
A LAW OF LARGE NUMBERS CONCERNING THE NUMBER OF

CRITICAL POINTS OF ISOTROPIC GAUSSIAN FUNCTIONS

LIVIU I. NICOLAESCU

Abstract. Let Φ be a smooth isotropic random Gaussian function Φ on Rm. Denote
by ZN (Φ) the number of critical points of Φ inside the cube [0, N ]m. We prove that
N−mZN (Φ) converges a.s. and L2 to a universal explicit constant Cm(Φ).
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1. Introduction

Denote by Meas(Rm) the space of finite Borel measures on Rm. Suppose that a : R → R is
an even Schwartz function such that a(0) = 1. We will refer to such functions as amplitudes.

Consider the finite measure µ ∈ Meas(Rm)

µ
[
dξ

]
= µa

[
dξ

]
=

1

(2π)m
wa,m

(
ξ
)
λ
[
dξ

]
, wa,m

(
ξ
)
= a

(
|ξ|

)2
.

Its characteristic function is the nonnegative definite function

K
(
x
)
= Ka

(
x
)
=

∫
Rm

ei⟨ξ,x⟩µa

[
dξ

]
=

1

(2π)m

∫
Rm

ei⟨ξ,x⟩a
(
|ξ|

)2
λ
[
dξ

]
. (1.1)

Clearly Ka(x) is an O(n)-invariant, real valued Schwartz function. Then Ka

(
x−y

)
is the

covariance kernel of a real valued, smooth isotropic Gaussian function Φ = Φa on Rm with
spectral measure µa.

A box is a subset of Rm of the form [a1, b1] × · · · × [am, bm], ai < bi, ∀i. For any box B
we denote by Za

(
B
)
the number of critical points of Φa in B. Then a.s. Φa has no critical

points on ∂B and all the critical points of Φa in B are nondegenerate; see [1, 4].
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2 LIVIU I. NICOLAESCU

Fix numbers a1, . . . , am > 0 and denote by B the box [0, a1] × · · · [0, am]. For ℓ⃗ ∈ N we
denote by B

ℓ⃗
the box

B
ℓ⃗
=

m∏
j=1

[
(ℓj − 1)aj , ℓjaj

]
.

For N ∈ N we denote by BN the box

BN = N ·B =
m∏
j=1

[
0, Naj

]
.

The main goal of this paper is to prove some laws law of large numbers concerning the
random variable Za(B). The first main result is the following.

Theorem 1.1. Fix an amplitude a ∈ S(R). Then the following hold.

(i) There exists a universal explicit constant Cm(a) > 0 such that for any box B we
have

E
[
Za(B)

]
= Cm(a) vol

[
B
]
.

(ii) As N → ∞, the random variable

1

Nm
Za

[
N ·B

]
converges a.s. and L2 to the (deterministic) constant

E
[
Za(B)

]
= Cm(a) vol

[
B
]
.

⊓⊔

In the earlier work [17] we proved that the random variable Za

[
N · B

]
is highly con-

centrated around its mean. More precisely we showed that as N → ∞ the renormalized
random variables

N−m/2
(
Za

(
B
)
− E

[
Za

(
B
) ] )

converge in distribution to a normal random variable with nonzero standard deviation.
Let us offer a different perspective on Theorem 1.1. For ℏ > 0 we set

aℏ(t) := a(ℏt
)
, ∀t ∈ R.

Consider the finite Borel measure µℏ
a ∈ Meas(Rm)

µℏ
a

[
dξ

]
=

1

(2π)m
waℏ,m

(
ξ
)
λ
[
dξ

]
=

1

(2π)m
a
(
|ℏξ|

)2
λ
[
dξ

]
.

Its characteristic function is the nonnegative definite function

Kℏ(x )
= Kℏ

a

(
x
)
=

1

(2π)m

∫
Rm

ei⟨ξ,x⟩a
(
|ℏξ|

)2
dξ

= ℏ−mKa

(
ℏ−1x

)
.

(1.2)

We deduce that Kℏ
a

(
x− y

)
is the covariance kernel of the Gaussian function

Φℏ(x) := ℏ−m/2Φa

(
ℏ−1x

)
.

The Fourier inversion formula we deduce∫
Rm

Ka(x)dx = a(0)2 = 1.
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Since Ka(x) is O(m)-invariant and smooth it has the form Ψ
(
|x|2

)
for some function

Ψ : [0,∞) → R. According to Schoenberg’s characterization theorem [20, Thm.7.13], the
function Ψ must be completely monotone. In particular, Ψ is non-increasing, nonnega-
tive and convex, [20, Lemma.7.3]. This implies that the probability measures Kℏ(x )

dx

converge weakly to the Dirac measure δ0. For example, if a(t) = e−t2/4, then

Kℏ
a(x) =

1

(2πℏ2)m/2
e−

|x|2

2ℏ2

is the probability density the Gaussian measure on Rm with variance ℏ21m.
To use a terminology favored by physicists, we have Kℏ(x )

→ δ(x), where δ(x) is
Dirac’s Delta function. In particular,

Kℏ(x− y
)
→ δ(x− y).

In other words, as ℏ ↘ 0, the Gaussian random function Φℏ
a converges in some sense to a

Gaussian random “function” Φ0 whose covariance kernel is K0(x− y) = δ(x− y). This is
a Gaussian white noise, [10].

Let us introduce some notation. For any Euclidean space V , any function f : V → [0,∞)
and any Morse function Ψ ∈ C2(V ) we set

Z(f,Ψ) :=
∑

∇Ψ(v)=0

f(v). (1.3)

If S ⊂ V is a subset of V we set

ZS(f,Ψ) := Z(ISf,Ψ) =
∑

∇Ψ(v)=0,
v∈S

f(v). (1.4)

where IS denotes the indicator of the set S. Note that

Z(IB,Φ
ℏ
a) = Zaℏ

[
B
]
= Za

[
ℏ−1B

]
= Z(Iℏ−1B,Φa)

Consider the random measure1

νℏ = ℏm
∑

∇Φℏ(x)=0

δx.

Then ℏmZaℏ

[
B
]
= νℏ

[
B
]
. Now let ℏ = N−1. In this case

νN−1

[
B
]
=

1

Nm
Za

(
N ·B

)
.

Theorem 1.1 shows that in the white noise limit (N → ∞) the measure νN−1 converges in
some sense to the deterministic measure Cm(a)λ, where λ denotes the Lebesgue measure
on Rm. In other words, the critical points of Φℏ will a.s. equidistribute as ℏ ↘ 0. We can
be more precise by investigating the linear statistics.

When m = 1, M. Ancona and T. Letendre [2, Thm. 1.16] (see also L. Gass [8, Thm.1.6])
proved that any compactly supported continuous function f ∈ C0

cpt

(
R
)∫

R
f(x)νN−1

[
dx

]
=

1

N
Z
(
f,Φ

1
N
a

)
→ C1(a)

∫
R
f(x)dx a.s.,

for any f ∈ C0
cpt(R). Our next results shows that ta similar result also holds for m > 1.

1The fact that νℏ is indeed a random measure on kernel follows from [12, Lemma 3.1].
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Theorem 1.2. Fix f ∈ C0
cpt(Rm), m ≥ 2 and set YN (f) = 1

NmZ(f,Φ
1
N
a ). Then

Var
[
YN (f)

]
= O

(
N−m

)
, as N → ∞ (1.5)

In particular, as N → ∞,∫
Rm

f(x)νN−1

[
dx

]
= YN (f) → Cm(a)

∫
Rm

f(x)λ
[
dx

]
in L2 and a.s..

⊓⊔

The strategy we employ in the proof of Theorem 1.1 can be easily explained. Set
IN := [1, N ] ∩ N. Bulinskaya’s Lemma [1, Lemma 11.2.10] implies that

1

Nm
Za

(
N ·B

)
=

1

Nm

∑
ℓ⃗∈ImN

Za

(
B

ℓ⃗

)
a.s..

