α is bounded, we deduce from the
Dominated Convergence Theorem and the regression formula that

E
[
α(X)

∣∣X(v0) = u0
]
= E

[
α
(
RX,X(v0)u0 + Z(−, v0)

) ]
depends continuously on (u0, v0). ⊓⊔
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1

n 2n

1

1/n1/(2n)

Figure 2.1. The graphs of Fn (top) and the graph of Gn (bottom).

Let F : [0,∞)→ [0, 1] be the continuous piecewise linear function such that

F (x) =

{
0, x ≤ 1/2,

1, x ≥ 1.

For n ∈ N we set Fn(x) = F (nx) and Gn(x) = 1− F (x/(2n)). The functions Fn and Gn are
depicted in Figure 2.1. For v ∈ V we set

dv := dist
(
v, ∂B

)
,

and we denote by Jv the Jacobian of X at v. For u ∈ U and n ∈ N and Φ ∈ C1(V ,U) we
set

Cnu (Φ, B) :=
∑

v∈Φ−1(u)∩B

Fn
(
JΦ(v)

)
Gn
(
JΦ(v)

)
Fn
(
dv
)
.

Lemma 2.2.7. Let X = C1(V ,U). Then the following hold.

(i) For any u ∈ U the map X ∋ Φ 7→ Cnu (Φ, B) is continuous

(ii) For any Φ ∈ X the map u 7→ Cnu (Φ, B) is continuous.

⊓⊔

We proceed assuming the validity of the above lemma. We set

Cnu (B) := Cnu (X,B) =
∑

v∈X−1(u)∩B

Fn
(
Jv
)
Gn
(
Jv
)
Fn
(
dv
)
, (2.2.3)

Qnu(B) := Cnu (B)Gn
(
Cnu (B)

)
.

These are measurable as compositions of measurable functions X→ R with X : Ω→ X.

Note that Cnu (B) is the number of solutions v of the equation X(v) = u in the compact
(random) set

Kn :=
{
v ∈ B : Jv, dv ≥

1

2n
, Jv ≤ 2n

}
.
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Intuitively, Cnu (B) counts the solutions v of X(v) = u located in B for which that Jacobian Jv
is not too small, not too large and they are not too close to the boundary of B. The quantity
Qnu(B) is a sort of truncation of Cnu (B). Note that Qnu(B) = 0 whenever Cnu (B) > n.

Let g : U → [0,∞) be a continuous, compactly supported function. The coarea formula
(A.1.10) implies that∫

U
g(u)Qnu(B)du =

∫
B
JvFn(Jv)Gn(Jv)Fn(dv)Gn

(
CnX(v)(B)

)
g
(
X(v)

)
dv.

The standard assumptions guarantees that the above quantities are measurable. These ran-
dom variables are bounded since the various integrands are bounded. E.g., Qnu(B) ≤ 2n.
Taking expectations we deduce∫

U
g(u)E

[
Qnu(B)

]
du =

∫
B
E
[
JvFn(Jv)Gn(Jv)Fn(dv)Gn

(
CnX(v)(B)

)
g
(
X(v)

) ]
dv

=

∫
U
g(u)

(∫
B
E
[
JvFn(Jv)Gn(Jv)Fn(dv)Gn

(
CnX(v)(B)

)∣∣X(v) = u
]
dv

)
pX(v)(u)du.

Since the above equality holds for any continuous compactly supported function g we deduce

E
[
Qnu(B)

]
=

∫
B
E
[
JvFn(Jv)Gn(Jv)Fn(dv)Gn

(
CnX(v)(B)

)∣∣X(v) = u
]
pX(v)(u)dv (2.2.4)

for almost every u ∈ U . To prove that the above equality holds for any u we will show that
both sides of (2.2.4) depend continuously on u.

The random function u 7→ Cnu (B) = Cnu (X,B) is a.s. continuous since

u 7→ Cnu (Φ)

is continuous for any Φ ∈ X. Consider

αnv : X→ R, αv(Φ) := JΦ(v)Fn(JΦ(v))Gn(JΦ(v))︸ ︷︷ ︸
≤2n

Fn(dv)Gn
(
CnΦ(v)

)
.

For fixed v it depends continuously with respect to Φ in the topology of X. We can rewrite
the right-hand-side of (2.2.4) as∫

B
E
[
αnv (X)

∣∣X(v) = u
]
pX(v)(u)dv.

Corollary 2.2.4 and Lemma 2.2.6 show that the integrand depends continuously on u. Clearly
it is bounded uniformly in u. The Dominated Convergence Theorem shows that the above
integral depends continuously on u. Hence

E
[
Qnu(B)

]
=

∫
B
E
[
JvFn(Jv)Gn(Jv)Fn(dv)Gn

(
CnX(v)(B)

)∣∣X(v) = u
]
pX(v)(u)dv, (2.2.5)

for every u ∈ U . In particular, for u = 0 we deduce

E
[
Qn0 (B)

]
=

∫
B
E
[
JvFn(Jv)Gn(Jv)Fn(dv)Gn

(
CnX(v)(B)

)∣∣X(v) = 0
]
pX(v)(0)dv. (2.2.6)

Bulinskaya’s Lemma 2.1.2 and the Transversality Theorem 2.1.4 imply that 0 is a.s. a
regular value of X and the equation X(v) = 0 has no solutions on ∂B. We deduce that

Qn0 (B)↗ Z[B,X] as n→∞.
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Since Fn, Gn ↗ 1 we can use the Monotone Convergence Theorem in (2.2.6) as n→∞ and
deduce (KR) assuming the validity of Lemma 2.2.7. Observe that Lemma 2.2.6 shows that
the map

B ∋ v 7→ E
[
JX(v)

∣∣X(v) = 0
]
∈ R

is continuous and, since X(v) is nondegenerate for any v, we deduce that∫
B
E
[
JX(v)

∣∣X(v) = 0
]
pX(v)(0)dv <∞.

Proof of Lemma 2.2.7. The proof is similar to the proof of Lemma 2.2.1. Fix Φ0 ∈ X and
u0 ∈ U . For each n ∈ N we consider the compact set

Kn :=

{
v ∈ B; dist(v, ∂B) ≥ 1/n,

1

2n
≤ JΦ0(v) ≤ 2n

}
.

Note that Kn ⊂ int(Kn+1), ∀n. Let

Zn(Φ0) = Φ−1
0 (u0) ∩Kn.

Observe that if v ∈ Zn(Φ0), then the differential Φ′
0(v) is invertible so and the inverse function

theorem implies that there exists an open neighborhood Ov of such that Φ−1
0 (u0)∩Ov = {v}.

Hence Zn(Φ0) is a closed subset of a compact set consisting of isolated points so Zn(Φ0) is
finite

Zn(Φ0) :=
{
v1, . . . , vn}

Invoking the inverse function theorem we deduce that there exist r > 0 and pairwise disjoint
open sets O1, . . . ,On with the following properties.

• vk ∈ Ok ⊂ intKn+1, ∀k = 1, . . . , n. We set

O :=

n⋃
k=1

Ok.

• The restriction of Φ0 to Ok is a diffeomorphism onto the open ball Br(u0) ⊂ U .

Suppose that ∥Φν − Φ0∥C1(B) → 0 as ν →∞. We claim that

∃N > 0 : ∀ν ≥ N, Φ−1
ν (u0) ∩Kn ⊂ O.

We argue by contradiction. Suppose that there exists a subsequence νm ↗∞ and and

wνm ∈ Φ−1
νm(u0) ∩Kn \ O, ∀m (2.2.7)

Upon extracting a subsequence we can assume that wνm converges to w∗ ∈ Kn. Letting
m → ∞ in the equality Φνm(wνm) = u0 we deduce Φ0(w∗) = u0 ∈ O. This contradicts
(2.2.7).

Arguing as in the proof of Lemma 2.2.1 we conclude that there exists N > 0 such that for
any ν ≥ N and any k = 1, . . . , ν the equation Φν(v) = u0 has at most one solution v ∈ Ok.

Let us now observe that for ν sufficiently large the equation Φν(v) = u0 has one solution
v ∈ Ok. This is an immediate consequence of the theory of degree of a continuous map; see
e.g. [119, Chap.1]. Indeed, if Brk(vk) is a small closed ball centered at vk and contained in
Ok, then for ν sufficiently large

sup
v∈∂Brk

(vk)
∥Φν(v)− u0∥ > 0
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and

±1 = deg
(
Φ, Brk(vk), 0

)
= lim

ν→∞
deg

(
Φν , Brk(vk), 0

)
.

This proves that for any continuous function φ : B → R such that suppφ ⊂ Kn we have

lim
ν→∞

∑
v∈Φ−1

ν (u0)

φ(v) =
∑

v∈Φ−1
0 (u0)

φ(v).

This proves the first part of Lemma 2.2.7. The second follows from the above first part
applied to the maps Φν = Φ0 − (uν − u0), where uν → u0. ⊓⊔

This completes the proof of the local Kac-Rice formula ⊓⊔

Recall the random variable

Z[B,X, r] :=
1

ωdrd

∫
B
I{|X|<r}JX(v)dv

that appears in Kac’s counting formula (2.2.2)

Z[B,X] = lim
r↘0

Z[B,X, r].

Proposition 2.2.8. Let X as in Theorem 2.2.5. Assume additionally that X is 0-ample,
i.e., for any v ∈ V the Gaussian vector X(v) is nondegenerate. Then

E
[
Z[B,X]

]
= lim

r↘0
E
[
Z[B,X, r]

]
In particular Z[B,X, r]→ Z[B,X] in L1 as r ↘ 0.

Proof. Using Fubini’s formula we deduce

E
[
Z[B,X, r]

]
=

1

ωdrd

∫
B
E
[
I{|X|<r}JX(v)

]
dv

Note that

E
[
I{|X|<r}JX(v)

]
=

∫
|u|<r

E
[
JX(v)

∣∣X(v) = u
]
pX(v)(u)du,

so that

E
[
Z[B,X, r]

]
=

1

ωdrd

∫
B

( ∫
|u|<r

E
[
JX(v)

∣∣X(v) = u
]
pX(v)(u)du

)
dv

=
1

ωdrd

∫
|u|<r

( ∫
B
E
[
JX(v)

∣∣X(v) = u
]
pX(v)(u)dv

)
︸ ︷︷ ︸

=:φ(u)

du.

The regression formula shows that the integrand u 7→ φ(u) is continuous on |u| ≤ r so that

lim
r↘0

1

ωdrd

∫
|u|<r

φ(u)du = φ(0) =

∫
B
E
[
JX(v)

∣∣X(v) = 0
]
pX(v)(0)dv = E

[
Z[B,X]

]
.

The statement about the L1-convergence follows from the Lebesgue-Vitali theorem on uniform
integrability; see e.g. [115, Sec. 3.2.2] or [137, Thm. 16.6]. ⊓⊔
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Remark 2.2.9. (a) The assumptions in Theorem 2.2.5 are less stringent than in the Gaussian
Kac-Rice formula [1, Cor.11.2.2]. Theorem 2.2.5 requires only the 0-ampleness of X whereas
[1, Cor.11.2.2] requires J1-ampleness. This is due to the different strategy used in [1] to prove
(KR).

(b) There are many generalizations of the local Kac-Rice formula (KR). First, one can
slightly relax the Gaussian assumption; see [1, 7, 143]. These generalizations do not seem
too practical for two reasons. First, the various conditions imposed on the random field
are difficult do verify in the non-Gaussian case. Then, the computation of the conditional
expectation in the KR-density is nearly impossible in the non-Gaussian case.

There exist other generalizations, of a more geometric nature. Consider a Gaussian field

F : V → U , dimV ≤ dimU ,

and M ⊂ U , a submanifold of dimension dimU − dimV , then one expects that the map
F is a.s. transversal to M so one expects that F−1(M) is discrete and we can ask what is
the expectation of its cardinality. This problem is discused in great detail in a much greater
generality in M. Stecconi’s dissertation [143].

If m0 := dimU < m1 := dimV , then the preimage F−1(0) is typically a submanifold of
V codimensionm0. We can then ask what is the E

[
Hm1−m0(F

−1(0))
]
, the expectation of the

volume of F−1(0), where Hk denotes the k-dimensional Hausdorff measure. This situation is
addressed in [7, 12]. ⊓⊔

2.2.2. A weighted local Kac-Rice formula. Let X be as in Theorem 2.2.5. Using [79,
Lemma 3.1] and Theorem 2.2.5 we deduce that the correspondence

BV 7→ Z[S,X]

is a locally finite random measure, i.e.,

(i) for any S ∈ BV the map

(Ω, S,P) ∋ ω 7→ Z[S,Xω] ∈ [0,∞]

is measurable, and

(ii) for any ω ∈ Ω the map

BV ∋ S 7→7→ Z[S,Xω] ∈ [0,∞]

is a measure that is finite on the compact subsets of V .

We refer to Appendix C.2 for more information about locally finite random measures.
The integral of continuous, compactly supported function φ ∈ C0

cpt(V ) with respect to this
random measure produces a random variable

For any compactly supported measurable function φ : V → R we set

Z[φ,X] =

∫
V
φ(v)Z[dv,X] =

∑
v∈X−1(0)

φ(v).

More generally, for any nonnegative measurable function f : V → [0,∞) we can define
Z[f,X] in a similar way so Z[B,X] = Z[IB, X].

We have the following variant of the Kac-Rice formula.
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Theorem 2.2.10 (Weighted local Kac-Rice formula). Let X be as in Theorem 2.2.5 and
φ ∈ C0

cpt(V ).Then

E
[
Z[φ,X]

]
=

∫
V
φ(v)ρXKR(v)dv <∞, (2.2.8)

where

ρXKR(v) = E
[
JX(v)

∣∣X(v) = 0
]
pX(v)(0)

is the Kac-Rice density of X.

Proof. Decomposing φ = φ+ − φ− we can assume that φ ≥ 0. Using partitions of unity we
can reduce everything to the special case when suppφ is contained in a box B ⊂ V . Now
run the argument in the proof of the local Kac-Rice formula with the term Cnu (B) in (2.2.3)
replaced by

Cnu (φ) :=
∑

v∈X−1(u)

φ(v)Fn
(
Jv
)
Gn
(
Jv
)
Fn
(
dist(v, ∂B)

)
.

Note that formally Cnu (B) = Cnu
(
IB
)
. ⊓⊔

Suppose that F : V → R is a Morse function. In particular, F is at least C2. We denote
by dF its differential. We view it as a map

dF : V → V ∗.

We set

C[−, F ] := Z[−, dF ].
Hence, for any Borel subset S ⊂ V ,

C
[
S, F

]
= #

{
v ∈ S; dF (v) = 0

}
.

For any continuous function φ : B → R we set

C
[
φ, F

]
=

∫
V
φ(v)C[dv, F ] =

∑
dF (v)=0

φ(v),

Corollary 2.2.11. Suppose that F : V → R is a C2 Gaussian function satisfying the 1-
ampleness condition

for any v ∈ V the Gaussian vector

Ω ∋ ω 7→ dFω ∈ V ∗

is nondegenerate.

Then F is a.s. Morse and for any function φ ∈ C0
cpt(V ) we have

E
[
C[φ, F ]

]
= E

[
Z[φ, dF ]

]
=

∫
V
E
[
|detHessF (v)|

∣∣ dF (v) = 0
]
pdF (v)(0)φ(v)dv <∞.

(2.2.9)

The quantity E
[
|detHessF (v)|

∣∣ dF (v) = 0
]
pdF (v)(0)dv is the Kac-Rice density of dF ⊓⊔

We conclude this subsection with another version of the local Kac-Rice formula which
counts the zeros of a
emphrandom map inside a random set.
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Theorem 2.2.12. Let U , V and W be Euclidean spaces such that dimU = dimV = m.
Let V ⊂ V be open. Suppose that

X ⊕ Y : Ω× V→ U ⊕W , Ω× V ∋ (ω, v) 7→ Xω(v)⊕ Yω ∈ U ⊕W ,

is a C1-Gaussian field satisfying the standard conditions such that, for any v ∈ V , the
Gaussian vector

Ω ∋ ω 7→ Xω(v)⊕ Yω(v) ∈ U ⊕W

is nondegenerate. For each v ∈ V we denote by Jv the Jacobian of X at v,

Jv =
√

det
(
X ′(v)X ′(v)∗

)
.

Suppose that C ⊂W is a nondegenerate box in W . Then, for any box B ⊂ V

E
[
Z[B ∩ Y −1(C), X)]

]
=

∫
B
E
[
JvIC

(
Y (v)

)∣∣X(v) = 0
]
pX(v)(0)dv (2.2.10a)

=

∫
B

(∫
C
E
[
Jv
∣∣X(v) = 0, Y (v) = w

]
PY (v)

[
dw
])

pX(v)(0)dv. (2.2.10b)

Proof. We know that a.s. the equation X(v) = 0 has no solutions on ∂B and 0 is a regular
value of X. Let us show that a.s. there exist no solution of of X(v) = 0 such that Y (v) ∈ ∂C.

Consider the Gaussian field

F : V ⊕W → U ⊕ V , (v, w) 7→
(
X(v), Y (v)− w

)
.

Since the Gaussian vector X(v)⊕ Y (v) is nondegenerate, so is F (v, w). Set K := B × ∂C.
The Hausdorff dimension of K is < dim(V ⊕W ) and Bulinskaya’s Lemma 2.1.2 implies

that a.s. the equation F (v, w) = 0 has no solution in K. Thus, with probability 1, there
exists no v ∈ B such that X(v) = 0 and Y (v) ∈ ∂C.

Denote by C◦ the interior of C and by E the complement of C◦ in W . We set

Cn :=
{
w ∈W ; dist(w,E) ≥ 1/n

}
and ηn(w) =

dist(w,E)

dist(w,Cn) + dist(w,E)
.

Note that ηn(w)↗ IC(w), ∀w ∈W . Thus as n→∞∑
v∈X−1(0)∩B

ηn
(
Y (v)

)
↗ #X−1(0) ∩B ∩ Y −1(C), a.s..

The fact that almost surely X has no zero in B ∩ Y −1(∂C) plays a key role in the above
equality.

For v ∈ V , u ∈ U , n ∈ N, Φ ∈ C1(V ,U) and Ψ ∈ C1(V ,W ) we set

dv := dist(v, ∂B),

Cnu (Φ,Ψ, B) :=
∑

v∈Φ−1(u)∩B

ηn
(
Ψ(v)

)
Fn
(
JΦ(v)

)
Gn
(
JΦ(v)

)
Fn
(
dv
)

An immediate modification of the proof of Lemma 2.2.7 yields the following continuity result.

Lemma 2.2.13. The functions

C1(V ,U)× C1(V ,W ) ∋ (Φ,Ψ) 7→ Cnu (Φ,Ψ, B)

and u 7→ Cnu (Φ,Ψ) are continuous. ⊓⊔
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We set

Cnu (B) := Cnu (X,Y,B) =
∑

v∈X−1(u)∩B

ηn
(
Y (v)

)
Fn
(
Jv
)
Gn
(
Jv
)
Fn
(
dv
)
, (2.2.11)

Qnu(B) := Cnu (B)Gn
(
Cnu (B)

)
.

These are measurable as compositions of continuous functions C1(V ,U)× C1(V ,W ) → R.
The argument in the proof of Theorem 2.2.5 now carries through without any conceptual
changes and yields (2.2.10a). ⊓⊔

The argument in the above proof can be used to produce the following version of Theorem
2.2.12.

Corollary 2.2.14. Let U , V and W be Euclidean spaces such that dimU = dimV = m.
Let V ⊂ V be open. Suppose that

X : Ω× V→ U , Ω× V ∋ (ω, v) 7→ Xω(v) ∈ U ,

Y : Ω× V→W , Ω× V ∋ (ω, v) 7→ Xω(v) ∈ U ,

are C1-Gaussian fields such that, for any v ∈ V the Gaussian vector

Ω ∋ ω 7→ Xω ⊕ Yω ∈ U ⊕W .

is nondegenerate. For any any functions f ⊂ C0
cpt(V ), g ∈ C0

cpt(W ) we set

Z[f, g;X,Y ] =
∑

v∈X−1(0)

f(v)g
(
Y (v)

)
.

Then

E
[
Z[f, g;X,Y ]

]
=

∫
V
E
[
Jvg
(
Y (v)

)∣∣X(v) = 0
]
f(v)pX(v)(0)dv (2.2.12a)

=

∫
V

(∫
W

E
[
Jv
∣∣X(v) = 0, Y (v) = w

]
g(w)PY (v)

[
dw
])

f(v)pX(v)(0)dv (2.2.12b)

⊓⊔

Suppose that F : V → R is a Morse function and B ⊂ V is a nondegenerate box. We
denote by D(F |B) the discriminant set of F |B, i.e., the set of critical values of F |B. The
discriminant measure of F |B is the pushforward

DB,F = F#C[−, F ]
∣∣
B
=
∑
t∈R

C[F−1(t) ∩B,F ]δt.

The discriminant measure is concentrated on D(F |B). For φ ∈ C0
cpt(R) we set

DB,F

[
φ
]
:=

∫
R
φ(t)DB,F [dt] =

∑
dF (v)=0,
v∈B

φ
(
F (v)

)
.

When F is random, DB,F

[
φ
]
is a random variable.

Corollary 2.2.15. Suppose that F : V → R is a C2 Gaussian function satisfying the J1-
ampleness condition
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for any v ∈ V the Gaussian vector

Ω ∋ ω 7→ Fω ⊕ dFω ∈ R⊕ V ∗

is nondegenerate.

Then F is a.s. Morse and, for any box B ⊂ V and any function φ ∈ C0
cpt(R) we have

E
[
DB,F [φ]

]
=

=

∫
B

(∫
R
E
[ ∣∣ detHessF (v) ∣∣ ∣∣ dF (v) = 0, F (v) = t

]
φ(t)PF (v)[dt]

)
pdF (v)(0)dv.

(2.2.13)

2.2.3. Global Kac-Rice formula. Suppose that (M, g) is smooth, compact3 connected
m-dimensional Riemannian manifold and E → M is a smooth real vector bundle of rank
m = dimM . We assume additionally that E is equipped with a metric h and a connection
∇E compatible with the metric h. Denote by Vect(M) the space of smooth vector fields on
M and by volg the volume measure on M determined by the Riemann metric g.

We set End(E) := E ⊗ E∗ → M . This is a smooth vector bundle over M whose fiber
over a point x ∈M is

Ex ⊗ E∗
x
∼= End(Ex).

Suppose that u :M → E is a C1-section of E. For each point x0 ∈M we have a linear map

∇Eu : Tx0M → Ex0 , Tx0M ∋ v 7→ ∇Ev u(x0) := ∇EXv
u(x0),

where Xv ∈ Vect(M) is any smooth vector field on M such that Xv(x0) = v. Let us observe
that if u(x0) = 0 and ∇0,∇1 are two connections on E, then

∇0u(x0) = ∇1u(x0).

Indeed, if we set A = ∇1 −∇0, then A is a section of T ∗M ⊗ End(E). Then

∇1
vu(x0)−∇0

vu(x0) = A(Xv)u(x0) = 0.

Thus, at every zero x0 of the section u, the linear map

Tx0M → Ex0 , v 7→ ∇vu(x0).

is independent of the connection ∇ on E. Following the custom in algebraic geometry we
will refer to this map as the adjunction map of u at x0 and we will denote it by adju(x0). A
zero x0 of u is called nondegenerate if the adjunction map adj(x0) is invertible.

Theorem 2.2.16 (Global Kac-Rice formula). Suppose that (M, g) is smooth, compact con-
nected m-dimensional Riemannian manifold and E → M is a smooth real vector bundle of
rank m = dimM . Fix a smooth metric h on E and a connection ∇E compatible with the
metric h.

Let Ψ be a Gaussian random section of E →M that is a.s. C1 and satisfies the ampleness
condition

∀x ∈M , the Ex-valued Gaussian vector Ψ(x) is nondegenerate. (2.2.14)

Then the following hold.

(i) The zeros of Ψ are a.s.-nondegenerate.

3The compactness is not needed but it is the only situation we will deal with in this book.
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(ii) For any continuous function φ :M → R we set

Z[φ,Ψ] =
∑

Ψ(x)=0

φ(x).

Then the Z[φ,Ψ] is measurable and

E
[
Z(φ,Ψ)

]
=

∫
M

E
[
J∇EΨ(x)

∣∣Ψ(x) = 0
]
pΨ(x)(0)φ(x) volg

[
dx
]
. (2.2.15)

Above, pΨ(x) denotes the probability density of the nondegenerate Gaussian vector

Ψ(x) and J∇EΨ(x) denotes the Jacobian of the linear map ∇EΨ(x) : TxM → Ex
computed in terms of the inner product gx on TxM and hx on Ex.

Proof. Clearly, the left-hand side of (2.2.15) is independent of the various choices: the metric
g on M , the metric h on E and the connection ∇E . We first prove that the right-hand side
of this equality is also independent of these choices.

1. Independence of the connection. This is easy. Given that Ψ(x) = 0 we have

∇Eψ(x) = adjΨ(x)

and the right-hand side is independent of any connection on E.

2. Independence of the metric g. Suppose that g1, g0 are two Riemann metrics on M ,
then there exists a smooth endomorphism S of TM that is symmetric and positive definite
with respect to the metric g0 and such that

g1(X,Y ) = g0
(
SX, Y

)
Then

volg1
[
dx
]
=
√

detSx · volg0
[
dx
]
,

Denote by J ix the jacobian of Lx : ∇Eu(x) : TxM → Ex computed with respect to the inner
product gix on TxM and the inner product hx on Ex. The inner products gi determine two
Lebesgue measures λgix on TxM related by the equality

λg1x
[
dv
]
=
√
detSx · λg0x

[
dv
]
.

The inner product hx determines a Lebesgue measure λhx on Ex. The equality (A.1.6) shows
that

λhx = J ix · (Lx)#λgix .
Hence

Jg0x · (Lx)#λ
0
x = J1

x · (Lx)#λg1x =
(
J1
x

√
detSx

)
· (Lx)#λg0x

so that

J1
x =

1√
detSx

J0
x .

Hence

E
[
J1
x

∣∣Ψ(x) = 0
]
volg1

[
dx
]
=

1√
detSx

E
[
J0
x

∣∣Ψ(x) = 0
]√

detSx volg0
[
dx
]

proving that the right-hand side of (2.2.15) is independent of the metric g.

3. Independence of the metric h. Let h0, h1 be two metrics on E. We denote by Vari(x)
the variance operator of Ψ(x) determined by the inner product hi(x) on Ex. The probability
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density of Ψ(x) depends on the inner product on Ex. We denote by piΨ(x) the probability

density of Ψ(x) determined by the inner product hi(x). We have

piΨ(x)(0) =
1√

det
(
2πVari(x)

) .
There exists a smooth endomorphisms G of E which is symmetric and positive definite with
respect to h0 and such that

h1(u, v) = h0
(
Gu, v

)
for any smooth sections u, v of E. As explained in Remark 1.1.17 we have

Var1(x) = Var0(x)G(x)

so that

p1Ψ(x)(0) =
1√

detG(x)
p0Ψ(x).

Using the same notations as in the proof of the independence of g we have

λhix = J ix · (Lx)#λgx , i = 0, 1

and

λh1x =
√
detG(x)λh0x

from which we deduce that J1
x =

√
detG(x) · J0

x . Hence

E
[
J1
x

∣∣Ψ(x) = 0
]
p1Ψ(x)(0) =

√
detG(x)E

[
J0
x

∣∣Ψ(x) = 0
] 1√

G(x)
p0Ψ(x)(0).

The point of the above exercise is clear: if we could prove (2.2.15) for some convenient choices
of g, h,∇E , then we would have a proof for any choices of g, h,∇E .

Using partitions of unity we can reduce (2.2.15) to the case when φ is supported on a
open subset O ⊂M with the following properties.

• The open subset O is diffeomorphic to an open subset V ⊂ Rm.
• The restriction of E to O is trivializable. Fix one such trivialization, E|O ∼= RmO .
Here RmO denote the trivial vector bundle over O with fiber Rm .

Then we can identify the restriction to O of the section Ψ with a random Gaussian map
Ψ : V → Rm. Suppose now that the restriction of g to O corresponds to the Euclidean metric
on V , the restriction of h to E|O corresponds to the trivial metric on the trivial bundle RmV ,
and the restriction of ∇E to E|O corresponds to the trivial connection on RmV .

In this case (2.2.15) reduces to the local Kac-Rice formula (2.2.8).

⊓⊔

Remark 2.2.17. The equality (2.2.15) displays a remarkable phenomenon: the quantity

E
[
J∇EΨ(x)

∣∣Ψ(x) = 0
]
pΨ(x)(0)φ(x) volg

[
dx
]

is independent of the various geometric choices: the metrics on M and E and the connection
on E. It depends only on the ample Gaussian C1 section Ψ. Since this quantity is something
one can integrate over a manifold it is called a 1-density in geometric parlance; see [114,
Sec.3.4]. Thus the global Kac-Rice formula describes explicitly a canonical 1-density on M
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whose integral over a Borel subset gives the expected number of zeros of ψ in that Borel
subset. We will refer to it as the Kac-Rice 1-density.

☞ A word of warning! The concept of 1-density is not to be confused with the concept of
density used in analysis and in physics. For example, a 1-density on a Riemann manifold
(M, g) is essentially a measure ν on M that is absolutely continuous with respect to the
volume measure volg determined by the metric g.

The analysts’ and physicists’ density is the Radon-Nicodym derivative dν
d volg

, also called

the density of ν relative to volg. When working on Rn with the usual Euclidean metric, then
d volg is the Lebesgue measure the concepts of 1-density and density tend to be confused. In
geometry this confusion could lead to erroneous conclusions.

We could have formulated the Kac-Rice formula in the language of 1-densities from the
start. We chose not to do so since the concept of 1-density is not widely known and can
obscure the simple nature of this result in concrete situations. ⊓⊔

Let us mention a few immediate consequences of the global Kac-Rice formula.

Corollary 2.2.18. Suppose that Ψ is an ample Gaussian C1-section of the smooth vector
bundle E → M of rank m = dimM . Then, for any compact set K ⊂ M , the expected
number of zeros of Ψ inside K is finite. ⊓⊔

Corollary 2.2.19. Suppose that (M, g) is a compact Riemannian manifold and F :M → R
is a Gaussian C2 function such that the random section dF : M → T ∗M is ample. Denote
by ∇g the Levi-Civita connection on T ∗M . Then the following hold.

(i) The function F is almost surely a Morse function, i.e., all its critical points are
nondegenerate.

(ii) For any continuous function φ :M → R we have

E
[
Z(φ, dF )

]
=

∫
M
φ(x)E

[
HessF (x)

∣∣ df(x) = 0
]
pdf(x)(0) volg

[
dx
]
,

where the HessF (x) is Hessian of f at x, HessF (x) = ∇gdF (x).

⊓⊔

Remark 2.2.20. In the above corollary we need not have fixed a metric. As explained in
Subsection 1.2.7, the Gaussian function F defines both a metric on T ∗M (hence a metric
gcorr on M) and a connection on T ∗M compatible with it. This connection is the Levi-Civita
connection of the metric gcorr. We could have described the Kac-Rice 1-density entirely in
terms of gcorr. ⊓⊔

Similarly, Corollary 2.2.15 has a global counterpart.

Corollary 2.2.21. Suppose that (M, g) is a compact Riemannian manifold and F :M → R
is a C2 Gaussian function such that,

for any p ∈M the Gaussian vector F (p)⊕dF (p) ∈ R⊕T ∗
pM is nondegenerate.
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Denote by DF the discriminant measure of F

DF =
∑

dF (p)=0

δF (p) =
∑
t∈R

#
{
p;F (p) = t, dF (p) = 0

}
δt.

Then F is a.s. Morse and, for any function φ ∈ C0
cpt(R), we have

E
[
DF [φ]

]
=

∫
M

(∫
R
E
[
| detHessF (x)|

∣∣ dF (x) = 0, F (x) = t
]
φ(t)PF (x)

[
dt
])

pdF (x)(0) volg
[
dx
]
.

(2.2.16)

⊓⊔

2.3. Applications

In the immortal words of Yogi Berra “in theory there is no difference between theory and
practice. In practice there is.” The applications of the Kac-Rice formula are good illustrations
of the above principle. It this section we will show how the Kac-Rice formula works in some
concrete situations. We start with the 1-dimensional situation. Even in this simplest of the
situations we will reach beautiful geometric conclusions.

2.3.1. Some one-dimensional applications. Suppose that I ⊂ R is an open interval of
the real axis and F : I → R is a centered C1 Gaussian function such that for any t ∈ I the
Gaussian random variable F (t) is nondegenerate. Let K : I×I → R be the covariance kernel
of F (t), i.e.,

K(t, s) = E
[
F (t)F (s)

]
, ∀s, t ∈ I.

Since F (t) is nondegenerate we have K(t, t) > 0, ∀t. We set Z[F ] := Z[I, F ], i.e., Z[F ] is the
number of zeros of F in I.

The local Kac-Rice formula implies that

E
[
Z[F ]

]
=

∫
I
E
[
|F ′(t)|

∣∣F (t) = 0
]
pF (t)(0)︸ ︷︷ ︸

=:ρt

dt. (2.3.1)

We need to clarify the nature of the integrand ρt in the above equality. Observe first that

pF (t)(0) =
1√

2πK(t, t)
.

Observe next that F ′(t) is a continuous Gaussian function with covariance kernel

E
[
F ′(t)F ′(s)

]
= ∂2tsK(t, s).

Note also that

E
[
F ′(t)F (t)

]
= ∂tK(t, s)s=t.

The Gaussian regression formula (1.1.20) shows that

E
[
|F ′(t)|

∣∣F (t) = 0
]
= E

[ ∣∣X ∣∣ ]
where X is a centered Gaussian random variable with variance,

vt = ∂2tsK(t, s)s=t −
∂tK(t, s)2s=t
K(t, t)

.
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Hence

E
[
|F ′(t)|

∣∣F (t) = 0
] (1.1.8)

= (2vt/π)
1/2,

and

ρt =

(
∂2stK(t, s)K(t, s)− ∂tK(t, s)2

K(t, s)2

)1/2

s=t

=
√
∂2s,t logK(t, s)t=s,

E
[
Z[F ]

]
=

1

π

∫
I
ρtdt.

(2.3.2)

Example 2.3.1 (Kac polynomials). Suppose that F (t) is a random polynomial of the form

F (t) = Fn(t) =
n∑
k=0

Akt
k,

where the coefficients are independent standard normal random variables. In this case the
covariance kernel is

K(s, t) =
1− (st)n+1

1− st
.

Denote by Zn the numbers of real roots on Fn.

Such random polynomials are referred to as Kac polynomials, the Kac in Kac-Rice. They
were first considered by M. Kac [76] in 1943 when he proved the first version of (2.3.2). More
precisely he showed that

E
[
Zn
]
=

1

π

∫
R

√
fn(t) dt, fn(t) :=

1

(t2 − 1)2
− (n+ 1)2t2n

(t2n+2 − 1)2
. (2.3.3)

For example,

f2(t) =
1

(t2 − 1)2
− 9t4

(t6 − 1)2
=

t4 + t2 + 1

(t4 + t2 + 1)2
,

and

E
[
Zn
]
≈ 0.5055.

In particular, we deduce that

P
[
Z2 > 0

]
=

1

2
E
[
Z2

]
≈ 0.25.

In [76] M. Kac proved the rather surprising result

E
[
Zn
]
=

2

π
logN +O(1), as n→∞.

This can be a bit refined; see [51, Sec.2.5]. More more precisely, there exists a universal
constant C > 0 (C ≈ 0.6257...) such that as n→∞ we have

Zn =
2

π

(
log n+ C +

2

nπ

)
+O

(
1/n2

)
. (2.3.4)

The results in [44] imply that the expected number of critical points of Fn(t) is also of the
order log n as n→∞. ⊓⊔
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Example 2.3.2 (The Kostlan statistics). Consider the Kostlan random polynomials

Fn(t) =

n∑
k=0

Xkt
k,

where the coefficients Xk are independent normal random variables with mean zero and
variances

Var
[
Xk

]
=

(
n

k

)
.

Denote by Zn the number of real zeros of Fn. In this case the covariance kernel is

K(s, t) =
n∑
k=0

(
n

k

)
(st) = (1 + st)N

and we have

logK(s, t) = N log(1 + st), ∂t logK(s, t) =
Ns

1 + st
,

∂2st logK(s, t) =
N

(1 + st)2
, ρt =

√
∂2st logK(s, t)|s=t =

√
N

1 + t2
.

The Kac-Rice formula implies that the expected number of zeros is

E
[
Zn
]
=

2
√
N

π

∫ ∞

0

1

1 + t2
=
√
n.

We see that the Kostlan random polynomials have, on average, more real zeros than the Kac
random polynomials. ⊓⊔

Example 2.3.3 (The Legendre statistics). Recall that the Legendre polynomials are
obtained from the sequence of monomials (tk)k≥0 by applying the Gramm-Schmidt procedure
with respect to the inner product in L2([−1, 1], dt).

Concretely, the degree n Legendre polynomial is

pn(t) :=

√
2n+ 1

2
ℓn(t), ℓn(t) :=

1

2nn!

dn

dtn
(
t2 − 1

)n
. (2.3.5)

We can construct a random polynomial

FN (t) =

N∑
k=0

Xkpk(t),

where Xk are independent standard normal random variables, ∀k. Using the Christoffel-
Darboux theorem [145] we deduce that its covariance kernel is given by

KN (s, t) =
N∑
k=0

pk(s)pk(t) =
N + 1

2
· ℓN+1(t)ℓN (s)− ℓN+1(s)ℓN (t)

t− s
. ⊓⊔

M. Das [42] has shown that the expected number of zeros of FN (t) in [−1, 1] is asymptotic to
1√
3
N for large N . The Legendre ensemble displays an even stronger bias towards a relatively

large number of real roots. The reason is that the number of zeros of the Legendre polynomial
ℓn goes to ∞ as n→∞. ⊓⊔
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I want to describe two nice geometric applications of the 1-dimensional Kac-Rice formula.
My presentation follows [116].

Example 2.3.4. Suppose that C is a smooth closed curve on the unit n-dimensional sphere

Sn =
{
(x0, x1, . . . , xn) ∈ Rn+1; x20 + x21 + · · ·+ x2n = 1

}
.

Denote by L its length. By Equator in Sn we mean an (n− 1)-dimensional sphere obtained
by intersecting Sn with a hyperplane through the origin. An Equator divides the sphere into
two parts called hemispheres. Using the Kac-Rice formula we will prove, in one stroke, two
related facts.

(i) If L < 2π, then this curve is entirely contain in some hemisphere.

(ii) If L > 2π, then there exists an Equator of the sphere that intersects the curve in
at least four points.

The case n = 2 of (i) seems to be part of the folklore of mathematics; see e.g. [149,
Problem 1.10.4]. The case n = 2 of (ii) was proved more recently, in a 2008 American
Mathematical Monthly paper, [72]. The authors refer to it as a 1969 conjecture of Hugo
Steinhaus. Here is a probabilistic proof of these facts.

Parametrize C by arclength, [0, L] ∋ s 7→ x(s) :=
(
x0(s), . . . , xn(s)

)
∈ Rn+1. Since

C ⊂ Sn we have |x(s)| = 1, ∀s, where | − | denotes the natural Euclidean norm. Moreover,
since this is arclength parametrization we have |x′(s)| = 1, ∀s.

Any vector u ∈ Rn+1 determines a linear functional ℓu : Rn+1 → R, ℓu(x) = ⟨u,x⟩,
where ⟨−,−⟩ is the canonical inner product in Rn+1. To prove (i), we have to show that
there exists u ̸= 0 such that the restriction of ℓu to C has no zeros. To prove (ii), we have
to show that there exists u ̸= 0 such that the restriction of ℓu to C has at least four zeros.

The restriction of ℓu to C can be identified with the function fu : [0, L]→ R, fu(s) = ⟨u,x(s)⟩.
Choose independent standard random variables (Uk)0≤k≤n and form the random Gaussian
function

FU : [0, L]→ R, FU (s) =

n∑
i=0

Uixi(s).

Its covariance kernel is K(s, t) = ⟨x(s),x(t)⟩. We deduce

at = ⟨x(t),x(t)⟩ = |x(t)|2 = 1, bt = K ′
t(s, t)

∣∣
s=t

= ⟨x(t),x′(t)⟩ = 1

2

d

dt
|x(t)|2 = 1,

ct = K ′′
st(s, t)

∣∣
s=t

=
∣∣x′(t)

∣∣2 = 1.

The ampleness of FU follows from the equality at = 1. We can apply the Kac-Rice formula
to deduce that the expected number of zeros of FU is ZC = L

π .

To reach the conclusions (i) and (ii) we need an additional input, topological in nature.
Observe that if fu has only nondegenerate zeros, then it has an even number of them. Indeed,
a nondegenerate zero of fu corresponds to a point where the curve C crosses the hyperplane
{ℓu = 0} transversally from one side to the other. Since the curve is closed, it must cross
this hyperplane an even number number of times.

The ampleness condition at > 0 implies that the zeros of FU are almost surely nondegen-
erate. Thus, almost surely, the function FU has an even number of zeros.
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If L < 2π, then ZC < 2, and the probability that the number of zeros of FU is < 2 is
positive. Since FU has an even number of zeros we deduce that the probability that FU has
no zeros is positive. This proves (i).

If L > 2π, then ZC > 2. Hence, the probability that FU has more than two zeros is
positive and we deduce that the probability that FU has at least four zeros is positive. This
proves (ii). ⊓⊔

Example 2.3.5 (Fáry-Milnor). Suppose that

[0, L] ∋ s 7→ r(s) = (x(s), y(s), z(s)) ∈ R3

is the arclength parametrization of a smooth knot K in R3. Here, by knot I understand a
smoothly embedded S1 in R3.

Consider a random linear function

H : R3 → R, H(x, y, z) = Ax+By + Cz,

where A,B,C are independent standard normal random variables with mean zero and vari-
ance 1. Denote by µ(H) = µ(A,B,C) the number of critical points of the restriction of H
to the knot. These are the points on the knot where the vector (A,B,C) is perpendicular to
the tangent vector to the curve at that point.

The restriction of H to the K is described the Gaussian random function

F (s) = Ax(s) +By(s) + Cz(s).

Note that the critical points of H|K correspond to the zeros of the derivative.

F ′(s) = Ax′(s) +By′(s) + Cz′(s)

The derivative F ′(s) is a Gaussian random function with covariance kernel

K(s1, s2) = x′(s1)x
′(s2) + y′(s1)y

′(s2) + z′(s1)z
′(s2) = T (s1) • T (s2),

where (T ,N ,B) is the Frénet frame along the curve and • denotes the standard inner/dot
product in R3. We have

∂s2K(s1, s2) = T (s1) • T ′(s2) = κ(s2)T (s1) •N(s2),

where κ denotes the curvature of the curve. Similarly

∂2s1s2K(s1s2) = κ(s1)κ(s2)N(s1) •N(s2).

We deduce

K(s, s) = 1, ∂s2K(s, s) = 0, ∂2s1s2K(s, s) = κ(s)2, ρs = |κ(s)|.
Hence the ampleness assumption is satisfied. The Kac-Rice formula implies that the critical
points of H|K are almost surely nondegenerate. They come in two types: local minima and
local maxima. We denote by m±(H) the number of local minima/maxima of H|K . Then,
almost surely, m−(H) = m+(H) and µ(H) = m−(H) + m+(H). The Kac-Rice formula
(2.3.2) implies that

E
[
µ(H)

]
= 2E

[
m+(H)

]
=

1

π

∫ L

0
|κ(s)|ds = 1

π
× the total curvature of the curve.

This result was first proved independently by I. Fáry [56] and J. Milnor [100]. In particular,
Milnor, who was an undergraduate at the time, used this to prove a conjecture of K. Borsuk
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roughly stating that to knot a curve you need to bend it quite a bit. More precisely, if the
total curvature is ≤ 4π , then the knot K is the unknot. ⊓⊔

2.3.2. The distribution of critical points. Things get substantially more involved for
Gaussian functions of several variables, but in certain cases we can still say something that
is meaningful.

Example 2.3.6 (Random trigonometric polynomials with given Netwon polyhedron). Con-
sider the random Gaussian trigonometric polynomial

XN (θ⃗) = XN (θ1, . . . , θm)

defined in Example 1.2.17. Its covariance kernel is

K(θ⃗, ϕ⃗) = SN
(
θ⃗ − ϕ⃗

)
=
∑
ℓ⃗∈PN

ei⟨ℓ⃗,θ⃗−ϕ⃗⟩.

Above PN = N ·P , where P is a fixed Newton polyhedron, i.e., a convex polyhedron in Rm,
with vertices lattice points, containing the origin in the interior and symmetric about the
origin. For m = 1 and P = [−1, 1] the number of zeros of XN were first investigated by S.
O. Rice [131], the Rice in Kac-Rice.

Denote by ZN or Z(PN ) the number of critical points ofXN on the torus Tm =
(
R/2πZ

)m
,

or equivalently, the number of zeros of its gradient GN = ∇XN on the box Bm := [0, 2π]m.
We have seen in Example 1.2.17 that GN is ample for all N sufficiently large. We deduce
from the Kac-Rice formula (KR) that

E
[
ZN

]
=

∫
Bm

E
[
|detHessXN

(θ⃗)|
∣∣∇XN (θ⃗) = 0

]
p∇XN (θ)(0)dθ⃗

The computations in Example 1.2.17 show that the above integrand is independent of θ⃗. We
have

p∇XN (θ)(0) =
1√

det(2π)Var
[
∇XN (0)

] (1.2.12)∼ 1√
det(2π)Nm+2M(P )

∼ (2π)−m/2
(
detM(P )

)−1/2
N−m(m+2)/2 N →∞.

(2.3.6)

The Hessian HN (θ⃗) = HessXN
(θ⃗) is a Gaussian vector valued in the space Sym(Rm) of

symmetric m ×m-matrices. This is a Euclidean space of dimension m(m + 1)/2 with inner
product

⟨A,B⟩ = tr(AB).

On Sym(Rn) we can use the orthonormal coordinates
(
ωij
)
1≤i≤j≤m, where

ωij(A) =

{
Aii, i = j,√
2Aij , i ̸= j.

The variance operator Var
[
HN (θ⃗)

]
is given by the matrix

Q(N) =
(
Q(N)ij|kℓ

)
i≤i≤j≤m,
1≤k≤ℓ≤m

where

Q(N)ij|kℓ = E
[
ωij(HN )ωkℓ(HN )

]



2.3. Applications 99

Consider the quadratic functions qij : P → R

qij(x1, . . . , xm) =

{
x2i , i = j√
2xixj , i ̸= j.

We denote by Q(P ) the Gramian matrix of the collection
(
qij
)
1≤i≤j≤m with respect to the

inner product on L2(P,λ). This is a nondegenerate symmetric matrix of size m(m+1)
2 ×m(m+1)

2 .
From the equalities

E
[
HN (θ⃗)ijHN (θ⃗)kℓ

]
= ∂2θiθj∂

2
ϕkϕℓ

SN (θ⃗ − ϕ⃗
)
θ⃗=ϕ⃗

= ∂4τiτjτkτℓSN (0)

and (1.2.7) we deduce that

Q(N) ∼ Nm+4Q(P )
(
1 +O(1/N)

)
,

To compute the conditional expectation E
[
|detHN (θ⃗)|

∣∣∇XN (θ) = 0
]
I plan to use the

Gaussian regression formula so we need to find the correlation operator C
HN (θ⃗),∇XN (θ⃗)

. Note

that

E
[
HN (θ⃗)ij∂θkXN (θ⃗)

]
= ∂2θiθj∂ϕkSN (θ⃗ − ϕ⃗

)
= i∂3τiτjτkSN (0) = 0.

Hence the Gaussian vectors HB(θ⃗) and ∇XN (θ⃗) are independent. Denote by ΓQ(N) the
centered Gaussian measure on Sym(Rn) with variance Q(N). We deduce

E
[
|detHN (θ⃗)|

∣∣∇XN (θ) = 0
]
=

∫
Sym(Rm)

∣∣ detA ∣∣ΓQ(N)

[
dA
]

(A = N (m+4)/2B)

= Nm(m+4)/2

∫
Sym(Rm)

∣∣ detB ∣∣ΓN−(m+4)Q(N)

[
dB
]
.

Observing that N−(m+4)Q(N) ∼ Q(P ) as N →∞ we deduce

E
[
|detHN (θ⃗)| ∥∇XN (θ) = 0

]
∼ Nm(m+4)/2

∫
Sym(Rm)

∣∣ detB ∣∣ΓQ(P )

[
dB
]
.

The last integral is strictly positive since the Gaussian random matrix Q(P ) is nondegenerate.

Putting together all of the above we deduce that as N →∞ we have

E
[
ZN

]
∼ vol(Bm)× (2π)−m/2

(
detM(P )

)−1/2
N−m(m+2)/2

×Nm(m+4)/2

∫
Sym(Rm)

∣∣ detB ∣∣ΓQ(P )

[
dB
]

∼ (2π)m/2
(
detM(P )

)−1/2

(∫
Sym(Rm)

∣∣ detB ∣∣ΓQ(P )

[
dB
])

Nm

∼ (2π)m/2
(
detM(P )

)−1/2

(∫
Sym(Rm)

∣∣ detB ∣∣ΓQ(P )

[
dB
]) vol(PN )

vol(P )

= K(P ) vol(PN ),

where

K(P ) =
(2π)m/2(

detM(P )
)1/2

vol(P )

(∫
Sym(Rm)

∣∣ detB ∣∣ΓQ(P )

[
dB
])
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The results of Bernshtein [18] and Kouchnirenko [82] imply the very rough upper bound

Z
(
PN
)
≤ m! vol

(
PN
)

a.s. (2.3.7)

The result we have just proved shows that as N →∞, E
[
ZN

]
has the same order of growth

as vol
(
PN
)
indicating that the mean of ZN is close its theoretical max.

In [107] we computed the constant K(P ) for various polyhedra P . As a special case let
us mention the polygon in R2 with six vertices

(1, 1), (−1,−1), (1, 0), (−1, 0), (0, 1), (0,−1).

Its area is 3, so the inequality (2.3.7) predicts that Z(P ) ≤ 6 a.s..

V.I. Arnold has proved in [8] that this inequality is sharp, i.e., supZ(P ) = 6 a.s.. He
achieved this using topological techniques that allowed him to conclude that there exists a
trigonometric polynomial with Newton polygon P which is Morse and has exactly 6 critical
points.

In [107] I proved that

E
[
Z(P )

]
=

4π

3
≈ 4.188

Hence, with positive probability, there must exist trigonometric polynomials with Newton
polygon P and at least 5 critical points. The random trigonometric polynomial X1(P ) is a.s.
Morse so it has an even number of critical points almost surely. Hence, the probability that
there exists a Morse polynomial X1(P ) with exactly 6 critical points is positive. ⊓⊔

Example 2.3.7 (Isotropic Gaussian functions). This example might seem rather special, but
as we will see later on, it is rather universal.

Consider the smooth isotropic Gaussian function Φ = Φa on Rm constructed in Example
1.2.35. We recall its construction.

We fix an amplitude a, i.e., an even Schwartz function a ∈ S
(
R
)
such that a(0) = 1.

Consider the finite measure µa ∈ Meas
(
Rm

)
µa
[
dξ
]
=

1

(2π)m
wa(ξ)λ

[
dξ
]
, wa(ξ) = wa,m(ξ) = a

(
|ξ|
)2
.

The function Φa is determined by the covariance kernel

Ka(x,y) = Ka

(
x− y

)
, Ka

(
x
)
=

1

(2π)m

∫
Rm

ei⟨ξ,x⟩wa(ξ)dξ (2.3.8)

The Gaussian function Φa is a.s. smooth, isotropic and µa is its spectral measure. We set

Ca := C[−,Φa] =
∑

∇Φa(x)=0

δx. (2.3.9)

Thus, Ca[B] is the number of critical points of Φa in B. I want to compute E
[
Ca[B]

]
for a

box B ⊂ Rm.
For any multi-indices α, β ∈

(
Z≥0

)m
we have

E
[
∂αΦa(x)∂

βΦa(y)
]
x=y

= ∂αx∂
β
yK

a(x,y)
∣∣
x=y

=
(−1)|β||i|α|+|β|

(2π)m

∫
Rm

ξα+βa(|ξ|)2dξ.
(2.3.10)
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For any multi-index α ∈
(
Z≥0

)m
we set

Ma
α :=

∫
Rm

ξαµa
[
dξ
]
=

1

(2π)m

∫
Rm

ξαa(|ξ|)2dξ.

We say that the multi-index α = (α1, . . . , αm) is even if αj is even for any j = 1, . . . ,m. The
multi-index α is called odd if it is not even. The radial symmetry of a

(
|ξ|
)
implies that

Ma
α = 0 if α is odd. (2.3.11)

Using spherical coordinates on Rm we deduce that for any α we have

Ma
α =

1

(2π)m

(∫ ∞

0
rm−1+|α|a(r)2dr

)
×
∫
Sm−1

ξα volSm−1

[
dξ
]

︸ ︷︷ ︸
=:mα

. (2.3.12)

Note that mα is independent of a. In particular, m0 is the “area” off the unit sphere Sm−1.

If we let a0 := (2π)m/2e−
t2

4 , then

Ma0
α =

∫
Rm

ξγe−|ξ|2/2dξ = (2π)m/2
m∏
j=1

∫
R
ξαjΓ

[
dξ
]
,

where Γ denotes the Gaussian measure on R with mean zero and variance 1. If α is even,
α = 2κ, then

Ma0
2κ

(1.1.9)
= (2π)m/2

m∏
j=1

(2κj − 1)!!.

On the other hand, using (2.3.12) we deduce

Ma0
2κ = m2κ

∫ ∞

0
rm+2|κ|−1e−r

2/2dr =

√
π

2
m2κ

∫
R
|x|m+2|κ|−1Γ

[
dx
]

(1.1.6)
= 2|κ|+m/2−1m2κΓ

(
|κ|+m/2

)
.

Hence

m2κ = 2|κ|+m/2−1

∏m
j=1(2κj − 1)!!

Γ
(
|κ|+m/2

) =
2
∏
j=1 Γ(κj + 1/2)

Γ
(
|κ|+m/2

) . (2.3.13)

For every k ∈ Z≥0 we set

Ik(a) :=

∫ ∞

0
rka(r)2dr.

We deduce

(2π)mMa
2κ = 2Im−1+2|κ|(a)

2
∏
j=1 Γ(κj + 1/2)

Γ
(
|κ|+m/2

) . (2.3.14)

We set

sm :=

∫
Rm

µa
[
dξ
]
, dm :=

∫
Rm

ξ21µa
[
dξ
]
, hm :=

∫
Rm

ξ21ξ
2
2µa
[
dξ
]
. (2.3.15)

Then ∫
Rm

a(|ξ|)2dξ = 2πm/2

Γ(m/2)
Im−1(a) = (2π)msm, (2.3.16)∫

Rm

ξ2j a(|ξ|)2dξ =
2πm/2

Γ(m/2 + 1)
Im+1(a) = (2π)mdm, ∀j, (2.3.17)
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∫
Rm

ξ2j ξ
2
ka(|ξ|)2dξ =

(2π)m/2

Γ(m/2 + 2)
Im+3(a) = (2π)mhm, ∀j ̸= k, (2.3.18)∫

Rm

ξ4j a(|ξ|)2dξ =
6πm/2

Γ(m/2 + 1)
Im+3(a) = 3(2π)mhm, ∀j. (2.3.19)

Using (2.3.10) and (2.3.11) we deduce that for any x ∈ Rm the Gaussian vectors ∇Φa(x) and
HessΦa(x) are independent. Hence, the Kac-Rice density

ρa(x) = E
[
|detHessΦa(x)|

∣∣∇Φa(x) = 0
]
p∇Φa(x)(0)

simplifies to

ρa(x) = E
[
| detHessΦa(x)|

]
p∇Φa(x)(0).

Using (2.3.10)and (2.3.17) we deduce that the variance operator of ∇Φ(x) is

Var
[
∇Φ(x)

]
= dm1m, ∀x ∈ Rm. (2.3.20)

In particular, this show that ∇Φa is an ample random field and thus Φa is a.s. Morse.

As explained in Example 2.3.6, the space Sym(Rm) of real symmetric m×m matrices is
equipped with an inner product (A,B) = tr(AB). The linear functions

ℓij , ωij : Sym(Rm)→ R, 1 ≤ i ≤ j ≤ m,

ℓij(A) = aij , ωij(A) =

{
aii, i = j,√
2aij , i < j

(2.3.21)

define coordinates on Sym(Rm). Additionally
(
ωij
)
1≤i≤j≤m are orthonormal with respect

to the above inner product. We set

Lij(x) := ℓij
(
HessΦa(x)

)
, Ωij(x) := ωij

(
HessΦa(x)

)
. (2.3.22)

Then

E
[
∂2xixjΦa(x)∂

2
xkxℓ

Φa(x)
]
=

1

(2π)m

∫
Rm

ξiξjξkξℓa
(
|ξ|2

)
dξ, i ≤ j, k ≤ ℓ.

Note that if i < j, then the above integral is nonzero iff (i, j) = (k, ℓ) in which case

E
[
Lij(x)Lkℓ(x)

]
= E

[ (
∂2xixjΦa(x)

)2 ]
=

1

(2π)m

∫
Rm

ξ2i ξ
2
j a
(
|ξ|2

)
dξ

(2.3.18)
= hm.

If i = j then the above integral is nonzero iff k = ℓ, in which case we deduce from (2.3.18)
and (2.3.19)

E
[
∂2xiΦa(x)∂

2
xk
Φa(x)

]
=

{
hm i ̸= k,

3hm, i = k.

The above equalities can be rewritten in the more compact form

E
[
Lij(x)Lkℓ(x)

]
= hm

(
δijδkℓ + δikδjℓ + δiℓδjk

)
, ∀i ≤ j, k ≤ ℓ. (2.3.23)

These equalities show that the off diagonal entries of HessΦa are i.i.d., and also independent
of the diagonal entries. The diagonal entries have identical distributions but are dependent.
The parameter hm describes the various variances and covariances.

The Gaussian measure on Sym(Rm) determined by these covariance equalities is invariant
with respect to the action by conjugation of O(m) on Sym(Rm). This corresponds to the
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Gaussian ensemble of random matrices denoted by S
hm,hm
m in Appendix C.1. For ease of

notation we set Shmm := S
hm,hm
m . In particular this proves that

∀x ∈ Rm, ρa(x) = ρa(0) = (2πdm)
−m/2E

S
hm
m

[
|detH|

]
(2.3.24)

We deduce from the Kac-Rice formula (KR) that for any box B

E
[
Ca[B]

]
=

∫
B
ρa(x)λ

[
dx
]
= ρa(0)λ

[
B
]
= (2πdm)

−m/2E
S
hm
m

[
|detH|

]
λ
[
B
]

(X = (2hm)
−1/2H)

=

(
hm
πdm

)m/2
E
S
1/2
m

[
| detX|

]
λ
[
B
]
.

Lemma C.1.2 with u = v = 1
2 implies that

E
S
1/2
m

[
| detH|

]
= 2

3
2Γ

(
m+ 3

2

)
1√
π

∫
R
ρm+1,1/2(x)e

−x2

2 dx,

where ρN,v(λ) denotes the normalized 1-point correlation function of the Gaussian Orthogonal

Ensemble GOEvN = S
0,v
N ; see Appendix C.1.

Using the equality (C.1.10) we deduce that

n1/2ρn,1/2
(
n1/2y

)
= ρn,1/2n(y),

so that
1√
π

∫
R
ρm+1,1/2(x)e

−x2

2 dx =
1√
π

∫
R
ρm+1, 1

2(m+1)
(y)e−

(m+1)y2

2 dy

=

(
2

m+ 1

)1/2 ∫
R
ρm+1, 1

2(m+1)
(y)Γ 1

(m+1)

[
dy
]
.

We deduce form (C.1.15) that∫
R
ρm+1, 1

2(m+1)
(y)Γ 1

2(m+1)

[
dy
]
∼
√
2

π
as m→∞.

Hence

E
[
Ca[B]

]
= Cm(a)λ

[
B
]

(2.3.25)

where

Cm(a) = ρa(0)

= 2
3
2Γ

(
m+ 3

2

)(
hm
πdm

)m/2( 2

m+ 1

)1/2 ∫
R
ρm+1, 1

2(m+1)
(y)Γ 1

(m+1)

[
dy
] (2.3.26)

∼ 2
5
2Γ

(
m+ 3

2

)(
hm
πdm

)m/2( 1

m+ 1

)1/2

as m→∞

Using (2.3.17) and (2.3.18) we deduce

hm
dm

=
Γ(1 +m/2)

Γ(2 +m/2)
× Im+3(a)

Im+1(a)
=

2Im+3(a)

(m+ 2)Im+1(a)
.
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Hence

Cm(a) ∼ 25/2
(
hm(a)

dm(a)

)m/2
Γ

(
m+ 3

2

)
m−1/2

∼ 2
m+5

2

(
Im+3(a)

(m+ 2)Im+1(a)

)m/2
Γ

(
m+ 3

2

)
m−1/2 as m→∞.

(2.3.27)

The constant Cm(a) tends to grow very fast as m→∞, but its large m behavior depends on
the tail of the amplitude a. Roughly speaking, the slower the decay at ∞ of a the faster the
growth of Cm(a). Here are some examples. Appendix B.4 contains their proofs.

• If a(t)2 = e−t
2
, then

logCm(a) ∼
m

2
logm as m→∞.

• If

a(t)2 = exp
(
−(log t) log(log t)

)
, ∀t ≥ 1,

then

logCm(a) ∼
m

2
em+2(e2 − 1), as m→∞.

• Fix C > 0 and α > 1. If

a(t)2 = exp
(
−C(log t)α

)
, ∀t > 1,

then

logCm(a) ∼
Z(α,C)

α− 1
m

α
α−1 , as m→∞,

where Z(α,C) is a positive constant depending explicitly on α and C.

⊓⊔

Example 2.3.8 (Random Fourier series). Fix an amplitude a, i.e., and even Schwartz func-

tion a ∈ S(R) such a(0) = 1 and consider the Gaussian function FRa (θ⃗) defined in in Example
1.2.31. More precisely,

FRa (θ⃗) = R−m/2
(
A0u0 +

∑
ℓ⃗≻0

a
( ∣∣ 2πℓ⃗ ∣∣/R)(A

ℓ⃗
u
ℓ⃗
(θ⃗) +B

ℓ⃗
v
ℓ⃗
(θ⃗)
) )
,

where A
ℓ⃗
, B

k⃗
, ℓ⃗ ⪰ 0, k⃗ ≻ 0 are independent standard normal random variables. We view FRa

as a Zm-periodic random smooth function on Rm.
As in the previous example we set

wa(ξ) = wa,m(ξ) := a
( ∣∣ ξ ∣∣ )2,

and define as in (2.3.8)

Ka

(
x
)
=

1

(2π)m
ŵa(x) =

∫
Rm

ei⟨ξ,x⟩wa,m(ξ)dξ.

