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Rigidity of generalized laplacians and some geometric applications 

LIVIU I. NICOLAESCU 

Summary. Every generalized laplacian L defined on a manifold M determines a sheaf of "L-harmonic" 
sections namely the sheaf of local solutions of Lu = 0. We study the converse problem: to what extent 
this sheaf determines the operator. Our main result states that the sheaf of L-harmonic sections 
determines the operator up to a conformal factor. Moreover, when the operator is a covariant laplacian 
and the dimension of M is greater than 2, the sheaf determines L up to a multiplicative constant. An 
interesting consequence is the following: if two Riemann metrics on a smooth manifold of dimension 
greater than 2 have the same sheaves of harmonic functions then they are homothetic. 

O. Introduction 

Le t  (M,  g)  be  a n  N - d i m e n s i o n a l  R i e m a n n  m a n i f o l d  a n d  c o n s i d e r  the  a s s o c i a t e d  

L a p l a c e -  B e l t r a m i  o p e r a t o r  

1 
Ag = ~ ~ t ( x / ~ g ° t 3 j ) ,  w i t h  t~ i =t3/~xi. ( i )  

H e r e  (giJ(x)) is t he  i n v e r s e  m a t r i x  o f  (gig(X)) whi l e  ]gl = de t (g , j (x ) ) .  W e  n o w  cal l  

a f u n c t i o n  g-harmonic i f  i t  sa t isf ies  the  e q u a t i o n  

Agu = 0. 

The g harmonic functions 
f o l l o w i n g  

form a sheaf 

(2) 

on M. This paper deals with the 
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PROBLEM. Does the sheaf of g-harmonic functions determine the metric g? 

We shall prove that the sheaf ~g determines the Laplace-Beltrami operator up 
to a multiplicative constant and hence determines the metric up to a multiplicative 
constant. 

We approach this problem by asking what is the relationship between two 
Laplace-Beltrami operators on a smooth manifold M that have the same sheaf of  
harmonic functions. This suggests a more general question. What is the relationship 
between two generalized laplacians (cf. [BGV]) that have the same sheaves of  local 
solutions? The main result of this paper shows that the two operators are identical 
up to a multiplicative term (possible nonconstant). We call this property of  elliptic 
operators rigidity. In the case of  covariant laplacians their special algebraic form 
enables one to prove that the multiplicative term mentioned above is constant. We 
called this property of  covariant laplacians strong rigidity. 

The main idea of the proof  is to approximate on small open sets an elliptic 
operator with variable coefficients by one with constant coefficients (as Schauder 
did when he proved holder estimates for second order elliptic equations; see [GT]). 
The proof  then consists of  two parts. First we prove the rigidity of  the operators 
with constant coefficients and we estimate "the extent of this rigidity". Then we 
show that this rigidity is transmitted to variable coefficient operators through the 
above approximation. 

The paper is divided into four sections. Section 1 contains the statements of the 
main results. Section 2 is devoted to technical details while Section 3 contains the 
proof  of  the main results. We conclude with a speculative Section 4 where we list 
a number of problems which seemed interesting to the author. 

1. The main results 

We begin by recalling the notion of  generalized laplacian (see [BGV]). Let 
8 ~ M be a (rank p) real vector bundle over the oriented manifold M. Fix once and 
for all a metric h on ~. 

DEFINITION 1.1. A second order differential operator L: C ~ ( 8 ) ~ C ~ ( S )  is 
called a generalized laplacian if there exists a Riemann metric g on M such that 

2 

where a(L) is the principal symbol of L. 
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A generalized laplacian is determined by three pieces of geometrical data: 

(i) a metric g on M which determines the second-order pieces; 
(ii) a connective V ~ on the vector bundle g which determines the first-order 

piece; 
(iii) a section F of the bundle End(g) which determines the zeroth order piece. 