Since the Gaussian function Φa is stationary, the family of random variables
(
Za

(
B

ℓ⃗

) )
ℓ⃗∈Zm

is stationary.
Using the multiparametric ergodic theorem [13, Ch.6.Thm. 3.5], [18, Thm.5] we conclude

that 1
NmZa

[
N ·B

]
converge a.s. and L1 to some random variable Z∞. To show that Z∞ is

a.s. constant we prove that

Var
[
N−mZa

(
N ·B

) ]
→ 0 as N → ∞.

We achieve this by observing that

Var
[
N−mZa

(
N ·B

) ]
= N−2m

∑
k⃗,ℓ⃗∈ImN

Cov
[
Za

(
B

k⃗

)
, Za

(
B

ℓ⃗

) ]︸ ︷︷ ︸
=:C(k⃗,ℓ⃗)

.

The above sum consists of N2m terms, but the terms that are far from the diagonal k⃗ = ℓ⃗
contribute very little. More precisely, using the Kac-Rice formula we will prove that for any
p > 0 there exists C = C(p) > 0 such that∣∣C(k⃗, ℓ⃗)

∣∣ ≤ C(p)(
1 + |⃗k − ℓ⃗|1

)p , ∀(k⃗, ℓ⃗) ∈ Nm × Nm,

where ∣∣x ∣∣
1
=

m∑
i=1

∣∣xi ∣∣, ∀x = (x1, . . . , xm) ∈ Rm.

According to Lemma 3.1, this implies that∑
k⃗,ℓ⃗∈RN

C(k⃗, ℓ⃗) = O
(
N2m−1

)
as N → ∞.

In fact, as shown in Lemma 3.3, if p > m, then∑
k⃗,ℓ⃗∈RN

C(k⃗, ℓ⃗) = O
(
Nm

)
as N → ∞.

In particular, this guarantees the a.s. convergence in the case m > 1, without having to
invoke the ergodic theory.

There is more to this ergodic angle. The Gaussian function Φa defines a Gaussian measure
Γ on C2(Rm). The additive group Rm acts on C2(Rm) by translations Tx,x ∈ Rm

TxF (y) = F (y − x).
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Since the Gaussian function Φa is stationary, the translations Tx are Γ-preserving. Since
the spectral measure of Φa is absolutely continuous with respect to the Lebesgue measure,
the above action of Rm is ergodic; see [5] or [16, App. C].

In the case m = 1 of Theorem 1.1. was proved in 1960 by V. Volkovski [19] using the
ergodicity of the action of R on C2(R). We refer to [6, Sec. 11.5] for details.

The proof of Theorem 1.2 uses a similar strategy but we can now longer invoke ergodic
theory. We rely instead on Lemma 3.3.

Theorem 1.1 is valid for a wider family of homogeneous Gaussian functions on Rm with
fewer constraints on their spectral functions. We chose to work in this more restrictive
context for two reasons. First, relaxing the assumptions on the Gaussian function would
have added a few more technical complications that would have blurred the main arguments.

The second reason is that the class of Gaussian functions discussed in this paper is
exactly the class of function that arises when studying critical points of certain random
Fourier series of eigenvalues on Riemann manifolds.

More precisely given a Riemann manifold (M, g) with Laplacian ∆ we denote by K
g
a the

Schwartz kernel of the smoothing operator a(∆g)
2. This is the covariance kernel of a smooth

random function on M that can be represented as a random eigen-series. Upon rescaling
the metric g → gℏ = ℏ−2g we have ∆gℏ = ℏ2∆g and, as ℏ ↘ 0, the kernel Kgℏ

a converges in
a precise sense to the kernel Ka in (1.1).

The paper is organized as follows. In Section 2 we describe some basic properties of Φa.
Section 3 describes an abstract weak law of large numbers for families of mean zero random

variables (X
ℓ⃗
)
ℓ⃗∈Zm such that X

ℓ⃗
, X

k⃗
are weakly correlated if k⃗ and ℓ⃗ are far apart. It is

based on the technical Lemma 3.3 that seems to be new and we believe will find other uses.
Theorem 1.1 is proved in Section 4 and Theorem 1.2 is proved in Section 5.

2. Some properties of the function Φa

We collect in this section several useful properties of the random function Φa used
throughout the paper. For k ∈ N we denote by DkΦa the k-th order differential of Φa

Proposition 2.1. Let N ∈ N. Then the following hold.

(i) The function Φa is N -ample, i.e., for any are distinct points x1, . . . ,xN ∈ Rm, the
Gausian vector (

Φa(x1), . . . ,Φa(xN )
)
.

is nondegenerate.
(ii) The function Φa is JN -ample, i.e., the Gaussian vector

Φa(x)⊕DΦa(x)⊕ · · · ⊕DNΦa(x)

is nondegenerate for any x ∈ Rm.

Proof. (i) Since wa,m

( ∣∣ ξ ∣∣ ) = a
(
|ξ|

)2
is positive on an open neighborhood of 0 ∈ Rm we

deduce from [20, Thm. 6.8] that if x1, . . . ,xN ∈ Rm are distinct points, then the symmetric
N ×N matrix (

K(xi − xj)
)
1≤i,j≤N

is positive definite. This matrix is the variance matrix of the Gaussian vector(
Φa(x1), . . . ,Φa(xN )

)
.

(ii) Observe that for any multi-indices α ∈
(
Z≥0

)m
, we have

E
(
∂αΦa(x)∂

βΦa(x)
)
= ∂α

x ∂
β
yKa(x− y

)∣∣
x=y
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=

∫
Rm

ξαξβµa

[
dξ

]
, ξα := ξα1

1 · · · ξαm
m

This shows that for any N ∈ N and any x ∈ Rn the variance the Gaussian vector(
∂αΦa(x)

)
|α|≤N

is the Gramian matrix of the functions
(
ξα

)
|α|≤N

with respect to the

inner product in L2
(
Rm, µa

)
. Since a(0) = 1 we deduce that the functions ξα are linearly

independent in L2
(
Rm, µa

)
so the determinant of their Gramian matrix is nonzero. Hence

the Gaussian vector
Φa(x)⊕DΦa(x)⊕ · · · ⊕DNΦa(x)

is nondegenerate, for any k ∈ N and any x ∈ Rm. ⊓⊔

We deduce from the above proposition and the results of Ancona-Letendre [3] or Gass-
Stecconi [9] that for any box B the random variable Za

[
B
]
has finite moments of any order.

To compute the expectation of Za(B) we rely on the Kac-Rice formula [1, 4].

Theorem 2.2. Let V be a finite dimensional Euclidean space, V ⊂ V an open set and
F : V → R a Gaussian random function that is a.s. C2 and such that the Gaussian vector
∇F (v) is nondegenerate for any v ∈ V. We denote by p∇F (v) is probability density. For a
subset S ⊂ V we denote by Z(S, F ) the number of critical points of F in S. Then F is a.s.
Morse, for any box B ⊂ V, the function F a.s. has no critical points on ∂B, and for any
continuous function φ : B → R

E
[
ZB(φ, F )

]
=

∫
B
E
[
|detHessF (v)|

∣∣∇F (v) = 0
]
p∇F (v)(0)φ(v)dv, (2.1)

where ZB(φ, F )
]
is defined as in (1.4). ⊓⊔

We want to apply the above result to the function Φa. Proposition 2.1 shows that the
Gaussian vector ∇Φa(x) is nondegenerate for any x ∈ Rm.

For any multi-indices α, β ∈
(
Z≥0

)m
we have

E
[
∂αΦa(x)∂

βΦa(y)
]
x=y

= ∂α
x∂

β
yK

a(x,y)
∣∣
x=y =

(−1)|β||i|α|+|β|

(2π)m

∫
Rm

ξα+βa(|ξ|)2dξ. (2.2)

For any multi-index α ∈
(
Z≥0

)m
we set

Ma
γ :=

∫
Rm

ξαµa

[
dξ

]
=

1

(2π)m

∫
Rm

ξαa(|ξ|)2dξ.