In (1.2.25) we showed that the covariance kernel CRa of FRa admits the description

CRa (φ⃗+ τ⃗ , φ⃗) = CRa (τ⃗) =
1

(2π)m

∑
k⃗∈Zm

ŵa

(
(k⃗ − τ⃗)R

)
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Figure 2.2. Samples of FR
a for m = 1, a(t) = e−t2 . At the top R = 10 and at the bottom R = 100.

= Ka

(
τ⃗R
)
+

∑
k⃗∈Zm\0

Ka

(
(k⃗ − τ⃗)R)

︸ ︷︷ ︸
=:ER(τ⃗)

.

I want to investigate the distribution C
[
−, FRa ] of critical points of FRa .

The random function FRa is highly oscillatory as R ↗ ∞ so we expect that it will have
more and more critical points as R increases; see Figure 2.2.

Before we proceed further we need to introduce some terminology. We will denote by
O
(
R−∞ ) any quantity q(R) such that, for any N ∈ N, we have

q
(
R
)
= O

(
R−N ) as R→∞.

Fix a box B ⊂ [0, 1]m ⊂ Rn. Since Ka is a Schwartz function we deduce that for any
multi-index α ∈

(
Z≥0

)m
∂ατ⃗ K

R
a (0) = R|α|(Ka(0) +O(R−∞)

)
, as ℏ↘ 0. (2.3.28)

We have

E
[
∂α
θ⃗
FRa (θ⃗)∂βφ⃗F

R
a (φ⃗)

]
= ∂α

θ⃗
∂βφ⃗C

R
a

(
θ⃗, φ⃗

)
,
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and thus

E
[
∂αFRa (θ⃗)∂βFRa (φ⃗)

]
θ⃗=φ⃗

= ∂α
θ⃗
∂βφ⃗C

R
a

(
θ⃗, φ⃗

)
θ⃗=φ⃗

= (−1)|β|∂α+βτ⃗ CRa (0).

Observe that since CRa (τ⃗) = CRa (−τ⃗) we have

∂α
θ⃗
∂βφ⃗C

R
a

(
θ⃗, φ⃗

)
θ⃗=φ⃗

= 0

if |α|+ |β| is odd. Hence

∇FRa
(
θ⃗) and HessFR

a

(
θ⃗
)
are independent Gaussian vectors for any θ⃗. (2.3.29)

We deduce from (2.3.28) that

(−1)|β|∂α+βτ⃗ CRa (0) = R|α|+|β|
(
(−1)|β|∂α+βτ⃗ Ka(0) +O

(
R−∞ ) ).

On the other hand,

(−1)|β|∂α+βτ⃗ Ka(0) = E
[
∂αΦa(θ⃗)∂

βΦa(φ)
]
θ⃗=φ

.

Hence

Var
[
R−1∇FRa

]
= Var

[
∇Φa

]
+O

(
R−∞ )

and

Var
[
R−2HessFR

a

]
= Var

[
HessΦa

]
+O

(
R−∞ ).

We have computed the covariances Var
[
∇Φa

]
Var

[
HessΦa

]
in Example 2.3.7.

We set

CRa := C[−, FRa ].

Fix a box B ⊂ [0, 1]m. Since FRa is stationary, the Kac-Rice density ρ
∇FR

a
KR is constant and

we deduce

E
[
CRa [B]

]
= E

[
|detHessFR

a
(0)|

]
p∇FR

a (0)(0)λ
[
B
]
.

We have

E
[
|detHessFR

a
(0)|

]
= R2mE

[
| detR−2HessF ℏ

a
(0)|

]
,

p∇FR
a (0)(0) = RmpR−1∇FR

a (0)(0) +O
(
R−∞ ).

Hence

E
[
CRa [B]

]
= R2mE

[
|detHessFR

a
(0)|

]
pR−1∇FR

a (0)(0)λ
[
B
]

Since

E
[
| detR−2HessFR

a
(0)|

]
pℏ∇FR

a (0)(0) = E
[
| detHessΦa(0)|

]
p∇Φa(0) +O

(
R−∞ )

we deduce

E
[
CRa [B]

]
= Rm

(
E
[
Ca[B]

]
+O

(
R−∞ )

= RmCm(a) vol
[
B
]
+O

(
R−∞ ). (2.3.30)

More generally, if f ∈ C0
cpt(Rm) we have

E
[
CRa [f ]

]
= E

[
| detHessFR

a
(0)|

]
p∇FR

a (0)(0)

∫
Rm

f(x)dx

= Rm
(
Cm(a) +O

(
R−∞ ) ) ∫

Rm

f(x)dx.

(2.3.31)

⊓⊔
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2.3.3. The distribution of critical values. Consider the isotropic Gaussian function
Φa : Rm → R whose critical points were investigated in Example 2.3.7.

We recall that a ∈ S
(
R
)
is an even Schwartz function such that a(0) = 1. The function

Φa is determined by the covariance kernel

Ka(x,y) = Kα

(
x− y

)
, Ka

(
x
)
=

∫
Rm

ei⟨ξ,x⟩µa
[
dξ
]
, (2.3.32)

where the spectral measure µa ∈ Meas
(
Rm

)
is given by

µa
[
dξ
]
=

1

(2π)m
wa(ξ)λ

[
dξ
]
, wa(ξ) = wa,m(ξ) = a

(
|ξ|
)2
.

The random function Φa is a.s. Morse. We set Ca = C[−,Φa]. Thus, for each box B ⊂ Rm,
Ca[B] is the number of critical points of Φa inside B. According to (2.3.25) we have

E
[
Ca[B]

]
= Cm(a)λ

[
B
]
,

where Cm(a) is the positive constant described explicitly in (2.3.26) and λ
[
B
]
is the (Lebesgue)

volume of B. In particular, Ca[B] is a.s. finite. We denote by DB,a the random measure on
the real axis

DB,a :=
∑

x∈B∩∇Φ
a (0)

δΦa(x) ∈ Meas
(
R
)

I will refer to DB,a as the discriminant measure of Φa|B. It is supported on the set of critical
values of Φa|B. In singularity theory this set is usually referred to as the discriminant locus4

of Φa.

For every Borel set C ⊂ R we have

DB,a

[
C
]
=

∑
x∈B∩∇Φa(0)

IC
(
Φa(x)

)
= #

{
x ∈ B; ∇Φa(x) = 0, Φa(x) ∈ C

}
.

Note

DB,a

[
R
]
= Ca

[
B
]
.

This subsection is devoted to an investigation of the random measure Da,B. Note that the
expectation

νa
[
C
]
:= E

[
DB,a

[
C
] ]

(2.3.33)

is a Borel measure on R. It describes the expected number of the critical values of Φa|B that
are located in C. Set

Hessa(x) := HessΦa(x), x ∈ Rm.
In Example 1.2.35 we proved that Φa is J1-ample so the Gaussian vector

W (x) =Wa(x) := Φa(x)⊕∇Φa(z) (2.3.34)

is nondegenerate for any x ∈ Rm.
The Gaussian random variable Φa(x) has variance

E
[
Φa(0)

2
]
= Ka(0)

(2.3.15)
= sm.

4The term “locus” is meant to suggest that this set has additional structure. In algebraic geometry it is a a scheme.

In our looser context the additional structure is a measure supported on this set.



108 2. The Gaussian Kac-Rice formula

Hence

Var
[
W (x)

]
=

[
sm 0
0 dm1m

]
We can thus invoke (2.2.10b) to deduce that if C ⊂ R is a compact interval, then

νa
[
C
]
=

∫
B
r(x)(x)p∇Φa(x)(0)dx,

where

r(x) =

∫
C
E
[
|Hessa(x)|

∣∣∇Φa(x) = 0, Φa(x) = t
]
PΦa(x)

[
dt
]
.

As shown above PΦa(x) = Γsm , ∀x. We deduce from Fubini’s theorem that

νa
[
C
]
=

∫
C
ρa(t)Γsm

[
dt
]
, (2.3.35)

where

ρa(t) =

∫
B
E
[
|Hessa(x)|

∣∣Φa(x) = t, ∇Φa(x) = 0
]
p∇Φa(x)(0)dx

(2.3.20)
=

(
2πdm

)−m/2 ∫
B
E
[
|Hessa(x)|

∣∣W (x) = (t, 0)
]
dx

=
(
2πdm

)−m/2E[ |Hessa(x)| ∣∣W (x) = (t, 0)
]
vol
[
B
]
.

(2.3.36)

At the last step I have used the stationarity of Φa that implies that the integrand in the
second equality is independent of x. To compute the above conditional expectation I will
rely on the Gaussian regression formula.

The variance of Hessa is given by (2.3.23)

E
[
Lij(x)Lkℓ(x)

]
= hm

(
δijδkℓ + δikδjℓ + δiℓδjk

)
, ∀i ≤ j, k ≤ ℓ

where Lij(bx), and Ωij(x) are defined by (2.3.22). Set

W = (W0,W1, . . . ,Wm), W0 = Φa(x), Wj = ∂xjΦa(x).

Denote by Hessa(x) the random symmetric matrix with variance given by the regression
formula

Var
[
Hessa(x)

]
= Var

[
Hessa(x)

]
− Cov

[
Hessa(x), Y

]
Var

[
W
]−1

Cov
[
W,Hessa(x)

]
.

Set

Lij = ℓij
(
Hessa(x)

)
, Ωij := ωij

(
Hessa(x)

)
,

Cij|a := Cov
[
Ωij ,Wa

]
, 1 ≤ i ≤ j ≤ m, 0 ≤ a ≤ m.

If we write

Var
[
W
]−1

=
(
tab
)
0≤a,b≤m,

then

E
[
ΩijΩkℓ

]
= E

[
Ωij(x)Ωkℓ(x)

]
−

m∑
a,b=0

Cij|atabCkℓ|b. (2.3.37)

Since Hessa(x) and ∇Φa(x) are independent we deduce

Cij|a = 0, ∀a = 1, . . . ,m.
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Hence

E
[
ΞijΞkℓ

]
= E

[
Ξij(x)Ξkℓ(x)

]
− 1

sm
Cij|0Ckℓ|0. (2.3.38)

Observe that if i ̸= j, then

Cij|0 =
−
√
2

(2π)m

∫
Rm

ξiξja
(
|ξ|2

)
dξ = 0.

Moreover

Cjj|0 = −
1

(2π)m

∫
Rm

ξ2j a
(
|ξ|2

)
dξ = −dm.

We deduce from (2.3.37) and (2.3.38) that

E
[
LijLkℓ

]
=

(
hm −

d2m
sm

)
︸ ︷︷ ︸

=:um

δijδkℓ + hm
(
δikδjℓ + δiℓδjk

)
, ∀i ≤ j, k ≤ ℓ. (2.3.39)

These equalities determine a O(m)-invariant Gaussian measure Γum,hm on Sym(Rm); see
(C.1.3). In Appendix C.1 the probability space

(
Sym(Rm),Γum,hm

)
obtained in this fashion

is denoted by S
um,hm
m .

To apply the Gaussian regression formula (1.1.20) we need to use the regression operator

RHessa,W = Cov
[
Hessa,W

]
Var

[
W
]−1

: Rm+1 → Sym(Rm).

We have

RHessa,W


t
0
...
0

 = C11|0s
−1
m t1m = −dmt

sm
1m

Using the regression formula we deduce

E
[
|Hessa(x)|

∣∣W (x) = (t, 0)
]
=

∫
Sym(Rm)

∣∣∣∣detA− dmt

sm

∣∣∣∣ Γum,hm[ dA ]. (2.3.40)

This is where things get tricky. If we are “lucky” and um ≥ 0, then we can us Lemma C.1.2 to
reduce the to express the last integral in terms of the better understood one-point correlation
function of the Gaussian ensemble GOEvm = S0,v.

Remark 2.3.9. Before we proceed let first investigate if this is a well founded worry. Set

qm := qm(a) =
hmsm
d2m

.

Then

um = hm

(
1− 1

qm

)
= hm

qm − 1

qm
Thus, um is negative iff qm < 1.

Using (2.3.16), (2.3.17) and (2.3.17) we deduce

qm(a) =
m

m+ 2
· Im−1(a)Im+3(a)

Im+1(a)2︸ ︷︷ ︸
=:Rm(a)
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The Cauchy-Schwarz inequality shows that Rm(a) ≥ 1 for any m and any a so

qm(a) ≥
m

m+ 2
, ∀m, a. (2.3.41)

This shows that for m large qm is very close to the critical threshold 1. However as shown in

Example B.4.1, the quotient qm(a) could be < 1. This happens for example if a(t) = e−t
2
. ⊓⊔

We distinguish three cases.

A. um > 0 so that qm > 1. Using (2.3.35), (2.3.36) and (2.3.40) we deduce that

νa
[
C
]
=
(
2πdm

)−m/2
vol
[
B
] ∫

C
E
S
um,hm
m

[ ∣∣∣ det(A− tdm
sm

∣∣∣ ]Γsm[ dt ]
Making the change in variables A =

√
hmA we deduce

E
S
um,hm
m

[ ∣∣∣ det(A− tdm
sm

∣∣∣ ] = hm/2m E
S
2κm,1
m

[ ∣∣∣ det(A− tdm

smh
1/2
m

) ∣∣∣ ]
and

νa
[
C
]

vol
[
B
] = ( hm

2πdm

)m/2 ∫
C
E
S
2κm,1
m

[ ∣∣∣ det(A− tdm

smh
1/2
m

) ∣∣∣ ]Γsm[ dt ]
(t = s

1/2
m y)

=

(
hm

2πdm

)m/2 ∫
s
−1/2
m C

E
S
2κm,1
m

[ ∣∣∣ det (A− ydm

(smhm)1/2

) ∣∣∣ ]Γ[ dy ]

=

(
hm

2πdm

)m/2 ∫
s
−1/2
m C

E
S
2κm,1
m

[ ∣∣∣ det(A− y
√
qm

) ∣∣∣ ]γ1[ dy ].
For every c ∈ R we denote by Rc the rescaling map Rc : R→ R, t 7→ ct. We set

ν̂a =
1

vol
[
B
](R

s
−1/2
m

)
#νa

We deduce that for any Borel subset C ⊂ R

ν̂a
[
C
]
= νa

[
s1/2m C

]
=

(
hm

2πdm

)m/2 ∫
C

E
S
2κm,1
m

[ ∣∣∣ det(A− y
√
qm

) ∣∣∣ ]e−y2/2√
2π︸ ︷︷ ︸

σm(y)

dy.

To keep the presentation clean I will drop from our notation the dependence of ν̂a on mul-
tiplicative constants. Thus ν̂a ∝ µ means that ν̂a = Zµ where Z is some positive constant.
This can be determined from the equality

Cm(a) = Zµ
[
R
]

where Cm(a) is determined by (2.3.25) and (2.3.26). We define κm by the equality

2κm :=
qm − 1

qm
=
sm
d2m

,

so that um = 2κmhm.
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Observe that the density of σm(y) is given by

σm(y) = E
S
2κm,1
m

[ ∣∣∣ det(A− y
√
qm

1m

) ∣∣∣ ]e− y2

2

√
2π

(2.3.42)

(Ã =
√
qmA)

= q
−m

2
m E

S
2κmqm,qm
m

[ ∣∣∣ det( Ã− y1m ) ∣∣∣ ]e− y2

2

√
2π

(C.1.14)
= q

−m
2

m 2
3
2 (2qm)

m+1
2 Γ

(
m+ 3

2

)
(θ+m+1,qm

∗ γ2κmqm)(y)
e−

y2

2

√
2π

= 2
m+4

2 q
1
2
mΓ

(
m+ 3

2

)
(θ+m+1,qm

∗ γ2κmqm)(y)
e−

y2

2

√
2π
,

where

θ+m+1,v(x) = ρm+1,v(x)e
x2

4v ,

and ρn,v denotes the normalized 1-point correlation function described in Appendix C.1.
Hence

ν̂a
[
dy
]
∝
(
θ+m+1,qm

∗ γ2κmqm
)
(y)Γ

[
dy
]
. (2.3.43)

Note that qm − 1 = 2κmqm so

(γ2κmqm ∗ θ+m+1,qm
)(y) =

1√
4πκmqm

∫
R
e
− (y−x)2

4κmqm ρm+1,qm(x)e
x2

4qm dx

=
1√

4πκm

∫
R
e−

(q
−1/2
m y−t)2

4κm ρm+1,qm

(
q1/2m t

)
e

t2

4 dt =
q
−1/2
m√
4πκm

∫
R
e−

(q
−1/2
m y−t)2

4κm ρm+1,1(t)e
t2

4 dt.

Hence

(γ2κm ∗ θ+m+1,qm
)(y)e−

y2

2 =
q
−1/2
m√
4πκm

∫
R
e

t2

4
− (q

−1/2
m y−t)2

4κm
− y2

2 ρm+1,1(t)dt.

t2

4
− (q

−1/2
m y − t)2

4κm
− y2

2
=
κmt

2 − (q
−1/2
m y − t)2 − 2κmy

2

4κm
(q−1
m + 2κm = 1)

=
−(y − q−1

m t)2 − κmt2

4κ2m
,

so that

(γ2κmqm ∗ θ+m+1,qm
)(y) =

1√
4πκmqm

∫
R
e−

(y−q
−1/2
m t)2

4κm ρm+1,1(t)e
−t2/4dt

=
1√

4πκm

∫
R
e−

(y−s)2

4κm ρm+1,1

(
q1/2m s

)
e−qms

2/4ds =
1√

4πκmqm

∫
R
e−

(y−s)2

4κm ρm+1,1/qm

(
s
)
e−qms

2/4ds.

We deduce

ν̂a
[
dy
]
∝ θ−m+1,1/qm

∗ γ2κm
(
y
)[
dy
]
, (2.3.44)

where

θ−m+1,v(t) = ρm+1,v(t)e
− t2

4v . (2.3.45)
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B. um = 0 so that qm = 1. This is obtained from the previous case by letting qm ↘ 1 or,

equivalently, κm ↘ 0. We have

ν̂a
[
dy
]
∝ θ−m+1,1

(
y
)[
dy
]
, (2.3.46)

C. um < 0 so that qm < 1. In this case I will follow the same strategy as in [108]. We modify

the original function by adding an independent random quantity to it

Φ̌a = Xcm +Φa

where Xcm is a centered Gaussian random variable with variance cm and independent of Φa.
Fix a box B ⊂ Rm.

Note that ∇Φ̌a = ∇Φa and HessΦ̌a
= HessΦa . However, the additive constant Xcm affects

the critical values. However the discriminant measure Ďa = Ďa,B of Φ̌a is related to the
discriminant measure Da via the convolution equation

Ďa = Γcm ∗Da.

Since the Fourier transform of a Gaussian measure is a nowhere zero function, we deduce
that the above equality uniquely determines Da given Ďa. The covariance kernels of ∇Φ̌a

and HessΦ̌a
coincide with the respective covariance kernels corresponding to Φa. However

E
[
Φ̌a(x)

]
= šm := cm + sm, ∀x ∈ Rm.

This changes the distribution of the conditioned Hessian Hessa(x) to(
hm −

d2m
šm

)
︸ ︷︷ ︸

=:ǔm

δijδkℓ + hm
(
δikδjℓ + δiℓδjk

)
∀i ≤ j, k ≤ ℓ. (2.3.47)

Observe that

ǔm = hm

(
1− d2m

hmšm

)
.

Set

q̌m :=
hmšm
d2m

=
hmsm
d2m

+
hmcm
d2m

= qm +
hmcm
d2m

.

Since qm < 1 we can choose cm such that q̌m = 1. More precisely, we let

cm = (1− qm)d2mh−1
m . (2.3.48)

In this case q̌m = 1. For any Borel set C ⊂ R we set

µ̌a
[
C
]
:= E

[
Ďa

[
C
] ]
. (2.3.49)

We deduce as in case B that

1

vol
[
B
]R

š
−1/2
m

µ̌a ∝ θ−m+1,1

(
y
)[
dy
]
, (2.3.50)

The three cases discussed above can be compactly described by a single statement.
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Theorem 2.3.10. We set

qm :=
hmsm
d2m

, rm := max
(
1, qm

)
∈ [1,∞),

čm := max
(
0, (1− qm)d2mh−1

m

)
, šm := sm + čm, 2κm :=

rm − 1

rm
.

We set Φ̌a := Xčm + Φa, where Xčm is a centered Gaussian variable with variance čm, and
independent of Φa.

For a fixed box B ⊂ Rn, denote by Ďa the discriminant measure of Φ̌a

∣∣
B
. For any Borel

subset C ⊂ R define

µ̌a[C] = E
[
Ďa

[
C
] ]
.

Then the following hold.

(i) The correspondence C 7→ µ̌a[C] is a finite Borel measure on R and µ̌a
[
R
]
= Cm(a) vol

]
B
]
,

where Cm(a) is determined by (2.3.25) and (2.3.26).

(ii) If we set

ν̂a,m :=
1

vol
[
B
]R

š
−1/2
m

µ̌a,

then,

ν̂a ∝ θ−m+1,1/rm
∗ γ2κm

(
y
)[
dy
]
, (2.3.51)

where

θ−m+1,v(t) = ρm+1,v(t)e
− t2

4v .

⊓⊔

Remark 2.3.11. (a) Suppose qm < 1 and cm is given by (2.3.48). Then for any Borel set
C ⊂ R we have

µ̌a
[
C
]
=

∫
R
E
[
Ďa[C]

∣∣Xcm = x
]
= µa ∗ Γcm

[
C
]
,

so that

µ̌a = µa ∗ Γcm .
Passing to Fourier transforms we see that the above equality determines µa uniquely in terms
of µ̌a. In this case

1 = rm =
šmhm
d2m

> qm =
smhm
d2m

so

1 <
šm
sm

<
1

qm

(2.3.41)

≤ m+ 2

m
.

Thus, for m large šm and sm are roughly of same size.

(b) When qm > 1, then κm = 1, šm = sm and R
s
−1/2
m

µa ∝ vol
[
B
]
ρm+1,1(t)e

− t2

4 . ⊓⊔

In turns out that, under sufficiently general conditions, the probability measures

νa,m :=
1

Cm(a)
ν̂a,m.

resemble Gaussian measures for large m.
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Theorem 2.3.12. Suppose that rm = max
(
1, smhm

d2m

)
= max

(
1, qm

)
has a limit as m→∞,

r = lim
m→∞

rm ∈ [1,∞].

Then, as m → ∞, νa,m converges weakly to the Gaussian measure Γ r+1
r
, where r+1

r = 1 if
r =∞.

Proof. Set νm := νa,m. We have

νm =
1

Km
θ−
m+1, 1

rm

∗ γ rm−1
rm

dy, (2.3.52)

where

θ−
m+1, 1

rm

(λ) = ρm+1, 1
rm

(λ)e−
rmλ2

4 ,

and

Km =

∫
R
θ−
m+1, 1

rm

∗ γ rm−1
rm

(y)dy =

∫
R
θ−
m+1, 1

rm

(λ)dλ =

∫
R
ρm+1, 1

rm

(λ)e−
rmλ2

4 dλ.

We set

Rm(x) := ρm+1, 1
m
(x), R∞(x) :=

1

2π
I{|x|≤2}

√
4− x2.

Fix c ∈ (0, 2). In Proposition C.1.4 we proved that

lim
m→∞

sup
|x|≤c

∣∣Rm(x)−R∞(x)
∣∣ = 0, (2.3.53a)

and

sup
|x|≥c

∣∣Rm(x)−R∞(x)
∣∣ = O(1) as m→∞. (2.3.53b)

Then

ρm+1, 1
rm

(λ) =

√
rm
m
Rm

(√
rm
m
λ

)
, θ−

m+1, 1
rm

(λ) =

√
rm
m
Rm

(√
rm
m
λ

)
e−

rmλ2

4 .

We now distinguish two cases.

Case 1. r = limm→∞ rm <∞. In particular, r ∈ [1,∞). In this case we have

Km =

√
rm
m

∫
R
Rm

(√
rm
m
λ

)
e−

rmλ2

4 dλ,

and using (2.3.53a)-(2.3.53b) we deduce

lim
m→∞

∫
R
Rm

(√
rm
m
λ

)
e−

rmλ2

4 dλ = R∞(0)

∫
R
e−

rλ2

4 dr = R∞(0)

√
4π

r
.

Hence

Km ∼ K ′
m = R∞(0)

√
4π

m
as m→∞. (2.3.54)

Now observe that

1

K ′
m

θ−
m+1, 1

rm

(λ)
[
dλ
]
=

1

R∞(0)
Rm

(√
rm
m
λ

)
rm√
4π
e−

rmλ2

4 dλ

=
1

R∞(0)
Rm

(√
rm
m
λ

)
Γ 2

rm

[
dλ
]
.
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Using (2.3.53a) and (2.3.53b) we conclude that the sequence of measures

1

K ′
m

θ−
m+1, 1

rm

(λ)
[
dλ
]

converges weakly to the Gaussian measure γ 2
r
. Using this and the asymptotic equality (2.3.54)

in (2.3.52) we deduce

lim
m→∞

νm = γ 2
r
∗ γ r−1

r
= γ r+1

r
.

Case 2. limm→∞ rm =∞. In this case we have

θ−
m+1, 1

rm

(λ)
[
dλ
]
=

√
4π

m
Rm

(√
rm
m
λ

)
Γ 2

rm

[
dλ
]
.

Lemma 2.3.13. The sequence of measures

Rm

(√
rm
m
λ

)
γ 2

rm

dλ

converges weakly to the measure R∞(0)δ0.

Proof. Fix a bounded continuous function f : R→ R. Observe first that

lim
m→∞

∫
R

(
Rm

(√
rm
m
λ

)
−R∞

(√
rm
m
λ

))
f(λ)Γ 2

rm

[
dλ
]

︸ ︷︷ ︸
=Dm

= 0. (2.3.55)

Indeed, we have

Dm =

∫
|λ|<c

√
m√
rm

(
Rm

(√
rm
m
λ

)
−R∞

(√
rm
m
λ

))
f(λ)γ 2

rm

[
dλ
]

︸ ︷︷ ︸
=:D′

m

+

∫
|λ|>c

√
m√
rm

(
Rm

(√
rm
m
λ

)
−R∞

(√
rm
m
λ

))
f(λ)Γ 2

rm

[
dλ
]

︸ ︷︷ ︸
=:D′′

m

.

Observe that

D′
m ≤ sup

|x|≤c

∣∣Rm(x)−R∞(x)
∣∣ ∫

|λ|<c
√

m√
rm

f(λ)Γ 2
rm

[
dλ
]

and invoking (2.3.53a) we deduce

lim
m→∞

D′
m = 0.

Using (2.3.53b) we deduce that there exists a constant S > 0 such that

D′
m ≤ S

∫
|λ|>c

√
m√
rm

Γ 2
rm

[
dλ
]
.

On the other hand, Chebyshev’s inequality shows that∫
|λ|>c

√
m√
rm

γ 2
rm

[
dλ
]
≤ 2

c2m
.

Hence

lim
m→∞

D′′
m = 0.
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This proves (2.3.55).

The sequence of measures γ 2
rm

(λ)dλ converges to δ0 so that

R∞(0)f(0) = lim
m→∞

∫
R
R∞(0)f(λ)γ 2

rm

(λ)dλ.

Using (2.3.55) and the above equality we deduce that the conclusion of the lemma is equivalent
to

lim
m→∞

∫
R

(
R∞(0)−R∞

(√
rm
m
λ

))
f(λ)Γ 2

rm

[
dλ
]

︸ ︷︷ ︸
=Fm

= 0. (2.3.56)

To prove this we decompose Fm as follows.

Fm =

∫
|λ|<m− 1

4
√
m√
rm

(
R∞(0)−R∞

(√
rm
m
λ

))
f(λ)Γ 2

rm

[
dλ
]

︸ ︷︷ ︸
=:F ′

m

+

∫
|λ|>m− 1

4
√
m√
rm

(
R∞(0)−R∞

(√
rm
m
λ

))
f(λ)Γ 2

rm

[
dλ
]

︸ ︷︷ ︸
=:F ′′

m

.

Observe that

F ′
m ≤ sup

|x|≤m− 1
4

∣∣R∞(0)−R∞(x)
∣∣ ∫

|λ|<m− 1
4

√
m√
rm

f(λ)Γ 2
rm

[
dλ
]
.

Since R∞ is continuous at 0 we deduce

lim
m→∞

F ′
m = 0.

Since R∞ and f are bounded we deduce that there exists a constant S > 0 such that

F ′′
m ≤ S

∫
|λ|>m− 1

4
√

m√
rm

Γ 2
rm

[
dλ
]
.

On the other hand, Chebyshev’s inequality shows that∫
|λ|>m− 1

4
√
m√
rm

Γ 2
rm

[
dλ
]
≤ 2√

m
.

Hence

lim
m→∞

F ′′
m = 0.

This proves (2.3.56) and the lemma. ⊓⊔

Lemma 2.3.13 shows that

Km ∼ K ′
m =

√
4π

m
R∞(0),

and

lim
m→∞

1

Km
θ−
m+1, 1

rm

(λ)
[
dλ
]
= δ0

[
λ]
]
.
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On the other hand,

lim
m→∞

γ rm−1
rm

[
dλ
]
= Γ

[
dλ
]
,

so that

lim
m→∞

νm = δ0 ∗ γ1 = γ1.

⊓⊔

Remark 2.3.14. Note that for any Borel subset C ⊂ R, the number νa,m
[
C
]
is the expected

proportion of critical values of
1√
šm

(
Φa +Xčm

) ∣∣
B

located in C. For large m the bulk of these critical values are located in an interval of size
O(1) centered at the origin. Thus, the bulk of critical values of Φa + Xčm is located in an
interval of size O

(√
sm
)
centered at the origin. Recall that

sm = sm(a) =
1

(2π)m/2Γ(m/2)
Im−1(a)

The large m behavior is sensitive to the choice of amplitude; see Appendix B.4. For example,

if a(t) = e−t
2/2, then

sm(a) =
1

(2π)m/2
.

However if

a(t) = exp
(
− 1

2
log(t) log(log t)

)
, ∀t > 1,

then

log sm(a) ∼ em−1 as m→∞.

⊓⊔

2.3.4. A probabilistic computation of a Mehta integral. Recall that GOEvn, v > 0
is the Gaussian ensemble of symmetric n × n matrices A = (aij)1≤i,j≤n where the entries(
aij
)
1≤i≤j≤n are independent centered Gaussian variables with variances

E
[
a2ii
]
= 2v, E

[
a2jk
]
= v, ∀i, ∀j < k. (2.3.57)

As detailed in Appendix C.1, the normalized 1-point correlation function ρn,v(x) of GOEvn is
the function ρn,v : R→ [0,∞) uniquely determined by the equality

1

n
EGOEv

n

[
tr f(X)

]
=

∫
R
f(λ)ρn,v(λ)dλ,

for any bounded Borel measurable f : R :→ R. For example, if f = IB, B ⊂ R , then∫
B
ρn,v(λ)dλ

is the expected fraction of eigenvalues of a random symmetric matrix X located in B.
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One can show that for any bounded Borel measurable function function F : Sym(Rn)→ R
that is invariant with respect to the conjugation by orthogonal transformations we have

EGOEv
n

[
F (X)

]
=

1

Zn(v)

∫
Rm

F
(
Diag(λ1, . . . , λn)

) ∏
1≤i<j≤n

|λi − λj |

 m∏
i=1

e−
λ2i
4v

︸ ︷︷ ︸
=:Qn,v(λ)

|dλ1 · · · dλn|.

Then

ρn,v(x) =
1

Zn(v)

∫
Rn−1

Qn,v(x, λ2, . . . , λn)dλ1 · · · dλn.

Zm = Zm(1/2) :=

∫
Rm

∏
1≤i<j≤m

|λi − λj |
m∏
i=1

e−
λ2i
2 |dλ1 · · · dλm|.

The integral in the right-hand-side is known as Mehta integral. I will prove that

Zm = (2π)
m
2

m−1∏
j=0

Γ( j+3
2 )

Γ(3/2)
= 2

3m
2

m−1∏
j=0

Γ
( j + 3

2

)
. (2.3.58)

This equality was first proved in 1960 by M. L. Mehta, [95]. Later Mehta observed that
this integral was known earlier to N. G. de Brujin [28]. It was subsequently observed that
Mehta’s integral is a limit of the Selberg integrals, [5, Eq. (2.5.11)], [61, Sec. 4.7.1].

The goal of this subsection is to provide a probabilistic computation of the Mehta integra.I
follow the approach in [117]. The strategy is easy to describe. We argue inductively. An
immediate direct computation shows that

Z1 =

∫
R
e−t

2/2dt = (2π)1/2.

To compute the ratio Zm+1

Zm
we observe that the eigenvalues of A ∈ Sym(Rm+1) coincide with

the critical values of the restriction to the unit sphere of the quadratic function x 7→ (Ax,x).
The Kac-Rice formula will provide a description of the mean distribution of these critical

values which will lead to an explicit evaluation of Zm+1

Zm
. Here are the details.

For each A ∈ Sym(Rm+1) we obtain a quadratic function

qA : Rm+1 → R, qA
(
x
)
=

1

2

(
Ax,x

)
.

We denote by ΦA its restriction to the unit sphere

Sm =
{
x ∈ Rm+1; ∥x∥ = 1

}
Above, (−,−) and ∥ − ∥ denote respectively the canonical inner product and its associated
norm on Rm+1.

When A runs in the Gaussian ensemble GOEvm+1 we obtain a Gaussian function

Φ = ΦA : Sm → R.

This is invariant under the natural O(m+ 1)-action on Sm. As shown in [105, Ex.1.20], the
function ΦA is Morse for generic A, where genericity is understood in Baire categoric terms.

Lemma 2.3.15. The Gaussian function ΦA is a.s. Morse.
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Proof. It suffices to show that the Gaussian section ∇ΦA of TSm is ample. Let x ∈ Sm. If

Projx : Rm+1 → Rm+1

the orthogonal projection onto TxS
m, then

∇ΦA(x) = ProjxAx = Ax− (x,x)x.

The map

Sym(Rm+1) ∋ A 7→ Ax ∈ Rm+1

is onto and thus the map

Sym(Rm+1) ∋ A 7→ ProjxAx ∈ TxSm

is also onto, thus proving that the gradient ∇ΦA(x) is nondegenerate since the Gaussian
ensemble GOEm+1,v is nondegenerate. ⊓⊔

Consider the spectral measure of A,

σA :=
∑

λ∈Spec(A)

mult(λ)δλ.

The discriminant measure of 2ΦA is

DA =
∑

∇ΦA(x)=0

δ2ΦA(x) = (2Φa)#C[−,ΦA]

The critical values of 2ΦA are precisely the eigenvalues of A and the critical points are the
unit eigenvectors of A. The function is Morse iff A is simple, i.e., its eigenvalues are distinct.
In this case to each critical value of A there corresponds exactly two critical points. Hence

DA = 2σA a.s..

Then for any Borel subset C ⊂ R we have

1

(m+ 1)
E
[
DA

[
C
] ]

=
2

m+ 1
E
[
σA
[
C
] ]

= 2

∫
C
ρm+1,v(λ)dλ. (2.3.59)

We will determine E
[
DA

[
C
] ]

using the Kac-Rice formula (2.2.13) .

For x ∈ Sm we denote by HessA(x) the Hessian of ΦA at x viewed as a symmetric
operator TxS

m → TxS
m. Here the Hessian is defined in the sense of Riemann geometry

HessA = ∇(∇ΦA),

where ∇ΦA is the gradient of ΦA, i.e., the metric dual of the differential dΦA, and ∇ denotes
the Levi-Civita connection of the round metric.

Denote by (x0, x1, . . . , xm) the canonical Euclidean coordinates on Rm+1. Since ΦA is
O(m+1) invariant, the distribution of the random operator HessA(x) is independent of x so
it suffices to determine it at any point of our choosing. Suppose that x is the north pole

x = n = (1, 0, . . . ,m) ∈ Rm+1.

Then TnS
m = {x0 = 0} and x∗ :=

(
x1, . . . , xm) are orthonormal coordinates on TnS

m. The
coordinates x∗ also define local coordinates on Sm. More precisely the upper hemisphere

Sm+ :=
{
x ∈ Sm; x0 > 0

}
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admits the parametrization

x∗ 7→ x
(
x∗
)
=
(
x0(x∗),x

∗ ) ∈ Sm, x0(x∗) =
√

1− ∥x∗∥2.

In these coordinates the round metric on Sm satisfies

gij(x∗) = δij +O
(
∥x∗∥2

)
near n. (2.3.60)

In particular, the Christoffel symbols Γjij(x∗) vanish at x∗ = 0. On the upper hemisphere we
will view ΦA as a function of x∗.

If A = (aij)0≤i,j≤m, then in the coordinates x∗ we have

ΦA(x) =
1

2
a00
(
1− ∥x∗∥2

)
+

1

2

m∑
j=1

ajj(x
j)2 +

∑
0≤j<k≤m

ajkx
jxk,

=
1

2
a200 +

1

2

m∑
j=1

(
ajj − a00

)
(xj)2 +

∑
0≤j<k≤m

ajkx
jxk,

dΦA(x∗)|x∗=0 =

m∑
j=1

a0jdx
j .

Since A ∈ GOEvm+1, covariance kernel of ΦA is

KA(n,x) = E
[
ΦA(n)ΦA(x)

]
=

1

4

(
1− ∥x∗∥2

)
E
[
a200
]
=
v

2

(
1− ∥x∗∥2

)
.

Denote by A∗ the m ×m matrix A∗ = (aij)1≤i≤m. Note that A∗ ∈ GOEvm. Using (2.3.60)
and (??) we deduce that

HessA(n) = A∗ − a001m.

Since a00 is independent of A∗ we deduce from (C.1.5) that HessA(n) ∈ S
2v,v
m , where S

u,v
m is

the O(m)-invariant Gaussian ensemble defined by (C.1.3). If we set

Lij = ℓij
(
HessA(n)

)
, Ωij = ωij

(
HessA(n)

)
=

{
Lii, i = j,√
2Lij , i < j

,

where ℓij and ωij are defined by (2.3.21), then

E
[
LijLkℓ

]
= 2vδijδkℓ + v(δikδjℓ + δiℓδjk), ∀1 ≤ i, j, .k, ℓ ≤ m. (2.3.61)

Note that ∇ΦA(n) = (a01, . . . , a0n) is independent of ΦA(n) and HessA(n). The estimates
(2.3.60) show that, in the coordinates x∗ we have

∇ΦA(n) =

 a01
...

a0,m

 and HessA(n) = A∗ − a001m,

where A∗ is the m×m matrix A∗ = (aij)1≤i≤m. Note that A∗ ∈ GOEvm.

Since A ∈ GOEvm+1 we deduce from (C.1.3) that

Var
[
ΦA
]
= v1m. (2.3.62)
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Set

W :=

[
ΦA(n)
∇ΦA(n)

]
=


1
2a00
a01
...

a0m

 .
Note that

Var
[
W
]
= Diag

( v
2
, 2v, . . . , 2v︸ ︷︷ ︸

m

)
. (2.3.63)

Clearly the matrix Var
[
W
]
is invertible, proving that ΦA that Φ is J1-ample.

Denote by HessA(n) the random symmetric matrix with variance given by the regression
formula

Var
[
HessA(n)

]
= Var

[
HessA(n)

]
− Cov

[
HessA(n),W

]
Var

[
W
]−1

Cov
[
W,HessA(n)

]
.

Set

Lij = ℓij
(
HessA(n)

)
, Ωij := ωij

(
HessA(n)

)
,

and

Cij|k := Cov
[
Ωij ,Wk

]
, 1 ≤ i ≤ j ≤ m, 0 ≤ k ≤ m.

Note that

Cij|k = 0, ∀i, j, ∀k > 0, Cij|k = 0, ∀i < j, ∀k ≥ 0,

and

Cii|0 =
1

2
E
[
(aii − a00)a00

]
= −1

2
E
[
a200
]
= −v.

If we write

Var
[
W
]−1

=
(
tab
)
0≤a,b≤m,

then

E
[
ΩijΩkℓ

]
= E

[
Ωij(x)Ωkℓ(x)

]
−

m∑
a,b=0

Cij|atabCkℓ|b = E
[
Ωij(x)Ωkℓ(x)

]
− 2

v
Cij|0Ckℓ|0.

For i ̸= j

E
[
ΩiiΩjj

]
= E

[
Ωii(x)Ωjj(x)

]
− 2v = 0,

E
[
Ω
2
ii

]
= 2v,

E
[
ΩijΩkℓ

]
= E

[
Ωij(x)Ωkℓ(x)

]
, ∀1 ≤ k ≤ ℓ.

We deduce that

HessA ∈ GOEvm . (2.3.64)

The regression operator

RHessA,W = Cov
[
HessA,W

]
Var

[
W−1

]
: Rm+1 → Sym(Rm)

is 
w0

w1
...
wm

 7→ −2w01m.
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We set H =HessA. Using the regression formula (1.1.19) we deduce

E
[
|HessA(n)|

∣∣W (n) = (t/2, 0)
] (2.3.64)

= EGOEm,v

[
| det(H − vt)|

]
.

Since 2ΦA(n) = a00 is Gaussian with variance 2v, we deduce from the Kac-Rice formula
(2.2.13) that, for any Borel subset C ⊂ R, we have

E
[
DA

[
C
] ]

=

∫
C
ρA(t)Γ2v

[
dt
]
, (2.3.65)

where

ρA(t) =

∫
Sm

E
[
|HessA(x)|

∣∣2ΦA(x) = t, ∇ΦA(x) = 0
]
p∇ΦA(x)(0)dx

(2.3.62)
=

(
2πv

)−m/2 ∫
Sm

E
[
|HessA(x)| ∥W (x) = (t/2, 0)

]
dx

=
(
2πv

)−m/2E[ |HessA(n)|
∣∣W (n) = (t/2, 0)

]
vol
[
Sm
]

=
(
2πv

)−m/2
vol
[
Sm
]
EGOEv

m

[
|det(H − vt)|

]
.

(2.3.66)

In the proof of Lemma C.1.1 we showed

EGOEv
m

[
det(H − vt)|

]
= (2v)

m+1
2 e

v2t2

4v
Zm+1

Zm
ρm+1,v(vt).

Assume now v = 1. Hence

EGOE1
m

[
det(H − t)|

]
= e

t2

4 2
m+1

2 π−1/2Zm+1

Zm
ρm+1,1(t).

Since Γ2

[
dt
]
= e−

t2

4
dt√
4π

we deduce from (2.3.65) that

E
[
DA

[
C
] ]

=
(
2π
)−m/2

2
m+1

2 vol
[
Sm
]Zm+1

Zm

∫
C
ρm+1,1(t)

dt√
4π
.

On the other hand, we deduce from (2.3.59) that

1

(m+ 1)
E
[
DA

[
C
] ]

= 2

∫
C
ρm+1,1(t)dt,

so that (
2π
)−m/2

2
m+1

2 vol
[
Sm
]

(m+ 1)

Zm+1

Zm
(4π)−1/2 = 2.

Using the fact that

vol
[
Sm
]

m+ 1
=

π
m+1

2

Γ(m+3
2 )

we deduce
Zm+1

Zm
=

Γ(m+3
2 )

π
m+1

2

· 2(2π)
m/2(4π)1/2

2
m+1

2

= 23/3Γ
( m+ 3

2

)
.

Since Z1 = (2π)1/2 we deduce immediately the equality (2.3.58)

Zm = Z1

m−1∏
j=1

Zj+1

Zj
= 2

3m
2

m−1∏
j=0

Γ
( j + 3

2

)
.
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2.4. Higher momentums

As in previous section suppose that F : V → U is an ample Gaussian C1-field, where U is a
real Euclidean space, V is an open subset of the Euclidean space V and dimU = dimV = m.

2.4.1. A preview. For any Borel subset B ⊂ V we denote by Z[B] = Z[B,F ] the number
of zeros of F inside B. The question we will address in this section concerns the finiteness of
the various momentums of F . The first nontrivial case has to do with the variance of Z[B].
Which conditions on F will guarantee the finiteness of the variance of Z[B] when B is say a
box in V ?

We approach this using a simple trick. Consider the random field

F̂ : V × V → U ×U , (v1, v2) 7→
(
F (v1), F (v2)

)
.

Note that Z[B]2 = Z
(
F̂ , B × B

)
so we may try to apply the local Kac-Rice formula to the

Gaussian field F̂ . There is a an immediate obstacle on our way, namely, the Gaussian field

F̂ fails to be ample along the diagonal

∆ =
{
(v1, v2) ∈ V 2; v1 = v2

}
since the U ×U Gaussian vector

(
F (v), F (v)

)
| is degenerate!

We are forced to remove the diagonal. We set V 2
∗ := V 2 \∆, B2

∗ := B2 \∆. Then

Z
[
B2

∗ , F̂ ,
]
= Z[B]2 − Z[B] = Z[B]

(
Z[B]− 1

)
=
(
Z[B]

)
2
.

Above, for any x ∈ R and k ∈ N we denote by (x)k the falling factorial5

(x)k := x(x− 1) · · · (x− k + 1) =

k−1∏
j=0

(x− j).

We will attempt to use the Kac-Rice formula for the random field F̂ |V 2
∗
. It is not clear yet

that this Gaussian field is ample, we hope it is, and apply formally the Kac-Rice formula to
deduce

E
[
Z[B]2

]
− E

[
Z[B]

]
=

∫
B2

∗

E
[ ∣∣ det (F ′(v1) · F ′(v2)

) ∣∣ ∥∥F (v1) = F (v2) = 0
]
pF (v1)⊕F (v2)(0)dv1dv2.

(2.4.1)

Recall that

pF (v1)⊕F (v2)(0) =
1√

det
(
2πVar

[
F (v1)⊕ F (v2)

] )
We see that as (v1, v2) approaches (v, v), the Gaussian vector F (v1)⊕ F (v2) approaches the
degenerate gaussian vector F (v) ⊕ F (v). Hence the variance of F (v1) ⊕ F (v2) degenerates
as (v1, v2) approaches the diagonal so the term pF (v1)⊕F (v2)(0) is guaranteed to explode near
the diagonal. This raises the issue of finiteness of the integral in (2.4.1).

Now that we are guaranteed a headache, let us recall that we still do not know wether
the Gaussian vector F (v1)⊕F (v2) is nondegenerate if v1 ̸= v2. Fortunately, under additional
assumptions of F this will be the case.

5This is sometimes referred to as the Pohamer symbol
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In the next, warm-up, subsection we show that, under reasonable assumptions, the vari-
ance is finite. The key idea in the proof is the gauge invariance of the Kac-Rice density.

More precisely suppose that

Ψ :M → E

is an ample random Gaussian section of the real vector bundle E →M , whereM is a smooth
manifold. Suppose thatnthe dimension of M is equal to the rank of E. Then, for any gauge
transformation (or linear automorphism) g : E → E, the random Gaussian section g(Ψ) is
also ample and we have a tautological equality of random measures

Z
[
−,Ψ

]
= Z

[
−, g(Ψ)

]
.

For illustration purposes suppose that M is the plane, M = R2, and E is the trivial rank
2-bundle. Then the section Φ(x) = |x|2Ψ(x) over the punctured plane is gauge equivalent to
Ψ, but the Kac-Rice formula suggests that the Kac-Rice density of Φ might blow-up at the
origin since

pΦ(x)(0) = p|x|2Ψ(x)(0) = |x|−4pΨ(x)(0).

On the other hand,

ρΨ(x) = ρΦ(x), x ̸= 0

since Z
[
S,Ψ

]
= Z

[
−, g(Ψ)

]
= Z

[
−,Φ

]
, for any Borel subset S ⊂ R2 \ 0. The gauge

transformation g(x) = |x|21R2 desingularizes Φ in the sense that Φ = gΨ and ψ is much
better behaved section.

This argument can be slightly generalized. Suppose that we are given two real vector
bundles E0, E1 →M If Ψ0 :M → E0 is a Gaussian random section of the real vector bundle
E0 →M , and T : E0 → E1 is a bundle isomorphism, then the Gaussian random section TΨ0

has the same zero set as Ψ0. However, with a bit of luck, the renormalized section TΨ0 may
be better behaved and free of degenerations of the type mentioned above.

2.4.2. Variance estimates. It has been known for some time that under certain conditions
the number of zeros in a box of a Gaussian field F has finite variance, [3, 16, 55, 66]. In
this warm-up subsection we use the ideas in the above references to obtain such estimates
for the variance in terms of the covariance kernel. Here an in the sequel

Suppose that U and V are finite dimensional real Euclidean spaces of the same dimension
m and V ⊂ V is an open set. If f : V → U is a Ck-map, we denote by f (k)(v) its k-th

differential at v ∈ V . We view f (k)(v) as an element of Symk(V ,U), the space of symmetric
k-linear maps V k → U .

Let F : V → U be a Gaussian random field whose covariance kernel KF is C6. In
particular, this implies that F is a.s. C2.

For any box B ⊂ V we denote by ZB the number of zeros of F in B, i.e., ZB = Z[B,F ].
Let V 2

∗ := V 2 \ ∆, where ∆ is the diagonal. Define B2
∗ in a similar fashion. Consider the

random field

F̂ =: V 2
∗ → U ⊕U , F̂ (v0, v1) = F (v0)⊕ F (v1).

Note that

Z[F̂ , B2
∗ ] = ZB

(
ZB − 1

)
.
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Suppose that F |B is 2-ample, i.e., for any v = (v0, v1) ∈ B2
∗ the Gaussian vector F (v0)⊕F (v1)

is nondegenerate. We deduce from the local Kac-Rice formula (KR) that E
[
ZB
]
<∞, and

E
[
ZB
(
ZB − 1

) ]
=

∫
B2

∗

ρ
(2)
G (v0, v1)dv0dv1,

where ρ
(2)
F is the Kac-Rice density

ρ
(2)
F (v0, v1) := E

[
| detF ′(v0) detF

′(v1)|
∣∣F (v0) = F (v1) = 0

]
p
F̂ (v0,v1)

(0). (2.4.2)

Note that

p
F̂ (v0,v1)

(0) =
1√

det
(
2πVar[F (v0)⊕ F (v1)]

) ,
so p

F̂ (v0,v1)
(0) explodes as (v0, v1) approaches the diagonal since F (v) ⊕ F (v) is degenerate

for any v ∈ V . Thus the function ρ
(2)
F (v0, v1) might have a non-integrable singularity along

the diagonal so E
[
Z2
B

]
could be infinite.

We want to show that this is not the case and a bit more. We will use the gauge-change
trick outlined in the introduction to his section.

Proposition 2.4.1. Fix a box B ⊂ V and r < dist(B,V ). Denote by S = S(r,B) the
compact set set

S =
{
v ∈ V ; dist(v,B) ≤ r

}
.

Suppose that F
∣∣
B

is C2, 2-ample and J1-ample, i.e., for any v ∈ B the Gaussian vector(
F (v), F ′(v)

)
is nondegenerate. Define

wF : B2
∗ → R, wF (x,y) = |x− y|m−2ρ

(2)
F (x,y).

There exists a constant C(m, vol[B], r) > 0, that depends only on m, vol[B] and r such that

sup
p∈B2

∗

|wF (p)
∣∣ ≤ C(m, vol[B], r)∥KF ∥3m−1/2

C6(S×S). (2.4.3)

In particular Var
[
ZB
]
<∞.

Proof. I will use a modification of the arguments in [16, Sec. 4.2]. For any v0, v1 ∈ B,

v0 ̸= v1, the Gaussian vector F̂ (v0, v1) = F (v0) ⊕ F (v1) is nondegenerate. We denote by

pF (v0),F (v1) the probability density of F̂ (v0, v1).

We set

r(v) := ∥v1 − v0∥, Ξ(v) :=
1

r(v)

(
F (v1)− F (v0)

)
.

Note that

F̂ (v) = 0⇐⇒F (v0) = Ξ(v) = 0.

Denote by A(v) the linear map U2 → U2 given by

A(v)

[
u0
u1

]
=

[
u0

u0 + r(v)u1

]
=

[
1U 0
1U r(v)1U

]
·
[
u0
u1

]
. (2.4.4)

Thus [
F (v0)
F (v1)

]
= A(v)

[
F (v0)
Ξ(v)

]
.
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The gauge transformation A(v) desingularizes F̂ . Denote by Z(v) the Gaussian vector
(F (v0),Ξ(v)) .

The Gaussian regression formula implies that

E
[
|detF ′(v0) detF

′(v1)|
∣∣F (v0) = F (v1) = 0

]
= E

[
|detF ′(v0) detF

′(v1)|
∣∣Z(v) = 0

]
.

Note that

pF (v0),F (v1) =
1√

det
(
2πVar[F (v0)⊕ F (v1)]

)
=

1

| detA|
√

det
(
2πVar[F (v0)⊕ Ξ(v))])

= r(v)−mpF (v0)⊕Ξ(v)(0).

We deduce that for any u ∈ B2
∗ we have

ρ
(2)
F (v) := r(v)−mE

[
| detF ′(v0) detF

′(v1)|
∣∣Z(v) = 0

]
pF (v0)⊕Ξ(v)(0). (2.4.5)

Lemma 2.4.2. There exists a constant C = C(m, vol[B], r) > 0 depending only on m and
vol[B] and r < dist(B, ∂V ) such that, for i = 0, 1, and any v ∈ B2

∗∣∣E[ | detF (vi)|2∣∣Z(v) = 0
] ∣∣ ≤ C(m, vol[B], r)∥KF ∥m+2

C6(S×S)r(v)
2.

Proof. It suffices to consider only the case i = 0 since

F (v0) = Ξ(v) = 0⇐⇒F (v1) = Ξ(v) = 0.

Set

ν = ν(v) :=
1

r(v)

(
v1 − v0

)
, Z = Z(v).

Let f(t) = F (v0 + tν). Since F (v) is a.s. C2 we deduce from the first order Taylor approxi-
mation with integral remainder that

F (v1)− F (v0) = f(r)− f(0) = rf ′(0) +

∫ r

0
f ′′(t)(r − t)dt = ∂νF (v0) +

∫ r

0
f ′′(t)(r − t)dt︸ ︷︷ ︸

=:W

.

Hence

r∂νF (v0) = F (v0)− F (v1)−W
Hence, for any p ≥ 1 we have

E
[
|r∂νF (v0)|p

∣∣Z = 0
]
= E

[
|F (v0)− F (v1)−W |p

∣∣Z = 0
]
= E

[
|W |p

∣∣Z = 0
]
.

The random variable W is a centered U -valued Gaussian vector. We deduce that for any
p ≥ 1 we have ∣∣E[ |∂νF (v0)|p∣∣Z = 0

] ∣∣ = 1

rp
E
[
|W |p

∣∣Z = 0
]p
.

Note that

|W | ≤
∫ r

0
∥f ′′(t)∥U (r − t)dt ≤ r2

2
∥F∥C2(B).

We deduce that ∥∥ Var
[
W
] ∥∥

op
≤ r4

4
E
[
∥F∥2C2(B)

]
.
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Using Corollary 1.1.30 we deduce that

E
[
|W |p

∣∣Z = 0
]
≤ C(m, p)r2pE

[
∥F∥2C2(B)

]p/2
,

where C(m, p) is a universal constant that depends only on the dimension m and on p. We
will continue to denote by the same symbol C(m, p) various positive constants that depend
only on m and p. We deduce∣∣E[ ∂νF (v0)∣∣Z = 0

] ∣∣p ≤ C(m, p)rpE[ ∥F∥2C2(B)

]p/2
. (2.4.6)

Extend ν to an orthonormal basis {ν = e1, e2, . . . em} of V . Using Hadamard’s inequality
[74, Cor. 7.8.2] we deduce∣∣ detF ′(v0)

∣∣ = ∣∣ det ( ∂e1F (v0), ∂e2F (v0), . . . , ∂emF (v0) ) ∣∣
≤
∣∣ ∂e1F (v0) ∣∣ m∏

k=2

∣∣ ∂ekF (v0) ∣∣.
Using Hölder’s inequality we deduce

E
[ ∣∣ detF ′(v0)

∣∣2 ∣∣Z = 0
]
≤

m∏
k=1

E
[ ∣∣ ∂ekF (v0) ∣∣2m ∣∣ ∣∣Z = 0

] ] 1
m .

For k = 2, . . . ,m we have

Var
[
∂ekF (v0)

∣∣Z = 0
]
≤ Var

[
∂ekF (v0)

]
and ∥∥ Var

[
∂ekF (v0)

] ∥∥
op
≤ C(m)∥KF ∥C2(B×B).

Using again Corollary 1.1.30 we deduce that for k = 2, . . . ,m we have

E
[ ∣∣ ∂ekF (v0) ∣∣2m ∣∣Z = 0

] 1
m ≤ C(m)∥KF ∥C2(B×B).

Using (2.4.6), we deduce that

E
[ ∣∣ detF ′(v0)

∣∣2 ∣∣ Z = 0
]
≤ C(m)r2E

[
∥F∥2C2(B)

]
∥KF ∥m−1

C2(B×B)
.

Invoking (1.2.4) we conclude that

E
[
∥F∥2C2(B)

]
≤ C(m, vol[B], r)∥K∥3C6(S×S).

This completes the proof of Lemma 2.4.2. ⊓⊔

Lemma 2.4.2 implies

E
[
|detF ′(v0) detF

′(v1)|
∣∣Z(v) = 0

]
≤ E

[ ∣∣ detF ′(v0)
∣∣2 ∣∣Z(v) = 0

] ∣∣1/2E[ ∣∣ detF ′(v1)
∣∣2 ∣∣ Z(v) = 0

] ∣∣1/2
≤ C(m, vol[B], r)∥K∥m−1/2

C6(S×S)r(v)
−2.

Hence

ρ
(2)
F (v) ≤ C(m)∥K∥m−1/2

C6(S×S)r(v)
2−m sup

v
pF (v0)⊕Ξ(v)(0). (2.4.7)

Moreover

sup
v
pF (v0)⊕Ξ(v)(0) ≤ C(m)∥K∥2mC3(B×B) ≤ C(m)∥K∥2mC6(S×S).

This completes the proof of Proposition 2.4.1. ⊓⊔
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We can extract from the above proof a more precise result. For any box B in a Euclidean
space V we set

q(B) :=

∫
B2

∗

r(v)2−mdv0dv1.

Note that q(B) is a translation invariant and for any t > 0, q(tB) = tm+2q(B). In particular,
if B is is the cube Bc = [0, c]m, then

q(Bc) = q(B1)c
m+2 = C(m)q(B1) vol

[
Bc
]m+2

m .

Corollary 2.4.3. Let V be an open subset of V . For each r > 0 there exists a function

F : (0,∞)→ (0,∞)

with the following property: for any m0 > 0, any box B ⊂ V and any Gaussian field
F : Ω× V→ U such that

• dist(B, ∂V ) < r,

• the covariance kernel KF is C6,

• the restriction of F to B is 2-ample,

• and
∥∥K ∥∥

C6(S×S) < m0

we have ∥∥ ρ(2)KR ∥∥L1(B×B)
< Fr(m0)q(B).

⊓⊔

Remark 2.4.4. One can show that if F is a.s. C3, then the function wF in Proposition
2.4.1 admits an extension to a continuous function on the radial blow-up of B2 along the
diagonal. ⊓⊔

2.4.3. An analytic digression: Kergin interpolation. The one-dimensional case of this
technique goes back to Newton.

Suppose that f : R → R is a continuous function and x1, . . . , xp are distinct points on
the real axis. We define inductively the divided differences f [x1], f [x1, x2], . . . , f [x1, . . . , xp]
by setting

f [x] = f(x), ∀x ∈ R,

f [x1, x2] =
f [x1]− f [x2]
x1 − x2

= f [x2, x1],

f [x1, x2, x3] =
f [x1, x2]− f [x2, x3]

x1 − x3
=
f [x3, x2]− f [x1, x2]

x3 − x1
,

f [x1, x2, . . . , xk, xk+1] =
f [x1, . . . , xk]− f [x2, . . . , xk+1]

x1 − xk+1
. . .

For simplicity we will write x = (x1, . . . , xp) and f [x] = f [x1, . . . , xp]. For distinct x1, . . . , xn
we have the following more explicit description (see [99, Sec. 1.3])

f [x1, . . . , xn] =
n∑
j=1

f(xj)∏
k ̸=j(xj − xk)

.
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If f ∈ Cp, then we have an alternate integral representation of f [x0, . . . , xp] called Hermite-
Genocchi formula

f [x0, x1, . . . , xp] =

∫ 1

0
ds1

∫ s2

0
ds3 · · ·

∫ sp−1

0
f (p)

(
y(s)

)
dsp, (2.4.8)

where

y(s) = y(s1, . . . , sp) = (1− s1)x0 + (s1 − s2)x1 + · · ·+ (sp−1 − sp)xp,
1 ≥ s1 ≥ · · · ≥ sp ≥ 0.

We refer to [24, Thm. 1.9] or [99, Sec. 16] for a proof. Note that this formula assumes that
f is p-times differentiable. We can rephrase (2.4.8) in more revealing terms as follows.

Consider the simplex

∆p =
{
(t0, t1, . . . , tp) ∈ [0, 1]p+1;

p∑
k=0

tk = 1
}
.

The symmetric group Sp+1 acts on ∆p by permuting the variables t0, . . . , tp. Moreover, ∆p

is equipped with an Euclidean volume element vol
[
−
]
induced by the Euclidean inner

product. The volume element vol
[
−
]
is invariant with respect to the action of Sp+1

We view ∆p as graph of the function t0 = 1 − (t1 + · · · + tp). We can use (t1, . . . tp) as
local coordinates and we deduce

vol
[
dt1 · · · dtp

]
=
√
1 + |∇t0|2dt1 . . . dtp =

√
p+ 1dt1 . . . dtp.

We have

vol
[
∆p

]
=
√
p+ 1

∫
t1,...,tp≥0
t1+···+tp≤1

dt1 · · · dtp︸ ︷︷ ︸
= 1

p!

=

√
p+ 1

p!
.

Let

µp
[
dt
]
:=

1√
p+ 1

vol
[
dt
]
= dt1 · · · dtp,

so that µp
[
∆p

]
= 1

p! . Given x = (x0, x1, . . . , xp) ∈ Rp+1 we define

σx : ∆p → R, σx(t) :=

p∑
k=0

tkxk.