Using local coordinates (x j . . . .  , x N) (N = dim M) in some open set U ~ M 
and a local trivialization of g tv  ~ U × R p, L can be written as 

N 

L u =  - ~ g°O~u + FiOiu + Hu 
i j = l  i =  1 

= Gu + Fu + Hu (1) 

where the metric g = (g•), F i, H: U ~ E n d ( R  p) and u: U ~ R  p is a local section of  
glv .  We will denote the space of  generalized laplacians in g by ~ ( g ) .  Geometri- 
cally 5e(o ~) is a convex open cone. Moreover 

Vq5 ~ C~(M) (~ > O) and L ~ o's(g): ~L ~ ,L,a(g). (2) 

The operators L and qSL above are called conformally equivalent. We denote the 
conformaI equivalence class of L by [L]c. Two laplacians LI, L2 will be called 
homothetically equivalent if there exists a positive constant 2 so that L~ = 2L2. The 

homothety equivalence class of L will be denoted by [Lib. 
Inside the space L,°(g) sits the distinguished family of  geometric laplacians (see 

[BGV]). Namely given a metric g on M and a connection V ~ on g compatible with 
the metric h we can construct the geometric (or covariant) laplacian 

L(V •, g) = - Trg(Vr*g®*v ¢) 

where we denote by T r g ( S ) ~ C ~ ( M , g )  the contraction of an element 
S ~ C°(M,  TM ® TM ® g) with the metric g ~ C~(M, T*M ® T 'M) .  We denote 

the space of geometric laplacians in g by 5Ygeom(g). 
TO any L ~ £~'(g) we can associate the (pre-)sheaf of local solutions ~(~L defined 

by 

VU open = M idoL(U) = {u ~ C°~(U, g)/Lu = 0}. 
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The generalized laplacians satisfy the unique continuation property ([Ar], [J]). This 
shows that the above sheaves have a built-in "rigidity". Namely, if U is a connected 
open subset of  M and V is open V c U then the restriction map 

r~5: ~L(u)--, ~L(v) 

is injective (roughly speaking they are far from being flabby). 

DEFINITION 1.2. I f  ~ and ~ are two sheaves over a topological space X we 
say that ~ contains ~ (and write ~ c ~ )  if for any open subset U of X we have 

~ ( u )  ~ ~ ( u ) .  

We can now state the main results of  this paper. 

THEOREM 1.1. Let L~, L2 e L(#). The following are equivalent" 
( i )  [L , ] , .  = [L21~ 

(ii) ~ ,  c ~ .  

We call the above property of  generalized laplacians rigidity. 

THEOREM 1.2. Assume N > 3. Let L~, L2 e £Pg~om(g). The following are equiva- 
lent: 

(i) [ L , k  = [L2]~ 
(ii) ~f t ,  c ~¢t~L. 

We call the above property of  geometric laplacians strong rigidity. As a consequence 
of Theorem 1.2 we have 

COROLLARY 1.1. I f  two Riemann metrics on a connected smooth manifold o f  
dimension greater than 2 have the same sheaves of  harmonic functions then there 
exists a positive constant It such that 

g = #h. 

Proof. By Theorem 1.2 we have 

t~g = ~.2A h for some 2 > 0. 
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Since the principal part of Ag is gO and the principal part of  Ah is h '~ we get the 
desired result. [] 

REMARK 1.1. The above result is not true in dimension 2. Indeed consider the 
euclidian laplacian in R 2, A = ~ + Oy~. Let g = (f2(x, Y)'~o) be a conformal metric. 
Using formula (1) in the introduction, we see that Ag = - - ( l / f ) A .  Thus ~ = ~¢g%. 
However, clearly the two operators are not homothetically equivalent. 

2. Some technical results 

We have gathered in this section the main estimates needed in the proof  of  
Theorem 1.1. The preferred functional framework will be that of  Sobolev spaces 
L ~,~ (functions k-times "differentiable" with derivatives in L~; see [GT], [M]). 
Theorem 1.1, 2 have a local nature so we loose no generality if we assume that 
M = R N and g ~ M × R p. We will denote by B,. the open ball of  radius r of  R ~ (in 
the euclidian metric) centered at the origin. All the Sobolev or sup norms we will 
use are defined in the euclidian context. A will denote the euclidian laplacian and 
),(r) will denote the first eigenvalue of A on B, with homogeneous Dirichlet 
conditions. 2~ (r) = ),  ( l)/r 2. Set 

Du = E ~3~udx' and D:u = E O~ udx~®dxj 

L~'Z(B~) is the completion of C~(B,, R p) in the L ~'~ norm. The norm in L~'~(B~) is 

Ilull~,2~,, = I~ louiS 
• 

We will frequently use the Poincar6 inequality in the form (see [M]) 

I1.̀  [ l ~ ,  ~ r=/~, liD,, [l~-~'~r)' V*  ̀~: L~'2(Br, RP). (l) 

Instead of the usual CZ.~(Br)-norm (0 < ~ < I) we will use the conformal invariant 
one  