We say that the multi-index α = (α1, . . . , αm) is even if αj is even for any j = 1, . . . ,m.
The multi-index α is called odd if it is not even. The radial symmetry of a

(
|ξ|

)
implies

that
Ma

α = 0 if α is odd. (2.3)

Using spherical coordinates on Rm we deduce that for any α we have

Ma
α =

1

(2π)m

(∫ ∞

0
rm−1+|α|a(r)2dr

)
×
∫
Sm−1

ξα volSm−1

[
dξ

]
︸ ︷︷ ︸

=:mα

. (2.4)

Note that mα is independent of a. If we let a0 := (2π)m/2e−
t2

4 , then

Ma0
α =

∫
Rm

ξγe−|ξ|2/2dξ = (2π)m/2
m∏
j=1

∫
R
ξαjγ1

[
dξ

]
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where γ1 denotes the Gaussian measure on R with mean zero and variance 1. If α is even,
α = 2κ, then

Ma0
2κ = (2π)m/2

m∏
j=1

(2κj − 1)!!.

On the other hand, using (2.4) we deduce

Ma0
2κ = m2κ

∫ ∞

0
rm+2|κ|−1e−r2/2dr =

√
π

2
m2κ

∫
R
|x|m+2|κ|−1γ1

[
dx

]
= 2|κ|+m/2−1m2κΓ

(
|κ|+m/2

)
.

Hence

m2κ = 2|κ|+m/2−1

∏m
j=1(2κj − 1)!!

Γ
(
|κ|+m/2

) =
2
∏

j=1 Γ(κj + 1/2)

Γ
(
|κ|+m/2

) . (2.5)

For every k ∈ Z≥0 we set

Ik(a) :=

∫ ∞

0
rka(r)2dr.

We deduce

(2π)mMa
2κ = Im−1+2|κ|(a)

2
∏

j=1 Γ(κj + 1/2)

Γ
(
|κ|+m/2

) . (2.6)

We set

sm :=

∫
Rm

µa

[
dξ

]
, dm =

∫
Rm

ξ21µa

[
dξ

]
, hm :=

∫
Rm

ξ21ξ
2
2µa

[
dξ

]
. (2.7)

Then ∫
Rm

a(|ξ|)2dξ =
2πm/2

Γ(m/2)
Im−1(a) = (2π)msm, (2.8)∫

Rm

ξ2j a(|ξ|)2dξ =
2πm/2

Γ(m/2 + 1)
Im+1(a) = (2π)mdm, ∀j, (2.9)∫

Rm

ξ2j ξ
2
ka(|ξ|)2dξ =

(2π)m/2

Γ(m/2 + 2)
Im+3(a) = (2π)mhm, ∀j ̸= k, (2.10)∫

Rm

ξ4j a(|ξ|)2dξ =
6πm/2

Γ(m/2 + 1)
Im+3(a) = 3(2π)mhm, ∀j. (2.11)

Using (2.2) and (2.3) we deduce that for any x ∈ Rm the Gaussian vectors ∇Φ(x) and
HessΦ(x) are independent. Hence

E
[
detHessΦa(x)|

∣∣∇Φa(x) = 0
]
= E

[
detHessΦa(x)|

]
.

Using (2.2)and (2.9) we deduce that the variance matrix of ∇Φ(x) is

Var
[
∇Φ(x)

]
= dm1m, ∀x ∈ Rm, (2.12)

where 1m denotes the identity m×m matrix. Hence

p∇Φa(x)(0) = (2πdm)−m/2.

The space Sym(Rm) of real symmetric m×m matrices is equipped with an inner product
(A,B) = tr(A). Moreover the linear functions ℓij , ωij : Sym(Rm) → R, 1 ≤ i ≤ j ≤ m,

ℓij(A) = aij , ωij(A) =

{
aii, i = j,√
2aij , i < j

(2.13)
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define coordinates on Sym(Rm) that are orthonormal with respect to the above inner
product. We set

Lij(x) := ℓij
(
HessΦ(x)

)
, Ωij(x) := ωij

(
HessΦ(x)

)
. (2.14)

Then

E
[
∂2
xixj

Φa(x)∂
2
xkxℓ

Φa(x)
]
=

1

(2π)m

∫
Rm

ξiξjξkξℓa
(
|ξ|2

)
dξ, i ≤ j, k ≤ ℓ.

Note that if i < j, then the above integral is nonzero iff (i, j) = (k, ℓ) in which case

E
[
Lij(x)Lij(x)

]
= E

[ (
∂2
xixj

Φa(x)
)2 ]

=
1

(2π)m

∫
Rm

ξ2i ξ
2
j a
(
|ξ|2

)
dξ

(2.10)
= hm.

If i = j, then the above integral is nonzero iff k = ℓ, in which case we deduce from (2.10)
and (2.11)

E
[
∂2
xi
Φa(x)∂

2
xk
Φa(x)

]
=

{
hm i ̸= k,

3hm, i = k.

The above equalities can be rewritten in the more compact form

E
[
Lij(x)Lkℓ(x)

]
= hm

(
δijδkℓ + δikδjℓ + δiℓδjk

)
, ∀i ≤ j, k ≤ ℓ. (2.15)

These equalities show that the off-diagonal entries of HessΦ are i.i.d., and also independent
of the diagonal entries. The diagonal entries have identical distributions but are dependent.
The parameter hm describes the various variances and covariances.

The Gaussian measure on Sym(Rm) determined by these covariance equalities is invariant
with respect to the action of O(m) by conjugation on Sym(Rm). For v > 0 denote by Svm
the space Sym(Rm) equipped with the O(m)-invariant Gaussian measure on Sym(Rm)
determined by the covariances

E
[
Lij(x)Lkℓ(x)

]
= v

(
δijδkℓ + δikδjℓ + δiℓδjk

)
, ∀i ≤ j, k ≤ ℓ.

Hence

E
[
detHessΦa(x)|

]
= E

S
hm
m

[
| detH|

]
.

For any box B ⊂ Rm we denote by Za(B) = Za(B) the number of critical points of Φa in
B. We deduce from the Kac-Rice formula (2.1) that

E
[
Za(B)

]
=

∫
B
E
S
hm
m

[
|detH|

]
p∇Φ(x)(0)λ

[
dx

]
(2.12)
= (2πdm)−m/2E

S
hm
m

[
|detH|

]
vol

[
B
]

(X = (2hm)−1/2H)

=

(
hm
πdm

)m/2

E
S
1/2
m

[
|detX|

]
︸ ︷︷ ︸

=:Cm(a)

vol
[
B
]
.

Hence

E
[
Za,m(B)

]
= Cm(a) vol

[
B
]
. (2.16)
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Remark 2.3. One can prove that as m → ∞

Cm(a) ∼ 2
5
2Γ

(
m+ 3

2

)(
hm
πdm

)m/2( 1

m+ 1

)1/2

.

Using (2.9) and (2.10) we deduce

hm
dm

=
Γ(1 +m/2)

Γ(2 +m/2)
× Im+3(a)

Im+1(a)
=

2Im+3(a)

(m+ 2)Im+1(a)
.

Hence

Cm(a) ∼ 25/2
(
hm(a)

dm(a)

)m/2

Γ

(
m+ 3

2

)
m−1/2

∼ 2
m+5

2

(
Im+3(a)

(m+ 2)Im+1(a)

)m/2

Γ

(
m+ 3

2

)
m−1/2 as m → ∞.

