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Abstract. We verify the conjecture formulated in [36] for suspension singu-
larities of type g(x, y, z) = f(x, y) + zn, where f is an irreducible plane curve
singularity. More precisely, we prove that the modified Seiberg–Witten invari-
ant of the link M of g, associated with the canonical spinc structure, equals
−σ(F )/8, where σ(F ) is the signature of the Milnor fiber of g. In order to
do this, we prove general splicing formulae for the Casson–Walker invariant
and for the sign-refined Reidemeister–Turaev torsion. These provide results
for some cyclic covers as well. As a by-product, we compute all the relevant
invariants of M in terms of the Newton pairs of f and the integer n.
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More than four decades ago D. Mumford proved a very surprising result: if a point
on a normal complex surface looks topologically like a smooth point then it must
be analytically so. Soon after this, Brieskorn showed that such a phenomenon can
only take place in complex dimension two. Since then a large number of facts
suggesting an unusual rigidity of certain families of surface singularities have been
discovered. The present paper has a twofold goal. The first and broader goal is
to advertise some of these exotic rigidity phenomena, and to illustrate how tech-
niques which became available only during the last decade can be used to unify
and explain a substantial number of apparently disparate results. The second and
more focused goal is to establish new results as important steps of an extensive
program concentrating on this rigidity property. Accordingly, the article has two
“introductions”. The first one, Section 1, states the main new result (which was
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the motivation of the article), lists some of the key points of its proof, and guides
the reader through the sections of the article. Then Section 2, at a more introduc-
tory level, gives definitions and historical remarks. (We let the reader decide in
which order to read them.)

1. Introduction

This article is a natural continuation of [36] and [37], and it is closely related
to [30, 31, 32]. In [36], the authors formulated a very general conjecture which
connects the topological and analytical invariants of a complex normal surface
singularity whose link is a rational homology sphere.

Even if we restrict ourselves to the case of hypersurface singularities, the
conjecture is still highly non-trivial. The “simplified” version for this case reads as
follows.

1.1. Conjecture ([36]). Let g : (C3, 0) → (C, 0) be a complex analytic germ which
defines an isolated hypersurface singularity. Assume that its link M is a rational
homology sphere. Denote by sw

0
M (σcan) the modified Seiberg–Witten invariant of

M associated with the canonical spinc structure σcan (cf. 2.4). Moreover, let σ(F )
be the signature of the Milnor fiber F of g (cf. 2.1). Then

−sw
0
M (σcan) = σ(F )/8. (1)

The goal of the present paper is to verify this conjecture for suspension hypersur-
face singularities. More precisely, in 7.15 we prove the following.

1.2. Theorem. Let f : (C2, 0) → (C, 0) be an irreducible plane curve singularity.
Fix an arbitrary positive integer n such that the link M of the suspension singular-
ity g(x, y, z) := f(x, y)+zn is a rational homology sphere (cf. 7.2(c)). Then 1.1(1)
holds.

The numerical identity 1.1(1) covers a very deep qualitative analytic-rigidity
phenomenon.

Above, a certain realization of the Seiberg–Witten invariant will be used,
namely the linear combination sw

TCW
M (σcan) := TM,σcan

(1)−λW(M)/2 of the sign-
defined Reidemeister–Turaev torsion (associated with a “canonical” spinc structure
σcan) and the Casson–Walker invariant (see 2.4). In order to prove the theorem,
we will establish different splicing formulas for these topological invariants, facts
with strong independent interest.

1.3. A few words about the proof and the organization of the article. If M is the
link of g = f+zn (as in 1.2), then M has a natural splice decomposition into Seifert
varieties of type Σ(p, a, m). Moreover, in [31, 3.2], the first author established an
additivity formula for σ(F ) compatible with the geometry of this decomposition.
On the other hand, for any Brieskorn singularity (x, y, z) 7→ xp + ya + zm (whose
link is Σ(p, a, m)) the conjectured identity is valid by [36, 37]. Hence it was natural
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to carry out the proof by proving an additivity result for sw
TCW
M (σcan) with respect

to the splice decomposition of M into Seifert varieties.

This additivity result is proved in 7.14 (as an outcome of all the preparatory
results of the previous sections), but its proof contains some surprising steps.

Our original plan was the following. First, we identify the splicing data of M .
Then, for such splicing data, we establish splicing formulas for the Casson–Walker
invariant and for the Reidemeister–Turaev sign-refined torsion with the hope that
we can do this in a purely topological setup without any additional reference to
our special analytic context. For the Casson–Walker invariant this program was
straightforward, thanks to the results of Fujita [13] and Lescop [22] (see Section 4).
But when dealing with the torsion we encountered some serious difficulties (and
we finally had to return back to singularities for some additional information).

The torsion computations require the explicit description of the supports
of all the relevant characters of H1(M, Z), and then the computation of some
sophisticated Fourier–Dedekind sums. The computation turned out to be feasible
because these sums are not arbitrary. They have two very subtle special features
which follow from various properties of irreducible plane curve singularities. The
first one is a numerical inequality (see 6.1(6)) measuring some special algebraicity
property. The second (new) property is the alternating behavior of the coefficients
of their Alexander polynomials (see 6.2).

In Section 5 we establish different splicing formulas for sw
TCW
M (σcan), and

we show the limits of a possible additivity. We even introduce a new invariant
D which measures the non-additivity property of sw

TCW
M (σcan) with respect to

(some) splicing (see e.g. 5.8) or (some) cyclic covers (see 5.10). This invariant
vanishes in the presence of the alternating property of the Alexander polynomial
involved (but not in general; see e.g. Example 5.12).

This shows clearly (and rather surprisingly) that the behavior of
sw

TCW
M (σcan) with respect to splicing and cyclic covers (constructions topological

in nature) definitely prefers some special algebraic situations. For more comments,
see 5.11, 6.4 and 7.8.

Section 6 contains the needed results about irreducible plane curve singular-
ities and the Algebraic Lemma used in the summation of the Fourier–Dedekind
sums mentioned above.

In Section 7 we provide a list of properties of the link of f +zn. Here basically
we use almost all the partial results proved in the previous sections. Most of the
formulae are formulated as inductive identities with respect to the number of
Newton pairs of f .

Appendix A illustrates some of the key formulas and invariant computations
on a (rather) representative example. Appendix B contains an index of notations
in order to help the reader.

1.3.1. The intention of the authors was to make a self-explanatory presentation,
at least of the proofs of the main new results (although, in many places, even if the
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corresponding statement is deducible from the sequence of statements of the art-
icle, we also provide additional references). Nevertheless, we use a few important
results from the literature including the following: Fujita’s splicing formula (cf.
4.3), Walker–Lescop surgery formula (cf. 4.4), the authors’ result about the pre-
sentation of the sign-refined Reidemeister–Turaev torsion from the plumbing graph
(cf. 3.7), and the combinatorial algorithm which provides the plumbing graph of
cyclic coverings (cf. 7.2(b) and 7.3). The interested reader can find the correspond-
ing proofs at the indicated places. Some familiarity with Seifert 3-manifolds and
plumbing and splicing diagrams (of algebraic links) may also help (cf. 3.4 and 3.5).

For more details and discussions about the invariants involved see [36]. For
different properties of (hypersurface) singularities, the reader may consult [2].

1.4. Notation. All the homology groups with unspecified coefficients are defined
over the integers.

2. Background and historical perspective

To help the reader place the results of this paper in the proper context we de-
cided to devote an entire section to the notions and concepts which play a central
role in the study of surface singularities, and to highlight some of the historical
developments which best explain the significance of Conjecture 1.1.

Our guiding conjecture deals with complex analytic normal surface singu-
larities. These are two-dimensional germs of normal analytic spaces: they can be
represented in some smooth germ (CN , 0) as the zero set of some local analytic
germs fi = 0 for a finite index set i ∈ I. If |I| = N − 2 then (X, 0) is called a
complete intersection; if N = 3 (hence |I| = 1) then (X, 0) is a hypersurface singu-
larity. In any case, they have an isolated singularity at the origin. If the analytic
line bundle of analytic 2-forms above the regular part X \ {0} (resp. one of its
powers) is analytically trivial, we say that (X, 0) is Gorenstein (respectively Q-
Gorenstein). Isolated complete intersections (in particular, isolated hypersurface
singularities) are Gorenstein.

We prefer to separate the invariants of such a singularity in three cate-
gories (with rather strong relationships between them): topological, analytical and
smoothing invariants.

2.1. Some invariants. In general the analytic invariants are provided by analytic
or algebraic methods from the local ring of analytic functions of (X, 0). In this way
is defined, e.g., the multiplicity or the embedding dimension (the smallest N for
which (X, 0) ⊂ (CN , 0) is realizable) (these will not be used in the present paper;
for more details see e.g. [33]).

Another way to obtain analytic invariants is by sheaf cohomology associated
with some “standard” sheaves living in one of the resolutions of (X, 0). More

precisely, one fixes a regular map π : X̃ → X with X̃ smooth and π isomorphic
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above X \ {0} (where X is a small Stein representative of (X, 0)). Then X̃ and
its structure sheaf OX̃ are a rich source of invariants. For example, the geometric

genus pg of (X, 0) is defined as dimC H1(X̃,OX̃).

From a topological point of view, any normal two-dimensional analytic singu-
larity (X, 0) is characterized by its link M defined as follows. If (X, 0) ⊂ (CN , 0)
is as above, then M = X ∩Sǫ, where Sǫ is a sphere with a sufficiently small radius
centered at the origin. The intersection is independent of all the choices, and it is
an oriented 3-manifold. The germ (X, 0) is locally homeomorphic to the real cone
over M .

We say that M is an integral (resp. rational) homology sphere if H1(M, Z) = 0
(resp. H1(M, Q) = 0).

In general, it is rather difficult to relate topological invariants (e.g. π1(M), or
recently defined highly non-trivial invariants of M provided by algebraic topology,
gauge theory or quantum field theory) to analytic invariants provided by sheaf
theory or algebraic/analytic geometry. The most important bridge between them
is the plumbing graph of M . (For definition, see 3.4; very briefly: a plumbing graph
is a decorated graph such that each vertex v has two decorations gv and ev. From
such a graph one can construct an oriented plumbed 3-manifold as follows: for
each vertex one considers an S1-bundle Pv with Euler number ev over a Riemann
surface Ev of genus gv. Corresponding to each edge connecting v and w, one glues
Pv and Pw by a simple surgery; see e.g. [41].)

Indeed, not every 3-manifold can be realized as the link of a singularity: by
[14], analytic links are exactly those plumbed manifolds which are associated with
negative definite plumbing graphs (cf. 3.4).

On the other hand, from any resolution π one can read the combinatorial data
about its resolution graph [20], i.e. the data describing the topology and combina-

torics of the exceptional divisor E := π−1(0) and its topological embedding in X̃;

or equivalently, the data from which one can recover topologically the space X̃.
In fact, this data is completely codified by the negative definite intersection ma-
trix (Ev, Ew)X̃ , where {Ev}

s
v=1 are the irreducible components of E, and by the

genera gv of the components Ev. (M is a rational homology sphere if and only if
each gv is 0 and the graph is a tree.)

The point is that the graph of any “good” resolution (i.e. of a resolution
whose exceptional divisor E is a normal crossing divisor) can be considered as a
possible (negative definite) plumbing graph of M . (The irreducible components of
E correspond to the vertices of the graph, the decoration gv is clear, while ev is
the Euler number (Ev, Ev)X̃ of the normal bundle of Ev in X̃. The vertices v and
w are connected by #Ev ∩ Ew = (Ev, Ew)X̃ edges.)

Moreover, by a result of Neumann [40], from M itself one can recover all the
possible resolution graphs of (X, 0) (which are related by simple blow up/blow
down modifications). In particular, any resolution (or plumbing) graph carries the
same information as M . A property of (X, 0) will be called topological if it can be
determined from M , or equivalently, from any of these graphs.
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For example, the following numerical invariant will appear in the next discus-
sion. Assume that the resolution is good, and consider the unique rational cycle
(supported by E and associated with the “canonical divisor”) K =

∑

v rvEv which
satisfies (the “adjunction relations”) (K, Ew)X̃ = −(Ew, Ew)X̃ − 2 + 2gw for any
1 ≤ w ≤ s. Write K2 := (K, K)X̃ . Then the rational number K2+s is independent
of the choice of the resolution, it is an invariant of M . (In fact, one of the goals of
the next program is to express any topological invariant in terms of the graph, or
in terms of the intersection matrix; more complicated examples will be considered
in the body of the paper.)

Finally, we say a few words about smoothing invariants. By a smoothing of
(X, 0) we mean a proper flat analytic germ f : (X , 0) → (C, 0) with an isomorphism
(f−1(0), 0) → (X, 0) (where (X , 0) has at most an isolated singularity at 0). If X is
a sufficiently small contractible Stein representative of (X , 0), then for sufficiently
small η (0 < |η| ≪ 1) the fiber F := f−1(η)∩X is smooth, and its diffeomorphism
type is independent of the choices. It is a connected oriented real 4-manifold with
boundary ∂F which can be identified with the link M of (X, 0). It is called the
Milnor fiber associated with the smoothing. In general not every (X, 0) has any
smoothings, and even if it has some, the Milnor fiber F depends essentially on
the choice of the smoothing. In the case of complete intersections (in particular,
of hypersurfaces) there is only one (semi-universal) smoothing component, hence
F depends only on (X, 0).

There are some standard notations: µ(F ) = rankH2(F, Z) (called the Mil-
nor number of the smoothing); ( , )F = the intersection form of F on H2(F, Z);
(µ0, µ+, µ−), the Sylvester invariant of ( , )F ; and finally σ(F ) := µ+ − µ−, the
signature of F . (If M = ∂F is a rational homology sphere then µ0 = 0.)

2.2. Question: Which invariants are topological? A very intriguing issue, which
has generated intense research efforts, is the possibility of expressing the analytic
invariants of (X, 0) (like the geometric genus pg, multiplicity, etc.) or the smoothing
invariants (if they exist, like the signature σ(F ) of the Milnor fiber F ) in terms of
the topology of M .

2.3. A short historical survey. M. Artin proved in [3, 4] that the rational singular-
ities (i.e. the vanishing of pg) can be characterized completely from the plumbing
graph of M . In [19], H. Laufer extended Artin’s results to minimally elliptic sin-
gularities, showing that Gorenstein singularities with pg = 1 can be characterized
topologically. Additionally, he noticed that the program breaks down for more
complicated singularities (see also the comments in [36] and [29]). On the other
hand, the first author noticed in [29] that Laufer’s counterexamples do not signal
the end of the program. He conjectured that if we restrict ourselves to the case of
those Gorenstein singularities whose links are rational homology spheres then pg

is topological. In fact, even before [29], the question on the topological nature of
pg was formulated in [42, 3.2] for Gorenstein singularities whose links are integral
homology spheres.
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The topological nature of pg for elliptic singularities with rational homology
sphere links was shown explicitly in [29] (partially based on some results of S. S.-T.
Yau [51]).

For Gorenstein singularities which have a smoothing (with Milnor fiber F ),
the topological invariance of pg can be reformulated in terms of σ(F ) and/or µ(F ).
Indeed, via some results of Laufer, Durfee, Seade, Wahl and Steenbrink, any of
pg, σ(F ) and µ(F ) determines the remaining two modulo K2 + s (for the precise
identities see e.g. [25] or [36]). For example, the identity which connects pg and
σ(F ) is

8pg + σ(F ) + K2 + s = 0. (2)

Via this identity the following facts about the signature σ(F ) can be transformed
into non-trivial properties of pg.

Fintushel and Stern proved in [12] that for a hypersurface Brieskorn sin-
gularity whose link is an integral homology sphere, the Casson invariant λ(M)
of the link M equals −#R(M)/2, where #R(M) is the number of conjugacy
classes of irreducible SU(2)-representations of π1(M). It turns out that this num-
ber equals σ(F )/8 as well (a fact conjectured by Neumann and Wahl). This result
was generalized by Neumann and Wahl in [42]. They proved the same statement for
all Brieskorn–Hamm complete intersections and suspensions of irreducible plane
curve singularities (with the same assumption about the link). Moreover, they
conjectured the identity λ(M) = σ(F )/8 for any isolated complete intersection
singularity whose link is an integral homology sphere.

In [36] the authors extended the above conjecture for smoothing of Gorenstein
singularities with rational homology sphere link, in such a way that the conjecture
incorporates the previous conjecture and results about the geometric genus as well.
Here the Casson invariant λ(M) is replaced by a certain Seiberg–Witten invariant
sw

0
M (σcan) of the link associated with the canonical spinc structure of M . (In the

next subsection we provide more details about the definition and properties of
the topological invariant sw

0
M (σcan); right now we only mention that for integral

homology sphere links it equals −λ(M).)