If we make the linear change in variables sk = tp−k+1 + · · ·+ tp, 1 ≤ k ≤ p, t0 = 1− s1, then
for any continuous function u : R→ R we have∫

∆p

u
(
σx(t)

)
µp
[
dt
]
=

∫
t1,...,tp≥0
t1+···+tp≤1

u
(
σx(t)

)
dt1 · · · dtp

=

∫ 1

0
ds1

∫ s2

0
ds3 · · ·

∫ sp−1

0
u
(
y(s)

)
dsp,

y(s) = (1− s1)x0 + (s1 − s2)x1 + · · ·+ (sp−1 − sp)xp
Then (2.4.8) can be rewritten as

f [x] =

∫
∆p

f (p)
(
σx(t)

)
µp
[
dt
]
. (2.4.9)
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The measure µp is invariant under the action of the symmetric group Sp+1 so the right-
hand-side of the above equality is symmetric in the variables x0, . . . , xp. It also depends
continuously on them and it is well defined even if some of them coincide!

This allows us to define f [x0, x1, . . . , xp] even if the numbers x0, . . . , xp are not pairwise
distinct provided that f ∈ Cp. For example,

f [x1, x1] = lim
x2→x1

f [x1, x2] = f ′(x1),

f [x1, x1, x2] =
f [x2, x1]− f ′(x1)

x2 − x1
More generally, if the function f(x) is Ck, then the function g(x) = f [x, x2] is C

k−1 and

f [x1, x2, x3] = g[x1, x3] =
f [x1, x2]− f [x3, x2]

x1 − x3
.

In general, for distinct x, x1, . . . , xp, we have the equality (see [99, Sec. 1.1])

f(x) = f(x1) +

p−1∑
j=1

(x− x1) · · · (x− xj)f [x1, · · · , xj+1]︸ ︷︷ ︸
=:P x1,...,xpf(x)

+(x− x1) · · · (x− xp)f [x, x1, . . . , xp].

(2.4.10)

The term P x1,...,xpf(x) is a polynomial of degree ≤ (p − 1) in x and the above formula is
called Newton’s interpolation formula. The above equality shows that

P x1,...,xpf(xi) = f(xi), ∀i = 1, . . . , p.

As mentioned earlier, the divided difference f [x1, . . . , xp] is well defined even if the numbers
x1, . . . , xp are not pairwise distinct and thus (2.4.10) holds for any x, x1, . . . , xp ∈ R, provided
that f ∈ Cp. Note that if x1 = · · · = xm, then (2.4.10) implies that

∂kxP x1,...,xmf(x1) =
1

k!
∂kxf(x1) ∀0 ≤ k < m.

If we set

[x0]m := x0, . . . x0︸ ︷︷ ︸
m

,

then

P [x0]m(x) =
m∑
j=1

1

(j − 1)!
f (j−1)(x− x0)j−1.

is the degree m− 1 Taylor polynomial of f at x0.

Let us observe that for f continuous and injective

x : Ip :=
{
1, . . . , p

}
→ R

the polynomial Q = P xf is the Lagrange interpolation polynomial, i.e., the unique polyno-
mial Q of degree ≤ p− 1 such that

Q(xi) = f(xi), ∀i = 1, . . . , p.

This proves that Px is a linear projector, i.e.,

P 2
xf = P xf ∈ R

[
x
]
, ∀f ∈ C(R),
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and that P x is invariant under the action of Sp on Rp. Moreover, for any I ⊂ Ip we have

P xf(xI) = f(xI).

The continuous dependence x→ P x shows that, for any x ∈ Rp and any I ⊂ Ip, the map Px
is a symmetric linear projector of Cp−1(R), i.e., for any permutation φ ∈ Sp

P 2
xf = P xf = P x·φf, ∀f ∈ Cp−1(R), (2.4.11)

and

P x = P xI . (2.4.12)

Formula (2.4.9) is the basis of the higher dimensional generalization of the above classical
facts, [81, 98].

Fix an m-dimensional Euclidean space V and V ⊂ V an open convex subset. Given a
function f ∈ Cp(V ) and 1 ≤ k ≤ p, the k-th differential of f at v ∈ V , denoted by Dkf(v),
is a symmetric k-linear form on V ,

Dkf(v) ∈ Symk(V ).

Given v = (v0, v1, . . . , vk) ∈ V k+1 we define

σv = σkv : ∆k → V , σv(t) :=

k∑
i=0

tivi,

and

f [v] :=

∫
∆k

Dkf
(
σv(t)

)
µk
[
dt
]
∈ Symk(V ).

Given v0, v1, . . . , vp ∈ V we define the Kergin interpolator of f to be the polynomial of degree
≤ p in u,

P v0,v1,...,vpf(v) = f(v0) +

p∑
k=1

f [v0, . . . , vk]︸ ︷︷ ︸
∈Symk(V )

(
v − v0, . . . , v − vk−1

)
. (2.4.13)

For example, when p = 1 we have

P v0,v1f(v) = f(v0) + f [v0, v1](v − v0) = f(v0) +

∫ 1

0
∂(v−v0)f

(
(1− t)v0 + tv1

)
dt, (2.4.14)

where ∂w denotes the directional derivative in the direction w.

Suppose that f is a ridge function, i.e., there exists a Cp-function g : R→ R and a linear
form ξ ∈ V ∗ such that f(v) = g

(
ξ(v)

)
. Informally, a ridge function depends on a single

linear coordinate. Then

f
[
v0, . . . , vk

]
= g
[
ξ0, . . . , ξk

]
, ξk = ξ(vk), 0 ≤ k ≤ p.

In particular,

P v0,v1,...,vpf(v) = P ξ0,...,ξpg(x), x = ξ(v)

Thus

P v0,...,vpf(vk) = f(vk), ∀0 ≤ k ≤ p, (2.4.15)

for any function f that is a linear combination of ridge functions. The linear span of
ridge functions contains the space of polynomials (see [24, Lemma 9.11]) which is dense
in Cp(V ,R), so (2.4.15) holds for any f ∈ Cp(V ).
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A similar argument shows that P v0,...,vpf is symmetric in the variables v0, v1, . . . , vp.

Given q ≤ p and v = (v0, v1, . . . , vp) ∈ V p+1, we set [v]q := (v0, . . . , vq). We have

P [v]qP v = P [v]q . (2.4.16)

Indeed, this is true when d = 1 and thus it is true for arbitrary d and f a ridge function.
The conclusion follows by linearity and density. In particular, when q = p the above equality
shows that P v is a projector. For this reason we will also refer to P v as Kergin projector.

Let p ≥ 1. We denote by Polyp
[
V
]
the vector space of polynomials maps V → R of

degree ≤ p. Define

mi : V p+1 → N, mi(v0, v1, . . . ,mp) = #
{
k; uk = ui

}
.

We refer to mi(v) the multiplicity of vi in v = (v0, . . . , vp), i.e., the number of terms of the
sequence of points v0, . . . , vp equal to vi. We have the following result, [81, 98].

Theorem 2.4.5. Let v ∈ V p+1. The map

P v : C
p(V )→ Polyp

[
V
]
⊂ Cp(V ), f 7→ P vf,

is a linear continuous projector, i.e., P 2
v = P v. It depends continuously on u. Moreover, for

any i = 0, 1, . . . , p and any multi-index α ∈ Nd0 such that |α| < mi(p) we have

∂αP vf(vi) = ∂αf(vi). (2.4.17)

⊓⊔

The Kergin interpolator extends in an obvious way to maps F := Cp(V ,U), where U is
a Euclidean space of dimension n. We will denote by Polyp

[
V ,U

]
the space of polynomial

maps V → U of degree ≤ p. More precisely

P ∈ Polyp
[
V ,U

]
⇐⇒∀ξ ∈ U∗, ξ(P ) ∈ Polyp

[
V
]
.

For any v ∈ V p+1 the interpolator P uG is the unique polynomial map V → U of degree ≤ p
such that, for any linear functional ξ ∈ U∗ we have

ξ
(
P uG

)
= P uξ(G).

More explicitly, using Euclidean coordinates (v1, . . . , vm) on V and Euclidean coordinates
(u1, . . . , un) on U we can view F is an n-tuple of functions

G =

 G1

...
Gn

 ,
and then

P vG :=

 P vG
1

...
P vG

n

 .
A differential 1-form on V can viewed as a map V → V ∗, and in particular, we can speak of
the Kergin interpolator of a differential 1-form.

We have the following result of Gass and Stecconi [66, Lemma 2.5] stating that the Kergin
interpolator of an exact form is also exact.
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Lemma 2.4.6. Let u∗ = (v∗0, v
∗
1, . . . , v

∗
p) ∈ V p+1 and f ∈ Cp+1(V ). Then for any k = 0, 1, . . . , p

and any i, j ∈ {1, . . . ,m} we have

∂vj
(
P v∗∂vif

)
= ∂vi

(
P v∗∂vjf

)
.

In other words the polynomial vector field

(V1, . . . , Vm) = P v∗∇f =
(
P u∗∂v1f, . . . ,P v∗∂vmf

)
is a gradient vector field, i.e., there exists a polynomial h ∈ Rp+1

[
V
]
such that ∇h = P u∗∇f .

Proof. We first prove that the lemma is true for ridge functions. By choosing the Euclidean
coordinates (u1, . . . , ud) carefully this means that f(u) has the form f(u1, . . . , ud) = f(u1).
In this case the Lemma is obvious since P uf it is a polynomial of degree p in u1. The general
case follows from the density in Cp+1(U) of the linear span of ridge functions. ⊓⊔

2.4.4. Multijets. In this and next subsection we will described the desingularization pro-
cess devised by Ancona and Letendre and explain how it can be used to provide sufficient
conditions that guarantee the finiteness of higher momentums of Z[B,F ]. It is based on the
concept of multijet introduced by Ancona and Letendre [4].

In truth, we will present only a special case of their construction that suffices for our
purposes. To keep the flow of arguments uninterrupted we will omit the proofs of certain
technical results from real algebraic geometry. These proofs use “standard”6 facts from real
algebraic geometry. A reader familiar with this subject would have little trouble accepting
these results.

As in the previous subsections U ,V are real Euclidean spaces of the same dimension m.
Fix k ∈ N, k ≥ 2. For any n ∈ N we set

In := {1, . . . , n}.

For any finite set I we have the space V I consisting of maps I → V and a configuration
space 7

CI(V ) ⊂ V I

consisting of injective maps I → V . For I = Ik we set Ck(V ) := CIk(V ). We denote by ∆
the “fat” diagonal

∆ = ∆k = V k \ Ck(V ).

Let Pk = Pk(V ) denote the space of polynomial maps f : V → R of degree ≤ k − 1. Note
that

dimPk(V ) =

k−1∑
j=0

(
dimV + j − 1

j

)
.

We can equip Pk with the inner product

(P,Q) =

∫
V
P (v)Q(v)ΓV

[
dv
]
, ∀P,Q ∈ Pk

where ΓV is the canonical Gaussian measure on the Euclidean space V .

6I include Hironaka’s resolution of singularities theorem among these “standard” facts.
7Configuration of distinct points in V labelled by I.
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Each v ∈ Ck(V ) defines a surjective map

Evv : Pk → Rk, f 7→
(
f(v1), . . . , f(vk)

)
.

We denote its kernel by Kv. It is a codimension-k subspace of Pk. We denote by Grk the

Grassmannian of codimension-k subspaces of Pk. We thus have a smooth cokernel map map

cok : Ck(V )→ Grk, Ck ∋ v 7→ cok(v) = K⊥
v ∈ Grk .

Set

Lv : P→ Rk, Lv = (Evv Ev∗
v)

−1/2Evv .

As explained in Lemma 1.1.35, the map L∗
v : Rk → Pk is an isometry whose image is cok(v).

Let T k → Grk be the tautological vector bundle whose fiber over S ∈ Grk is S. We
denote by ProjS the orthogonal of P onto S.

Denote by RkC k(s) the trivial bundle over Ck(V ) with fiber Rk. The maps L∗
v define vector

bundle isomorphism

L∗ : RkC k(V ) → cok∗ T k.

Equivalently, we have a commutative diagram

RkC k(V ) T k

C k(V ) Grk

w
L∗

u u
w

cok

where the vertical maps define vector bundles and, for each v ∈ C k(V ), the induced map
L∗
v : Rk → T k

cok( v)
= cok(v) = K⊥

v is a linear isometric isomorphism.

We denote by Σ the graph of cok, Σ ⊂ Ck(V )×Grk. We have a commutative “roof”

Σ

Ck(V ) Grk

�
���

π
[
[[]Π

w
cok

where π,Π are the natural projections.

We denote by Σ the closure of Σ in V k ×Grk. We have a natural projection

π : Σ→ V k,

that is algebraic in nature. We can be more precise [4, Sec. 5.1].

Proposition 2.4.7. The following hold.

(i) Σ is a smooth real algebraic manifold and the projection π : Σ → Ck(V ) is a
diffeomorphism.

(ii) Σ is a real algebraic variety and the map π : Σ→ V k is proper and surjective.

(iii) The singular locus of Σ is contained in ∆̄ : π−1(∆) = Σ \ Σ, where we recall that
∆ ∈ V k denotes the “fat” diagonal.

⊓⊔
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Invoking Hironaka’s (embedded) resolution of singularities theorem one can prove the
following result, [4, Sec. 5.1] or [38, Thm. 6.37].

Theorem 2.4.8. There exists a smooth manifold W and a proper smooth map

R :W → V k ×Grk

with the following properties.

(i) Σ̂ = R−1
(
Σ̄
)
⊂W is smooth.

(ii) dimW = dimV k × dimGrk, dim Σ̂ = dimCk(V ) = km = k dimV .

(iii) The set W ∗ =W \R−1
(
Ck ×Grk

)
is open and dense in W and the restriction of

R to W ∗ is a diffeomorphism onto Ck ×Grk.

(iv) The set Σ∗ := R−1
(
Σ
)
is open and dense in Σ̂ and the restriction of R to R−1

(
Σ
)
→ Σ

is a diffeomorphism onto Σ.

(v) The map π̂ := π ◦ R : Σ̂ → V k is smooth and proper. We will refer to the set

∆̂ := π̂−1(∆) as the exceptional locus.

⊓⊔

We set π̂ := π ◦ R and Π̂ = Π ◦ R so that we have a commutative diagram

Σ̂

V k Σ̄ Grk

�
�

���

π̂

u
R

[
[
[[]
Π̂

u π w
Π

The manifold Σ̂ can be viewed as the graph of a multivalued map

ĉok : Π̂ ◦ π̂−1 : V k 99K Grk

whose restriction to Ck(V ) is the map cok.

The pair (Σ̂,R) with the above properties is called a resolution of cok and is not unique.

We fix a resolution and we denote it by (Ĉk,R). We set

π̂ := π ◦ R, Ĉ ∗
k = Ĉk \ ∆̂,

and we can identify Ĉ ∗
k with Ck(V ) using the diffeomorphism π̂ : Ĉ ∗

k → Ck. For any v ∈ V p

we will denote by v̂ a point in π̂−1(v) ∈ Ĉp. If v ∈ Cp(V ), there is only one v̂ ∈ Ĉk such that
π(v̂) = v.

Pulling back T k via Π̂ we obtain a rank k-vector budle over Ĉk,

Mk := Π̂∗(T k)→ Ĉp.

The vector bundle Mk is the bundle of k-multijets. The fiber of Mk over v̂ ∈ Ĉk is

Mk(v̂) = cok
(
π̂(v̂)

)
= K⊥

π̂(v̂).

To a function f ∈ Ck(V ) we can associate a C1-section of the trivial bundle Pk
Ĉk

(see page

iii) namely the family of Kergin projectors

Ĉk ∋ v̂ 7→ P π̂(v̂)f ∈Pk.
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This projects to a C1 section µk[f ] of the bundle of multijets Mk,

µk[f ](v̂) = ProjΠ̂(v̂)P π̂(v̂)f ∈Mk(v̂).

Note that for any v ∈ C k(V ) we have

Evv(f) = 0⇐⇒µp[f ]
(
v
)
= 0.

More generally, given a finite dimensional Euclidean spaceU we have a space Pk(U) = Pk(V ,U)
of polynomials maps V → U of degree ≤ k − 1. For each v ∈ V k we have a surjection

Evv : P
k(U)→ Uk,

with kernel Kv(U). This is a subspace of Pk(U) of codimension k dimU . We denote by

cokU (v) its orthogonal complement in Pk(U). Denote by Grk(U) the Grassmannian of
subspaces of dimension k dimU in Pk(U) and by T k(U)→ Grk(U) the tautological vector
bundle.

We have a cokernel map

cokU : Ck → Grk(U)

with graph Σ ⊂ Ck ×Grk(U). Fix a resolution
(
Ĉk,R

)
of cokU as before

We obtain a trivial vector bundle

Pk(U)
Ĉk

=
(
Pk(U)× Ĉk → Ĉk

)
,

and a bundle of multijets

Mk(U) := Π̂∗(T k(U)) ↪→Pk(U)
Ĉk
.

The fiber of Mk(U) over v̂ is

Mk(U)(v̂) = cokU

(
π̂(v̂)

)
.

To a Ck-map F : V → U we can associated a multijet µk[F ]. This is a C
1-section of the

multijet bundle defined by

µk[F ](v̂) = ProjΠ̂(v̂)P π̂(v̂)(F ).

Note that

dimCk(V ) = k dimV = km, rankMk(U) = km

The map F defines a map

F×k : V k → Uk, F×k(v1, . . . , vk) =
(
F (v1, . . . , F (vk)

)
∈ Uk.

Observe that if v ∈ Ck ⊂ V k, then

Evv(F
×k) = Evv

(
P vF

)
.

Thus, over Ck, the map F×k and the map

v 7→ ΨF (v) := Evv
(
P vF

)
∈ Uk

have the same zero sets. Note also that ΨF (v) = 0 iff P v ∈ Kv, that is, iff

F̃×k(v) := ProjΠ(v)P vF = 0.

Thus, over Ck, the maps F×k and F̃×k have the same zero sets. By definition,

µk[F ](v̂) = F̃×k
(
π̂(v̂)

)
.
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The map π̂ restricts to a bijection

{µk(F ) = 0} ∩ Ĉ ∗
k →

{
F×k = 0

}
∩ Ck.

In particular, if dimV = dimU and B ⊂ V is a box, then

Z
[
Bk

∗ , F
×k ] = Z

[
π̂−1(Bk

∗ ), µk(F )
]
.

Let us observe that we have a metric isomorphism of vector bundles

I : Uk
π̂−1(Bk

∗ )
→Mk(U)

∣∣
π̂−1(Bk

∗ )
,

induced by the surjective morphism of product vector bundles,

Evv : Pk(U)
Bk

∗
→ Uk

Bk
∗
, Iv̂ =

(
(Evv Ev∗

v)
−1/2Evv

)∗
, v = π̂(v̂).

The bundle isomorphism I−1 := Mk(U)
∣∣
Bk

∗
→ Uk

BK
∗

is the desingularizing renormalization

we mention at the end of Subsection 2.4.1.

2.4.5. Higher momentums. Suppose that

F : (Ω, S,P)× V → U , (ω, v) 7→ Fω(v) ∈ U ,

is a U -valued Gaussian random map. We assume that the probability space (Ω, S,P) is
complete and the map (ω, v)→ Fω(v) is measurable.

The description (2.4.13) of the Kergin projector and the measurability assumption on F
show that (ω, v)→ P vFω ∈ Pk(U) is a well defined C1 Gaussian field.

Example 2.4.9. Suppose that k = 2. Then

P v(F )(v) = F (v0) + F [v0, v1](v − v0) = F (v0) +

∫ 1

0
∂(v−v0)F

(
(1− t)v0 + tv1

)
dt.

If v0 ̸= v1, r = ∥v1 − v0∥, ν = 1
r (v1 − v0), then

F [v0, v1](ν) =

∫ 1

0
∂νF

(
v0 + t(v1 − v0)

)
dt =

∫ 1

0
∂νF

(
v0 + trν

)
dt

=
1

r

∫ r

0

d

ds
F
(
v0 + sν

)
ds =

1

r

(
F (v1)− F (v0)

)
.

We recognize here the vector Ξ(v) we used in the proof of Proposition 2.4.1. Note that

F (v0) = F (v1) = 0⇐⇒F (v0) = 0 = F [v0, v1]

In this case P2(U) consists of affine maps

v 7→ P (v) = u0 + Tv, T ∈ Hom(V ,U).

Then

Evv P =
(
u0 + Tv0, u1 + Tv1

)
The

P ∈ Kv⇐⇒Tv0 = Tv1 = −u0, (v1 − v0 ∈ kerT, Tv0 = −u0
The kernel Kv(U) can be identified with (v1 − v0)

⊥ ⊗ U , where (v1 − v0)
⊥ denotes the

orthogonal complement in V of the line spanned by v1 − v0. We have a natural isometric
isomorphism Uk → Kv(U)⊥. ⊓⊔
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Lemma 2.4.10. Let k ≥ 1. Suppose that V is an open, convex subset of the Euclidean space
V and F : V → U satisfies the F is a.s. Ck and Jk−1-ample. Then for any v ∈ V there exists
an open convex neighborhood Ov of v in V such that the restriction of F to Ov is k-ample.

Proof. We set

[v]k := ( v, . . . , v︸ ︷︷ ︸
k

) ∈ Vk.

Then the Gaussian vector described by the Kergin projector P [v]k(F ) is nondegenerate be-
cause it coincides with the degree k−1 Taylor polynomial of F at v and this is nondegenerate
as a Gaussian vector since F is Jk−1-ample.

Since P v depends continuously on v we deduce that there exists an open convex neigh-

borhood Ov of v in V such that, for any v ∈ Okv , the Gaussian vector P v(F ) is nondegenerate.
Since the evaluation map

Evv : P
k(U) 7→ Uk, Evv(P ) =

(
P (v1), . . . , P (vk)

)
,

is surjective we deduce that the restriction of F to Ov is k-ample since

Evv
(
P v(F )

)
=
(
F (v1), . . . , F (vk)

)
, ∀v ∈ V \∆.

⊓⊔

In the remainder of this section I will assume that F is Ck and Jk−1-ample.

The thin diagonal of V k, denoted by ∆0, is the subset

∆0 :=
{
v ∈ V k; v1 = · · · = vk

}
.

Equivalently, ∆0 is the image of V in V k via the diagonal map u 7→ [u]k. Set

O :=
⋃
v∈V

Oku

The set O is an open neighborhood of the thin diagonal and, for any v ∈ O, the Gaussian
vector P v(F ) is nondegenerate.

The multijet random section µk[F ] is a.s. C1. For any ṽ ∈ Ô := π̂−1(O) the Gaussian
vector µk[F ](ṽ) is nondegenerate as the image of the nondegenerate vector P v(F ), v = π̂(ṽ),

via the linear surjection Pk(U)→ cokU (v).

Using the global Kac-Rice formula (2.2.15) we deduce that for any compact set

K ⊂ Ô := π̂−1(O),

the number of zeros of µk(F ) in K has finite mean, i.e.,

E
[
Z[K,µk(F )]

]
<∞.

Suppose that B is a small box, i.e., a box contained in some Ov. Then B
k ⊂ O and the set

B̂k := π̂−1
(
Bp
)
⊂ Ô

is compact. Rercalling the falling factorial notation, (x)k = x(x−1) · · · (x−k+1), we deduce

E
[ (
Z[B,F ]

)
k

]
= E

[
Z
(
F×p, Bk

∗
) ]

= E
[
Z
(
µp[F ], π̂

−1(Bp
∗)
) ]
≤ E

[
Z
(
µp[F ], B̂p

) ]
<∞.
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In general, for any box B ⊂ U there exists a sufficiently fine subdivision Bi)i∈I so that each
box of the subdivision is small. Bulinskaya’s Lemma implies that

Z[B,F ] =
∑
i∈I

Z[Bi, F ] a.s.,

and we conclude that Z[B,F ] ∈ Lk for any box B ⊂ U.

We have thus proved the following result.

Theorem 2.4.11. Let k ∈ N. Suppose that U ,V are real Euclidean spaces of the same
dimension, V ⊂ V is an open set and F : V → U is a Ck Gaussian field satisfying the
Jk−1-ampleness condition

for any v ∈ V the Gaussian vector

k−1⊕
j=0

F (k)(v) is nondegenerate. (2.4.18)

Then for any box B ⊂ V we have Z[B,F ] ∈ Lk. ⊓⊔

Corollary 2.4.12. Let k ∈ N, k ≥ 1. Suppose that V is real Euclidean spaces of dimension
m, V ⊂ V is an open set and Φ : V → R is a Ck+1 Gaussian field satisfying the Jk-ampleness
condition

for any v ∈ V the Gaussian vector
k⊕
j=0

F (j)(v) is nondegenerate. (2.4.19)

Denote by C[B,Φ] the number of critical points of Φ inside the box B. Then C[B,Φ] ∈ Lp.⊓⊔

Remark 2.4.13. (a) The proof of Theorem 2.4.11 extends to the case of random variables

Z[φ, F ] =
∑

F (v)=0

φ(v), φ ∈ C0
cpt(V )

They are Lk if the assumptions of Theorem 2.4.11 are satisfied.

(b) L. Gass, M. Stecconi [66] have given an alternate proof Theorem 2.4.11 that avoids the
usage of Hironaka’s resolution of singularities theorem, but also relies in a veiled form on the
idea of multijet.

(c) The multijet bundle described in this section is a simplified version of the construction of
Ancona and Letendre, but it is based on the same technique they introduced in [4].

The random multijet µk[F ] we described above is nondegenerate only on an open neigh-

borhood Ô of π̂−1(∆0). It is possible that this neighborhood does not contain the entire

exceptional locus ∆̂ = π̂−1(∆).

The more sophisticated multijet constructed in [4] is nondegenerate over an open neigh-
borhood of the exceptional locus. This allowed the authors to prove the more refined result,
namely, that the expectation of k-th combinatorial momentum of the random measure

Z[−, F ] =
∑

F (v)=0

δv

(see [4, Sec. 6.3]) is a Radon measure over Up.
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The small box localization trick has allowed us to bypass that more sophisticated mul-
tijet construction, but we proved an apparently weaker result, namely, for any compactly
supported continuous function φ on U the random variable

Z[φ, F ] =

∫
V
φ(v)νF

[
dv
]

is k-integrable. However, as shown in [4, Prop. 6.25], these properties are equivalent. ⊓⊔

Example 2.4.14. Fix an even Schwartz function a ∈ S(R) and consider the isotropic Gauss-
ian function Φa on Rm introduced in Example 1.2.35. Its spectral measure is

µa
[
dξ
]
=

1

(2π)m
a
(
|ξ|
)2
dξ.

As we have seen in Example 1.2.35 this function is a.s. smooth, k-ample and Jk-ample for
any k ∈ N. For any box B ⊂ Rm we denote by Ca[B] the number of critical points of Φa in
B. We deduce from Corollary 2.4.12 that Ca[B] ∈ Lp, ∀p ∈ [1,∞). ⊓⊔

2.4.6. Some abstract ampleness criteria. We proved that the number of zeros of a
Gaussian map has finite k-th momentum assuming two things: the map is Ck and Jk−1-
ample. The goal of this subsection is to describe some simple guaranteeing various ampleness
properties of Gaussian fields. We begin we an abstract technical result that will be be our
main tool for detecting ampleness.

Proposition 2.4.15. Suppose that U is a Banach space with norm ∥ − ∥, T is a compact
metric space N ∈ N and

G : UN × T → [0,∞), (u1, . . . , uN , t) 7→ G(u1, . . . , uN , t) ∈ [0,∞)

is a continuous function. We define

G∗ : U
N → [0,∞), G∗(u1, . . . , uN , t) := min

t∈T
G(u1, . . . , uN , t).

Suppose that there exist v1, . . . , vN ∈ U such that G∗(v1, . . . , vN ) = r0 > 0. Then, for any
r ∈ (0, r0), there exists ε = ε(r) > 0 such that

∀u1, . . . , uN ∈ U , ∀i = 1, . . . N, ∥ui − vi∥ < ε⇒ G∗(u1, . . . , uN ) > r.

In particular if

U1 ⊂ U2 ⊂ · · ·
is an increasing sequence of finite dimensional subspaces of U whose union is a dense subspace
of U , then there exists ν ∈ N and

u1,ν , . . . , uN,ν ∈ Uν
such that G∗

(
u1,ν , . . . , uN,ν

)
> 0.

Proof. We argue by contradiction. Suppose there exists r1 ∈ (0, r0) and sequences in U(
ui,ν

)
ν∈N, i = 1, . . . , N,

such that

lim
ν→∞

∥ui,ν − vi∥ = 0, ∀i = 1, . . . , N,
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and

G∗(u1,ν , . . . , uN,ν) ≤ r1, ∀ν.
Next choose tν ∈ T such that

G
(
u1,ν , . . . , uN,ν , tν

)
= G∗

(
u1,ν , . . . , uN,ν

)
Upon extracting a subsequence we can assume that tν converges in T to some point t∞. Then

r1 ≥ lim inf
ν→∞

G∗
(
u1,ν , . . . , uN,ν

)
= lim inf

ν→∞
G
(
u1,ν , . . . , uN,ν , tν

)
= G

(
v1, . . . , vN , t∞) ≥ r0 > r1.

⊓⊔

With T a compact metric space as above, let E → T be a rank r topological real vector
bundle over T equipped with a continuous metric h. For t ∈ T we denote by | − |t the norm
on the fiber Et induced by h. The space C0(E) of continuous sections E is a Banach space
with respect to the norm

∥u∥ := sup
t∈T

∣∣u(t) ∣∣
t
, u ∈ C(E).

Definition 2.4.16. An ample Banach space of sections of E is a Banach space U ⊂ C0(E)
continuously embedded in C0(E) such that there exist v1, . . . , vN ∈ U such that

∀t ∈ T , span
{
u(t), u ∈ U

}
= Et.

Let k ∈ N. We say that the Banach spaceU is k-ample if for any distinct points t1, . . . , tk ∈ T
the map

U ∋ u 7→ u(t1)⊕ · · · ⊕ u(tk) ∈ Et1 ⊕ · · · ⊕ Etk
is onto. ⊓⊔

Example 2.4.17. The space C0(E) is a k-ample Banach space of continuous sections of
E → T for any k ∈ N. If T is a compact smooth manifold and E → T is a smooth vector
bundle, then each of the spaces Cℓ(E), ℓ ∈ N, is a k- ample Banach space of sections of E
for any k ∈ N. ⊓⊔

Corollary 2.4.18. Let E → T be a real metric vector bundle over the compact metric space
T Suppose that U ⊂ C0(E) is an ample Banach space of sections

U1 ⊂ U2 · · ·

is an increasing sequence of finite dimensional subspaces of U such that

U∞ =
⋃
ν∈N

Uν

is dense in U . Then there exists ν ∈ N, for any t ∈ T , the evaluation map

Evt : Uν → Et is onto.

Proof. Using the compactness of T and the openess of the surjectivuty condition we can
find v1, . . . , vN ∈ U such that

∀t ∈ T , span
{
v1(t), . . . , vN (t)

}
= Et.
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For every u1, . . . , uN ∈ U and t ∈ T define

Su1,...,uN ,t : R
N → Et, Su1,...,uN ,t(x) =

N∑
k=1

xkuk(t)

and

G(u1, . . . , uN , t) = det
(
Su1,...,uN ,tS

∗
u1,...,uN ,t

)
≥ 0.

Note that

span
{
u1(t), . . . , uN (t)

}
= Et⇐⇒G(u1, . . . , uN , t) > 0.

Thus

G(u1, . . . , uN , t) > 0 ⇐⇒ Evt : span
{
u1, . . . , uN

}
⊂ U → Et is onto.

The resulting map G : Un×T → [0,∞) is continuous and, using the notation in Proposition
2.4.15,

G∗(v1, . . . , vN ) > 0.

Using Proposition 2.4.15, we deduce that there exists ν ∈ N and u1,ν , . . . , uN,ν ∈ Uν such
that

G∗(u1,ν , . . . , uN,ν) > 0.

Hence

Evt : span
{
u1, . . . , uN

}
⊂ U → Et is onto, ∀t ∈ T .

A fortiori, this implies that

Evt : Uν → Et is onto, ∀t ∈ T .

⊓⊔

Corollary 2.4.19. Let E → T be a real metric vector bundle over the compact metric space
T . Suppose that U ⊂ C0(E) is a 2-ample Banach space of sections, U1 ⊂ U2 · · · is an
increasing sequence of finite dimensional subspaces of U such that

U∞ =
⋃
ν∈N

Uν

is dense in U . Then, for any open neighborhood O of the diagonal ∆ ⊂ T × T, there exists
ν ∈ N, for any (t1, t2) ∈ T 2 \ O, the evaluation map

Evt1,t2 : Uν → Et1 ⊕ Et2 is onto.

Proof. For t ∈ T 2 and u ∈ U we set

u(t) := u(t1)⊕ u(t2), Et = Et1 ⊕ Et2 ,Evt(u) = u(t).

Using the compactness of T 2 \O and the openess of the surjectivity condition we deduce that

∃v1, . . . , vN ∈ U , such that ∀t ∈ T 2 \ O, span
{
v1(t), . . . , vN (t)

}
= Et.

For every u1, . . . , uN ∈ U and t ∈ T 2 define

Su1,...,uN ,t : R
N → Et, Su1,...,uN ,t(x) =

N∑
k=1

xkuk(t)

and

G(u1, . . . , uN , t) = det
(
Su1,...,uN ,tS

∗
u1,...,uN ,t

)
≥ 0.
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Note that

span
{
u1(t), . . . , uN (t)

}
= Et⇐⇒G(u1, . . . , uN , t) > 0.

Thus

G(u1, . . . , uN , t) > 0 ⇐⇒ Evt : span
{
u1, . . . , uN

}
⊂ U → Et is onto.

The resulting map G : Un ×
(
T 2 \ O

)
→ [0,∞) is continuous and, using the notation in

Proposition 2.4.15, we have G∗(v1, . . . , vN ) > 0.

Proposition 2.4.15, shows that there exists ν ∈ N and u1,ν , . . . , uN,ν ∈ Uν such that

G∗(u1,ν , . . . , uN,ν) > 0.

Hence

Evt : span
{
u1, . . . , uN

}
⊂ U → Et is onto, ∀t ∈ T 2 \ O.

A fortiori, this implies that

Evt : Uν → Et is onto, ∀t ∈ T 2 \ O.

⊓⊔

Proposition 2.4.20. Suppose that E → T is a topological metric vector bundle over the
compact metric space T . Let X ⊂ C0(E) be an ample Banach space of sections of E embedded
continuously in C0(T ).

Suppose that (un)n∈N is a sequence of sections in X such that span
{
un, n ∈ N

}
is dense

in X and exists α > 0 such that

∥un∥U = O(nα) as n→∞. (2.4.20)

Fix a sequence of positive real numbers (λn)n≥0 such that

lim inf
n→∞

λn
nβ

> 0, (2.4.21)

for some β > 0. Let a ∈ S(R) be an even Schwartz function such that a(0) = 1. Fix a
sequence of i.i.d. standard normal random variables (Xn)n≥0. Then the following hold.

(i) For any ℏ > 0 the random series∑
n∈N

a
(
ℏλn

)
Xnun (2.4.22)

converges a.s. in X. Denote by Φℏ the resulting continuous Gaussian section of E.

(ii) There exists ℏ0 such that ∀ℏ > ℏ0 the Gaussian section Φℏ is ample.

Proof. (i) Since a is a Schwartz function we deduce from (2.4.20) and (2.4.21) that∑
n→∞

∣∣ a( ℏλn ) ∣∣∥un∥X <∞, ∀ℏ > 0

The convergence of the random series (2.4.22) follows from Proposition 1.1.57.

(ii) For ℏ > 0 we set

Nℏ :=
{
n ∈ N; a(tℏ) ̸= 0

}
and denote by Y ℏ the closure in X of

span
{
un; n ∈ Nℏ

}
.
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According to Proposition 1.1.57 the above random series defines a nondegenerate Gaussian
Γℏ measure on the Banach space Y ℏ.

Set

Uν := span
{
u1, . . . , uν

}
.

Since a(0) = 1, we deduce that

∃r0 > 0, ∀|t| ≤ r0,
∣∣ a(t) ∣∣ ≥ 1/2.

Hence, for any ν ∈ N there exists ℏ = ℏ(ν) > 0 so that

∀ℏ ≤ ℏ(ν), max
1≤k≤ν

ℏλk < r0,

i.e.,

Uν ⊂ Y ℏ, ∀ℏ ≥ ℏ(ν).
Corollary 2.4.18 implies that there exists ν0 ∈ N such that

∀t ∈ T , Evt : Uν0 → Et is onto.

Set ℏ0 = ℏ(ν0) such that Uν0 ⊂ Y ℏ, ∀ℏ ≤ ℏ0.
We will show that for any t ∈ T and any ℏ ≤ ℏ0, the Gaussian vector Φℏ(t) is nondegen-

erate, i.e., for any open set O ⊂ Et, P
[
Φℏ(t) ∈ O

]
> 0. Equivalently, this means

Γℏ[ Ev−1
t (O)

]
> 0.

Since Γℏ is a nondegenerate Gaussian measure on Y ℏ, it suffice to show that the open subset
Ev−1

t (O) ⊂ Y ℏ is nonempty. This is indeed the case since Ev−1
t (O) ∩ Uν0 ̸= ∅. ⊓⊔

Corollary 2.4.21. Suppose that E → M is a smooth real vector bundle over the compact
smooth manifold M . Fix a smooth Riemann metric g on M , a smooth metric h on E and
a smooth connection ∇ on E compatible with h. Let k ∈ N and suppose that (ϕn)n∈N is a
sequence of Ck sections of E that span a dense subset of Ck(E). Suppose that

∥ϕn∥Ck(E) = O(nα) as n→∞, (2.4.23)

for some α > 0. Fix a sequence of positive numbers (λn)n∈N satisfying (2.4.21). Let (Xn)n∈N
be a sequence of i.i.d. standard normal random variables and suppose that a ∈ S(R) is an
even Schwartz function such that a(0) = 1. Then the following hold.

(i) For any ℏ > 0 the random series∑
n∈N

a
(
ℏλn

)
Xnϕn (2.4.24)

converges a.s. in Ck(E). Denote by Φℏ the resulting Ck Gaussian section of E.

(ii) There exists ℏ0 > 0 such that, ∀ℏ < ℏ0, the Gaussian section Φℏ is Jk-ample.

(iii) For every point x ∈M , there exists an open neighborhood Ox of x in M such that,
for any ℏ < ℏ0, the restriction of Φℏ to Ox is k-ample.

Proof. (i) This follows from Proposition 2.4.20.

(ii) Consider the jet bundle Jk(E)→M ; see (1.2.32). We have a continuous linear

Ck(E)→ C0
(
Jk(E)

)
, ϕ 7→ Jk(ϕ,∇).
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Denote by U the image of this map. It is a closed8 subspace of C0
(
Jk(E)

)
. Then the random

series ∑
n∈N

a
(
ℏλn

)
XnJk(ϕn)

converges a.s. uniformly to Jk(Φ
ℏ). Now observe that U is an ample Banach space of sections

of Jk(E). Indeed, using smooth partitions of unity we can find ψ1, . . . , ψN ∈ Ck(E) such
that, for any x ∈M ,

span
{
Jk(ψ1(x), . . . , Jk(ψN )(x)

}
= Jk(E)x.

Proposition 2.4.20 now implies that Jk(Φ
ℏ) is an ample Gaussian section of Jk(E). The

statement (iii) follows from (ii) by invoking Lemma 2.4.10. ⊓⊔

Corollary 2.4.22. Fix an even Schwartz function a ∈ S(R) and consider the random Fourier
series FRa defined in (1.2.21). We regard it as a random smooth function on the torus
Tm =

(
R/Z

)m
. Then for any k ∈ R there exists Rk > 0 such that, for any R > Rk the

function FRa is Jk-ample. ⊓⊔

Lemma 2.4.23. Suppose that E → M is a smooth real vector bundle over the compact
smooth manifold M . Fix a smooth Riemann metric g on M , a smooth metric h on E and a
smooth connection on E compatible with h. Let k ∈ N and suppose that (ϕn)n∈N is a sequence
of Ck sections of E that span a dense subset of Ck(E). Set

Uν := span
{
ϕ1, . . . , ϕν

}
.

Then there exists ν0 > 0 such that ∀ν ≥ ν0 the following hold.

(i) For any t ∈M and any ν ≥ ν0 the map

Uν ∋ u 7→ J1(u)t ∈ J1(Et)

is onto. Above, J1(u)t is the 1-jet of u at t, J1(u)t = u(t)⊕∇u(t) ∈ Et⊕T ∗
t M⊗Et.

(ii) For any t ∈M2 \∆ the map

Uν ∋ u 7→ u(t) ∈ Et
is onto.

Proof. The space Ck(E) is J1-ample and arguing as in the proof of Corollary 2.4.18 so there
exists ν1 ∈ N such that for any ν ≥ ν1 and t ∈M the map

Uν ∋ u 7→ J1(u)t ∈ J1(E)t

is ample.

The argument at the beginning of Subsection 2.4.5 shows that there exists an open neigh-
borhood O of the diagonal ∆ ∈M2 such that ∀ν ≥ ν1 and any t ∈ O \∆ the map

Uν ∋ u 7→ u(t) ∈ Et
is onto.

8Here we are using the classical fact that if a sequence of C1-function (un) has the property that both (un) and

their differentials (dun) converge uniformly to u and respectively v, then u is C1 and du = v.
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Corollary 2.4.19 implies that there exists ν0 > 0 such that ∀ν ≥ ν2 and any t ∈ M2 \ O
the map

Uν ∋ u 7→ u(t) ∈ Et
is onto. Then ν0 = max(ν1, ν2) has all the claimed properties. ⊓⊔

Corollary 2.4.24. Fix an even Schwartz function a ∈ S(R) and consider the random Fourier
series F ℏ

a defined in (1.2.21). We regard it as a random smooth function on the torus
Tm =

(
R/Z

)m
. Then there exists ℏ = ℏ2,2 > 0 such that, for any ℏ < ℏ2,2 the function

F ℏ
a is J2-ample and ∇F ℏ

a is 2-ample. ⊓⊔

2.5. Laws of large numbers

Markov’s weak law of large numbers states that if (Xn)n∈N is a sequence of mean zero, L2

i.i.d. random variables and

SN = X1 + · · ·+XN ,

then
1

N
SN → 0 in L2.

The proof is very simple. The i.i.d. condition shows that

Var
[
S2
N

]
= N Var

[
X1

]
.

This result can be substantially strengthened by relaxing the i.i.d. assumption to a weak
correlation assumption. Namely, the same conclusion is valid if we assume only that there
exists a sequence of nonnegative real numbers (ck)k≥0 converging to zero such that

Cov
[
Xm, Xn

]
≤ c
(
|m− n|

)
.

In this subsection we prove of a similar result for multiparameter familes of random variables(
X
ℓ⃗

)
ℓ⃗∈Nm .

2.5.1. An abstract law of large numbers for multiparameter familes of random
variables. Fix m ∈ N. Suppose that we have an even continuous function ρ : Rm → (0,∞)
that decays sufficiently fast to 0 as |x| → ∞. Then∫

NB×NB
ρ(x− y)dxdy = N2m

∫
B×B

ρN
(
u− v

)
dudv

where ρN (x) = ρ(Nx). Observing that ρN (x)→ 0 almost everywhere on B we deduce from
the dominated convergence theorem that∫

B×B
ρN
(
u− v

)
dudv → 0

as N →∞. Hence ∫
NB×NB

ρ(x− y)dxdy = o
(
N2m

)
as N →∞

In fact we can be more precise.
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If we use Fubini theorem and integrate ρ along the m-planes orthogonal to the ‘diagonal
∆N = {x = y} ⊂ NB × nB we deduce that∫

NB×NB
ρ(x− y)dxdy ≤ C volm

[
∆N

] ∫
|x|<N

ρ(x)dx ≤ CNm

∫
|x|<N

ρ(x)dx.

If we specialize further, ρ(x) = 1
1+|x|p , p > 0, p ̸= m, then∫

|x|<N
ρ(x)dx = O

(
Nmax(m−p,0) )

so that ∫
NB×NB

ρ(x− y)dxdy = O
(
Nm+max(m−p,0) ).

The sum ∑
(k⃗,ℓ⃗)∈ImN×ImN

ρ(k⃗ − ℓ⃗)

is a very rough Riemann sum approximation of the above integral when B = [0, 1]N . The
next results show that if ρ(x) = 1

1+|x|p , then this Riemann sum is also o
(
N2m

)
as N →∞.

Denote by |x|1 the ℓ1 norm of x ∈ Rm,

|x|1 :=
m∑
j=1

|xj |.

The following technical elementary result is the key to the abstract law of large numbers for
multiparameter families.

Lemma 2.5.1. Fix m ∈ N. For any N ∈ N we set RN,m := ImN × ImN .

(i) If m > 1, then there exists a constant K = K(α, p,m) > 0 such that∑
(k⃗,ℓ⃗)∈RNm

1(
1 + α|ℓ⃗− k⃗|1

)p ≤ KN2m−κ(p), κ(p) = min(p, 1).

(ii) If m = 1, then there exists a constant K = K(α, p) > 0 such that∑
k,ℓ∈In

1

(1 + α|k − ℓ|)p
≤ K

{
N2m−κ(p), p ̸= 1,

N logN, p = 1.

Proof. (i) m > 1. For any N ∈ N define

DN,m :=
{
(k⃗, ℓ⃗) ∈ RNm ; ∃j = 1, . . . ,m, kj = ℓj

}
, R∗

N,m := RNm \DN,m.

Note that

DN =
m⋃
i=1

Di
N , Di

N =
{
(k⃗, ℓ⃗) ∈ RN ; ki = ℓi

}
.

For 1 ≤ i1 < · · · < ir ≤ m we have

#
(
Di1
N ∩ · · · ∩D

ip
N

)
= N2m−2r+1.

Using the Inclusion-Exclusion Principle we deduce that

#DN =

m∑
r=1

(−1)p−1

(
m

p

)
N2m−2r+1 ≤ 2mN2m−1.
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We have∑
(k⃗,ℓ⃗)∈RN

1(
1 + α|ℓ⃗− k⃗|1

)p =
∑

(k⃗,ℓ⃗)∈DN

1(
1 + α|ℓ⃗− k⃗|1

)p︸ ︷︷ ︸
=:YN

+
∑

(k⃗,ℓ⃗)∈R∗
N

1(
1 + α|ℓ⃗− k⃗|1

)p
︸ ︷︷ ︸

=:ZN

.

Note that

YN ≤ #DN ≤ 2mN2m−1.

To estimate ZN we first analyze the structure of the region R∗
N . Denote by Ri the reflection

Ri : Rm × Rm → Rm × Rm,


x1 y1
...

...
xi yi
...

...
xm ym

 7→


x1 y1
...

...
yi xi
...

...
xm ym

 .

Denote by Gm the direct product of cyclic groups

Gm =
(
Z/2Z

)m
=
{
ϵ⃗ = (ϵ1, . . . , ϵm); ϵk = 0, 1

}
.

The group Gm acts freely on R∗
N

ϵ⃗ ·
(
k⃗, ℓ⃗
)
= Rϵ⃗

(
k⃗, ℓ⃗
)
, Rϵ⃗ = Rϵ11 · · ·R

ϵm
m .

We denote by C+
N the positive chamber of R∗

N ,

C+
n :=

{ (
(k⃗, ℓ⃗) ∈ R∗

N ; ℓj > kj , ∀1 ≤ j ≤ m
}
,

and we observe that

C+
n = TmN , TN :=

{
(k, ℓ) ∈ IN × IN ; ℓ > k

}
.

We have

R∗
N =

⋃
ϵ⃗∈Gm

Rϵ⃗C+
n .

The function ρ is Gm-invariant so∑
(k⃗,ℓ⃗)∈R∗

N

1(
1 + α|ℓ⃗− k⃗|1

)p =
∑
ϵ⃗∈Gm

∑
(k⃗,ℓ⃗)∈Rϵ⃗C+

N

1(
1 + α|ℓ⃗− k⃗|1

)p
= 2m

∑
(k⃗,ℓ⃗)∈C+

N

1(
1 + α|ℓ⃗− k⃗|1

)p < 2m

αp

∑
(k⃗,ℓ⃗)∈C+

N

1

|ℓ⃗− k⃗|p1

(use the AM-GM inequality)

≤ 2m

(mα)p

∑
(k⃗,ℓ⃗)∈C+

N

( m∏
j=1

(ℓj − kj)
)−p/m

.

(C+
n = TmN )

=
2m

(mα)p

m∏
j=1

∑
(kj ,ℓj)∈TN

(
ℓj − kj

)−p/m
=

2m

(mα)p

( ∑
(k,ℓ)∈TN

(
ℓ− k

)−p/m )m
.
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. Now observe that ∑
(k,ℓ)∈TN

(
ℓ− k

)−p/m
=

N−1∑
k=1

N−k∑
j=1

j−p/m.

To proceed further we need to use the following result.

Sublemma 2.5.2. Let r ∈ R. Then for any M ∈ N

Sr(M) :=
M∑
j=1

jr ≤ ur(M) :=


1
r+1M

r+1, r ≥ 0,
1
r+1M

r+1 + 1, r ∈ (−1, 0),
logM + 1 r = −1
2, r < −1.

Proof. Using approximations by Riemann sums for the integral

Ir(M) :=

∫ M

1
xrdx

we deduce

Sr(M) ≤

{
Ir(M), r > 0,

Ir(M) + 1, r < 0
=


1
r+1

(
M r+1 − 1

)
, r ≥ 0,

1
r+1

(
M r+1 − 1

)
+ 1, r ∈ (−1, 0),

1 + logM, r = −1,
1

|r+1|
(
1−M r+1

)
+ 1, r < −1.

≤


1
r+1M

r+1, r ≥ 0,
1
r+1M

r+1, r ∈ (−1, 0),
1 + logM, r = −1,
2, r < −1.

⊓⊔

Suppose that p ̸= m. Using Sublemma 2.5.2 we deduce that

N−k∑
j=1

j−p/m ≤ u−p/m(N − k) =

{
1

(1−p/m)(N − k)
1−p/m + 1, p/m < 1,

2 1 < p/m.

Next, using the sublemma again we deduce

N∑
k=1

ur(N − k) ≤

{
1

(1−p/m)(2−p/m)N
2−p/m +N, p/m < 1,

2N 1 < p/m.

Hence ∑
(k,ℓ)∈TN

(
ℓ− k

)−p/m ≤ { 1
(1−p/m)(2−p/m)N

2−p/m +N, p/m < 1,

2N 1 < p/m.

and thus

ZN =
∑

(k⃗,ℓ⃗)∈R∗
N

1

(1 + |ℓ⃗− k⃗|1)p
≤ 2m

(mα)p
≤ C(m,α, p)

{
N2m−p, p < m,

Nm p > m.
(2.5.1)
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If p = m, then Sublemma 2.5.2 implies that

N−k∑
j=1

j−1 ≤ u−1(N − k) = 1 + log(N − k),

and
N∑
k=1

(
1 + log(N − k)

)
= N + logN !.

The conclusion follows from Stirling’s formula which implies that

logN ! = O
(
N logN

)
.

(ii) Suppose that p = 1. Then∑
k,ℓ=IN

1

(1 + α|k = ℓ|)p
= N + 2

∑
1

≤ k < ℓ ≤ n 1

(1 + α|k − ℓ|)p

< N +
2

αp

∑
1≤k<ℓ

1

(ℓ− k)p
= N +

2

αp

N−1∑
j=1

N − j
jp

= N +
2

αp

N−1∑
k=1

k∑
j=1

1

jp
≤ N +

2

αp

N−1∑
k=1

u−p(j).

The conclusion now follows exactly as in (i). ⊓⊔

Lemma 2.5.3. Fix m ∈ N. For any N ∈ N we set RN,m := ImN × ImN . For any α > 0 and
any p > m there exists a constant K = K(α, p,m) > 0 such that∑

(k⃗,ℓ⃗)∈RNm

1(
1 + α|ℓ⃗− k⃗|1

)p ≤ KNm.

Proof. We argue by induction. The case m = 1 is covered in Lemma 2.5.1 (ii). Define

ρm : Nm × Nm → (0,∞), ρm
(
k⃗, ℓ⃗
)
=

1(
1 + α|⃗k − ℓ⃗|1

)p .
For any region R ⊂ Nm × Nm we set

S(R, ρm) =
∑

(k⃗,ℓ⃗)∈R

ρm
(
k⃗, ℓ⃗
)
.

For any N ∈ N define

DN,m :=
{
(k⃗, ℓ⃗) ∈ RN,m; ∃j = 1, . . . ,m, kj = ℓj

}
, R∗

N,m := RNm \DNm .

We have
S
(
RN,m, ρm

)
= S

(
DN,m, ρm

)
+ S

(
R∗
N,m, ρm).

The inequality (2.5.1) implies that

S
(
R∗
N,m, ρm) ≤ KNm.

As before we have

DN =
m⋃
i=1

Di
N,m, Di

N,m =
{
(k⃗, ℓ⃗) ∈ RNm ; ki = ℓi

}
.
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Using Inclusion-Exclusion Principle we deduce

S
(
DN,m, ρm

)
=

m∑
p=1

(−1)p−1
∑

1≤i1<···<ip≤m
S
(
Di1
N,m ∩ · · · ∩D

ip
N,m, ρm

)

=
m∑
p=1

(−1)p−1

(
m

p

)
S
(
D1
N,m ∩ · · · ∩D

p
N,m, ρm

)
=

m∑
p=1

(−1)p−1

(
m

p

)
S
(
RN,m−p, ρm−p

)
≤

m∑
p=1

(
m

p

)
S
(
RN,m−p, ρm−p

)
(use the induction assumption)

≤ K
m∑
p=1

(
m

p

)
Nm−p ≤ K(N + 1)m ≤ 2mKNm.

⊓⊔

Corollary 2.5.4. Consider a family of random variable
(
X
ℓ⃗

)
ℓ⃗∈NM defined on the same

probability space (Ω, S,P) such that there exist constants C,α, p > 0, p ̸= m, such that∣∣ Cov [X
k⃗
, X

ℓ⃗

] ∣∣ ≤ C(
1 + α|⃗k − ℓ⃗

∣∣
1

)p , ∀k⃗, ℓ⃗ ∈ Nm.

Then, as N →∞, the averages

AN (X) :=
1

Nm

∑
k⃗∈ImN

(
X
k⃗
− E

[
X
k⃗

] )
→ 0

in L2 and a.s..

Proof. Suppose first that m > m. Then

E
[
AN (X)2

]
= O

(
N−m ).

If m > 2, then ∑
N≥1

N−m <∞,

and we deduce that for any ε > 0∑
N≥1

P
[ ∣∣AN ∣∣ > ε

]
≤ 1

ε2

∑
N≥1

∥∥AN ∥∥2 <∞,
so AN → 0 a.s.. If m = 1 the conclusion follows from [90, Thm.10].

If p < m we have E
[
AN (X)2

]
= O

(
N−1

)
. The a.s. convergence follows from the Strong

Law of Large Numbers [101, Thm. 4]. For r ∈ N we denote by Cr the lattice cube Im2r . Set
Nr := 2r+1.

Then

ur :=
∑

k⃗,ℓ⃗∈Cr+1\Cr

∣∣E[X
k⃗
X
ℓ⃗

] ∣∣ ≤ ∑
k⃗,ℓ⃗∈Cr+1

∣∣E[X
k⃗
X
ℓ⃗

] ∣∣ ≤ KN2m−1
r ,
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where K > 0 is a universal constant. We deduce that∑
r≥0

(r + 1)2

N2m
r

ur ≤ K
∑
r≥0

(r + 1)2

Nr
<∞.

According to [101, Thm. 4], this implies that AN (X)→ 0 a.s.. ⊓⊔

For latter use we want to mention a version of Corollary 2.5.4 for “pyramidal” arrays.

Corollary 2.5.5. Let m ≥ 2. Consider a family of random variable
(
XN
ℓ⃗

)
N∈N, ℓ⃗∈ImN

defined

on the same probability space (Ω, S,P) such that there exist constants C,α > 0,p > m such
that ∣∣ Cov [XN

k⃗
, XN

ℓ⃗

] ∣∣ ≤ C(
1 + α|⃗k − ℓ⃗

∣∣
1

)p , ∀N ∈ N ∀k⃗, ℓ⃗ ∈ bImN .

Then, as N →∞
AN (X) :=

1

Nm

∑
k⃗∈ImN

(
XN
k⃗
− E

[
XN
k⃗

] )
→ 0

in L2 and a.s..

Proof. Lemma 2.5.3 implies E
[
AN (X)2

]
= O(N−m). Now conclude as in the proof of

Corollary 2.5.4. ⊓⊔

2.5.2. Critical points of isotropic Gaussian functions. Fix an even Schwartz function
a ∈ S(R) and consider the isotropic Gaussian function Φa on Rm introduced in Example
1.2.35. Its spectral measure is

µa
[
dξ
]
=

1

(2π)m
a
(
|ξ|
)2
dξ.

Its covariance function is determined by

Ka(x) =
1

(2π)m

∫
Rm

ei⟨ξ,x⟩a
(
|ξ|
)2
dξ

As we have seen in Example 1.2.35 this function is a.s. smooth and N -ample for any N ∈ N.
Consider the associated critical random measure Ca = C[−,Φa]; see (2.3.9). Thus, for

any box B ⊂ Rm, Ca

[
B
]
is the number of critical points of Φa in B. As shown in Example

2.4.14 Ca[B] has finite moments of any order. According to (2.3.25)

E
[
Ca[B]

]
= Cm(a) volm

[
B
]
,

where Cm(a) is the universal constant described explicitly in (2.3.26).

Fix numbers a1, . . . , am > 0 and denote by B the box [0, a1]× · · · [0, am]. For ℓ⃗ ∈ Nm we
denote by B

ℓ⃗
the box

B
ℓ⃗
=

m∏
j=1

[
(ℓj − 1)aj , ℓjaj

]
.

For N ∈ N we denote by BN the box

BN = N ·B =
m∏
j=1

[
0, Naj

]
.
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Theorem 2.5.6. As N →∞, the random variable

1

Nm
Ca

[
N ·B

]
in L2 and a.s. to the (deterministic) constant

E
[
Ca[B]

]
= Cm(a) vol

[
B
]
.

.

Proof. Recall that IN = {1, . . . , N}. From Bulinskaya’s Lemma 2.1.2 we deduce that

Ca

[
N ·B

]
=
∑
ℓ⃗∈ImN

Ca[Bℓ⃗].

Set X
ℓ⃗
:= Ca[Bℓ⃗]− E

[
Ca[Bℓ⃗]

]
. We have to show that the averages

1

Nm

∑
ℓ⃗∈ImN

X
ℓ⃗

converge a.s. and L2 to 0. We will deduce this from Corollary 2.5.4.

We set

C(k⃗, ℓ⃗) := Cov
[
Ca[Bk⃗],Ca[Bℓ⃗]

]
= E

[
X
k⃗
X
ℓ⃗

]
, ∀k⃗, ℓ⃗ ∈ ImN .

As explained in Example 2.4.14,

E
[
Ca[Bℓ⃗]

p
]
<∞, ∀p ∈ [1,∞), ∀ℓ⃗ ∈ Nm.

Notice that since Φa is a stationary Gaussian function we deduce from Corollary 2.4.12 that

E
[
Ca[Bℓ]

p
]
= E

[
Ca[B]p

]
, ∀p ∈ [1,∞), ℓ⃗ ∈ Nm

and we deduce from Hölder’s inequality that

∃K1 = K1(a,m) > 0 :
∣∣C(k⃗, ℓ⃗) ∣∣ < K1, ∀k⃗, ℓ⃗ ∈ Nm. (2.5.2)

To proceed further we define

Φ̂ : Rm × Rm → R, Φ̂(x,y) = Φa(x) + Φa(y)

and we set

Ĥ(x,y) := Hess
Φ̂
(x,y), H(x) := HessΦa(x).

We denote by Ĉ the critical random measure C[−, Φ̂]. Thus, for any Borel subset

B̂ ∈ Rm × Rm,

Ĉ[B̂] is the number of critical points of Φ̂ in B̂. Note that if B
k⃗
∩B

ℓ⃗
= ∅, then

Ĉ[B
k⃗
×B

ℓ⃗
] = Ca[Bk⃗]Ca[Bℓ⃗]

so

E
[
Ca[Bk⃗]Ca[Bℓ⃗]

]
= E

[
Ĉ[B

k⃗
×B

ℓ⃗
]
]
.

We compute E
[
Ĉ[B

k⃗
×B

ℓ⃗
]
]
using the Kac-Rice formula. We first need to verify that ∇Φ̂ the

ampleness condition (A0).

Lemma 2.5.7. For any x,y ∈ Rm, x ̸= y, the Gaussian vector ∇Φ̂(x,y) is nondegenerate.
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Proof. We have

Var
[
∇Φ̂(x,y)

]
=

 Var
[
∇Φa(x)

]
Cov

[
∇Φa(x),∇Φa(y)

]
Cov

[
∇Φa(y),∇Φa(x)

]
Var

[
∇Φa(y)

]
 .

As shown in (2.3.20), for any x ∈ Rn we have

Var
[
∇Φa(x)

]
= dm1m, dm =

∫
Rn

ξ21µa
[
dξ
]
.

We have

Cov
[
∇Φa(x),∇Φa(y)

]
=
(
∂xj∂ykKa(x− y)

)
1≤j,k≤m

and [
∂xj∂ykKa(x− y) =

∫
Rm

e−i⟨ξ,x,y⟩ξjξkµa
[
dξ
]
. (2.5.3)

Since Φa is stationary it suffice to consider only the case x = 0. On the other hand, Φa

is O(m)-invariant so, up to a rotation we can assume that x − y = −te1, t ̸= 0, where
{e1, . . . , em} is the canonical basis of Rm. Hence

∂xj∂ykKa(x− y) =

∫
Rm

eitξ1ξjξkµa
[
dξ
]
.

Let us observe that if j ̸= k, then either j ̸= 1, or k ̸= 1. Suppose j ̸= 1. The function
eitξ1ξjξk is odd with respect to the reflection ξj 7→ −ξj so

∂xj∂ykKa(x,y) =

∫
Rm

eitξ1ξjξkµa
[
dξ
]
= 0, ∀j ̸= k.

If j = k, then

vm(j) := ∂xj∂yjKa(x,y) =

∫
Rm

eitξ1ξ2jµa
[
dξ
]
=

∫
Rm

cos(tξ1)ξ
2
jµa
[
dξ
]

and we deduce9

|dm(j)| ≤
∫
Rm

∣∣ cos(tξ1) ∣∣ξ2jµa[ dξ ] < ∫
Rm

ξ2jµa
[
dξ
]
= dm.

After a reordering (
∂x1Φa(x), . . . , ∂xmΦa(x), ∂y1Φa(y), . . . ∂ymΦa(y)

)
↓(

∂x1Φa(x), ∂y1Φa(y), . . . , ∂xmΦa(x), ∂ymΦa(y)
)

we see that

Var
[
∇Φ̂(x,y)

]
=

m⊕
j=1

[
dm dm(j)
dm(j) dm

]
︸ ︷︷ ︸

=:Vj

.