(2.17)

The constant Cm(a) tends to grow very fast as m → ∞, but its large m behavior depends
on the tail of the amplitude a. Roughly speaking, the slower the decay at ∞ of a the faster
the growth of Cm(a). ⊓⊔

3. An abstract law of large numbers

Fix m ∈ N. For N ∈ N, let IN := [1, N ] ∩ N. Suppose that we have an even continuous
function ρ : Rm → (0,∞) that decays sufficiently fast to 0 as |x| → ∞. Then∫

NB×NB
ρ(x− y)dxdy = N2m

∫
B×B

ρN
(
u− v

)
dudv

where ρN (x) = ρ(Nx). Observing that ρN (x) → 0 almost everywhere on B we deduce
from the dominated convergence theorem that∫

B×B
ρN

(
u− v

)
dudv → 0

as N → ∞. Hence ∫
NB×NB

ρ(x− y)dxdy = o
(
N2m

)
as N → ∞

In fact we can be more precise. If we use Fubini theorem and integrate ρ along the m-planes
orthogonal to the ‘diagonal ∆N = {x = y} ⊂ NB × nB we deduce that∫

NB×NB
ρ(x− y)dxdy ≤ C volm

[
∆N

] ∫
|x|<N

ρ(x)dx ≤ CNm

∫
|x|<N

ρ(x)dx.

If we specialize further, ρ(x) = 1
1+|x|p , p > 0, p ̸= m, then∫

|x|<N
ρ(x)dx = O

(
Nmax(m−p,0)

)
so that ∫

NB×NB
ρ(x− y)dxdy = O

(
Nm+max(m−p,0)

)
.

The sum ∑
(k⃗,ℓ⃗)∈ImN×ImN

ρ(k⃗ − ℓ⃗)
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is a very rough Riemann sum approximation of the above integral when B = [0, 1]N . The
next results show that if ρ(x) = 1

1+|x|p , then this Riemann sum is also o
(
N2m

)
as N → ∞.

Lemma 3.1. Fix m ∈ N. For any N ∈ N we set RN,m := ImN × ImN .

(i) If m > 1, then there exists a constant K = K(α, p,m) > 0 such that∑
(k⃗,ℓ⃗)∈RNm

1(
1 + α|ℓ⃗− k⃗|1

)p ≤ KN2m−κ(p), κ(p) = min(p, 1).

(ii) If m = 1, then there exists a constant K = K(α, p) > 0 such that∑
k,ℓ∈In

1

(1 + α|k − ℓ|)p
≤ K

{
N2m−κ(p) , p ̸= 1,

N logN p = 1.

Proof. (i) m > 1. For any N ∈ N define

DN,m :=
{
(k⃗, ℓ⃗) ∈ RNm ; ∃j = 1, . . . ,m, kj = ℓj

}
, R∗

N,m := RNm \DN,m

Note that

DN =

m⋃
i=1

Di
N , Di

N =
{
(k⃗, ℓ⃗) ∈ RN ; ki = ℓi

}
.

For 1 ≤ i1 < · · · < ir ≤ m we have

#
(
Di1

N ∩ · · · ∩D
ip
N

)
= N2m−2r+1

Using the Inclusion-Exclusion Principle we deduce that

#DN =
m∑
r=1

(−1)p−1

(
m

p

)
N2m−2r+1 ≤ 2mN2m−1.

We have∑
(k⃗,ℓ⃗)∈RN

1(
1 + α|ℓ⃗− k⃗|1

)p =
∑

(k⃗,ℓ⃗)∈DN

1(
1 + α|ℓ⃗− k⃗|1

)p︸ ︷︷ ︸
=:YN

+
∑

(k⃗,ℓ⃗)∈R∗
N

1(
1 + α|ℓ⃗− k⃗|1

)p
︸ ︷︷ ︸

=:ZN

.

Note that

YN ≤ #DN ≤ 2mN2m−1.

To estimate ZN we need to first analyze the structure of the region R∗
N . Denote by Ri the

reflection

Ri : Rm × Rm → Rm × Rm,


x1 y1
...

...
xi yi
...

...
xm ym

 7→


x1 y1
...

...
yi xi
...

...
xm ym

 .

Denote by Gm the direct product of cyclic groups

Gm =
(
Z/2Z

)m
=

{
ϵ⃗ = (ϵ1, . . . , ϵm); ϵk = 0, 1

}
.

The group Gm acts freely on R∗
N

ϵ⃗ ·
(
k⃗, ℓ⃗

)
= Rϵ⃗

(
k⃗, ℓ⃗

)
, Rϵ⃗ = Rϵ1

1 · · ·Rϵm
m .
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We denote by C+
N the positive chamber of R∗

N ,

C+
n :=

{ (
(k⃗, ℓ⃗) ∈ R∗

N ; ℓj > kj , ∀1 ≤ j ≤ m
}
,

and we observe that

C+
n = Tm

N , TN :=
{
(k, ℓ) ∈ IN × IN ; ℓ > k

}
.

We have

R∗
N =

⋃
ϵ⃗∈Gm

Rϵ⃗C+
n

The function ρ is Gm-invariant so∑
(k⃗,ℓ⃗)∈R∗

N

1(
1 + α|ℓ⃗− k⃗|1

)p =
∑
ϵ⃗∈Gm

∑
(k⃗,ℓ⃗)∈Rϵ⃗C+

N

1(
1 + α|ℓ⃗− k⃗|1

)p
= 2m

∑
(k⃗,ℓ⃗)∈C+

N

1(
1 + α|ℓ⃗− k⃗|1

)p <
2m

αp

∑
(k⃗,ℓ⃗)∈C+

N

1

|ℓ⃗− k⃗|p1

(use the AM-GM inequality)

≤ 2m

(mα)p

∑
(k⃗,ℓ⃗)∈C+

N

( m∏
j=1

(ℓj − kj)
)−p/m

.

(C+
n = Tm

N )

=
2m

(mα)p

m∏
j=1

∑
(kj ,ℓj)∈TN

(
ℓj − kj

)−p/m
=

2m

(mα)p

( ∑
(k,ℓ)∈TN

(
ℓ− k

)−p/m
)m

.

Now observe that ∑
(k,ℓ)∈TN

(
ℓ− k

)−p/m
=

N−1∑
k=1

N−k∑
j=1

j−p/m.

To proceed further we need to use the following result.

Sublemma 3.2. Let r ∈ R. Then for any M ∈ N

Sr(M) :=

M∑
j=1

jr ≤ ur(M) :=


1

r+1M
r+1, r ≥ 0,

1
r+1M

r+1 + 1, r ∈ (−1, 0),

logM + 1 r = −1

2, r < −1.

Proof. Using approximations by Riemann sums for the integral

Ir(M) :=

∫ M

1
xrdx

we deduce

Sr(M) ≤

{
Ir(M), r > 0,

Ir(M) + 1, r < 0
=


1

r+1

(
M r+1 − 1

)
, r ≥ 0,

1
r+1

(
M r+1 − 1

)
+ 1, r ∈ (−1, 0),

1 + logM, r = −1,
1

|r+1|
(
1−M r+1

)
+ 1, r < −1.
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≤


1

r+1M
r+1, r ≥ 0,

1
r+1M

r+1, r ∈ (−1, 0),

1 + logM, r = −1,

2, r < −1.

⊓⊔

Suppose that p ̸= m. Using Sublemma 3.2 we deduce that

N−k∑
j=1

j−p/m ≤ u−p/m(N − k) =

{
1

(1−p/m)(N − k)1−p/m + 1, p/m < 1,

2 1 < p/m.

Next, using the sublemma again we deduce

N∑
k=1

ur(N − k) ≤

{
1

(1−p/m)(2−p/m)N
2−p/m +N, p/m < 1,

2N 1 < p/m.

Hence ∑
(k,ℓ)∈TN

(
ℓ− k

)−p/m ≤

{
1

(1−p/m)(2−p/m)N
2−p/m +N, p/m < 1,

2N 1 < p/m.

and thus

ZN =
∑

(k⃗,ℓ⃗)∈R∗
N

1

(1 + |ℓ⃗− k⃗|1)p
≤ 2m

(mα)p
≤ C(m,α, p)

{
N2m−p, p < m,

Nm p > m.
(3.1)

If p = m, then Sublemma 3.2 implies that

N−k∑
j=1

j−1 ≤ u−1(N − k) = 1 + log(N − k),

and
N∑
k=1

(
1 + log(N − k)

)
= N + logN !.

The conclusion follows from Stirling’s formula which implies that

logN ! = O
(
N logN

)
.