In fact, the conjecture in [36] is more general. A part of it says that for any
Q-Gorenstein singularity whose link is a rational homology sphere, one has

8pg − 8 · sw0
M (σcan) + K2 + s = 0. (3)

Notice that (in the presence of a smoothing and of the Gorenstein property, e.g.
for any hypersurface singularity) (3) via (2) is exactly (1). We also notice that
by extending the conjecture to the family of Q-Gorenstein singularities (many of
which are not smoothable) we also incorporate important classes like the rational
singularities or the singularities which admit a good C∗-action (and have rational
homology sphere link).

The identity (3) was verified in [36] for cyclic quotient singularities, Brieskorn–
Hamm complete intersections and some rational and minimally elliptic singulari-
ties. [37] contains the case when (X, 0) has a good C∗-action.
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To end this historical presentation, we mention that the theory of suspension
hypersurface singularities also has its own long history. This class (together with
the weighted-homogeneous singularities) serves as an important “testing and ex-
emplifying” family for various properties and conjectures. For more information,
the reader is invited to check [31, 32] and the survey paper [30], and the references
listed in these articles. See also [28] for the topological behavior of some other
analytic invariants (cf. 7.8(1)) of suspension singularities.

The recent survey [34] may help the reader to obtain a more global picture
and deeper understanding of the main question 2.2 and also about more recent
developments. See also [26].

2.4. The Seiberg–Witten invariant. If M is a rational homology 3-sphere with
H := H1(M, Z), then the set Spinc(M) of spinc structures of M is an H-torsor. If
M is the link of a normal surface singularity (or, equivalently, if M has a plumbing
representation with a negative definite intersection matrix), then Spinc(M) has
a distinguished element σcan, called the canonical spinc structure (cf. [36]). Its
definition is the following.

We fix a resolution X̃ → X. The spinc structures on X̃ are classified by
(the so-called characteristic) elements k of H2(X̃, Z) for which k(Ej) + (Ej , Ej)X̃

is even for any j. The correspondence is given by the first Chern class: for any
σ ∈ Spinc(X̃), we denote by Sσ the associated bundle of complex spinors, and we

set k := c1(Sσ) ∈ H2(X̃, Z).

Notice that −K (via Poincaré duality) can be identified with such an element,

hence it determines a spinc structure on X̃. This induces on M = ∂X̃ the spinc

structure σcan. It can be verified that it is independent of the choice of X̃. Since
K is determined combinatorially from the graph, it follows that the identification
of σcan ∈ Spinc(M) is a topological procedure.

To describe the Seiberg–Witten invariants one has to consider additional
geometric data belonging to the space of parameters

P = {u = (g, η) : g = Riemann metric, η = closed 2-form}.

Then for each spinc structure σ on M one defines the (σ, g, η)-Seiberg–Witten
monopoles, as solutions of some non-linear elliptic equations. For a generic param-
eter u, the Seiberg–Witten invariant swM (σ, u) is the signed monopole count. This
integer depends on the choice of the parameter u and thus it is not a topological
invariant. To obtain an invariant of M , one needs to alter this monopole count by
the Kreck–Stolz invariant KSM (σ, u) (associated with the data (σ, u)) (cf. [24] or
see [18] for the original “spin version”). Then, by [8, 24, 27], the rational number

1

8
KSM (σ, u) + swM (σ, u)

is independent of u and thus it is a topological invariant of the pair (M, σ). We
denote this modified Seiberg–Witten invariant by sw

0
M (σ).
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2.4.1. In [36], for some very special singularity links (lens spaces and some Seifert
3-manifolds) the identity (3) was verified using this analytic definition of sw

0
M (σ).

But, in general, it is very difficult to compute sw
0
M (σ) using this definition (and

there are only sporadic results in this direction).
In the theory of Seiberg–Witten invariants there is an intense effort to re-

place the present construction/definition of the modified Seiberg–Witten invariants
with a different one, which allows easier computations (and even is topological—
or, in the case of plumbed manifolds, combinatorial—in nature). Presently, there
exist a few candidates. One of them is sw

TCW
M (σ) provided by the sign-refined

Reidemeister–Turaev torsion (normalized by the Casson–Walker invariant), see
below; another is provided by the Ozsváth-Szabó theory (for possible connections,
see [44] and [35]). In particular, the above conjecture can be transformed into sim-
ilar conjectures where sw

0
M (σ) is replaced by any candidate sw

∗
M (σ) (even if at

this moment the identity sw
0
M (σ) = sw

∗
M (σ) is not proven yet).

In the present paper we will consider sw
TCW
M (σ).

2.4.2. Turaev’s torsion function and the Casson–Walker invariant. For any spinc

structure σ on M , we denote by

TM,σ =
∑

h∈H

TM,σ(h) h ∈ Q[H]

the sign-refined Reidemeister–Turaev torsion associated with σ (for its detailed
description, see [47]). We think of TM,σ as a function H → Q given by h 7→
TM,σ(h). The augmentation map aug : Q[H] → Q is defined by

∑

ah h 7→
∑

ah.
It is known that aug(TM,σ) = 0.

Denote the Casson–Walker invariant of M by λW(M) [49]. It is related to
Lescop’s normalization λ(M) [22, 4.7] by λW(M) = 2λ(M)/|H|. One defines

sw
TCW
M (σ) := TM,σ(1) − λW(M)/2. (4)

This will be the Seiberg–Witten invariant considered in this article. More precisely,
what we really prove is the following:

2.4.3. Theorem. If g is a suspension singularity as in 1.2 then

−sw
TCW
M (σcan) = σ(F )/8. (5)

We mention that the identity (5) and its proof are completely independent of the
(conjectural) identification sw

0
M (σ) = sw

TCW
M (σ) (and of the “classical” Seiberg–

Witten theory).
In 3.7 we present a combinatorial formula for TM,σ(1) in terms of the plumb-

ing graph of M (proved in [36]). Those readers who are more interested in sin-
gularity theory, and do not wish to be immersed in Turaev’s theory at the first
reading, can take the topological invariant TM,σcan

as the invariant which is “de-
fined” by those combinatorial relations 3.7. (In fact, those formulas resonate very
much—although they are more complex—with A’Campo type formulas for the
zeta function of the monodromy actions, well known in singularity theory.)
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3. Topological preliminaries

3.1. Oriented knots in rational homology spheres. Let M be an oriented 3-man-
ifold which is a rational homology sphere. Fix an oriented knot K ⊂ M , denote
by T (K) a small tubular neighborhood of K in M , and let ∂T (K) be its oriented
boundary with its natural orientation. The natural oriented meridian of K, sit-
uated in ∂T (K), is denoted by m. We fix an oriented parallel ℓ in ∂T (K) (i.e.
ℓ ∼ K in H1(T (K))). If 〈 , 〉 denotes the intersection form in H1(∂T (K)), then
〈m, ℓ〉 = 1 (cf. e.g. Lescop’s book [22, p. 104]; we will use the same notations m
and ℓ for some geometric realizations of the meridian and parallel as primitive
simple curves, respectively for their homology classes in H1(∂T (K))).

Obviously, the choice of ℓ is not unique. In all our applications, ℓ will be
characterized by some precise additional geometric construction.

Assume that the order of the homology class of K in H1(M) is o > 0.
Consider an oriented surface FoK with boundary oK, and take the intersection
λ := FoK ∩ ∂T (K). Then λ is called the longitude of K. The homology class
of λ in H1(∂T (K)) can be represented as λ = oℓ + km for some integer k. Set
gcd(o, |k|) = δ > 0. Then λ can be represented in ∂T (K) as δ primitive torus
curves of type (o/δ, k/δ) with respect to ℓ and m.

3.2. Dehn fillings. Let T (K)◦ be the interior of T (K). For any homology class
a ∈ H1(∂T (K)) which can be represented by a primitive simple closed curve in
∂T (K), one defines the Dehn filling of M \ T (K)◦ along a by

(M \ T (K)◦)(a) = M \ T (K)◦ ∐
f

S1 × D2,

where f : ∂(S1 × D2) → ∂T (K) is a diffeomorphism which sends {∗} × ∂D2 to a
curve representing a.

3.3. Linking numbers. Consider two disjoint oriented knots K, L ⊂ M . Fix a
Seifert surface FoK of oK (cf. 3.1) and define the linking number LkM (K, L) ∈ Q
by the “rational” intersection (FoK ·L)/o. In fact, LkM (K, ·) : H1(M \K, Q) → Q
is a well defined homeomorphism and LkM (K, L) = LkM (L, K). For any oriented
knot L on ∂T (K) one has (see e.g. [22, 6.2.B])

LkM (L, K) = 〈L, λ〉/o. (1)

For any oriented knot K ⊂ M one has the obvious exact sequence

0 → Z
α

−→ H1(M \ T (K))
j

−→ H1(M) → 0, (2)

where α(1Z) = m. If K ⊂ M is homologically trivial then this sequence splits.
Indeed, let φ be the restriction of LkM (K, ·) to H1(M \ K) = H1(M \ T (K)).
Then φ has integer values and φ◦α = 1Z. This provides automatically a morphism
s : H1(M) → H1(M \T (K)) such that j ◦ s = 1 and α ◦φ+ s ◦ j = 1; in particular
with φ ◦ s = 0 too. In fact, s(H1(M)) = Tors H1(M \ T (K)). Moreover, under the
same assumption o = 1, one has the isomorphisms

H2(M, K)
∂
→ H1(K) = Z and H1(M) → H1(M, K). (3)
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Sometimes, in order to simplify the notations, we write H for the group
H1(M).

The finite group H carries a natural symmetric bilinear form bM : H⊗2 →
Q/Z defined by bM ([K], [L]) = LkM (K, L) (mod Z), where L and K are two

representatives with K ∩ L = ∅. If Ĥ denotes the Pontryagin dual Hom(H, S1)
of H, and exp(r) := e2πir for any rational number r, then [K] 7→ exp(bM ([K], ·))

is an isomorphism H → Ĥ .

3.4. (M, K) represented by plumbing. The main application of the present article
involves algebraic links (M, K) which can be represented by plumbing. We recall
the notations briefly (for more details, see e.g. [41] or [36]).

We will denote by Γ(M, K) the plumbing graph of a link K ⊂ M . The vertices
v ∈ V are decorated by the Euler numbers ev (of the S1-bundles over Ev ≈ S2 used
in the plumbing construction). The components of the link K are represented by
arrows in Γ(M, K): if an arrow is attached to the vertex v then the corresponding
component of K is a fixed fiber of the S1-bundle over Ev. (We think about an
arrow as an arrowhead connected to v by an edge.) If we delete the arrows then
we obtain a plumbing graph Γ(M) of M . Let δv (resp. δ̄v) be the degree (i.e. the
number of incident edges) of the vertex v in Γ(M) (resp. in Γ(M, K)). Evidently
δ̄v − δv is exactly the number of arrows supported by the vertex v.

Let {Iuv}u,v∈V be the intersection matrix associated with Γ; i.e. Iuu = ev,
and for u 6= v the entry Iuv = 1 or 0 according as u and v are connected or not
in Γ. Since M is a rational homology sphere, I is non-degenerate. In fact

|det(I)| = |H|. (4)

The main property of algebraic links (M, K) is that they can be represented by a
plumbing by a connected plumbing graph Γ whose intersection matrix I is negative
definite [20]. In fact, if M is a rational homology sphere, then Γ is a tree.

The generic oriented fiber of the S1-bundle over Ev is denoted by gv, and we
use the same notation for its homology class in H1(M). By the above discussion,
if u 6= v then LkM (gu, gv) is well defined. If u = v then we write LkM (gu, gu) for
LkM (gu, g′u) where gu and g′u are two different fibers of the S1-bundle over Ev.

For any fixed vertex u ∈ V , we denote by bu the column (base) vector with
entry 1 in place u and zero otherwise. We define the column vector w(u) (associated
with the knot gu ⊂ M and its order o(u)) as the solution of the (non-degenerate)
linear system I · w(u) = −o(u)bu. The entries {wv(u)}v∈V of w(u) are called the
weights associated with gu.

The following fact is well known, but for the convenience of the reader we
provide all the details. Below we denote the vectors (cycles) by x =

∑

u xubu, we
write x ≥ 0 if xu ≥ 0 for any u, and we denote the support {u : xu 6= 0} of x by |x|.

3.4.1. Lemma. Assume that Γ is connected and I negative definite. Then:

(a) If x1,x2 ≥ 0 and |x1| ∩ |x2| = ∅, then x
t
1Ix2 ≥ 0.

(b) If Ix ≥ 0, then x ≤ 0. Additionally, if x 6= 0, then xu < 0 for any u.
(c) I−1

uv < 0 for any u, v.
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Proof. (a) follows from the fact that any entry of I off the diagonal is non-negative.
For (b), assume that x = x1 − x2, where x1 > 0, x2 ≥ 0 and their supports are
disjoint. Then 0 ≤ x

t
1Ix = x

t
1Ix1−x

t
1Ix2 ≤ x

t
1Ix1 by (a), a fact which contradicts

the negative definiteness of I. Assume now that x 6= 0 but its support is not
maximal. Then, since Γ is connected, there is a vertex w 6∈ |x| such that w is
connected by an edge to a vertex v ∈ |x|. Then, from the choice of w, and (a),
b

t
wIx < 0. On the other hand, since Ix ≥ 0, we get b

t
wIx ≥ 0, a contradiction.

For (c) apply (b) for x = I−1
bu. �

3.4.2. Corollary. Assume that Γ is connected and I negative definite. Then the
inverse matrix I−1 of I, the set of weights {wv(u)}v∈V , and the linking pairing
LkM satisfy:

−I−1
uv =

wv(u)

o(u)
= LkM (gu, gv) for any u, v ∈ V . (5)

In particular, wv(u) is a positive integer for any u and v.

Proof. The first identity follows from the definition of w(u); we hint at possible
proof for the second one. Fix u, and take some positive integer t such that twv(u)
is an integer for any v. Then the “multilink” to(u)gu ⊂ M is analytic (see [14], or
[11, 24.1]) with a possible embedded resolution graph Γ(M, to(u)gu). This means
that there exist a space germ (X, 0) and a map germ f : (X, 0) → (C, 0) such that
the link of the pair (X, f−1(0))—where f−1(0) is counted with its multiplicity—
is (M, to(u)gu). By Milnor’s fibration theorem Γ(M, to(u)gu) is fibrable with a

fiber F which satisfies ∂F = to(u)gu. Let X̃ be a good resolution of (X, 0) as

above (with ∂X̃ = M). Then, in fact, the homology class of F in H2(X̃, ∂X̃) is
to(u)Du +

∑

v w̄vEv for some integers {w̄v}v, where Du is a transversal disc to Eu

with ∂Du = gu. On the other hand, since F is given by an equation, it defines a
principal divisor, hence F ·Ew = 0 for any w. This reads to(u)δuw +

∑

v w̄vIvw = 0
for any w. In vector notation, Iw̄ + to(u)bu = 0. Since I is non-degenerate, this

shows that w̄ = tw(u). Hence F ·gv (in M) = F ·Dv (in X̃) = w̄v = twv(u), which
proves (5). (In fact, a posteriori, we see that t = 1 also works.) Compare also with
[11, 11.1] and [9, A31]. �

3.5. (M, K) represented by splice diagram. If M is an integral homology sphere,
and (M, K) has a plumbing representation, then there is an equivalent graph-
codification of (M, K) in terms of the splice (or Eisenbud–Neumann) diagram (for
details see [11]).

The splice diagram preserves the “shape” of the plumbing graph (e.g. there
is a one-to-one correspondence between those vertices v with δv 6= 2 of the splice,
respectively of the plumbing graphs), but in the splice diagram one collapses into
an edge each string of the plumbing graph. Moreover, the decorations are also
different. In the splice diagram, each vertex has a sign ǫ = ±1, which in all our
cases will be ǫ = +1, hence we omit them. Moreover, if an end of an edge is
attached to a vertex v with δv ≥ 3, then it has a positive integer as its decoration.
The arrows have the same significance.



Vol. 11 (2005) Seiberg–Witten invariants and surface singularities 411

One of the big advantages of the splice diagram is that it codifies in an ideal
way the splicing decomposition of M into Seifert pieces. In fact, the numerical
decorations are exactly the Seifert invariants of the corresponding Seifert splice-
components.