Note that, for each j, the symmetric matrix Vj is positive definite since

detVj = d2m − dm(j)2 > 0.

⊓⊔

9At this point we use the fact that a
(
|ξ
)
| > 0 for |ξ| sufficiently small.
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Suppose that B
k⃗
∩B

ℓ⃗
= ∅. We deduce from Lemma 2.5.7 that ∇Φ̂(x,y), is nondegenerate

for any (x,y) ∈ B
k⃗
,×B

ℓ⃗
. We can the apply the Kac-Rice formula to deduce that

E
[
Ĉ[B

k⃗
×B

ℓ⃗
]
]
= E

[
Ca[Bk⃗]Ca[Bℓ⃗]

]
=

∫
B

k⃗
×B

ℓ⃗

E
[
| det Ĥ(x,y)|

∣∣∇Φ̂(x,y) = 0
]
p∇Φ̂(x,y)

(0)︸ ︷︷ ︸
=ρ̂(x,y)

λ
[
dxdy

]
,

if B
k⃗
∩B

ℓ⃗
= ∅.

(2.5.4)

For x ∈ Rm we denote by
∣∣x ∣∣∞ the sup-norm of x∣∣x ∣∣∞ := max

1≤i≤m
|xi|.

Note that
∣∣x ∣∣

1
≤ m

∣∣x ∣∣∞ and B
k⃗
∩B

ℓ⃗
= ∅ if

∣∣ k⃗ − ℓ⃗ ∣∣∞ > 1. Hence,∣∣ k⃗ − ℓ⃗ ∣∣
1
> m⇒ B

k⃗
∩B

ℓ⃗
= ∅.

Hence

E
[
Ca[Bk⃗]Ca[Bℓ⃗]

]
=

∫
B

k⃗
×B

ℓ⃗

E
[
|det Ĥ(x,y)|

∣∣∇Φ̂(x,y) = 0
]
p∇Φ̂(x,y)

(0)︸ ︷︷ ︸
=ρ̂(x,y)

λ
[
dxdy

]
,

(2.5.5)

if
∣∣ k⃗ − ℓ⃗ ∣∣

1
> m.

Let us now express E
[
Ca[Bk⃗]

]
E
[
Ca[Bℓ⃗]

]
as an integral over B

k⃗
× B

ℓ⃗
. Choose an inde-

pendent copy Ψa of Φa. We set

Φ̃(x,y) := Φa(x) + Ψa(y), H̃(x,y) := Hess
Φ̃
(x,y).

Then

E
[
Ca[Bk⃗]

]
E
[
Ca[Bℓ⃗]

]
= E

[
C
Φ̃
[B

k⃗
×B

ℓ⃗
]
]

=

∫
B

k⃗
×B

ℓ⃗

E
[ ∣∣ det H̃(x,y)

∣∣ ∣∣∣∇Φ̃(x,y) = 0
]
p∇Φ̃(x,y)

(0)︸ ︷︷ ︸
=ρ̃(x,y)

λ
[
dxdy

]
(2.5.6)

if
∣∣ k⃗ − ℓ⃗ ∣∣

1
> m. Thus

Cov
[
Ca[Bk⃗],Ca[Bℓ⃗]] =

∫
B

k⃗
×B

ℓ⃗

(
ρ̂(x,y)− ρ̃(x,y)

)
λ
[
dxdy

]
(2.5.7)

To proceed further, we need a few simple technical results that seem to be part of the
mathematical folklore, but whose proofs seem difficult to locate in the existing literature.

For every z ∈ Rm we set

T (z) :=
∑
|α|≤4

∣∣ ∂αKa(z)
∣∣.

Since Ka is a Schwartz function we deduce that

T (z) = O
(
|z|−∞

1

)
as |z|1 →∞.

This means that

∀p > 0, T (z) = O
(
|z|−p1

)
as |z|1 →∞.
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Observe that

Var
[
∇Φ̃(x,y)

]
=

[
Var

[
∇Φa(x)

]
0

0 Var
[
∇Φa(y)

] ] = dm12m,

and

Var
[
∇Φ̂(x,y)

]
=

 Var
[
∇Φa(x)

]
Cov

[
∇Φa(x),∇Φa(y)

]
Cov

[
∇Φa(y),∇Φa(x)

]
Var

[
∇Φa(y)

]


= Var
[
∇Φ̃(x,y)

]
+

 0 Cov
[
∇Φa(x),∇Φa(y)

]
Cov

[
∇Φa(y),∇Φa(x)

]
0


︸ ︷︷ ︸

=:R∇(x,y)

.

In particular

Var
[
∇Φ̂(x,y)

]−1
=
(
Var

[
∇Φ̃(x,y)

]
+R∇(x,y)

)−1

= Var
[
∇Φ̃(x,y)

]−1
(
1+Var

[
∇Φ̃(x,y)

]−1
R∇(x,y)

)−1
.

Hence∥∥ Var
[
∇Φ̂(x,y)

]
−Var

[
∇Φ̃(x,y)

] ∥∥
op

= ∥R∇(x,y)∥op = O
(
T (x− y)

)
. (2.5.8)

Since Var
[
∇Φ̃(x,y)

]
is independent of x and y∥∥ Var

[
∇Φ̂(x,y)

]−1 −Var
[
∇Φ̃(x,y)

]−1 ∥∥
op

= O
(
T (x− y)

)
. (2.5.9)

Note that

Var
[
H̃(x,y)

]
=

[
Var

[
H(x)

]
0

0 Var
[
H(y)

] ] .
Since Φa is stationary, Var

[
H̃(x,y)

]
is independent of x and y. We have

Var
[
Ĥ(x,y)

]
=

 Var
[
H(x)

]
Cov

[
H(x), H(y)

]
Cov

[
H(y), H(x)

]
Var

[
H(y)

]


= Var
[
H̃(x,y)

]
+

 0 Cov
[
H(x), H(y)

]
Cov

[
H(y), H(x)

]
0


︸ ︷︷ ︸

=:RH(x,y)

.

We deduce∥∥ Var
[
Ĥ(x,y)

]
−Var

[
H̃(x,y)

] ∥∥
op

= ∥RH(x,y)∥op = O
(
T (x− y)

)
. (2.5.10)

We denote by H̃(x, y)♭ the Gaussian random matrix

H̃(x,y)− E
[
H̃(x, y) ∥∇Φ̃(x,y

]
,

Define Ĥ(x, y)♭ similarly. The distributions of H̃(x, y)♭ and Ĥ(x, y)♭ are determined by the
Gaussian regression formula (1.1.16).

Since H̃(x, y) and ∇Φ̃(x,y) are independent we deduce

Var
[
H̃(x,y)♭

]
= Var

[
H̃(x,y)

]
.
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From (1.1.16) we deduce

Var
[
Ĥ(x,y)♭

]
= Var

[
Ĥ(x,y)

]
−Cov

[
Ĥ(x,y),∇Φ̂(x,y)

]
Var

[
∇Φ̂(x,y)

]−1
Cov

[
∇Φ̂(x,y), Ĥ(x,y)

]
= Var

[
H̃(x,y)♭

]
+RH(x,y)

−Cov
[
Ĥ(x,y),∇Φ̂(x,y)

]
Var

[
∇Φ̂(x,y)

]−1
Cov

[
∇Φ̂(x,y), Ĥ(x,y)

]
Now observe that

Cov
[
Ĥ(x,y),∇Φ̂(x,y)

]
= O

(
T (x− y)

)
.

Since Var
[
∇Φ̃(x,y)

]
is independent of x and y we deduce from (2.5.9) that

Cov
[
Ĥ(x,y),∇Φ̂(x,y)

]
Var

[
∇Φ̂(x,y)

]−1
Cov

[
∇Φ̂(x,y), Ĥ(x,y)

]
= O

(
T (x− y)

)
,

Hence

sup
x̸=y
∥Var

[
Ĥ(x,y)♭

]
∥op <∞, (2.5.11)

Since Var
[
H̃(x,y)

]
is independent of x,y we deduce that there exists µ0 > 0 such that

Var
[
H̃(x,y)♭

]
≥ µ01, ∀x ̸= y.

We deduce from (2.5.11) and (1.1.12) that∣∣∣E[ | det Ĥ(x,y)♭|
]
− E

[
| det H̃(x,y)♭|

] ∣∣∣ = O
(
T (x− y)1/2

)
. (2.5.12)

Using (2.5.8) we deduce ∣∣∣ p∇Φ̂(x,y)
(0)− p∇Φ̃(x,y)

(0)
∣∣

= (2π)−m/2
∣∣∣ detVar [∇Φ̂(x,y) ]−1 − detVar

[
∇Φ̃(x,y)

]−1
∣∣∣ = O

(
T (x− y)

)
.

(2.5.13)

We can now estimate the right-hand-side of (2.5.7). Note that if B
k⃗
∩B

ℓ⃗
= ∅ we have

sup
(x,y)∈B

k⃗
×B

ℓ⃗

O
(
T (k⃗ − ℓ⃗)

)
= O

(
|⃗k − ℓ⃗|−∞

1

)
.

We deduce from (2.5.8), (2.5.9), (2.5.12), (2.5.13) and the regression formula (1.1.20) that

sup
(x,y)∈B

k⃗
×B

ℓ⃗

∣∣ ρ̂(x,y)− ρ̃(x,y) ∣∣ = O
( ∣∣ k⃗ − ℓ⃗ ∣∣−∞

1

)
,
∣∣ k⃗ − ℓ⃗ ∣∣

1
> m. (2.5.14)

The above estimate coupled with (2.5.2) implies that, for any p > 0, there exists a positive
constant C = C(p) > 0 such that∣∣C(k⃗, ℓ⃗) ∣∣ ≤ C(p)(

1 + |⃗k − ℓ⃗|1
)p , ∀(k⃗, ℓ⃗) ∈ Nm × Nm.

Theorem 2.5.6 now follows from the above estimate and Corollary 2.5.4. ⊓⊔

Remark 2.5.8. To put Theorem 2.5.6 in its proper perspective consider the rescaled function

WR
a (x) = Rm/2Φa

(
Rx

)
.

In Example 1.2.35 we showed that that WR
a approaches the Gaussian white noise in distri-

bution as R→∞. We will refer to the R→∞-limits as white noise limits.
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We set CRa = C[−WR
a ]. Since ∇Φa(y) = 0 iff ∇WR

a

(
y/R) we deduce that for any R > 0

and any box B we have

CRa [B] = Ca[R ·B].

Set

LR :=
1

Rm
CRa .

Theorem 2.5.6 shows that as N →∞,

Var
[
LN [B]

]
= O

(
N−m ), LN [B] =

1

Nm
Ca[N ·B]→ Cm(a) vol

[
B
]
.

This suggest that in the white noise limit the random measures LN converge in some sense
to a deterministic measure, namely a multiple of the Lebesgue measure. In particular, this
shows that as R → ∞, the critical points of Φa,R are, with high confidence, close to being
uniformly distributed. We can be more precise.

As explained in Appendix C.2, the stationarity of Ca alone implies the existence a non-
negative integrable random variable C̄a such that, for any box B, we have

1

Nm
Ca[NB]→ vol

[
B
]

a.s. and in L1; see (C.2.3). The random variable C̄a is called the asymptotic intensity of the
stationary random measure Ca and has an ergodic description. If C1 is the unit cube in Rm
the

C̄a = lim
N→∞

1

vol
[
NB

] ∫
NB

Ca[C1 − x]dx,

where the above limit exists a.s. and L1 according to Wiener’s ergodic theorem. Above, B is
any box of Rm containing the origin in the interior. Theorem 2.5.6 shows that its asymptotic
intensity Ca is the constant Cm(a). ⊓⊔

For any compactly supported continuous function f ∈ C0
cpt

(
Rm

)
we set

LR[f ] = R−m
∫
Rm

f(x)CRa
[
dx
]
=

1

Rm

∑
∇Φa,R(x)=0

f(x).

When m = 1, M. Ancona and T. Letendre [3, Thm. 1.16] (see also [65, Thm.1.6]) proved
that

LN [f ]→ C1(a)

∫
R
f(x)dx a.s.,

for any f ∈ C0
cpt(R). Our next result shows that this also holds for m > 1.

Before we state and prove this fact more precisely let us make a few simple observations.
Note that x is a critical point of Φa iff N−1x is a critical point of
eWN

a . If we set

fN (x) := f
(
N−1x

)
.

then we deduce

LN [f ] =
1

Nm
Ca[fN ] =

1

Nm

∑
∇Φa(x)=0

fN (x).
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Using the weighted local Kac-Rice formula (2.2.8) we deduce

E
[
LN [f ]

]
=

1

Nm

∫
Rn

fN (x)E
[
| detHessΦa |

∣∣∇Φa(x) = 0
]
p∇Φa(0)︸ ︷︷ ︸

=ρa(x)

dx.

In Example 2.3.7 we proved that ρa(x) is independent of x and ρa(0) = Cm(a). Hence

E
[
LN [f ]

]
=
Cm(a)

Nm

∫
Rm

fN (x)dx
x→Ny
= Cm(a)

∫
Rm

f(y)dy.

Corollary 2.5.9. Fix f ∈ C0
cpt(Rm). Then as N →∞

LN [f ]→ Cm(a)

∫
Rm

f(x)dx a.s. and in L2.

Proof. Note that if f ∈ C0
cpt(Rm) is nonnegative and∫

Rm

f(x)dx = 1,

then the sequence φN (x) =
1
Nm fN (x) =

1
Nm f(x/N) is asymptotically stationary,

lim
N→∞

∫
Rm

∣∣φN (x)− φN (x− y)
∣∣dx = 0, ∀y ∈ Rm.

Theorem C.2.2 implies that

LN [f ]→ C̄a

∫
Rm

f(x)dx

a.s. and in any L1. This is Corollary 2.5.9. ⊓⊔

Remark 2.5.10. (a) The Gaussian function Φa defines a Gaussian measure Γ on C2(Rm).
The additive group Rm acts on C2(Rm) by translations Tx, x ∈ Rm, TxF (y) = F (y − x).

Since the Gaussian function Φa is stationary, the translations Tx are Γ-preserving. Since
the spectral measure of Φa is absolutely continuous with respect to the Lebesgue measure,
the above action of Rm is ergodic; see [20] or [104, App. C]. In the case m = 1, Theorem
2.5.6 is a consequence the ergodicity of the random function Φa. We refer to [37, 152] for
details.

(b) The key to the proof Theorem 2.5.6 was the estimate

Var
[
Ca[NB]

]
= O

(
Nm

)
as N →∞. (2.5.15)

One can show something stronger; see [2, 112, 118]. More precisely, there exists a positive
constant Vm(a) that depends only on m and a such that such that, for any f ∈ C0

cpt(Rm) we
have

Var
[
LR[f ]

]
∼ Vm(a)R−m

∫
Rm

f(x)2dx as R→∞. (2.5.16)

The random variables LN [f ] a Central Limit Theorem [2]. For any nonzero f ∈ C0
cpt

(
Rm

)
the random variables

Nm/2
(
LR[f ]− E

[
LR[f ]

] )
converge in distribution to centered Gaussian random variable with variance

Vm(a)

∫
Rm

f(x)2dx.
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In the next subsection I will prove a version of (2.5.16) in a more sophisticated situation.

In the proof of Theorem 2.5.6 I have deliberately chosen to prove only the weaker estimate
(2.5.15) since it has afforded me the possibility to illustrate how Corollary 2.5.4 works in a
simple situation with few extra analytical complications. This corollary is quite flexible and
the main steps of the strategy we used in the proof of Theorem 2.5.6 work in much the
more general situations of random functions on compact Riemannian manifolds discussed in
Chapter 4. ⊓⊔

2.5.3. Critical points of random Fourier series. Fix an amplitude a ∈ S(R). This
means that a is even and satisfies a(0) = 1. Consider the random random Fourier series
FRa : Rm → R defined by (1.2.21),

FRa (θ⃗) = R−m/2
(
A0u0 +

∑
ℓ⃗≻0

a
( ∣∣ 2πℓ⃗ ∣∣/R)(A

ℓ⃗
u
ℓ⃗
(θ⃗) +B

ℓ⃗
v
ℓ⃗
(θ⃗)
) )

= R−m/2
∑
ℓ⃗∈Zm

a
( ∣∣ 2πℓ⃗ ∣∣/R )Z

ℓ⃗
e2πi⟨ℓ⃗,θ⟩,

where we recall that (A
ℓ⃗
)
ℓ⃗∈Zm , (B

ℓ⃗
)
ℓ⃗∈Zm are i.i.d. standard normal variables

u
ℓ⃗
(θ⃗) =

√
2 cos 2π⟨ℓ⃗, θ⃗⟩, v

ℓ⃗
=
√
2 sin 2π⟨ℓ⃗, θ⃗⟩.

and ≻ is the lexicographic order on Rm: x ≺ y iff there exists j such that xj < yj and
xi = yi, ∀i < j. The complex Gaussian variables (Z

ℓ⃗
)
ℓ⃗∈Zm are defined as in (1.2.22). As

explained in Example 1.2.31, the random function Rm/2FRa converges in distribution to the
Gaussian noise on the flat torus. For this reason we will refer to the R→∞ limist as white
noise limits.

The covariance kernel of FRa is CRa (θ⃗, φ⃗) = CRa (τ⃗), where τ⃗ = θ⃗ − φ⃗ and we deduce from
(1.2.27) that

CRa (τ⃗) = R−m
∑
ℓ⃗∈Zm

a
( ∣∣ 2πℓ⃗ ∣∣/R )2e−2πi⟨ℓ⃗,τ⃗⟩ (1.2.25)

=
∑
k⃗∈Zm

Ka

(
(k⃗ − τ⃗)R

)
, (2.5.17)

and

Ka(x) =
1

(2π)m

∫
Rm

ei⟨ξ,x⟩a
(
|ξ|
)2
λ
[
dξ
]
.

We can interpret FRa in two ways, either as a Zm-periodic stationary Gaussian function on
Rm or as a Gaussian random function on the torus Tm/Zm.

We set ΦRa (x) = FRa (x/R). We think of ΦRa as a (RZ)m-periodic random function on Rm.
This is an isotropic random function with covariance kernel KR

a (x,y) we set

KR
a (x) = KR

a (0,x) = CRa (x/R).

We deduce from (2.5.17) that

KR
a (x) =

∑
k⃗∈Zm

Ka(x−Rk⃗).
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Clearly, ∇FRa (y) = 0 iff ∇ΦRa (Ry) = 0 so, for any box B = [a, b]m ⊂ Rm, and any
f ∈ C0

cpt(Rm), we have

C
[
B,ΦRa

]
= C

[
RB,FRa

]
, C

[
f, FRa

]
= C

[
fR,Φ

R
a

]
,

where fR(x) = f
(
R−1x

)
. In Example 2.3.8 we proved the equality (2.3.30)

E
[
C[B,FRa ]

]
= Rm

(
Cm(a) vol

[
B
]
+O

(
R−∞ ) ),

and (2.3.31),

C
[
f, FRa

]
= Rm

(
Cm(a) +O

(
R−∞ ) ) ∫

Rm

f(x)dx,

where Cm(a) is defined in (2.3.26). In [112] we proved that that there exists a constant
C ′
a(m) ≥ 0 such that if B = [0, r]m r ∈ (0, 1/2) we have

lim
R→∞

R−mVar
[
C[B,FRa ]

]
= C ′

m(a)λ̄
[
B
]
. (2.5.18)

The proof of (2.5.18) in [112] is very laborious and computationally intensive.

The first result of this subsection is a functional version of (2.5.18). We achieve this using
a less computational, more robust and more conceptual technique. One consequence of this
asymptotic estimate is a (functional) strong law of large numbers concerning the random
measures C[−, FNa ], N ∈ N.

First some notation. Denote by |−| the Euclidean norm on Rm and by |−|∞ the sup-norm
on Rm. For x0 ∈ Rm and r > 0 we set

Br(x0) :=
{
x ∈ Rm; |x| ≤ r

}
, B∞

r (x0) :=
{
x ∈ Rm; |x|∞ ≤ r

}
.

Clearly Br(x0) ⊂ B∞
r (x0).

The function FRa is Zm-periodic and for r ∈ (0, 1/2) the ball B∞
r (0) is contained in the

interior of a fundamental domain of the Zm-action since |x − y|∞ ≤ 2r < 1 and |ℓ⃗|∞ ≥ 1,

∀ℓ⃗ ∈ Zm \ 0. This reflects the fact that the injectivity radius of the flat torus Tm = Rm/Zm
is ≤ 1

2 so Br(0) can be viewed as a geodesic ball. We can now state the main technical result
of this paper.

Theorem 2.5.11. Fix an amplitude a, a positive integer m ∈ N and a radius r0 ∈ (0, 1/2).
There exists a constant V = Vm(a) ≥ 0 that depends only on m and a such that, for any
continuous function f : Rm → R with support contained in Br0(0), we have

lim
R→∞

R−mVar
[
C[f, FRa ]

]
= Vm(a)

∫
Rm

f(x)2dx. (2.5.19)

Before we present the proof of this theorem let us discuss some of its consequences.
Consider the normalized random measures

C̄R :=
1

Rm
C[−, FRa ], R > 0.

A function then we deduce that for any f ∈ C0
cpt(Rm), supp f ∈ Br0(0), we have

lim
R→∞

E
[
C̄R[f ]

]
= Cm(a)

∫
Rm

f(x)λ
[
dx
]
, (2.5.20)

and

Var
[
C̄R[f ]

]
∼ Vm(a)R−m

∫
Rm

f(x)2dx as R→∞. (2.5.21)
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Since FRa is stationary, the same is true for any continuous function f with support contained

in Br0(x0). Indeed, this follows by applying (2.5.21) to the function f̃(x) = f(x− x0).

Using finite partitions of unity we can represent any f ∈ C0
cpt(Rm) as a finite sum of

functions supported in Euclidean balls of radius r0 and we deduce from (2.5.19) that

∀f ∈ C0
cpt(Rm), Var

[
C̄R[f ]

]
= O

(
R−m ) as R→∞.

If m ≥ 2, then ∑
N∈N

1

Nm
<∞

The Borel-Cantelli lemma and (2.5.21) imply that for any nonnegative f ∈ C0
cpt(Rm) we have

lim
N→∞

C̄N [f ] = Cm(a)

∫
Rm

f(x)λ
[
dx
]
a.s. and in L2. (2.5.22)

Thus, in the white noise limit (R→∞), the critical points of FRa will equidistribute with
probability 1. In the case m = 1, this law of large numbers is proved in the recent work of
L. Gass [65, Thm. 1.6].

We can rephrase the equality (2.5.22) as a law as large numbers. We refer to Appendix
C.2 for the various concepts of convergence of random measures. The equality (2.5.22) and
Theorem C.2.1 imply the following result.

Corollary 2.5.12 (Strong Law of Large Numbers). In white noise limit (N → ∞) the
random measures 1

NmC
[
−, FNa

]
converge vaguely a.s. and L2 to the deterministic measure

Cm(a)λ. In particular, for any bounded Borel subset S ⊂ Rm we have

lim
N→∞

1

Nm
C
[
S, FNa

]
= Cm(a)λ

[
S
]

a.s. and L2. ⊓⊔

In [113] we proved that in white noise limit the random measures C
[
−, FNa

]
also satisfy

a Central Limit Theorem. More precisely, for any r ∈ (0, 1)

1

Nm/2

(
C[B∞

r/2, F
N
a ]− E

[
C[B∞

r/2, F
N
a ]
] )

converges in distribution to a centered normal random variable with nonzero variance.

As explained in Appendix C.2, each stationary random measure M on Rm has an asymp-

totic intensity M̂. This is a random variable defined by the ergodic limit (C.2.3)

lim
N→∞

1

vol[NC]
M
[
NC

]
= M̂, (2.5.23)

where C ⊂ Rm is any compact convex subset of Rm containing the origin in the interior.

The random measureM = C[−,Φa] is stationary and the results of the previous subsection

show that the asymptotic intensity of C[−,Φa] is the constant ĈΦa = Cm(a).

For fixed N > 0, the random function ΦN0
a is

(
RZ

)m
-periodic and we deduce that for

any N ∈ N we have

C[NB∞
R/2,Φ

R
a ] = NmC[B∞

R/2,Φ
R
a ].
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Hence

C[B∞
R/2,Φ

R
a ] = lim

N→∞

1

Nm
C[NB∞

R/2,Φ
R
a ]

(2.5.23)
= ĈΦR

a
vol
[
B∞
R/2

]
,

where ĈΦR
a

denotes the asymptotic intensity of the stationary random measure C[−,ΦN0
a ].

Hence

ĈΦR
a
=

1

Rm
C
[
B∞
R/2,Φ

R
a

]
=

1

vol[B∞
R/2]

C
[
B∞
R/2,Φ

R
a

]
.

Corollary 2.5.12 shows that

lim
N→∞

ĈΦN
a
= ĈΦa = Cm(a),

a.s. and L2.

Proof of Theorem 2.5.11. We follow the strategy in [62]. We split the proof of Theorem
2.5.11 into several conceptually distinct parts.

1. The key estimate. The following technical result will play a key role.

Lemma 2.5.13. Fix a box B = B∞
r0/2

(0) = [−r0/2, r0/2]m, r0 ∈ (0, 1). Then the following

hold.

(i) For any ℓ ∈ N0 and any p > m there exists C = C(p,m, ℓ, a) > 0, independent of
R, such that, ∀R > 2 ∥∥KR

a −Ka

∥∥
Cℓ(RB)

≤ CR−p

(ii) For any ℓ ∈ N0 and any p > m there exists C = C(p,m, ℓ, a) > 0, independent of
R, such that, ∀R > 2, ∀x,y ∈ RB∣∣DℓKR

a (x− y)
∣∣ ≤ C(

1 + |x− y|∞
)p .

Proof. (i) Denote by T
Rk⃗

Ka the translate

T
Rk⃗

Ka(x) := K
(
x−Rk⃗

)
.

We have

KR
a (x)−Ka(x) =

∑
k⃗∈Zm\0

T
Rk⃗

Ka

(
x
)
.

Now observe that ∀R > 0, ∀x ∈ RB, and any k⃗ ∈ Zm \ 0 we have∣∣x−Rk⃗ ∣∣∞ ≥ N ∣∣ k⃗ ∣∣∞ − ∣∣x ∣∣∞ ≥ R( ∣∣ k⃗ ∣∣∞ − r0/2 ).
Since Ka and all its derivatives are Schwartz functions we deduce that for any p > m, and

any k⃗ ∈ Zm \ 0 ∥∥T
Rk⃗

Ka

∥∥
Cℓ(NB)

≤ C(p,m, ℓ, a)R−p( ∣∣ k⃗ ∣∣∞ − r0/2 )−p.
The last expression is well defined since r < 1 ≤

∣∣ k⃗ ∣∣∞ for any k⃗ ∈ Zm \ 0. Hence∥∥KR
a −Ka

∥∥
Cℓ(NB)

≤ C(p,m, ℓ, a)R−p
∑

k⃗∈Zm\0

( ∣∣ k⃗ ∣∣∞ − r0/2 )−p
The above series is convergent since p > m.



164 2. The Gaussian Kac-Rice formula

(ii) Note that ∀x,y ∈ RB we have
∣∣x − y

∣∣
∞ ≤ Rr0. Set z := x − y. We discuss only the

case ℓ = 0. The general case can be reduced to this case by taking partial derivatives.

Using (i) we deduce that

C = sup
R

sup∣∣z ∣∣
∞
<r0

∣∣KR
a (z)

∣∣ <∞
and thus, ∀R ≥ 2, ∀

∣∣ z ∣∣∞ < r0, ∣∣KR
a (z)

∣∣ < C
(
1 + r0

)p(
1 +

∣∣ z ∣∣∞ )p .
Assume now that

∣∣ z ∣∣∞ ≥ r0. We have

KR
a (z) = Ka(z) +

∑
k⃗∈Zm\0

T
Rk⃗

Ka

(
z
)
,

and thus, ∣∣KR
a (z)

∣∣ ≤ ∣∣Ka(z)
∣∣+ ∑

k⃗∈Zm\0

∣∣T
Rk⃗

Ka

(
z
) ∣∣.

Since Ka(x) is Schwartz we deduce that there exists a constant C = C(p, a) such that

Cp(
1 +

∣∣ z ∣∣∞ )p + Cp
∑

k⃗∈Zm\0

1(
1 +

∣∣ z −Rk⃗ ∣∣∞ )p
We have

∣∣ z ∣∣∞ ≤ Rr0 and

∣∣ z − Zk⃗ ∣∣∞ ≥ ∣∣ z ∣∣∞( R
∣∣ k⃗ ∣∣∞∣∣ z ∣∣∞ − 1

)
≥
∣∣ z ∣∣∞( 1

r0

∣∣ k⃗ ∣∣∞ − 1
)

Thus ∑
k⃗∈Zm\0

1(
1 +

∣∣ z −Rk⃗ ∣∣∞ )p ≤
∣∣ z ∣∣−p∞

∑
k⃗∈Zm\0

( 1

r0

∣∣ k⃗ ∣∣∞ − 1
)−p

︸ ︷︷ ︸
<∞

.

⊓⊔

2. An integral formula. Set

B := B∞
r0/2

(0), fR(x) := f(x/R),

ZR[f ] := C[f, FRa ] = C[fR,Φ
R
a ], Z[f ] := C[f,Φa].

Denote by ρRa the Kac-Rice density of ∇ΦRa and by ρa the Kac-Rice density of ∇Φa; see
(2.2.9). Since both ΦRa and Φa are stationary random functions we deduce that both ρRa and
ρa are constant functions.

The covariance functions KR
a (z) and Ka(z) are even, so the odd order derivatives of

these functions vanish at 0. This implies that the Gaussian vectors HessΦR
a
(0) and ∇ΦRa (0)

are independent. A similar phenomenon is true for Φa. Thus, the conditional expectations
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in the Kac-Rice formula are usual expectations. Using Lemma 1.1.27 and Lemma 2.5.13(i)
we deduce that for any x ∈ Rm

sup
x∈RB

∣∣ ρRa (x)− ρa(x) ∣∣ = ∣∣ ρRa (0)− ρa(0) ∣∣ = O
(
R−∞ ), (2.5.24)

where O(R−∞) is short-hand for O(R−p), ∀p > 0 as R→∞. We deduce that

R−m(E[ZR[f ] ]− E
[
Z[f ]

] )
= R−m

∫
RB

fR(x)
(
ρRa (0)− ρa(0)

)
dx =

=

∫
B
f(y)

(
ρRa (0)− ρa(0)

)
dy = O

(
R−∞ ).

We need to introduce some additional notation.

• Φ∞
a = Φa.

• For any R ∈ (0,∞] we define

Φ̂R, Φ̂ : Rm × Rm → R,

Φ̂R(x,y) = ΦRa (x) + ΦRa (y), Φ̂(x,y) = Φa(x) + Φa(y),

ĈR := C[−, Φ̂Ra ], ĤR(x,y) := Hess
Φ̂R(x,y), HR(x) := HessΦR

a
(x).

• Choose an independent copy ΨR
a of ΦRa and for R ∈ (0,∞] set

Φ̃R(x,y) := ΦRa (x) + ΨR
a (y), H̃R(x,y) := Hess

Φ̃R(x,y),

C̃R = C[−, Φ̃N ].
• For R ∈ (0,∞) define

f⊠2
R : Rm × Rm → R, f⊠R (x,y) = fR(x)fR(y)

and set ∥f∥ := ∥f∥C0(Rm).

• Set

X = Rm × Rm \∆ =
{
(x,y) ∈ Rm × Rm; x ̸= y

}
.

Observe that the random function on Φ̃R(x,y) is stationary with respect to the action of

R2m on itself by translation, while Φ̂Ra is stationary with respect to the diagonal action by
translations of Rm on Rm × Rm,

Tv(x,y) =
(
v + x,v + y

)
, ∀v,x,y ∈ Rm.

We have

ĈR[IXf
⊠2
R ] =

∑
∇ΦR

a (x)=∇ΦR
a (y)=0,

x̸=y

fR(x)fR(y) = ZR[f ]2 − ZR[f2].

Bulinskaya’s lemma implies that

P
[
∃x : ∇Φa(x) = ∇Ψa(x) = 0

]
= 0

and we deduce

C̃R[IXf
⊠2
R ] =

∑
∇ΦR

a (x)=∇ΨR
a (y)=0,

x̸=y

fR(x)fR(y)

=
∑

∇ΦR
a (x)=∇ΨR

a (y)=0

fR(x)fR(y) = C[f,ΦRa ]
]
C[f,ΨR

a ], a.s..
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Hence

E
[
C[f,ΦRa ]C[f,Ψ

R
a ]
]
= E

[
C[f,ΦRa ]

]
· E
[
C[f,ΨR

a ]
]
= E

[
C[f,ΦRa ]

]2
so that

E
[
ĈR[IXf

⊠2
R ]
]
− E

[
C̃R[IXf

⊠2
R ]
]
= E

[
ZR[f ]2

]
− E

[
ZR[f ]

]2︸ ︷︷ ︸
=Var

[
ZR[f ]

] −E
[
ZR[f2]

]

We have seen that

lim
R→∞

R−mE
[
ZR[f2]

]
= Cm(a)

∫
Rm

f2(x)dx

so we have to show that

I(R) := E
[
ĈR[IXf

⊠2
R ]
]
− E

[
C̃R[IXf

⊠2
R ]
]
∼ cR−m as R→∞ (2.5.25)

for some constant c ∈ R.
According to Corollary 2.4.24, there exists R0 > 0 such that for R ≥ R0, the gradient

∇ΦRa is 2-ample and ΦR is J1-ample so, for R ≥ R0 the gradient ∇Φ̂R(x,y) is nondegenerate
for any x ̸= y and the random vector

(
ΦRa (x),∇ΦRa

)
is nondegenerate for any x ∈ Rn. As

shown in Example 1.2.35 this is true also for R =∞, where we recall that Φ∞
a = ΦRa .

We can apply the Kac-Rice formula and we deduce that for any R > R0 we have

E
[
ĈR[IXf

⊠2
R ]
]

=

∫
Rm×Rm\∆

E
[
| det ĤR(x,y)|

∣∣∇Φ̂R(x,y) = 0
]
p∇Φ̂R(x,y)

(0)︸ ︷︷ ︸
=ρ̂R(x,y)

f⊠2
R (x,y)λ

[
dxdy

]
. (2.5.26)

The gradient ∇Φ̃R(x,y) is nondegenerate for any x,y and invoking Kac-Rice again we obtain

E
[
C̃R[IXf

⊠2
R ]
]

=

∫
Rm×Rm\∆

E
[
| det H̃R(x,y)|

∣∣∇Φ̃R(x,y) = 0
]
p∇Φ̃R(x,y)

(0)︸ ︷︷ ︸
=ρ̃R(x,y)

f⊠2
R (x,y)λ

[
dxdy

]
. (2.5.27)

The function ρ̃R(x,y) is independent of x, by since the random function Φ̃R is stationary.
Thus

I(R) =

∫
X

(
ρ̂R(x,y)− ρ̃R(x,y)

)
fR(x)fR(y)λ

[
dxdy

]
=

∫
|x|, |y|≤Rr0/2,

x̸=y

(
ρ̂R(x,y)− ρ̃R(x,y)

)
fR(x)fR(y)λ

[
dxdy

]
.

(2.5.28)

Let us observe that for any x ̸= y we have

lim
R→∞

(
ρ̂R(x,y)− ρ̃R(x,y)

)
=
(
ρ̂∞(x,y)− ρ̃∞(x,y)

)
.

Moreover

lim
R→∞

fR(x) = f(0)

uniformly on compacts.
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3.Off-diagonal behavior. Note that

Var
[
H̃R(x,y)

]
=

[
Var

[
HR(x)

]
0

0 Var
[
HR(y)

] ] .
For every z ∈ Rm we set

TR(z) :=
∑
|α|≤4

∣∣ ∂αKR
a (z)

∣∣.
Lemma 2.5.13(ii) shows that for every p > 0 there exists Cp = Cp(a,m, r) > 0 such that, ∀R,
∀
∣∣ z ∣∣∞ < Nr

∀N, ∀
∣∣ z ∣∣∞ < Rr0, TR(z) ≤ Cp

(
1 +

∣∣ z ∣∣∞ )−p. (2.5.29)

We want to emphasize that Cp is independent of R.

Observe next that

Var
[
∇Φ̃R(x,y)

]
=

[
Var

[
∇ΦRa (x)

]
0

0 Var
[
∇ΦRa (y)

] ] ,
is independent of x and y.

Var
[
∇Φ̂R(x,y)

]
=

 Var
[
∇ΦRa (x)

]
Cov

[
∇ΦRa (x),∇ΦRa (y)

]
Cov

[
∇ΦRa (y),∇ΦRa (x)

]
Var

[
∇ΦRa (y)

]


= Var
[
∇Φ̃R(x,y)

]
+

 0 Cov
[
∇ΦRa (x),∇ΦRa (y)

]
Cov

[
∇ΦRa (y),∇ΦRa (x)

]
0


︸ ︷︷ ︸

=:ER
∇(x,y)

.

Hence∥∥ Var
[
∇Φ̂R(x,y)

]
−Var

[
∇Φ̃R(x,y)

] ∥∥
op

= ∥ER∇(x,y)∥op = O
(
TR(x− y)

)
, (2.5.30)

where ∥ − ∥op denotes the operator norm. Above and in the sequel, the constant implied by
the Landau symbol O is independent of R as long as x,y ∈ RB. In particular

Var
[
∇Φ̂R(x,y)

]−1
=
(
Var

[
∇Φ̃R(x,y)

]
+ ER∇(x,y)

)−1

= Var
[
∇Φ̃R(x,y)

]−1
(
1+Var

[
∇Φ̃R(x,y)

]−1
ER∇(x,y)

)−1
.

(2.5.31)

We have shown in (2.3.20) that there exists an explicit positive constant dm such that

Var
[
∇Φa(x)

]
= dm1m, ∀x.

Then Var
[
∇ΦRa (x)

]
= Var

[
∇ΦRa (0)

]
, ∀x ∈ Rm and

Var
[
∇ΦRa (0)

]
= dm1m +O

(
R−∞ ).

The variance Var
[
∇Φ̃R(x,y)

]
is independent of x and y and

Var
[
∇Φ̃R(x,y)

]
= Var

[
∇ΦRa (0)

]
⊕Var

[
∇ΦRa (0)

]
= dm12m +O

(
R−∞ ). (2.5.32)

From (2.5.31) and (2.5.32) we conclude that there exists C0 > 0, independent of R > R0,
such that

∥Var
[
∇Φ̃R(x,y)

]−1
ER∇(x,y)∥op <

1

2
, ∀x,y ∈ RB, |x− y|∞ > C0,
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and thus ∥∥ Var
[
∇Φ̂R(x,y)

]−1 −Var
[
∇Φ̃R(x,y)

]−1 ∥∥
op

= O
(
TR(x− y)

)
, ∀x,y ∈ RB, |x− y|∞ > C0.

(2.5.33)

Note that since ΦRa is stationary, Var
[
H̃R(x,y)

]
is independent of x and y.

Var
[
ĤR(x,y)

]
=

 Var
[
HR(x)

]
Cov

[
HR(x), HR(y)

]
Cov

[
HR(y), HR(x)

]
Var

[
HR(y)

]


= Var
[
H̃R(x,y)

]
+

 0 Cov
[
HR(x), HR(y)

]
Cov

[
HR(y), HR(x)

]
0


︸ ︷︷ ︸

=:ER
H(x,y)

.

We deduce∥∥ Var
[
ĤR(x,y)

]
−Var

[
H̃R(x,y)

] ∥∥
op

= ∥ERH(x,y)∥op = O
(
TR(x− y)

)
. (2.5.34)

We denote by H̃R(x, y)
♭ the Gaussian random matrix

H̃R(x, y)
♭ = H̃R(x, y)− E

[
H̃R(x, y) ∥∇Φ̃R(x,y)

]
.

We define ĤR(x, y)
♭ similarly

ĤR(x, y)
♭ = ĤR(x, y)− E

[
ĤR(x, y) ∥∇Φ̂R(x,y)

]
.

The distributions of H̃R(x, y)
♭ and ĤR(x, y)

♭ are determined by the Gaussian regression
formula (1.1.18).

We have

Cov
[
ĤR(x,y),∇Φ̂R(x,y)

]
=

 Cov
[
HR(x),∇ΦRa (x)

]
Cov

[
HR(x),∇ΦRa (y)

]
Cov

[
HR(y),∇ΦNa (x)

]
Cov

[
HR(y),∇ΦRa (y)

]


=

 Cov
[
HR(0),∇ΦRa (0)

]
Cov

[
HR(x),∇ΦRa (y)

]
Cov

[
HR(y),∇ΦRa (x)

]
Cov

[
HR(0),∇ΦRa (0)

]
 .

The covariance Cov
[
HR(0),∇ΦRa (0)

]
involves only third order partial derivatives of KN

a at

0, and these are all trivial since KR
a is an even function. Hence

Cov
[
ĤR(x,y),∇Φ̂R(x,y)

]
=

 0 Cov
[
HR(x),∇ΦRa (y)

]
Cov

[
HR(y),∇ΦRa (x)

]
0

 .
Similarly

Cov
[
H̃R(x,y),∇Φ̃R(x,y)

]
=

 Cov
[
HR(x),∇ΦRa (x)

]
0

0 Cov
[
HR(y),∇ΦRa (y)

]
 = 0.
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Lemma 2.5.13(ii) implies that∥∥ Cov
[
H̃R(x,y),∇Φ̃R(x,y)

] ∥∥
op

= O
(
TR(x− y)

)
,∥∥ Cov

[
ĤR(x,y),∇Φ̂R(x,y)

] ∥∥
op

= O
(
TR(x− y)

)
.

Since Var
[
∇Φ̃N (x,y)

]
and we deduce from the regression formula (1.1.18) that

Var
[
H̃R(x,y)

]
= Var

[
H̃R(x,y)

♭
]
+O

(
TR(x− y)

)
,

Var
[
ĤR(x,y)

]
= Var

[
H̃R(x,y)

♭
]
+O

(
TR(x− y)

)
.

The regression formula (1.1.18) shows that

Var
[
ĤR(x,y)

♭
]
= Var

[
ĤR(x,y)

]
−Cov

[
ĤR(x,y),∇Φ̂R(x,y)

]
Var

[
∇Φ̂R(x,y)

]−1
Cov∇Φ̂R(x,y), ĤR(x,y)

]
.

= Var
[
H̃R(x,y)

♭
]
+O

(
TR(x− y)

)
−Cov

[
ĤR(x,y),∇Φ̂R(x,y)

]
Var

[
∇Φ̂R(x,y)

]−1
Cov

[
∇Φ̂R(x,y), ĤR(x,y)

].
Since Cov

[
ĤR(x,y),∇Φ̂R(x,y)

]
= O

(
TR(x − y)

)
we deduce from (2.5.32) and (2.5.33)

that there exists C1 > 0, independent of R > R0, such that

Cov
[
ĤR(x,y),∇Φ̂R(x,y)

]
Var

[
∇Φ̂R(x,y)

]−1
Cov

[
∇Φ̂R(x,y), ĤR(x,y)

]
= O

(
TR(x,y)

)
, ∀x,y ∈ RB, |x− y|∞ > C1,

and thus ∥∥ Var
[
ĤR(x,y)

♭
]
−Var

[
H̃R(x,y)

♭
] ∥∥

op

= O
(
TR(x− y)

)
, ∀x,y ∈ RB, |x− y|∞ > C2 = max(C0, C1).

Since Var
[
H̃R(x,y)

]
= Var

[
HR(0)

]
⊕ Var

[
HR(0)

]
we deduce from Lemma 2.5.13(i) that

there exists µ0 > 0 such that

Var
[
H̃R(x,y)

♭
]
≥ µ01, ∀R ≥ R0.

Note also that (2.5.30) implies that there exists C3 > 0, independent of R > R0, such that

sup
x,y∈RB

|x−y|∞>C3

∥Var
[
ĤR(x,y)

♭
]
∥op = O(1)

Lemma 1.1.27 implies that∣∣∣E[ |det ĤR(x,y)
♭|
]
− E

[
|det H̃R(x,y)

♭|
] ∣∣∣ = O

(
TR(x− y)1/2

)
. (2.5.35)

Using (2.5.33) we deduce that there exists C4 > 0, independent of R > R0, such that∣∣∣ p∇Φ̂R(x,y)
(0)− p∇Φ̃R(x,y)

(0)
∣∣

=
1

(2π)m/2

∣∣∣ detVar [∇Φ̂R(x,y) ]−1 − detVar
[
∇Φ̃R(x,y)

]−1
∣∣∣

= O
(
TR(x− y)

)
, ∀x,y ∈ RB, |x− y|∞ > C4.

(2.5.36)

We can now estimate the right-hand-side of (2.5.28). For any x,y ∈ RB

O
(
TR(x− y)

) (2.5.29)
= O

( ∣∣x− y
∣∣−p/2
∞

)
, ∀p > 0.
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Using (2.5.33), (2.5.34), (2.5.35) and (2.5.36) that we conclude that there exists C5 > 1,
independent of R > R0 such that, for any p > m,

∀x,y ∈ RB, |x− y|∞ > C5,
∣∣ ρ̂R(x,y)− ρ̃R(x,y)︸ ︷︷ ︸

=∆R(x,y)

∣∣ = O
( ∣∣x− y

∣∣−p/2
∞

)
. (2.5.37)

Since the random function ΦRa is stationary, we deduce that for any x,y, z ∈ Rm such that
x ̸= y we have

∆R(x+ z,y + z) = ∆R(x,y)

so ρ̂R(x,y), ρ̃R(x,y) and ∆R(x,y) depend only on y − x.

4. Conclusion Assume now that x,y ∈ RB and |x − y|∞ ≤ C5. Denote by X̂ the radial-
blowup of Rm×Rm along the diagonal. It is diffeomorphic to the product Rm×Sm−1×[0,∞).

Choose new orthogonal coordinates (ξ, η) given by

ξ = x+ y, η = x− y⇐⇒x =
1

2
(ξ + η), y =

1

2
(ξ − η)

then

|x− y| = |η|, dxdy = 2−2mdξdη.

Note that if x,y ∈ supp fR, then |x|, |y| < Rr0/2 and thus

x,y ∈ supp fR ⇒ |ξ|, |η| <
1

2
|ξ + η|+ 1

2
|ξ − η| ≤ Rr0. (2.5.38)

The natural projection π : X̂→ Rm × Rm can given the explicit description

Rm × Sm−1 × [0,∞) ∋ (ξ,ν, r) 7→ (ξ, η) = (ξ, rν) ∈ Rm × Rm.

Set for R ∈ (R0,∞] we set

wR(x,y) = |x− y|m−2ρ̂R(x,y).

Lemma 2.5.13(i) implies that for any C > 0

sup
R∈(R0,∞]

sup ∥KR
a ∥C6(RB) <∞.

We deduce from Proposition 2.4.1 and Lemma 2.5.13 that

sup
R∈(R0,∞]

sup
x,y∈RB

0<|x−y|≤C5

∣∣wR(x,y) ∣∣ <∞. (2.5.39)

It is easy to see that ρ̃R ◦ π admits a continuous extension to the blow-up. Using (2.5.37)
and (2.5.39) we deduce that for any p > 0 there exists a constant Kp > 0, independent of R,
such that

|x− y|m−1
∣∣∆R(x,y)

∣∣ ≤ Kp

(
1 + |x− y|

)−p+m−1
, ∀x,y ∈ RB (2.5.40)

Set

δR(ξ, η) = ∆R

(
π(ξ, η)

)
Since ∆R(x,y) depends only on y−x we deduce that δR(ξ, η) is independent of ξ. We have

I(R) =

∫
X
∆R(x,y)f

⊠2
R (x,y)dxdy =

∫
|x|,|y|≤Rr0/2

x̸=y

∆R(x,y)f
⊠2
R (x,y)dxdy
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(2.5.38)
=

1

22m

∫
|ξ|<Rr0,

|ν|=1, r∈(0,Rr0)

rm−1δR
(
ξ, rν

)
fR

( ξ + rν

2

)
fR

( ξ − rν
2

)
dr volSm−1 [dν]dξ

(ξ = 2Rζ, δR(ξ, rν) = δR(0, rν))

=

(
R

2

)m ∫
|ζ|≤r0/2

∫
|ν|=1

r∈(0,Rr0)

rm−1δR
(
0, rν

)
f
(
ζ +

rν

2R

)
f(ζ − rν

2R

)
dr volSm−1 [dν]

 dζ

︸ ︷︷ ︸
=:J(R)

.

Note that
δR
(
0, rν

)
= ρ̂R(rν/2,−rν/2)− ρ̃R(rν/2,−rν/2)

and for r > 0, |ν| = 1 fixed

lim
R→∞

δR
(
0, rν

)
= δ∞(0, rν) = ρ̂∞(rν/2,−rν/2)− ρ̃∞(rν/2,−rν/2).

We deduce from (2.5.38) and (2.5.39) that for any p > 0 there exists Kp > 0 such that for
any R > R0 , |ζ| < r0/2, |ν| = 1 and r ≤ Rr0 we have∣∣∣ rm−1δR

(
0, rν

)
f
(
ζ +

rν

2R

)
f
(
ζ − rν

2R

) ∣∣∣ ≤ Kp∥f∥2
(
1 + r

)−p+m−1
.

The constraint r < Rr0 is not really necessary since, according to (2.5.38) the left-hand side
of the above inequality vanishes if r > R0, |ζ| < r0/2 and |ν| = 1. For p > m we have∫

|ζ|≤r0/2

(∫
(0,∞×Sm−1

(
1 + r

)−p+m−1
dr volSm−1

[
dν

)
dζ <∞.

The dominated convergence theorem implies that J(R) has a finite limit as R → ∞. More
precisely

lim
R→∞

J(R) =

∫
|ζ|≤r0/2

(∫
|ν|=1
r>0

rm−1δ∞
(
0, rν

)
f(ζ)2dr volSm−1 [dν]

)
dζ.

This concludes the proof of Theorem 2.5.11. ⊓⊔





Chapter 3

Central limit theorems

3.1. Gaussian Hilbert spaces

3.1.1. Basic definitions and examples.

Definition 3.1.1. A Gaussian linear space is a real vector space X consisting of (real)
Gaussian random variables defined on the same probability space (Ω, S,P). If the vector
space X is closed in L2(Ω, S,P), then we say that X is a Gaussian Hilbert space. ⊓⊔

Example 3.1.2. Suppose that X is a Fréchet space with dual X∗ and Γ is a Gaussian
measure on X. Then the map

Ev : X ×X∗ → R, Evx(ξ) = ξ(x)

is a centered Gaussian process parametrized by X∗. The associated Gaussian Hilbert space
X∗

Γ is the closure in L2(X,Γ) of the range the tautological map TΓ : X∗ → L2
(
X,Γ

)
defined in (1.1.28). ⊓⊔

Example 3.1.3 (The Main Example). Suppose that

X :
(
Ω, S,P

)
× T → R, (ω, t) 7→ Xω(t)

is a centered Gaussian field parameterized by the set T . The closure in L2(Ω,F,P) of the vec-
tor spaces spanned by the collection

(
X(t)

)
t∈T is called the Gaussian Hilbert space associated

to the centered Gaussian field (Xt)t∈T .

⊓⊔

Definition 3.1.4. An isonormal Gaussian process is a triplet (H,X,W ), where X is a Gauss-
ian Hilbert space, H is a Hilbert space and W : H → X is an isomorphism of Hilbert spaces.
The map W is called the white noise map of the isonormal process. ⊓⊔

Remark 3.1.5. If (H,X,W ) is an isonormal Gaussian process, then the collection
(
W (h)

)
h∈H

is a centered Gaussian process parametrized by H. Its covariance kernel is

K : H ×H → R, K(h1, h2) =
(
h1, h2

)
H
, ∀h1, h2 ∈ H.

173
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Conversely, given a Hilbert space we can use Kolmogorv’s existence theorem to conclude that
there exist Gaussian processes W on H with the above covariance kernel. We denote by X
the Gaussian Hilbert space associated to this process as in Example 3.1.3 . Then the induced
map W : H → X is linear. Indeed, for any h, h′ ∈ H

E
[ (
W (h+ h′)−W (h)−W (h′)

)(
W (h+ h′)−W (h)−W (h′)

) ]
= 0.

This proves that the resulting triplet (H,W,X) is an isonormal Gaussian process. ⊓⊔

Example 3.1.6. To a separable Gaussian space X we can non-canonically associate many
isonormal processes. Note first that there is a tautological one (X,X,1).

A complete orthonormal basis (Xn)n∈N determines a Hilbert space isomorphism

Fourier : ℓ2 → X, ℓ2 ∋ c = (cn)n∈N 7→ Fourier
(
c
)
:=
∑
n∈N

cnXn.

⊓⊔

Example 3.1.7. Let us analyze a special case of The gaussian space described in Example
3.1.2.

Suppose that H is a separable, real Hilbert space with inner product (−,−)H , and Γ is
a centered Gaussian measure on H; see Definition 1.1.47.

For any h ∈ H, the linear functional Lh : H → R, Lh(x) = (h, x)H , is a centered
Gaussian random variable. In particular, the collection (Lh)h∈H is a Gaussian random field
parameterized by H. We denote by C(h1, h2) the covariance of Lh1 , Lh2 ,

C(h1, h2) = E
[
Lh1Lh2

]
.

This defines an inner product on H∗, the topological dual of H. As explained in [39], there
exists a symmetric, nonnegative trace class operator Q : H → H such that

C(h1, h2) =
(
Qh1, h2

)
H
, ∀h1, h2 ∈ H.

Assume for simplicity that kerQ = 0.

To this Gaussian measure we can associate the Gaussian Hilbert space H∗
Γ defined as the

closure in L2(H,Γ) of the vector space spanned by (Lh)h∈H . One could think of the elements
of H∗

Γ as measurable linear functionals H → R.
Note that we have a continuous map with dense image

L : H → H∗
Γ, h 7→ Lh. (3.1.1)

The Hilbert space H∗
Γ is canonically isomorphic with H as a Hilbert space. To construct this

isomorphism consider the dense subspace Q1/2H and the map

W : Q1/2H → L2(H,Γ), Q1/2H ∋ z 7→Wz := LQ−1/2z.

Clearly the image of W is equal to the image of the map L in (3.1.1). Observe that

E
[
Wz1Wz2

]
= (z1, z2)H , ∀z1, z2 ∈ Q−1/2H.

This shows that the mapW extends by continuity to an isometryW : H → H∗
Γ. This isomor-

phism of Hilbert spaces is called the white noise map. Observe that the triplet (H,H∗
Γ,W )

is an isonormal Gaussian process.
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The subspace Q1/2H ⊂ H is the Cameron-Martin space defined in (1.1.34). If we identify

H with its topological dual we observe that H∗ = H ⊂ H∗
Γ then Q1/2H can be identified

with the Cameron-Martin space of the Gaussian process (Lh); see Appendix B.5.

We fix an orthonormal (ek)k∈N (complete) basis of H consisting of eigenvectors of Q,

Qen = λnen, n ∈ N.

The collection of linear functionals

Wen :=
1√
λn
Len , n ∈ N

is an orthonormal basis of the associated Gaussian Hilbert space H∗
Γ. ⊓⊔

Definition 3.1.8. Suppose that X ⊂ L2(Ω, S,P) is a Gaussian Hilbert space. We denote
by SX the σ-subalgebra of S generated by the collection of random variables X ∈ X and we
define

F(X) := L2
(
Ω, SX,P

)
⊂ L2(Ω, S,P).

For reasons that will become clear a bit later, we will refer to F(X) as the Wiener chaos of
X. ⊓⊔

Example 3.1.9. Suppose that T is a compact metric space and Γ is a Gaussian measure on
the Banach space X = C(T ). We have a Gaussian stochastic process

X̂ :
(
X,BX ,Γ)× T → R, X × T ∋ (f, t) 7→ X̂f (t) := Evt(f) = f(t).

The Gaussian Hilbert space X determined by this process is the closure in L2
(
X,BX ,Γ

)
of

the subspace spanned by X̂(t), t ∈ T . Blackwell’s theorem implies that the sigma-algebra
generated by

(
Evt

)
t∈T coincides with the Borel sigma-algebra BX and thus

F(X) = L2
(
X,BX ,Γ

)
.

⊓⊔

3.1.2. Hermite decompositions. To understand what happens when we pass from a
Gaussian Hilbert space X to its Wiener chaos F(X) we consider first the simplest possible
case, dimX = 1.

Example 3.1.10 (Hermite polynomials). Consider the standard Gaussian measure P = Γ
on Ω = R,

Γ
[
dx
]
=

1√
2π
e−

x2

2 λ
[
dx
]
.

As explained in Example 3.1.2, this tautologically defines a one-dimensional Gaussian Hilbert
space X spanned by the identity function 1R : R→ R.

In this case S = SX is the σ-algebra BR of the Borel subsets of R and SX = BR. Moreover,
we have and isomorphism

L2(R,Γ)→ F(X), L2(R,Γ) ∋ F 7→ F ◦ 1R.

We see that the Wiener chaos F(X) is much larger than X.

A convenient complete orthogonal basis of F(X1) = L2(R,Γ) is given by the Hermite
polynomials (Hn)n≥0, [93, V.1.3].
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To define these polynomials we introduce the creation operator δx : C∞(R)→ C∞(R),

δxf(x) = −e
x2

2 ∂x
(
e−

x2

2 f(x)
)
= −∂xf(x) + xf(x). (3.1.2)

The creation operator is the formal adjoint with respect to the inner product in L2(R,Γ) of
the annihilation operator, namely the usual differential operator ∂x. More precisely,∫

R
f ′(x)g(x)Γ

[
dx
]
=

∫
R
f(x)δxg(x)Γ

[
dx
]
, ∀f, g ∈ C∞

cpt(R).

The above equality is a direct consequence of the Gaussian integration-by-parts formula
(1.1.5).

The n-th Hermite polynomial is defined by

Hn(x) = δnx1. (3.1.3)

Let us observe that the operators ∂x, δx satisfy the Heisenberg identity

[∂x, δx] = ∂xδx − δx∂x = 1.

Using this iteratively we deduce

∂xHn(x) = nHn−1(x), ∀n ∈ N, (3.1.4a)

δx∂xHn(x) = −H ′′
n(x) + xH ′

n(x) = nHn(x), ∀n ∈ N. (3.1.4b)

∂nx
(
e−

x2

2
)
= (−1)nHn(x)e

−x2

2 . (3.1.4c)

From the defining equation (3.1.3) we deduce

Hn(x) = δxHn−1(x) = −H ′
n−1(x) + xHn−1(x)

(3.1.4b)
= −(n− 1)Hn−2(x) + xHn−1(x),

we thus we obtain the three-term recurrence relations

Hn+1(x) = δxHn(x) = −H ′
n(x) + xHn(x), ∀n ≥ 0. (3.1.5a)

Hn(x) = xHn−1(x)− (n− 1)Hn−2(x), ∀n ≥ 2. (3.1.5b)

For example,

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x, H6(x) = x6 − 15x4 + 45x2 − 15.

More generally,

Hn(x) = n!

⌊n
2
⌋∑

r=0

(−1)r

2rr!(n− 2r)!
xn−2r. (3.1.6)

Observe that the leading coefficient of Hn(x) is 1. We have

|Hn(x)| ≤
n∑

m=0

(
n

m

)
|x|n−m

(
1

2

)m/2
=

(
1√
2
+ |x|

)n
, ∀x ∈ R. (3.1.7)

From the equalities (3.1.3) and (3.1.4a) we deduce that the collection (Hn)n≥0 is orthogonal
in L2(R,Γ), ∫

R
Hm(x)Hn(x)Γ

[
dx
]
= δnmn!. (3.1.8)

In particular, ∫
R
Hm(x)Γ

[
dx
]
=

∫
R
Hm(x)H0(x)Γ

[
dx
]
= 0, ∀m > 0. (3.1.9)
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Proposition 1.1.3 shows that the collection (Hn)n≥0 spans a dense subspace in L2(R,Γ).
Hence, any f ∈ L2(R,Γ) admits a Fourier-Hermite decomposition

f =
∑
n≥0

cn(f)Hn(x), cn(f) =
1

n!

∫
R
f(x)Hn(x)Γ

[
dx
]
.

Let us point out that if g ∈ C∞(R) has the property that

g(k) ∈ L2(R,Γ), ∀k ≥ 0,

then we have the following expansion in L2(R,Γ)

g(x) =
∑
n≥0

1

n!
EΓ

[
g(n)

]
Hn(x), (3.1.10)

where Eγ1 denotes the expectation with respect to the probability measure Γ. If in the above
equality we choose

g(x) = gt(x) = etx−
t2

2 ,

then, for any t ∈ R, we have

dn

dxn
gt(x) = tnetx−

t2

2 , EΓ

[
g
(n)
t

]
= tne−

t2

2

∫
R
etxΓ

[
dx
] (1.1.7)

= tn.

This proves that ∑
n≥0

Hn(x)
tn

n!
= etx−

t2

2 = gt(x), (3.1.11)

where the above series converges in L2(R,Γ) for any t ∈ C. The estimates (3.1.7) show that
the above series also converges uniformly for (x, t) on the compacts of R× C. ⊓⊔

Remark 3.1.11. There is no consensus in the existing literature on the canonical definition
of Hermite polynomials since many authors use different normalizations as canonical. To help
the reader navigate these “canonical” choices we want to describe a one-parameter family of
“canonical” Hermite polynomials that contains most these choices. Our presentation follows
closely [83, Sec. 9.3] to which we refer for proofs and more details.

For each ρ > 0 and x ∈ R we set

Hn(x|ρ) := (−ρ)n d
n

dxn
e
−x2

2ρ .

The function Hn(x|ρ) is a degree n polynomial in x called the nth Hermite polynomial with
parameter ρ.

The exponential generating function of the sequence
(
Hn(x, ρ)

)
n≥0

is

Hρ(t, x) := etx−
1
2
ρt2 =

∑
n≥0

1

n!
Hn(x|ρ)tn. (3.1.12)

Thus Hn(x) = Hn(x|ρ = 1). Moreover,

Hn(x|ρ) = ρn/2Hn

(
xρ−

1
2
)
. (3.1.13)

In particular this shows that the leading coefficient of Hn(x|ρ) is 1 for any ρ. Using (3.1.4a)
we deduce

∂xHn(x|ρ) = nHn−1(x|ρ). (3.1.14)
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Note that

∂ρHρ(t, x) = −
t2

2
Hρ(t, x) = −

1

2
∂2xHρ(t, x).

Thus the polynomials Hn(x|ρ) satisfy the backwards heat equation(
∂ρ +

1

2
∂2x

)
Hn(x|ρ) = 0, ∀n ≥ 0. (3.1.15)

⊓⊔

Suppose that X ⊂ L2(Ω, S,P) is a separable Gaussian Hilbert space. Fix a complete
orthonormal base (Xn)n≥1 of X. In particular, we have

E
[
XiXj

]
= δij = the Kronecker δ,

and thus the random variables (Xn)n≥1 are independent. Additionally, the σ-algebra gener-
ated by the collection (Xn) coincides with the σ-algebra SX.