(ii) Suppose that p = 1. Then∑
k,ℓ=IN

1

(1 + α|k = ℓ|)p
= N + 2

∑
1

≤ k < ℓ ≤ n
1

(1 + α|k − ℓ|)p

< N +
2

αp

∑
1≤k<ℓ

1

(ℓ− k)p
= N +

2

αp

N−1∑
j=1

N − j

jp

= N +
2

αp

N−1∑
k=1

k∑
j=1

1

jp
≤ N +

2

αp

N−1∑
k=1

u−p(j).

The conclusion now follows exactly as in (i). ⊓⊔
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Lemma 3.3. Fix m ∈ N. For any N ∈ N we set RN,m := ImN × ImN . For any α > 0 and any
p > m there exists a constant K = K(α, p,m) > 0 such that∑

(k⃗,ℓ⃗)∈RNm

1(
1 + α|ℓ⃗− k⃗|1

)p ≤ KNm.

Proof. We argue by induction. The case m = 1 is covered in Lemma 3.1 (ii). Define

ρm : Nm × Nm → (0,∞), ρm
(
k⃗, ℓ⃗

)
=

1(
1 + α|⃗k − ℓ⃗|1

)p .
For any region R ⊂ Nm × Nm we set

S(R, ρm) =
∑

(k⃗,ℓ⃗)∈R

ρm
(
k⃗, ℓ⃗

)
.

For any N ∈ N define

DN,m :=
{
(k⃗, ℓ⃗) ∈ RN,m; ∃j = 1, . . . ,m, kj = ℓj

}
, R∗

N,m := RNm \DNm .

We have

S
(
RN,m, ρm

)
= S

(
DN,m, ρm

)
+ S

(
R∗
N,m, ρm).

The inequality (3.1) implies that

S
(
R∗
N,m, ρm) ≤ KNm.

As before we have

DN =

m⋃
i=1

Di
N,m, Di

N,m =
{
(k⃗, ℓ⃗) ∈ RNm ; ki = ℓi

}
.

Using Inclusion-Exclusion Principle we deduce

S
(
DN,m, ρm

)
=

m∑
p=1

(−1)p−1
∑

1≤i1<···<ip≤m

S
(
Di1

N,m ∩ · · · ∩D
ip
N,m, ρm

)

=
m∑
p=1

(−1)p−1

(
m

p

)
S
(
D1

N,m ∩ · · · ∩Dp
N,m, ρm

)
=

m∑
p=1

(−1)p−1

(
m

p

)
S
(
RN,m−p, ρm−p

)
≤

m∑
p=1

(
m

p

)
S
(
RN,m−p, ρm−p

)
(use the induction assumption)

≤ K

m∑
p=1

(
m

p

)
Nm−p ≤ K(N + 1)m ≤ 2mKNm.

⊓⊔

Corollary 3.4. Consider a family of random variable
(
X

ℓ⃗

)
ℓ⃗∈NM defined on the same prob-

ability space (Ω, S,P) such that there exist constants C,α, p > 0 such that∣∣ Cov [X
k⃗
, X

ℓ⃗

] ∣∣ ≤ C(
1 + α|⃗k − ℓ⃗

∣∣
1

)p , ∀k⃗, ℓ⃗ ∈ Nm.
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Then, as N → ∞

AN (X) :=
1

Nm

∑
k⃗∈ImN

(
X

k⃗
− E

[
X

k⃗

] )
→ 0

in L2. In particular AN (X) converges in probability to zero as N → ∞. Moreover, if p > m,
then AN converges a.s. to 0.

Proof. We have

E
[
AN (X)2

]
=

1

N2m

∑
(k⃗,ℓ⃗)∈ImN×IN

Cov
[
X

k⃗
, X

ℓ⃗

]
.

Lemma 3.1 implies that E
[
AN (X)2

]
→ 0. Moreover if p > m , then E

[
AN (X)2

]
= O(N−m)

as N → ∞. Hence, by Chebysev’s inequality there exists a constant C > 0 such that, ∀N ,

P
[
AN (x) ≥ ε

]
≤ C

ε2Nm
.

In particular, for m > 1 we have ∑
N

P
[
AN (x) ≥ ε

]
< ∞

so AN → 0 a.s.. For m = 1, the result follows from [14, Thm.10]. ⊓⊔

This follows from the Strong Law of Large Numbers [15, Thm. 4]. For r ∈ N we denote
by Cr the lattice cube Im2r . Set Nr := 2r+1.

Remark 3.5. (a) We have a.s. convergence in general without assuming p > m > 1. This
follows from the Strong Law of Large Numbers [15, Thm. 4]. For r ∈ N we denote by Cr

the lattice cube Im2r . Set Nr := 2r+1.
Then

ur :=
∑

k⃗,ℓ⃗∈Cr+1\Cr

∣∣E[X
k⃗
X

ℓ⃗

] ∣∣ ≤ ∑
k⃗,ℓ⃗∈Cr+1

∣∣E[X
k⃗
X

ℓ⃗

] ∣∣ ≤ KN2m−1
r ,

where K > 0 is a universal constant. We deduce that∑
r≥0

(r + 1)2

N2m
r

ur ≤ K
∑
r≥0

(r + 1)2

Nr
< ∞.

According to [15, Thm. 4], this implies that AN (X) → 0 a.s..

(b) The estimate E
[
A2

N

]
= O

(
N−m

)
used in the above proof is optimal. For exam-

ple, if the random variables X
k⃗
are independent and their variances are equal to 1, then

E
[
A2

N

]
= N−m. ⊓⊔

4. Proof of Theorem 1.1

We have

Za(N ·B) =
∑
ℓ⃗∈ImN

Za(Bℓ⃗
)

since , according to Bulinskaya’s lemma, the probability that Φa has a critical point on the
boundary of some Bℓ is zero.
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The Gaussian function Φa is a stationary is stationary, so the collection
(
Za(Bℓ⃗

)
)
ℓ⃗∈Nm

is stationary as well, i.e., for any n ∈ N and any ℓ⃗, ℓ⃗1, . . . , ℓ⃗n ∈ Nn the random vectors(
Za(Bℓ⃗1

), . . . , Za(Bℓ⃗n
)
)
and

(
Za(Bℓ⃗1+ℓ⃗

), . . . , Za(Bℓ⃗n+ℓ⃗
)
)

have the same distribution. We deduce from the ergodic theorem [13, Chap.6, Thm.2.5]
that the averages

1

vol(NB)
Za(N ·B) =

1

Nm vol(B)

∑
ℓ⃗∈IN

Za(Bℓ⃗
)

converge a.s. and in L1 to some random variable Z∞. We need to prove that the limit Z∞
is the constant

1

vol(B)
E
[
Za(B)

]
.

To achieve this we set

X
ℓ⃗
:= Za(Bℓ⃗

)− E
[
Za(Bℓ⃗

)
]
.

Then ∑
ℓ⃗∈ImN

X
ℓ⃗
= Za

(
NB

)
− E

[
Za

(
NB

) ]
.

We have to show that

lim
N→∞

1

Nm

∥∥∥∥∥ ∑
ℓ⃗∈ImN

X
ℓ⃗

∥∥∥∥∥
L2

→ 0.

We will deduce this from Corollary 3.4. We set

C(k⃗, ℓ⃗) := Cov
[
Za(Bk⃗

), Za(Bℓ⃗
)
]
= E

[
X

k⃗
X

ℓ⃗

]
, ∀k⃗, ℓ⃗ ∈ ImN .

Notice that since Φa is a stationary Gaussian function we have

E
[
Za(Bℓ)

p
]
= E

[
Za(B)p

]
< ∞, ∀p ∈ [1,∞), ℓ⃗ ∈ Nm

and we deduce that

∃K1 = K1(a,m) > 0 :
∣∣C(k⃗, ℓ⃗)

∣∣ < K1, ∀k⃗, ℓ⃗ ∈ Nm. (4.1)

To proceed further we define

Φ̂ : Rm × Rm → R, Φ̂(x,y) = Φa(x) + Φa(y)

and we set

Ĥ(x,y) := Hess
Φ̂
(x,y), H(x) := HessΦa(x).