Therefore, in some cases it is much easier and more suggestive to use them.
(Nevertheless, we will use them only in those cases when we really want to empha-
size this principle, e.g. in the proof of 5.10, or when it is incomparably easier to
describe a construction with them, e.g. in 5.12.) The reader is invited to consult
the book of Eisenbud and Neumann [11] for the needed properties: the criterion
which guarantees that (M, K) is algebraic is given there in 9.4; the equivalence
between the splice and plumbing graphs is described in Sections 20–22; the splicing
construction appears in Section 8.

3.6. The Alexander polynomial. Assume that K is a homologically trivial oriented
knot in M . Let V be an Alexander matrix of K ⊂ M , and V ∗ its transposed (cf.
[22, p. 26]). The size of V is even, say 2r.

In the literature one can find different normalizations of the Alexander “poly-
nomial”. The most convenient for us, which makes our formulae the simplest pos-
sible, is

∆♮
M (K)(t) := det(t1/2 V − t−1/2 V ∗).

In the surgery formula 4.4 we will need Lescop’s normalization [22], in the present
article denoted by ∆L

M (K)(t). They are related by the identity (cf. [22, 2.3.13])

∆♮
M (K)(t) = ∆L

M (K)(t)/|H|.

Then (see e.g. [22, 2.3.1]) one has

∆♮
M (K)(1) = ∆L

M (K)(1)/|H| = 1. (6)

We also prefer to think about the Alexander polynomial as a characteristic poly-
nomial. For this, notice that V is invertible over Q, hence one can define the
“monodromy operator” M := V −1V ∗. Then set

∆M (K)(t) := det(I − tM) = det(V −1) · tr · ∆♮
M (K)(t). (7)

If (M, K) can be represented by a connected negative definite plumbing graph,
then by a theorem of Grauert [14], (M, K) is algebraic, hence by Milnor’s fibration
theorem, it is fibrable. In this case, M is exactly the monodromy operator acting
on the first homology of the (Milnor) fiber. Moreover, ∆M (K)(t) can be computed
from the plumbing graph by A’Campo’s theorem [1] as follows (see also [11] for a
topological argument). Assume that K = gu for some u ∈ V . Then

∆M (gu)(t)

t − 1
=

∏

v∈V

(twv(u) − 1)δ̄v−2. (8)

Notice that (6) guarantees that ∆M (K)(1) = det(V −1), and from (8) we get
∆M (K)(1) > 0. Moreover, from the Wang exact sequence of the fibration one has
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|∆M (K)(1)| = |H|. Indeed, this exact sequence (for a later purpose written in a
slightly more general form) is

H1(Fo(u)K)
I−M
−→ H1(Fo(u)K) → H1(M \ K)

∂
→ Z → 0.

In this situation o(u) = 1, and ∂ can be identified with φ introduced after 3.3(2),
hence this sequence combined with 3.3(2) gives coker(I −M) = H1(M). Therefore

∆M (K)(1) = det(V )−1 = |H|. (9)

More generally, if (M, K) has a negative definite plumbing representation, and

K = gu for some u, then for any character χ ∈ Ĥ we define ∆M,χ(gu)(t) via the
identity

∆M,χ(gu)(t)

t − 1
:=

∏

v∈V

(twv(u)χ(gv) − 1)δ̄v−2, (10)

and we write

∆H
M (gu)(t) :=

1

|H|

∑

χ∈Ĥ

∆M,χ(gu)(t). (11)

In Section 6 we will need the following analog of (9) in the case when K =
gu ⊂ M is not homologically trivial (but (M, K) has a negative definite plumbing
representation):

lim
t→1

(t − 1)
∏

v∈V

(twv(u) − 1)δ̄v−2 = |H|/o(u). (12)

In this case the “multilink” (M, o(u)K) is fibrable, and (12) can be deduced again
from the above Wang exact sequence of the monodromy M. Indeed, we combine
again this sequence with 3.3(2). Then ∂ ◦ α : Z → Z is the multiplication by o(u).
Hence coker(I − M) = ker(∂) can be inserted in an exact sequence 0 → ker(∂) →
H1(M) → Zo(u) → 0. (For a different argument, see [36, A10(b)]. In fact, |H|/o(u)
has the geometric meaning of |TorsH1(M \ K)|.)

3.7. The Reidemeister–Turaev torsion. Assume that M is a rational homology
3-sphere and σ ∈ Spinc(M). Below we will present a formula for the sign-refined
Reidemeister–Turaev torsion (function) TM,σ in terms of Fourier transform. Recall

that a function f : H → C and its Fourier transform f̂ : Ĥ → C satisfy

f̂(χ) =
∑

h∈H

f(h)χ̄(h), f(h) =
1

|H|

∑

χ∈Ĥ

f̂(χ)χ(h). (13)

Here Ĥ denotes the Pontryagin dual of H as above. Notice that f̂(1) = aug(f), in

particular (since aug(TM,σ) = 0, cf. 2.4.2) T̂M,σ(1) = 0. Therefore,

TM,σ(1) =
1

|H|

∑

χ∈Ĥ\{1}

T̂M,σ(χ). (14)
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Now, assume that M is represented by a negative definite connected plumbing
graph. Fix a non-trivial character χ ∈ Ĥ \ {1} and an arbitrary vertex u ∈ V with
χ(gu) 6= 1. Set

P̂M,χ,u(t) :=
∏

v∈V

(twv(u)χ(gv) − 1)δv−2, (15)

where t ∈ C is a free variable. Then, by one of the main results of [36], Theorem

(5.8), the Fourier transform T̂M,σcan
of TM,σcan

is given by

T̂M,σcan
(χ̄) = lim

t→1
P̂M,χ,u(t). (16)

This limit is independent of the choice of u, as long as χ(gu) 6= 1. In fact, even
if χ(gu) = 1, but u is adjacent to some vertex v with χ(gv) 6= 1, then u does the
same job.

4. Some general splicing formulae

4.1. The splicing data. We will consider the following geometric situation. We
start with two oriented 3-manifolds M1 and M2, both rational homology spheres.
For i = 1, 2, we fix an oriented knot Ki in Mi, and we use the notations of 3.1
with the corresponding indices i = 1, 2. In this article we will consider a particular
splicing, which is motivated by the geometry of the suspension singularities.

On the pair (M2, K2) we impose no additional restrictions. But, for i = 1,
we will consider the following working assumption:

WA1: Assume that o1 = 1, i.e. K1 is homologically trivial in M1. Moreover, we
fix the parallel ℓ1 to be exactly the longitude λ1. Evidently, k1 = 0.

Finally, by splicing, we define a 3-manifold M (for details, see e.g. [13]):

M = M1 \ T (K1)
◦ ∐

A
M2 \ T (K2)

◦,

where A is an identification of ∂T (K2) with −∂T (K1) determined by

A(m2) = λ1 and A(ℓ2) = m1. (1)

4.2. The closures M i. Once the splicing data is fixed, one can consider the closures
M i of Mi \ T (Ki)

◦ (i = 1, 2) with respect to A (cf. [5] or [13]) by the following
Dehn fillings:

M2 = (M2 \ T (K2)
◦)(A−1(y1)), M1 = (M1 \ T (K1)

◦)(A(y2)),

where δiyi := λi (i = 1, 2). Using (1) one has A−1(y1) = m2, hence

M2 = M2.

Moreover, A(y2) = A((o2ℓ2 + k2m2)/δ2) = (o2m1 + k2λ1)/δ2, hence

M1 = (M1 \ T (K1)
◦)(µ), where µ := (o2m1 + k2λ1)/δ2.

In fact, M1 can be represented as a (p, q)-surgery of M1 along K1. The inte-
gers (p, q) can be determined as in [22, p. 8]: µ is homologous to qK1 in T (K1),
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hence q = k2/δ2. Moreover, p = LkM1
(µ, K1), which via 3.3(1) equals 〈(o2m1 +

k2λ1)/δ2, λ1〉 = o2/δ2. Therefore,

M1 = M1(K1, p/q) = M1(K1, o2/k2). (2)

4.3. Fujita’s splicing formula for the Casson–Walker invariant. If we use the above
expressions for the closures, then formula (1.1) of [13], in the case of the above
splicing (with A = f−1), reads

λW(M) = λW(M2) + λW(M1(K1, o2/k2)) + s(k2, o2). (3)

Here, s(·, ·) denotes Dedekind sums, defined by the same convention as in [45, 13,
22, 36]:

s(q, p) =

p−1
∑

l=0

((

l

p

))((

ql

p

))

, where ((x)) =

{

{x} − 1/2 if x ∈ R \ Z,
0 if x ∈ Z.

Additionally, if we assume that K2 is homologically trivial in M2 (i.e. o2 = 1), and
we fix ℓ2 as λ2 (i.e. k2 = 0), then (3) transforms into

λW(M) = λW(M1) + λW(M2). (4)

4.4. Walker–Lescop surgery formula. Now, we will analyze the manifold
M1(K1, p/q) obtained by p/q-surgery, where p = o2/δ2 > 0 and q = k2/δ2

(not necessarily positive). First notice (cf. [22, 1.3.4]) that |H1(M1(K1, p/q))| =
p · |H1(M1)|. Using this, the surgery formula (T2) from [22, p. 13], and the iden-
tification λW(·) = 2λ(·)/|H1(·, Z)|, one gets

λW(M1(K1, p/q)) = λW(M1) + Cor, (5)

where the correction term Cor is

Cor :=
q

p
·
∆L

M1
(K1)

′′(1)

|H1(M1)|
−

p2 + 1 + q2

12pq
+ sign(q)

(

1

4
+ s(p, q)

)

.

Using (3), (5) and the reciprocity law for Dedekind sums (for p > 0) [45]:

s(q, p) + sign(q)s(p, q) = −
sign(q)

4
+

p2 + 1 + q2

12pq
,

one gets the following formula:

4.5. Theorem (Splicing formula for the Casson–Walker invariant). Consider a
splicing manifold M characterized by the data described in 4.1. Then

λW(M) = λW(M1) + λW(M2) +
k2

o2
· ∆♮

M1
(K1)

′′(1).

4.6. The splicing property of the group H1(M, Z). In the next paragraphs we
analyze the behavior of H1(·, Z) under the splicing construction 4.1.

First notice that by excision, for any q, one has

Hq(M, M2 \ T (K2)
◦) = Hq(M1 \ T (K1)

◦, ∂T (K1)) = Hq(M1, K1).
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Therefore, the long exact sequence of the pair (M, M2 \ T (K2)
◦) reads

0 → H2(M1, K1)
∂1−→ H1(M2 \ T (K2)

◦) → H1(M) → H1(M1, K1) → 0.

Using the isomorphisms 3.3(3), ∂1 can be identified with ∂1(1Z) = m2, hence
coker(∂1) = H1(M2) (cf. 3.3(2)). Therefore, 3.3(3) gives the exact sequence

0 → H1(M2)
i

−→ H1(M)
p

−→ H1(M1) → 0. (6)

This exact sequence splits. Indeed, let s̄ be the composition of s1 : H1(M1) →
H1(M1\T (K1)) (cf. 3.3) and H1(M1\T (K1)) → H1(M) (induced by the inclusion).
Then p ◦ s̄ = 1. In particular,

H1(M) = Im(i) ⊕ Im(s̄) ≈ H1(M2) × H1(M1). (7)

Notice that any [K] ∈ H1(M1) can be represented (via s1) by a representative K
in M1 \T (K1) providing a class in TorsH1(M1 \T (K1)). Write o for its order, and
take a Seifert surface F , sitting in M1 \ T (K1) with ∂F = oK. If L ⊂ M1 \ T (K1)
with L ∩ K = ∅ then obviously LkM (K, L) = LkM1

(K, L). Moreover, since F has
no intersection points with any curve L ∈ M2 \ T (K2), for such an L one gets

LkM (K, L) = 0, hence bM (Im(s̄), Im(i)) = 0. (8)

By a similar argument,

bM (s̄(x), y) = bM1
(x, p(y)) for any x ∈ H1(M1) and y ∈ H1(M). (9)

In the next sections we need LkM (K, ·) for general K ⊂ M1 \ K1 which is not a
torsion element in H1(M1 \ K1).

To compute this linking number consider another oriented knot L ⊂ M1 \K1

with K ∩ L = ∅. Our goal is to compare LkM1
(K, L) and LkM (K, L). Assume

that the order of the class K in H1(M1) is o. Let FoK be a Seifert surface in M1

with ∂FoK = oK which intersects L and K1 transversally. It is clear that FoK

intersects L exactly in o · LkM1
(K, L) points (counted with sign). On the other

hand, it intersects K1 in o · LkM1
(K, K1) points. For each intersection point with

sign ǫ = ±1, we cut out from FoK the disc FoK∩T (K1), whose orientation depends
on ǫ. Its boundary is ǫm1 which, by the splicing identification, corresponds to ǫℓ2 in
M2 \T (K2). Using rational coefficients, ℓ2 = (1/o2)λ2− (k2/o2)m2. Some multiple
of λ2 can be extended to a surface in M2 \ K2 which clearly has no intersection
with L. By splicing, m2 is identified with λ1 which has a Seifert surface in M1 \K1

which intersects L in LkM1
(K1, L) points. This shows that for K, L ⊂ M1 \T (K1),

LkM (K, L) = LkM1
(K, L) − LkM1

(K, K1) · LkM1
(L, K1) · k2/o2. (10)

Assume now that K ∈ M2 \ T (K2), and let o be the order of its homology class
in H1(M2). Assume that the Seifert surface F of oK intersects K2 transversally
in t2 points. Then F ∩ ∂T (K2) = t2m2, and after the splicing identification this
becomes t2λ1. Let F1 be the Seifert surface of λ1 in M1 \ T (K1)

◦. Then (after
some natural identifications) F \ T (K2)

◦ ∐ t2F1 is a Seifert surface of oK in M .
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Therefore,

LkM (K, L) = LkM2
(K, K2) · LkM1

(K1, L)

for K ⊂ M2 \ T (K2) and L ⊂ M1 \ T (K1). (11)

By a similar argument,

LkM (K, L) = LkM2
(K, L) for K, L ⊂ M2 \ T (K2). (12)

4.7. Splicing plumbing manifolds. Some of the results of this article about Reide-
meister–Turaev torsion can be formulated and proved in the context of general
(rational homology sphere) 3-manifolds, and arbitrary spinc structures. Neverthe-
less, in this article we are mainly interested in algebraic links, therefore we restrict
ourselves to plumbed manifolds.

This can be formulated in the second working assumption:

WA2: (Mi, Ki) (i = 1, 2) can be represented by a negative definite connected
plumbing graph. Moreover, if M is the result of the splicing (satisfying WA1,
cf. 4.1), then M can also be represented by a negative definite connected
plumbing graph.

Assume that the plumbing graphs Γ(M1, K1) and Γ(M2, K2) have the following
schematic form (with gv1

= K1 and gv2
= K2):

sHH
��

...
-

v1
s��
HH

...
�

v2

Then it is not difficult to see that (a possible) plumbing graph Γ(M) for M has
the following form (where v1 and v2 are connected by a string):

s sHH
��

... . . .
v1

ss ��
HH

...

v2

If Vi (i = 1, 2), respectively V , represent the set of vertices of Γ(Mi), resp. of
Γ(M), then V = V1 ∪ V2 modulo some vertices with δ = 2. (In particular, in any
formula like 3.7(15), V behaves like the union V1 ∪ V2.)

4.8. Remark. If one wants to compute TM,σcan
for such plumbed manifolds, then

one can apply 3.7(15) and (16). For this, one has to analyze the supports of the
characters, and the corresponding weights wv(u). These weights are closely related
to the corresponding linking numbers LkM (gu, gv) (cf. 3.4(5)), hence the relations
4.6(10)-(11)-(12) are crucial. For characters of type χ ∈ p̂(H1(M1)̂ ) (cf. 4.6(6) or
the next proof) we have u ∈ V1, hence 4.6(10) should be applied for any v ∈ V1.
But this is rather unpleasant due to the term LkM1

(gu, K1) ·LkM1
(gv, K1) · k2/o2.

The description is more transparent if either H1(M1) = 0 or k2 = 0.
Therefore, we will consider first these particular cases only. They, as guiding

examples, already contain all the illuminating information and principles we need
to proceed. For the link of {f(x, y)+zn = 0}, the splicing formula will be made very
explicit in 7.13 (based on a detailed and complete classification of the characters

and the regularization terms P̂ , which is rather involved).
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4.9. Theorem (Splicing formulae for the Reidemeister–Turaev torsion). Assume
that M satisfy WA1 (4.1) and WA2 (4.7). Then the following hold:

(A) Assume that K2 ⊂ M2 is also homologically trivial (i.e. o2 = 1), and ℓ2 = λ2

(i.e. k2 = 0). Then

TM,σcan
(1) = TM1,σcan

(1) + TM2,σcan
(1).