Consider the space RN of real sequences x = (x1, x2, . . . ) equipped with the product
measure

ΓN =
⊗
n∈N

Γ
[
dxn

]
,

defined on the Borel σ-algebra BN of the space RN equipped with the product topology.

For n ∈ N we denote by πn the natural projection

RN → Rn, x 7→ (x1, . . . , xn)

and we set Bn := π−1
n

(
BRn

)
. Then

BN =
∨
n∈N

Bn.

The L2-martingale convergence theorem implies1 that the union of the subspaces

L2
(
RN,Bn,Γ

N), n ∈ N,

is a dense subspace of L2
(
RN ,BN,ΓN).

We have a natural map

X⃗ : Ω→ RN, ω 7→
(
X1(ω), X2(ω), . . . ,

)
.

Then
SX = σ(X1, X2, . . . , ) = X⃗−1(BN),

and X⃗#(P) = ΓN. Moreover (see [35, Cor.II.4.5]), a function f : Ω → R is SX-measurable if

and only if there exists a BN-measurable function F : RN → R, such that

f(ω) = F
(
X1(ω), X2(ω), . . .

)
, ∀ω ∈ Ω.

Additionally, f ∈ F(X) iff F ∈ L2(RN,ΓN) and∫
Ω
f(ω)2P

[
dω
]
=

∫
RN
F (x)2ΓN[ dx ].

This yields an isomorphism of Hilbert spaces

F(X) = L2
(
Ω, SX,P

)
→ L2

(
RN,ΓN ).

1One could use the Monotone Class Theorem to reach the same conclusion, but the details would fill-up more
space.
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We can construct an orthonormal basis of L2(RN,ΓN) as follows. For any multi-index

α = (α1, α2, . . . ) ∈ NN
0

such the αk = 0 for all k sufficiently large, we consider the multi-variable polynomial

Hα(x) :=
∏
k∈N

Hαk
(xk), x = (x1, x2, . . . ) ∈ RN.

The collection Hα thus obtained is a complete orthogonal basis of L2(RN,ΓN) and (3.1.8)
shows that ∥∥Hα

∥∥2
L2(RN ,ΓN)

= α! :=
∞∏
k=1

αk!. (3.1.16)

3.1.3. Wick’s formula. Suppose that X1, . . . , Xn are jointly Gaussian, centered real ran-
dom variables, i.e., the real random vector X = (X1, . . . , Xn) is centered Gaussian. Wick’s
formula provides an explicit description of the expectation E

[
X1 · · ·Xn

]
in terms of the

variance operator Var
[
X
]
of the Gaussian vector X.

Let us first observe that

(−1)nE
[
X1 · · ·Xn

]
= E

[
(−X1) · · · (−Xn)

]
= E

[
X1 · · ·Xn

]
,

where the second equality is due to the symmetry of distribution PX of X, i.e., for any Borel
subset B of Rn

P
[
{X ∈ −B}

]
= P

[
{X ∈ B}

]
.

In particular, this shows that

E
[
X1 · · ·Xn

]
= 0 if n is odd. (3.1.17)

To explain how to compute the expectation E
[
X1 · · ·Xn

]
in terms of the covariances E

[
XiXj

]
we need a bit of combinatorial terminology.

Let V be a finite set. A Feynman diagram on V is a graph with vertex set V such that
any vertex is connected to at most one other vertex. In other words, a Feynman diagram is
a partial matching of the vertices in V . We denote Feyn(V ) the set of Feynman diagrams
with vertex set V .

Given Γ ∈ Feyn(V ) we denote by E(Γ) the set of edges of Γ and by I(Γ) the set of isolated
vertices Γ, i.e., vertices not connected to any other vertex. The rank of a Feynman diagram
is the number of its edges, r(Γ) := #E(Γ). We have

#V = 2r(Γ) + #I(Γ).

A diagram is called complete if it has no isolated vertices, I(Γ) = ∅.
We denote by Feynr(V ) the subset of Feyn(V ) consisting of diagrams of rank r. We

denote by Feyn∗(V ) the set of complete Feynman diagrams. We set In := {1, . . . , n} and

Feyn(n) := Feyn(In), Feynr(n) := Feynr(In) etc.

Lemma 3.1.12.

#Feyn∗(n) =

{
0, n = 2m+ 1,

(2m− 1)!!, n = 2m
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#Feynr(n) =

(
n

n− 2r

)
×#Feyn∗(2r) =

(
n

n− 2r

)
(2r − 1)!! =

n!

2rr!(n− 2r)!
.

Proof. Only the case n = 2m is nontrivial. Here is how one generates all the complete
diagrams with 2m vertices X1, . . . , X2m.

Take the vertex X1 and pair it with one of the remaining (2m − 1) vertices. There are
(2m − 1) possibilities. Once X1 is paired, we are left with (2m − 2) vertices and there are
#Feyn∗(2m− 2) complete Feynman diagrams on (2m− 2) vertices. Hence

#Feyn∗(2m) = (2m− 1)×#Feyn∗(2m− 2).

In general

#Feynr(n) =
∑
S⊂In

#S=n−2r

#Feyn∗
(
In \ S

)
=

(
n

n− 2r

)
×#Feyn∗(2r).

⊓⊔

If we set

dn(r) := #Feynr(n),

we deduce from (3.1.6) that

Hn(x) =

⌊n
2
⌋∑

r=0

(−1)r
∑

Γ∈Feynr(n)

xn−2r =

⌊n
2
⌋∑

r=0

(−1)rdn(r)xn−2r. (3.1.18)

Suppose we are given a jointly Gaussian family of centered random variables (Xv)v∈V .
For Γ ∈ Feyn(V ) we define the random variable

w(Γ) = w(Γ)
[
(Xv)v∈V

]
:=

 ∏
e∈E(Γ)

w(e)

 · ∏
v∈I(Γ)

Xv,

where for any edge e = [v1, v2] of Γ we define its weight to be the covariance w(e) = E
[
Xv1Xv2

]
.

Note that if Γ is complete, then w(Γ) is deterministic, i.e., a real constant. If ∅ denotes the
Feynman diagram with no edges, then

w(∅) =
∏
v∈V

Xv.

Proposition 3.1.13 (Wick’s formula). Suppose that V is a finite set and (Xv)v∈V is a jointly
Gaussian family of centered random variables. Then

E
[
w(∅)

]
=

∑
Γ∈Feyn∗(V )

w(Γ) (3.1.19)

Proof. We can assume that V = In, n = #V . Note that if n is odd, then the sum in the
right-hand-side of (3.1.19) is trivial. This agrees with (3.1.17)

To prove (3.1.19) we first observe that

E[X1 · · ·Xn] =
1

n!

∂n

∂t1 · · · ∂tn
∣∣
t1=···=tn=0

E
[
(t1X1 + · · ·+ tnXn)

n
]
.
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Next, we observe that t1X1 + · · ·+ tnXn is a centered Gaussian variable with variance

v(t1, . . . , tn) =

n∑
i,j=1

E[XiXj ]titj =

n∑
j=1

E[X2
j ]t

2
j + 2

∑
i<j

E[XiXj ]titj .

If we let n = 2k, we deduce from (1.1.9) that

E
[
(t1X1 + · · ·+ t2kX2k)

2k
]
= (2k − 1)!!

(
2k∑

i,j=1

E[XiXj ]titj

)k
.

so that

E[X1 · · ·X2k] =
(2k − 1)!!

(2k)!

∂2k

∂t1 · · · ∂t2k
∣∣
t1=···=t2k=0

(
2k∑

i,j=1

E[XiXj ]titj

)k

= (2kk!)
(2k − 1)!!

(2k)!

∑
Γ∈Feyn∗(n)

w(Γ) =
∑

Γ∈Feyn∗(n)

w(Γ).

⊓⊔

Example 3.1.14. Suppose that the random variables Y1, Y2 are centered and jointly Gau-
sian. We set vi = E

[
Y 2
i

]
, c = E

[
Y1Y2

]
. Applying Wick’s formula to the Gaussian vetor

X = (Y1, Y1, Y1, Y2) we deduce

E
[
Y 3
1 Y2

]
= 3v1c.

Similarly

E
[
Y 2
1 Y

2
2

]
= v1v2 + 2c2.

⊓⊔

3.1.4. The Wiener chaos decomposition. Fix a probability space (Ω, S,P) and a sepa-
rable Gaussian Hilbert space X ⊂ L2(Ω, S,P). We want to describe a coordinate independent
orthogonal decomposition of the Wiener chaos F(X) that is closely related to the coordinate
dependent Hermite decomposition described in Subsection 3.1.2.

Proposition 3.1.15. The vector space

spanR
{
ξ1 · · · ξn; n ∈ N, ξ1, . . . , ξn ∈ X

}
is dense in F(X) = L2(Ω, SX,P).

Proof. Fix a complete orthonormal basis X1, X2, . . . , Xn, . . . of X. I will prove that

PC := spanC

{
Xα1

1 · · ·X
αn
n ; n ∈ N, α1, . . . , αn ∈ N0

}
is dense in F(X)C = F(X)⊕ iF(X). I follow the approach in [75, Thm.2.6].

Denote by P̂C the closure of PC in F(X)C. We will prove prove that F(X)C ⊂ P̂C. Set

Vn = span
{
X1, X2, . . . , Xn,

}
, V =

⋃
n≥1

Vn.

The result follows from the following two facts.

A. eiX ∈ F(X)C = F(X) + iF(X) for any X ∈ X.
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Proof. Let X ∈ X. Then

eiX =
∞∑
k=0

ik

k!
Xk,

where the above series converges in L2(Ω, S,P). This proves that eiX ∈ F(X)C.

B. If Z ∈ F(X)C and E
[
ZeiX

]
= 0, ∀X ∈ V, then Z = 0.

Proof. We set

Fn := σ(X1, X2, . . . , Xn),

so we get a filtration of σ-algebras F1 ⊂ F2 ⊂ · · · such that

SX =

∞∨
n=1

Fn. (3.1.20)

Suppose that Z ∈ F(X)C and E
[
ZeiX

]
= 0, ∀X ∈ X. We set

Zn := E
[
Z ∥Fn

]
.

The definition of conditional expectation implies that

E[ZneiX ] = 0, ∀X ∈ Vn.

Now observe that since Zn ∈ L2(Ω,Fn,P) we have

Zn(ω) = φn(X1(ω), . . . , Xn(ω) )

for some φ ∈ L2(Rn,Γn). We deduce that

E
[
φn(X1, . . . , Xn)e

it1X1+···+itnXn
]
= 0, ∀t1, . . . , tn ∈ R.

In other words, the Fourier transform of the complex valued measure

φn(x1, . . . , xn)Γ
[
dx1

]
· · ·Γn

[
dxn

]
is trivial so that φn = 0. Hence Zn = 0, ∀n ∈ N, i.e.,

E
[
Z ∥Fn

]
= 0, ∀n ∈ N.

Using (3.1.20), we deduce from the Martingale Convergence Theorem

Z = E
[
Z ∥ SX

]
= lim

n→∞
E
[
Z ∥Fn

]
= 0.

⊓⊔

For n ∈ N0 we define Pn(X) to be the closure in F(X) of the subspace{
p(ξ1, . . . , ξm); m > 0, ξ1, . . . , ξm ∈ X, p ∈ R[x1, . . . , xm], deg p ≤ n

}
.

Proposition 3.1.15 shows that the vector space

P(X) =
⋃
n≥0

Pn(X),

is dense in F(X). Clearly Pn−1(X) ⊂ Pn(X). We denote by X:n: the orthogonal complement
of Pn−1(X) in Pn(X). We deduce that

F(X) =
⊕̂
n≥0

X:n:, (3.1.21)
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where the direct sum in the right-hand-side indicates a Hilbert-complete direct sum, i.e.,

ξ ∈
⊕̂
n≥0

X:n:⇐⇒ξ = (ξn)n≥0, ξn ∈ X:n:,
∑
n≥0

∥ξn∥2L2 <∞.

The decomposition (3.1.21) is called the Wiener chaos decomposition of F(X). We will denote
by Projn the orthogonal projection F(X)→ X:n:. Note that

X:0: = span{1}
so

∀n > 0, ∀F ∈ X:n:, E
[
F
]
= E

[
F · 1

]
= 0.

Example 3.1.16. Suppose that X is the 1-dimensional Gaussian Hilbert space generated by
a standard Gaussian random variable ξ with mean 0 and variance 1. In this case

Pn(X) = spanR
{
Hk(ξ); k ≤ n

}
.

Since E[Hj(ξ)Hk(ξ)] = 0 for j ̸= k, we deduce that

X:n: = span
{
Hn(ξ)

}
.

Moreover, (3.1.10) implies that, ∀n ≥ 0 we have

ξn =
n∑
k=0

(
n

k

)
E
[
ξn−k

]
Hk(ξ) =

⌊n/2⌋∑
j=0

(
n

2j

)
E
[
ξ2j
]
Hn−2j(ξ) (3.1.22)

(1.1.9)
=

⌊n/2⌋∑
j=0

(2j − 1)!!

(
n

2j

)
Hn−2j(ξ).

In particular,
Projn(ξ

n) = Hn(ξ). (3.1.23)

If X is a separable Gaussian Hilbert space and X = (Xn)n≥1 is a complete orthonormal
basis of X, then the computations at the end of Subsection 3.1.2 show that the collection
Hα(X1, . . . , Xm), m ∈ N, α ∈ Nm0 , is an orthogonal basis of F(X) ⊓⊔

3.1.5. Wick products and the diagram formula. Fix a probability space (Ω, S,P) and
a separable real Gaussian Hilbert space X ⊂ L2(Ω, S,P). Denote by F(X) the Wiener chaos
of X, and consider the Wiener chaos decomposition

F(X) =
⊕̂
n≥0

X:n:.

We have bilinear maps

X:m: × X:n: → X:(m+n):, X:m: × X:n: ∋ (ξ, η) 7→ ξ • η := Projm+n(ξη).

Remark 3.1.17. If X = (Xk)k≥1 is a complete orthonormal basis of X, and α, β ∈ N0 are
such that |α| = m, |β| = n, then

Hα(X) •Hβ(X) = Hα+β(X). (3.1.24)

Indeed,

Hα(X) •Hβ(X) =
∑
|γ|=m

cγHγ(X).
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Now observe that for any multi-index γ such that |γ| = m+ n, and γ ̸= α+ β the coefficient
of Xα+β in Hγ(X) is 0, while the coefficient of Xα+β in Hα+β(X) is 1. ⊓⊔

Definition 3.1.18. Fix a polynomial P ∈ R[x1, . . . , xn] of degree m. For any ξ1, . . . , ξn ∈ X,
the random variable Projm P (ξ1 · · · ξn) ∈ X:m: is called the Wick polynomial associated to
P (ξ1, . . . , ξn) and it is denoted by : P (ξ1 · · · ξn) :. ⊓⊔

Theorem 3.1.19. Let X be a separable Gaussian Hilber space and ξ1, . . . , ξn ∈ X. Then

: ξ1 · · · ξn : =
∑
Γ

(−1)r(Γ)w(Γ), (3.1.25)

where the summation is over all the Feynman diagrams with vertices labelled by ξ1, . . . , ξn.

Proof. Denote by L(ξ1, . . . , ξn) the left-hand-side of (3.1.25) and by R(ξ1, . . . , ξn) its right-
hand side. Observe that both L and R are symmetric, multi-linear forms in the variables
ξ1, . . . , ξm and thus

L(ξ1, . . . , ξn) = R(ξ1, . . . , ξn), ∀ξ1, . . . , ξn⇐⇒L
(
ξ, . . . , ξ︸ ︷︷ ︸

n

)
= R

(
ξ, . . . , ξ︸ ︷︷ ︸

n

)
, ∀ξ ∈ X, Var

[
ξ
]
= 1.

Let ξ ∈ X such that Var
[
ξ
]
= 1. Then

L
(
ξ, . . . , ξ︸ ︷︷ ︸

n

)
=: ξn :

(3.1.23)
= Hn(ξ).

Then

R
(
ξ, . . . , ξ︸ ︷︷ ︸

n

)
=
∑
r≥0

(−1)r
∑

γ∈Feynr(n)

ξm−2r (3.1.18)
= Hn(ξ).

Hence

R
(
ξ, . . . , ξ︸ ︷︷ ︸

n

)
= L

(
ξ, . . . , ξ︸ ︷︷ ︸

n

)
.

⊓⊔

Corollary 3.1.20. Suppose that ξ1, . . . , ξn ∈ X is an orthonormal system, i.e.,

E
[
ξiξj

]
= δij , ∀i, j.

Then for any α ∈ Nn0 we have

: ξα : = : ξα1
1 · · · ξ

αn
n := Hα(ξ1, . . . , ξn).

Proof. Set m := |α|. Since the random variables ξ1, . . . , ξn are independent, we deduce that

E[Hβ(ξ1, . . . , ξn)Hγ(ξ1, . . . , ξn) ] =

n∏
j=1

E[Hβj (ξj)Hγj (ξj) ], ∀β, γ ∈ Zn≥0.

We deduce from the orthogonality of the Hermite polynomials that the collection(
Hβ(ξ1, . . . , ξn)

)
|β|≤m
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is an orthogonal basis of Pm(ξ1, . . . , ξn). In particular, we have a unique linear decomposition

ξα =
∑

|β|≤m

cβHβ(ξ), (3.1.26a)

: ξα : =
∑

|β|=m

cβHβ(ξ). (3.1.26b)

For any multi-index β such that |β| = m, the coefficient of ξβ in the right-hand-side of
(3.1.26a) is cβ. We deduce that cβ = 0 for all β such that |β| = m and β ̸= α. The conclusion
of Corollary 3.1.20 is now obvious. ⊓⊔

Corollary 3.1.21. The space

span
{
: ξ1ξ2 · · · ξn : ; ξ1, . . . , ξn ∈ X

}
is dense in X:n:.

Proof. Follows from Example 3.1.16 and Corollary 3.1.20. ⊓⊔

Corollary 3.1.22. Suppose that X = (Xk)k≥1 is a complete orthonormal basis of X. Then
the collection

Hα

(
X
)
, α ∈ NN

0 , |α| = n,

is an complete orthogonal basis of X:n:.

Proof. Let ξ1, . . . , ξn ∈ X. Then

ξ1 · · · ξn =
∑
α∈Nn

0
|α|=n

cαX
α, Xα =

∏
nN

Xαn
n ,

where the above series converges in L2. We deduce

: ξ1 · · · ξn :=
∑
α∈Nn

0
|α|=n

cαHα

(
X
)
.

⊓⊔

Theorem 3.1.23 (Diagram Formula). Consider an array of random variables

A =
{
ξij ∈ X; 1 ≤ i ≤ k, 1 ≤ j ≤ ℓi

}
.

Denote by Feyn
[
A
]
⊂ Feyn(A) the collection of Feynman diagrams with vertices in A and

compatible with the array structure of A. This means that no edge connects vertices situ-
ated on the same row of the array A. Denote by Feyn∗

[
A
]
the subcollection of Feyn

[
A
]

consisting of complete diagrams. For i = 1, . . . , k we set

Yi := Projℓi

 ℓi∏
j=1

ξij

 , ℓ = ℓ1 + · · ·+ ℓk.

In other words, Yi is the Wick product of the variables situated on the i-th row. Then

E
[
Y1 · · ·Yk

]
=

∑
Γ∈Feyn∗

[
A
]w(Γ), (3.1.27a)
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Y1 · · ·Yk =
∑

Γ∈Feyn
[
A
] : w(Γ) := ∑

Γ∈Feyn
[
A
]Projℓ−2r(Γ)w(Γ). (3.1.27b)

Proof. I follow the approach in [75, Thm. 3.12, 3.15]. Denote by Ai the i-th row of the array
A and by Feyn∗(A) the collection of all complete Feynman diagrams with vertices in the array,
not necessarily compatible with the array. I want to emphasize that Feyn∗

[
A
]
⊂ Feyn∗(A).

Theorem 3.1.19 implies that

Yi =
∑

Γi∈Feyn(Ai)

(−1)r(Γi)w(Γi),

Y1 · · ·Yk =
k∏
i=1

 ∑
Γi∈Feyn(Ai)

(−1)r(Γi)w(Γi)


=

∑
(Γ1,...,Γk)∈Feyn(A1)×···×Feyn(Ak)

(−1)
∑k

i=1 r(Γi)
k∏
i=1

w(Γi),

so that

E
[
Y1 · · ·Yk

]
=

∑
(Γ1,...,Γk)∈Feyn(A1)×···×Feyn(Ak)

(−1)
∑k

i=1 r(Γi)E

[
k∏
i=1

w(Γi)

]
.

Given (Γ1, . . . ,Γk) ∈ Feyn(A1)× · · · × Feyn(Ak) we denote by Feyn∗(Γ1, . . . ,Γk) the subcol-
lection of Feyn∗

(
A
)
consisting of diagrams that contain Γ1 ∪ · · · ∪ Γk as a subdiagram.

We deduce from Wick’s formula (3.1.19) that

E

[
k∏
i=1

w(Γi)

]
=

∑
Γ′∈Feyn∗(Γ1,...,Γk)

w(Γ′).

Hence

E
[
Y1 · · ·Yk

]
=

∑
Γ′∈Feyn∗(Γ1,...,Γk)

w(Γ′)

 ∑
(Γ1,...,Γk)∈Feyn(A1)×···×Feyn(Ak)

Γ1∪···∪Γk⊂Γ′

(−1)
∑k

i=1 r(Γi)


︸ ︷︷ ︸

=:S(Γ′)

.

For any Γ′ ∈ Feyn∗(Γ1, . . . ,Γk) we have

S(Γ′) =
k∏
i=1

 ∑
Γi∈Feyn(Ai)

Γi⊂Γ′

(−1)r(Γi)


︸ ︷︷ ︸

=:Si(Γ′)

.
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Given Γ′ ∈ Feyn∗(A) we denote by Γ′ ∩ Ai the subdiagram of Γ′ consisting only of edges
connecting vertices on the i-th row of A. We have

Si(Γ
′) =

∑
Γi⊂Γ′∩Ai

(−1)r(Γi).

Now observe that Si(Γ
′) = 0 if Γ′∩Ai ̸= ∅ and it is = 1 otherwise. Indeed, if r = r(Γ′∩Ai) > 0

then ∑
Γi⊂Γ′∩Ai

(−1)r(Γi) =
∑
S⊂Ir

(−1)|S| =
r∑
j=0

(−1)j
(
r

j

)
= 0.

Thus

S(Γ′) =

{
1, Γ′ ∈ Feyn∗

[
A
]
,

0, Γ′ ∈ Feyn∗(A) \ Feyn∗
[
A
]
.

This proves (3.1.27a).

Denote by L, respectively R the left-hand-side respectively the right-hand-side of the
equality (3.1.27b). For any random variables

η1, . . . , ηm ∈ span
{
ξij ∈ X, ; 1 ≤ i ≤ k, 1 ≤ j ≤ ℓi

}
we denote by Aη the array obtained from A by adding an extra row consisting of the variables
η1, . . . , ηm. Set Z := (: η1 · · · ηm :). Then (3.1.27a) applied to Aη implies that we have

E[LZ] = E[RZ]⇐⇒E
[
(L−R)Z

]
= 0.

The equality (3.1.27b) now follows from Corollary 3.1.21. ⊓⊔

Example 3.1.24. Let us apply the diagram formula in the special case when the array
A = (ξij) consists of two rows of lengths ℓ1 ≤ ℓ2 and and ξij = ξ, ∀i = 1, 2,j = 1, . . . , ℓi,
E
[
ξ2
]
= 1. Then

Yi = Hℓi(ξ)

and we deduce

Hℓ1(ξ)Hℓ2(ξ) =
∑

Γ∈Feyn
[
A
]Hℓ1+ℓ2−2r(Γ)(ξ) =

ℓ2∑
r=0

r!

(
ℓ1
r

)(
ℓ2
r

)
Hℓ1+ℓ2−2r(ξ).

More generally, assume the array has two rows, but the variables on the first row are equal to
ξ1, while the variables on the second row are equal to ξ2, E

[
ξ21
]
= E

[
ξ22
]
= 1. If c := E[ξ1ξ2],

then

Hℓ1(ξ1)Hℓ2(ξ2) =
ℓ∑

r=0

r!

(
ℓ1
r

)(
ℓ2
r

)
cr Projℓ1+ℓ2−2r(ξ

ℓ1−r
1 ξℓ2−r2 ). (3.1.28)

If ℓ1 = ℓ2 = ℓ, then (3.1.27a) implies that

E
[
Hℓ1(ξ1)Hℓ2(ξ2)

]
= ℓ!

(
2ℓ

ℓ

)
cℓ. (3.1.29)

⊓⊔
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The equality (3.1.27b) implies2 that for any positive integer n there exists a constant
C(n) > 0 such that for any X ∈ Pn(X) we have

∥X∥L4 ≤ C(n)∥X∥L2 .

In particular, this shows that the bilinear map

X:m: × X:n: ∋ (X,Y ) 7→ X • Y := Projm+n(XY ) ∈ X:m+n:

is continuous. Corollary 3.1.22 now implies that the multiplication • satisfies the associativity
property

(ξ • η) • ζ = ξ • (η • ζ), ∀ξ ∈ X:ℓ:, η ∈ X:m:, ζ ∈ X:n:, ∀ℓ,m, n ∈ N0. (3.1.30)

Indeed, (3.1.24) shows that the above equality is true for

ξ, η, ζ ∈
{
Hα(X); α ∈ ZN

≥0, |α| <∞
}
.

The general case follows from the multi-linearity and continuity of (3.1.30) in ξ, η, ζ. A similar
argument shows that

ξ • η = η • ξ, ∀ξ ∈ X:m:, η ∈ X:n:. (3.1.31)

We thus obtain a structure of commutative and associative R-algebra on X called the Wick
algebra of X. The product • is called the Wick product. Note that for ξ1, . . . , ξm ∈ X we have

ξ1 • · · · • ξm =: ξ1 · · · ξm :

In general, if

ξ =
∑
n≥0

ξn, η =
∑
n≥0

ηn, ξn, ηn ∈ X:n:,

then

ξ • η :=
∑
n≥0

 ∑
j+k=n

ξj • ηk

 .

Example 3.1.25 (The Wick exponential). Suppose that X ∈ X and v = Var
[
X
]
. Define

the Wick exponential

: eX :=
∑
n≥0

1

n!
: Xn : .

Using (3.1.23) we deduce

: Xn := vn/2Hn(v
−1/2X)

(3.1.13)
= Hn(x|v).

The equality (3.1.12) implies

: eX := eX−v/2 = eX− 1
2
Var[X]. (3.1.32)

If X,Y ∈ X, then (
: eX :

)(
: eY :

)
= eX+Y− 1

2
(Var[X]+Var[Y ])

Then

E
[ (

: eX :
)(

: eY :
) ]

= E
[
eX+Y

]
e−

1
2
(Var[X]+Var[Y ])

(X + Y is centered Gaussian)

(1.1.7)
= e

1
2

(
Var[X+Y ]−Var[X]−Var[Y ]

)
= eE[XY ].

2See [75, Lemma 3.44] for details.
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⊓⊔

3.1.6. Fock spaces. We have shown that the Wiener chaos is a Hilbert space equipped
with a structure commutative and associative algebra. In this subsection we will describe a
general procedure that associates to an abstract separable Hilbert space H, a bigger space
equipped with a structure of commutative and associative algebra. This bigger space is called
the Fock space of H and plays an important role in quantum field theory, [147, Chap.3]. We
will show that the Fock space of a Gaussian Hilbert space is naturally isomorphic as a Hilbert
space and as algebra with the Wiener chaos.

The construction of the Fock spaces is based on the tensor product of two separable
Hilbert spaces H1, H2 defined as follows.

Construct first the algebraic tensor product H1 ⊗ H2. The universality property of the
tensor product implies that there exists a unique inner product (−,−)H1⊗H2 of H1⊗H2 such
that, for any xi, yi ∈ Hi, i = 1, 2, we have(

x1 ⊗ x2 , y1 ⊗ y2
)
H1⊗H2

= (x1, y1)H1 · (x2, y2)H2 .

We denote by H1⊗̂H2 the completion of H1 ⊗ H2 with respect to the norm defined by the
above inner product. The Hilbert space H1⊗̂H2 is called the (analytic) tensor product of the
Hilbert spaces H1, H2.

Theorem 3.1.26. Suppose that (Mj ,Mj , µj), i = 1, 2, are two measured spaces such that the
Hilbert spaces Hj = L2(Mj ,Mjµj) are separable.3 Then there exists a unique isomorphism
of Hilbert space

H1⊗̂H2 → L2
(
M1 ×M2, µ1 ⊗ µ2

)
,

such that

f1⊗̂f2 7→
(
f1 ⊠ f2 :M1 ×M2 → R

)
, f1 ⊠ f2(x1, x2) = f1(x1)f2(x2).

⊓⊔

For a proof and more details we refer to [130, Thm. II.10], or the original source, [103].

The tensor product of two separable Hilbert spaces H1, H2 can also be realized as the
space of Hilbert-Schmidt bilinear functionals u : H1 × H2 → R. This means that for any
complete orthonormal bases (em)m≥1 of H1 and (fn)n≥1 of H2 we have∑

m,n≥1

|u(em, fn)|2 <∞.

The tensor product of Hilbert spaces enjoys the usual commutativity and associativity
properties

H1⊗̂H2
∼= H2⊗̂H1, (H1⊗̂H2)⊗̂H3

∼= H1⊗̂(H2⊗̂H3).

Given a separable Hilbert space H we denote by H⊙n its algebraic n-th symmetric product,
i.e., the subspace of H⊗n consisting of elements fixed by the obvious action of the symmetric

group Sn. The closure of H⊙n in H⊗̂n is denoted by H⊙̂n and it is called the analytic n-th
symmetric power of H.

3E.g., this happens when the sigma-algebras Mj are countably generated and the measures µi are sigma-finite.
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Note that we have a natural projector Sym : H⊗n → H⊙n defined by

Sym[x1 ⊗ · · · ⊗ xn] :=
1

n!

∑
σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n), ∀x1, . . . , xn ∈ H.

For x1, . . . , xn ∈ H we set

x1 ⊙ · · · ⊙ xn :=
√
n!Sym[x1 ⊗ · · · ⊗ xn] =

1√
n!

∑
σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n). (3.1.33)

Note that

x⊙n = x⊙ · · · ⊙ x︸ ︷︷ ︸ = √n!x⊗n
and

∥x⊙n∥2 = n!∥x∥2n. (3.1.34)

This is a manifestation of a more general phenomenon.

Lemma 3.1.27. If e1, . . . , en is an orthonormal system in H and α = (α1, . . . , αn) ∈ Nn.
We set

e⊙α := e1 ⊙ · · · ⊙ e1︸ ︷︷ ︸
α1

⊙ · · · ⊙ en ⊙ · · · ⊙ en︸ ︷︷ ︸
αn

= e⊙α1
1 ⊙ · · · ⊙ e⊙αn

n .

Then

∥e⊙α∥2 := ∥e⊙α1
1 ⊙ · · · ⊙ e⊙αn

n ∥2 = α! = (α1!) · · · (αn!) = ∥Hα∥2. (3.1.35)

Proof. For any multi-index α ∈ Nn we define an α-coloring, or a coloring of type α, to be a
map π : I|α| → In such that

#π−1(k) = αk, ∀k = 1, . . . , n.

Think of π as defining a coloring of |α| objects with n colors e1, . . . , en so that exactly αk
objects have color ek. We denote by Pα the set α-colorings. Hence

#Pα =

(
|α|

α1, . . . , αn

)
:=

|α|!
α1! · · ·αn!

.

The symmetric group S|α| acts transitively on Pα

Pα ∋ ×S|α| ∋ (π, σ) 7→ π ◦ σ ∈ Pα

and the stabilizer of an α-covering π is isomorphic to

Sα := Sα1 × · · · ×Sαn .

To each π ∈ Pα(E) we associate the element

eπ := eπ(1) ⊗ · · · ⊗ eπ(|α|) ∈ H⊗|α|.

Let us observe that

(eπ, eπ′) =

|α|∏
k=1

(
eπ(k), eπ′(k)

)
H

= δππ′ , ∀π, π′ ∈ Pα.

Then

e⊙α =

∏n
k=1 αk!√
|α|!

∑
π∈Pα

eπ,
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so that

∥e⊙α∥2 =

(∏n
k=1 αk!√
|α|!

)2(
|α|

α1, . . . , αn

)
= (α1!) · · · (αn!).

⊓⊔

The above lemma implies4 that we have continuous bilinear map

⊙ : H⊙m ×H⊙n → H⊙(m+n)

defined by

X ⊙ Y :=

√(
n+m

m

)
Sym

(
X ⊗ Y

)
=

√(
n+m

m

)
Sym

(
Sym(X)⊗ Sym(Y )

)
,

∀X ∈ H⊙m, Y ∈ H⊙n.

Proposition 3.1.28. Let n1, n2, n3 ∈ N and Xi ∈ H⊙ni, i = 1, 2, 3. Then(
X1 ⊙X2

)
⊙X3 = X1 ⊙

(
X2 ⊙X3

)
.

Proof. Set α = (n1, n2, n3), n = n1 + n2 + n3. We can assume that

H = L2(I) = L2(I,λ), I = [0, 1].

Then

Xi ∈ L2(Ini) = L2
(
Ini ,λ⊗ni

) ∼= H⊗ni .

The symmetric tensor product H⊙ni is isomorphic as a vector space with the subspace of
symmetric functions in L2

(
Ini
)
.

The symmetric group Sn acts on In by permuting the coordinates. Thus, for

t := (t1, . . . , tn), σ ∈ Sn

we set

σ · t :=
(
tσ(1), . . . , tσ(n)

)
For F ∈ L2(Im) we have

Sym(F )(t) =
1

m!

∑
σ∈Sm

F (σ · t).

We set G := Sn. We introduce the following notation.

• G1 is the subgroup of G that permutes only the first n1 variables in (t1, . . . , tn).

• G3 is the subgroup of G that permutes only the last n3 variables in (t1, . . . , tn).

• G2 is the subgroup of G that permutes only the middle n2 variables in (t1, . . . , tn).

• G1,2 is the subgroup of G that permutes only the first n1+n2 variables in (t1, . . . , tn)

• G2,3 is the subgroup of G that permutes only the last n2+n3 variables in (t1, . . . , tn).

4The details are straightforward and not particularly illuminating.
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We have inclusions

HL := G1,2 ×G3 ⊂ G, HR := G1 ×G2,3 ⊂ G.
For any subgroup H ⊂ G we denote by H\G the set or orbits of the left-hand action of H
on G. We have the following commutative diagram of surjective maps.

G

HL\G HR\G

∗

�
���

L1

[
[[]
R1

u

p
[
[[]

L2

�
��� R2

(3.1.36)

Above {∗} denotes a generic singleton, and L1, R1 are the canonical projections onto the
corresponding spaces of orbits.

For any surjective map Φ : A → B, A,B finite sets, and any F : A → R we denote by
Φ∗(F ) its summation along the fibers of Φ. More explicitly, Φ∗(F ) is the function B → R
defined by

Φ∗(F )(b) =
∑

a∈Φ−1(b)

F (a).

For each t ∈ In we have a function

Ft : G→ R, Ft(g) =
1

n!
X1 ⊠X2 ⊠X3

(
g · t

)
.

Note that

Sym
(
X1 ⊠X2 ⊠X3

)
(t) =

1

n!

∑
g∈G

Ft(g) = p∗(Ft)

Let HL · g ∈ HL\G. Then

(L1)∗Ft(HL · g) =
1

n!

∑
h∈HL

X1 ⊠X2 ⊠X3

(
hg · t

)
=

(n1 + n2)!n3!

n!
Sym(X1 ⊠X2)⊠X3(gt)

The colorings of type α = (n1 + n2, n3) are maps π : In → {1, 2} such that

#π−1(1) = n1 + n2 and #π−1(2) = n3.

The group G acts on the space Pα

Pα ×G ∋ (π, g) 7→ π ◦ g, ∀π ∈ Pα, g ∈ G = Sn.

We obtain a bijection HL\H → Pα

HL · g 7→ π0 ◦ g
where π0 ∈ Pα is defined by

π0(i) =

{
1, i ≤ n1 + n2,

2, n1 + n2 < i ≤ n.
For π ∈ Pα we set

π · t = (tπ−1(1), tπ−1(2))
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where for any subset J = {j1, . . . , jk} ⊂ In, j1 < · · · < jk, we set

tJ = (tj1 , . . . , tjk).

We deduce that

p∗(Ft) = (L2)∗(L1)∗Ft =
(n1 + n2)!n!

n!

∑
π∈Pα

Sym(X1 ⊠X2)⊠X3

(
π · t

)
=

1

#Pα

∑
π∈Pα

Sym(X1 ⊠X2)⊠X3

(
π · t

)
= Sym

(
Sym(X1 ⊠X2)⊠X3

)
(t).

Since p∗ = (L2 ◦ L1)∗ = (L2)∗ ◦ (L1)∗, we deduce

Sym
(
X1 ⊠X2 ⊠X3

)
(t) = Sym

(
Sym(X1 ⊠X2)⊠X3

)
(t)

Using the right-hand-side of the diagram (3.1.36) we deduce in a similar fashion that

Sym
(
X1 ⊠X2 ⊠X3

)
(t) = Sym

(
X1 ⊠ Sym(X2 ⊠X3)

)
(t).

Hence

Sym
(
Sym(X1 ⊠X2)⊠X3

)
= Sym

(
X1 ⊠ Sym(X2 ⊠X3)

)
On the other hand,

Sym(X1 ⊠X2) =

(
n1 + n2
n1

)−1/2

X1 ⊙X2

Sym
(
Sym(X1 ⊠X2)⊠X3

)
=

(
n

n1 + n2

)−1/2(n1 + n2
n1

)−1/2

(X1 ⊙X2)⊙X3

=

(
n

n1, n2, n3

)−1/2

(X1 ⊙X2)⊙X3.

Similarly

Sym
(
X1 ⊠ Sym(X2 ⊠X3)

)
=

(
n

n1, n2, n3

)−1/2

X1 ⊙ (X2 ⊙X3).

⊓⊔

We obtain in this fashion a graded associative and commutative algebra⊕
n≥0

H⊙̂n.

Its completion ⊕̂
n≥0

H⊙̂n

is called the Fock space of H and it is denoted by F (H).

Example 3.1.29. Suppose that H = L2(T,M, µ), where M is countably generated and µ is
sigma-finite. Observe that we have a Hilbert space isomorphism

H⊗m ∼= L2
(
Tm,M⊗m, µ⊗m

)
, f1 ⊗ · · · ⊗ fm 7→ f1 ⊠ · · ·⊠ fm

f1 ⊠ · · ·⊠ fm(t1, . . . , tm) = f1(t1) · · · fm(tm).
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Denote by M⊚n ⊂ M⊗n the σ-algebra generated by the Sn-invariant measurable functions
Tn → R. consisting of Sn-invariant M

⊗n-measurable subsets. We set

µ⊚n :=
1

n!
µ⊗n : M⊗n → [0,∞].

Observe that L2(T,M, µ)⊙n can be identified with the closed subspace

L2(Tn,M⊗n, µ⊗n)Sn ⊂ L2(Tn,M⊗n, µ⊗n)

consisting of symmetric L2-functions F : Tn → R.
The orthogonal projection onto L2(Tn,M⊗n, µ⊗n)Sn is the symmetrization operator

F 7→ Sym(F ), Sym(F )(t1, . . . , tn) =
1

n!

∑
σ∈Sn

F (tσ(1), . . . , tσ(n)).

For any f1, . . . , fn ∈ L2
(
T,M, µ

)
define

f1 ⊚ · · ·⊚ fn : Tn → R,

(f1 ⊚ · · ·⊚ fn)(t1, . . . , tn) := n!Sym(f1 ⊠ · · ·⊠ fn)(t1, . . . , tn) (3.1.37)

=
∑
φ∈Sn

n∏
k=1

fk(tφ(k)). =
∑
σ∈Sn

n∏
k=1

fσ(k)(tk).

Clearly, f1 ⊚ · · ·⊚ fn is Sn-invariant.

Lemma 3.1.30. If {f1, . . . , fn} ⊂ L2(T, µ) is an orthonormal system and α ∈ Nn, then

∥ f1 ⊚ · · ·⊚ f1︸ ︷︷ ︸
α1

⊚ · · ·⊚ fn ⊚ · · ·⊚ fn︸ ︷︷ ︸
αn

∥2
L2(M |α|,µ⊚|α|) = α!.

Proof. We argue as in the proof of Lemma 3.1.27. For any coloring π : I|α| → In of type α
we set

Fπ(t1, . . . , t|α|) :=

|α|∏
k=1

fπ(k)(tk)

We have

f1 ⊚ · · ·⊚ f1︸ ︷︷ ︸
α1

⊚ · · ·⊚ fn ⊚ · · ·⊚ fn︸ ︷︷ ︸
αn

= α!
∑
π∈Pα

Fπ

Observe that the collection (Fπ)π∈Pα is orthogonal, and

∥Fπ∥L2(M |α|,µ⊚|α|) =
1

|α|!
, ∀π ∈ Pα.

Hence

∥ f1 ⊚ · · ·⊚ f1︸ ︷︷ ︸
α1

⊚ · · ·⊚ fn ⊚ · · ·⊚ fn︸ ︷︷ ︸
αn

∥2
L2(M |α|,µ⊚|α|) = (α!)2

1

|α|!
#Pα = α!.

⊓⊔
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We thus obtain a Hilbert space isomorphism

Ψn : L2
(
T,M, µ

)⊙̂n → L2
(
Tn,M⊚n, µ⊚n

)
(3.1.38)

uniquely determined by the requirement

Ψn(f1 ⊙ · · · ⊙ fn) = f1 ⊚ · · ·⊚ fn, ∀f1, . . . , fn ∈ L2
(
T,M, µ). (3.1.39)

Note that
1

n!

∫
Tn

Fdµ⊗n =
1

n!

∫
Tn

Sym(F )dµ⊗n =

∫
Tn

Sym(F )dµ⊚n.

⊓⊔

Remark 3.1.31. Let I denote the unit interval, B σ-algebra of the Borel subset of I and λ
the Lebesgue measure on B. For any positive integer n we denote by ∆n the simplex

∆n =
{
(t1, . . . , tn) ∈ In; x1 ≤ x2 ≤ · · · ≤ xn

}
.

The map

L2
(
Im,BIn ,

1

n!
λ⊗n ) ∋ f → f

∣∣
∆n
∈ L2

(
∆m,B∆nλ

⊗n )
induces a isometric linear isomorphism from the subspace of symmetric functions

L2
(
In,B⊗n,

1

n!
λ⊗n )

Sn
.

to L2
(
∆n,B∆n ,λ

⊗n ). ⊓⊔

Suppose that X ⊂ L2(Ω,F,P) is a separable Gaussian Hilbert space. We have a linear
map

Θn : X⊙̂n → X:n:, (3.1.40)

naturally determined by the correspondences

ξ1 ⊙ · · · ⊙ ξn 7→ ξ1 • · · · • ξn = : ξ1 · · · ξn :

Corollary 3.1.20, (3.1.16) and (3.1.35) imply that if ξ1, . . . , ξn is an orthonormal system in X,
then √

n!
∥∥ Sym

[
ξ1 ⊗ · · · ⊗ ξn]

∥∥ =
∥∥ ξ1 ⊙ · · · ⊙ ξn∥ = ∥ : ξ1 · · · ξn :

∥∥. (3.1.41)

We obtain isometries Θn : X⊙n → X:n: and thus an isomorphism of graded Hilbert spaces

Θ : F (X)→ F(X). (3.1.42)

The associativity (3.1.30) shows that Θ is actually an isomorphism of algebras. We have thus
proved the following result.

Proposition 3.1.32. The Fock space of a separable Gaussian spaces X equipped with the ⊙
product is isomorphic to the Wiener chaos of X equipped with the Wick product. ⊓⊔

If X1,X2 ⊂ L2(Ω,F,P) are two Gaussian Hilbert spaces, then any bounded linear operator
A : X1 → X2 induces bounded linear operators

A⊙n : X⊙̂n
1 → X⊙̂n

2 , n ∈ N0

uniquely determined by the requirements

A⊙n( ξ1 ⊙ · · · ⊙ ξn ) = (Aξ1 )⊙ · · · ⊙ (Aξn ), ∀ξ1, . . . , ξn ∈ X1.
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In particular A⊙0 = 1. Moreover

∥A⊙n∥ = ∥A∥n.

If ∥A∥ ≤ 1, the operators A⊙n combine to a bounded linear operator

F (A) : F (X1)→ F (X2).

We deduce that if ∥A∥ ≤ 1, then A induces a bounded linear operator Â : F(X1) → F(X2)
uniquely defined by the equalities

Â( ξ1 • · · · • ξn ) = ( Âξ1 ) • · · · • ( Âξn ), ∀ξ1, . . . , ξn ∈ X1.

Note that

∥Â∥ = 1,

and we have a commutatiove diagram

F (X1) F (X2)

F(X1) F(X2)
u

Θ

w
F (A)

u

Θ

w
Â

In particular, a unitary isomorphism T : X1 → X1 induces a canonical unitary isomor-
phism

T̂ : F(X1)→ F(X1)

which preserves the Wick algebra structure.

Example 3.1.33. Consider the one-dimensional Gaussian Hilbert space X spanned by a
standard normal random variable ξ. In this case

F(X) = L2(R,Γ).

Any linear operator X→ X has the form r1, and it is a contraction provided |r| ≤ 1.

Any f ∈ L2(R,Γ) has the form

f(ξ) =
∑
n≥0

fnHn(ξ), fn =
1

n!
E
[
f(ξ)Hn(ξ)

]
=

1

n!

∫
R
f(x)Hn(x)Γ(dx).

Since : ξn := Hn(ξ) we deduce that r̂1Hn(ξ) = rnHn(ξ) and

r̂1f = r̂1

∑
n≥0

fnHn(ξ)

 =
∑
n≥0

fnr
nHn(ξ).

The operator r̂1 : L2(R,Γ) → L2(R,Γ), |r| ≤1 is called the Mehler transform. It is an
integral operator with kernel

Mr(x, y) =
∑
n≥0

Hn(x)Hn(y)
rn

n!
∈ L2(R2,Γ⊗2).
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The above series converges uniformly for (x, y, r) on the compacts of R2× (−1, 1). We denote

by Mr the integral operator r̂1. Consider the function

gλ(x) =
∑
n≥0

Hn(x)
λn

n!
= eλx−

λ2

2 .

Observe that for |r| ≤ 1 we have Mrgλ = grλ. This equality determines Mr(x, y) uniquely.
Consider the function

Mr(x, y) =
1√

1− r2
exp

(
−(rx)2 − 2rxy + (ry)2

2(1− r2)

)
.

A direct but tedious computation shows that5∫
R
Mr(x, y)gλ(y)dγ1(dy) = grλ(x)

so that ∑
n≥0

Hn(x)Hn(y)
rn

n!
=

1√
1− r2

exp

(
−(rx)2 − 2rxy + (ry)2

2(1− r2)

)
, ∀|r| < 1.

The function Mr(x, y) =Mr(x, y) is called the Mehler kernel.

The family of operators Tt := ê−t1, t ≥ 0 is called the Ornstein-Uhlenbeck semigroup. ⊓⊔

3.1.7. Gaussian white noise and the Wiener-Itô integral. Suppose for ease of presen-
tation that (T,M, µ) is a convenient6 probability space, i.e.,

• The sigma-algebra M is countably generated, and

• The probability measure µ is complete and non-atomic.

We recall that an atom of a measure µ is a measurable set A such µ
[
A
]
> 0 and, for any

measurable set B ⊂ A, either µ
[
B
]
= 0, or µ

[
B
]
= µ

[
A
]
. A measure is called non-atomic

if it has no atoms.

Any non-atomic measure µ enjoys the following property, [22, Cor.1.2.10]: for any mea-
surable set A such that µ

[
A
]
> 0, and for and 0 < c < µ

[
A
]
, there exists a measurable set

B ⊂ A such that µ
[
B
]
= c.

Let us point out that if (T,M, µ) is convenient, then L1(T,M, µ) is separable. Convenient
spaces are rather special.

Theorem 3.1.34. Suppose that (T,M, µ) is a convenient probability space. Then there exists
a measurable function

Φ : (T,M)→
(
[0, 1],B[0,1]

)
,

with the following property.

(i) Φ#µ = λ = the Lebesgue measure on [0, 1].

(ii) The µ-completion of Φ−1
(
B[0,1]

)
is equal to the µ-completion of M.

⊓⊔
5For a more conceptual approach we refer to [75, Example 4.18], [93, V.1.5] .
6The convenient spaces appear in literature with different monikers: standard, perfect, Lebesgue-Rokhlin.



198 3. Central limit theorems

For proofs and more details we refer to [23, Thm. 9.3.4] or [93, Thm. IV.4.6.2].

Definition 3.1.35. A (real) Gaussian white noise driven by the convenient probability space
(T,M, µ) is a centered Gaussian process W parametrized by M

Ω×M ∋ (ω,A) 7→Wω

[
A
]
∈ R

with covariance kernel

KW

(
A,B

)
= E

[
W
[
A
]
·W

[
B
] ]

=

∫
T
IAIBdµ = µ

[
A ∩B

]
, ∀A,B ∈M. (3.1.43)

Above
(
Ω, S,P) is a probability space. ⊓⊔

Proposition 1.2.10 guarantees the existence of Gaussian white noises.

Fix a Gaussian white noise W driven by (T,M, µ). Observe that if A1, . . . An ∈ M are
pairwise disjoint, then the Gaussian random variable W

[
A1

]
, . . . ,W

[
An
]
are independent

since they are jointly Gaussian and uncorrelated. Observe next that

∀A,B ∈M, A ∩B = ∅ : W
[
A
]
+W

[
B
]
=W

[
A ∪B

]
a.s.. (3.1.44)

Indeed

E
[ (
W
[
A ∪B

]
−W

[
A
]
−W

[
B
] )2 ]

= E
[
W
[
A ∪B

]2 ]
+ E

[
W
[
A
]2 ]

+ E
[
W
[
B
]2 ]

−2E
[
W
[
A ∪B

]
W
[
A
] ]
− 2E

[
W
[
A ∪B

]
W
[
B
] ]

(3.1.43)
= µ

[
A ∪B

]
+ µ

[
A
]
+ µ

[
B
]
− 2
(
µ
[
A
]
+ µ

[
B
] )

= 0.

More generally, if (An)nN is a sequence of pairwise disjoint sets in M and

A =
⋃
n∈N

An,

then
W
[
A
]
=
∑
n∈N

W
[
An
]

where the above convergence is L2. Kolmogorov’s one-series theorem implies that the series
also converges a.s..

Remark 3.1.36. One might be tempted to think that the random function
(
W
[
A
] )

A∈M
admits a modification that is a random measure, i.e., for any ω ∈ Ω the correspondence

M ∋ A 7→Wω

[
A
]
∈ R

is a signed measure. This is not the case. The correct way to view W is as a stochastic
measure, i.e., a measure valued in the Hilbert space of random variables L2

(
Ω, S,P

)
. We

refer to [84] for a very detailed discussion of the distinction between these two concepts. ⊓⊔

Denote by Elem
(
T,M

)
the vector space of M-measurable elementary functions on T ,

i.e.,
Elem

(
T,M

)
= spanR

{
IA; A ∈M

}
.

Using the equality (3.1.44) we deduce that∑
j

ajIAj =
∑
k

bkIBk
⇒
∑
j

ajW
[
Aj
]
=
∑
k

bkW
[
Bk
]
.
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We thus have a well defined map

IW : Elem
(
T,M

)
→ L2

(
Ω, S,P

)
,

Elem
(
T,M

)
∋ f =

∑
j

ajIAj 7→ IW
[
f
]
=
∑
j

ajW
[
Aj
]
∈ L2

(
Ω, S,P

)
.

Moreover,

E
[
IW
[
f
]2 ]

=

∫
T
f2dµ. (3.1.45)

Since the centered Gaussian random variables W
[
Aj
]
are independent the random variable

IW
[
f
]
is centered Gaussian.

Since Elem
(
T,M

)
is dense in L2

(
T,M, µ

)
we deduce from (3.1.45) that IW extends to

an isometry
IW : L2

(
T,M, µ

)
→ L2

(
Ω, S,P

)
This isometry is called the Wiener integral with respect to the white noise W . Traditionally
one uses the alternate notation ∫

T
f(t)W

[
dt
]
:= IW

[
f
]
.

Since IW is an isometry, its image XW is a closed subspace of L2
(
Ω, S,P

)
. Each X ∈ XW is

a centered Gaussian random variable since it is a limit of centered Gaussian variables of the
form IW

[
f
]
, f ∈ Elem

(
T,M

)
. Hence XW is a Gaussian Hilbert space called the Gaussian

Hilbert space associated to the white noise W .

Conversely, each separable Gaussian Hilbert space is associated to a Gaussian white noise
on (T,M, µ). Indeed, let X ⊂ L2

(
Ω, S,P

)
be a separable Gaussian Hilbert space. The Hilbert

space L2(T,M, µ) is separable so there exists a (non-canonical) Hilbert space isomorphism

J : L2
(
T,M, µ

)
→ X.

Then the map

W : M→ L2
(
Ω, S,P

)
, M ∈ A 7→W

[
A
]
= J

[
IA
]
∈ L2

(
Ω, S,P

)
is a Gaussian white noise on (T,M, µ), and J = IW .

Suppose that X is a separable Gaussian Hilbert space and J : L2(T,M, µ) → X is a
Hilbert space isomorphism with associated Gaussian white noise W .

The isometries (3.1.40) yield isometries

Θn : L2(T,M, µ)⊙̂n → X:n:, ∀n ∈ N0.

Using the isometries Ψn defined in (3.1.38) of Example 3.1.29 we obtain isometries

Jn : L2(Tn,M⊚n, µ⊚n)
Ψ−1

n−→ L2(T,M, µ)⊙̂n
Θn−→ X:n:. (3.1.46)

For example, if

F = Sym(f1 ⊠ · · ·⊠ fn)(t1, . . . , tn)
(3.1.37)
=

1

n!
f1 ⊚ · · ·⊚ fn(t1, . . . , tn),

then

Ψ−1
n (F )

(3.1.39)
=

1

n!
f1 ⊙ · · · ⊙ fn,

Jn
[
F
]
=

1

n!
J
[
f1
]
• · · · • J

[
fn
]
=

1

n!

(
: J
[
f1
]
· · ·J

[
fn
]
:
)
.
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For F ∈ L2(Tn,M⊗n, µ⊗n) we define its multiple Wiener-Itô integral of F to be the random
variable

In
[
F
]
:= n!Jn

[
Sym(F )

]
.

Often one uses the integral notation∫
Tn

FdWn =

∫
Tn

F (t1, . . . , tn)W
[
dt1
]
· · ·W

[
dtn
]
:= In

[
F
]
, ∀F :Mn → R.

In particular, if F ∈ L2(Tn,M⊗n) is symmetric, then

In
[
F
]
= n!Jn

[
F
]
⇐⇒Jn

[
F
]
=

1

n!

∫
Tn

FdWn.

Note that if

F (t1, . . . , tn) = f1(t1) · · · fn(tn), f1, . . . , fn ∈ L2(M,M, µ),

then we obtain the important equality

In
[
f1 ⊠ · · ·⊠ fn

]
= In

[
Sym

(
f1 ⊠ · · ·⊠ fn

) ]
= : J

[
f1
]
· · ·J

[
fn
]
:. (3.1.47)

This equality uniquely determines the multiple Wiener-Itô integral.

Note that since Jn is an isometry we deduce that for any F ∈ L2(Mn,Mn, µ⊗n) have

E
[ ∣∣ In[F ] ∣∣2 ] = E

[ ∣∣ In[Sym (
F
) ] ∣∣2 ] = E

[ ∣∣n!Jn[Sym (
F
) ] ∣∣2 ]

=
∥∥n!Sym (

F
) ∥∥2

L2(Mn,µ⊚n)
= n!∥Sym[F ]∥2L2(Mn,µ⊗n) ≤ n!∥F∥

2
L2(Mn,µ⊗n).

We observe that any X ∈ F(X) has a unique orthogonal decomposition

X =
∑
n≥0

In
[
Fn
]
=
∑
n≥0

∫
Mn

FndW
n,

where Fn : Tn → R are symmetric L2-functions. Moreover

E
[
X2
]
=
∑
n≥0

n!
∥∥Fn ∥∥2L2(Mn,µ⊗n)

=
∑
n≥0

(n!)2∥Fn∥2L2(Mn,µ⊚n).

Remark 3.1.37. There are many normalization conditions involved in the definition of the
multiple Itô integrals and there is danger of confusion since different authors use different
conventions.

In [123], the Hermite polynomials have a normalization different from the one we use in
this book which is the more commonly used.

If F : Tn → R is a symmetric function, then In(F ), as defined in [75] or [123] coincides
with the multiple integral In

[
F
]
defined above.

The operator Jn that we have described in this section coincides with the operator În
defined in [75], or the operator IG defined in [92]. ⊓⊔

Example 3.1.38. (a) Suppose that f, g ∈ L2
(
T,M, µ). Then∫

T 2

f(x)g(y)W
[
dx
]
W
[
dy
]
= I2

[
f ⊠ g

]
=: I1

[
f
]
I1
[
g
]
.
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We set X := I1
[
f
]
, Y := I1

[
g
]
so that X,Y ∈ X. Then using Wick’s formula (3.1.25) we

deduce ∫
T 2

f(x)g(y)W
[
dx
]
W
[
dy
]
= XY − E

[
XY

]
=

(∫
T
f(x)W

[
dx
])(∫

T
g(y)W

[
dy
])
−
∫
T
f(t)g(t)µ

[
dt
]

Thus, the stochastic Fubini formula gets a correction term.

(b) Suppose that f, g ∈ L2
(
T,M, µ). Set X = J1

[
f
]
, Y = J1

[
g
]
. Assume for simplicity

that ∥X∥L2 = ∥Y ∥L2 = 1.∫
T 4

f(x1)f(x2)g(y1)g(y2)W
[
dx1W

[
dx2

]
W
[
dy1

]
W
[
dx2

]
=
(
: (X •X) • (Y • Y ) :

)
= (: H2(X)H2(Y ) :) = (: X2Y 2 :)

Consider the diagram with vertices

X,X, Y, Y

If c = E
[
XY

]
, then using Wick’s formula (3.1.25) we deduce

: X2Y 2 := X2Y 2 −
(
X2 + Y 2 + 4cXY

)
+ 2c2 + 1.

Observe that if c = 0, then

X2Y 2 −
(
X2 + Y 2 + 4cXY

)
+ 2c2 + 1 = H2(X)H2(Y ) = H2,2(X,Y ).

(c) Suppose that f1, . . . , fk ∈ L2
(
T,M, µ

)
is an orthonormal family. Set Xj := I1

[
fj
]
.

Then

In1+···+nk

[
(f1 ⊠ · · ·⊠ f1)︸ ︷︷ ︸

n1

⊠ · · ·⊠ (fk ⊠ · · ·⊠ fk)︸ ︷︷ ︸
nk

]
= Hn1

(
X1) · · ·Hnk

(Xk).

⊓⊔

Suppose that X is a separable Gaussian Hilbert space and J : L2(T,M, µ) → X is a
Hilbert space isomorphism with associated Gaussian white noise W .

If F : T 2 → R is an integrable function we define the contraction

CF :=

∫
T
F (t, t)µ

[
dt
]
.

More generally, if F : Tn → R and 1 ≤ i < j ≤ n we define the contraction CijF : Tn−2 → R
to be

CijF :=

∫
T
F (t1, . . . , tn)ti=tj=t µ

[
dt
]
.

Given a Feynman diagram Γ ∈ Feyn(n) we set

CΓ :=
∏

e∈E(Γ)

Ce,

where for any edge e = (i, j) of Γ we set Ce = Cij .
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Lemma 3.1.39. Suppose we are given functions Fi ∈ L2(Tni), i = 1, . . . , k. We define

F = F1 ⊠ · · ·⊠ Fk : T
n → R, n =

k∑
i=1

ni,

F1 ⊠ · · · ⊗ Fk(t11, . . . , t1n1 ; . . . ; tk1, . . . , tknk
) :=

k∏
j=1

Fj
(
tj1, . . . , tjnk

)
.

For any Feynman diagram Γ compatible with the array

(i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ ni,
we have ∥∥CΓ(F1 ⊠ · · ·⊠ Fk)

∥∥
L2(Mn−2r(Γ))

≤
k∏
j=1

∥∥Fj ∥∥L2 .

Proof. We use induction on k. The case k = 1 is trivial since Γ has no wedge and thus
CΓ(F ) = F .

For k = 2, we can assume, after relabeling the variables, that the r(Γ) edges of Γ connectd
the vertices (1, j) and (2, j), j = 1, . . . , r. Then for

t′ ∈ Tn1−r, t′′ ∈ Tn2−r, s ∈ T r

we have

CΓF (t
′, t′′) =

∫
T r

F1(s, t
′)F2(s, t

′′)µr
[
ds
]

and thus, by Cauchy-Schwarz

|CΓF (t
′, t′′)|2 ≤

(∫
T r

F1(s, x
′)2µr

[
ds
])(∫

T r

F2(s, t
′′)2
)
µr
[
ds
]

Integrating the remaining variables (t′, t′′) we deduce∥∥CΓ(F )
∥∥2
L2 ≤

∥∥F1

∥∥ 2
L2 ·

∥∥F2

∥∥2
L2 .

This disposes of the case k = 2.

For k > 2 we set
F ′
2 = f2 ⊠ · · ·⊠ Fk.

Denote by Γ1 the subdiagram of Γ consisting of the edges that have one vertex on the first
row, (1, j), 1 ≤ j ≤ n1, and denote by Γ2 the subdiagram of Γ determined by the edges of Γ
that connect points on rows different from the first row.

We than have
CΓ(F ) = CΓ1

(
F1 ⊠ CΓ2(F

′
2)
)
.

Thus, using the inequality established for k = 2 and the induction assumption we reach the
desired conclusion. ⊓⊔

Suppose we are given functions Fi ∈ L2(Tni), i = 1, . . . , k. We set

Yi = Ini

[
Fi
]
= Ini

[
Sym(Fi)

]
∈ X:ni:, 1 ≤ i ≤ k.

From the Diagram Formula (Theorem 3.1.23) we deduce via a simple density argument (see
[75, Thm. 7.33] for details) the following important result.
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Theorem 3.1.40. We set n := n1 + · · ·+ nk. Denote by A the array

(i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ ni.