Illutll ,  = r 2 ÷ ~IID2*` IIc~<Br) + r211D2*` Ilco<B,) + r IIDu Ilco<B,, + Ilu Ilco<B,,. 
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All differential operators we will deal with have smooth coefficients. To any metric 
g = (gij) on R N one can associate a second order operator 

G: C°°(~) --. C°°(~) 

by 

= E g"eb 

The standard estimates and existence results for scalar second order elliptic opera- 
tors continue to hold for vectorial operators G as above. In particular we will use 
the following 

PROPOSITION 2.1. For any f e L 2(B,, ~) the problem 

= 0  on OB, (2) 

has a unique weak solution u = T r ( f )  E Lz'2 ~ L  Io'2(B,) which satisfies 

IID(T.T) t[~2(B.)---1/#, (r)I]/l[~2(Br) (3) 

11T.f[IL 2(~r) <- Cr2]lfllL 2(,.) (4) 

where 0 < lit(r) < Cr -2 ( for  r small) is the first eigenvalue of  (G + Dirichlet condi- 

tions) on Br. I f  moreover f e C~(&, g) then 

III T,f]]]~ < Cr2Hf[[c~(g) (5) 

Here as throughout the paper C will denote various constants independent o f  r and f .  

For  proof  of this result we refer to [GT]. Using standard perturbation techniques 
(as in [GT] or [M]) we can extend the above result to more general classes of  elliptic 

systems (with scalar principal symbol) 

LEMMA 2.1 (Key Estimates). Let L e ~ ( ¢ ) ,  L = G + F + H (see (1.1)). Then 

there exists # = o(L) > 0 such that gr < ~ and Vf  e C~(B,) (0 < ~ < 1) the Dirichlet 

problem 

( L u  = f in B,  
= 0 on aB, (6) 
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has a unique solution u = u ( f )  satisfying 

IlullL2(.., -< Cr2PIfllL2~.~ ( 7 )  

and 

Illu III, -< Crqfllc.,,,. (8) 

The p r o o f  is left to the reader.  

REMARK 2.1. F r o m  L e m m a  2.1 one can deduce in a s t anda rd  manner  that ,  for 

0 < r < Q(L), f ~ C~(Br), g ~ C2"~(OB,), the nonhomogeneous  Dirichlet  p rob lem 

lu = g  on OB, 

has a unique solution u e CZ'(B~) (see [GT]). 

As a consequence we have the fol lowing 

LEMMA 2.2. Let  L1, L z E ~ ( g )  such that Jt:L~ c ::L2. Then for  any 0 < r  < 

min(Q(L1 ), ¢(L2)) 

::~, (8~) = ~ L g S , ) .  

Here M'L,(B,) = M'L,(B,) :~ C2"~(B,). 

Proof. Let v ~ ~:z2(B,). Choose  u e C2"(B,)  solving 

L I u  = LI i n B ,  

u = 0 on 8B,.  

Then w = v - u satisfies 

{ L~w = O i nB~  

w = v o n  63B r 

so that  w ~ ~'~Lt (Br) c ~:t2(B,). Since on the b o u n d a r y  w = v ~ ~'~L__t(B, ) the unique-  

ness par t  in L e m m a  2.1 appl ied  to Lz implies w = v i.e. v e ~'~L~ (Br). L e m m a  2.2 is 

proved.  [] 
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Our  next result establishes the strong rigidity of  constant-coefficient laplacians. 
The vectorial  case is slightly more  complicated than the scalar case since in the 
scalar case we have a simple way o f  construct ing enough solutions namely the 
exponential  solutions. In the scalar case the p rob lem is essentially algebraic. The  
rigidity is a consequence o f  Hilber t  Nullstellensatz. In the vectorial case we will 
produce  enough solutions via power  series but unfor tunate ly  there is no elegant 
theorem such as Hilbert  Nullstellensatz. 

LEMMA 2.3. Le t  L ,  £ • ~ ( ~ )  be two operators with constant coefficients. Then 

the fo l lowing  are equivalent 

(i) [L]h = [ £ k  
(ii) WE = af~£ 

Proof.  (i) ~ (ii) is trivial. We prove  (ii) ~ (i). Let 

L = G + F + H  and / 7 = ( 7 + F + / 7 .  