(B) Assume that M1 is an integral homology sphere (i.e. H1(M1) = 0). Then

TM,σcan
(1) =

∑

χ2∈H1(M2)̂ \{1}

T̂M2,σcan
(χ̄2)

|H1(M2)|
· ∆M1

(K1)(χ2(K2)).

In particular, if K2 ⊂ M2 is homologically trivial, then χ2(K2) = 1 for any
χ2, hence by 3.6(9) one gets

TM,σcan
(1) = TM2,σcan

(1) (and evidently TM1,σcan
(1) = 0).

This is true for any choice of ℓ2, i.e. even if k2 is non-zero.

Proof. The theorem is a consequence of 3.7 and 4.6. For this, we have to analyze
the characters χ of H1(M). The dual of the exact sequence 4.6(6) is

0 → H1(M1)̂
p̂

−→ H1(M )̂
î

−→ H1(M2)̂ → 0.

First, consider a character χ of H1(M) of the form χ = p̂(χ1) for some χ1 ∈
H1(M1)̂ . Since any χ1 ∈ H1(M1)̂ can be represented as exp(bM1

(x, ·)) for some
x ∈ H1(M1) (cf. 3.3), and p̂(bM1

(x, ·)) = bM (s̄(x), ·) (cf. 4.6(9)), property 4.6(8)
guarantees that χ(gv) = 1 for any v ∈ V2. In particular, for χ = p̂(χ1) with
χ1 ∈ H1(M1)̂ \ {1}, and for some u ∈ V1 with χ1(gu) 6= 1 (which works for M as
well), one gets

P̂M,χ,u(t) =
∏

v∈V1

(twv(u)χ1(gv) − 1)δ̄v−2 ·
∏

v∈V2

(twv(u) − 1)δ̄v−2.

Here, for v ∈ Vi, δ̄v means the number of adjacent edges of v in Γ(Mi, Ki) (i = 1, 2)
(cf. 3.4).

By 4.6(11), for any v ∈ V2 one has

wv(u) = o(u) LkM (gu, gv) = o(u) LkM1
(gu, gv1

) · LkM2
(gv2

, gv),

hence by 3.6(8),

P̂M,χ,u(t) = P̂M1,χ1,u(t) · ∆M2
(gv2

)(to(u) LkM1
(gu,gv1

)).

Taking the limit t → 1, and using 3.6(9), one gets

T̂M,σcan
(χ̄) = T̂M1,σcan

(χ̄1) · |H1(M2)|. (13)

Now, we prove (A). In this case M1 and M2 are symmetric, hence there is a term
similar to (13) for characters χ2 ∈ H1(M2)̂ .

On the other hand, if χ = χ1χ2 for two non-trivial characters χi ∈ H1(Mi)̂

(i = 1, 2), then one can show that P̂M,χ,u(t) has a root (of multiplicity at least
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two) at t = 1, hence T̂M,σcan
(χ̄) = 0. Now, use 3.7(14) and |H1(M)| = |H1(M1)| ·

|H1(M2)| (cf. 4.6(7)).
For (B), fix a non-trivial character χ2 ∈ H1(M2)̂ . The relations in 4.6 guar-

antee that if we take u ∈ V2 with χ2(gu) 6= 1 (considered as a property of M2)

then χ(gu) 6= 1 as well for χ = î−1(χ2). Moreover, for any v ∈ V1 one has
χ(gv) = χ2(K2)

LkM1 (K1,gv) (cf. 4.6(11)). Therefore

P̂M,χ,u(t) =
∏

v∈V1

(twv(u)χ(gv) − 1)δ̄v−2 ·
∏

v∈V2

(twv(u)χ(gv) − 1)δ̄v−2

= P̂M2,χ2,u(t) · ∆M1
(gv1

)(to(u) LkM2
(gu,gv2

)χ2(K2)). �

4.10. Remarks. (1) A similar proof provides the following formula as well (which
will be not used later). Assume that M satisfies WA1 and WA2, and k2 = 0. Then

TM,σcan
(1) = TM1,σcan

(1) +
∑

χ2∈H1(M2)̂ \{1}

T̂M2,σcan
(χ̄2)

|H1(M2)|
· ∆H

M1
(K1)(χ2(K2)).

(2) The obstruction term (see also 5.5(1)) which measures the non-additivity
of the Casson–Walker invariant (under the splicing assumption WA1) is given

by (k2/o2) · ∆♮
M1

(K1)
′′(1) (cf. 4.5). On the other hand, if H1(M1) = 0, then

the obstruction term for the non-additivity of the Reidemeister–Turaev torsion
(associated with σcan) is

∑

χ2∈H1(M2)̂ \{1}

T̂M2,σcan
(χ̄2)

|H1(M2)|
· (∆M1

(K1)(χ2(K2)) − 1).

Notice that they “look rather different” (even under the extra assumption H1(M1)
= 0). In fact, even their nature is different: the first depends essentially on the
choice of the parallel ℓ2 (see the coefficient k2 in its expression), while the second
does not. In particular, one cannot really hope (in general) for the additivity of
sw

TCW
M (σcan).

Therefore, it is really remarkable and surprising that in some of the geometric
situations discussed in the next sections, this Seiberg–Witten invariant is additive
(though the invariants λW and Tσcan

(1) are not additive, their obstruction terms
cancel each other).

5. The basic topological example

5.1. Recall that in our main applications (for algebraic singularities) the 3-man-
ifolds involved are plumbed manifolds. In particular, they can be constructed in-
ductively from Seifert manifolds by splicing (cf. also 3.5). The present section has
a double role. First, we work out explicitly the splicing results obtained in the
previous section for the case when M2 is a Seifert manifold (with special Seifert
invariants). On the other hand, the detailed study of this splicing formula pro-
vides us a better understanding of the subtlety of the behavior of the (modified)
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Seiberg–Witten invariant with respect to splicing and cyclic covers. They will be
formulated in some “almost-additivity” properties, where the non-additivity will
be characterized by a new invariant D constructed from the Alexander polynomial
of (M1, K1).

5.2. A short digression on Seifert invariants ([16, 39, 41]). Any Seifert fibration
π : M → S2 is characterized by the set of (unnormalized) Seifert invariants
{(αi, βi)}

ν
i=1 (with αi > 0 and gcd(αi, βi) = 1), and the orbifold Euler number

e := −
∑

βi/αi.

Above the collection of βi’s is not canonical, one can change each βi within its
residue class modulo αi in such a way that the sum e = −

∑

i(βi/αi) is constant.
M is a link of singularity if and only if e < 0. A (possible) plumbing graph

of M is a star-shaped graph with ν arms, corresponding to the number of Seifert
invariants. The (absolute value of the) determinant of each leg is the correspond-
ing αi.

We will distinguish those vertices v of the graph which have δv 6= 2. We will
denote by v̄0 the central vertex, and by v̄i the end-vertex of the ith arm for all
1 ≤ i ≤ ν. Then gv̄0

is exactly the class of the generic fiber of the Seifert fibration.
Let α := lcm(α1, . . . , αν). The order of the group H = H1(M) and the order of
the subgroup 〈gv̄0

〉 can be determined by (cf. [39])

|H| = α1 · · ·αν |e|, |〈gv̄0
〉| = α|e|.

In fact, if |〈gv̄0
〉| = 1 (the situation we need), then the abelian group H (written

additively) has the following presentation (see e.g. [39]):

H =
〈

gv̄1
, . . . gv̄ν

∣

∣

∣

ν
∑

i=1

ωigv̄i
= 0, αigv̄i

= 0 for all i
〉

.

5.3. The splicing component M2 and the link K2. Assume that M2 is the link

Σ = Σ(p, a, n) := {(x, y, z) ∈ C3 : xp + ya + zn = 0, |x|2 + |y|2 + |z|2 = 1}

of the Brieskorn hypersurface singularity X2 := {(x, y, z) ∈ C3 : xp +ya +zn = 0},
where gcd(n, a) = 1 and gcd(p, a) = 1. Set d := gcd(n, p). Then M2 is a rational
homology sphere Seifert 3-manifold. The natural action of S1 = {w ∈ C : |w| = 1}
on Σ is given by w∗(x, y, z) = (xwna/d, ywnp/d, zwpa/d). Clearly, the special orbits
are given by the vanishing of the coordinates x, y, z. The properties (e.g. Seifert
invariants) of Σ are classical well known facts (see e.g. [16, 39, 41]).

In this section we will slightly modify the construction of 4.1: we will fix a
link with d connected components (instead of a knot), and perform splicing along
each connected component.

This link K2 ⊂ M2 is given by the d special Seifert orbits given by the
equation {y = 0} in M2. It is known that their Seifert invariant is α = a. The

components of K2 will be denoted by K
(i)
2 (i = 1, . . . , d), and their tubular neigh-

borhoods by T (K
(i)
2 ) as in 3.1.
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Apart fram K2, there are two more special orbits in M2 = Σ, namely Z :=
{z = 0} (with Seifert invariant α = n/d) and X := {x = 0} (with Seifert invariant
α = p/d). Moreover, let O be the generic fiber of the Seifert fibration of Σ (i.e.

O = gv̄0
, and X, Z, K

(i)
2 are the elements gv̄i

, i > 0).

Here we collect some of the properties needed in the following: for (a)–(c)
see [16, 39, 41] and the above discussion, (d) was determined in [36], but for the
convenience of the reader the argument is essentially reproduced here in the proof
of 5.7 (for more details, and for a more complete list of the relevant invariants, see
e.g. [36, Section 6]).

(a) The Seifert invariants of Σ are: n/d, p/d, a, a, . . . , a (a appearing d times,
hence altogether there are ν = d + 2 special fibers); these numbers also give
(up to a sign) the determinants of the corresponding arms of the plumbing
graph of Σ.

(b) The orbifold Euler characteristic is e = −d2/(npa).
(c) |H| = ad−1 and |〈O〉| = 1 (here use 5.2 and (b); or, in reverse order, first one

can compute |H| from an Alexander polynomial, then e from 5.2 and (a).)

In fact, using 5.2 and by an elementary arithmetical computation, one also sees that

the link components {K
(i)
2 }i generate H1(M2); in fact H1(M2) has the following

presentation (written additively):

H1(M2) = 〈[K
(1)
2 ], . . . , [K

(d)
2 ] | a[K

(i)
2 ] = 0 for each i,

and [K
(1)
2 ] + · · · + [K

(d)
2 ] = 0〉. (1)

In particular, H1(M2) = Zd−1
a .

(d) TM2,σcan
(1) = np

24da (d − 1)(a2 − 1) (a fact which also follows from (∗) in the
proof of 5.7).

5.3.1. Lemma. One has the following linking numbers:

(a) LkM2
(K

(i)
2 , K

(j)
2 ) = np/(d2a) for any i 6= j;

(b) LkM2
(K

(i)
2 , O) = np/d2; LkM2

(K
(i)
2 , Z) = p/d for any i;

(c) LkM2
(O, O) = npa/d2 and LkM2

(O, Z) = pa/d;
(d) LkM2

(X, Z) = a.

Proof. This follows from 3.4.2(5) and [36, 5.5(1)]; but for the convenience of the
reader we provide an argument.

We apply 3.4.2(5) for two different gv̄i
(0 ≤ i ≤ ν); cf. 5.2 for the notation.

Namely, LkΣ(gv̄i
, gv̄i

) = −I−1
gv̄i

gv̄i
. On the other hand, since I is the intersection

matrix associated with a tree, I−1
vw can be computed as follows (a fact which can

be verified easily by the reader): Delete all the vertices situated on the unique
geodesic path connecting u and v, including u and v, and all the edges adjacent to
these vertices. Let this graph be Γuv. Then −I−1

uv = |det(Γuv)|/|H|. For example,
in (a), Γuv contains ν = d legs with corresponding Seifert invariants n/d, p/d, and
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the others with a. Hence, |det(Γuv)| = ad−2np/d2. This divided by |H| = ad−1

provides (a). �

Notice that K2 ⊂ M2 is fibrable. Indeed, K2 = {y = 0} is the link associ-
ated with the algebraic germ y : (X2, 0) → (C, 0), hence one can take its Milnor
fibration. Let F be the fiber with ∂F = K2 (equivalently, take any minimal Seifert

surface F with ∂F = K2). Then for each i = 1, . . . , d, we define the parallel ℓ
(i)
2 in

∂T (K
(i)
2 ) by F ∩ ∂T (K

(i)
2 ).

Let λ
(i)
2 be the longitude of K

(i)
2 ⊂ M2, and consider the invariants o

(i)
2 , k

(i)
2 ,

etc. as in 3.1 with the corresponding sub- and superscripts added.

5.3.2. Lemma. For each i = 1, . . . , d one has

o
(i)
2 = a and k

(i)
2 =

np(d − 1)

d2
.

Proof. The first identity is clear (cf. 5.3(1)). For the second, notice that (cf. 3.3(1))

−k
(i)
2 /o

(i)
2 = 〈ℓ

(i)
2 , λ

(i)
2 〉/o

(i)
2 = LkM2

(ℓ
(i)
2 , K

(i)
2 ).

Moreover,

LkM2

(

∑

j

ℓ
(j)
2 , K

(i)
2

)

= 0,

hence

k
(i)
2 /a =

∑

j 6=i

LkM2
(K

(j)
2 , K

(i)
2 ).

Then use 5.3.1(a). �

5.4. The manifold M . Next, we consider d manifolds M
(i)
1 with knots K

(i)
1 ⊂ M

(i)
1

(i = 1, . . . , d), each satisfying the assumption WA1 (i.e. o
(i)
1 = 1, ℓ

(i)
1 = λ

(i)
1 , and

k
(i)
1 = 0, cf. 4.1). Then, for each i = 1, . . . , d, we consider the splicing identification

of ∂T (K
(i)
2 ) with −∂T (K

(i)
1 ) (similarly to 4.1(1)):

A(i)(m
(i)
2 ) = λ

(i)
1 and A(i)(ℓ

(i)
2 ) = m

(i)
1 .

Schematically:

s s s s@@

��
. . .

...

...
...

s

s

··

··
s

s

s

s

s

s

@@

��

�

�

K
(1)
2

K
(d)
2

-

-

K
(1)
1

K
(d)
1
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In what follows we denote by WA1′ the assumption which guarantees that the
manifold M is constructed by this splicing procedure. Moreover, WA2′ guarantees
that all the 3-manifolds involved have plumbing representations by negative definite
connected plumbing graphs.

Here some comments are in order.

(1) Assume that for some i, M
(i)
1 = S3, and K

(i)
1 is the unknot S1 in S3.

Then performing splicing along K
(i)
2 with (S3, S1) is equivalent to putting back

T (K
(i)
2 ) unmodified, hence it has no effect. In this case, one also has ∆S3(S1)(t) ≡

∆♮
S3(S

1)(t) ≡ 1.
(2) Assume that we have already performed the splicing along the link-

components K
(i)
2 for i ≤ k − 1, but not along the other ones. Denote the result of

this partial modification by M (k−1). Consider K
(k)
2 in M (k−1) (in a natural way).

Then all the invariants (e.g. o
(k)
2 , λ

(k)
2 , k

(k)
2 , etc.) associated with K

(k)
2 in M2 or in

M (k−1) are the same. (This follows from the discussion in 4.6, and basically, it is
a consequence of WA1′.)

In particular, performing splicing at place i does not affect the splicing data
of place j (j 6= i). Therefore, using induction, the computation of the invariants
can be easily reduced to the formulae established in the previous section.

5.5. Definitions/Notations. (1) In order to simplify the exposition, for any 3-
manifold invariant I, we write

O(I) := I(M) − I(M2) −
d

∑

i=1

I(M
(i)
1 )

for the “additivity obstruction” of I (with respect to the splicing construction
WA1′). For example, using 4.6 and 5.4(2) one has O(log |H1(·)|) = 0. Moreover,

in all our Alexander invariant notations (e.g. in ∆
M

(i)
1

(K
(i)
1 )(t)), we omit the link

K
(i)
1 (e.g. we simply write ∆

M
(i)
1

(t)).

When comparing O(T·,σcan
) with O(λW(·)), the following terminology will be

helpful.
(2) For any set of integers c1, . . . , cr, define

D(c1, . . . , cr) :=
r

∑

i,j=1

cicj min(i, j) −
r

∑

i=1

ici.

(3) Define D(∆♮(t)) to be D(c1, . . . , cr) for any symmetric polynomial

∆♮(t) = 1 +

r
∑

i=1

ci(t
i + t−i − 2) (for some ci ∈ Z).