Then

Y1 · · ·Yk =
∑

Γ∈Feyn
[
A
] In−2r(Γ)

[
CΓ(F1 ⊠ · · ·⊠ Fk)

]
, (3.1.48)

In particular

E
[
Y1 · · ·Yk

]
=

∑
Γ∈Feyn∗

[
A
]CΓ(F1 ⊠ · · ·⊠ Fk). (3.1.49)

Proof. Lemma 3.1.39 shows that all the contractions and stochastic integrals are well defined.
From the definition of the multiple Wiener-Itô integrals we deduce that the right-hand side
of (3.1.48) defines a continuous multilinear map

k∏
i=1

L2(Tni , µni)→ F(X).

Thus it suffice to verify the equality (3.1.48) in the special case when each fi is a monomial

fi(t1, . . . , tmi) = fi1(t1) · · · fimi(tmi).

This special case follows immediately from the diagram formula (3.1.27a). ⊓⊔

Remark 3.1.41. Theorem 3.1.40 corresponds to [92, Thm. 5.3] where it is referred to as
the Diagram Formula. ⊓⊔

Suppose that Fi ∈ L2
(
Tni), i = 1, 2, are symmetric functions and r ≤ min(n1, n2). We

define F1 ⊠r F2 : T
n1+n2−2r → R

F1 ⊠r F2(t1, . . . , tn1−r, s1, . . . , sn2−r) :=

∫
T r

F1

(
(t1, . . . tn1−r, t

)
F2(t, s1, . . . sn2−r

)
µr
[
dt
]
.

The equality (3.1.48) in the case k = 2 can now be rewritten as

In1

[
F1

]
In2

[
F2

]
=

min(n1,n2)∑
r=0

r!

(
n1
r

)(
n2
r

)
In1+n2−2r

[
F1 ⊠r F2

]
. (3.1.50)

Digression 3.1.42. The multiple Wiener-Itô integral can be given a constructive description
that justifies the terminology integral. I describe below the contours of this construction. For
details refer to [94, §VI.2] or [123, §1.1.2].

Suppose that (T,M, µ) is a convenient probability space and W is a Gaussian white noise
driven by (T,M, µ). Denote by X the Gaussian space generated by W . Assume that M is
generated by the measurable sets Mn, n ∈ N. I secretly think that T = [01, ] and M = B[0,1].

For N ∈ N we denote by MN the sigma-subalgebra of M generated by M1, . . . ,MN .
We set M0 := {∅, T}. For any N ≥ 0, the sigma-subalgebra MN consists of finitely many
measurable subsets of T and hence it corresponds to the sigma-algebra generated by a finite,
measurable partition of T . I secretly think that MN is the sigma algebra, generated by the
partition [

(k − 1)2−N , k2−N
)
, k = 1, . . . , 2N − 1,

[
1− 2−N , 1

]
.
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The parts of this partition are precisely the atoms of µ|MN
. Moreover,

M0 ⊂M1 ⊂ · · · and M =
∨
N≥0

MN .

Denote by AN the set of atoms of µ|MN
. Fix p ∈ N and set

M
p
N := M

⊗p
N .

Each of the sigma-subalgebras Mp
N is finite and its set of atoms is

AN,p := AN × · · · ×AN︸ ︷︷ ︸
p

.

Set

HN,p := L2
(
T p,Mp

N , µ
⊗p ), Hp = L2

(
T p,M⊗p, µ⊗p

)
.

Any function F ∈ HNnp is constant on the set of atoms AN,p and we denote by F (a) its
value on the atom a ∈ AN,p. Then

F =
∑

a∈AN,p

F (a)Ia

and

∥F∥2L2 =
∑

a∈AN,p

F (a)2µ⊗p
[
a
]
.

The symmetric group Sp acts in the obvious way on the set of atoms a = a1×· · ·×ap ∈ AN,p.
More precisely, for σ ∈ Sp.

σ · a = aσ(1) × · · · × aσ(p).

For a ∈ AN,p we denote by Stab(a) the stabilizer of a with respect to the action of Sp. More
explicitly,

Stab(a) :=
{
σ ∈ Sp; σ · a = a

}
.

We set

A∗
N,p :=

{
a ∈ AN,p; Stab(a) = {1}

}
, A0

N,p := AN,p \A∗
N,p.

Note that

a = a1 × · · · × ap ∈ A0
N,p⇐⇒∃i ̸= j ai = aj .

We set

XN,p :=
{
F ∈ HN,p; F (a) = 0, ∀a ∈ A0

N,p

}
,

We have natural inclusions iN : HN,p ↪→ HN+1,p. Note that iN
(
XN,p

)
⊂ XN+1,p.

For F ∈ XN,p we set

Ip,N
[
F
]
=

∑
a∈A∗

N,p

F (a)W
[
a
]
, W

[
a
]
:=W

[
a1

]
· · ·W

[
ap
]
∈ F(X).

The Gaussian random variables W
[
a1

]
, . . . ,W

[
ap
]
are independent elements of X so that

W
[
a
]
∈ X:p:

and thus Ip,N
[
F
]
∈X :p:. Since Sp acts freely on A∗

N,p and

W
[
σ · a

]
=W

[
a
]
, ∀a ∈ AN,p, ∀σ ∈ Sp
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we deduce

Ip,N
[
F
]
= Ip,N

[
Sym(F )

]
=

∑
a∈A∗

N,p

 1

p!

∑
σ∈Sp

F (σ · a)

W
[
a
]
.

The operators Ip,N are compatible with the inclusions iN : XN,p ↪→ XN+1,p, i.e., for any
N ≥ 0, the following diagram is commutative

XN,p XN+1,p

X:p:

'
'')

Ip,N

y w
iN

[
[[̂ Ip,N+1

We have thus constructed a well defined map

Ip : Xp → X:p:, Xp =
⋃
N≥0

XN,p ∈ L2
(
T p,M⊗p, µ⊗p

)
.

We set F̃ = Sym(F ). Then

Ip
[
F̃
]
· Ip
[
F̃
]
= Ip

[
F
]
· Ip
[
F
]
=

∑
a,a′∈A∗

N,p

F̃ (a)F̃ (a′)W
[
a
]
W
[
a′ ].

Now observe that

E
[
W
[
a
]
W
[
a′ ] ] = {µ⊗p[a ], a′ ∈ Sp · a,

0, otherwise.

We deduce ∥∥ Ip[ F̃ ] ∥∥2 = p!
∑

a∈A∗
N,p

F̃ (a)2µ⊗p
[
a
]
= p!

∥∥ F̃ ∥∥2
L2 ≤ p!

∥∥F ∥∥2
L2 .

We have thus produced a bounded linear map

Ip : Xp → X:p:.

Using the fact that µ is non-atomic one can show that Xp is dense in Hp so Ip : Xp → X:p:

admits a unique extension as a bounded linear map Ip : Hp → X:p:.

We need to explain why in the above proof we have the avoided the atoms a = a1×· · ·×ap
that intersect the diagonal, i.e., ai = aj for some i ̸= j.

To see what goes wrong consider the simplest case p = 2, T = [0, 1] and µ = λ. The map
I2 should be a map

I2 : L
2
(
T 2
)
→ X:2:, F 7→ I2

[
F
]

In particular,

E
[
I2
[
F
] ]

= 0.

Clearly, for any non-negligible Borel subset B ⊂ T , we have

E
[
W
[
B ×B

] ]
= Var

[
W
[
B
] ]

= λ
[
B
]
̸= 0.

We set

ak,n :=

{
[(k − 1)2−n, k2−n), 1 ≤ k < 2n,[
1− 2−n, 1

]
, k = n,

and

An =
{
a1,n, . . . ,a2n,n

}
, An = σ

(
An

)
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For each F ∈ L2(T 2) we set Fn = E
[
F ∥An,2

]
∈ L2(T 2,An,2). Then

Fn =
∑

a∈An,2

F (a)Ia

and the Martingale Convergence Theorem shows that Fn converges in L2 to F . One might
be tempted to set

I2
[
F
]
= lim

n→∞

∑
a∈An,2

F (a)W
[
a
]
.

Suppose that F = IT 2 . Note that for any a ∈ An we have

E
[
W
[
a× a

] ]
= Var

[
W
[
a
] ]

= 2−n, ∀a ∈ An

Var
[
W
[
a× a

] ]
= 3 · 2−2n − 2−2n = 2 · 2−2n = 2−2n+1.

In this case If we set

Sn =
∑
a∈An

W
[
a× a

]
,

then

E
[
Sn = 1

]
= 1, Var

[
Sn
]
= 2−n+1.

and we deduce from the Borel-Cantelli lemma that Sn converges a.s. to 1 as n → ∞. Note
that Sn ∈ Hn \Xn. Thus

E
[
IT 2 ∥An,2

]
=

∑
a∈An,2

W
[
a
]
= Sn +

∑
a∈A∗

n,2

W
[
a
]

It is not difficult to see that∑
a∈A∗

n,2

W
[
a
]
=W

[
T
]2 − 1 = H2

(
W
[
T
] )
.

In general, given F ∈ L2(T 2) we set

F∆
n =

∑
a∈An

Fn
(
a× a

)
Ia×a,

then

lim
n→∞

Var
[
F∆
n ] =

∫
T 2

F∆#λ,

where ∆ : T → T 2 is the diagonal map. For a more in-depth discussion of this aspect and
generalizations we refer to [54, 84, 127].

When T = [0, 1], M = B[0,1], µ = λ one can give an alternate description of the multiple
Wiener-Itô integrals. Fix a Brownian motion (B(t))t∈[0,1] and denote by X the Gaussian
spaces spanned by the random function t 7→ B(t). The white noise W is the more familiar
white noise W = dB(t) and the isomorphism is given by the Itô integral

L2
(
[0, 1]

)
∋ f 7→ I1

(
F
)
=

∫ 1

0
f(t)dB(t).

Note that

B(t) = I1
[
I [0,t]

]
Above, we interpret f(t) as a predictable process in the obvious way.
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For n ≥ 1 we set

∆n :=
{
(t1, . . . , tn); t1 ≤ t2 ≤ · · · ≤ tn

}
.

As observed in Remark 3.1.31 the restriction to ∆n induces isomorphism

L2
(
Tn,

1

n!
λ⊗n )→ L2

(
∆n,λ

⊗n ).
One can prove that

In
[
F
]
(t1, . . . , tn) = În

[
F
]
:=

∫ 1

tn

dB(sn)

∫ tn

tn−1

dB(sn−1) · · ·
∫ t1

0
F
(
s1, . . . , sn

)
dB(s1).

(3.1.51)
I want to highlight the main ideas in the proof of the above equality referring for details to
[75, Thm.7.5].

The proof of (3.1.51) is inductive. For any (t1, . . . , tn1 ∈ ∆n−1), any F ∈ L2
(
∆n

)
, and

any t ∈ [0, 1] define Ft : ∆n−1 → R

Ft(t1, . . . , tn−1) =

{
f(t1, . . . , tn−1, t), t ≥ tn−1,

0, t < tn−1.

One shows that for any n ≥ 2

In
[
F
]
=

∫ 1

0
În−1

[
Ft
]
dB(t)

where the right-hand-side is an Itô integral of a predictable process. The above equality is
linear and continuous in F so it can be reduced to the case when F is the indicator of a box
contained in ∆n. In this case it can be verified by direct computation. ⊓⊔

3.2. Malliavin calculus

3.2.1. The Malliavin gradient and Gaussian Sobolev spaces. Suppose H is a sepa-
rable real Hilbert space, and X ⊂ L2(Ω, S,P) is a separable real Gaussian Hilbert space.

• We denote by L0
X(Ω) the space of SX-measurable functions f : Ω → R modulo a.s.

equality.

• For p ∈ [1,∞] we denote by LpX(Ω) the subspace of L
0
X(Ω) consisting of p-integrable

functions equipped with the usual Lp-norm. Note that F(X) = L2
X(Ω).

• We denote by L0
X(Ω, H) the space of SX-measurable maps f : Ω → H modulo a.s.

equality, and by LpX(Ω, H) the subspace L0
X(Ω, H) consisting of maps f : Ω → H

such that ∥f∥ ∈ LpX(Ω). The norm in this space is

E
[
∥f∥pH

] 1
p .

The space L0
X(Ω, H) is equipped with a bilinear map

[−,−]H : L0
X(Ω, H)× L0

X(Ω, H)→ L0
X(Ω),

[f, g]H(ω) :=
(
f(ω), g(ω)

)
H
, ∀f, g ∈ L0

X(Ω, H).
(3.2.1)

• A function f : Rn → R is called admissible if it is smooth and its derivatives, of
any order, have at most polynomial growth.
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• A function f : Rn → H is called admissible if it is smooth and its derivatives, of
any order, have at most polynomial growth.

The random variables F = L0
X

(
Ω
)
are commonly referred as (nonlinear) functionals.

They all can be non-uniquely expressed as

F = φ
(
X1, . . . , Xn, . . .

)
where φ : RN → R is measurable and Xn ∈ X, ∀n.

We will construct various Banach subspaces L0
X(Ω). These depend only on X.

Definition 3.2.1. Let X ⊂ L2
(
Ω, S,P

)
be a separable real Gaussian Hilbert space.

(i) We denote by A(X) ⊂ L0
X(Ω) the set of random variables of the form f(X1, . . . , Xm),

where m ∈ N, f : Rm → R is an admissible function, and X1, . . . , Xm ∈ X.

(ii) We denote by P(X) ⊂ A(X) the set of random variables of the form P (X1, . . . , Xm),
where P : Rm → R is a polynomial in m variables with real coefficients and
X1, . . . , Xm ∈ X.

(iii) Suppose that H is a separable Hilbert space. We denote by A(X, H) the subspace of
L0
X

(
Ω, H

)
spanned by random vectors of the form f(X1, . . . , Xn) where f : Rn → H

is admissible.

⊓⊔

Note that if (Xn)n≥ is a complete orthonormal system of X, then for any k ∈ N and
any n1, . . . , nk ∈ N0 the polynomial Hn1(X1) · · ·Hnk

(Xk) belongs to L
p
X

(
Ω
)
, ∀p ∈ [1,∞). In

particular,

P(X),A(X) ∈ LpX
(
Ω
)
, ∀p ∈ [1,∞).

Arguing exactly as in the proof of Proposition 3.1.15 we deduce the following result

Proposition 3.2.2. The spaces P(X) and A(X) are dense in LpX
(
Ω
)
for any p ∈ [1,∞). ⊓⊔

For X ∈ X and f(X1, . . . , Xm) ∈ A(X) we define DXf(X1, . . . , Xm) ∈ L0
X(Ω) by setting

DXf(X1, . . . , Xm)(ω) :=
∑
j

∂f

∂xj

(
X1(ω), . . . , Xm(ω)

)
(Xj , X)X, (3.2.2)

where (−,−)X denotes the inner product in X, (X,Y )X = E[XY ]. We have the a.s. equality

DXf := lim
ε→0

1

ε

(
f
(
X1 + ε(X1, X)X, . . . , Xm + ε(Xm, X)X

)
− f

(
X1, . . . , Xm

) )
. (3.2.3)

From the definition (3.2.2) it is not clear whether the equality

f(X1, . . . , Xm) = g(Y1, . . . , Yn) ∈ A(X),

where f and g are admissible, implies that

DXf(X1, . . . , Xm) = DXg(Y1, . . . , Yn) ∈ L0
X(Ω), ∀X ∈ X.

This is indeed the case, but the proof is more involved. The key fact is that the a.s. equality

f(X1, . . . , Xm) = g(Y1, . . . , Yn) ∈ A(X)
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implies that for any X ∈ X we have

f
(
X1 + (X,X1)X, . . . , Xm + (X,Xm)X

)
= g
(
Y1 + (X,Y1)X, . . . , Yn + (X,Yn)X

)
.

For details we refer to [75, Thm.14.1& Def.15.26]. We will have more to say about this in
Digression 3.2.9.

Given f(X1, . . . , Xn) ∈ A(X), define Df(X1, . . . , Xm) ∈ L0
X(Ω,X)

Df(X1, . . . , Xm)(ω) =
∑
j

∂f

∂xj

(
X1(ω), . . . , Xm(ω)

)
Xj(−). (3.2.4)

Equivalently, Df is the unique SX-measurable map T : Ω→ X such that[
T,X

]
X
= DXf a.s., ∀X ∈ X.

The resulting operator f(X1, . . . , Xm) 7→ Df(X1, . . . , Xm) is called the Malliavin gradient or
derivative.

Example 3.2.3. Let X ∈ X. Then DX is the constant map Ω→ X, ω 7→ X. For this reason
we will rewrite (3.2.4) in the form

Df(X1, . . . , Xm)(ω) =
∑
j

∂f

∂xj

(
X1(ω), . . . , Xm(ω)

)
DXj . (3.2.5)

This notation better conveys the nature of the two factors ∂f
∂xj

(
X1(ω), . . . , Xm(ω)

)
and DXj .

The first is a scalar, while the second is an element of X. Note also that

DXF =
[
DF,DX

]
X
∈ L0

X(Ω)

where [−,−]X is the bilinear form (3.2.1). ⊓⊔

For a positive integer k and f(X1, . . . , Xm) as above we define

Dkf(X1, . . . , Xm) ∈ L0
X

(
Ω,X⊙̂p )

by setting

Dkf(X1, . . . , Xm)(ω) =
m∑

i1,...,ik=1

∂pf

∂xi1 · · · ∂xik

(
X1(ω), . . . , Xm(ω)

)
DXi1 ⊗ · · · ⊗DXik .

Remark 3.2.4. Arguing as in Lemma 3.1.27 we deduce that
m∑

i1,...,ik=1

∂pf

∂xi1 · · · ∂xik

(
X1(ω), . . . , Xm(ω)

)
DXi1 ⊗ · · · ⊗DXik

=
√
k!
∑
α∈Nm

0 ,
|α|=k

1

α!
∂αx f

(
X1(ω), . . . , Xm(ω)

)
(DX1)

⊙α1 ⊙ · · · ⊙ (DXm)
⊙αm

=
∑
α∈Nm

0 ,
|α|=k

1

α!
∂αx f

(
X1(ω), . . . , Xm(ω)

)
Sym

[
(DX1)

⊗α1 ⊗ · · · ⊗ (DXm)
⊗αm

]
. ⊓⊔

Observe that the class A(X) contains the algebra generated by the polynomials Hn(X),
X ∈ X. Arguing as in the proof of Proposition 3.1.15 we deduce that A(X) is dense in
LqX(Ω,P), ∀q ∈ (1,∞).
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Proposition 3.2.5. Let k ∈ N and q ∈ (1,∞). Then the operator

Dk : A(X) ⊂ LqX(Ω)→ LqX( Ω,X
⊙̂p )

is closable.

Proof. We follow closely the proof of [121, Prop.2.3.4]. We consider only the case k = 1.

Let F,G ∈ A(X) and X ∈ X such that ∥X∥L2 = 1. Note that FG ∈ A(X). We can
assume that

F = f(X1, . . . , Xn), G = g(X1, . . . , Xn).

where {X1, . . . , Xn} ⊂ X is an orthonormal system, X1 = X, and f , g are admissible. Then,
setting h = fg we deduce

E
[ [
D(FG), X

]
X

]
= (2π)−n/2

∫
Rn

∂h

∂x1
(x1, . . . , xn)e

−x21+···+x2n
2 dx

(integrate by parts along the x1-direction)

= (2π)−n/2
∫
Rn

x1h(x1, . . . , xn)e
−x21+···+x2n

2 dx = E
[
XFG

]
.

Clearly D(FG) = G(DF ) + F (DG). We deduce the following Gaussian integration by parts
formula

E
[
G
[
DF,X

]
X

]
= −E

[
F
[
DG,X

]
X

]
+ E

[
XFG

]
, ∀X ∈ X. (3.2.6)

Using the notation (3.2.2) we can rewrite the above equality in the more suggestive form

E
[
(DXF )G

]
= E

[
F (−DX +X)G

]
, ∀X ∈ X. (3.2.7)

The above equation extends by linearity to all X ∈ X, not necessarily of L2-norm 1.

Now let (Fn) be a sequence in A(X) such that the following hold.

(i) Fn → 0 in LqX(Ω).

(ii) The sequence DFn converges in the norm of LqX(Ω,X) to some η ∈ LqX(Ω,X).

We have to show that η = 0 a.s.. Let X ∈ X, G ∈ A(X). Since Fn → 0 in Lq and XG

and
[
DG,X

]
X
belong to L

q
q−1 we deduce from (3.2.6) that

E
[
G
[
η,X

]
X

]
= lim

n→∞
E
[
G
[
DFn, X

]
X

]
= − lim

n→∞
E
[
Fn
[
DG,X

]
X

]
+ lim
n→∞

E
[
XFnG

]
= 0.

Thus

E
[
G
[
η,X

]
X

]
= 0, ∀G ∈ A(X), X ∈ X.

Since A(X) is dense in any Lr, r ∈ [1,∞), we deduce that

∀X ∈ X, (η,X)X = 0 a.s..

Thus, if (ek)k∈N is an orthonormal basis of X, there exists a negligible set N ⊂ Ω such that[
η, en

]
X
(ω) = 0, ∀n ∈ N, ω ∈ Ω \N.

Thus η = 0 a.s. ⊓⊔
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Definition 3.2.6. Let k ∈ N and q ∈ [1,∞). We define the Gaussian Sobolev space Dk,q(X)
to be the closure of A(X) with respect to the norm

∥F∥Dk,q :=

 k∑
j=0

E
[
∥DjF∥q

X⊙̂k

] 1
q

. ⊓⊔

Remark 3.2.7. According to Proposition 3.2.5, the operatorDk can be consistently extended
as a continuous operator

Dk : Dk,q(X)→ LqX(Ω,X
⊙̂p).

The space Dk,q(X) is the domain of the closure of the unbounded operator

Dk : A(X) ⊂ LqX(Ω)→ LqX(Ω,X
⊙̂p),

i.e., the closure of A(X) in the graph norm of Dk. In particular, the space A(X) is dense in
Dk,q(X), ∀k ≥ 0, q ∈ [1,∞).

The space Dk,2(X) is a Hilbert space with inner product

(F,G)Dp,2 =

k∑
j=0

E
[ [
DjF,DjG

]
X⊙̂j

]
.

⊓⊔

Remark 3.2.8. Let (Ω, S,P
)
be a probability space. Suppose that (T ,M, µ) is a convenient

probability space and

W : H := L2(T ,M, µ)→ L2
(
Ω, S,

)̄
is a Gaussian white noise. Its image is a Gaussian Hilbert space X. If F ∈ D1,2(X) then its
gradient is an element in

L2
(
Ω, SX,P;X

) ∼= L2
(
Ω, SX,P;H

) ∼= L2
(
Ω× T ,P⊗ µ

)
and thus it can be identified with a stochastic process parametrized by T . We denote by
DtF this stochastic process.

Any functional F in the n-th Wiener chaos X:n: can be written as multiple Wiener integral

F = In
[
fn
]
=

∫
Tn
fn(t1, . . . , tn)W

[
dt1
]
· · ·W

[
dtn
]
,

where fn ∈ L2
[
T ,M⊚n, µ⊚n

)
. The gradient DF can be identified with the stochastic process

DtF = In−1

[
fn(−, t)

]
=

∫
Tn−1

fn(t1, . . . , tn−1, t)W
[
dt1
]
· · ·W

[
dtn−1

]
.

I refer to [123, Sec 1.2.1] for a proof and more information on this point of view. ⊓⊔

Digression 3.2.9. The usual Sobolev spaces can be defined in two equivalent, yet qualita-
tively different ways: as completions of spaces of smooth functions with respect to Sobolev
or by directly describing the regularity conditions that characterize the functions belonging
to a given Sobolev space.

Similarly, the Gaussian Sobolev spaces Dk,p
(
X
)
can be given an alternate definition by

describing explicitly the regularity properties a random variable in L0
X

(
Ω) needs to satisfy in
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order to belong to Dk,p. I digress to offer the reader an idea of this approach. I follow closely
[75, Chap.15] to which we refer for proofs and more details.

A random variable Z ∈ L0
X(Ω) can be described non-uniquely as

Z(ω) = f
(
X1(ω), . . . , Xn(ω), . . .

)
where f : RN → R is a measurable function and Xn ∈ X, ∀n. Suppose we are given another
such description of Z

Z = g
(
Y1, . . . , Yn, . . .

)
with g : RN → R a measurable function and Yn ∈ X, ∀n. One can show that for any X ∈ X
we have

f
(
X1 + E

[
X1X

]
, . . . , Xn + E

[
XnX

]
, . . .

)
= g
(
Y1 + E

[
Y1X

]
, . . . , Yn + E

[
YnX

]
, . . .

)
.

The key fact behind this equality is the identity

E
[
φ
(
X1 + E

[
X1X

]
, . . . , Xn + E

[
XnX

] ) ]
= E

[
: eX : φ

(
X1, . . . , Xn

) ]
for any n ∈ N and any bounded measurable function φ : Rn → R. Above, : eX : denotes the
Wick exponential defined in Example 3.1.25 . We then have a well defined linear map

ρX : L0
X

(
Ω
)
→ L0

X

(
Ω
)

given by

ρXf
(
X1, . . . , Xn, . . .

)
= f

(
X1 + E

[
X1X

]
, . . . , Xn + E

[
XnX

]
, . . .

)
.

This is also a morphism of algebras, i.e.,

ρX
(
Z1Z2

)
= ρX

(
Z1

)
ρX
(
Z2

)
, ∀X ∈ X, ∀Z1, Z2 ∈ L0

X

(
Ω
)
.

Moreover, ρX1+X2 = ρX1 ◦ ρX2 , ∀X1, X2 ∈ X. This map is called the Cameron-Martin shift.
It satisfies many other pleasant properties [75, Thm. 14.1].

Given F ∈ L0
X(Ω) and X ∈ X we say that the directional derivative ∂XF exists if the

difference quotients
1

t

(
ρtXF − F

)
converge in probability as t→ 0. The limit is the directional derivative ∂XF . If f ∈ C1

(
Rn
)

X,X1, . . . , Xn ∈ X, then

∂Xf
(
X1, . . . , Xn

)
=

n∑
k=1

E
[
XkX

] ∂f
∂xk

(
X1, . . . , Xn

)
.

A functional F ∈ L0
X

(
Ω
)
) is said to have a gradient if there exists G ∈ L0

X

(
Ω,X

)
such that

for any X ∈ X the directional derivative ∂XF exists and

∂XF =
[
G,X

]
X
a.s..

If this happens we set DF := G.

A random variable F ∈ L0
X

(
Ω
)
is said to be absolutely continuous along X ∈ X, or X-

a.c. if there exists a version of t 7→ ρtXF such that for any ω ∈ Ω the function t 7→ ρtXF (ω)
is absolutely continuous. We say that F ∈ L0

X

(
Ω
)
is ray absolutely continuous or ray a.c. if

it is X-a.c for any X ∈ X We denote by D̃1,0
(
X
)
the space of functionals F ∈ L0

(
Ω
)
that

are ray a.c. and admit a gradient.
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Following [75, Def. 15.59] we define D̃1,p to be the the subspace of D̃1,0
(
X
)
consisting of

functionals F such that DF ∈ Lp. The space D̃1,p
(
X
)
is equipped with an obvious Sobolev-

type Lp-norm. The fact that the normed space D̃1,p
(
X
)
is isomorphic to the Banach space

D1,p
(
X
)
in Definition 3.2.6 requires some work. For details we refer to [75, Thm. 15.104].

The space D̃1,p
(
X
)
has certain technical advantages. In particular, it leads naturally to

the following result with important applications.

Theorem 3.2.10. Suppose that F ∈ D1,p(X), p ∈ [1,∞), is a non-constant random variable.
Then its distribution is absolutely continuous with respect to the Lebesgue measure on R. ⊓⊔

For a proof I refer to [75, Thm. 15.50]. Yet other approaches to this absolute continuity
theorem can be found in [25], [94, Thm. III.7.1] or [140].

Let me mention a few things about a special case of Gaussian Hilbert spaces arising
frequently in stochastic analysis. Suppose that Γ is a Gaussian measure on the separable
Fréchet space X. It has an associated Gaussian Hilbert space X. More precisely, X = X∗

Γ,
the closure of the image of the tautological map

TΓ : X∗ → L2(X,Γ)

defined in (1.1.28). Concretely X∗
Γ can be identified with the quotient of X∗ modulo Γ-a.s.

equality. In this case
(
Ω, S,P) =

(
X,BX ,Γ

)
. For X ∈ X the Cameron-Martin shift τX

coincides with the pullback induced by a measurable map of τX : X →X.

In (1.1.34) we defined Cameron-Martin space HΓ = T ∗
Γ

(
X
)
⊂X of Γ. For X ∈ X define

τX : X →X, τX(x) = x+ T ∗
ΓX.

Then, for any F ∈X∗, the Cameron-Martin shift ρXF is given by

ρX(F ) = F + E
[
XF

] (1.1.29)
= F + F

(
T ∗
ΓX

)
= τ∗X(F ).

Recall that F not really a function, but an equivalence class of functions modulo equality
Γ-a.s. Thus if F = F ′ Γ-a.s., but F ̸= F ′, it is possible that F

(
x + T ∗

ΓX
)
̸= F ′(x + T ∗

ΓX
)

Γ-a.s.. This not the case.

The classical Cameron-Martin theorem [32] shows that the measure (τX)#Γ is absolutely
continuous with respect to Γ. More precisely

(τX)#Γ
[
dx
]
= e

X(x)− 1
2
∥X∥L2(X,Γ)Γ

[
dx
]
.

For modern presentations we refer to [21, Sec. 2.4] or [144, Sec. 3.3.1].

If X = Rn and Γ = Γ1n , then X = Rn, and for any X ∈ Rn, the Cameron-Martin shift
τX : Rn → Rn is the translation

Rn ∋ v 7→ v +X ∈ Rn.

If X = C
(
[0, 1]

)
) and Γ is a Gaussian measure on X, then the linear functionals

Evt : C
(
[0, 1]

)
→ R, Evt(f) = f(t)

span a dense subspace of the associated Gaussian Hilbert spaceX∗
Γ. The associated Cameron-

Martin space is the same of the associated Cameron-Martin space of the continuous Gaussian
process

(
Evt

)
t∈[0,1].
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For example, if Γ is the Wiener measure on C([0, 1]), then the Gaussian process (Evt)t∈[0,1]
is the Brownian motion.

As explained in Example B.5.5, to each ξ ∈ X∗ we can naturally associate a continuous
function hξ : [0, 1]→ R, hξ(t) = E

[
ξEvt

]
, ∀t. We obtain a translation

Tξ : X →X, f 7→ f + hξ.

We deduce that

T∗
ξ Evt(f) = Evt(f) +Evt(hξ) = Evt(f) + E

[
ξEvt

]
i.e.,

T∗
ξ Evt = Evt+E

[
ξEvt

]
.

Since the collections Evt span a dense subspace of X∗
Γ we deduce that

∀η ∈X∗
Γ T∗

ξη = η + E
[
ξη
]
.

Thus, the pullback induced by the translation in X by hξ is the Cameron-Martin shift ρξ.

This ends the digression. ⊓⊔

Example 3.2.11. Suppose that X is a finite dimensional Gaussian Hilbert space, dimX = n.
Fix an orthonormal basis X1, . . . , Xn. Then

L2
X(Ω)

∼= L2
(
Rn,Γ1[dx]

)
, Γ1

[
dx
]
= (2π)−n/2e−

|x|2
2 dx.

If f ∈ C∞(Rn) is a function such that is derivatives of any order have at most polynomial
growth, then the Malliavin gradient Df(X1, . . . , Xn) corresponds to the differential of f

df =
n∑
k=1

∂f

∂xk
dxk.

Furthermore, the Gaussian Sobolev space corresponds to the weighted Sobolev spaceW k,q
(
Rn,Γ1

)
equipped with the norm

∥f∥Dk,q =

∑
|α|≤k

∫
Rn

|∂αx f(x)|q Γ1
[
dx
] 1

q

. ⊓⊔

Proposition 3.2.12. Let f ∈ F(X), p ∈ N. Recall that Projn denotes the orthogonal projec-
tion onto the n-th chaos X:n:. The following statements are equivalent.

(i) F ∈ Dp,2(X).
(ii) ∑

n≥0

np∥Projn F∥2 <∞.

Outline of proof. Fix an orthonormal basis X = (Xk)k≥1 of X. We have

Projn =
∑

α∈N0, |α|=n

cα(f)Hα(X).

From the equality (3.1.4b) we deduce that∫
RN

∂jHα(x)∂jHβ(x)Γ(dx) = αj
(
Hα, Hβ

)
L2(Γ)

.
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This implies that

∥DHα∥2L2 = |α|∥Hα∥L2 .

In particular, we deduce that

X:n: ⊂ D1,2(X), ∥F∥2D1,2 = (1 + n)∥F∥2L2 , ∀F ∈ X:n:.

The proposition is now an immediate consequence of the above fact. ⊓⊔

Example 3.2.13. For any n ∈ N, and any p ∈ N0, the n-th chaos X:n: is contained in
Dp,2(X). ⊓⊔

Since A(X) is dense in in D1,q(X) we obtain the following useful result.

Proposition 3.2.14 (Chain Rule). Suppose that φ : Rm → R is a C1-function with bounded
derivatives. Then for any F1, . . . , Fn ∈ D1,q we have φ(F1, . . . , Fn) ∈ D1,p and

Dφ(F1, . . . , Fm) =

m∑
j=1

∂φ

∂xj
(F1, . . . , Fm)DFm. (3.2.8)

⊓⊔

The Chain Rule holds in the more general case when φ is a Lipschitz function, [123,
Prop. 1.2.4].

Proposition 3.2.15 (Extended Chain Rule). Suppose that φ : Rm → R is a Lipschitz
function, then for any F1, . . . , Fn ∈ D1,q such that the probability distribution of

F⃗ = (F1, . . . , Fm) : Ω→ Rm,

is absolutely continuous7 with respect to the Lebesgue measure on Rm, then φ(F⃗ ) ∈ D1,q and

(3.2.8) continues to hold with ∂φ
∂xi

defined a.e. ⊓⊔

3.2.2. The divergence operator. The divergence operator δ is the adjoint of the Malliavin
gradient viewed as a closed unbounded operator

D : D1,2(X) ⊂ L2
X(Ω)→ L2

X

(
Ω,X

)
.

Similarly, for p ∈ N, the operator δp is the adjoint of the closed unbounded operator

Dp : Dp,2(X) ⊂ L2
X(Ω)→ L2

X

(
Ω,X⊙̂p ).

The domain Dom(δp) of δp is the space{
u ∈ L2

X(Ω,X
⊙̂p); ∃C > 0

∣∣E[ [DpF, u
]
X⊙̂p

] ∣∣ ≤ C√E
[
F 2
]
, ∀F ∈ A(X)

}
.

If u ∈ Dom(δp), then δpu is the unique element in L2
X(Ω) = L2

X

(
Ω
)
such that

E
[
Fδpu

]
= E

[ [
DpF, u

]
X⊙̂p

]
, ∀F ∈ A(X). (3.2.9)

7This assumption is needed to give a precise meaning to ∂φ
∂xi

(F⃗ ) since for a Lipschitz function φ the partial

derivatives ∂φ
∂xi

(x) are defined only for x outside a Lebesgue negligible subset N ⊂ Rm.
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Example 3.2.16. (a) Suppose that dimX = n <∞. Fix an orthonormal basis {X1, . . . , Xn}
of X. Let

u = (u1, . . . , un) ∈ L2
X

(
Ω,Rn

)
.

Then each uj is a measurable function of (X1, . . . , Xn). For any admissible function f ∈ C∞(Rn)
we have

E
[
f(X1, . . . , Xn)δu

]
= E

 n∑
j=1

f ′xj (X1, . . . , Xn)uj(X1, . . . , Xn)


= (2π)−n/2

∫
Rn

 n∑
j=1

f ′xj (x)uj(x)e
−

x2j
2

 dx =

∫
Rn

f(x)
n∑
j=1

(
−∂xjuj(x) + xjuj

)
Γ
[
dx
]
.

Thus

δ(u1, . . . , un) =
n∑
j=1

(
−∂xjuj(X1, . . . , Xn) +Xjuj(X1, . . . , Xn)

)
.

Observe that in the case n = 1 the divergence operator coincides with the creation operator
(3.1.2).

(b) Suppose that X ⊂ L2
(
Ω, S,P

)
is a separable Gaussian Hilbert space and X ∈ X. It is

not hard to verify that DX ∈ Dom(δ). We want to compute δDX.

For F ∈ L2
X(Ω) we have

E[FδDX] = E
[
(Df,DX)X

]
, ∀A(X).

We can assume that ∥X∥L2 = 1 and that F = f(X1, . . . , Xn), where {X1, . . . , Xn} is an
orthonormal system, X = X1 and f is an admissible function. We have

E
[
(Df,DX)X

]
=

∫
Rn

f ′x1(x)Γ(dx) =

∫
Rn

f(x)x1Γ1
[
dx
]
= E[FX].

Hence

δ(DX) = X, ∀X ∈ X.

(c) Suppose that F ∈ A(X) and X ∈ X. Then DXF =
[
DF,DX

]
X
∈ A(X). Indeed, we can

assume that F = f(X1, . . . , Xn), f admissible, {X1, . . . , Xn} orthonormal system, X1 = X.
Then [

DF,DX
]
X
= f ′x1(X1, . . . , Xn) ∈ A(X).

Observe that

D(DXF ) = D
[
DF,DX

]
X
=

n∑
j=1

f ′′x1xj (X1, . . . , Xn)DXj =
1

2!
iX1D

2F,

where for any X ∈ X we denoted by iX the contraction

iX : X⊗k → X⊗(k−1), k ∈ N

which is the ⊗-derivation uniquely determined by the condition

iXY =
[
X,Y

]
X
, ∀Y ∈ X. ⊓⊔

The next result follows immediately from the definition of δ. We refer to [121, Prop.
2.5.4] for details.
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Proposition 3.2.17. Let F ∈ D1,2(X) and u ∈ Dom(δ) such that

E
[
F 2∥u∥2X

]
+ E

[
F 2δ(u)2

]
+ E

[ [
DF, u

]2
X

]
<∞.

Then

δ(Fu) = Fδu− (DF, u)X. ⊓⊔

Example 3.2.18. Suppose that F ∈ A(X), X ∈ X so that

u = FDX ∈ A(X,X).

Then u ∈ Dom(δ) and we deduce from Proposition 3.2.17 that

δu = FX − (DF,DX)X = FX −DXF.

This shows that δu ∈ D1,2 and for any Y ∈ X we have

DY (δu) = (DY F )X + FDYX −DYDXF = (DY F )X + F
[
X,Y

]
X
−DYDXF.

On the other hand

DY u = DY F ⊗DX, δ(DY Fu) = (DY F )X −DXDY F.

Hence

DY (δu)− δ(DY u) = (DY F )X + F
[
X,Y

]
X
−DYDXF − (DY F )X +DXDY F

= F (X,Y ) + [DX , DY ]F = F (X,Y ) =
[
u, Y

]
X
,

where [a, b] denotes the commutator of two elements a, b of an algebra. We have thus proved
the Heisenberg identity

∀u ∈ Dom(δ), Y ∈ X [DY , δ]u =
[
u, Y

]
X
. (3.2.10)

⊓⊔

The operator δp is closely related to the multiple Ito integrals. We have the following
result.

Proposition 3.2.19. Let X1, . . . , Xp ∈ X. Then (compare with (3.1.47))

δp(DX1 ⊗ · · · ⊗DXp) = δp
(
Sym[DX1 ⊗ · · · ⊗DXp]

)
= : X1 · · ·Xp : . (3.2.11)

Proof. Fix an orthonormal basis {Yn}n∈N of X. Clearly it sufficers to prove the result in the
special case when

DX1 ⊙ · · · ⊙DXp = (DY )⊙α, α ∈ NN
0 , |α| = p.

Suppose that f = f(y1, . . . , yn) is an admissible function. Then

E
[
f(Y1, . . . , Yn)δ(DY

⊙α)
]
= E

[ [
Dpf(Y1, . . . , Yn), (DY )⊙α

]
X⊙p

]
From Remark 3.2.4 we deduce

E
[ [
Dpf(Y1, . . . , Yn), (DY )⊙α

]
X⊙p

]
=
√
p!
∑
|β|=p

1

β!
E
[
∂βy f(Y1, . . . , Yn)

[
DY ⊙β, DY ⊙α ]

X⊙p

]
=
√
p!E
[
∂αy f(Y1, . . . , Yn)

]
=
√
p!

∫
Rn

∂αy f(y1, . . . , yn)Γ1
[
dy
]
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(δyk = −∂yk + yk·, δαk
yk

1 = Hαk
(yk))

=
√
p!

∫
Rn

f(y)Hα(y)Γ1
[
dy
]
.

Hence

δp((DY )⊙α) =
√
|α|!Hα(Y ),

i.e.,

δp
(
Sym[(DY )⊗α]

)
=

1√
|α|!

δp((DY )⊙α) = Hα(Y ) =: Y α1
1 · · ·Y

αn
n : .

This proves the second equality of (3.2.11). The first one is proved in a similar fashion. ⊓⊔

Remark 3.2.20. Using the equalities (3.1.33) and (3.1.40) we deduce that

δp(u) =
√
p!Θp(u), ∀p ∈ N, ∀u ∈ X⊙p.

If we are given a Hilbert space isomorphism

Z : L2(M,M, µ)→ X,

then the resulting map

L2(Mp, µ⊗p)→ X⊗p δp−→ L2
X

(
Ω
)

coincides with the multiple Wiener-Ito integral In; see (3.1.47). For this reason we set

Ip[F ] := δpF = δp
(
Sym[F ]

)
=
√
p!Θp

(
Sym[F ]

)
, ∀F ∈ X⊗p. (3.2.12)

Using the isometry relation (3.1.41) we deduce that

E
[
Ip[F ]

2
]
= ∥ Ip[F ] ∥2 = p!∥F ∥2, ∀F ∈ X⊙p. (3.2.13)

⊓⊔

Remark 3.2.21. For any Hilbert space H and any k ∈ N we have a Malliavin derivative

Dk
H : A(X, H)→ A(X, H ⊗ X⊗k)

with adjoint δkH defined by the equality

E
[
F
[
h, δ(Gh′ ⊗ u)

]
H

]
= E

[ [
DkF ⊗ h,Gh′ ⊗ u

]
H⊗X⊗k

]
,

∀F,G ∈ A(X), h, h′ ∈ H, u ∈ X⊗k. For any p ∈ N we have

Dp+1 = Dp
X ◦D, δp+1 = δpX ◦ δ.

Arguing as in the proof of Proposition 3.2.19 one can show

pδp−1(u) = Dδp(u), ∀u ∈ X⊗ X⊙(p−1). (3.2.14)

The above equality generalizes (3.1.4a). In fact, (3.2.14) follows from (3.1.4a). If as in the
previous remark we set

Ip−1[u] = δp−1(u), ∀u ∈ X⊗ X⊙(p−1).

We can rewrite (3.2.14) as

pIp−1[u] = DIp[u], ∀u ∈ X⊗ X⊙̂(p−1). (3.2.15)

⊓⊔
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3.2.3. The Ornstein-Uhlenbeck semigroup. Let X ⊂ L2(Ω, S,P) be a separable real
Gaussian Hilbert space.

Definition 3.2.22. The Ornstein-Uhlenbeck semigroup is the semigroup of contractions
Pt : L

2
X

(
Ω
)
→ L2

X

(
Ω
)
, t ≥ 0, defined by

TtF =
∑
n≥0

e−nt Projn F, ∀F ∈ L2
X

(
Ω
)
, ∀t ≥ 0,

where we recall that Projn : L2
X

(
Ω
)
→ X:n: denotes the orthogonal projection onto the n-th

chaos. ⊓⊔

The above definition shows that Tt is indeed a semigroup of selfadjoint L2-contractions.
It is a C0-semigroup in the sense that

lim
t↘0

Ttu = 0, ∀u ∈ L2
X

(
Ω
)
.

We want to present an equivalent, coordinate dependent description of this semigroup.

Fix a complete orthonormal basis of X,

X = (X1, X2, . . . , Xn, . . . ).

Observe that the semigroup Tt is uniquely determined by its action on P(X).

Proposition 3.2.23 (Mehler’s formula). Let P : Rm → R be a polynomial inm real variables.
Set

X⃗ := (X1, . . . , Xm).

Then

Tt[P (X⃗)](ω) =

∫
Rm

P
(
e−tX⃗(ω) +

√
1− e−2ty

)
Γ1
[
y
]
, (3.2.16)

where Γ1 denotes the canonical Gaussian measure on the Euclidean space Rm.

Proof. It suffices to prove the result in the special case when P (X⃗) = Hα(X⃗), α ∈ Nm0 . In
this case, the left-hand side of (3.2.16) is equal to

Tt[P (X⃗)](ω) = e−|α|tHα(X⃗(ω)) =
m∏
j=1

e−αjtHαj (Xj(t)).

The Fubini theorem shows that the right-hand side of (3.2.16) is equal in this case to

m∏
j=1

∫
R
Hαj

(
e−tXj(ω) +

√
1− e−2t y

)
Γ
[
dy
]
.

Thus, to prove (3.2.16) it suffices to prove that∫
R
Hn

(
e−tx++

√
1− e−2t y

)
Γ
[
dy
]
= e−ntHn(x), ∀n ∈ N0, t ≥ 0, ∀x ∈ R. (3.2.17)

We follow closely the presentation in the proof of [93, Prop. V.1.5.4]. We have the following
useful identities.
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Lemma 3.2.24. Define the linear operator

Tt : R[x]→ R[x], TtP (x) =

∫
R
P
(
e−tx++

√
1− e−2t y

)
Γ
[
dy
]
,

Then the following hold.

(i) The operator Tt is symmetric with respect to the L2(Γ)-inner product on R[x].
(ii) ∂xTt = e−tTt∂x.

(iii) Ttδx = e−tδxTt.

Proof of Lemma 3.2.24. To prove (i) observe that

(TtP,Q) =

∫
R

∫
R
P
(
e−tx++

√
1− e−2t y

)
Q(x)Γ

[
dy
]
Γ
[
dx
]
. (3.2.18)

Set a = e−t, b =
√
1− e−2t so that a2 + b2 = 1. We have

(TtP,Q) =

∫
R2

P (ax+ by)Q(x)Γ1
[
dxdy

]
.

Now consider the orthogonal change in variables[
x
y

]
=

[
b a
−a b

]
·
[
u
v

]
.

Since Γ1 is invariant under orthogonal transformations we deduce∫
R2

P (ax+ by)Q(x)Γ1
[
dxdy

]
=

∫
R2

P (v)Q(av + bu)Γ1
[
dudv

]
= (P, TtQ).

This proves (i). The equality (ii) follows by differentiating the definition (3.2.18) of Tt[P ].
The equality (iii) is obtained from (ii) by passing to adjoints, and using the symmetry of Tt
proved in (i). ⊓⊔

Clearly, Tt1 = 1. From Lemma 3.2.24(iii) we deduce that

TtHn = Ttδ
n
x1 = e−ntδnxTt1 = e−ntHn.

This concludes the proof of Proposition 3.2.23. ⊓⊔

The semigroup (Pt) is a C0-semigroup of symmetric linear contractions on the Hilbert
space L2

X(Ω). According to Hille-Yosida’s Theorem [126, Sec.1.3] Pt has the form Pt = etL,
where L is a closed, densely defined, selfadjoint and nonpositive operator. Moreover, F is in
the domain of L if and only if the limit

lim
t↘0

1

t

(
TtF − F

)
exists in L2

X

(
Ω
)
. In this case, LF is the above limit.

Definition 3.2.25. The Ornstein-Uhlenbeck operator is the infinitesimal generator L of the
Ornstein-Uhlenbeck semigroup. ⊓⊔



3.2. Malliavin calculus 221

Proposition 3.2.26.

Dom(L) =
{
F ∈ L2

X

(
Ω
)
;
∑
n≥0

n2∥Projn ∥2L2 <∞
}
= D2,2(X).

∀n ∈ N, ∀F ∈ X:n: : LF = −nF = −δDF.

Proof. Let F ∈ L2
X

(
Ω
)
. We set Fn = Projn F . Then

1

t

(
TtF − F

)
=
∑
n≥0

e−nt − 1

t
Fn.

Now observe that ∣∣∣e−nt − 1

t

∣∣∣ ≤ n, ∀t > 0, N ∈ N0.

so that ∥∥∥∥1t(TtF − F)
∥∥∥∥2
L2

≤
∑
n≥0

n2∥Fn∥2L2

This proves that if ∑
n≥0

n2∥Fn∥2L2 <∞,

then

lim
t↘0

1

t

(
TtF − F

)
exists in L2 and it is equal to ∑

n≥0

d

dt

∣∣
t=0

e−ntFn = −
∑
n≥0

nFn.

Conversely, if the above limit exists in L2, then

Projn

(
lim
t↘0

1

t

(
TtF − F

))
= lim

t↘0
Projn

(
1

t

(
TtF − F

))
= −nFn.

Thus

lim
t↘0

1

t

(
TtF − F

)
= −

∑
n≥0

nFn ∈ L2 ⇒
∑
n≥0

n2∥Fn∥2L2 <∞.

The equality LF = −nF , f ∈ X:n: follows from the above discussion. To prove the equality
δDF = n, F ∈ X:n: it suffices to consider only the special case when F = Hα(X1, . . . , Xk)
where (Xj) is an orthonormal system and α is a multi-index such that |α| = n. In this case
the equality follows from (3.1.4b). ⊓⊔

Example 3.2.27. (a) Suppose that dimX = n. By fixing an orthonormal basis X1, . . . , Xn

of X we can identify L2
X

(
Ω
)
with L2(Rn,Γ1). Then

Lf =

n∑
j=1

∂2xjf −
n∑
j=1

xj∂xjf = (−∆− x∇)f,

for any functionf ∈ C2(Rn) with bounded 2nd order derivatives. Above, ∆ is the Euclidean
geometers’ Laplacian. In particular, ∆ is nonnegative. ⊓⊔
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Definition 3.2.28. We define L−1 to be the bounded operator L−1 : L2
X

(
Ω
)
→ L2

X

(
Ω
)

given by

L−1F = −
∑
n≥1

1

n
Projn F. ⊓⊔

Note that L−1 is a pseudo-inverse of L. More precisely, if F ∈ D2,2(X) is such that
E
[
F
]
= 0, i.e., Proj0 F = 0, then

L−1LF = LL−1F = F.

Proposition 3.2.29. Let F ∈ D1,2(X). Then for any X ∈ X, ∥X∥L2 = 1, we have

DXL
−1F = −

∫ ∞

0
e−tTtDXFdt = (L− 1)−1DXF. (3.2.19)

Proof. It suffices to prove the result in the special case

F = Hα(X1, . . . , Xm),

where {X1, . . . , Xm} ⊂ X is an orthonormal system, X = X1, |α| = n > 0. Note that

DXF = α1Hβ(X1, . . . , Xm), β = (α1 − 1, α2, . . . , αm).

Using the identity
1

n
=

∫ ∞

0
e−ntdt

we deduce

L−1F = − 1

n
F = −

∫ ∞

0
TtFdt⇒ DXL

−1F = −
∫ ∞

0
DXTtFdt = −

∫ ∞

0
e−tTtDXFdt.

On the other hand

(L− 1)−1DXF = (L− 1)−1[α1Hβ] = −
1

|β|+ 1
α1Hβ = − 1

n
DXF = DXL

−1F.

⊓⊔

Proposition 3.2.30 (Key integration by parts formula). Suppose that F,G ∈ D1,2(X) are
non-constant and g : R→ R is a C1 function with bounded derivative. Then

E
[
Fg(G)

]
= E[F ] · E

[
g(G)

]
+ E

[
g′(G) ·

[
DG,−DL−1F

]
X

]
. (3.2.20)

Proof. Let F⊥ = F − E[F ]. Then

E
[
Fg(G)

]
= E[F ] · E

[
g(G)

]
+ E

[
F⊥g(G)

]
.

Since F⊥ = LL−1F we deduce

E
[
F⊥g(G)

]
= E

[
LL−1Fg(G)

]
= −E

[
δDL−1Fg(G)

]
(3.2.9)
= −E

[ [
DL−1F,Dg(G)

]
X

] (3.2.8)
= −E

[ [
DL−1F, g′(G)DG

]
X

]
= E

[
g′(G)

[
DG,−DL−1F

]
X

]
.

⊓⊔
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3.2.4. The hyper-contractivity of the Ornstein-Uhlenbeck semigroup. We know
that (Tt) defines a C0-semigroup of contractions L2

X

(
Ω
)
→ L2

X

(
Ω
)
.

Proposition 3.2.31. For any t > 0 and any p ∈ (1,∞) the operator Tt defines a contraction
LpX
(
Ω
)
→ LpX

(
Ω
)
.

Proof. We limit ourself to proving that

∥TtP∥Lp ≤ ∥P∥Lp , ∀P ∈ P(X).

To see this assume P = P (X⃗), where X⃗ = (Xm)m≥1 is an orthonormal system in X. Using
Mehler’s formula (3.2.16) we deduce

Tt[P (X⃗)](ω) =

∫
Rm

P
(
e−tX⃗(ω) +

√
1− e−2ty

)
Γ1
[
dy
]
.

Since the function f(x) = xp, x > 0, is convex for p > 1 we deduce from Jensen’s inequality
that ∣∣Tt[P (X⃗)](ω)

∣∣p ≤ ∫
Rm

∣∣∣P(e−tX⃗(ω) +
√
1− e−2t y

) ∣∣∣pΓ1[ dy ].
Invoking Jensen’s inequality once again we conclude that

E
[
|TtP |p

]
≤
∫
Rm

E
[∣∣∣P(e−tX⃗(ω) +

√
1− e−2t y

) ∣∣∣p]Γ1[ dy ]
=

∫
Rm×Rm

∣∣∣P (e−tx+
√

1− e−2ty
)∣∣∣pΓ1(dx)Γ1(dy) = ∫

Rm

∣∣P (x ) ∣∣pΓ1[ dx ],
where at the last step we used the fact that if X, Y are independent standard normal random
variables and a2 + b2 = 1, then aX + bY is also a standard normal random variable. ⊓⊔

The semigroup Tt satisfies a hypercontractivity property, namely, for any p0 ∈ (1,∞)
there exists a strictly increasing, unbounded function p : [0,∞)→ (0,∞) such that p0 = p(0)

and, ∀t ≥ 0, the operator Tt induces a bounded linear map Tt : L
p0 → Lp(t). We will spend

the remainder of this subsection proving this fact. We denote by Γ1 the canonical Gaussian
measure on an finite dimensional Euclidean space.

Theorem 3.2.32 (The log-Sobolev inequality). For any n ∈ N, and any f ∈ W 1,2(Rn,Γ1)
we have ∫

Rn

f2(x) log f2(x)Γ1
[
dx
]
≤ 2

∫
Rn

|∇f(x)|2 Γ1
[
dx
]

+

∫
Rn

f2(x)Γ1
[
dx
]
log

(∫
Rn

f2(x)Γ1
[
dx
])

,

(3.2.21)

where 0 · log 0 := 0.

Proof. We follow the presentation in [21, §1.6]. Assume first that f ∈ C∞
b (Rn), i.e., f and

all its derivatives are bounded. We distinguish three cases.

A. ∃c > 0 such that f(x) > c, ∀x ∈ Rn. Set φ = f2 so that

∇f =
1

2
√
φ
∇φ
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and (3.2.21) is equivalent to∫
Rn

φ logφdΓ1 −
∫
Rn

φdΓ1 log

(∫
Rn

φdΓ1

)
≤ 1

2

∫
Rn

1

φ
|∇φ|2 dΓ. (3.2.22)

Consider the Ornstein-Uhlenbeck semigroup

Tt : L
2(Rn,Γ1)→ L2(Rn,Γ1).

Using the equality (3.2.16) we deduce that

Tt[φ](x) ≥ c, ∀x ∈ Rn, t ≥ 0.

Since

lim
t→∞

Tt[φ] log Tt[φ] =

∫
Rn

φdΓ1 log

(∫
Rn

φdΓ1

)
we see that the left-hand side of (3.2.22) is equal to

−
∫ ∞

0

d

dt

∫
Rn

Tt[φ] log Tt[φ] dΓ|one.

Taking into account the fact that

d

dt
Tt[g] = LTt[g], ∀g ∈ C∞

b (Rn)

we deduce

−
∫ ∞

0

d

dt

∫
Rn

Tt[φ] log Tt[φ] dΓ1

= −
∫ ∞

0

∫
Rn

LTt[φ] log Tt[φ] dΓ1 −
∫ ∞

0

∫
Rn

Tt[φ]
1

Tt[φ]

d

dt
Tt[φ] dΓ1

= −
∫ ∞

0

∫
Rn

LTt[φ] log Tt[φ] dΓ1 −
∫ ∞

0

∫
Rn

LTt[φ] dΓ1.

Since L is symmetric and L1 = 0 we deduce∫
Rn

LTt[φ] dΓ1 = 0.

Hence ∫
Rn

φ logφdΓ1 −
∫
Rn

φdΓ log

(∫
Rn

φdΓ1

)
= −

∫ ∞

0

∫
Rn

LTt[φ] log Tt[φ] dΓ1

=

∫ ∞

0

∫
Rn

δDTt[φ] log Tt[φ] dΓ1 =

∫ ∞

0

∫
Rn

(
∇Tt[φ],∇ log Tt[φ]

)
dΓ1

=

∫ ∞

0

∫
Rn

1

Tt[φ]

∣∣∇Tt[φ] ∣∣2dΓ1︸ ︷︷ ︸
F (t)

.

Using Lemma 3.2.24 (ii) we deduce

∂xiTt[φ] = e−tTt[∂xiφ], ∀i = 1, . . . , n,

so that

F (t) = e−2t

∫
Rn

1

Tt[φ]

n∑
i=1

(
Tt[∂xiφ]

)2
dΓ1.
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The equality (3.2.16) implies that for any g, h ∈ C∞
b (Rn) we have

Tt[g] ≤ Tt[ |g| ] ≤ ∥g∥L∞ ,
(
Tt[gh]

)2 ≤ Tt[g2]Tt[h]2.
Hence

1

Tt[φ]

(
Tt[∂xiφ]

)2
=

1

Tt[φ]

(
Tt

[
√
φ · ∂xiφ√

φ

])2

≤ Tt
[
(∂xiφ)

2

φ

]
≤ (∂xiφ)

2

φ
.

Thus

F (t) ≤ e−2t

∫
Rn

|∇φ|2

φ
dΓ1.

The inequality (3.2.22) follows by integrating the above inequality.

B. f ∈ W 1,2(Rn,Γ), f ≥ 0 a.s. . This case follows from case A by choosing a family of
functions fε ∈ C∞

b (Rn), fε ≥ ε, fε → f in W 1,2 and then letting ε↘ 0.

The general case, f ∈W 1,2(Rn,Γ1), follows from case B applied to |f |. ⊓⊔

Remark 3.2.33. If (Ω, S, µ) is a probability space and f : Ω→ [0,∞) is measurable function,
then its entropy with respect to µ is

Entµ[f ] =


Eµ[f log f ]− Eµ[f ] logEµ[f ], Eµ[log(1 + f)] <∞,

+∞, Eµ[log(1 + f)] =∞.

where 0 log 0 := 0. Observe that Entµ(f) is nonnegative and positively homogeneous of degree
1. The log-Sobolev inequality (3.2.21) can be rewritten as

EntΓ1 [f
2] ≤ 2

∫
Rn

|∇f(x)|2Γ1
[
dx
]
.

As explained in [86, Sec.5.1], the log-Sobolev inequality leads to rather sharp concentration
of measure inequalities. ⊓⊔

Theorem 3.2.34 (Hypercontractivity). Let p ∈ (1,∞). Define

q(t) := 1 + e2t(p− 1), ∀t ≥ 0.

Then

∥Ttf∥Lq(t) ≤ ∥f∥Lp , ∀f ∈ Lp(Rn,Γ1), t ≥ 0. (3.2.23)

Note that q(t) > p, ∀t > 0.

Proof. We follow closely the arguments in [21, Thm. 1.6.2]. It suffices to prove the inequality
for smooth functions f ∈ C∞

b (Rn) such that

c := inf
x∈Rn

f(x) > 0.

Under this assumption the function [0,∞) ∋ t 7→ G(t) = ∥f∥Lq(t) is differentiable. The
inequality (3.2.23) reads G(t) ≤ G(0) so it it suffices to prove that G′(t) ≤ 0, ∀t ≥ 0.

Applying the log-Sobolev inequality to the function f r/2, r > 0, we deduce∫
Rn

f r log fdΓ1 −
1

r

∫
Rn

f rdΓ1

(
log

∫
Rn

f rdΓ1

)
≤ r

2

∫
Rn

(
f r−2∇f,∇f)dΓ1
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=
r

2(r − 1)

∫
Rn

(
∇f r−1,∇f

)
dΓ1 = − r

2(r − 1)

∫
Rn

f r−1LfdΓ1.

Hence, ∀r > 0,∫
Rn

f r log fdΓ1 −
1

r

∫
Rn

f rdΓ1

(
log

∫
Rn

f rdΓ1

)
≤ − r

2(r − 1)

∫
Rn

f r−1LfdΓ1. (3.2.24)

We set

F (t) :=

∫
Rn

Tt[f ] dΓ1.

Then G(t) = F (t)1/q(t) and we have

G′(t) = G(t)

(
− q

′(t)

q(t)2
logF (t) +

F ′(t)

q(t)F (t)

)
.

Since q′(t) = 2q(t)− 2 > 0 it suffices to show that

− 1

q(t)
F (t) logF (t) +

F ′(t)

q(t)
≤ 0. (3.2.25)

Observing that

F ′(t) =

∫
Rn

(Tt[f ])
q(t)

(
q′(t) log Tt[f ] + q(t)

LTt[f ]

Tt[f ]

)
dΓ

we conclude that (3.2.24) is equivalent to

−F (t) logF (t)
q(t)

+

∫
Rn

(
Tt[f ]

)q(t)
log Tt[f ]dΓ1 +

q(t)

q′(t)

∫
Rn

(
Tt[f ]

)q(t)−1
LTt[f ]dΓ1 ≤ 0.

This is precisely the inequality (3.2.24) with r = q(t). ⊓⊔

Corollary 3.2.35. Let X ⊂ L2
(
Ω, S,P

)
be a separable Gaussian Hilbert space. Let p > 1,

Then for any t > 0, F ∈ L2
X

(
Ω
]
we have

∥TtF∥Lq(t) ≤ ∥F∥Lp , ∀F ∈ LpX
(
Ω
)
, q(t) = 1 + e2tp. (3.2.26)

Proof. Follows from Theorem 3.2.34 and the density of P(X) is dense in LpX(Ω). ⊓⊔

Corollary 3.2.36. Let n ∈ N and F ∈ X:n: ⊂ L2
X

(
Ω). Then F ∈ X:n: ⊂ LqX

(
Ω), ∀q ∈ [1,∞).