We first construct  a local solution o f  L u  = 0 depending on a single variable x = x j 
( for  a fixed j = 1 . . . .  , N).  We search for u as a power  series 

u = ~. A k x  k (Ak • RP). (9) 
k = O  

Since Lu  = 0, we deduce 

k ( k  - 1)g~Ak + (k - I )FJAk_ ~ + H A k  2 = 0 k > 2 

with A0, Aj free parameters .  Thus  

1 
Ak -- gJJk(k - 1) ((k - 1)FJAk_ 1 + H A k _ 2 ) .  (10) 

We obtain f rom (10) 

C 
[ A k l < - ~ ( [ A k  1 [ "k- [Mk_ 21) k > 2  ( l l )  

for  some C > 0 independent  o f  k. A simple induction on ( l l )  shows that  

[Ak I < max(]Ao[, ]A, [)C k, k > 2. 
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In particular this shows the series (9) is convergent for Ix I < 1/C so u is a genuine 
analytic solution of  Lu = 0. Since ~L  = ~ £  we deduce /Su = 0, F rom (10) with 

k = 2 we get 

U '  ~J~ - -  

~ (2FJA, + HAo) = ~- (2F'AI + BAo) VAo, A~ ~ R". 

Therefore 

1/g.ZJFJ= 1/~,J/F j, l /g~JH = 1/~,JJB, Yj = 1 . . . . .  N. (12) 

We distinguish three situations 
(a) H = F J = 0 ,  V j =  1 . . . .  ,N .  
Then (12) implies that the lower order  terms o f / S  vanish. L and £ become 

essentially scalar operators and by looking at the exponential solutions we obtain 

(i). 
(b) t4 = 0 .  
We may assume (after a linear change in coordinates) that  g ~ =  6~/. Thus we get 

from (12) that  

F ~ = F' ,  H =/-2, ~ l  . . . . .  ~ x x =  )~. 

The above equalities continue to hold in any coordinate system in which g~ = 6 °. I f  

we now make the or thogonal  changes in variables 

y~ = x  ~ cos 0 + xZ sin 0 

y : =  - x  ~ s in0  + x 2  cos 0 

y~ = x ~ k > 2 

we see that g ~ =  6 ~1 does not change while ~ becomes 

~ ~ g~ 1(0) = (2 ~ cos ~ 0 + )~ sin ~ 0 + 2~ ~ sin 0 cos 0) = (2 z + 2~ 1~ sin 0 cos 0). 

Since ~ ( 0 )  = ~ ( 0 )  = 2 e ~'0 we deduce ~ z =  0. Similarly one shows ~0 = 0 Vi ~ j  

so we get (ii). 
(c) H = 0 and F ~ ¢ 0  for some j = 1 , . . . ,  N. 
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Assume for simplicity that the index j above is j = 1. As in case (b) assume that  
g ~ =  6 ;j. Equations (12) imply 

FI  = ~ l lF l  ' ~2 = ,~22F2" 

Consider  the change of  variables 

y l  = ax  I + bx  z 

y2 = cx  I + dx:  

f ' =  x k k > 2 

(13) 

(ad - bc 4: 0). Then the coefficients o f  L and £ change as indicated below 

F 1 ~ aFl + bFz, F l ~ aF l + bF 2 

g l l ~ - . a 2 + b 2 ,  g l l~ - -~ lJa2+2~12ab+~Z262"  

Equat ions (12) continue to hold for the new coefficients as well. Thus  

( ~ " a  2 + 2~12ab + ~2262)(aFj + bF2) = (a 2 + b2)(aF 1 + bF2). 

Using (13), we get 

(~11a2 + 2g'Zab + g2Zb2)(aF1 + bF:) = (a 2 + b2)(gl laFl + g22bF2). 

Identifying the coefficients of  a2b and ab 2 in the above polynomials,  we deduce 

{ 2~12F1 + (~,l  _ ~22)F2 = 0 (a2b) 

(~22 _ g l l )F l  + 2~12F2 = 0 (ab2). (14) 

Since the homogeneous  system has a nontrivial solution (F  1 :~ 0), we deduce 

4(g12)2 + (~1, _g22)2 = O. 

In  particular, we deduce 

~l~ =~22, g12=0. 
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Applying this technique to the other pairs (1 , j )  o f  indices we deduce 

~ .  . . . . .  ~uu. 