(4) A set {ci}i∈I (I ⊂ N) is called alternating if ci ∈ {−1, 0, +1} for any
i ∈ I; and if ci 6= 0 then ci = (−1)ni , where ni = #{j : j > i and cj 6= 0}.
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5.6. Corollary. Assume that M satisfies WA1′. Then

O(λW) =
np(d − 1)

ad2

d
∑

i=1

(∆♮

M
(i)
1

)′′(1).

Proof. Use 4.5, 5.3.2 and 5.4(2). �

5.7. Corollary. Assume that M satisfies WA1′ and WA2′, and M
(i)
1 is an integral

homology sphere for any i. Identify Za := {ξ ∈ C : ξa = 1} and write Z∗
a :=

Za \ {1}. Then

O(T·,σcan
(1)) =

np

ad2

∑

i 6=j

∑

ξ∈Z∗

a

∆
M

(i)
1

(ξ) · ∆
M

(j)
1

(ξ̄) − 1

(ξ − 1)(ξ̄ − 1)
.

Proof. We recall first how one computes the torsion for the manifold M2 (cf. 3.7,
for the original version see [36]). The point is (see the last sentence of 3.7) that
for any character χ ∈ H1(M2)̂ \ {1}, one can choose the central vertex of the

star-shaped graph for the vertex u in order to generate the weights in P̂ . Then by
5.3.1 (see also [36]) one gets

P̂M2,χ,u(t) =
(tα − 1)d

(tdα/n − 1)(tdα/p − 1)
∏

i(t
α/aχ(K

(i)
2 ) − 1)

,

where α := npa/d2. The limit of this expression as t → 1 always exists. In par-

ticular #{i : χ(K
(i)
2 ) 6= 1} ≥ 2 (cf. also 5.3(1)). If this number is strictly greater

than 2, then the limit is zero. If χ(K
(i)
2 ) 6= 1 for exactly two indices i and j, then

by 5.3(1) clearly χ(K
(i)
2 )χ(K

(j)
2 ) = 1. Since there are exactly d(d−1)/2 such pairs,

one gets

TM2,σcan
(1) =

1

|H1(M2)|
lim
t→1

(tα − 1)d

(tdα/n − 1)(tdα/p − 1)(tα/a − 1)d−2

·
∑

i 6=j

∑

ξ∈Z∗

a

1

(ξ − 1)(ξ̄ − 1)

=
np

ad2

∑

i 6=j

∑

ξ∈Z∗

a

1

(ξ − 1)(ξ̄ − 1)

=
np

ad2

d(d − 1)

2

∑

ξ∈Z∗

a

1

(ξ − 1)(ξ̄ − 1)
=

np(d − 1)(a2 − 1)

24ad
, (∗)

since
∑

ξ∈Z∗

a

1

(ξ − 1)(ξ̄ − 1)
=

a2 − 1

12
. (∗∗)

Consider now the manifold M . Then using 4.9(B) (and/or its proof), by the same
argument as above, one obtains

TM,σcan
(1) =

np

ad2

∑

i 6=j

∑

ξ∈Z∗

a

∆
M

(i)
1

(ξ) · ∆
M

(j)
1

(ξ̄)

(ξ − 1)(ξ̄ − 1)
. (∗∗∗)

Finally, taking the difference between (∗∗∗) and (∗) one gets the result. �
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5.8. Example/Discussion. Assume that M satisfies WA1′ and WA2′, and addi-

tionally (M
(i)
1 , K

(i)
1 ) = (M1, K1) for some integral homology sphere M1. Then

O(λW)/2 =
np(d − 1)

2ad
(∆♮

M1
)′′(1),

O(T·,σcan
(1)) =

np(d − 1)

2ad
·

∑

ξ∈Z∗

a

∆M1
(ξ) · ∆M1

(ξ̄) − 1

(ξ − 1)(ξ̄ − 1)
.

Recall that the modified Seiberg–Witten invariant sw
TCW
M (σcan) is defined by the

difference TM,σcan
(1)−λW(M)/2 (cf. 2.4.2(4)). Notice the remarkable fact that in

the above expressions the coefficients before the Alexander invariants have become
the same. Hence

O(swTCW
· (σcan)) =

np(d − 1)

2ad
Da, (D)

where

Da :=
∑

ξ∈Z∗

a

∆M1
(ξ) · ∆M1

(ξ̄) − 1

(ξ − 1)(ξ̄ − 1)
− (∆♮

M1
)′′(1).

Recall that ∆♮
M1

(t) is a symmetric polynomial (cf. [22, 2.3.1]) with ∆♮
M1

(1) = 1
(cf. 3.6(6)). In what follows we will compute Da explicitly, provided that a is

sufficiently large, in terms of the coefficients {ci}
r
i=1 of ∆♮

M1
(t) (cf. 5.5(3)).

The contribution (∆♮
M1

)′′(1) is easy: it is
∑r

i=1 2i2ci. By 3.6(9), det(V ) = 1,

hence by 3.6(7), ∆M1
(t) = tr∆♮

M1
(t). In particular, ∆M1

(ξ) · ∆M1
(ξ̄) = ∆♮

M1
(ξ) ·

∆♮
M1

(ξ̄). Then write

∆♮
M1

(t)

1 − t
=

1

1 − t
−

r
∑

i=1

ci(1 + t + · · · + ti−1) +
r

∑

i=1

ci(t
−1 + · · · + t−i).

An elementary computation using the identity
∑

ξ∈Z∗

a
1/(1 − ξ) = (a − 1)/2 gives

∑

ξ∈Z∗

a

∆♮
M1

(ξ) · ∆♮
M1

(ξ̄) − 1

(1 − ξ)(1 − ξ̄)
=

r
∑

i=1

2i2ci + 2a · D(∆♮
M1

(t)), provided that a ≥ 2r.

In particular, if a ≥ 2r, then Da = 2a · D(∆♮
M1

(t)). Hence

O(swTCW
· (σcan)) =

np(d − 1)

d
D(∆♮

M1
(t)).

This raises the following natural question: for what Alexander polynomials is the

expression D(∆♮
M1

(t)) zero? The next lemma provides such an example (the proof
is elementary and it is left to the reader).

5.9. Lemma. If {ci}
r
i=1 is an alternating set then D(c1, . . . , cr) = 0.
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The above discussions have the following topological consequence:
Consider a knot L1 ⊂ K1, and fix two relatively prime positive integers p

and a. Let K be the primitive simple curve in ∂T (L1) with homology class
am1 + pλ1. Let M denote the n-cyclic cover of N1 branched along K. Set d :=
gcd(n, p), and let M1 be the (n/d)-cyclic cover of N1 branched along L1. Denote

by K1 the preimage of L1 via this cover. Finally, let ∆♮
M1

(t) be the normalized
Alexander polynomial of (M1, K1).

5.10. Corollary. Consider the above data. Additionally, assume that WA2′ is sat-
isfied and M is a rational homology sphere. Then:

(A) (d − 1) · (gcd(n, a) − 1) = 0.
(B) If d = 1, then

sw
TCW
M (σcan) = sw

TCW
M1

(σcan) + sw
TCW
Σ(p,a,n)(σcan).

(C) If gcd(n, a) = 1, a ≥ deg ∆M1
(t), and M1 is an integral homology sphere,

then

sw
TCW
M (σcan) = d · swTCW

M1
(σcan) + sw

TCW
Σ(p,a,n)(σcan) +

np(d − 1)

d
D(∆♮

M1
(t)).

If the coefficients of ∆♮
M1

(t) form an alternating set, then D(∆♮
M1

(t)) = 0.

Proof. Consider the following schematic splicing of splice diagrams (cf. 3.5):

N1

- �L1 K2 Ks

s

s

K ′
2

a 1

p

The result of the splicing can be identified with N1 (and under this identification
L1 is identified with K ′

2). The advantage of this splicing representation is that it
emphasizes the position of the knot K in the Seifert component Σ(p, a, 1). If M
is a rational homology sphere then the n-cyclic cover of Σ(p, a, 1) branched along
K (which is Σ(p, a, n)) should be a rational homology sphere, hence (A) follows.
If d = 1 then M has a splice decomposition of the following schematic plumbing
diagrams (where on the right M2 = Σ(p, a, n) and the dots mean gcd(n, a) arms):

M1

- �K1 K2
ss

ss

s

· · ·

Here o1 = o2 = 1 and k1 = k2 = 0, and A is the identification λ2 = m1, m2 = λ1.
Therefore, part (B) follows from 4.3(4) and 4.9(A). The last case corresponds
exactly to the situation treated in 5.8. �

5.11. Remarks. (1) Our final goal (see the following sections) is to prove the ad-
ditivity result O(swTCW(σcan)) = 0 for any (M1, K1), which can be represented
as a cyclic cover of S3 branched along the link Kf ⊂ S3 of an arbitrary irreducible
(complex) plane curve singularity (even if M1 is not an integral homology sphere),
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provided that a is sufficiently large. This means that from the above Corollary,
part (C), we will need to eliminate the assumption about the vanishing of H1(M1).
The assumption about a will follow from the special property 6.1(6)) of irreducible
plane curve singularities (cf. also 6.4, especially (7)).

The proof of the vanishing of the D-correction will take up most of the last
section of the paper. It relies in a crucial manner on the alternating nature of the

Alexander polynomial ∆♮
S3(Kf )(t) of any irreducible plane curve singularity f , a

fact which will be established in Proposition 6.2.
(2) It is really interesting and remarkable that the behavior of the modified

Seiberg–Witten invariant with respect to (some) splicing and cyclic covers (con-
structions which are basically topological in nature) definitely gives preference to
the Alexander polynomials of some algebraic links. The authors hope that a bet-
ter understanding of this phenomenon would lead to some deep properties of the
Seiberg–Witten invariant.

5.12. Example. In general, in 5.10, the invariant D(∆♮
M1

(K1)(t)) does not van-
ish. In order to see this, start for example with a pair (N1, L1) with non-zero

D(∆♮
N1

(L1)(t)), and consider the case when d |n. (If d 6= 1, then the coefficient of

D(∆♮
N1

(L1)(t)) in 5.10(C) will be non-zero as well.)
Next, we show how one can construct a pair (N, L) which satisfies WA2,

H1(N) = 0, but D(∆♮
N (L)(t)) 6= 0. First, we notice the following fact.

If the Alexander polynomial ∆♮
M (K)(t) is realizable for some pair (M, K)

(satisfying WA2 and H1(M) = 0), then the k-power of this polynomial is also
realizable for some pair (Mk, Kk) (satisfying WA2 and H1(M

k) = 0). Indeed,
assume that (M, K) has a schematic splice diagram of the following form:

sHH
��

...
-c

KΓ

Then let (Mk, Kk) be given by the following schematic splice diagram:

sHH
��

...
�

��

qΓ

sHH
��

... @
@@

qΓ

...
...(k copies) s -1

1

1
Kk

Here, we take q sufficiently large (in order to ensure that the new edges will also
satisfy the algebraicity condition [11, 9.4]), and also q should be relatively prime
to some integers which appear as decorations of Γ (see [loc. cit.]). Obviously, by
construction, Mk is an integral homology sphere. Then, by [loc. cit., 12.1], one can
easily verify that

∆♮
Mk(Kk)(t) = ∆♮

M (K)(t)k.

For example, if (M, K) = (S3, Kf ), where Kf is the (2, 3)-torus knot (or, equiva-

lently, the knot of the plane curve singularity f = x2+y3, cf. 6.1), then ∆♮
S3(Kf )(t)
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= t− 1 + 1/t (see 6.1(5)). Now, if we take k = 2 and q = 7 then (M2, K2) has the
following splice, respectively plumbing graph:

s s s s s

s s?

2 7 1 1 7 2

3 1 3
s s s s s

s s?

−2 −1 −13 −1 −2

−3 −3

Then (M2, K2) is algebraic, H1(M
2) = 0. But ∆♮

M2(K2)(t) = (t−1+1/t)2, whose
coefficients are not alternating. In fact, r = 2, c1 = −2 and c2 = 1; in particular

D(∆♮
M2(K2)(t)) = 2.

We end this section with the following property which is needed in the last
section.

5.13. Lemma. Assume that M satisfies WA1′ and WA2′ with (M
(i)
1 , K

(i)
1 ) =

(M1, K1). Let Γ denote the plumbing graph of M . Let v be the central vertex of M2

considered in M , and let Γ− be the connected component of Γ\{v} which contains

the vertices of M
(1)
1 . Then |det(Γ−)| = a · |H1(M1)|.

Proof. If I denotes the intersection matrix of M , then

−I−1
vv

3.4(5)
= LkM (gv, gv)

4.6(12)
= LkΣ(p,a,n)(O, O)

5.3.1(c)
= npa/d2.

On the other hand, I−1
vv can be computed from the determinants of the components

of Γ \ {v}, hence (cf. also 5.3)

−|H1(M)| · I−1
vv = |det(Γ−)|d · pn/d2.

By 4.6(7) and 5.3, |H1(M)| = |H1(M1)|
d · ad−1, hence the result follows. �

6. Properties of irreducible plane curve singularities

6.1. The topology of an irreducible plane curve singularity. Consider an irre-
ducible plane curve singularity f : (C2, 0) → (C, 0) with Newton pairs {(pk, qk)}s

k=1

(cf. [11, p. 49]). Clearly gcd(pk, qk) = 1 and pk, qk ≥ 2. Define the integers {ak}
s
k=1

by
a1 = q1 and ak+1 = qk+1 + pk+1pkak if k ≥ 1. (1)

Then again, gcd(pk, ak) = 1 for any k. The minimal (good) embedded resolution
graph of the pair (C2, {f = 0}) has the following schematic form:

s s s s s

s s s s

v̄0 v1 v2 vs−1 vs

v̄1 v̄2 v̄s−1 v̄s

Kf· · · -

This can be identified with the plumbing graph Γ(S3, Kf ), where Kf is the link
of f (with only one component) in the Milnor sphere S3. In the above diagram we



428 A. Némethi and L. I. Nicolaescu Sel. math., New ser.

emphasized only those vertices {v̄k}
s
k=0 and {vk}

s
k=1 which have δ̄ 6= 2. We denote

the set of those vertices by V∗. The dashed line between two such vertices replaces
a string s s s· · · . In our discussion the corresponding Euler numbers
will not be important (the interested reader can find the complete description of
the graph in [11, Section 22], or in [32]). The above numerical data {(pk, ak)}k and
the set V∗ of vertices are codified in the splice diagram (cf. [11]):

s s s s s

s s s s

Kf
a1 a2 as−1 as1 1 1 1

p1 p2 ps−1 ps

· · · -

The knot Kf ⊂ S3 defines a set {wv(u)}v∈V∗ of weights as in 3.4 (where Kf = gu

and o(u) = 1). In terms of the resolution, wv(u) (or simply wv) is exactly the
vanishing order (multiplicity) of f ◦ π along the exceptional divisor codified by v,
where π denotes the resolution map. Then (cf. [11, Section 10])

wvk
= akpkpk+1 · · · ps for 1 ≤ k ≤ s;

wv̄0
= p1p2 · · · ps;

wv̄k
= akpk+1 · · · ps for 1 ≤ k ≤ s.

(2)

Recall that the characteristic polynomial ∆(f)(t) := ∆S3(Kf )(t) of the mon-
odromy acting on the first homology of the Milnor fiber of f is given by A’Campo’s
formula 3.6(8):

∆S3(Kf )(t)

t − 1
=

∏

v∈V∗

(twv − 1)δ̄v−2. (3)

In inductive proofs and constructions (over the number of Newton pairs of f), it is
convenient to use the notation f(l) for an irreducible plane curve singularity with

Newton pairs {(pk, qk)}l
k=1, where 1 ≤ l ≤ s. Evidently f(s) = f , and f(1) can be

taken as the Brieskorn singularity xp1 +ya1 . We write ∆(f(l)) for the characteristic
polynomial associated with f(l). Then from (2) and (3) one gets

∆(f(l))(t) = ∆(xpl + yal)(t) · ∆(f(l−1))(t
pl) for l ≥ 2, (4)

where

∆(xp + ya)(t) =
(tpa − 1)(t − 1)

(tp − 1)(ta − 1)
. (5)

By induction, using the identities (1), one can prove (see e.g. [31, 5.2])

al > pl · deg ∆(f(l−1)) for any l ≥ 2. (6)

6.2. Proposition. (a) ∆(f)(0) = ∆(f)(1) = 1, and the degree of ∆(f)(t) is even
(say 2r).

(b) If ∆(f)(t) =
∑2r

i=0 bit
i, then the set {bi}

2r
i=0 is alternating (cf. 5.5(4)).