Denote for any Borel subset B̂ ∈ Rm × Rm by Ẑ
(
B̂
)
the number of critical points of Φ̂ in

B̂. Note that if B
k⃗
∩B

ℓ⃗
= ∅, then

Ẑ(B
k⃗
×B

ℓ⃗
) = Za(Bk⃗

)Za(Bℓ⃗
)

so

E
[
Za(Bk⃗

)Za(Bℓ⃗
)
]
= E

[
Ẑ(B

k⃗
×B

ℓ⃗
)
]
.

We want to compute E
[
Ẑ(B

k⃗
× B

ℓ⃗
)
]
using the Kac-Rice formula. We first need to verify

that ∇Φ̂(x,y) is nondegenerate for any x ̸= y.

Lemma 4.1. For any x,y ∈ Rm, x ̸= y, the Gaussian vector ∇Φ̂(x,y) is nondegenerate.
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Proof. We have

Var
[
∇Φ̂(x,y)

]
=

 Var
[
∇Φa(x)

]
Cov

[
∇Φa(x),∇Φa(y)

]
Cov

[
∇Φa(y),∇Φa(x)

]
Var

[
∇Φa(y)

]
 .

As shown in(2.12), for any x ∈ Rn we have

Var
[
∇Φa(x)

]
= dm1m, dm =

∫
Rn

ξ21µa

[
dξ

]
.

We have

Cov
[
∇Φa(x),∇Φa(y)

]
=

(
∂xj∂ykKa(x− y)

)
1≤j,k≤m

and

∂xj∂ykKa(x− y) =

∫
Rm

e−i⟨ξ,x−y⟩ξjξkµa

[
dξ

]
. (4.2)

Since Φa is stationary it suffice to consider only the case x = 0. On the other hand, Φa

is O(m)-invariant so, up to a rotation we can assume that x − y = −te1, t ̸= 0, where
{e1, . . . , em} is the canonical basis of Rm. Hence

∂xj∂ykKa(x− y) =

∫
Rm

eitξ1ξjξkµa

[
dξ

]
.

Let us observe that if j ̸= k, then either j ̸= 1, or k ̸= 1. Suppose j ̸= 1. The function
eitξ1ξjξk is odd with respect to the reflection ξj 7→ −ξj so

∂xj∂ykKa(x,y) =

∫
Rm

eitξ1ξjξkµa

[
dξ

]
= 0, ∀j ̸= k.

If j = k, then

dm(j) := ∂xj∂yjKa(x,y) =

∫
Rm

eitξ1ξ2jµa

[
dξ

]
=

∫
Rm

cos(tξ1)ξ
2
jµa

[
dξ

]
and we deduce2

|vm(j)| ≤
∫
Rm

∣∣ cos(tξ1) ∣∣ξ2jµa

[
dξ

]
<

∫
Rm

ξ2jµa

[
dξ

]
= dm.

After a reordering (
∂x1Φa(x), . . . , ∂xmΦa(x), ∂y1Φa(y), . . . ∂ymΦa(y)

)
↓(

∂x1Φa(x), ∂y1Φa(y), . . . , ∂xmΦa(x), ∂ymΦa(y)
)

we see that

Var
[
∇Φ̂(x,y)

]
=

m⊕
j=1

[
dm dm(j)

dm(j) dm

]
︸ ︷︷ ︸

=:Vj

.

Note that, for each j, the symmetric matrix Vj is positive definite since

detVj = d2m − dm(j)2 > 0.

⊓⊔

2At this point we use the fact that a
(
|ξ|

)
> 0 for |ξ| sufficiently small.
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Suppose that B
k⃗
∩B

ℓ⃗
= ∅. We deduce from Lemma 4.1 that ∇Φ̂(x,y), is nondegenerate

for any (x,y) ∈ B
k⃗
,×B

ℓ⃗
. We can the apply the Kac-Rice formula to deduce that

E
[
Za(Bk⃗

)Za(Bℓ⃗
)
]
= E

[
Ẑ(B

k⃗
×B

ℓ⃗
)
]

=

∫
B

k⃗
×B

ℓ⃗

E
[
| det Ĥ(x,y)|

∣∣∇Φ̂(x,y) = 0
]
p∇Φ̂(x,y)

(0)︸ ︷︷ ︸
=ρ̂(x,y)

λ
[
dxdy

]
,

if B
k⃗
∩B

ℓ⃗
= ∅ .

(4.3)

For x ∈ Rm we denote by
∣∣x ∣∣

∞ the sup-norm of x∣∣x ∣∣
∞ := max

1≤i≤m
|xi|.

Note that ∣∣x ∣∣
1
≤ m

∣∣x ∣∣
∞.

and B
k⃗
∩B

ℓ⃗
= ∅ if

∣∣ k⃗ − ℓ⃗
∣∣
∞ > 1. Hence,∣∣ k⃗ − ℓ⃗

∣∣
1
> m ⇒ B

k⃗
∩B

ℓ⃗
= ∅.

Hence

E
[
Za(Bvk)Za(Bℓ⃗

)
]
=

∫
B

k⃗
×B

ℓ⃗

E
[
|det Ĥ(x,y)|

∣∣∇Φ̂(x,y) = 0
]
p∇Φ̂(x,y)

(0)︸ ︷︷ ︸
=ρ̂(x,y)

λ
[
dxdy

]
,

if
∣∣ k⃗ − ℓ⃗

∣∣
1
> m.

(4.4)

Let us now express E
[
Za(Bk⃗

)
]
E
[
Za(Bℓ⃗

)
]
as an integral over B

k⃗
×B

ℓ⃗
. Choose an inde-

pendent copy Ψa of Φa. We set

Φ̃(x,y) := Φa(x) + Ψa(y), H̃(x,y) := Hess
Φ̃
(x,y).

Then

E
[
Za(Bk⃗

)
]
E
[
Za(Bℓ⃗

)
]
= E

[
Z
Φ̃
(B

k⃗
×B

ℓ⃗
)
]

=

∫
B

k⃗
×B

ℓ⃗

E
[ ∣∣ det H̃(x,y)

∣∣∣∣∣∇Φ̃(x,y) = 0
]
p∇Φ̃(x,y)

(0)︸ ︷︷ ︸
=ρ̃(x,y)

λ
[
dxdy

]
, (4.5)

if
∣∣ k⃗ − ℓ⃗

∣∣
1
> m. Thus

Cov
[
Za(Bk⃗

), Za(Bℓ⃗
)] =

∫
B

k⃗
×B

ℓ⃗

(
ρ̂(x,y)− ρ̃(x,y)

)
λ
[
xdy.

]
(4.6)

To proceed further, we need a few technical results that seem to be part of the mathematical
folklore, but whose proofs are difficult to locate in the existing literature.

Digression 4.2. Suppose that V is anm-dimensional real Euclidean space with inner prod-
uct (−,−). Denote by S1(V ) the unit sphere in V and by Sym(V ) the space of symmetric
operators V → V and by Sym≥0(V ) the cone of nonnegative ones. For A ∈ Sym≥0(V )
we denote by ΓA the centered Gaussian measure with variance A.

The space Sym(V ) is equipped with an inner product(
A,B

)
op

= tr(AB), ∀A,B ∈ Sym(V ).

We denote by ∥ − ∥op the associated norm.
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We have a natural map Sym≥0(V ) → Sym≥0(V ), A 7→ A1/2. We will need the following

result, [11, Prop.2.1]. For any µ > 0 and ∀A,B ∈ Sym≥0(V ), such that A1/2 +B1/2 ≥ µ1
we have

µ
∥∥A1/2 −B1/2

∥∥
op

≤
∥∥A−B

∥∥1/2
op

. (4.7)

Lemma 4.3. Fix A0 ∈ Sym≥0(V ) such that A
1/2
0 ≥ µ01, µ0 > 0. Suppose that f : V → R

is a locally Lipschitz function that is homogeneous of degree k ≥ 1. For A ∈ Sym≥0(V ) we
set

IA(f) :=

∫
V
f(v)ΓA

[
dv

]
.