Proof. The claim is obviously true for q ∈ [1, 2]. Assume that q > 2 Note that TtF = e−ntF .

On the other hand TtF ∈ L1+e2t

X

(
Ω
)
for any t < 0. Hence, if 1 + e2t > q, then entF ∈ Lq. ⊓⊔

We conclude by mentioning, without proof, the Kree-Meyer inequality.

Theorem 3.2.37 (Kree-Meyer). For any p ∈ (1,∞), and any k, ℓ ∈ N0, there exist positive
constants cp(k, ℓ) < Cp(k, ℓ) such that

cp∥F∥Dk+ℓ,p ≤ ∥(1− L)
ℓ
2F∥Dk,p ≤ Cp∥F∥Dk+ℓ,p , ∀F ∈ A(X). (3.2.27)

⊓⊔

For a proof we refer to [21, Sec. 5.6], [93, Chap 2] or [123, Sec. 1.5].
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3.3. The Stein method

3.3.1. Metrics on spaces of probability measures. Let us recall several concepts of of
pseudo-distances on the spaces of Borel probability measures on Rd.

Definition 3.3.1. Let H be a set of Borel measurable functions Rd → R. We denote by
Prob

(
Rd) the space of Borel probability measures on Rd.

(i) We set

Prob
(
Rd,H

)
:=
{
µ ∈ Prob

(
Rd
)
; H ⊂ L1(Rd, µ)

}
.

(ii) We say that H is called separating if for any µ, ν ∈ Prob
(
Rd
)

µ = ν⇐⇒Eµ
[
h
]
= Eν

[
h
]
, ∀h ∈ H ∩ L1

(
Rd, µ

)
∩ L1

(
Rd, ν

)
.

(iii) If H is separating and µ, ν ∈ Prob
(
Rd,H

)
, we set

distH(µ, ν) := sup
h∈H

∣∣Eµ[h ]− Eν
[
h
] ∣∣.

(iv) If (Ω, S,P) is a probability space and F,G : Ω → Rd are random variables whose
probability distributions belong to Prob

(
Rd,H

)
, then we set

distH(F,G) := distH
(
PF ,PG

)
= sup

h∈H

∣∣E[h(F ) ]− E
[
h(G)

] ∣∣.
⊓⊔

It is easy to check that if H is separating, then distH is indeed a metric on Prob
(
Rd,H).

Example 3.3.2. (a) If H is the class of functions

I(−∞,c1]×···×(−∞,cd], c1, . . . , cd ∈ R,

then the resulting metric distH on Prob
(
Rd) is called the Kolmogorov distance and it is

denoted by distKol.

(b) If H is the class of bounded Borel measurable functions h : Rd → [0, 1], then H is
separating then the resulting metric on Prob

(
Rd
)
is called the total variation metric and it

is denoted by distTV .

(c) If H is the class of Lipschitz continuous functions Rd → R satisfying Lip(h) ≤ 1, where
Lip(h) is the (best) Lipschitz constant of h, then H is separating, the resulting metric is
called the Wasserstein metric and it is denoted by distW .

(d) If H denotes the class of Lipschitz continuous functions h : Rd → R such that

∥h∥L∞ + Lip(h) ≤ 1,

then H is separating, the resulting distance is called the Fortet-Mourier metric and it is
denoted by distFM .

(e) If H ⊂ C2
b (Rd) denotes the class of C2-functions f : Rd → R satisfying

∥f∥C2 ≤ 1,

then H is separating. We denote by distC2 the resulting metric on Prob
(
Rd
)
. ⊓⊔
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Remark 3.3.3. (a) Clearly

distKol ≤ distTV , distFM ≤ distW , distC2 ≤ distW

Thus

lim
n→∞

distTV (Fn, F ) = 0⇒ lim
n→∞

distKol(Fn, F ) = 0.

Moreover, if

lim
n→∞

distKol(Fn, F ) = 0,

then Fn → F in law.

(b) Also, one can prove (see [49, Thm.11.3.3] that Fn → F in distribution of and only
if Fn → F in the Fortet-Mornier metric. It is not hard to see that distC2 induces on
Prob

(
Rd) the same topology as distFM , the topology of convergence in law. Moreover,

(see [34, Thm.3.3]), if N ∼ N(0, 1), then

distKol(F,N) ≤ 2
√

distW (F,N). ⊓⊔

The Stein method provides a way of estimating the distance between a random variable
and a normal random variable. I will present the bare-bones minimum referring to [33, 34,
133] for more details and many more applications. For more recent developments I refer to
[14, 89]. I am following the presentation in [121, Chap.3,4]. It all starts with the following
simple observation.

3.3.2. The one-dimensional Stein method. Suppose that N ∼ N(0, 1) and g ∈ D1,2(R),
i.e., g(N), g′(N) ∈ L2. Then∫

R

(
− g′(x) + xg(x)

)
Γ1(dx) =

∫
R
δxg(x) · 1 Γ1(dx) =

∫
R
g(x) · (∂x1)Γ1(dx) = 0,

so that

E
[
Ng(N)

]
= E

[
g′(N)

]
, ∀g ∈ D1,2(R). (3.3.1)

It turns out that the converse is also true.

Lemma 3.3.4 (Stein’s Lemma). A random variable X is a standard normal random variable
if and only if for all g ∈ C1(R) such that g′ ∈ L1

(
R,Γ1

)
and

E
[
Xg(X)

]
= E

[
g′(X)

]
. (3.3.2)

Proof. The necessity follows from Proposition 1.1.4. To prove the sufficiency use (3.3.2)
with g(x) = xk, k = 0, 1, . . . , we deduce

E
[
Xk+1

]
= kE

[
Xk−1

]
, ∀k = 0, 1, 2, . . . .

This proves that

E
[
Xk
]
=

∫
R
xkΓ1(dx), ∀k = 0, 1, 2 . . . ,

The conclusion follows from the fact that the normal distribution is uniquely determined by
its moments. ⊓⊔

Stein’s lemma suggests that for a random variable X the quantity E[Xf(X) − f ′(X)
]

should give an indication of how far away is the distribution ofX from the normal distribution.
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Definition 3.3.5. Let N ∼ N(0, 1) and h ∈ L2(R,Γ1). The Stein’s equation associated to h
is the o.d.e.

g′(x)− xg(x)︸ ︷︷ ︸
=−δxg(x)

= h(x)−
∫
R
h(x)Γ1(dx) = h(x)− E[h(N)]. (3.3.3)

We set h⊥(x) := h(x)− E[h(N)] so that

E[h⊥(N) ] = 0. ⊓⊔

Observe that Stein’s equation can be rewritten as

e
x2

2 ∂x
(
e−

x2

2 g(x)
)
= h⊥(x), (3.3.4)

If g1, g2 are two solutions of the linear equation (3.3.4), then

ex
2/2
(
g1(x)− g2(x)

)
= constant.

This implies immediately the following result.

Proposition 3.3.6. The general solution of (3.3.3) has the form

g(x) = gh,c(x) = ce
x2

2 + e
x2

2

∫ x

−∞
h⊥(y)e

− y2

2 dy, x ∈ R, (3.3.5)

where c ∈ R is an arbitrary real constant. Moreover the solution

gh(x) := gh,c=0 = e
x2

2

∫ x

−∞
h⊥(y)e

− y2

2 dy (3.3.6)

is the unique solution g(x) of (3.3.3) such that

lim
x→±∞

e−
x2

2 g(x) = 0. (3.3.7)

⊓⊔

If now F is a random variable, then integrating the equality

g′h(x)− xgh(x) = h(x)− E[h(N) ]

with respect to the probability distribution of F we deduce

E[h(F ) ]− E[h(N) ] = E
[
g′h(F )− Fgh(F )

]
. (3.3.8)

Thus, if H is a separating collection of Borel measurable functions h : R→ R we deduce

distH(F,N) = sup
h∈H

∣∣E[ g′h(F )− Fgh(F ) ] ∣∣. (3.3.9)

We want to use the above equality to produce estimates on the Wasserstein distance between
two Borel probability measures on R.

Proposition 3.3.7. Let h : R → R be a Lipschitz continuous function. Set K := Lip(h).
Then the function gh given by (3.3.6) admits the representation

gh(x) = −
∫ ∞

0

e−t√
1− e−2t

E
[
h
(
e−tx+

√
1− e−2tN

)
N
]
dt. (3.3.10)

Moreover, gh is a C1 function and

∥g′h∥∞ ≤
√

2

π
K. (3.3.11)
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Proof. Since 0 ≤ h ≤ 1 we deduce from the equality (3.3.6) coupled with the Mills ratio
inequalities (1.1.2) that gh ∈ C1

b (R)

sup
x∈R

∣∣ g′h(x) ∣∣ ≤√ 2

π
K.

Clearly ∂xh ∈ L2(R,Γ1). We have g′h(x) = h(x) + xgh(x) ∈ D1,2(R) so gh ∈ D2,2(R). From
the equality −δxgh = g′(x)− xg(x) = h and we conclude that

−∂xδxgh = ∂xh a.e. on R.

Using the identity [∂x, δx] = 1 we deduce −∂xδx = −1− δx∂x = (L− 1). Thus

(L− 1)gh = ∂xh.

Since gh ∈]D2,2(R) we deduce

gh = (L− 1)−1∂xh
(3.2.19)
= −

∫ ∞

0
e−tTt[∂xh]dt.

Using Mehler’s formula (3.2.16) we deduce

Tt[∂xh](x) =

∫
R
h′(e−tx+

√
1− e−2ty)Γ1(dy).

We set ux := e−tx+
√
1− e−2ty and we observe that for fixed x we have

d

dy
h(ux) = h′(ux)

dux
dy

=
√
1− e−2t h′(ux)⇒ h′(ux) =

1√
1− e−2t

d

dy
h(ux).

Hence

Tt[∂xh](x) =
1√

1− e−2t

∫
R

d

dy
h(ux)Γ1(dy) =

1√
1− e−2t

∫
R
h(ux)yΓ1(dy)

=
1√

1− e−2t
E
[
h
(
e−tx+

√
1− e−2tN

)
N
]
.

This proves (3.3.10).

Clearly gh is a C
1-function. To prove the estimate (3.3.11), we derivate (3.3.10) we respect

to x and we deduce

g′h(x) = −
∫ ∞

0

e−2t

√
1− e−2t

E
[
h′
(
e−tx+

√
1− e−2tN

)
N
]
dt.

Since |h′| ≤ K we deduce

∣∣ g′h(x) ∣∣ ≤ KE[ |N | ]
∫ ∞

0

e−2t

√
1− e−2t

dt = K

√
2

π

∫ 1

0

dv

2
√
1− v

= K

√
2

π
.

⊓⊔

From the above proposition and the equality (3.3.9) we obtain immediately the following
useful result.
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Corollary 3.3.8. Let N ∼ N(0, 1). Then for any square integrable random variable F we
have

distFM (F,N) ≤ distW (F,N) ≤ sup
g∈FW

∣∣∣E[ g′(F )− Fg(F ) ] ∣∣∣, (3.3.12)

where

FW :=

{
g ∈ C1(R); ∥g′∥∞ ≤

√
2

π

}
. (3.3.13)

⊓⊔

3.3.3. The multidimensional Stein method. The Stein method has a multidimensional
counterpart. To describe it we need to introduce some notation. Denote by L(Rn) the space
of bounded linear operators Rn → Rn. We define the Hilbert-Schmidt inner product on L(Rn)
to be

(A,B)HS := trAB∗ =
∑
i,j

AijBij , ∀A,B ∈ L(Rn).

The next result generalizes the one-dimensional Stein lemma

Lemma 3.3.9 (Multidimensional Stein lemma). Let d ∈ N and C ∈ L(Rd) be a symmetric
operator such that C ≥ 0. Let N = (N1, . . . , Nd) be a random d-dimensional vector. Then
the following statements are equivalent.

(i) N ∼ N(0, C)

(ii) For any C2 function f : Rd → R with bounded first and second order derivatives we
have

E
[ (

N ,∇f(N)
) ]

= E
[ (
C,Hess f(N)

)
HS

]
. (3.3.14)

Proof. (i) ⇒ (ii). If C > 0, then the implication follows from an immediate integration by
parts and the equality

ΓC(dx) =
1√

det(2πC)
e−

1
2
(Cx,x)dx.

The general case follows from the general case applied to the nondegenerate matrices Cε = C+ε1
and then (carefully) letting ε→ 0.

(ii) ⇒ (i). Fix G ∼ N(0, C) independent of N and a C2 function f : Rd → R as in (ii). We
set

φ(t) := E
[
f
(√

tN +
√
1− tG

) ]
.

Then

φ(1) = E[ f(N) ], φ(0) = E[ f(G) ]

and thus

E[ f(N) ]− E[ f(G) ] =

∫ 1

0
φ′(t)dt

=

∫ 1

0
E
[ (
∇f(
√
tN +

√
1− tG ),N

) ] dt
2
√
t
−
∫ 1

0
E
[ (
∇f(
√
tN +

√
1− tG ),G

) ] dt

2
√
1− t

Using (3.3.14) we deduce by conditioning on G that, for any x ∈ Rd, we have

E
[ (
∇f(
√
tN +

√
1− tx ),N

) ]
=
√
tE
[ (
C,Hess f(

√
tN +

√
1− tx

)
HS

]︸ ︷︷ ︸
=:h1(x,t)

.
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SinceG ∼ N(0, C) it satisfies (3.3.14) and, conditioning onN , we deduce that for any x ∈ Rd,
we have

E
[ (
∇f(
√
tx+

√
1− tG ),G

) ]
= E

[ (
C,Hess f(

√
tx+

√
1− tG)

)
HS

]︸ ︷︷ ︸
=:h2(x,t)

.

Integrating h1(x, t) and h2(x, t) respectively with respect to the law of G and the law of N ,
and then integrating with respect to t we deduce that

E
[
f(N)

]
= E

[
f(G)

]
,

for any C2-function f : Rd → R with bounded first and second order derivatives. Since the
class of such functions is separating we deduce that N ∼ G ∼ N(0, C). ⊓⊔

Definition 3.3.10. Let N ∼ N(0,1d) and h : Rn → R a measurable function such that
E
[
|h(N)|

]
<∞. The Stein’s equation associated to h and N is the p.d.e.

Lf(x) = −∆f(x)− x · ∇f(x) = h(x)− E[h(N) ], ∆ =

d∑
j=1

∂2xj . (3.3.15)

Observe that if h : Rd → R is a Lipschitz continuous function, then the function

h⊥(x) := h(x)− E[h(N) ] ∈ L2(Rd,Γ) and

∫
Rd

h⊥(x)Γ(dx) = 0.

Thus, h⊥ lies in the range of the Ornstein-Uhlenbeck operator L : D2,2(Rd) → D0,2(Rd) so
there exists a unique function fh ∈ D2,2(Rd) such that

Lfh(x) = h⊥(x) and

∫
Rd

fh(x)Γ(dx) = 0.

More precisely, fh = L−1h = L−1h⊥. We can now state the multidimensional counterpart of
Proposition 3.3.7.

Proposition 3.3.11. Let h : Rd → R be a Lipschitz continuous function. Then the function

fh = L−1h = L−1h⊥

is well defined, C2 and admits the representation

fh(x) = −
∫ ∞

0
Tt[h⊥]dt =

∫ ∞

0
E
[
h(N)− h

(
e−tx+

√
1− e−2tN

) ]
dt. (3.3.16)

Moreover, if Lip(h) ≤ K then,

sup
x∈Rd

∥ Hess fh(x) ∥HS ≤ K
√
d. (3.3.17)

Proof. Let hn ∈ L2(Rd,Γ) be the n-th chaos component of h(x). Then, in L2, we have the
following equalities

h(x) =
∑
n≥0

hn(x), h⊥(x) =
∑
n≥1

hn(x),

L−1h⊥(x) = −
∑
n≥1

1

n
hn(x) = −

∑
n≥1

∫ ∞

0
e−nthn(x) = −

∫ ∞

0
Tt[h⊥]dt.
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This proves the first part of (3.3.16). The second part of this equality follows from Mehler’s
formula. The C2-regularity of fh is a consequence of basic elliptic regularity results.

To prove (3.3.17) we observe that

∂2xixjfh(x) = −
∫ ∞

0

e−2t

√
1− e−2t

E
[
∂xjh

(
e−tx+

√
1− e−2tN

)
Ni

]
dt

Thus, if B ∈ L(Rd), we have

∣∣ (B,Hess fh(x)
)
HS

∣∣ =
∣∣∣∣∣∣
∑
i,j

∂2xixjfh(x)

∣∣∣∣∣∣
=

∣∣∣∣ ∫ ∞

0

e−2t

√
1− e−2t

E
[ (

BN ,∇h
(
e−tx+

√
1− e−2tN

) ) ]
dt

∣∣∣∣ dt
≤ ∥∇h∥∞E

[ ∣∣BN
∣∣
Rd

] ∫ ∞

0

e−2t

√
1− e−2t

dt ≤ K
√
d

√
E
[ ∣∣BN

∣∣2
Rd

]
,

because ∥∇h∥∞ ≤ K
√
d and ∫ ∞

0

e−2t

√
1− e−2t

dt = 1.

A simple computation shows that

E
[ ∣∣BN

∣∣2
Rd

]
= ∥B∥2HS .

This completes the proof of (3.3.17). ⊓⊔

Proposition 3.3.11 admits the following immediate generalization.

Proposition 3.3.12. Fix a symmetric positive definite operator C ∈ L(Rd). Denote by
λmin(C) and respectively λmax(C) the smallest and the largest eigenvalue of C. Fix a random
vector N ∼ N(0, C) and a Lipschitz continuous function h : Rd → R. Set K := Lip(h). Then
the function

fh(x) =

∫ ∞

0
E
[
h(N)− h

(
e−tx+

√
1− e−2tN

) ]
dt (3.3.18)

is well defined, it is C2 and satisfies the Stein’s equation(
C,Hess f(x)

)
HS
−
(
x,∇f(x)

)
= h(x)− h(N). (3.3.19)

Moreover

sup
x∈Rd

∥∥Hess fh(x) ∥HS ≤ K√dλmax(C)

λmin(C)
. (3.3.20)

Main Idea. The above proposition can be obtained from Proposition 3.3.11 by choosing an
orthonormal basis f1, . . . ,fd of Rd that diagonalizes C,

Cfk = λkfk, k = 1, . . . , d, 0 < λ1 ≤ · · · ≤ λd.

⊓⊔

The last result implies the following multi-dimensional counterpart of Corollary 3.3.8.
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Corollary 3.3.13. Fix a symmetric positive definite operator C ∈ L(Rd) and a random
vector N ∼ N(0, C). If F is a square integrable Rd-valued random variable, then

distFM (F,N) ≤ distW (F,N) ≤ sup
f∈Fd

∣∣∣E[ (C,Hess f(F ) )HS − (F,∇f(F ) ) ] ∣∣∣, (3.3.21)

where Fd consists of the C2-functions f : Rd → R satisfying (3.3.20) with K = 1. ⊓⊔

3.4. Wiener chaos limit theorems

The classical central limit theorem states that if (Xn)n≥1 is a sequences of independent
random variables, with mean zero and variance 1 then the random variables

Fν :=
1√
ν

ν∑
k=1

Xk

converge in distribution to a standard normal random variable. It classical proofs rely in an
essential manner on the independence assumption. We will use the methods developed in
the previous sections to prove central limit theorems involving sums of dependent random
variables. The presentation is heavily inspired from the monograph [121]. For a continuously
updated list of applications of this technique we refer to the webpage maintained by Ivan
Nourdin

https://sites.google.com/site/malliavinstein/home

3.4.1. An abstract limit theorem. Fix a separable Gaussian Hilbert space X ⊂ L2(Ω, S,P).
As usual, we set L2

X

(
Ω
)
= F(X) = L2(Ω, SX,P) and we denote by Projn the orthogonal pro-

jection onto the n-th chaos X:n:. For any number N ∈ N0 we set

Proj≤N =
⊕

0≤n≤N
Projn, Proj>N = 1− Proj≤N .

For F ∈ L2
X

(
Ω
)
and n ∈ N0 we denote by Varn(F ) the variance of Projn(F ). We have

Var(F ) =
∑
n≥1

Varn(F ),

and we set

Var≤N :=
N∑
n=1

Varn
[
F
]
, Var>N

[
F
]
=
∑
n>N

Varn(F ) = Var
[
F
]
−Var≤N

[
F
]
.

We begin by describing a simple sufficient condition guaranteeing the convergence in law to
a normal random variable of a sequence of random variables in L2

X

(
Ω
)
.

Proposition 3.4.1. Consider a sequence of random variables (Fν)ν≥1 in L2
X

(
Ω
)
such that

E
[
Fν
]
= 0, ∀ν,

i.e., Proj0(Fν) = 0, ∀ν. Suppose that the following hold.

(C1) For any n ∈ N, the sequence of variances Varn
[
Fν
]
converges as ν → ∞ to a

nonnegative number vn.

https://sites.google.com/site/malliavinstein/home
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(C2) The sequence

VN := sup
ν≥1

Var>N
[
Fν
]

converges to 0 as N → ∞. In other words, as N → ∞, the “tails” Proj>N Fν
converge to 0 in L2, uniformly with respect to ν.

(C3) For any N > 0 the sequence of random variables Proj≤N (Fν) converges in law to a
normal random variable.

Then the following hold.

(i) The series
∑

n≥1 vν is convergent. We denote by v its sum.

(ii)

lim
ν→∞

Var
[
Fν
]
= v.

(iii) As ν →∞, the random variable Fν converges in law to a random variable F∞ ∼ N(0, v).

Proof. (i) Fix ε > 0. We can find N(ε) > 0 such that for any N > N(ε) we have VN < ε.
For all n > m > N(ε) we have

n∑
k=m

Vark
[
Fν
]
≤
∑
k>N

Vark
[
Fν
]
≤ VN < ε

which shows that

∀n > M > N(ε) :

n∑
k=m

vk = lim
ν→∞

n∑
k=m

Vark
[
Fν
]
≤ ε.

To prove (ii) observe that for any N > 0 we have∣∣∣ Var [Fν ]− v| ≤ ∑
n≤N

∣∣∣ |Varn [Fν ]− vn∣∣∣ + ∑
n>N

Varn(Fν) +
∑
n>N

vn

≤
∑
n≤N

∣∣∣Varn(Fν)− vn∣∣∣+ VN +
∑
n>N

vn

This proves that

lim sup
ν→∞

∣∣ Var [Fν ]− v ] ≤ VN +
∑
n>N

vn, ∀N > 0.

The conclusion (ii) is obtained by letting N →∞ in the above inequality.

(iii) Let X ∈ X, ∥X∥ = 1, so that X ∈ N(0, 1),
√
vX ∈ N(0, v). We will show that for any

bounded Lipschitz function h : R→ R we have

lim
ν→∞

E
[
h(Fν)

]
= E

[
h(
√
v X)

]
. (3.4.1)

Observe that if v = 0, we deduce from (ii) that Fν → 0 in L2 so Fν converges in law to
the degenerate normal random variable with variance 0. Assume v > 0. Without loss of
generality we can assume v = 1.

Fix a bounded Lipschitz function h : R→ R and set

K := ∥h∥∞ + Lip(h).

For N > 0 we set

Gν,N = Proj≤N (Fν), Hν,N = Fν −Gν,N = Proj>N (Fν)
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vN =
∑
n≤N

vn, σN =
√
vN

so that, as ν →∞ Gν,N converges in law to σNX and Hν,N converges in L2 to 0.∣∣∣E[h(Fν) ]− E
[
h(
√
v X)

] ∣∣∣ ≤ ∣∣∣E[h(Fν) ]− E
[
h(Gν,N )

] ∣∣∣
+
∣∣∣E[h(Gν,N ) ]− E

[
h(σNX)

] ∣∣∣+ ∣∣∣E[h(σNX)
]
− E

[
h(
√
v X)

]
.
∣∣∣

Now observe that∣∣∣E[ ∣∣h(Gν,N +Hν,N ) − h(Gν,N )
∣∣ ] ∣∣∣ ≤ KE

[ ∣∣Hν,N

∣∣ ] ≤ K∥∥Hν,N∥L2 ,

lim
ν∞

∥∥Hν,N∥L2 = 0, lim
ν→∞

∣∣∣E[h(Gν,N ) ]− E
[
h(σNX)

] ∣∣∣ = 0,

so that
lim sup
ν→∞

∣∣∣E[h(Fν) ]− E
[
h(X)

] ∣∣∣ ≤ ∣∣∣E[h(σNX)
]
− E

[
h(
√
v X)

] ∣∣∣.
Letting N →∞ we deduce

lim
ν→∞

∣∣∣E[h(Fν) ]− E
[
h(
√
v X)

] ∣∣∣ = 0,

for any bounded Lipschitz function h. This proves (iii).

⊓⊔

In the remainder of this section we will explain how to combine the Stein method with
the Malliavin calculus to prove central limit results of the type described in Proposition
3.4.1, with condition C3 replaced by one that is easier to verify in concrete situations. These
techniques were pioneered by D. Nualart and G. Peccati in [124] and have since generated a
lot of follow-up investigations8; see e.g. [120, 122] and the references therein. We follow the
presentation in the award winning monograph of I. Nourdin and G. Peccati, [121].

3.4.2. Central limit theorem: single chaos. The following proposition is the key result
in the implementation of the Stein method in the Wiener chaos context.

Proposition 3.4.2 (Key abstract estimate). Let F ∈ D1,2(X) such that

E
[
F
]
= 0, E

[
F 2
]
= 1.

If g : R→ R is a Lipschitz function and K = Lip(f), then∣∣E[ g′(F ) ]− E
[
Fg(F )

] ∣∣ ≤ K · ∣∣∣E[ (1− (DF,−DL−1F
)
X

) ) ] ∣∣∣ . (3.4.2)

Proof. Note first that g′ is defined only a.e.. However, according to Theorem 3.2.10 F is
nonconstant so the law of F has a density, and thus the random variable g′(F ) is a.s. well
defined. Using the integration-by-parts formula (3.2.20) with F = G we deduce∣∣E[ g′(F ) ]− E

[
Fg(F )

] ∣∣ = ∣∣∣E[ g′(F )( 1− (DF,−DL−1F
)
X

) ] ∣∣∣
≤ K ·

∣∣∣E[ (1− (DF,−DL−1F
)
X

) ) ] ∣∣∣.
⊓⊔

8Ivan Nourdin maintains a site dedicated to this novel way of approaching limit theorems

https://sites.google.com/site/malliavinstein/home.

https://sites.google.com/site/malliavinstein/home
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Corollary 3.4.3. Let F ∈ D1,2(X) with E[F ] = 0, E[F 2] = σ2 > 0. If N ∼ N(0, σ2), then

distW (F,N) ≤
√

2

πσ2
E
[ ∣∣σ2 − (DF,−DL−1F

)
X

∣∣ ]. (3.4.3)

If, in addition, F ∈ D1,4(X), then

E
[ ∣∣σ2 − (DF,−DL−1F

)
X

∣∣∣ ] ≤√Var
[ (
DF,−DL−1F

)
X

]
. (3.4.4)

Proof. The case σ = 1 follows from Corollary 3.3.8 and the inequality (3.4.2). The general
case of (3.4.3) follows from the case σ = 1 applied to the new random variable σ−1F .

To prove (3.4.4) we observe that

E
[ ∣∣σ2 − (DF,−DL−1F

)
X

∣∣ ] ≤√E
[ (
σ2 −

(
DF,−DL−1F

)
X

)2 ]
.

From the integration by parts formula (3.2.20) we deduce that

E
[ (
DF,−DL−1F

)
X

]
= σ2,

so that,

E
[ (
σ2 −

(
DF,−DL−1F

)
X

)2 ]
= Var

[ (
DF,−DL−1F

)
X

]
.

To show that the above variance is finite observe that

E
[ (
DF,−DL−1F

)2
X

]
≤
√

E
[ ∥∥DF∥4X ] ·√E

[ ∥∥DL−1F∥4X
]
.

The Kree-Meyer inequalities (3.2.27) imply that the quantities in the right-hand-side above
are finite. ⊓⊔

Remark 3.4.4. The method of proof of Proposition 3.4.2 and the statement of Corollary 3.4.3
rely on the assumption σ > 0 which may not be easy to verify in some concrete situations. ⊓⊔

Proposition 3.4.5. Let F ∈ D1,2(X) such that E[F ] = 0, E[F 2] = σ2. If h ∈ C2
b (R) and

N ∼ N(0, σ2), then∣∣E[h(F ) ]− E
[
h(N)

] ∣∣ ≤ 1

2
∥h′′∥∞ · E

[ ∣∣∣ (DF,−DL−1F
)
X

)
− σ2

∣∣∣ ]. (3.4.5)

In particular, if F ∈ D1,4, then

distC2(F,N) ≤ 1

2
E
[ ∣∣∣ [DF,−DL−1F

]
X

)
− σ2

∣∣∣ ] ≤ 1

2

√
Var
[ [
DF,−DL−1F

]
X

]
. (3.4.6)

Proof. The results is obviously true if σ2 = 0 so we can assume that σ2 > 0. We set

φ(t) =
1√
2π

∫ ∞

−∞
E
[
h
(
e−tσx+

√
1− e−2tF

) ]
dx.

Note that

φ(∞) = E
[
h(F )

]
, φ(0) = E

[
h(N)

]
,

so that

E
[
h(F )

]
− E

[
h(N)

]
=

∫ ∞

0
φ′(t)dt.
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We have

φ′(t) =
e−tσ√
2π

E
[ ∫ ∞

−∞
h′
(
e−tσx+

√
1− e−2tF

)
xe−

x2

2 dx

]

+
e−2t

√
1− e−2t

× 1√
2π

∫ ∞

−∞
FE
[
h′
(
e−tσx+

√
1− e−2tF

) ]
e−

x2

2 dx.

Performing an usual integration by parts in the first integral and using the Malliavin inte-
gration by parts formula (3.2.20) in the second integrand we deduce

φ′(t) = −e
−2tσ2√
2π

E
[ ∫ ∞

−∞
h′′
(
e−tσx+

√
1− e−2tF

)
e−

x2

2 dx

]

+
e−2t

√
2π

∫ ∞

−∞
E
[
h′′
(
e−tσx+

√
1− e−2tF

)(
DF,−DL−1F

)
X

]
e−

x2

2 dx

=
e−2t

√
2π

∫ ∞

−∞
E
[
h′′
(
e−tσx+

√
1− e−2tF

)
·
( (
DF,−DL−1F

)
X
− σ2

) ]
e−

x2

2 dx.

We deduce

E
[
h(F )

]
− E

[
h(N)

]
=

∫ ∞

−∞

e−2tdt√
2π

∫ ∞

−∞
E
[
h′′
(
e−tσx+

√
1− e−2tF

)
·
( (
DF,−DL−1F

)
X
− σ2

) ]
e−

x2

2 dx.

We reach the desired conclusion by observing that

E
[ ∣∣∣h′′( e−tσx+

√
1− e−2tF

) ∣∣∣ ] ≤ ∥h′′∥∞, ∀x.
⊓⊔

Observe that when F ∈ X:q:, q > 0, then F ∈ D1,4 and(
DF,−DL−1F

)
X
=

1

q
∥DF∥2X.

In this case we can provide more detailed information. This will require a bit of Ito calculus
and a bit more terminology.

Given p, q ∈ N and r ∈ N0 such that r ≤ min{p, q} we define the map

⊗r : X⊗p × X⊗q → X⊗(p+q−2r)

to be the unique continuous bilinear map such that

(X1 ⊗ · · · ⊗Xp)⊗r (Y1 ⊗ · · · ⊗ Yq) =

 r∏
j=1

E
[
XjYj

]Xr+1 ⊗ · · · ⊗Xp ⊗ Yr+1 ⊗ · · · ⊗ Yq.

This induces a map

⊠̃r : X
⊙̂p × X⊙̂q → X⊙(p+q−2r)

to be

u⊠̃rv := Sym
[
u⊗r v

]
, ∀u ∈ X⊙p, v ∈ X⊙q.
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Remark 3.4.6. If W : L2
(
T,M, µ

)
→ X is a white noise isomorphism, (T,M, µ) convenient

probability space, then we can isometrically identify X⊗p with the space L2
(
T p,M⊗p, µ⊗p

)
.

Thus we can view f ∈ X⊗p and g ∈ X⊗q as L2-functions

f : T p → R, g : T q → R.

Then f ⊗r g can be identified with the function

f ⊠r g : T p−r × T q−r → R

given by
f ⊠r g(xr+1, . . . , xp, yr+1, . . . , yq)

=

∫
T r

f(t1, . . . , tr, xr+1, . . . , xp)g(t1, . . . , tr, yr+1, . . . yq)µ
⊗r[ dt1 · · · dtr ].

We set
f⊠̃rg = Sym

[
f ⊠r g

]
.

Recall that H⊙̂q denotes the q-the symmetric tensor power of H.

Lemma 3.4.7. Let q ∈ N, q ≥ 2 and f ∈ L2
(
T,M, µ

)⊙̂q
. Set F = Ip[f ]. Then the following

hold.

1

q
∥DF∥2X = E[F 2] + q

q−1∑
r=1

(r − 1)!

(
q − 1

r − 1

)2

I2q−2r[f⊠̃rf ], (3.4.7a)

Var

(
1

q
∥DF∥2X

)
=

1

q2

q−1∑
r=1

r2(r!)2
(
q

r

)2

(2q − 2r)!∥f⊠̃rf∥2X⊙(2q−2r) , (3.4.7b)

E
[
F 4
]
− 3E

[
F 2
]2

=
3

q

q−1∑
r=1

r2(r!)2
(
q

r

)2

(2q − 2r)! ∥ f ⊠̃rf ∥2X⊗(2q−2r)

=

q−1∑
r=1

(q!)2
(
q

r

)2(
∥ f ⊠rf∥2X⊗(2q−2r) +

(
2q − 2r

q − r

)
∥ f ⊠̃rf ∥2X⊗(2q−2r)

)
,

(3.4.7c)

Var

(
1

q
∥DF∥2X

)
≤ q − 1

3q

(
E
[
F 4
]
− 3E

[
F 2
]2 ) ≤ (q − 1)Var

(
1

q
∥DF∥2X

)
. (3.4.7d)

About the proof. Let us point out that (3.4.7b) follows immediately from (3.4.7a) via the
isometry (3.1.40). The inequality (3.4.7d) follows immediately from (3.4.7b, 3.4.7c). Thus it
suffices to prove only (3.4.7a) and (3.4.7c).

To prove (3.4.7a) it is convenient to consider a more general problem, that of finding the
chaos decomposition of [

DF,DG
]
X
, F,G ∈ X:q:

We write F = Ip[f ], G = Ip[g], f, g ∈ X⊙q. Using the polarization trick we can reduce the
problem to the special case

f = X⊗q, g = Y ⊗q, X, Y ∈ X, E
[
X2
]
= E

[
Y 2
]
= 1.

Thus
F = Hq(X), DF = qHq−1(X)DX,

G = Hq(Y ), DG = qHq−1(Y )DY,(
DF,DG

)
X
= q2Hq−1(X)Hq−1(Y )E[XY ].
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The equality (3.4.7a) now follows by invoking (3.1.28), (3.1.29) and the isometry equality
(3.2.13).

The proof of (3.4.7c) requires a bit more work. The hardest part is the 2nd half of this
equality. It is based on the (non-obvious) elementary identity

(2q)!∥f⊠̃f∥2
X⊗(2q) = 2(q!)2∥f∥4X⊗q + (q!)2

q−1∑
r=1

(
q

r

)2

∥f ⊗rf∥2X⊠(2q−2r) , f ∈ X⊙q . (3.4.8)

A convenient way to prove this is to use a white noise isomorphism as in Remark 3.4.6. We
refer to [121, Lemma 5.2.4] for details. ⊓⊔

Corollary 3.4.8 (The fourth moment theorem, [124]). Suppose that F ∈ X:q:, q ≥ 2 and
E[F 2] = σ2 > 0. Then for N ∈ N(0, σ) we have

distW (F,N) ≤ 1

σ

√
Var
( 2

qπ
∥DF∥2X

)
≤ 1

σ

√
(2q − 2)

(
E
[
F 4
]
− 3σ4

)
3πq

. (3.4.9)

Thus, given a sequence (Fn)n≥0 in X:q:, q ≥ 2 and N ∼ N(0, σ) the following statements are
equivalent.

(i) The sequence (Fn)n≥0 converges in probability to N .

(ii) As n→∞, E
[
F 2
n

]
→ E

[
N2
]
= σ2and E

[
F 4
n

]
→ E

[
N4
]
= 3σ4.

(iii) If Fn = Iq[fn], fn ∈ X⊙q, then

lim
n→∞

∥fn⊠̃rfn∥X⊙(2q−2r) = 0, ∀r = 1 . . . , q − 1.

(iv) Var
(
∥DFn∥2

)
→ 0 as n→∞.

Proof. In this case we have (
DF,−DL−1F

)
X
=

1

q

∥∥DF ∥∥2
X
.

The desired conclusions follow from Corollary 3.4.3, (3.4.7b) and (3.4.7d). ⊓⊔

3.4.3. Central limit theorem: multiple chaoses. The results proved in the previous
subsection have a multidimensional counterpart. The next result, is the multi-dimensional
counterpart of Proposition 3.4.2 and Corollary 3.4.3

Proposition 3.4.9. Fix d ≥ 2 and let F = (F1, . . . , Fd) be a random vector such that
F1, . . . , Fd ∈ D1,4(X) with E

[
Fi
]
= 0, i. Let C ∈ L(Rd) be a symmetric positive definite

operator and let N ∼ N(0, C). Then

distW (F ,N) ≤
√
dλmax(C)

λmin(C)

√√√√ d∑
i,j=1

E
[ (
Cij −

(
DFi,−DL−1Fj

)
X

)2 ]
(3.4.10)

Proof. Let M be the random operator M : Ω→ L(Rd) with the (i, j)-th entry given by

Mij :=
(
DFj ,−DL−1Fi

)
X
.
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Arguing as in the proof of Corollary 3.4.3 we deduce that Mij ∈ L2 since Fi, Fj ∈ D1,4(X).

For g ∈ C2(Rd) such that

sup
x∈Rd

∥∥Hess g(x)∥∥
HS
≤
√
dλmax(C)

λmin(C)

we have∣∣∣E[ (C,Hess g)HS(F )− (F ,∇g(F ))Rd

] ∣∣∣ =
∣∣∣∣∣∣

d∑
i,j=1

CijE
[
∂2xixjg(F )

]
−

d∑
i=1

E
[
Fi∂xig(F )

] ∣∣∣∣∣∣
(use the integration by parts formula (3.2.20))

=

∣∣∣∣∣∣
d∑

i,j=1

CijE
[
∂2xixjg(F )

]
−

d∑
i,j=1

E
[
∂2xixjg(F )(DFj ,−DL−1Fi)X

] ∣∣∣∣∣∣
=

∣∣∣∣∣∣
d∑

i,j=1

CijE
[
∂2xixjg(F )

(
Cij − (DFj ,−DL−1Fi)X

] ∣∣∣∣∣∣
=
∣∣∣E[ (Hess g(F ), C −M)HS

] ∣∣∣ ≤√E
[
∥Hess g(F )∥2HS

]
·
√
E
[
∥C −M∥2HS

]
≤
√
dλmax(C)

λmin(C)

√
E
[
∥C −M∥2HS

]
.

We conclude by invoking Corollary 3.3.13. ⊓⊔

The next result, is the multidimensional counterpart of Proposition 3.4.5 and explains
what to do when the covariance matrix C is possible degenerate.

Proposition 3.4.10. Fix d ≥ 2 and let F = (F1, . . . , Fd) be a random vector such that
F1, . . . , Fd ∈ D1,4(X) with E[Fi] = 0, i. Let C ∈ L(Rd) be a symmetric, nonnegative definite
operator and let N ∼ N(0, C). Then for every h ∈ C2(Rd) such that ∥h′′∥∞ <∞ we have

∣∣ E[h(F )
]
− E

[
h(N)

] ∣∣ ≤ 1

2
∥h′′∥∞

√√√√ d∑
i,j=1

E
[ (
Cij −

(
DFj ,−DL−1Fi

)
X

)2 ]
(3.4.11)

Proof. Without any loss of generality we can assume N is independent of the Gaussian
space X. Let h as in the statement of the proposition. For t ∈ [0, 1] we set

Ψ(t) := E
[
h(
√
1− tF +

√
tN)

]
.

Then

E
[
h(N)

]
−E

[
h(F )

]
= Ψ(1)−Ψ(0) =

∫ 1

0
Ψ′(t)dt.

We have

Ψ′(t) =

d∑
i=1

E
[
∂xih(

√
1− tF +

√
tN)

(
1

2
√
t
Ni −

1

2
√
1− t

Fi

)]
.

At this point we want to use the following elementary but useful identity.
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Lemma 3.4.11. If f = f(y1, . . . , yd) : Rd → R is C1 with bounded derivatives, N̂ ∼ N(0,1d)
and T, S ∈ L(Rd), then

E
[
f
(
SN̂ )

(
TN̂ )i

]
=

d∑
k=1

E
[
∂ykf

(
SN̂ )(TS∗)ik

]
, (3.4.12)

where
(
TN̂ )i denotes the i-th component of the random vector TN̂ and (TS∗)ik denote the

(i, k)-entry of the matrix TS∗

Proof of the lemma. We have

E
[
f
(
SN̂ )

(
TN̂ )i

]
=

d∑
j=1

E
[
f
(
SN̂ )TijNj

]
(δj = −∂Nj +Nj)

=
d∑
j=1

E
[
f
(
SN̂ )Tijδj(1)

]
(integrate by parts using the equalities ∂Nj =

∑
k ∂yk∂Njyk, yk =

∑
j SkjNj)

=
d∑
j=1

d∑
k=1

E
[
∂ykf

(
SN̂ )SkjTij

]
=

d∑
k=1

E
[
∂ykf

(
SN̂ )(TS∗)ik

]
.

⊓⊔

Now observe that if f : Rd → R is a C1-function with bounded derivatives, and N̂ ∼ N(0,1d)

is such that, N =
√
CN̂ , then (3.4.12) shows that

E
[
f(N)Ni

]
= E

[
f(
√
CN̂ )

(√
CN̂)i

]
=

d∑
k=1

E
[
∂ykf

(
SN̂ )Cik

]
. (3.4.13)

We have

E
[
∂xih(

√
1− tF +

√
tN)Ni

]
= Ex

[
E
[
∂xih(

√
1− tx+

√
tN)Ni

∣∣∣F = x
] ]

(3.4.13)
=
√
t

d∑
j=1

Ex

[
CijE

[
∂2xixjh(

√
1− tx+

√
tN)

∣∣∣F = x
] ]

=
√
t
∑
j

CijE
[
∂2xixjh(

√
1− tF +

√
tN)

]
.

Using the integration by parts formula (3.2.20) we deduce

E
[
∂xih(

√
1− tF +

√
tN)Fi

]
= Ex

[
E
[
∂xih(

√
1− tF +

√
tx)Fi

∣∣∣N = x
] ]

=
√
1− t

d∑
j=1

Ex

[
E
[
∂2xixjh(

√
1− tF +

√
tx)
(
DFj ,−DL−1Fi

)
X

∣∣∣N = x
] ]

=
√
1− t

d∑
j=1

E
[
∂2xixjh(

√
1− tF +

√
tN)

(
DFj ,−DL−1Fi

)
X

]
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Hence

E
[
h(N)

]
−E

[
h(F )

]
= Ψ(1)−Ψ(0) =

∫ 1

0
Ψ′(t)dt

=
1

2

d∑
i,j=1

∫ 1

0
E
[
∂2xixjh

(√
1− tF +

√
tN

)(
Cij −

(
DFj ,−DL−1Fi

)
X

) ]
.

(3.4.14)

⊓⊔

We now have (almost) all the information we need to prove the following remarkable
result.

Theorem 3.4.12. Let d ≥ 2 and q1, . . . , qd ∈ N. Consider the d-dimensional random vector

F = (F1, . . . , Fd), Fi ∈ X:qi:, i = 1, . . . , d.

Let fi ∈ X⊙qi such that Iqi [fi] = Fi. Denote by C the covariance matrix of the random vector
F , Cij = E[FiFj ], and let N ∼ N(0, C). Consider the continuous function

ψ : (R× R>0)
d → R > 0

given by

Ψ(x1, y1, . . . , xd, yd) =

d∑
i,j=1

δqiqj


√√√√qi−1∑

r=1

(
2r

r

) |xi| 12
+

d∑
i,j=1

(1− δqiqj )

( 2|yj | ) 1
2 |xi|

1
4 ++

min(qi,qj)−1∑
r=1

√
(2(qi + qj − 2r)!

(
qj
r

)
|xi|

1
2

 ,

and set

m(F ) = ψ
(
m4(F1)− 3m2(F1)

2,m2(F1), . . . ,m4(Fd)− 3m2(Fd)
2,m2(Fd)

)
,

where we recall that mk(X) denotes the k-th moment of a random variable X. Note that

ψ
(
x1, y1, . . . , xd, yd

)
x1=···=xd=0

= 0.

If h : Rd → R is a C2 function with bounded second derivatives, then∣∣E[h(F )
]
− E

[
h(N)

] ∣∣ ≤ 1

2
∥h′′∥∞m(F ).

The main ideas. We plan to use Proposition 3.4.10 so we need to estimate from above the
quantities

E
[ (

Cij −
(
DFj ,−DL−1Fi

)
X

)2 ]
= E

[ (
E[FiFj ]−

1

qi

(
DFi, DFj

)
X

)2 ]
.

Note that Cij = 0 if qi ̸= qj . Thus, we need to produce suitable upper estimates for quantities
of the form

E
[
α− 1

p

(
DF,DG)X

]
, F ∈ X:p:, G ∈ X:q:, α ∈ R.

This is what the next lemma accomplishes.

Lemma 3.4.13. Let F = Ip[f ], f ∈ X⊙p and G = Iq[g], g ∈ X⊙q, p, q ≥ 1. Suppose that α
is a real constant.
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(i) If p = q, then

E
[ (

α− 1

p

(
DF,DG)X

)2 ]
≤
(
α− E[FG]

)2
+
p2

2

p−1∑
r=1

(r − 1)!

(
p− 1

r − 1

)4

(2p− 2r)!
(
∥f ⊠p−r f∥2X⊗2r + ∥g ⊠p−r g∥2X⊗2r

) (3.4.15)

(ii) If p < q, then

E
[ ( 1

q

(
DF,DG)X

)2 ]
≤ (p!)2

(
q − 1

p− 1

)2

(q − p)!∥f∥2X⊗p∥ g ⊠q−p g∥X⊗2p

+
p2

2

p−1∑
r=1

(r − 1)!

(
p− 1

r − 1

)2(q − 1

r − 1

)2

(p+ q − 2r)!
(
∥f ⊠p−r f∥2X⊗2r + ∥g ⊠q−r g∥2X⊗2r

)
.

(3.4.16)

Main idea of the proof. The lemma follows from the identity

(
DF,DG

)
X
= pq

min(p,q)∑
r=1

(r − 1)!

(
p− 1

r − 1

)(
q − 1

r − 1

)
Ip+q−2r[f ⊠r g],

which can be reduced to the equality (3.1.28). For details we refer to [121, Lemma 6.2.1]. ⊓⊔

Using (3.4.7c) we deduce that for any q ≥ 2 and any f ∈ X⊙q we have

∥f ⊗r f∥2X⊗(2q−2r) ≤
(
r!(q − r)!

)2
(q!)4

(
E
[
Iq[ f ]

4
]
− 3E

[
Iq[ f ]

2
]2 )

.

Theorem 3.4.12 now follows from the above lemma after some simple algebraic manipulations
⊓⊔

Theorem 3.4.12 implies the following remarkable result.

Theorem 3.4.14 (Peccati-Tudor, [128]). Let d ≥ 1 and q1, . . . , qd ∈ N. Consider the
sequence of d-dimensional random vectors

F n = (F1,n, . . . , Fd,n), Fj,n ∈ X:qj :, j = 1, . . . , d, n ∈ N.

Suppose that C ∈ L(Rd) is symmetric and nonnegative definite and

lim
n→∞

E
[
Fi,nFj,n

]
= Cij , ∀i, j = 1, . . . , d.

Then the following statements are equivalent.

(i) The random vector F n converges in probability to a Gaussian vector N ∼ N(0, C).

(ii) For each j = 1, . . . , d the sequence of random variables
(
Fi,n

)
n∈N converges in

probability to a Gaussian r.v. Ni ∼ N(0, Cii).

⊓⊔

The above result leads to the following substantial strengthening of Proposition 3.4.1

Theorem 3.4.15. Consider a sequence of random variables (Fν)ν≥1 in L2
X

(
Ω
)
such that

E[Fν ] = 0, ∀ν, i.e., Proj0(Fν) = 0, ∀ν. Suppose that the following hold.
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(C1) For any k ∈ N, ∃vk ≥ 0 such that

lim
ν→∞

E
[ (

Projk Fν)
)2 ]

= δjkvk.

(C2) The sequence

VN := sup
ν≥1

∑
k>N

E
[ (

Projk Fν

)2 ]
converges to 0 as N →∞.

(C ′
3) For any k ∈ N

lim
ν→∞

E
[ (

Projk Fν

)4 ]
= 3v2k.

(C ′′
3 )

Then the following hold.

(i) The series
∑

n≥1 vν is convergent. We denote by v its sum.

(ii)
lim
ν→∞

Var(Fν) = v.

(iii) As ν →∞, the random variable Fν converges in law to a random variable F∞ ∼ N(0, v).

Remark 3.4.16. (a) The fourth moment theorem (Corollary 3.4.8) shows that the conditions
C1 + C ′

3 are equivalent with the requirement that, ∀p ∈ N, as ν →∞ the random variables

Proj≤p(Fν)

p∑
k=1

Projk[Fν ]

converge in probability as ν →∞ to a normal random variable with mean zero and variance
v1 + · · ·+ vp. This is condition (C3) in Proposition 3.4.1.

(b) If we write

Projk[Fν ] = Ik[fν,k], fν,k ∈ X:k:,

the Corollary 3.4.8 shows that the condition C ′′
3 is equivalent to

lim
ν→∞

∥fν,k⊠̃rfν,k∥X⊙(2q−2r) = 0, ∀k ≥ 1, ∀r = 1 . . . , k − 1

⊓⊔

3.5. The number of critical points of Gaussian
functions on Euclidean spaces

Suppose that a : R → R is an even Schwartz function such that a(0) = 1. Consider the
isotropic Gaussian function Φa defined in Example 1.2.35.

More precisely consider the finite Borel measure µ ∈ Meas(Rm)

µ
[
dξ
]
= µa

[
dξ
]
=

1

(2π)m
wa,m

(
ξ
)
λ
[
dξ
]
, wa,m

(
ξ
)
= a
(
|ξ|
)2
.

Its characteristic function is the nonnegative definite function defined by (1.2.30),

K
(
x
)
= Ka

(
x
)
=

∫
Rm

ei⟨ξ,x⟩µa
[
dξ
]
=

1

(2π)m

∫
Rm

ei⟨ξ,x⟩a
(
|ξ|
)2
λ
[
dξ
]
.

The function (x,y) 7→Ka

(
x− y

)
is the covariance kernel of Φa.
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Appendix A

Differential geometry

A.1. Jacobians and the coarea formula

.

At its core, the coarea formula is a sophisticated version of Fubini’s Theorem. To best
understand this we begin with the simplest case.

Recall Fubini’s theorem. Suppose φ is a integrable function on Rn+k. Then∫
Rn+k

φ(x1, . . . , xn+k)dx1 · · · dxn+k

=

∫
Rn

(∫
Rk

φ(x1, . . . , xn, xn+1, . . . , xn+k)dxn+1 · · · dxn+k
)
dx1 · · · dxn.

We can reformulate this as follows. Set

y = (x1, . . . , xn), x = (xn+1, . . . , xn+k)

and define A : Rn+k → Rn, (x,y) 7→ y. Then∫
Rn+k

φ(x,y) voln+k[dxdy] =

∫
Rn

(∫
A−1(y)

φ(x,y) volk[dx]

)
voln[dy]. (A.1.1)

where voli denotes the i-dimensional Lebesgue measure.

Consider now a slightly more general case of a linear map

A : Rn+k → Rn, (x1, . . . , xn, xn+1, . . . , xn+k) 7→ (y1, . . . , yn) = (µ1x
1, . . . , µnx

n), (A.1.2)

where µ1, . . . , µn are positive numbers. Applying the Fubini theorem we deduce∫
Rn+k

µ1 · · ·µnφ(x1, . . . , xn+k) voln+k[dx1 · · · dxn+k]

=

∫
Rn+k

φ
( y1
µ1
, . . .

yn

µn
, xn+1, . . . , xn+k

)
voln+k[dy

1 · · · dyndxn+1 · · · dxn+k]

=

∫
Rn

(∫
A−1(y)

φ(x,y) volk[dx]

)
voln[dy].

(A.1.3)
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But for the factor µ1 · · ·µn, the formulæ (A.1.1) and (A.1.3) look similar. To give an invariant
meaning to this quantity we need to use the following elementary fact of linear algebra.

Lemma A.1.1. Suppose that U and V are Euclidean spaces, respectively of dimensions
n + k and n (n, k ≥ 0), and A : U → V is a linear map. Then there exist Euclidean coor-
dinates x1, . . . , xn+k on U , Euclidean coordinates y1, . . . , yn on V and nonnegative numbers
µ1, . . . , µn such that, in these coordinates the operator A is described by

yj = µjx
j , 1 ≤ j ≤ n.

The numbers µ21, . . . , µ
2
n are the eigenvalues of the positive symmetric operator AA∗ : V → V

so that

µ1 · · ·µn = JA :=
√
detAA∗.

In particular

A surjective⇐⇒ JA ̸= 0.

The quantity JA is called the Jacobian of the linear map A. ⊓⊔

Thus, we can rewrite (A.1.3) as∫
Rn+k

JA(x,y)φ(x,y) voln+k[dxdy] =

∫
Rn

(∫
A−1(y)

φ(x,y) volA−1(y)[dx]

)
|dVn(y)|,

(A.1.4)
where volA−1(y) denotes the Eucldean volme element on the affine subspace A−1(y). Lemma

A.1.1 shows that (A.1.4) holds for any surjective linear map Rn+k → Rn.

Proposition A.1.2. Suppose that U and V are Euclidean spaces, respectively of dimensions
n+ k and n (n, k ≥ 0), and A : U → V is a linear map. Then

JA =
voln

[
A(BU

1 )
]

voln
[
BV

1

] , (A.1.5)

where BU
1 denotes the unit ball in U and BV

1 the unit ball in V .

Proof. Choose coordinates (xi) on U and (yj) on V as in Lemma A.1.1. If A is not onto
the result is obvious since, then dimA(U) < n. If A is onto, then A(BU

1 ) is isometric to the
ellipsoid

E =

x ∈ Rn;
n∑
j=1

(xj)2

µ2j
≤ 1


where the numbers µj are as in Lemma A.1.1. Observe that voln

[
E
]
= µ1 · · ·µn. ⊓⊔

Remark A.1.3. Suppose that k = 0 so dimU = dimV = n. Assume that A is onto. Then
the push-forward by A of the Lebesgue measure on U is given by

A#λU =
1

JA
λV . (A.1.6)

If U and V are equipped with orientations, then we can invariantly define detA and we have
JA = |detA|. ⊓⊔
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It is convenient to give a more explicit algebraic description of JA. This relies on the
concept of Gram determinant. More precisely, given a collection of vectors u1, . . . ,un in an
Euclidean space U we define their Gram determinant (or Gramian) to be the quantity

G(u1, . . . ,un) := det
(
(ui,uj)U

)
1≤i,j≤n

,

where (−,−)U denotes the inner product in U . Geometrically,
√

G(u1, . . . ,un) is the n-
dimensional volume of the parallelepiped spanned by the vectors u1, . . . ,un,

P (w1, . . . ,wn) =
{ n∑
j=1

tjwj ; tj ∈ [0, 1]
}
.

Note thatG(u1, . . . ,un) = 0 iff the vectors u1, . . . ,un are linearly dependent andG(u1, . . . ,un) = 1
if the vectors u1, . . . ,un form an orthonormal system.

Equivalently

G(u1, . . . ,un) =
(
u1 ∧ · · · ∧ un,u1 ∧ · · · ∧ un

)
ΛnU

where (−,−)ΛnU denotes the inner product on ΛnU induced by the inner product in U .

Lemma A.1.4. Let A : U → V be as in Lemma A.1.1. Fix a basis fn+1, . . . ,fn+k of
U0 := kerA and vectors u1, . . . ,un such that Au1, . . . , Aun span V . Then

J2
A =

G(Au1, . . . Aun)G(fn+1, . . . ,fn+k)

G(u1, . . . ,un,fn+1, . . . ,fn+k)
. (A.1.7)

Proof. We first prove the result when dimU = dimV . In this case the collection u1, . . . ,un
is a basis of U . Fix an orthonormal basis e1, . . . , en of U denote by T : U → U the linear
operator ej 7→ uj . Then

G(u1, . . . ,un) = detT ∗T,

G(Au1, . . . Aun) = det((AT )∗(AT )) = |detT ∗|detAA∗|detT | = J2
A detTT ∗.

To deal with the general case, we denote by P0 the orthogonal projection onto U0. Now
define

Â : U → V̂ := V ⊕U0, u 7→ Au⊕ P0u.

we equip V̂ with the product Euclidean structure.

Let us observe that JA = J
Â
. Indeed, with respect to the (orthogonal) direct sum

decomposition V̂ = V ⊕U0 the operator ÂÂ∗ has the block decomposition

ÂÂ∗ =

[
AA∗ 0
∗ 1U0

]
so that

det ÂÂ∗ = detAA∗.

Observe that in Λn+k(V ⊕U0) we have the equality

Âu1 ∧ · · · Âun ∧ fn+1 ∧ · · · ∧ fn+k = Au1 ∧ · · ·Aun ∧ fn+1 ∧ · · · ∧ fn+k

so that

G(Âu1, . . . , Âun, Âfn+1, . . . , Âfn+k) = G(Au1, . . . , Aun,fn+1, . . . ,fn+k)

= G(Au1, . . . Aun)G(fn+1, . . . ,fn+k).
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Now apply the first part of the proof to deduce that

J2
A = J2

Â
=

G(Âu1, . . . , Âun, Âfn+1, . . . , Âfn+k)

G(u1, . . . ,un,fn+1, . . . ,fn+k)
=

G(Au1, . . . Aun)G(fn+1, . . . ,fn+k)

G(u1, . . . ,un,fn+1, . . . ,fn+k)
.

⊓⊔

Suppose now that X and Y are C1 manifolds of dimensions n + k and respectively n,
k ≥ 0 equipped with Riemann metrics gX and gY . We denote by volX and volY the volume
measures induced by gX and respectively gY . Let Φ : X → Y is a C1-map. For x ∈ X we
denote by Φ′(x) the differential of Φ at x. This is a linear map

Φ′(u) : Txx→ TF (u)Y.

The Jacobian of the map Φ is the function

JΦ : X → [0,∞), JΦ(x) =
√

det
(
Φ′(x)Φ′(x)∗

)
,

where Φ′(x)∗ : TF (u)Y → TuU is the adjoint of Φ′(x) determined by the inner products gXx
on TxY and gYΦ(x) on TΦ(x)Y .

Theorem A.1.5 (The coarea formula: version 1). Suppose that Φ : X → Y is a C1-map
such that for any x ∈ X the differential Φ′(x) is surjective. We denote by JΦ(x) the Jacobian
of this map. For any nonnegative Borel measurable function φ : X → R we have∫

X
JΦ(x)φ(x) volX

[
dx
]
=

∫
Y

(∫
Φ−1(y)

φ(x) volΦ−1(y)

[
dx
])

volY
[
dy
]
, (A.1.8)

where volΦ−1(y) denotes the volume density on the fiber Φ−1(y) induced by the restriction of

gX to Φ−1(y).

Proof. We consider first the case when X is an open subset of Rn+k with coordinates
(x1, . . . , xn+k) equipped with a C1-metric gX , Y is an open subset of Rk with coordinates
(y1, . . . , yk) equipped with a metric gY and the map Φ is given by

yj = xj , j = 1, . . . , n.

We have

volX
[
dx
]
=
√
GX(∂x1 , . . . , ∂xn+k) voln+k

[
dx1 · · · dxn+k

]
=
√

GX(∂x1 , . . . , ∂xn+k)︸ ︷︷ ︸
=:ρX

voln+k
[
dy1 · · · dykdxk+1 · · · dxn+k

]
,

volΦ−1(y)

[
dxn+1 · · · dxn+k

]
=
√

GX(∂xk+1 , . . . , ∂xn+k)︸ ︷︷ ︸
=:ρΦ

volk
[
dxn+1 · · · dxn+k

]
,

where the subscript X indicates that the inner product in the definition of the above Gramm
determinants is the one determined by the Riemann metric on X. Similarly

volY
[
dy
]
=
√
GY (∂y1 , . . . , ∂yn))︸ ︷︷ ︸

=:ρY

voln
[
dy
]
=
√
GY (Φ′(x)∂x1 , . . . ,Φ

′(x)∂xn)) voln
[
dy
]
.
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Using the Fubini theorem we deduce that for any nonnegative, measurable function ϕ : X → R
we have ∫

X
ρY ϕρX voln+k

[
dy1 · · · dykdxk+1 · · · dxn+k

]
=

∫
Y

(∫
Φ−1(y)

ρXϕ volk
[
dxn+1 · · · dxn+k

])
ρY voln

[
dy1 · · · dyn

]
=

∫
Y

(∫
Φ−1(y)

ρX
ρΦ
ϕρΦ volk

[
dxn+1 · · · dxn+k

])
volY

[
dy
]

=

∫
Y

(∫
Φ−1(y)

ρX
ρΦ
ϕ volΦ−1(y)

[
dx
])

volY
[
dy
]
.

Set φ := ρY ϕ
JΦ

so that ϕ = JΦ
ρY
φ. Then the above equality can be rewritten∫

X
JΦ(x)φ(x) volX

[
dx
]
=

∫
Y

(∫
Φ−1(y)

ρXJΦ
ρΦρY

φ(x) volΦ−1(y)

[
dx
])

volY
[
dy
]
.

The co-area formula is proved once we show that

ρXJΦ
ρΦρY

= 1, i.e., JΦ =
ρY ρΦ
ρX

.

The last equality follows from (A.1.7).

The general case of the co-area formula can be reduced to the special case via partition
of unity and the implicit function theorem. ⊓⊔

The above result can be substantially generalized. For a proof of the next result we refer
to [31, Sec.3.3] or [106, Sec. 3]. We denote by HM

d the d-dimensional Hausdorff measure on

a Riemann manifold (M, g). If m = dimM , then HM
m = volM .