(c) The coefficients {ci}
r
i=1 of ∆♮(f)(t) := t−r∆(f)(t) (cf. 5.5(3)) are alternating

as well.
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Proof. (a) is clear from (4) and (5), and (c) follows easily from (b). We will prove
(b) by induction over s. For each 1 ≤ l ≤ s we verify that there exist

(i) al-residue classes {r1, . . . , rt} ⊂ {1, 2, . . . , al − 1} (where t may depend on l);
(ii) integers n1, . . . , nt ∈ N such that

∆(f(l))(t) = 1 +
t

∑

i=1

ni
∑

j=0

tri+jal(t − 1).

It is clear that the coefficients of a polynomial of this form are alternating.

Let us start with the case l = 1. Write (p1, a1) = (p, a). Then (cf. (5))

∆(xp + ya)(t) = (tp(a−1) + · · · + tp + 1)/Q(t), Q(t) := ta−1 + · · · + t + 1.

For each i = 0, 1, . . . , a−1 write pi in the form xia+ri for some ri ∈ {0, . . . , a−1}.
Since gcd(p, a) = 1, {ri}i = {0, . . . , a−1}, and p | ri if and only if xi = 0. Therefore,

a−1
∑

i=0

tpi = Q(t) +
∑

i: p ∤ ri

tri(txia − 1) = Q(t) ·

[

1 +
∑

i: p ∤ ri

xi−1
∑

j=0

tri+ja(t − 1)

]

.

Now we prove that ∆(f(l)(t) has a similar form. By the inductive step, assume
that

∆(f(l−1))(t) = 1 +
t

∑

i=1

ni
∑

j=0

tri+jal−1(t − 1).

Then, using 6.1(4) and (5), for ∆(f(l))(t) one gets

(tplal − 1)(t − 1)

(tpl − 1)(tal − 1)
+

t
∑

i=1

ni
∑

j=0

t(ri+jal−1)pl
(tplal − 1)(t − 1)

tal − 1
.

Let {sj}
al−1
j=0 be the set of al-residue classes. Then (using the result of case l = 1)

the above expression reads

1 +
∑

j: pl ∤ sj

xj−1
∑

k=0

tsj+kal(t − 1) +

t
∑

i=1

ni
∑

j=0

pl−1
∑

k=0

t(ri+jal−1)pl+kal(t − 1).

Notice that 6.1(6) guarantees that for each i and j one has (ri + jal−1)pl < al,
hence these numbers can be considered as (non-zero) al-residue classes. Moreover,
they are all different from the residue classes {sj : pl ∤ sj} since they are all
divisible by pl. �

The “alternating property” of the coefficients of the Alexander polynomial
of any irreducible plane curve singularity will be crucial in the computation of the
Reidemeister–Turaev torsion of {f+zn = 0}. The key algebraic fact is summarized
in the next property:
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6.3. Algebraic Lemma. In the expressions below, t is a free variable and a is a pos-
itive integer. Za is identified with the a-roots of unity. Assume that the coefficients
of a polynomial ∆(t) ∈ Z[t] form an alternating set, ∆(1) = 1, and a ≥ deg ∆.
Then:

(a) For an arbitrary complex number A one has

1

a

∑

ξ∈Za

∆(ξt)

1 − ξt
·

∆(ξ̄At)

1 − ξ̄At
=

(1 − Aat2a) · ∆(At2)

(1 − ta)(1 − Aata)(1 − At2)
.

(b) For arbitrary integers d ≥ 2 and k ≥ 1 one has

1

ad−1

∑

ξ1,...,ξd∈Za

ξ1···ξd=1

∆(ξ1t)

1 − ξ1t
· · ·

∆(ξd−1t)

1 − ξd−1t
·

∆(ξdt
k)

1 − ξdtk

=
(1 − ta(d+k−1)) · ∆(td+k−1)

(1 − ta)d−1(1 − tak)(1 − td+k−1)
.

Proof. The assumption about ∆(t) guarantees that one can write ∆(t) = 1 −

R(t)(1− t) for some R(t) =
∑

j≥1 b̃jt
j with b̃j ∈ {0, 1} for all j. Then the left hand

side of (a) is

1

a

∑

ξ∈Za

1

(1 − ξt)(1 − ξ̄At)
−

1

a

∑

ξ∈Za

R(ξ̄At)

1 − ξt
−

1

a

∑

ξ∈Za

R(ξt)

1 − ξ̄At
+

1

a

∑

ξ∈Za

R(ξt) ·R(ξ̄At).

The first sum (with the coefficient 1/a) can be written in the form

1

a
(1 + ξt + ξ2t2 + · · · )(1 + ξ̄At + ξ̄2A2t2 + · · · ) =

1

a

∑

n≥0

n
∑

j=0

ξn−2jAjtn.

By an elementary computation this is

1 − Aat2a

(1 − ta)(1 − Aata)(1 − At2)
.

The second term gives R(At2)/(1 − ta). In order to prove this, first notice that
the formula is additive in the polynomial R, hence it is enough to verify it for
R(t) = tk for all 0 ≤ k < a. The case k = 0 is easy, it is equivalent to the identity

1

a

∑

ξ

1

1 − ξt
=

1

1 − ta
. (∗)

If 1 ≤ k < a, then write

1

a

∑

ξ

ξ̄kAktk

1 − ξt
=

Akt2k

a

[

∑

ξ

1

1 − ξt
+

∑

ξ

(ξt)−1 + · · · + (ξt)−k

]

.

Since k < a the last sum is zero (here k < a is crucial!), hence (∗) gives the claimed
identity.
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By a similar method, the third term is R(At2)/(1−Aata). Finally, the fourth
one is R(At2) (here one needs to apply the alternating property, namely that

b̃2
j = b̃j for any j).

For part (b), use (a) and induction over d. For this, write ξd as ξ̄1 · · · ξ̄d−1 and
use (a) for ξ = ξd−1 and A = ξ̄1 · · · ξ̄d−2t

k−1. Then apply the inductive step. �

6.4. Remarks. (1) Let ∆(t) and a be as in 6.3. The expression in 6.3(a) with A = 1
has a pole of order 2 at t = 1. This comes from the pole of the summand given by
ξ = 1. Therefore

1

a

∑

ξ∈Z∗

a

∆(ξ)

1 − ξ
·

∆(ξ̄)

1 − ξ̄
= lim

t→1

[

(1 − t2a) · ∆(t2)

(1 − ta)2(1 − t2)
−

∆(t)2

a(1 − t)2

]

=
a2 − 1

12a
+

1

a
[∆′(1) − ∆′(1)2 + ∆′′(1)],

where the first equality follows from 6.3, and the second by a computation.
(2) Assume that ∆(t) is an arbitrary symmetric polynomial of degree 2r, and

write ∆♮(t) = t−r∆(t). Then it is easy to show that

∆′(1) = r∆(1), (∆♮)′(1) = 0, (∆♮)′′(1) = (r − r2) + ∆′′(1)/∆(1).

(3) If one combines (1) and (2), then for a symmetric polynomial ∆(t) with
alternating coefficients and with ∆(1) = 1 one gets

∑

ξ∈Z∗

a

∆(ξ)

1 − ξ
·

∆(ξ̄)

1 − ξ̄
=

a2 − 1

12
+ (∆♮)′′(1) (for a ≥ deg ∆).

This reproves the vanishing of Da in 5.8(D) for such polynomials (cf. also 5.7(∗∗)).
(4) Although the Alexander polynomial ∆(f) of the algebraic knot (S3, Kf )

(f an irreducible plane curve singularity) is known since 1932 [7, 50], and it was
studied intensively (see e.g. [21, 1, 11]), the property 6.2 remained hidden (to the
best of the authors’ knowledge).

On the other hand, similar properties were intensively studied in number
theory: namely, in the 40’s, 50’s and 60’s a considerable number of articles were
published about the coefficients of cyclotomic polynomials. Here we mention only
a few results. If φn denotes the nth cyclotomic polynomial, then it was proved that
the coefficients of φn have values in {−1, 0, +1} for n = 2αpβqγ (p and q distinct
odd primes) (a result which goes back to the work of I. Schur); if n is a product
of three distinct primes pqr (p < q < r and p + q > r) then the coefficient of tr in
φn is −2 (a result of V. Ivanov); later Erdős proved interesting estimates for the
growth of the coefficients; and G. S. Kazandzidis provided an exact formula for
them. The interested reader can consult [23, pp. 404–411] for a large list of articles
about this subject. (Reading these reviews shows that apparently the alternating
property was not perceived in this area either.)

Clearly, the above facts are not independent of our problem: by 6.1(3) the
Alexander polynomial ∆(f) is a product of cyclotomic polynomials.
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(5) In fact, there is a recent result [15] in the theory of singularities which
implies the alternating property 6.2(b). For any irreducible curve singularity, using
its normalization, one can define a semigroup S ⊂ N with 0 ∈ S and N \ S finite.
Then, in [15], based on some results of Zariski, for an irreducible plane curve
singularities it is proved that ∆(f)(t)/(1 − t) =

∑

i∈S ti. This clearly implies the
alternating property.

(6) Are the irreducible plane curve singularities unique with the alternating
property? The answer is negative. In order to see this, consider the Seifert inte-
gral homology sphere Σ = Σ(a1, a2, . . . , ak+1) (where {ai}i are pairwise coprime
integers). Let K be the special orbit associated with the last arm (with Seifert in-
variant ak+1). Then the Alexander polynomial ∆Σ(K) has alternating coefficients.
Indeed, write a := a1 · · · ak, a′

i := a/ai for any 1 ≤ i ≤ k, and let S ⊂ N be the
semigroup (with 0 ∈ S) generated by a′

1, . . . , a
′
k. Then

∆Σ(K)(t) =
(1 − ta)k−1(1 − t)

∏k
i=1(1 − ta

′

i)
= (1 − t)

∑

i∈S

ti.

The first equality follows e.g. by [11, Section 11]; the second by an induction over k.
This implies the alternating property as above.

(7) We can ask the following natural question: which property distinguishes
(M, Kf ) (where f is an irreducible plane curve singularity), or (Σ, K) given in (6),
from the example described in 5.12? Why is the D-invariant zero in the first case,
but not in the second? Can this be connected with some property of the semi-
groups S associated with the curve whose link is K? (We believe that the validity
of an Abhyankar–Azevedo type theorem for this curve plays an important role in
this phenomenon.)

(8) Examples show that the assumptions of 6.3 are really essential (cf. also
7.8(2)).

7. The link of {f(x, y) + zn = 0}

7.1. Preliminaries. The present section is more technical than the previous ones,
and some of the details are left to the reader, which might cost the reader some
work.

Fix an irreducible plane curve singularity f : (C2, 0) → (C, 0) and let Kf ⊂ S3

be its link as in the previous section. Fix an integer n ≥ 1, and consider the
“suspension” germ g : (C3, 0) → (C, 0) given by g(x, y, z) = f(x, y) + zn. Its link
(i.e. {g = 0} ∩ S5

ǫ for ǫ ≪ 1) will be denoted by M . We will assume that M is a
rational homology sphere (cf. 7.2(c)).

First, we recall/fix some numerical notations. We set:

• the Newton pairs {(pk, qk)}s
k=1 of f ;

• the integers {ak}
s
k=1 defined as in 6.1(1); recall that gcd(pk, ak) = 1 for any k;

• dk := gcd(n, pk+1pk+2 · · · ps) for 0 ≤ k ≤ s − 1, and ds := 1;
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• hk := dk−1/dk = gcd(pk, n/dk) for 1 ≤ k ≤ s;

• h̃k := gcd(ak, n/dk) for 1 ≤ k ≤ s.

For any integer 1 ≤ l ≤ s, let M(l) be the link of the suspension singularity

g(l)(x, y, z) := f(l)(x, y)+ zn/dl . Evidently, M(s) = M , and M(1) = Σ(p1, a1, n/d1).

7.2. Some properties of the 3-manifolds {M(l)}l

(a) [10, 17, 38, 46] For each 1 ≤ l ≤ s, M(l) is the (n/dl)-cyclic cover of S3

branched along {f(l) = 0}. Let K(l) ⊂ M(l) be the preimage of {f(l) = 0} with
respect to this cover.

(b) (M(l), K(l)) can be represented by a (“canonical”) plumbing graph (or
resolution graph) which is compatible with the above cover. This is done explicitly
in [30] (based on the idea of [20]); see also 7.3 here. Using this graph one obtains
the following inductive picture.

For any 2 ≤ l ≤ s, M(l) can be obtained by splicing, as described in Section 4,
the 3-manifold M2 = Σ(pl, al, n/dl) along K2 = {y = 0} with hl copies of M(l−1)

along the link K(l−1) (with the same splicing data {A(i)}i as in Section 4). (In
order to prove this, one needs to determine the invariant Mw used in [30]; this is
done in [31, proof of (3.2)].)

(c) Part (b) ensures that M is a rational homology sphere if and only if for
each 1 ≤ l ≤ s the Seifert 3-manifold Σ(pl, al, n/dl) is a rational homology sphere.
Since gcd(pl, al) = 1, this happens if and only if

(hl − 1)(h̃l − 1) = 0 for any l (cf. [6] or [30]).

(d) Using (b) and 4.6, one has

|H1(M(l))| = |H1(Σ(pl, al, n/dl))| + hl · |H1(M(l−1))| for any 2 ≤ l ≤ s,

or

|H1(M)| =
s

∑

l=1

dl · |H1(Σ(pl, al, n/dl))|.

In fact, one can give a complete description of the group H1(M) and the character
group H1(M )̂ using 4.6 (we will come back to this in 7.3).

(e) As a parallelism, let us recall some similar formulae for other numerical
invariants: let µ(l), respectively σ(l), be the Milnor number, respectively the sig-
nature of the Milnor fiber of g(l). Similarly, let µ(pl, al, n/dl) and σ(pl, al, n/dl) be

the Milnor number and the signature of the Brieskorn singularity xpl +yal +zn/dl .
Then, by [31], for any 2 ≤ l ≤ s,

σ(l) = σ(pl, al, n/dl) + hl · σ(l−1) or, equivalently, σ(s) =
s

∑

l=1

dl · σ(pl, al, n/dl).

By contrast, for the Milnor numbers one has µ(l) = µ(pl, al, n/dl) + pl · µ(l−1)

(involving pl versus hl, which follows e.g. from 6.1(4)).
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Our goal is to establish an inductive formula for sw
TCW
M (σcan), similar to

|H1| or to the signature σ(l). (For λW or TM,σcan
(1) such a formula does not hold,

see below.)
(f) [10, 17, 38, 46] (S3, Kf(l)

) is fibrable. Let Mgeom,(l) : F(l) → F(l) (respec-

tively M(l)) be a geometric (respectively the algebraic) monodromy acting on the
Milnor fiber F(l) (respectively on H1(F(l))). Then (M(l), K(l)) is also fibrable, and
its open book decomposition has the same fiber F(l) and geometric monodromy

M
n/dl

geom,(l). In particular, the (normalized) Alexander polynomial of (M(l), K(l)) is

(the normalization of)

∆M(l)
(t) = ∆M(l)

(K(l))(t) = det(1 − tM
n/dl

(l) ).

Therefore, using 3.6(7) and 2rl := rank H1(F(l)) we obtain

∆♮
M(l)

(t) =
1

|H1(M(l))|
·t−rl ·det(1−tM

n/dl

(l) ) with |H1(M(l))| = |det(1−M
n/dl

(l) )|.

Notice that ∆♮
M(l)

(t) can be deduced from the Alexander polynomial

∆(f(l))(t) = det(1 − tM(l))

of f(l) (cf. Section 5). Indeed, for any polynomial ∆(t) of degree 2r and of the form
∆(t) =

∏

v (1 − tmv)nv , and for any positive integer k, define

∆c(k)(t) :=
∏

v

(1 − tmv/gcd(mv,k))nv·gcd(mv,k).

Let ∆c(k),♮(t) = t−r∆c(k)(t)/∆c(k)(1) denote the normalization of ∆c(k)(t). An
eigenvalue argument then proves

∆M(l)
(t) = ∆(f(l))

c(n/dl)(t) and ∆♮
M(l)

(t) = ∆(f(l))
c(n/dl),♮(t).

(g) The inductive formula 6.1(4) reduces the computation of the Alexander
invariants to the Seifert case. Clearly (from 6.1(5), 5.3 and (f) above),

∆(xpl + yal)c(n/dl),♮(t) =
1

ahl−1
l ph̃−1

l

· t−(al−1)(pl−1)/2 ·
(tplal/(hlh̃l) − 1)hlh̃l(t − 1)

(tpl/hl − 1)hl(tal/h̃l − 1)h̃l

.