The above equality holds in any or thonormal  basis o f  R ~v. The trace 

is an o r thonormal  invariant so the c o m m o n  value o f g  ~ . . . . .  g U N  is independent o f  

the or thonormal  basis. N o w  we conclude with the same argument  we used in case 

(b). []  

As a consequence we have 

COROLLARY 2. I. Let  L~, L2 ~ LP(g) be two operators with constant coefficients 

such that [L1]h#[L2]~. Then there exists O=O(L~ ,L2)  such that for  any 
_ _  

0 < r < ~ < min(¢(L~), ~(L2) ) there exist uj ~ C2"(Br) j = 1, 2 satisfying 

{ L~u~ = L2u2=O in Br 

U 1 ~ ld 2 O n  6 3 B  r 

and u~ ~a u2. 

Proof. From Lemma 2.3 we deduce that there exists ~ = ~(L~, L2) > 0 such that  

- -  - -  

d~c,(B~) ~ 9tt~(B~) Vr < ~. 

_ _  - -  

Pick u~ ~ ~t'~(B__~)\~a~(B,) (or  the other way  around).  Using Remark  2.1 we can 

find u2 e ~_:(B~)  satisfying 

{ Lzuz  = O inB~ 

U 2 U 1 on c3B, 

Ul, u 2 have the desired properties. Corol lary 2.1 is proved. [] 
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LEMMA 2.4. Let  L~, L2 E ~ ( ~ )  be two operators with constant coefficients such 

that [LI] h ~ [L2]h- Then there__exists k = k(L1, L2) > 0 such that fo r  any 0 < r < 
1 2 O(L1, L2) there exist u~ 6 ~Lj(Br) ( j  = 1, 2) such that u, = u~ on OB r and 

2 2 ][u~ -- ur I]L2(a,) = kr N+4 + O(r N+6) (15) 

l l turL- C r  = (16) 

Proo f  We assume for simplicity that 0(L~, L 2 ) > 1  (the general case can be 
reduced to this situation via a rescaling). By Corollary 2. l we can find vJe ~L~(B~) 
( j = l , 2 ; v  ~ # v  2) such that v ~=v 2on OBj. Set 

v{(x) = r2vJ(x/r), j = 1,2. 

Then 

2 2 Ilv~ - ~r IIL2~r) = kr N +" 

and 

IIl~;lllr _< C r  2 

where 

k = f .  Iv ' -v212>  0. 

Now define w J) ~ ~zj(B,) by 

{ Ljw{ =- G;u~ + Fju{ + H,u j, = Lv~ 

w j, = 0 

Ljv{ satisfies 

2 C r  N + 2 IIL#;11~2¢~,,-< 

and 

(17) 

(18) 

in Br 
on OBr. (19) 

(20) 

(21) 
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Using (20), (21) and the key estimates in (19) we deduce 

IIw¢ll =L= Br, -< Crn[lzjv~ l[2=~B,) = o(rN+6)) 

III w ;111, -< Cr2 

In particular, the u{ + w J) satisfy all the conditions of  Lemma 2.4. [] 

The last result of  this section is a perturbation result. Consider L ~ ~ ' (~) ,  

L =  -- ~gijc32 + ~ FiOi + H. 
i , j  i 

Consider the "tangent" operator 

L ° = -g'J(O)O~ + F'(O),~; + C(O). 

With these notations we have 

LEMMA 2.5. Let  (ur),>o be a fami ly  o f  solutions o f  

L°u = 0 in B r 

such that 

Iltu lll  <- Cr= (22) 

I f  v, is the solution o f  the boundary value problem 

Lv ,  = 0 in B ,  

v,  = ur on OBr 

then 

B lVr <_ Cr N+6 (23) ~ Ur ] 2 

P r o o f  The operator L -  L ° has coefficients 

G(x) = G(x)  - O(O), F(x )  = r ( x )  - F(O), I t ( x )  = H(x )  - H(O). 
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Obviously 

67(x), F(x), H(x) = O([xl). (24) 

We have (wr = ur - vr) 

L(wr) = C(~ur) + F(~,u,) + Bur. (25) 

By (22) the C'-norm of the right hand side of (25) is bounded (uniformly in r). 
Using the key estimates we deduce 

IIIw, lit, ~ Cr2. (26) 