Theorem A.1.6 (The coarea formula: version 2). Suppose X and Y are connected, Riemann
C1-manifolds of dimensions n+k and respectively n, where k ≥ 0. If Φ : X → Y is a C1-map
satisfying the Lipschitz condition

dY
(
Φ(x1),Φ(x2)

)
≤ LdX(x1, x2), ∀x1, x2 ∈ X,

Then for any nonnegative Borel measurable functions α : X → R and β : Y → R such that α
has compact support we have∫

X
JΦ(x)α(x)Φ

∗β(x) volX
[
dx
]
=

∫
Y

(∫
Φ−1(y)

α(x)HX
k

[
dx
])

β(y) volY
[
dy
]
. (A.1.9)

The two sides of the above equality are simultaneously finite or infinite. If dimX = dimY = n,
then the above equality reads∫

X
JΦ(x)α(x)Φ

∗β(x) volX
[
dx
]
=

∫
Y

 ∑
Φ(x)=y

α(x)

β(y) volY
[
dy
]

(A.1.10)

⊓⊔





Appendix B

Analysis

B.1. The Gamma function

Definition B.1.1 (Gamma and Beta functions). The Gamma function is the function

Γ : (0,∞)→ R, Γ(x) =

∫ ∞

0
tx−1e−tdt. (B.1.1)

The Beta function is the function of two positive variables

B(x, y) :=
Γ(x)Γ(y)

Γ(x+ y)
, x, y > 0. (B.1.2)

⊓⊔

We gather here a few basic facts about the Gamma and Beta functions used in the text.
For proofs we refer to [85, Chap. 1] or [155, Chap. 12].

Proposition B.1.2. The following hold.

(i) Γ(1) = 1.

(ii) Γ(x+ 1) = xΓ(x), ∀x > 0.

(iii) For any n = 1, 2, . . . we have

Γ(n) = (n− 1)!. (B.1.3)

(iv) Γ(1/2) =
√
π.

(v) For any x, y > 0 we have Euler’s formula

B(x, y) =

∫ 1

0
sx−1(1− s)y−1ds =

∫ ∞

0

ux−1

(1 + u)x+y
du. (B.1.4)

(vi) For any x ∈ (0, 1) we have

B(x, 1− x) = Γ(x)Γ(1− x) = π

sinπx
(B.1.5)

⊓⊔
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The equality (iv) above reads

√
π = Γ(1/2) =

∫ ∞

0
e−tt−1/2dt

(t = x2, t−1/2 = x−1 dt = 2xdx)

= 2

∫ ∞

0
e−x

2
dx =

∫ 0

−∞
e−x

2
dx+

∫ ∞

0
e−x

2
dx =

∫ ∞

−∞
e−x

2
dx.

If we make the change in variables x = s√
2
so that x2 = s2

2 and dx = 1√
2
ds, then we deduce

√
π =

1√
2

∫ ∞

−∞
e−

x2

2 dx.

From this we obtain the fundamental equality

1√
2π

∫ ∞

−∞
e−

x2

2 dx = 1. (B.1.6)

The function Γ(x) grows very fast as x → ∞. Its asymptotics is governed by the Stirling’s
formula

Γ(x+ 1) = xΓ(x) ∼
√
2πx

(x
e

)x
as x→∞. (B.1.7)

Note that for n ∈ N the above estimate reads

n! ∼
√
2πn

(n
e

)n
as n→∞. (B.1.8)

There are very sharp estimates for the ratio

qn =
n!√

2πn
(
n
e

)n .
More precisely we have (see [58, II.9])

1

12n+ 1
< log qn <

1

12n
. (B.1.9)

In other words

log n! = n log n− n+
1

2
log n+

1

2
log(2π) +O

(
n−1

)
, as n→∞.

We denote by ωn the volume of the n-dimensional Euclidean unit ball

Bn :=
{
x ∈ Rn; ∥x∥ ≤ 1

}
, ∥x∥ =

√
x21 + · · ·+ x2n,

and by σn−1 the “area” of the unit sphere in Rn

Sn−1 =
{
x ∈ Rn; ∥x∥ = 1

}
.

Then

σn−1 =
2Γ(1/2)n

Γ(n/2)
, ωn =

1

n
σn−1 =

Γ(1/2)n

Γ
(
(n+ 1)/2

) . (B.1.10)
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B.2. The Fourier transform and tempered
distributions.

Although the Fourier transform is a well known concept, there is quite a bit of variability in
the conventions of various authors and we have included this section to make sure the reader
is aware of the conventions we use. For proofs and more details we refer to [50, Chap.14]
that served as our main source.

For α ∈
(
Z≥0

)m
we set

|α| = α1 + · · ·+ αm, xα = xα1
1 · · ·x

αm
m , ∂α = ∂α1

x1 · · · ∂
αm
xm .

For any smooth complex valued function u and k,N ∈ N we set

pk,N (f) = sup
x∈Rn

(
1 + |x|k

) ∑
|α|≤N

∣∣ ∂αu(x) ∣∣.
We denote by S(Rm) the space of Schwartz functions, i.e., complex valued functions u ∈ C∞(Rm)
such that pk,N (u) <∞, ∀k,N ∈ N.

The countable collection of seminorms
(
pk,N

)
k,N∈N equips S(Rm) with a structure of

Fréchet space.

The Fourier transform is the linear map

F : S(Rm)→ S(Rm), F
[
u
]
(ξ) =

∫
Rm

e−i⟨ξ,x⟩u(x)dx, ⟨ξ, x⟩ :=
m∑
j=1

ξjxj .

We will frequently use the alternate notation û(ξ) := F
[
u
]
(ξ). One can show that F is

continuous with respect to the above Fréchet structure.

For j = 1, . . . ,m define Mxj : S(Rm)→ S(Rm), Mxj

[
u
]
(x) = xju(x). Then

F ◦Mxj = i∂ξj ◦ F, F ◦ ∂xj = iMξj ◦F . (B.2.1)

Let R : S
(
(Rm)→ S(Rm) denote the involution Ru(x) = u(−x). The equalities (B.2.1) show

that the operator R ◦F ◦F commutes with Mxj and ∂xk for any j, k. This can be used to
show that there exists a constant c such that

R ◦F ◦F = c1.

The equality (1.1.3) implies that c = (2π)−m. Hence F is a bijection and its inverse is give
by the Fourier inversion formula, F−1 = (2π)−mR ◦F , i.e.,

u(x) =
1

(2π)m

∫
Rm

ei⟨ξ,x⟩û(ξ)dξ. (B.2.2)

For u, v ∈ S(Rm) we set

⟨u, v⟩ =
∫
Rm

u(x)v(x)dx,
(
u, v

)
= ⟨u, v̄⟩ =

∫
Rm

u(x) ¯v(x)dx.

We then have the following fundamental equalities〈
û, v
〉
=
〈
u, v̂
〉

(B.2.3a)(
u, v

)
= (2π)−m

(
û, v̂

)
. (B.2.3b)

For t ̸= 0 and u ∈ S
(
Rm

)
, we set

Rtu(x) := u(tx).
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Then

R̂tu = t−mRt−1 û. (B.2.4)

If u, v ∈ S(Rm), then their convolution

u ∗ v(x) =
∫
Rm

u(x− y)v(y)dy

is also a Schwartz function and

F
[
u ∗ v

]
= F

[
u
]
·F
[
v
]
. (B.2.5a)

F
[
uv
]
= (2π)−mF

[
u
]
∗F

[
v
]
. (B.2.5b)

Denote by S′(Rm) the space of linear functionals S(Rm)→ C that are continuous with respect
to the Fréchet structure on S(Rm). We will refer to the elements of S′(Rm) as tempered
distributions on Rm, and we will denote by ⟨−,−⟩ the natural pairing

⟨−,−⟩ : S′(Rm)× S(Rm)→ C, ⟨ϕ, u⟩ = ϕ(u).

Note that we have an inclusion

C0
b (Rm) ↪→ S′(Rm), u 7→ Lu, ⟨Lu, v⟩ = ⟨u, v⟩ =

∫
Rm

u(x)v(x)dx.

We can extend the Fourier transform to a map F : S′(Rm)→ S′(Rm) by setting〈
F
[
ϕ
]
, u
〉
:=
〈
ϕ,F

[
u
]〉
.

For example, the Dirac distribution δ0 is a tempered distribution. Then〈
δ̂0, u

〉
=
〈
δ0, û

〉
= û(0) =

∫
Rm

u(x)dx.

Thus the Fourier transform of δ0 is the Lebesgue measure λ. The Fourier inversion formula
shows that

λ̂ = (2π)mδ0.

Recall that a locally convex topological vector space is called Montel or perfect if every closed
and bounded subset is compact. The space S

(
Rm

)
is Montel; see [67, Sec. I.3] or [150, Sec.

34.4]. As discussed in Section 1.1.4, there are three remarkable topologies on S′
(
Rm

)
: the

weak*, the Mackey and the strong topology. In the dual of a Montel space any weakly*
convergent sequence1 is also strongly convergent.

In this book we use frequently the Poisson summation formula

∀u ∈ S
(
Rm

)
, ∀a > 0 :

∑
ℓ⃗∈Zm

u
( 2π

a
ℓ⃗
)
=
( a
2π

)m ∑
k⃗∈Zm

û
(
ak⃗
)

(B.2.6)

For a proof we refer to [73, §7.2].

1We want to emphasize that this is a statement strictly about sequences, not about generalized sequences.
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B.3. Basic facts about spherical harmonics

We survey here a few classical facts about spherical harmonics that we needed in the main
body of the paper. For proofs and more details we refer to our main source, [102].

We denote by Hn,d the space of homogeneous, harmonic polynomials of degree n in d

variables. We regard such polynomials as functions on Rd, and we denote by Yn,d the subspace

of C∞(Sd−1) spanned by the restrictions of these polynomials to the unit sphere. We have

dimHn,d = dimYn,d =M(n, d) =

(
d+ n− 1

n

)
−
(
d+ n− 3

n− 2

)
=

2n+ d− 2

n+ d− 2

(
n+ d− 2

d− 2

)
∼ 2

nd−2

(d− 2)!
as n→∞.

Observe that

M(0, d) = 1, M(1, d) = d, M(2, d) =

(
d+ 1

2

)
− 1. (B.3.1)

The space Yn,d is the eigenspace of the Laplace operator on S
d−1 corresponding to the eigen-

value λn(d) = n(n+ d− 2).

The Legendre polynomial Pn,d(t) of degree n and order d is given by the Rodriguez formula

Pn,d(t) = (−1)nRn(d)(1− t2)−
d−3
2

(
d

dt

)n
(1− t2)n+

d−3
2 , (B.3.2)

where Rn(d) is the Rodriguez constant

Rn(d) = 2−n
Γ(d−1

2 )

Γ(n+ d−1
2 )

= 2−n
1(

n+ d−3
2

)
n

,

where we recall that (x)k := x(x− 1) · · · (x− k + 1).

Equivalently, they can be defined recursively via the relations

P0,d(t) = 1, P1,d(t) = t,

(n+ d− 2)Pn+1,d(t)− (2n+ d− 2)tPn,d(t) + nPn−1,d(t) = 0, n > 0.

In particular, this shows that

P2,d(t) =
1

d− 1

(
dt2 − 1

)
.

The Legendre polynomials are normalized by the equality

Pn,d(1) = 1, ∀d ≥ 2, n ≥ 0.

More generally, for any n > 0, d ≥ 2, and any 0 < j ≤ n, we have

P
(j)
n,d(1) = (−1)nRn(d)

(
n+ j

j

){
Dn
t (1− t)n+

d−3
2

(1− t)
d−3
2

· D
j
t (1 + t)n+

d−3
2

(1 + t)
d−3
2

}
t=1

, Dt :=
d

dt
,

= 2n−jRn(d)

(
n+ j

j

)(
n+

d− 3

2

)
n
·
(
n+

d− 3

2

)
j
,

which implies

P
(j)
n,d(1) = 2−j

(
n+ j

j

)(
n+

d− 3

2

)
j
. (B.3.3)



260 B. Analysis

Fix y ∈ Sd−1. Denote by • the canonical inner product on Rd. Then the function

x 7→ Pn,d(x • y)

belongs to the eigenspace Hn,d. Note that arccos(x • y) is the geodesic distance between

x, y ∈ Sd−1.

If (Ψk)1≤k≤M(s,d) is an orthonormal basis of Hn,d, then we have the addition formula

∀x, y ∈ Sd−1,

M(n,d)∑
k=1

Ψk(x)Ψk(y) =
M(n, d)

σd−1
Pn,d(x • y) (B.3.4)

where σd−1 denotes the “area” of the unit sphere in Rd.
Denote by P n = P n,d the ortogonal projection L2

(
Sd−1

)
→ Hn,d. Observe that

Kn(x, y) = Kn,d(x, y) =

M(n,d)∑
k=1

Ψk(x)Ψk(y)

is the integral kernel of the operator P n, i.e., ∀f ∈ L2(Sd−1)

P n,df(x) =

∫
Sd−1

Kn,d(x, y) volSd−1

[
dy
]
.

Theorem B.3.1 (Funk-Hecke formula). Let Ψ ∈ Hn,d and f ∈ C0
(
[−1, 1]

)
. Then for any

x ∈ Sd−1 we have ∫
Sd−1

f(x • y)Ψ(y) volSd−1
[
dy
]
= λnΨ(x), (B.3.5)

where

λn = σd−1

∫ 1

−1
f(t)Pn,d(t)

(
1− t2

) d−3
2 dt.

⊓⊔

We want to describe an inductive construction of an orthonormal basis of Yn,d. We start
with the case d = 2. For any m ∈ Z, we set

φm(θ) =

{
cos(mθ), m ≤ 0

sin(mθ), m > 0.
, tm = ∥φm∥L2 =

{
(2π)1/2, m = 0

π1/2, m > 0.
, Φm =

1

tm
φm.

Then B0,2 = {Φ0} is an orthonormal basis of Y0,2, while Bn,2 = {Φ−n,Φn} is an orthonormal
basis of Yn,2, n > 0.

Assuming now that we have produced orthonormal bases Bn,d−1 of all the spaces Yn,d−1,
we indicate how to produce orthonormal bases in the harmonic spaces Yn,d. This requires
the introduction of the Legendre polynomials and their associated functions.

For any d ≥ 3, n ≥ 0 and 0 ≤ j ≤ n, we define the normalized associated Legendre
functions

P̂ jn,d(t) := Cn,j,d(1− t2)j/2P
(j)
n,d(t),

where

Cn,j,d :=
[n+ d− 3]d−3

Γ(d−1
2 )

(
(2n+ d− 2)

2d−2[n+ d+ j − 3]2j+d−3

)1/2

. (B.3.6)
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When d = 3, the above formulæ take the form

P̂n,j,3(t) =

√
(n+ 1

2)(n− j)!
(n+ j)!

(1− t2)jP (j)
n,3(t). (B.3.7)

For any 0 ≤ j ≤ n, and any d > 2 we define a linear map

Tn,j,d : Yj,d−1 → Yn,d, Y 7→ Tn,j,d[Y ],

Tn,j,d[Y ](x) = P̂ jn,d(xd) · Y
(

1

∥x′∥
x′
)
,

∀x = (x′, xd) ∈ Sd−1, x′ = (x1, . . . , xd−1) ̸= 0.

Note that for x = (x′, xd) ∈ Sd−1 we have

∥x′∥ = (1− xd)1/2 and P̂ jn,d(xd) = Cn,j,d(1− x2d)j/2P
(j)
n,d(xd) = Cn,j,d∥x′∥jP (j)

n,d(xd),

so that

Tn,j,d[Y ](x) = Cn,j,dP
(j)
n,d(xd)Ỹ (x′), ∀x = (x′, xd) ∈ Sd−1,

where Ỹ denotes the extension of Y as a homogeneous polynomial of degree j in (d − 1)-
variables. The sets Tn,j,d[Bj,d−1], 0 ≤ j ≤ n are disjoint, and their union is an orthonormal
basis of Yn,d that we denote by Bn,d.

The space Y0,d consists only of constant functions and B0,d = {σ
− 1

2
d−1 }. The orthonormal

basis B1,d of Y1,d obtained via the above inductive process is

B1,d =
{
C0xi, 1 ≤ i ≤ d

}
=
{
σ
− 1

2
d−2C1,0,dxi; 1 ≤ i ≤ d

}
. (B.3.8)

The orthonormal basis B2,d of Y2,d is

C1(dx
2
i − r2), 1 ≤ i < d, C2xixj , 1 ≤ i < j ≤ d, (B.3.9)

where r2 = x21 + · · ·+ x2d, and the positive constants C0, C1, C2 are found from the equalities

C2
0

∫
Sd−1

x21 |dS(x)| = C2
1

∫
Sd−1

(d2x41 − 2dx21 + 1) |dS(x)| = C2
2

∫
Sd−1

x21x
2
2|dS(x)| = 1,

aided by the classical identities, (2.3.13)∫
Sd−1

x2h11 · · ·x2hdd |dS(x)| =
2Γ(2h1+1

2 ) · · ·Γ(2hd+1
2 )

Γ(2h+d2 )
, h = h1 + · · ·+ hd. (B.3.10)

B.4. Some asymptotic estimates

We want to discuss the large m asymptotics of

hm(a)

dm(a)
=

2Im+3(a)

(m+ 2)Im+1(a)
, qm(a) =

sm(a)hm(a)

dm(a)2
=

m

m+ 2
· Im−1(a)Im+3(a)

Im+1(a)2︸ ︷︷ ︸
=:Rm(a)

,
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for various choices of amplitudes a. Set wa(t) := a(t)2. Recall (2.3.27)

Cm(a) ∼ 25/2
(
hm(a)

dm(a)

)m/2
Γ

(
m+ 3

2

)
m−1/2

∼ 2
m+5

2

(
Im+3(a)

(m+ 2)Im+1(a)

)m/2
Γ

(
m+ 3

2

)
m−1/2 as m→∞.

(B.4.1)

Example B.4.1. Suppose that wa(t) = e−t
2
. In this case

Ik(a) =

∫ ∞

0
tke−t

2
dt =

1

2

∫ ∞

0
s

k−1
2 e−sds =

1

2
Γ

(
k + 1

2

)
.

Hence Ik+2 =
k+1
2 Ik, ∀k,

Im+3(a)

Im+1(a)
=
m+ 2

2
,
hm(a)

dm(a)
= 1, qm =

m(m+ 4)

(m+ 2)2
< 1, ∀m.

We deduce

Cm(w)
(2.3.27)∼ 2

5
2

√
mπ

m+1
2

Γ

(
m+ 3

2

)
as m→∞,

and Stirling’s formula implies

logCm(w) ∼
m

2
logm as m→∞. (B.4.2)

⊓⊔

Example B.4.2. Suppose that

wa(t) = exp
(
−(log t) log(log t)

)
, ∀t ≥ 1.

Observe that

Ik(a) =

∫ 1

0
rkw(r)dr +

∫ ∞

1
rk exp

(
−(log r) log(log r)

)
dr.

This proves that

Ik(a) ∼ Jk :=
∫ ∞

1
rk exp

(
−(log r) log(log r)

)
dr as k →∞.

Using the substitution r = et we deduce

Jk =

∫ ∞

0
e(k+1)t−t log tdt.

We want to investigate the large λ asymptotics of the integral

Tλ =

∫ ∞

0
e−ϕλ(t)dt, ϕλ(t) = λt− t log t. (B.4.3)

We will achieve this by relying on the Laplace method [29, Chap. 4]. Note that

ϕ′λ(t) = λ− log t− 1, ϕ′′λ(t) = −
1

t
.

Thus ϕλ(t) has a unique critical point

τ = τ(λ) := eλ−1.
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We make the change in variables t = τs in (B.4.3). Observe that

λeλ−1s− eλ−1s log(eλ−1s) = eλ−1s− (λ− 1)eλ−1s− eλ−1 log s = eλ−1s(1− log s)

and we deduce

Tλ = τ

∫ ∞

0
e−τh(s)ds, h(s) = s(log s− 1).

The asymptotics of the last integral can be determined using the Laplace method and we
have, [29, §4.1]

Tλ ∼ τe−τh(1)
√

2π

τh′′(1)
=
√
2πτeτ .

Hence

Jk = Tk+1 ∼
√

2πτ(k + 1)eτ(k+1) =
√
2πekee

k
as k →∞.

In this case

lim
m→∞

qm(a) =∞,

and

log

(
hm
dm

)
∼ em+4 − em+2 as m→∞.

Hence

logCm(a) ∼
m

2
em+2(e2 − 1) as m→∞. (B.4.4)

⊓⊔

Example B.4.3. Fix C > 0 and α > 1. Suppose that

wa(t) = exp
(
−C(log t)α

)
,∀t > 1.

Arguing as in Example B.4.2 we deduce that as k →∞

Ik(a) ∼
∫ ∞

1
tk exp

(
−C(log t)α

)
dr =

∫ ∞

0
e(k+1)t−Ctαdt.

Again, set

Tλ :=

∫ ∞

0
e−ϕλ(t)dt, ϕλ(t) := Ctα − λt.

We determine the asymptotics of Tλ as λ→∞ using the Laplace method. Note that

ϕ′λ(t) = αCtα−1 − λ.

The function ϕλ has a unique critical point

τ = τ(λ) =

(
λ

αC

) 1
α−1

.

Observe that

ϕλ(τs) = a(sα − bs), a :=

(
λ

C1/αα

) α
α−1

, b := α
1

α−1 ,

Tλ = τ(λ)

∫ ∞

0
e−a(s

α−bs)ds.
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We set g(s) := sα − bs. Using the Laplace method [29, §4.2] we deduce

Tλ ∼ τ(λ)e−ag(1)
√

2π

ag′′(1)
=

√
2π

aα(α− 1)
ea(b−1).

Hence

log Tλ ∼
(
λα

C

) 1
α−1 α

1
α−1 − 1

α
α

α−1

=: Z(α,C)λ
α

α−1 ,

log Im+3(a)− log Im+1(a) ∼ Z(α,C)m
α

α−1

((
1 +

4

m

) α
α−1 −

(
1 +

2

m

) α
α−1

)
∼ 2Z(α,C)

α− 1
m

1
α−1 , m→∞,

so that

logCm(a) ∼
Z(α,C)

α− 1
m

α
α−1 , m→∞. (B.4.5)

Similarly

logRm(w) ∼ log Tm + log Tm+4 − 2 log Tm+2

∼ Z(α,C)
(
m

α
α−1 + (m+ 4)

α
α−1 − 2(m+ 2)

α
α−1

)
= Z(α,C)m

α
α−1

(
1 +

(
1 +

4

m

) α
α−1 − 2

(
1 +

2

m

) α
α−1

)
∼ Z(α,C)m

α
α−1 × 8

m2
× α

α− 1

( α

α− 1
− 1
)
=

8αZ(α)

(α− 1)2
m

2−α
α−1 .

Hence

lim
m→∞

Rm = ×


∞, α < 2,

e16Z(2,C), α = 2,

1, α > 2.

(B.4.6)

⊓⊔

B.5. Reproducing Hilbert Kernel Spaces

In the more than a century since their appearance on the mathematical scene the Reproducing
Kernel Hilbert Spaces have found applications in diverse areas: complex analysis, numerical
analysis, quantum mechanics, Gaussian processes and machine learning, to name a few. The
goal of this section is to survey, mostly without proofs, some basic properties of such spaces.
Our main sources of inspiration are [9, 125] to which we refer for proofs and more details.

Let X be a set. Recall that RX is the space of functions X → R. For every x ∈ X we
denote by Evx the evaluation at x, i.e. the linear map

Evx : RX → R, Evx
[
f
]
= f(x).

A (real) Reproducing Kernel Hilbert Space over X, or RKHS henceforth, is a vector subspace
H ⊂ RX with the following properties

(i) It is equipped with an inner product (−,−)H making it into a real Hilbert space.

(ii) For every x ∈ X the linear functional Evx : H → R is continuous with respect to
the Hilbert norm.
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From the Riez representation theorem and (ii) we deduce that for every x ∈ X there
exists Kx ∈ H such that (

Kx, h
)
H
= Evx

[
h
]
= h(x), ∀h ∈ H.

The resulting function

K : X ×X → R, K(x, y) = Kx(y) = Evy
[
Kx

]
= (Ky,Kx)H,

is called the reproducing kernel or the kernel of the RKHS H.

There is a natural map Φ : X → H, Φ(x) = Kx. Note that

K(x, y) =
(
Φ(x),Φ(y)

)
H
, ∀x, y ∈ X.

In machine learning this map is known as the feature map.

Note that if X is a topological space and K is continuous, then the feature map is
continuous as a map from X to the Hilbert space H. Indeed, for any x0 ∈ X, the function
u : X → R

u(x) = ∥Φ(x)− Φ(x0)∥2H = K(x, x)− 2K(x, x0) +K(x0, x0)

and

lim
x→x0

u(x) = 0.

Example B.5.1. The feature map is a disguised version of a standard geometric construction.
More precisely, given a set X and a finite dimensional vector space V of real valued functions
on X, we get a tautological map

Ev : X → V ∗, x 7→ Evx .

The map Ev is injective if and only if the vector space V separates the points, i.e., ∀x, y ∈ X,
∃v ∈ V such that v(x) ̸= v(y).

Fix an inner product (−,−) on V . Since V is finite dimensional, the evaluation maps
Evx : V → R are continuous with respect to this inner product for any x ∈ X. The pair(
V, (−,−)

)
is an RKHS.

The inner product induces a dual inner product (−,−)V ∗ on V ∗, we can identify V ∗ with
V and the evaluation map Ev : X → V ∗ ∼= V is the feature map. The reproducing kernel is

K(x, y) =
(
Evx,Evy

)
V ∗ .

Suppose that X is a subset of a finite dimensional Euclidean space V . The inner product on
V induces a duality isomorphism

V ∋ v 7→ v↓ ∈ V ∗, v↓(u) = (v,u), ∀u ∈ V.

In particular, we get a map

X ∋ x 7→ x↓ ∈ V ∗.

Assume for simplicity that X is not contained in any proper subspace of V . Then the map

V ∗ ∋ ξ 7→ ξ
∣∣
X
∈ RX

is one-to-one and we denote by H the image of this map. The inner product on V ∗ induces
an inner product on H, (

v↓
0

∣∣
X ,v

↓
1

∣∣
X

)
H
:=
(
v↓
0,v

↓
1

)
V ∗ = (v0,v1

)
V
.
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Then H is a RKHS with kernel K(x, y) = (x, y)V and feature map

X 7→ H, x 7→ x↓∣∣
X ∈ H.

Note that the function Evx : H→ R coincides with x↓∣∣
X . ⊓⊔

Observe that the reproducing kernel of a RKHS is a symmetric function, i.e.,

K(x, y) = K(y, x) =
(
Kx,Ky

)
H
, ∀x, y ∈ X. (RK1)

Indeed,

K(x, y) = Kx(y) = Evy(Kx) =
(
Ky,Kx

)
H
.

For any x1, . . . , xn ∈ X we denote by GK(x1, . . . , xn) the symmetric n× n matrix

GK(x1, . . . , xn) :=
(
K(xi, xj)

)
1≤i,j≤n.

Observe that

GK(x1, . . . , xn) ≥ 0, ∀n, ∀x1, . . . , xn ∈ X. (RK2)

Indeed, GK(x1, . . . , xn) is Grammian of the functions Kxi

GK(x1, . . . , xn) =
(
(Kxi ,Kxj )H

)
1≤i,j≤n,

and the Grammians are positive semidefinite matrices, i.e., all their eigenvalues are nonneg-
ative.

The rank of GK(x1, . . . , xn) is the dimension of the space span
{
Kx1 , . . . ,Kxn

}
. In par-

ticular, we deduce that if detGK(x1, x2) ̸= 0 then Kx1 ̸= Kx2 . We have the following
consequence.

Corollary B.5.2. If the reproducing kernel K of an RKHS H over X satisfies

detGK(x1, x2) ̸= 0, ∀x1, x2 ∈ X, x1 ̸= x2, (B.5.1)

then the feature map Φ : X → H is injective. ⊓⊔

Definition B.5.3. We define a (reproducing) kernel on a topological space X to be a con-
tinuous symmetric function K : X × X → R satisfying (RK2). A reproducing kernel on a
set X is a reproducing kernel on X equipped with the discrete topology.

We denote byK(X) the set of kernels onX. We denote byK+(X) the collection of kernels
K such that for any distinct points x1, . . . , xn ∈ X the symmetric matrix GK(x1, . . . , xn) is
positive definite, i.e., all its eigenvalues are positive. ⊓⊔

Theorem B.5.4. Let X be a set.

(i) The set of reproducing kernels K(X) is a convex cone in the vector space of functions
X ×X → R.

(ii) If (Kn)n∈N is a sequence of kernels on X that converges pointwisely to a function
K : X ×X → R, then K ∈ K(X).

(iii) If K1,K2 ∈ K(X) then K1 ·K2 ∈ K(X).

(iv) If X ′ is another set, K ∈ K(X), K ′ ∈ K(X ′) and we define

K ⊗K ′ : (X ×X ′)× (X×′), K ⊗K ′( (x, x′), (y, y′) ) = K(x, y)K ′(x′, y′)

then K ⊗K ′ ∈ K(X ×X ′).
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⊓⊔

The only non-obvious part of the above result is (iii). It is a consequence of a less pop-
ular result of linear algebra stating that the Hadamard product of two positive semidefinite
symmetric matrices is a positive semidefinite matrix; see [125, Sec. 4.2] . We recall that the
Hadamard product of two matrices A = (aij)1≤i,j≤n, B = (bij)1≤i,j≤n is the matrix

A ∗B =
(
aijbij

)
1≤i,j≤n.

The following example of RKHS is in a certain sense universal.

Example B.5.5 (The RKHS of a Gaussian process). We follow the presentation in [69, Sec.
2.61].

Let (Zx)x∈X be a centered Gaussian process parametrized by a topological space X. We
assume that the covariance kernel

C : X ×X → R, C(x, y) = E
[
ZxZy

]
is continuous, i.e., the map

X ∋ x→ Xx ∈ L2(Ω, S,P), x→ Zx

is continuous.

We denote by Z Gaussian Hilbert space determined by the Gaussian stochastic process
(Zx)x∈X , i.e., the closure in L2

(
S,P) of the vector subspace

V := span(Zx)x∈X .

We define

R : Z→ RX , Z 7→ R[Z], R[Z](x) = E
[
ZZx

]
, ∀x ∈ X.

Note that the function R[Z] : X → R is continuous since the map

X ∋ x 7→ Zx ∈ L2

is continuous.

Observe also that the map R is injective. Indeed, if for some Z0 ∈ Z we have R[Z0](x) = 0,
∀x ∈ X, then E

[
Z0Z

]
= 0, ∀Z ∈ V . Since V is dense in Z we deduce E

[
Z0Z

]
= 0, ∀Z ∈ Z,

so Z0 = 0.

We denote by H the image of R, H = R(Z) ⊂ C(X) ⊂ RX . The space H is a Hilbert
space with respect to the inner product〈

R[Z0], R[Z1]
〉
H
:= E

[
Z0Z1

]
, ∀R[Z0], R[Z1] ∈ H.

The map R is an isomorphism of Hilbert spaces Z→ H.

Note that R[Zy] = Cy, Cy(x) = C(x, y) = C(y, x). Since the family (Zy) is dense in Z we
deduce that thefunctions Cy, y ∈ X, span a dense subspace of H.

The map Evx : H→ R, R[Z] 7→ R[Z](x) is continuous with respect to the inner product
⟨−,−⟩H since

R[Z](x) := E
[
ZZx

]
=
〈
R[Z], R[Zx]

〉
H
.

We also have a map

F = FC : X → H, x 7→ R[Zx].
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Observe that for any x, y ∈ X we have〈
R[Zx], R[Zy]

〉
= E

[
ZxZy

]
= C(x, y).

Thus, H is a RKHS and its reproducing kernel is the covariance kernel of the process (Zx)x∈X .
Note that H ⊂ C(X). The feature map of H is FC . The space H is also known as the
Cameron-Martin space of the Gaussian stochastic process (Zx)x∈X ; see [75, Def. 8.14]. ⊓⊔

It turns out that Example B.5.5 is universal.

Theorem B.5.6 (Moore). Let X be a topological space. For any reproducing kernel K ∈ K(X),
there exists a unique RKHS on H ⊂ C(X) whose reproducing kernel is K.

Proof. Existence. Let K ∈ K(X). The Kolmogorov existence/consistency theorem [115,
Sec. 1.5.2] shows that there exists a centered Gaussian process (Zx)x∈X with covariance
kernel K.

Uniqueness. Suppose that H1,H2 ⊂ RX are two RKHS’s with kernels K1,K2. We want to
show that if K1 = K2, then H1 = H2. Set K = K1 = K2 We outline the main ideas referring
for details to[125, Sec. 2.1].

For i = 1, 2 we denote by (−,−)i the inner product in Hi and by ∥−∥i, the corresponding
norm. We set

VK := span
{
Kx; x ∈ X

}
.

Note that VK ⊂ Hi and

(u, v)1 = (u, v)2, ∀u, v ∈ VK .
It is easy to see that VK is dense in Hi. Moreover, if hi ∈ Hi and ∥vn − hi∥i → 0, then
vn(x)→ hi(x), ∀x ∈ X. It suffices to show that if h ∈ H1, then h ∈ H2.

Since h ∈ H1, there exists a sequence (vn) in Vk such that ∥vn − h∥1 → 0. Hence (vn) is
Cauchy in H1. Since ∥vn − vm∥1 = ∥vn − vm∥2 we deduce that (vn) is also Cauchy in H2 so
there exists h̄ ∈ H2 such that ∥vn − h̄∥2 → 0. Now observe that

h(x) = lim
n→∞

vn(x) = h̄(x), ∀x ∈ X.

Hence h = h̄ ∈ H2. ⊓⊔

Remark B.5.7. There is a more elementary proof the existence of a RKHS with a given
reproducing kernel K. More precisely denote by V the subspace of C(X) spanned by the
functions y 7→ Kx(y). Given two functions u, v ∈ V

u =
∑
i

uiKxi , v =
∑
j

vjKyj , ui, vj ∈ R,

we define

⟨u, v⟩ =
∑
i,j

uivjK(xi, yj).

One can show that ⟨−,−⟩ is independent of the decompositions of u and v as linear combi-
nations of functions Kx and it is positive definite and thus defines an inner product on V .
We denote by H its completion. We can identify each h ∈ H with a function on X by setting
h(x) = ⟨h,Kx⟩, ∀x ∈ X. ⊓⊔



B.5. Reproducing Hilbert Kernel Spaces 269

For every K ∈ K(X) we denote by HK the unique RKHS with reproducing kernel K.
We denote by (−,−)K the inner product on HK .

We can now describe a few simple examples.

Example B.5.8. Suppose that X is a finite set X =
{
x1, . . . , xn

}
and K ∈ K+(X). We

set G = GK(x1, . . . , xn). Fix jointly Gaussian centered random variables Z1, . . . , Zn, with
covariance matrix G and set

Z = span
(
Z1, . . . , Zn).

Let (δxi)1≤i≤n denote the canonical basis of RX ,

δxi(xj) = δij , ∀i, j.

Then the feature map is given by

xi 7→ Kxi =
∑
j

K(xi, xj)δxj ∈ RX .

Since ⟨Kxi ,Kxj ⟩H = K(xi, xj) we deduce that in the basis (δxi) the inner product ⟨−,−⟩H
is represented by the matrix by the matrix G−1. ⊓⊔

Example B.5.9. Suppose that V is a Hilbert space with inner product (−,−). Then the
function

K : V × V → R, K(u,v) = (u,v)

is a kernel. The associated RKHS is the topological dual V ∗ ⊂ RV equipped with the dual
metric. The feature map is the Riesz representation isomorphism V → V ∗. ⊓⊔

Proposition B.5.10. Suppose that H is a RKHS over X with reproducing kernel K. If
(ei)i∈I is a complete orthonormal system of H, then

K(x, y) =
∑
i∈I

ei(x)ei(y).

Proof. We have

Kx =
∑
i

(Kx, ei)Hei =
∑
i

ei(x)ei

K(x, y) = (Kx,Ky)H =
∑
i,j

ei(x)ej(y)(ei, ej) =
∑
i

ei(x)ei(y).

⊓⊔

Definition B.5.11. Let H be an RKHS over X with reproducing kernel K. A collection of
functions (fi)i∈I in H is called a Parseval frame if

∥h∥2 =
∑
i

∣∣ (h, fi)H ∣∣2, ∀f ∈ H.

⊓⊔

Clearly, a complete orthonormal collection ofH is a Parseval frame. Parseval frames enjoy
many of the properties of orthonormal bases. However a Parseval frame could have linearly
dependent functions. We have the following useful characterization of Parseval frames.
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Theorem B.5.12. Let H be an RKHS over the topological space X with reproducing kernel
K. A collection of continuous functions (fi)i∈I on X is a Parseval frame of HK if and only
if

K(x, y) =
∑
i∈I

fi(x)fi(y),

where the above sum converges pointwisely. ⊓⊔

For a proof we refer to [125, Thm. 2.10, Remark 2.11]. Let us emphasize that above, the
functions fi are not a priori known to belong to H! However, the above result implies that
they span HK and in fact

h =
∑
i

(h, fi)Hfi, ∀h ∈ H.

For more details we refer to [125, Sec. 2.1].



Appendix C

Probability

C.1. Gaussian random symmetric matrices

We denote by Sm the space of real symmetric m×m matrices. This is a Euclidean space with
respect to the inner product (A,B) := tr(AB). This inner product is invariant with respect
to the action of the orthogonal group O(m) on Sm.

We define

ℓij , ωij : Sm → R, ℓij(A) = aij , ωij(A) :=

{
aij , i = j,√
2aij , i < j.

The collection (ωij)i≤j defines linear coordinates on Sm that are orthonormal with respect to
the above inner product on Sm. The volume density induced by this metric is

vol
[
dA
]
:=
∏
i≤j

dωij = 2
1
2(

m
2 )
∏
i≤j

dℓij .

The space of O(m)-invariant homogeneous quadratic polynomials q : Sm → R is spanned by

q1(A) := (trA)2 and q2(A) := trA2.

An O(m)-invariant homogeneous quadratic polynomial

q(A) = c2q2(A) + c1q1(A)

is nonnegative iff the quadratic form

Fq : Rm → R, Fq
(
λ1, . . . , λm

)
= c2

∑
k

λ2k + c1

( ∑
k

λk

)2
is nonnegative. This quadratic form is represented by the matrix

c21m + c1S, sij = 1, ∀i, j.

Note that S has rank 1 and has only one nonzero eigenvalue m which is simple. We deduce
that

c2q2(A) + c1q1(A) ≥ 0⇐⇒ c2 ≥ 0, c1 ≥ −
1

m
c2.

271
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Note that

c2q2(A) + c1q1(A) = (c2 + c1)
∑
j

ω2
jj + 2c1

∑
i<j

ωiiξjj + c2
∑
i<j

ω2
ij . (C.1.1)

Throughout the book we encountered a 2-parameter family of Gaussian probability measures
on Sm. More precisely for any real numbers u, v such that

v > 0,mu+ 2v > 0, (C.1.2)

we denote by S
u,v
m the space Sm equipped with the centered Gaussian measure Γu,v

[
dA
]

uniquely determined by the covariance equalities

E
[
ℓij(A)ℓkℓ(A)

]
= uδijδkℓ + v(δikδjℓ + δiℓδjk), ∀1 ≤ i, j, k, ℓ ≤ m. (C.1.3)

In particular we have

E
[
ℓ2ii
]
= u+ 2v, E

[
ℓiiℓjj

]
= u, E

[
ℓ2ij
]
= v, ∀1 ≤ i ̸= j ≤ m, (C.1.4)

while all other covariances are trivial. The ensemble S0,vm is a rescaled version of the Gaussian
Orthogonal Ensemble (GOE) and we will refer to it as GOEvm.

Comparing (C.1.1) with (C.1.4) we deduce that the covariance form of Γu,v corresponds
to the O(m)-invariant quadratic form c2q2(A) + c1q1(A), where

c2 = 2v, c1 = u.

The inequalities (C.1.2) guarantee that the covariance form is positive definite so that Γu,v
is nondegenerate.

For u > 0 the ensemble S
u,v
m can be given an alternate description. More precisely a

random A ∈ S
u,v
m can be described as a sum

A = B + X1m, B ∈ GOEvm, X ∈N(0, u), B and X independent.

We write this

Su,vm = GOEvm +̂N(0, u)1m, (C.1.5)

where +̂ indicates a sum of independent variables.

The probability density dΓu,v has the explicit description

Γu,v
[
dA
]
=

1

(2π)
m(m+1)

4

√
D(u, v)

e−
1
4v

trA2−u′
2
(trA)2 vol

[
dA
]
,

where

D(u, v) = (2v)(m−1)+(m2 )
(
mu+ 2v

)
,

and

u′ =
1

m

(
1

mu+ 2v
− 1

2v

)
= − u

2v(mu+ 2v)
.

In the special case GOEvm we have u = u′ = 0 and

Γ0,v

[
dA
]
=

1

(4πv)
m(m+1)

4

e−
1
4v

trA2
vol
[
dA
]
. (C.1.6)

Note that GOE
1/2
m corresponds to the Gaussian measure on Sym(Rm) canonically associated

to the inner product (A,B) = tr(AB).
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We have a Weyl integration formula [5] which states that if f : Sm → R is a measurable
function which is invariant under conjugation, then the value f(A) at A ∈ Sm depends only
on the eigenvalues λ1(A) ≤ · · · ≤ λn(A) of A and we have

EGOEv
m

[
f(X)

]
=

1

Zm(v)

∫
Rm

f(λ1, . . . , λm)

 ∏
1≤i<j≤m

|λi − λj |

 m∏
i=1

e−
λ2i
4v

︸ ︷︷ ︸
=:Qm,v(λ)

|dλ1 · · · dλm|,

(C.1.7)
where the normalization constant Zm(v) is defined by

Zm(v) =

∫
Rm

∏
1≤i<j≤m

|λi − λj |
m∏
i=1

e−
λ2i
4v |dλ1 · · · dλm|

= (2v)
m(m+1)

4 ×
∫
Rm

∏
1≤i<j≤m

|λi − λj |
m∏
i=1

e−
λ2i
2 |dλ1 · · · dλm|︸ ︷︷ ︸

=:Zm

.

The integral Zm is usually referred to as Mehta’s integral. Its value was first determined in
1960 by M. L. Mehta, [95]. Later Mehta observed that this integral was known earlier to N.
G. de Brujin [28]. It was subsequently observed that Mehta’s integral is a limit of the Selberg
integrals, [5, Eq. (2.5.11)], [61, Sec. 4.7.1]. We have

Zm = (2π)
m
2

m−1∏
j=0

Γ( j+3
2 )

Γ(3/2)
= 2

3m
2

m−1∏
j=0

Γ
( j + 3

2

)
. (C.1.8)

In Section 2.3.4 we describe a probabilistic proof of this equality.

For any positive integer n we define the normalized 1-point correlation function ρn,v(x)
of GOEvn to be

ρn,v(x) =
1

Zn(v)

∫
Rn−1

Qn,v(x, λ2, . . . , λn)dλ1 · · · dλn.

For any Borel measurable function f : R→ R we have [43, §4.4]

1

n
EGOEv

n

[
tr f(X)

]
=

∫
R
f(λ)ρn,v(λ)dλ. (C.1.9)

The equality (C.1.9) characterizes ρn,v. For example, if f(x) is the indicator set of a Borel
subset B ⊂ R, then tr IB(X) the number of eigenvalues of X located in B so∫

B
ρn,v(λ)dλ

is the expected fraction of eigenvalues in B of a random matrix X in the ensemble GOEvn.

Let us observe that for any constant c > 0, if

A ∈ GOEvn⇐⇒cA ∈ GOEc
2v
n .

Hence for any Borel set B ⊂ R we have∫
cB
ρn,c2v(x)dx =

∫
B
ρn,v(y)dy.



274 C. Probability

We conclude that

cρn,c2v(cy) = ρn,v(y), ∀n, c, y. (C.1.10)

We want to draw attention to a confusing situation in the existing literature on the
subject. Some authors, such as M. L. Mehta [96], define the 1-point correlation function
Rn(x) by the equality

E
GOE

1/2
n

[
tr f(X)

]
=

∫
R
f(λ)Rn(λ)dλ.

so that

Rn(x) = nρn,1/2(x). (C.1.11)

From the equality

n1/2ρn,1/2
(
n1/2x

)
= ρn,1/2n(x)

we deduce

ρn,1/2n(x) =
1√
n
Rn
(
n1/2x

)
.

The expected value of the absolute value of the determinant of of a random A ∈ GOEvm can
be expressed neatly in terms of the correlation function ρm+1,v. More precisely, we have the
following result first observed by Y.V. Fyodorov [63] in a context related to ours.

Lemma C.1.1. Suppose v > 0. Then for any c ∈ R we have

EGOEv
m

[
|det(A− c1m)|

]
= 2

3
2 (2v)

m+1
2 Γ

(
m+ 3

2

)
e

c2

4v ρm+1,v(c). (C.1.12)

Proof. Using Weyl’s integration formula we deduce

EGOEv
m

[
| det(A− c1m)|

]
=

1

Zm(v)

∫
Rm

m∏
i=1

e−
λ2i
4v |c− λi|

∏
i≤j
|λi − λj |dλ1 · · · dλm

=
e

c2

4v

Zm(v)

∫
Rm

e−
c2

4v

m∏
i=1

e−
λ2i
4v |c− λi|

∏
i≤j
|λi − λj |dλ1 · · · dλm

=
e

c2

4vZm+1(v)

Zm(v)

1

Zm+1(v)

∫
Rm

Qm+1,v(c, λ1, . . . , λm)dλ1 · · · dλm

=
e

c2

4vZm+1(v)

Zm(v)
ρm+1,v(c) =

e
c2

4v (2v)
m+1

2 Zm+1

Zm
ρm+1,v(c)

= e
c2

4v (2v)
m+1

2
(2π)1/2Γ(m+3

2 )

Γ(3/2)
ρm+1,v(c) =

= (2v)
m+1

2 e
c2

4v 23/2Γ
( m+ 3

2

)
ρm+1,v(c).

⊓⊔
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The above result was generalized in [10, Lemma 3.2.3] or [11, Lemma 3.3]. To state this
generalization we need to recall some terminology. If µ, ν ∈ Meas(R) are two finite measures,
then we define their convolution to be the finite measure µ0 ∗ µ1 ∈ Meas(R) defined by

µ ∗ ν
[
B
]
=

∫
R
µ
[
B − y

]
ν
[
dy
]
, ∀B ∈ BR. (C.1.13)

If µ is absolutely continuous with respect to the Lebesgue measure, µ
[
dx
]
= ρµ(x)λ

[
dx
]
,

then µ ∗ ν is also absolutely continuous with respect to the Lebesgue measure and

µ ∗ ν
[
dx
]
= ρµ ∗ ν(x)λ

[
dx
]
, ρµ ∗ ν(x) =

∫
R
ρ(x− y)ν

[
dy
]
.

Lemma C.1.2. Let u > 0. Then

ES
u,v
m

[
|det(A− c1m)|

]
= 2

3
2 (2v)

m+1
2 Γ

(
m+ 3

2

)
1√
2πu

∫
R
ρm+1,v(c− x)e

(c−x)2

4v
−x2

2u dx.

= 2
3
2 (2v)

m+1
2 Γ

(
m+ 3

2

)
θ+m+1,v ∗ γu(c),

(C.1.14)

where

θ+m+1,v(x) = ρm+1,v(x)e
x2

4v .

Let us observe that (C.1.12) can be obtained from (C.1.14) by letting u↘ 0.

Proof. Recall the equality (C.1.5) Su,vm = GOEvm +̂N(0, u)1m. We deduce that

ES
u,v
m

[
| det(A− c1m)|

]
= E

[
det(B + (X − c)1)|

]
=

1√
2πu

∫
R
EGOEv

m

[
|det(B − (c−X)1m)| ∥ X = x

]
e−

x2

2u dx

=
1√
2πu

∫
R
EGOEv

m

[
|det(B − (c− x)1m)|

]
e−

x2

2u dx

= 2
3
2 (2v)

m+1
2 Γ

(
m+ 3

2

)
1√
2πu

∫
R
ρm+1,v(c− x)e

(c−x)2

4v
−x2

2u dx.

⊓⊔

The behavior ρn,v as n→∞ is controlled by the following theorem.

Theorem C.1.3 (Wigner’s semicircle law). For any v > 0 the sequence of measures on R

ρn,vn−1(x)dx = n
1
2 ρn,v(n

1
2x)dx

converges weakly as n→∞ to the semicircle distribution

ρ∞,v(x)|dx| = I{|x|≤2
√
v}

1

2πv

√
4v − x2|dx|.

⊓⊔

For a proof we refer to [5, Chap. 2]. For our purposes we need a better understanding
some refinements of Wigner’s semicircle law. The following results were developed Set

ρ̄n(x) := ρn,1/2n(x) = n−1/2Rn
(
n1/2x

)
, ρ(x) = ρ∞,1/2

where Rn(x) is the 1-point correlation function Rn(x) defined in (C.1.11).
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Proposition C.1.4. Denote by γvn−1 the centered Gaussian measure on R with variance
vn−1. Then

lim
n→∞

∫
R
ρ̄n(s)γvn−1

[
ds
]
= ρ(0) =

√
2

π
. (C.1.15)

Proof. We follow the approach in [110]. The function Rn(x) can be described explicitly in
terms of Hermite1 polynomials, [96, Eq. (7.2.32) and §A.9],

Rn(x) =
n−1∑
k=0

ψk(x)
2

︸ ︷︷ ︸
=:kn(x)

+
(n
2

) 1
2
ψn−1(x)

∫
R
ε(x− t)ψn(t)dt+ αn(x)︸ ︷︷ ︸
=:ℓn(x)

, (C.1.16)

where

ψn(x) =
1

(2nn!
√
π)

1
2

e−
x2

2 Hn(x), Hn(x) = (−1)nex2 d
n

dxn
(e−x

2
),

αn(x) =

{
0, n ∈ 2Z,
ψn−1(x)∫

R ψn−1(x)dx
, n ∈ 2Z+ 1,

and

ε(x) =


1
2 , x > 0

0, x = 0,

−1
2 , x < 0.

From the Christoffel-Darboux formula [145, Eq. (5.5.9)] we deduce

π
1
2 ex

2
n−1∑
k=0

ψk(x)
2 =

n−1∑
k=1

1

2kk!
Hk(x)

2 =
1

2n(n− 1)!

(
H ′
n(x)Hn−1(x)−Hn(x)H

′
n(x)

)
Using the recurrence formula H ′

n = 2xHn −Hn+1 we deduce

H ′
n(x)Hn−1(x)−Hn(x)H

′
n(x) = H2

n(x)−Hn−1(x)Hn+1(x)

and

kn(x) =
e−x

2

2n(n− 1)!π
1
2

(
H2
n(x)−Hn−1(x)Hn+1(x)

)
.

We set

k̄n(x) :=
kn
(√
nx
)

√
n

=
1√
n

n−1∑
k=0

ψk
(
n1/2x

)2
ℓ̄n(x) :=

ℓn
(√
nx
)

√
n

=
1√
2
ψn−1

(
n1/2x

) ∫
R
ε
(
n1/2x− t

)
ψn(t)dt+ αn

(
n1/2x

)
,

R̄n(x) =
1√
n
Rn(
√
nx) = ρ̄n(x)

so that
ρ̄n(x) = k̄n(x) + ℓ̄n(x).

Lemma C.1.5.
lim
n→∞

sup
x∈R
|ℓ̄n(x)| = 0. (C.1.17)

1In [96] the author uses a different convention for Hermite polynomials than the one we use in this book.
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Proof. Using the generating series [145, Eq. (5.5.7)]

∞∑
n=0

Hn(x)
Tn

n!
= e2Tx−T

2

we deduce that
∞∑
n=0

(∫
R
e−

x2

2 Hn(x)dx

)
Tn

n!
= eT

2

∫
R
e−

(x−2T )2

2 dx =
√
2πeT

2
,

so that

1

(2n)!

∫
R
e−

x2

2 H2n(x)dx =

√
2π

n!
and

∫
R
ψ2n(x)dx =

√
2(2n)!

2nn!π
1
4

∼ const · n
1
4 as n→∞.

Using [43, Thm. 6.55] or [145, Thm. 8.91.3] we deduce that

sup
x∈R
|ψn(x)| = O(n−

1
12 )

and thus

sup
x∈R
|αn(x)| = O(n−

1
12

− 1
4 ) = O(n−

1
3 ) as n→∞.

We set

Fn(x) =

∫
R
ε(x− t)ψn(t)dt.

Using [43, Thm. 6.55 + Eq. (6.26)] we deduce supx∈R |Fn(x)| = O
(
n−

1
12

)
. This proves

(C.1.17). ⊓⊔

Since γvn−1 converges weakly to the Dirac measure δ0 we deduce from the above lemma and
the uniform boundedness principle∫

R

(
ρ̄n(s)− ρ(s)

)
γvn−1

[
ds
]
=

∫
R

(
k̄n(s)− ρ(s)

)
γvn−1

[
ds
]
+O

(
n−

1
12
)

as n→∞.

Lemma C.1.6.

lim
n→∞

∫
R

(
k̄n(s)− ρ(s)

)
γvn−1

[
ds
]
= 0.

Figure C.1. The graph of k̄16(x), |x| ≤ 2.
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Proof. Denote by wn(s) the density of the Gaussian measure γvn−1

[
ds
]
,

wn(s) =
n1/2√
2πv

e−
vs2

2v .

Fix c ∈ (0,
√
2) so that the interval (−c, c) lies inside the oscillatory regime of Hn(

√
nt). We

have ∫
R

(
k̄n(s)− ρ(s)

)
wn(s)ds

=

∫
|s|≤c

(
k̄n(s)− ρ(s)

)
wn(s)ds+

∫
|s|>c

(
k̄n(s)− ρ(s)

)
wn(s)ds

≤ sup
|s|≤c
|k̄n(s)− ρ(s)|+ sup

|s|>c
|
(
k̄n(s)− ρ(s)

)
|
∫
|s|>c

wn(s)ds.

Using the Plancherel-Rotach formulæ ([43, Eq. (6.126)], [129], [145, Thm. 8.22.9]) and
arguing as in [61, §7.1.6] or [64, §6.1] we deduce that

lim
n→∞

sup
|s|≤c
|k̄n(s)− ρ(s)| = 0.

On the other hand

lim
n→∞

∫
|s|>c

wn(s)ds = 0,

and [145, Thm.8.91.3] implies that

sup
|s|>c
|
(
k̄n(s)− ρ(s)

)
| = O(1) as n→∞.

⊓⊔

Since γvn−1

[
ds
]
converges to the Dirac measure δ0 we deduce again from the uniform bound-

edness principle tha

lim
n→∞

∫
R
ρ(s)wn(s)γvn−1

[
ds
]
= ρ(0) =

√
2

π
.

⊓⊔

C.2. Random measures

Denote by M̂eas
(
Rm

)
the space locally finite of Borel measures µ on Rm, i.e., µ

[
B
]
< ∞

for any bounded Borel subset B ⊂ Rm. Each f ∈ C0
cpt(Rm) defines a map

If : M̂eas
(
Rm

)
→ R, µ 7→ If (µ) = µ

[
f
]
:=

∫
Rm

f(x)µ
[
dx
]
.

The vague topology on M̂eas
(
Rm

)
is the smallest topology such that all the functions If ,

f ∈ C0
cpt(Rm) are continuous. As shown in [78, Thm. 4.2], this topology is Polish, i.e., it is

induced by a complete and separable metric. We denote by (M, d) this metric space. The
convergence in this metric is called vague convergence.

A sequence of measure (µn) in M converges vaguely to µ ∈ M, and we indicate this as

µn
v→ µ, if and only if

µn
[
f
]
→ µ

[
f
]
, ∀f ∈ C0

cpt(Rm).
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A locally finite random measure on Rm is a Borel measurable map

M :
(
Ω, S,P

)
→M.

Its distribution is a Borel probability measure on M, PM ∈ Prob(M).

Recall that a sequence of probability measures µn ∈ Prob(M) is said to converge weakly
to µ ∈ Prob(M), and we indicate this µn → µ if

lim
n→∞

∫
M

Fdµn =

∫
M

Fdµ,

for any bounded and continuous function F : M→ R.
A sequence of random measures Mn is said to converge weakly to the random measure M

if the distributions PMn converge weakly in Prob(X) to PM. We we use the notation Mn →M
to indicate this. We have the following result, [41, Prop.11.1.VIII], [78, Thm. 4.11].

A subset Q ⊂ Rm is called a quasi-box if it is a product of finite intervals

Q = I1 × · · · × Im.

The intervals Ik need not be closed and could have length zero. Note that a quasi-box Q is
a box if all the intervals Ik are closed and have nonzero lengths.

Theorem C.2.1. Consider a sequence
(
Mn

)
n∈N of random locally finite measures on Rm.

The following are equivalent.

(i) The sequence Mn converges weakly to the random locally finite measure M.

(ii) For any f ∈ C0
cpt(Rm), the random variables Mn

[
f
]
converge in distribution to

M
[
f
]
.

(iii) For any quasi-box Q ⊂ Rm the random variables Mn

[
Q
]
converge in distribution

to M
[
Q
]
.

⊓⊔

There are other modes of convergence of random measures corresponding to the various
modes of convergence of random variables. Suppose that

Mn, M :
(
Ω, S,P

)
→M, n ∈ N

are random locally finite measures. We say that Mn converges almost surely to M, and we

indicate this Mn
a.s.→ M, if there exists a P-negligible set N ∈ S such that

Mn(ω)
v→M(ω), ∀ω ∈ Ω \N,

i.e.,

Mn
a.s.−→M⇐⇒Mn

[
f
] a.s.−→M

[
f
]
, ∀f ∈ C0

cpt(Rm).

The convergence Mn
Lp

−→M is defined in a similar fashion namely

Mn
Lp

−→M⇐⇒Mn

[
f
] Lp

−→M
[
f
]
, ∀f ∈ C0

cpt(Rm).

One can show (see [78, Lemma 4.8]) that

Mn
a.s.−→M⇐⇒Mn

[
Q
] a.s.−→M

[
Q
]
, for any quasi-box Q ⊂ Rm, (C.2.1a)

Mn
Lp

−→M⇐⇒Mn

[
Q
] Lp

−→M
[
Q
]
, for any quasi-box Q ⊂ Rm. (C.2.1b)
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The action of Rm on itself by translations induces and action on M = M̂eas
(
Rm

)
,

T : Rm ×M→M, Rm ×M ∋ (x, µ) 7→ Txµ,

where Txµ
[
B
]
= µ

[
B − x

]
, for any Borel subset B ⊂ Rm. We denote by I the sigma-

subalgebra of BM consisting of Borel subsets of M that are invariant with respect to the
above action. A measure P ∈ Prob

(
M
)
is called stationary if it is invariant with respect to

this action.
(Tx)#P = P, ∀x ∈ Rm.

A random measure M is called stationary if its distribution PM is stationary.

Wiener’s ergodic theorem [79, Thm. 25.4], [156] shows that if P ∈ Prob
(
M
)
is station-

ary, then for any F ∈ L1
(
M,P

)
and any compact convex set C ⊂ Rm containing the origin

in the interior we have

lim
N→∞

1

vol
[
NC

] ∫
NC

T∗
xFdx = EP

[
F ∥ I

]
, (C.2.2)

P-a.s. and L1.

Let C1 denote the unit cube in Rm. If M is a stationary random locally finite measure on
Rm such that E

[
M[C1]

]
<∞, we define its asymptotic intensity to be the random variable

M := E
[
M[C1] ∥ I

]
The Wiener’s ergodic theorem applied to the action of Zm ⊂ Rm on M implies (see [78, Th.
5.23] and [148, Thm. 6.4.1]) that for any compact convex subset C ⊂ Rm containing the
origin in the interior we have

1

Nm
M
[
NC

]
→M · vol

[
C
]

(C.2.3)

a.s. and L1. Moreover, if M[C1] ∈ Lp, then the convergence holds also in Lp.

A sequence φN ∈ C0
cpt(Rm), N ∈ N is called asymptotically stationary if

φN ≥ 0,

∫
Rm

φN (x)dx = 1, ∀N,

and

lim
N→∞

∫
Rm

∣∣φN (x)− φN (x− y)
∣∣dx = 0, ∀y ∈ Rm.

We have the following result, [78, Thm. 5.24] and [148, Thm. 6.4.1].

Theorem C.2.2. If M[C1] ∈ Lp, p ∈ [1,∞), and (φN )N∈N is asymptotically stationary, then

M
[
φN
]
→M,

in Lp and a.s.. ⊓⊔
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[7] D. Armentao, J.-M. Azäıs, J.-R. León: On the general Kac-Rice formula for the measure of a level
set, arXiv: 2304.0742v1.

[8] V.I. Arnold: Statistics and classification of topologies of periodic functions and trigonometric
polynomials Proc. Steklov Inst. Math. 2006, Dynamical Systems: Modeling, Optimization, and
Control, suppl. 1, S13–S23.

[9] N. Aronszain: Theory of reproducing kernels, Trans. A.M.S. 68(1950), 337-404.

[10] A. Auffinger: Random matrices, complexity of spin glasses and heavy tailed processes, 2011 NYU
PhD Dissertation.

[11] A. Auffinger, G. Ben Aurous, J. Cerny: Random matrices and complexity of spin glasses, Comm.
Pure Appl. Math., 66(2013), 165-201. arXiv: 1003.1129v2
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[73] L. Hörmander: The Analysis of Linear Partial Differential Operators I., Springer Verlag, 2003.

[74] R. A. Horn, C. R. Johnson: Matrix Analysis, Cambridge University Press, 1990 Reprint.

[75] S. Janson: Gaussian Hilbert Spaces, Cambridge University Press, 1997.

[76] M. Kac: On the average number of real roots of a random algebraic equation, Bull. A.M.S.,
49(1943), 314-320.

[77] J. P. Kahane: A century of interplay between Taylor series, Fourier series and Brownian motion,
Bull. London. Math. Soc. 29(1997), 256-267.

https://hal.archives-ouvertes.fr/hal-00943054v3
https://arxiv.org/abs/2112.08247
https://arxiv.org/abs/2305.17586v2


284 Bibliography

[78] O. Kallenberg: Random measures, Theory and Applications, Springer Verlag 2017.

[79] O. Kallenberg: Foundations of modern probabiliity, 3rd Edition, Springer Verlag, 2021.

[80] T. Kato: Perturbation Theory for Linear Operators, Classics in Mathematics, Springer Verlag,
1995.

[81] P. Kergin: A natural interpolation of Ck-functions, J. of Approx. Th., 29(1980), 278-293.
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