(Recall that (hl −1)(h̃l −1) = 0 for any l.) Then, by a computation, one can show
that

(∆(xpl + yal)c(n/dl),♮)′′(1) =
1

12

(

a2
l

h̃l

− 1

)(

p2
l

hl
− 1

)

.

(h) Using (f) and 6.1(4) one gets

∆♮
M(l)

(t) = ∆(xpl + yal)c(n/dl),♮(t) · [∆♮
M(l−1)

(tpl/hl)]hl .

Then, using (∆♮)′(1) = 0 (cf. 6.4(2)) and the result from (g), one obtains

(∆♮
M(l)

)′′(1) =
1

12

(

a2
l

h̃l

− 1

)(

p2
l

hl
− 1

)

+
p2

l

hl
· (∆♮

M(l−1)
)′′(1).
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Therefore

(∆♮
M(l)

)′′(1) =

l
∑

k=1

1

12

(

a2
k

h̃k

− 1

)(

p2
k

hk
− 1

)

·
(pk+1 · · · pl)

2

hk+1 · · ·hl
.

(i) For any 2 ≤ l ≤ s, one has

λW(M(l)) = λW(Σ(pl, al, n/dl)) + hl · λW(M(l−1))

+
npl(hl − 1)

dlalhl

l−1
∑

k=1

1

12

(

a2
k

h̃k

− 1

)(

p2
k

hk
− 1

)

(pk+1 · · · pl−1)
2

hk+1 · · ·hl−1
.

Indeed, if hl = 1 then we have additivity as in 4.3(4) (cf. also the proof of 5.10,

part B). If h̃l = 1, then apply 5.6 (see also 5.8) and (h) above.
For the value of the Casson–Walker invariant λW(Σ(p, a, n)) of a Seifert man-

ifold, see [22, 6.1.1] or [36, 5.4].

(j) Below in (k), we will compute (∆♮
M(l)

)′′(1) in terms of {(∆(f(k))
♮)′′(1)}k≤l.

Clearly, one can obtain an inductive formula for (∆(f(k))
♮)′′(1) similar to the one

in (h) by taking n = 1. More precisely, for any 2 ≤ l ≤ s,

(∆(f(l))
♮)′′(1) = (a2

l − 1)(p2
l − 1)/12 + p2

l · (∆(f(l−1))
♮)′′(1).

(k) The next (rather complicated) identity looks very artificial, but it is one
of the most important formulae in this list. Basically, its validity is equivalent to
the fact that the two correction terms O(T) and O(λW/2) are the same (cf. 7.13
and 7.14). For any 2 ≤ l ≤ s one has

(∆♮
M(l)

)′′(1) = (∆(f(l))
♮)′′(1) −

l
∑

k=1

a2
kp2

k

h̃2
kh2

k

·
p2

k+1 · · · p
2
l

hk+1 · · ·hl
· Ak,

where

Ak :=
hk(hk − 1)

a2
k

·

[

a2
k − 1

12
+ (∆(f(k−1))

♮)′′(1)

]

+
h̃k(h̃k − 1)

p2
k

·
p2

k − 1

12
.

For the proof proceed as follows. Let E(l) be the difference between the left and
the right hand side of the identity. Then, using the inductive formulae (h) and (j)

and the property (hk − 1)(h̃k − 1) = 0, by an elementary computation one can
verify that E(l) − (p2

l /hl) · E(l−1) = 0, and E(1) = 0. Then E(l) = 0 by induction.
(l) The last invariant we wish to determine is TM(l),σcan

(1). The computation
is more involved and it is given in the next subsections. The inductive formula for
TM(l),σcan

(1) is given in 7.13.

7.3. Characters of H1(M). In the computation of TM,σcan
(1) we plan to use

3.7(16). For this, we need to describe the characters χ ∈ Ĥ = H1(M )̂ .
The group H can be determined in many different ways. For example, using

the monodromy operator M = M(s) of f , H can be identified, as an abstract group,
with coker(1 − Mn). The homology of the Milnor fiber of f and M have a direct
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sum decomposition with respect to the splicing (see e.g. [11] or [31]). This can be
used to provide an inductive description of H.

Nevertheless, we prefer to use 4.6. The main reason is that, in fact, we have
to understand Ĥ (rather than H) together with the description of the supports

{v : χ(gv) 6= 1} for each character χ ∈ Ĥ. For this, the discussion from Section 3
is more suitable.

We consider again the “canonical” plumbing graph Γ(M) of M provided by
the algorithm of [30] (published also in [33]; cf. also 7.2(b) here). In fact, that
algorithm provides Γ := Γ(M, Kz), the plumbing graph of the 3-dimensional link
M = {f(x, y)+zn = 0} with the knot Kz := {z = 0} in it. Again, if we replace the
strings by dashed lines, then one can represent Γ as a covering graph of Γ(S3, Kf );
for details, see [loc. cit.], cf. also 7.2(b). If we denote this graph-projection by π,
then

#π−1(vk) = hk+1 · · ·hs, 1 ≤ k ≤ s,

#π−1(v̄k) = h̃khk+1 · · ·hs, 1 ≤ k ≤ s,
#π−1(v̄0) = h1 · · ·hs

(see 6.1 for notations concerning Γ(S3, Kf )). In fact, there is a Zn-action on Γ
which acts transitively on each fiber of π, hence all the vertices above a given
vertex v ∈ V∗ of Γ(S3, Kf ) are symmetric in Γ. In particular, their decorations and
their numerical invariants (computed from the graph Γ) are the same. Therefore,
Γ has the following schematic form:

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s s

s

s s

{z = 0}-

... h1

... h1

... h1

· · ·
h̃1

· · ·
h̃1

· · ·
h̃1

...

... hs−1

...

...hs

· · ·

· · ·
h̃s−1

· · ·
h̃s

· · ·· · ·

· · ·

· · ·

Now, we consider the Seifert manifold Σ := Σ(p, a, n) with gcd(p, a) = 1.
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If gcd(a, n) = 1 and gcd(p, n) = d, then by 5.3, H1(Σ) is generated by the

homology classes of {K
(i)
2 }d

i=1. For an arbitrary character χ, we write χ(K
(i)
2 ) = ξi.

Here ξi is an a-root of unity in C (briefly ξi ∈ Za). Then χ is completely charac-
terized by the collection {ξi}

d
i=1 which satisfies ξi ∈ Za for any i and ξ1 · · · ξd = 1

(cf. 5.3(1)).

Notice that χ(O) = 1, and χ is supported by those d “arms” of the star-
shaped graph which have Seifert invariant a (i.e. χ(gv) = 1 for the vertices v
situated on the other arms). In [36] it is proved that for each non-trivial character χ,

in P̂Σ,χ,u(t) one can take for u the central vertex O. Moreover, limt→1 P̂Σ,χ,u(t)
can be non-zero only if χ is supported exactly on two arms, i.e. ξi 6= 1 exactly for
two values of i, say i1 and i2 (hence ξi1 = ξ̄i2).

If gcd(n, p) = 1, but gcd(n, a) 6= 1, then clearly we have a symmetric situa-
tion; in this case we use the notation η instead of ξ.

In both situations, for any character χ, χ(gv) = 1 for any v situated on the
arm with Seifert invariant n/gcd(n, ap).

These properties proved for the building block Σ will generate all the proper-
ties of H = H1(M) via the splicing properties 4.6 and linking relations 5.3.1. For
example, one can prove by induction, that for any character χ of H, χ(gv) = 1 for
any vertex v situated on the string which supports the arrow of Kz.

Consider the splicing decomposition

M = M(s) = hsM(s−1) ∐ Σ(ps, as, n).

As in the previous inductive arguments, assume that we understand the characters
χ of H1(M(s−1)). By 4.6, they can be considered in a natural way as characters
of H1(M(s)) satisfying additionally χ(gv) = 1 for any vertex v of Σ(ps, as, n) (cf.
also the first paragraph of the proof of 4.9). We say that these characters do not
propagate from M(s−1) into Σ(ps, as, n).

In the “easy” case when hs = 1 (even if h̃s 6= 1), the splicing invariants are
o1 = o2 = 1 and k1 = k2 = 0, hence H (together with its linking form) is a direct
sum in a natural way, hence the characters of Σ(ps, as, n) (described above) will
not propagate into M(s−1) either.

On the other hand, if hs > 1, then the non-trivial characters of Σ(ps, as, n) do

propagate into the hs copies of M(s−1). If χ is such a character, with χ(K
(i)
2 ) = ξi,

then analyzing the properties of the linking numbers in 4.6 we deduce that χ does

propagate into M in such a way that χ(gv(i)) = ξl
i for any vertex v(i) of M

(i)
(s−1),

where l = Lk
M

(i)

(s−1)

(gv(i) , K
(i)
1 ). This can be proved as follows. Write exp(r) for

e2πir, and assume that χ = exp(LkΣ(L, ·)) for some fixed L ⊂ Σ. Then ξi =

χ(K
(i)
2 ) = exp(LkΣ(L, K

(i)
2 )). Therefore, χ extended into M as exp(LkM (L, ·))

satisfies (cf. 4.6(11))

χ(gv(i)) = exp(LkM (L, gv(i))) = exp(LkΣ(L, K
(i)
2 ) · Lk

M
(i)
s−1

(K
(i)
1 , gv(i))) = ξl

i.
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Clearly, all these linking numbers Lk
M

(i)

(s−1)

(gv(i) , K
(i)
1 ) can be determined induc-

tively by the formulae provided in 4.6 and 5.3.1.
Moreover, if we multiply such an extended character χ with a character χ′

supported by M(s−1), then χχ′(gv) = χ(gv) for any vertex v situated above the
vertices vs or vs−1 or above any vertex on the edge connecting vs−1 with vs (since
the support of χ′ does not contain these vertices). We will say that such a character
χχ′ is born at level s (provided that the original χ of Σ was non-trivial). (The
interested reader can reformulate the above discussion in the language of an exact
sequence of dual groups, similar to the one used in the first paragraph of the proof
of 4.9.)

Below we provide some examples. In these diagrams, for any fixed character χ,
we put the complex number χ(gv) at the vertex v.

7.4. Example. Assume that s = 2. Then basically one has two different cases:
h̃1 = h2 = 1 or h̃1 = h̃2 = 1 (since the first pairs (p1, a1) can be permuted).

In the first (“easy”) case, the schematic diagram of the characters is:

s

s

s s s

s s s

...

· · ·

1

1

1 1

η1 ηh̃2

ξ11

ξh11

ηi2 ∈ Zp2
for 1 ≤ i2 ≤ h̃2, and

∏

1≤i2≤h̃2

ηi2 = 1;

ξi11 ∈ Za1
for 1 ≤ i1 ≤ h1, and

∏

1≤i1≤h1

ξi11 = 1.

In the second case h̃1 = h̃2 =1, with the notation p′1 :=p1/h1, the characters Ĥ are:

s

s

s

s

s

s

s

s
s

s

s

...

...

...

ξ
a1p′

1
1

ξa1
1

ξ
a1p′

1

h2

ξa1

h2

1

1 1

ξ11ξ
p′

1
1

ξh11ξ
p′

1
1

ξ1h2
ξ

p′

1

h2

ξh1h2
ξ

p′

1

h2

ξi2 ∈ Za2
for 1 ≤ i2 ≤ h2, and

∏

1≤i2≤h2

ξi2 = 1;

and for any fixed i2:

ξi1i2 ∈ Za1
for 1 ≤ i1 ≤ h1, and

∏

1≤i1≤h1

ξi1i2 = 1.

7.5. Using the discussion 7.3, the above example for s = 2 can be generalized
inductively to arbitrary s. For the convenience of the reader, we make this explicit.
In order to have a uniform notation, we consider the case h̃k = 1 for any 1 ≤ k ≤ s.
The interested reader is invited to write down a similar description of the characters
in those cases when h̃k 6= 1 for some k, using the present model and 7.4.

More precisely, for any character χ, we will indicate χ(gv′) for any vertex
v′ ∈ π−1(V∗).

It is convenient to introduce the index set (i1, . . . , is), where 1 ≤ il ≤ hl for
any 1 ≤ l ≤ s. As already mentioned, this set can be considered as the index set
of π−1(v̄0). Moreover, for any 1 ≤ k ≤ s − 1, (ik+1, . . . , is) (where 1 ≤ il ≤ hl

for any k + 1 ≤ l ≤ s) is the index set of π−1(vk) (and of π−1(v̄k) since h̃k = 1).
Moreover, for any l we write p′l := pl/hl.
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Next, we consider a system of roots of unity as follows:

• ξis
∈ Zas

with
∏

1≤is≤hs
ξis

= 1;

• for any fixed is a collection ξis−1is
∈ Zas−1

with
∏

1≤is−1≤hs−1
ξis−1is

= 1;

and, more generally, if 1 ≤ k ≤ s − 1:
• for any fixed (ik+1, . . . , is) a collection ξik ··· is

∈ Zak
with

∏

1≤ik≤hk
ξik ··· is

= 1.

Then, any character χ can be characterized by the following properties:

• π−1(vs) contains exactly one vertex, say v′. Then χ(gv′) = 1. The same is
valid for π−1(v̄s) and for the vertex in Γ which supports the arrow {z = 0}.

• For any 1 ≤ k ≤ s−1, if v′(ik+1, . . . , is) is the vertex in π−1(vk) corresponding
to (ik+1, . . . , is), then

χ(gv′(ik+1,...,is)) = ξ
ak p′

k

ik+1 ··· is
· ξ

ak p′

k p′

k+1

ik+2 ··· is
· · · ξ

ak p′

k ··· p′

s−1

is
.

• Similarly, if v̄′(ik+1, . . . , is) is the vertex in π−1(v̄k) corresponding to (ik+1,
. . . , is), then

χ(gv̄′(ik+1,...,is)) = ξak

ik+1 ··· is
· ξ

ak p′

k+1

ik+2 ··· is
· · · ξ

ak p′

k+1 ··· p′

s−1

is
.

• Finally, if v̄′(i1, . . . , is) is the vertex in π−1(v̄0) corresponding to the index
(i1, . . . , is), then

χ(gv̄′(i1,...,is)) = ξi1 ··· is
· ξ

p′

1

i2 ··· is
· · · ξ

p′

1 ··· p′

s−1

is
.

If ξis
6= 1 for some is then χ is born at level s. If ξis

= 1 for all is, but χis−1is
6= 1

for some (is−1, is), then χ is born at level s − 1, etc. In general, a character χ is
born at level k (1 ≤ k ≤ s) if for any l ≥ k and v′ ∈ π−1(vl), one has χ(gv′) = 1,
but there exists at least one vertex v′ ∈ π−1(vk) which is adjacent (in the graph Γ)
to the support of χ.

The next result will be crucial when we apply the Fourier inversion formula
3.7(14). It is a really remarkable property of the links associated with irreducible
plane curve singularities. It is the most important qualitative ingredient in our
torsion computation (see also 7.8 for another powerful application).

7.6. Proposition. Consider (S3, Kf ) associated with an irreducible plane curve sin-
gularity f . Let ∆S3(Kf )(t) be its Alexander polynomial. For any integer n ≥ 1,
consider (M, Kz), i.e. the link M of {f(x, y)+zn = 0} and the knot Kz := {z = 0}
in it. Let ∆H

M (Kz)(t) be the Alexander invariant defined in 3.6(10–11) with H =
H1(M). Then

∆H
M (Kz)(t) = ∆S3(Kf )(t).

Proof. First we notice that in 3.6(10), gu = Kz and o(u) = 1. Then, by 3.4(5),
mv′(u) = LkM (gv′ , Kz) for any vertex v′ of Γ. By the algorithm of [30], for any
vertex v′ ∈ π−1(v), where v ∈ V∗(Γ(S3, Kf )), the linking number LkM (gv′ , Kz)
is given by wv′ = wv/gcd(wv, n). Recall that for any v ∈ V∗(Γ(S3, Kf )), the
corresponding weights wv are given in 6.1(2). In particular, this discussion provides
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all the weights wv′(u) needed in the definition 3.6(10) of ∆M,χ(Kz)(t). On the other

hand, for characters χ ∈ Ĥ we can use the above description. Then the proposition
follows (after some computation) inductively using the Algebraic Lemma 6.3(b),
for the Alexander polynomials ∆(f(l)(0)) (0 ≤ l ≤ s − 1, where ∆(f(0))(t) ≡ 1).
Notice that this lemma can be applied thanks to Proposition 6.2 (which ensures
that the coefficients of ∆(f(l))(t) are alternating), and to the inequality 6.1(6)
(which ensures that a is “sufficiently large”). (For an expression of ∆(f(l))(t), see
6.1.)