Then for and R ≥ ∥A0∥op there exists a constant C = C(f,R, µ0) > 0 with the following
property: for any A ∈ Sym≥0(V ) such that ∥, A∥op ≤ R∣∣ IA0(f)− IA(f)

∣∣ ≤ C∥A−A0∥1/2 ≤ C(k,R)∥A−A0∥1/2op . (4.8)

In other words, A 7→ IA(f) is locally Hölder continuous with exponent 1/2 in the open set
Sym>0

(
V

)
.

Proof. The function f is Lipschitz on the ball

BR(V ) :=
{
v ∈ V ; ∥v∥ ≤ R

}
,

so there exists L = L(R) > 0 such that[
f(u)− f(v)

∣∣ ≤ L∥u− v∥, ∀u,v ∈ BR(V ). (4.9)

Note that

IA(f) =

∫
V
f
(
A1/2v

)
Γ1

[
dv

]
,

so ∣∣ IA0(f)− IA(f)
∣∣ ≤ ∫

V

∣∣ f(A1/2v
)
− f

(
A

1/2
0 v

) ∣∣ Γ1[ dv ]
=

1

(2π)m/2

(∫ ∞

0
rn+k−1e−r2/2dr

)
︸ ︷︷ ︸

Cm,k

∫
S1(V )

∣∣ f(A1/2v
)
− f

(
A

1/2
0 v

) ∣∣ volS1(V )

[
dv

]

(4.9)

≤ Cm,kL(R)

∫
S1(V )

∥A1/2 −A
1/2
0 ∥op volS1(V )

[
dv

] (4.7)

≤ C(k,R, µ0)∥A−A0∥1/2op .

⊓⊔

This ends the digression. ⊓⊔

For every z ∈ Rm we set

T (z) :=
∑
|α|≤4

∣∣ ∂αKa(z)
∣∣.

Since Ka is a Schwartz function we deduce that

T (z) = O
(
|z|−∞

1

)
as |z|1 → ∞.

This means that

∀p > 0, T (z) = O
(
|z|−p

1

)
as |z|1 → ∞.
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Observe that

Var
[
∇Φ̃(x,y)

]
=

[
Var

[
∇Φa(x)

]
0

0 Var
[
∇Φa(y)

] ]
= dm12m,

and

Var
[
∇Φ̂(x,y)

]
=

 Var
[
∇Φa(x)

]
Cov

[
∇Φa(x),∇Φa(y)

]
Cov

[
∇Φa(y),∇Φa(x)

]
Var

[
∇Φa(y)

]


= Var
[
∇Φ̃(x,y)

]
+

 0 Cov
[
∇Φa(x),∇Φa(y)

]
Cov

[
∇Φa(y),∇Φa(x)

]
0


︸ ︷︷ ︸

=:R∇(x,y)

.

In particular

Var
[
∇Φ̂(x,y)

]−1
=

(
Var

[
∇Φ̃(x,y)

]
+R∇(x,y)

)−1

= Var
[
∇Φ̃(x,y)

]−1
(
1+Var

[
∇Φ̃(x,y)

]−1
R∇(x,y)

)−1
.

Hence∥∥ Var
[
∇Φ̂(x,y)

]
−Var

[
∇Φ̃(x,y)

] ∥∥
op

= ∥R∇(x,y)∥op = O
(
T (x− y)

)
. (4.10)

Since Var
[
∇Φ̃(x,y)

]
is independent of x and y∥∥ Var

[
∇Φ̂(x,y)

]−1 −Var
[
∇Φ̃(x,y)

]−1 ∥∥
op

= O
(
T (x− y)

)
. (4.11)

Note that

Var
[
H̃(x,y)

]
=

[
Var

[
H(x)

]
0

0 Var
[
H(y)

] ]
.

Since Φa is stationary, Var
[
H̃(x,y)

]
is independent of x and y. We have

Var
[
Ĥ(x,y)

]
=

 Var
[
H(x)

]
Cov

[
H(x), H(y)

]
Cov

[
H(y), H(x)

]
Var

[
H(y)

]


= Var
[
H̃(x,y)

]
+

 0 Cov
[
H(x), H(y)

]
Cov

[
H(y), H(x)

]
0


︸ ︷︷ ︸

=:RH(x,y)

.

We deduce∥∥ Var
[
Ĥ(x,y)

]
−Var

[
H̃(x,y)

] ∥∥
op

= ∥RH(x,y)∥op = O
(
T (x− y)

)
. (4.12)

We denote by H̃(x, y)♭ the Gaussian random matrix obtained from H̃(x,y) by conditioning

on ∇Φ̃(x,y) = 0. Similarly, we denote by Ĥ(x, y)♭ the Gaussian random matrix obtained

from Ĥ(x,y) by conditioning on ∇Φ̂(x,y) = 0. The distributions of H̃(x, y)♭ and Ĥ(x, y)♭

are determined by the Gaussian regression formula.

Since H̃(x, y) and ∇Φ̃(x,y) are independent we deduce

Var
[
H̃(x,y)♭

]
= Var

[
H̃(x,y)

]
.
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Using the regression formula we deduce

Var
[
Ĥ(x,y)♭

]
= Var

[
Ĥ(x,y)

]
−Cov

[
Ĥ(x,y),∇Φ̂(x,y)

]
Var

[
∇Φ̂(x,y)

]−1
Cov

[
∇Φ̂(x,y), Ĥ(x,y)

]
|

= Var
[
H̃(x,y)♭

]
+RH(x,y)

−Cov
[
Ĥ(x,y),∇Φ̂(x,y)

]
Var

[
∇Φ̂(x,y)

]−1
Cov

[
∇Φ̂(x,y), Ĥ(x,y)

]
.

We have

Cov
[
Ĥ(x,y),∇Φ̂(x,y)

]
=

 Cov
[
H(x),∇Φa(x)

]
Cov

[
H(x),∇Φa(y)

]
Cov

[
H(y),∇Φa(x)

]
Cov

[
H(y),∇Φa(y)

]


=

 Cov
[
0 Cov

[
H(x),∇Φa(y)

]
Cov

[
H(y),∇Φa(x)

]
0

 .

This implies

Cov
[
Ĥ(x,y),∇Φ̂(x,y)

]
= O

(
T (x− y)

)
.

Since Var
[
∇Φ̃(x,y)

]
is independent of x and y we deduce from (4.11) that

Cov
[
Ĥ(x,y),∇Φ̂(x,y)

]
Var

[
∇Φ̂(x,y)

]−1
Cov

[
∇Φ̂(x,y), Ĥ(x,y)

]
= O

(
T (x− y)

)
,

Hence

sup
x̸=y

∥Var
[
Ĥ(x,y)♭

]
∥op < ∞, (4.13)

Since Var
[
H̃(x,y)

]
is independent of x,y we deduce that there exists µ0 > 0 such that

Var
[
H̃(x,y)♭

]
≥ µ01, ∀x ̸= y.

We deduce from (4.13) and (4.8) that∣∣∣E[ |det Ĥ(x,y)♭|
]
− E

[
| det H̃(x,y)♭|

] ∣∣∣ = O
(
T (x− y)1/2

)
. (4.14)

Using (4.10) we deduce ∣∣∣ p∇Φ̂(x,y)
(0)− p∇Φ̃(x,y)

(0)
∣∣

= (2π)−m/2
∣∣∣ detVar [∇Φ̂(x,y)

]−1 − detVar
[
∇Φ̃(x,y)

]−1
∣∣∣ = O

(
T (x− y)

)
.

(4.15)

We can now estimate the right-hand-side of (4.6). Note that if B
k⃗
∩B

ℓ⃗
= ∅ we have

sup
(x,y)∈B

k⃗
×B

ℓ⃗

O
(
T (k⃗ − ℓ⃗)

)
= O

(
|⃗k − ℓ⃗|−∞

1

)
.