Multiply (25) by wr and integrate by parts in the left hand side, noting that 
Wr = 0 on dBr. We get (~ is the smallest eigenvalue of the matrix (gU(0)) that 

fB• ]Owrl2 <- fB , (ICllo=url + l;llD~rl + lallurl) lwrl 

I_ Irl [Owr I lw, [ + ~_ alw, I =. (27) + 
j t ~  • J /g•  

By (22) and (24) the first term in the right hand side of (27) is bounded by 

c f., )wrllxl ex 

Using (26), H61der and Poincar~ inequalities we can bound the second term in the 
right hand side of (27) by 

Cr sup IFI ~ [Dw, 12 dx. 
Br ~B• 

Using (26) we can bound the third term by 

cr = J~ Iwrl Ixl dx, 
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(27) becomes 

~ f B r l O W r l 2 " ( f ( i B r [ W r l l X l d x " } - r i B r l O W r [ 2 )  , 

i.e., for r small 

r • 
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Setting p = 2N/(2N- 2) the Sobolev embedding theorem implies Wr e L" and 

nw, [IL~ -< C[IDw, I[L2 (29) 

with C independent of r. Apply H61der (q = 2N/(N + 2)) in (28) 

( f  \l/q 
IIDwrllb < C  Ixl q _ d x )  IIw, IIL~ 

<- CrN/~+ ~llwr 11~'- (30) 

We now use (29) in (30) to get 

IlOwr 11L2 <- Cr ~' '  + 1. (31) 

At this point we apply Poincar6 inequality (1) to get 

IIw, l ib -< Cr'2N;q'+4 = Cr N  +6" 

Lemma 2.5 is proved. [] 

REMARK 2.2. Using a terminology analogous to that introduced in [Ar] we can 
restate Lemma 2.4 by saying that two elliptic operators of second order with 
constant coefficients, which have different kernels, have contact of order at most 2 
in the 2-mean (i.e. infinitesimally they are measurably far apart). Similarly Lemma 
2.5 can be restated by saying that a second order elliptic operator and the "tangent" 
operator have contact of order at least 3 in the 2-mean. Thus constant-coefficients 
operators are quite rigid. The rigidity of variable-coefficients operators is infinitesi- 

mally inherited from the "tangent" operators. 

(28) 
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3. Proof of the main results 

In the previous section we defined a sort  o f  distance between two laplacians 
using their sheaves of  local solutions. L e m m a  2.5 will be used to transfer  the 
p rob lem to the constant-coefficient case. L e m m a  2.5 shows that  the error  we get 
after  this transfer is inessential for  our purposes.  

Proof  o f  Theorm 1.1. (i) ~ (ii) is trivial. We prove the converse. Let L, ~ ~ ( ~ )  
( j  = 1, 2) such that  ~ L ,  c ~Z2 '  (Again assume M = R N etc. as in Section 2.) It 
suffices to show that  their " t a n g e n t "  opera tors  L ° at  x = 0 are homoghetically 
equivalent.  Assume the contrary.  Using Lernma 2.4 we can find u ~, E ~ ( B r ) j  = 1, 2 

1 2 such that  ur = u,,  on 0Br 

2 2 + O(r~'~+ ~), k > 0  (1) Ilu~ II - u ,  IIL=(~r) = krN +4 

IIJ u¢ IIl~ -< Cr =. (2) 

Let v{ be the solution of  the boundary  value problem 

Lv! = 0 in B r 

# , = u  j, onOBr .  

Since 

1 1 2 2 Vr = Ur = ur = Vr, on OB,, 

we deduce f rom L e m m a  2.2 that  

v) = v 2, in B ,  (3) 

By L e m m a  2.5, 

' 2 Ilu~, - ~ IIL2(~,) --  O( rN+ 6). (4) 

(4) and (3) contradict  (1). Theorem 1.1 is proved.  [] 

Proof  o f  the Theorem 1.2. Suppose L, E e ~t'geo,,(g ) have ~ffL C )ff£. Because 
these are geometr ic  laplacians, L is given by (1.3) for  some metric g and connect ion 
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V and I7 is similarly specified by a metric g and connection ~7. By Theorem 1.1 we 
have 

£ = 4,L (5) 

for some smooth positive function qS. Comparing the principal symbols, we see that 
= q~-~g. Now note that for a n y f e  C~(M) and ~, ~ F(o ~) we have ([BGV]) 

[L,f]~ = Agf . qt - 2df(V~,). 

Combining this with the corresponding formula for the [L,f] = [cbL, f]  gives 

A~f. ~ - 2df(V~,) = (b(Agf. q, - 2dU(V~)). (6) 

The laplacians of g and g are related by 

bN/2 C ~ A g f + ( ~ 2 2 )  df(gradg A ~ f=  ~ Oi(qb l -~V/2gijx/~]@j)f = ~b). 