We deduce from(4.10), (4.11), (4.14) and (4.15) that

sup
(x,y)∈B

k⃗
×B

ℓ⃗

∣∣ ρ̂(x,y)− ρ̃(x,y)
∣∣ = O

( ∣∣ k⃗ − ℓ⃗
∣∣−∞
1

)
,
∣∣ k⃗ − ℓ⃗

∣∣
1
> m. (4.16)

Hence

C(k⃗, ℓ⃗) = O
( ∣∣ k⃗ − ℓ⃗

∣∣−∞
1

)
as

∣∣ k⃗ − ℓ⃗
∣∣
1
→ ∞.
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The above estimate coupled with (4.1) implies that, for any p > 0, there exists a constant
C = C(p) > 0 such that∣∣C(k⃗, ℓ⃗)

∣∣ ≤ C(p)(
1 + |⃗k − ℓ⃗|1

)p , ∀(k⃗, ℓ⃗) ∈ Nm × Nm.

Theorem 1.1 now follows from the above estimate and Corollary 3.4.

5. Proof of Theorem 1.2

Note that x is a critical point of Φa iff N−1x is a critical point of Φ
1
N . If we set

fN (x) := f
(
N−1x

)
.

Then

Z(f,Φ
1
N
a ) = Z(fN ,Φa)

since ∇Φa(x) = 0 iff ∇Φa(Nx) = 0 and f(x) = fN (Nx). Hence

YN (f) =
1

Nm
Z(fN ,Φa)

Using the weighted local Kac-Rice formula [4, Thm.6.4] we deduce

E
[
Z(fN ,Φa)

]
=

∫
Rn

fN (x)E
[
|detHessΦa |

∣∣∇Φa(x) = 0
]
p∇Φa(0)︸ ︷︷ ︸

=ρa(x)

dx.

In the proof of (2.16) we showed that the density ρa(x) is constant, ρa(x) = ρa(0) = Cm(a).
Hence

E
[
Z(fN ,Φa)

]
= Cm(a)

∫
Rm

fN (x)dx
x→Ny
= NmCm(a)

∫
Rm

f(y)dy.

We have to prove that

1

Nm

(
Z(fN ,Φa)− E

[
Z(f,Φa)

] )
→ 0.

Using the decomposition f = f+−f− we see that it suffices to consider only the case f ≥ 0.
By replacing f(x) with a translate x 7→ f(x−y), we can assume that supp f ⊂ [0, R]m, for
some R > 0 sufficiently large. Set B = [0, R]m. Then supp fN ⊂ N ·B.

We use the same strategy as in the proof of Theorem 1.1. For ℓ⃗ ∈ IMN we set

XN
ℓ⃗
(f) = ZB

ℓ⃗
(fN ,Φa) =

∑
∇Φa(x)=0,

x∈B
ℓ⃗

fN (x).

Since supp fN ⊂ NB we deduce Then

YN (f) =
1

Nm

∑
ℓ⃗∈ImN

XN
ℓ⃗
(f)

︸ ︷︷ ︸
=:SN (f)

a.s.,

and ∑
ℓ⃗∈ImN

E
[
XN

ℓ⃗
(f)

]
= E

[
Z(fN ,Φa)

]
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so tha

Var
[
YN (f)

]
=

1

N2m
Var

[
SN (f)

]
=

1

N2m

∑
k⃗,ℓ⃗∈ImN

Cov
[
XN

k⃗
(f), XN

ℓ⃗
(f)

]
.

Hence we have to prove that

Var
[
SN (f)

]
= O

(
Nm

)
as N → ∞.

Lemma 5.1. For any m ∈ N and any p > m there exists a constant Cp = Cp(a,m, f),

independent of N such that, for any N > 0 and any k⃗, ℓ⃗ ∈ ImN , we have∣∣ Cov [XN
k⃗
(f), XN

ℓ⃗
(f)

] ∣∣ ≤ C
(
1 +

∣∣ k⃗ − ℓ⃗
∣∣
∞
)−p

. (5.1)

Proof. For any Morse function Ψ : RN → R, any Borel subset S ⊂ Rn and any nonnegative
continuous function g ∈ C0

cpt(Rm) → 0 we set

ZS(g) = ZS

(
g,Ψ

)
=

∑
∇Ψ(x)=0,

x∈S

g(x)

Then XN
k⃗
(f) = ZB

k⃗

(
fN ,Φa

)
. Define

f⊠2
N : Rm × Rm → R, f⊠2

N (x,y) = fN (x)fN (y).

As in the proof of Theorem 1.1 we choose an independent copy Ψa of Φa and we define

Φ̂, Φ̃ : Rm × Rm → R, Φ̂(x,y) = Φa(x) + Φa(y), Φ̃(x,y) = Φa(x) + Ψa(y).

Note that for any cube C = [a, b]m ⊂ NB we have

ZC(fN ,Φa)
2 = ZC2

∗

(
f⊠2
N , Φ̂

)
+ ZC

(
f2
N ,Φa

)
,

where

C2
∗ =

{
(x,y) ∈ C2; x ̸= y

}
.

Note that

E
[
ZC

(
f2
N

) ]
= Cm(a)

∫
C
f2
N (x)dx ≤ Cm(a)∥f∥C0 vol

[
C
]
.

Using the weighted local Kac-Rice formula we deduce

E
[
ZC2

∗

(
f⊠2
N , Φ̂

) ]
=

∫
C2

∗

ρ̂(x,y)f(x)f(y)dy),

where ρ̂ is defined in (4.4). On the other hand, as shown in [7, App.1] or [9, Sec.1.2] there
exsts K > 0 depending only on a and m such that

∀x ̸= y,
∣∣ ρ̂(x,y) ∣∣ < Kmax

(
1,
∣∣x− y

∣∣2−m )
.∣∣E[ZC2

∗

(
f⊠2
N , Φ̂

) ] ∣∣ ≤ K∥f∥2C0

∫
C2

∣∣x− y
∣∣2−m

dxdy ≤ K∥f∥2C0 vol
[
C
]2
,

where K denotes a positive constant that depends only on a and m. We deduce that

∀k⃗ ∈ ImN : Var
[
XN

ℓ⃗
(f)

]
= Var

[
ZB

ℓ⃗
(fN )

]
≤ K

If B
k⃗
∩B

ℓ⃗
= ∅, k⃗, ℓ⃗ ∈ ImN and p > m, then with ρ̃ defined in (4.5) we have

Cov
[
XN

k⃗
(f), XN

ℓ⃗
(f)

]
= Cov

[
ZB

k⃗
(fN ), ZB

ℓ⃗
(fN )

]
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=

∫
B

k⃗
×B

ℓ⃗

(
ρ̂(x,y)− ρ̃(x,y)

)
fN (x)fN (y)dxdy

≤ sup
(x,y)∈B

k⃗
×B

ℓ⃗

∣∣ ρ̂(x,y)− ρ̃(x,y)
∣∣ · ∥f∥2C0 vol

[
B

k⃗
×B

ℓ⃗

]
(4.16)

≤ Kp

(
1 +

∣∣ k⃗ − ℓ⃗
∣∣
∞
)−p∥f∥2C0 vol

[
B
]2
,

where Kp is a positive constant that depends only on a, m and p and it is independent of
N . ⊓⊔

The estimate (1.5) now follows from Lemmas 3.3 and 5.1 . ⊓⊔

Remark 5.2. Set YN (f) = YN (f)− E
[
YN (f)

]
. We proved that

E
[
YN (f)2

∣∣ = O(N−m), as N → ∞.

This implies a.s. convergence for m > 1 since
∑

N>0N
−m < ∞ for m > 1. This argument

fails in dimension m = 1. In [2, 8] the authors prove that when m = 1

E
[
YN (f)4

∣∣ = O(N−2), as N → ∞.

This estimate implies a.s.-convergence. ⊓⊔
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