Hence (6) simplifies to 

( ~ )  df(gradg ~b) • q, = df((~7 - V)~,). 

Now fix a point p e M, a vector X ~ TpM (with gradgf)p = X. Then as endomor- 

phisms of  g~e 

But ~?x-  Vx is a skewsymmetric endomorphism on Np since V and ~' are com- 
patible with the metric on N. Taking the trace shows that .1(. 4~ = 0 provided 
N > 3. Since p and X are arbitrary we conclude that q5 is constant. Theorem 1.2 is 
proved. [] 

4. Final comments 

The rigidity phenomenon described in the previous sections raises (at least in 
author's mind) more questions than it answers. First the proof. What made 
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everything work was the possibility of  measuring the "distance" between two 
sheaves of  local solutions of laplacians. We essentially utilized local existence and 
uniqueness for the Dirichlet problem. Another crucial aspect is the "blow-up 
analysis" in Lemma 2.5 (which seems to be known but we could not find any 
reference). It essentially measures the infinitesimal "distance" between an operator 
and its "germ" at a fixed point. For  elliptic operators these germs give rather good 
local approximations. (This idea is not new. It goes back to the 1930s when 
Schauder proved his celebrated holder estimates; see [GT].) We are inclined to 
believe that a similar approach can work for other classes of elliptic operators (with 
the Dirichlet condition replaced by a suitable elliptic boundary condition). In 
particular we formulate 

PROBLEM 4.1. The generalized Dirac operators (cf. [BGV]) are rigid. 

The Dolbeaut operator /7 is a Dirac operator on Kahler manifolds. Having a /7 
(satisfying /3-2= 0) is equivalent to having a complex structure and the rigidity 
means that the sheaf of  holomorphic functions on a complex manifold determines 
its complex structure. The similarity with complex geometry suggests other prob- 
lems. 

PROBLEM 4.2. Study the cohomology of the sheaves ~'~t. In particular find 
sufficient conditions (~ la Caftan-Serre) for the finite dimensionality of these groups. 
Is the compactness of M such a condition? 

Even in the simplest case when L is a Laplace-Beltrami operator the above 
problem is not studied. One can ask 

PROBLEM 4.3. I f  L & a Laplace-Beltrami on a compact manifold are the 
cohomology groups of  £/F L diffeomorphism &variants of  the manifold or do they 
capture some of the global geometry of the manifold? Compare these groups with the 
deRham cohomology. 

The following example suggests that the cohomology of  ~'~L is actually the deRham 
cohomology. 

EXAMPLE 4.1. Let M g S 1 with the standard euclidian metric. Denote by 0 the 
angular coordinate. The laplacian is simply L = -d2/t302. The harmonic functions 
are the functions affine (in 0). Denote by R the sheaf of locally constant real 
functions. We may think of  R as a subsheaf of  JCt'~L . Since the tangent bundle of S 1 
is trivial we may think of l-forms as functions on the circle. In particular if u is a 
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harmonic function on an open set U c S ~ we see that the exterior derivative du is 
a locally constant  function. One can then check easily that the sequence o f  sheaves 

d 
O~_R ~ JfL ,_R~O 

is exact. Playing with the associated long exact sequence in cohomology  one 
deduces that 

H~(S';  Jt~t.) ~- H ' ( S t ;  R_) ~- R. 

Obviously H°(St ;  ~L)  ~ R. 

On a more  analytical level one may ask why restrict to elliptic operators.  I f  we 
allow complex coefficients, we encounter wild examples o f  linear differential opera- 

tors (Lewy's  example is a possible candidate for nonrigidity; see [H]). 

Let ~ be a family o f  differential operators o f  fixed order M acting between 
sections of  two fixed vector bundles g , ,  g2 on a manifold M. The family ~-  will be 

called rigid if any two operators L, and L2 in ~- which have the same sheaves o f  
local solutions are equivalent i.e. there exists an au tomorphism q5 o f  ~2 so that 
LI = ~bL2. 

PROBLEM 4.4. (i) Find (nontrivial) necessary conditions for  a family  to be rigid. 

(ii) Find (nontrivial) sufficient conditions for  a family  to be rigid. 

We see that this paper  offers one solution to (ii). 
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