In the next example we make this argument explicit for the case s = 2 and
h̃1 = h̃2 = 1. Using this model, the reader can complete the general case easily. �

7.7. Example. Assume that s = 2 and h̃1 = h̃2 = 1. Then, with the notation of
7.4, ∆M,χ(Kz)(t) equals

∏

i1,i2

1

1 − tp
′

1 p′

2ξi1i2 ξ
p′

1

i2

·
∏

i2

(1 − ta1 p′

1 p′

2ξ
a1 p′

1
i2

)h1

1 − ta1p′

2ξa1
i2

·
(1 − ta2 p′

2)h2(1 − t)

1 − ta2
.

First, for each fixed index i2, we make a sum over ξi1i2 ∈ Za1
. Using 6.3(b) for

∆ ≡ 1, t = tp
′

1 p′

2ξ
p′

1
i2

and a = a1 and d = h1, the above expression transforms (after
some simplifications) into

∏

i2

1 − ta1 p1 p′

2ξa1 p1

i2

(1 − tp1 p′

2ξp1

i2
) · (1 − ta1p′

2ξa1
i2

)
·

(1 − ta2 p′

2)h2 · (1 − t)

1 − ta2
.

The expression in the product is exactly ∆(f(1))(t
p′

2)/(1 − tp
′

2). Therefore, 6.3(b)

can be applied again, now for ∆ = ∆(f(1)), t = tp
′

2 , a = a2 and d = h2. Then the
expression transforms into ∆(f(2)).

7.8. Remarks. (1) If the link M of {f(x, y) + zn = 0} is a rational homology
sphere, then in [28] we prove the following facts. Using the combinatorics of the
plumbing graph of M , one can recover the knot Kz in it. Then, by the above
proposition, from the pair (M, Kz) one can recover the Alexander polynomial
∆S3(Kf ) of f . It is well known that this is equivalent to the equisingular type
of the plane singularity f . Moreover, analyzing again the graph of (M, Kz), one
can recover the integer n as well. In particular, from M , we can recover not only
the geometric genus of {f + zn = 0} (which is proved in this article), but also its
multiplicity, and in fact, any numerical invariant which can be computed from the
Newton (or Puiseux) pairs of f and from the integer n (e.g. even all the equivariant
Hodge numbers associated with the vanishing cohomology of the hypersurface
singularity g = f +zn, or even the embedded topological type (S5, M) of g with its
integral Seifert matrix). (In fact, in [28], one obtains the Newton pairs by a more
direct argument.)

(2) 7.6 suggests the following question. Let N be an integral homology sphere,
and L ⊂ N a knot in it such that (N, L) can be represented by a (negative definite)
plumbing. Let (M, K) be the n-cyclic cover of (N, L) (branched along L) such
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that M is a rational homology sphere with H1(M) = H. Is it then true that
∆H

M (K)(t) = ∆N (L)(t)?
The answer is negative: one can easily construct examples (satisfying even the

algebraicity condition) when the identity 7.6 fails. For example, consider (N, L)
given by the following splice, respectively plumbing diagram:

s s s

s s

-2 7 3 1

5 2
s s s

s s

-−2 −1 −4

−5 −2

Then one can show that e.g. for n = 2 the identity ∆H
M (K)(t) = ∆N (L)(t) fails.

This example also shows that in the Algebraic Lemma 6.3 the assumption
a ≥ deg ∆ is crucial. Indeed, in this example H = Z3; and in order to determine
∆H

M (K)(t), one needs to compute a sum like the one in 6.3(a) with a = 3, A = 1
and ∆ = t4 − t3 + t2 − t + 1 (i.e. with a < deg ∆). But for these data, the identity
in 6.3(a) fails.

7.9. The Reidemeister–Turaev sign-refined torsion. Now we will start to compute
TM,σcan

(1) associated with M = M(s) and the canonical spinc structure σcan of M .
As above, we write H = H1(M). Using 3.7(14), TM,σcan

(1) can be determined by

the Fourier inversion formula from {T̂M,σcan
(χ) : χ ∈ Ĥ \{1}}. On the other hand,

each T̂M,σcan
(χ̄) is given by the limit limt→1 P̂M,χ,u(t) for some convenient u (cf.

3.7(16)).
In the discussion below, the following terminology is helpful. Fix an integer

1 ≤ k ≤ s and a vertex v′(I) := v′(ik+1, . . . , is) ∈ π−1(vk). Consider the graph

Γ \ {v′(I)}. If h̃k = 1 then it has hk + 2 connected components: hk (isomorphic)

subgraphs Γik

− (v′(I)) (1 ≤ ik ≤ hk) which contain vertices at level k − 1, a string
Γst(v

′(I)) containing a vertex above v̄k, and the component Γ+(v′(I)) which sup-

ports the arrow {z = 0}. Similarly, if hk = 1, then Γ\{v′(I)} has h̃k +2 connected
components: Γ−(v′(I)) contains vertices at level k − 1, Γ+(v′(I)) supports the ar-

row {z = 0}, and h̃k other (isomorphic) components Γjk

st (v′(I)) (1 ≤ jk ≤ h̃k),
which are strings, and each of them contains exactly one vertex staying above v̄k.

Just as for the Seifert manifold Σ(p, n, n) (see the discussion in 7.3 after the

diagram), for a large number of characters χ, the limit limt→1 P̂M,χ,u(t) is zero.
Analyzing the structure of the graph of M and the supports of the characters, one
can deduce that a non-trivial character χ, with the above limit non-zero, should
satisfy one of the following structure properties.

E(asy) case: The character χ is born at level k (for some 1 ≤ k ≤ s) with h̃k > 1.
For any vertex v′ ∈ π−1(vk) one has χ(gv′) = 1, but there is exactly one vertex
v′(I) := v′(ik+1, . . . , is) ∈ π−1(vk) which is adjacent to the support of χ. Moreover,

χ is supported by exactly two components of type Γjk

st (v′(I)), say for indices j′k
and j′′k . Let v′(j′k) be the unique vertex in Γjk

st (v′(I)) ∩ π−1(v̄k) (similarly for j′′k ).
Then v′(j′k) and v′(j′′k ) are the only vertices v′ of the graph of M with δv′ 6= 2
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and χ(gv′) 6= 1. Moreover, χ(gv′(j′

k
)) = χ̄(gv′(j′′

k
)) = η ∈ Z∗

pk
. Therefore, with fixed

(ik+1, . . . , is) and (j′k, j′′k ), there are exactly pk − 1 such characters.

D(ifficult) case: The character χ is born at level k (for some 1 ≤ k ≤ s) with
hk > 1. For any vertex v′ ∈ π−1(vk), χ(gv′) = 1, but there is exactly one vertex
v′(I) := v′(ik+1, . . . , is) ∈ π−1(vk) which is adjacent to the support of χ. The

character χ is supported by exactly two components of type Γik

− (v′(I)), say for
indices i′k and i′′k . Using the previous notations, this means that ξikik+1···is

= 1
except for ik = i′k or ik = i′′k . (Evidently, ξit···is

= 1 for any t > k.) For t < k,
the values ξit···ik+1···is

are arbitrary. In particular, with indices (ik+1, . . . , is) and

(i′k, i′′k) fixed, there are exactly (ak − 1) · |H1(M(k−1))|
2 such characters. Here,

ak−1 stands for ξi′
k

ik+1···is
= ξ̄i′′

k
ik+1···is

∈ Z∗
ak

, and |H1(M(k−1))|
2 for the arbitrary

characters born at level < k on the two branches corresponding to (i′k, ik+1, . . . , is)
and (i′′k, ik+1, . . . , is).

In both cases (E) or (D), if such a character χ is born at level k (i.e. if it
satisfies the above characterization for k), then we write χ ∈ Bk.

Now, we fix a non-trivial character χ. Let S(χ) be the support of χ and S̄(χ)
its complement. Then

1

|H|
· T̂M,σcan

(χ̄) = Loc(χ̄) · Reg(χ̄),

where

Loc(χ̄) :=
∏

v′∈S(χ)

(χ(gv′)−1)δv′−2, Reg(χ̄) :=
1

|H|
· lim
t→1

∏

v′∈S̄(χ)

(twv′ (u)−1)δv′−2.

We will call Loc(χ̄) the local contribution, while Reg(χ̄) the regularization contri-
bution.

By the above discussion, Reg(χ̄) = 0 unless χ is not of the type (E) or (D)

described above. If χ is of type (E) or (D), then in P̂M,χ,u(t) (cf. 3.7(15)) one can
take v′(I). Moreover, if χ ∈ Bk, then by the symmetry of the plumbing graph
of M , Reg(χ̄) does not depend on the particular choice of χ, but only on the
integer k. We write Reg(k) for Reg(χ) for some (any) χ ∈ Bk.

In particular,

TM,σcan
(1) =

s
∑

k=1

Reg(k) ·
∑

χ∈Bk

Loc(χ̄). (T)

7.10. Proposition. For any fixed 1 ≤ k ≤ s one has:

(E) If hk = 1 then
∑

χ∈Bk

Loc(χ̄) = dk ·
h̃k(h̃k − 1)

2
·
p2

k − 1

12
.

(D) If h̃k = 1 then
∑

χ∈Bk

Loc(χ̄) = dk ·
hk(hk − 1)

2
· |H1(M(k−1))|

2 ·

[

a2
k − 1

12
+ (∆(f(k−1))

♮)′′(1)

]

.
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Proof. In case (E), dk = hk+1 · · ·hs is the cardinality of the index set (ik+1, . . . , is),

and h̃k(h̃k − 1)/2 is the number of possibilities to choose the indices (j′k, j′′k ). The
last term comes from a formula of type 5.7(∗∗), where the sum is over η ∈ Z∗

pk
.

In case (D), dkhk(hk − 1)/2 has the same interpretation. Fix the branch
(i′k, ik+1, . . . , is) and consider the sum over all the characters born at level < k.
Then 7.6, applied for (M(k−1), K(k−1)) as a covering of (S3, f(k−1) = 0), provides

|H1(M(k−1))|
2 · ∆(f(k−1))(t)/(t− 1) evaluated at t = ξi′

k
ik+1···is

. The same is true

for the other index i′′k . Then apply 6.4(3) for ∆ = ∆(f(k−1)) and a = ak. This can
be done because of 6.2 and 6.1(6). �

7.11. The regularization contribution Reg(k). Fix a character χ ∈ Bk of type
(E) or (D) as in 7.9. Recall that one can take u = v′(I). Consider the connected
components of Γ \ {v′(I)} (as in 7.9), where we add to each component an arrow
corresponding to the edge which connects the component to v′(I). For these graphs,
if one applies 3.6(12), one finds that Reg(k) is

Reg(k) =

{

− det(Γ−) · det(Γst)
h̃k−2 · det(Γ+)/det(Γ) in case (E),

− det(Γ−)hk−2 · det(Γst) · det(Γ+)/det(Γ) in case (D).

Let I be the intersection matrix of M , and I−1
k := I−1

v′v′ for any v′ ∈ π−1(vk).
Then, by the formula which provides the entries of an inverse matrix, one gets

det Γ · I−1
v′v′ =

{

det(Γ−) det(Γst)
h̃k det(Γ+) in case (E),

det(Γ−)hk det(Γst) det(Γ+) in case (D).

These two facts combined show that

Reg(k) =

{

−I−1
k /det(Γst)

2 = −I−1
k /p2

k in case (E),

−I−1
k /det(Γ−)2 = −I−1

k /(ak · |H1(M(k−1))|)
2 in case (D)

since in case (E), |det(Γst)| = pk e.g. from 5.3, and in case (D), |det(Γ−)| =
ak · |H1(M(k−1))| by 5.13.

This together with 7.9(T) and 7.10 yields

TM,σcan
(1) = −

s
∑

k=1

I−1
k · dk · Ak/2, (∗)

where Ak is defined in 7.2(k) in terms of the numerical invariants of f(k).

7.12. The computation of I−1
k . For any l ≥ k, let I−1

k (M(l)) be the (v′, v′)-entry of
the inverse of the intersection form I(M(l)) associated with M(l), where v′ is any

vertex above vk. For example I−1
k (M(s)) is I−1

k used above.

By 3.4(5), −I−1
k (M(l)) = LkM(l)

(gv′ , gv′). If l = k, by 4.6(12) this is

LkΣ(pk,ak,n/dk)(O, O), hence by 5.3.1 it is npkak/(dkh2
kh̃2

k).
Next, assume that l > k. If hl = 1, then the splicing

M(l) = hlM(l−1) ∐ Σ(pl, al, n/dl)
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is trivial (with o1 = o2 = 1 and k1 = k2 = 0), hence by 4.6(10) one gets

−I−1
k (M(l)) = −I−1

k (M(l−1)).

If hl > 1, then 5.3.2 and an iterated application of 4.6(10) and 5.3.1 give

−I−1
k (M(l)) = −I−1

k (M(l−1)) −

(

akpk

h̃khk

·
pk+1

hk+1
· · ·

pl−1

hl−1

)2

·
npl(hl − 1)

dlalh2
l

.

Indeed, by 3.4(5) and 4.6,

−I−1
k (M(l)) = −I−1

k (M(l−1)) − (LkM(l−1)
(gv′ , K(l−1)))

2 ·
npl(hl − 1)

dlalh2
l

,

and, again by 4.6, LkM(l−1)
(gv′ , K(l−1)) equals

LkΣ(pk,akn/dk)(O, Z)·LkΣ(pk+1,ak+1n/dk+1)(K
(i)
2 , Z) · · ·LkΣ(pl−1,al−1n/dl−1)(K

(i)
2 , Z).

7.13. The splicing formula for TMσcan
(1). Using 7.11(∗) and 7.12 (and ds = 1), we

can write

TM(s),σcan
(1) − hs · TM(s−1),σcan

(1)

=
nasps

2h̃2
sh

2
s

· As +

s−1
∑

k=1

(−I−1
k (M(s))) · hk+1 · · ·hs · Ak/2

− hs

s−1
∑

k=1

(−I−1
k (M(s−1))) · hk+1 · · ·hs−1 · Ak/2

=
nasps

2h̃2
sh

2
s

· As −
s−1
∑

k=1

hk+1 · · ·hs ·
a2

kp2
k · · · p

2
s−1

h̃2
kh2

k · · ·h
2
s−1

·
nps(hs − 1)

ash2
s

· Ak/2.

But by 5.3(d) one has

nasps

2h̃2
sh

2
s

· As = TΣ(ps,as,n),σcan
(1) +

nasps

2h̃2
sh

2
s

·
hs(hs − 1)

a2
s

· (∆(f(s−1))
♮)′′(1).

Therefore, (using also (hs − 1)/h̃2 = hs − 1) one gets

O(T·,σcan
(1)) = TM(s),σcan

(1) − hs · TM(s−1),σcan
(1) − TΣ(ps,as,n),σcan

(1)

=
nps(hs − 1)

2hsas

[

(∆(f(s−1))
♮)′′(1) −

s−1
∑

k=1

a2
kp2

k · · · p
2
s−1

h̃2
kh2

khk+1 · · ·hs−1

· Ak

]

.

Now, using 5.8 for M = M(s), and 7.2(k) for l = s− 1, one has the following
consequences:
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7.14. Theorem. The additivity obstruction O(swTCW
· (σcan)) is 0, in other words:

sw
TCW
M(s)

(σcan) = hs · sw
TCW
M(s−1)

(σcan) + sw
TCW
Σ(ps,as,n)(σcan).

In particular, by induction for M = M(s) one gets

sw
TCW
M (σcan) =

s
∑

k=1

dk · swTCW
Σ(pk,ak,n/dk)(σcan).

7.15. Corollary. Consider the hypersurface singularity g(x, y, z) = f(x, y) + zn,
where f is an irreducible plane curve singularity. Assume that its link M is a
rational homology sphere. If σ(g) denotes the signature of the Milnor fiber of g,
then

−sw
TCW
M (σcan) = σ(g)/8.

In particular, the geometric genus of {g = 0} is topological and it is given by

pg = sw
TCW
M (σcan) − (K2 + s)/8,

where the invariant K2 +s (associated with any connected negative definite plumb-
ing graph of M) is defined in the introduction.

Proof. By 7.14 and [31, (3.2)] (cf. also 7.2(e)), we only have to show that

−sw
TCW
Σ(pk,ak,n/dk)(σcan) = σ(pk, ak, n/dk)/8

for any k. But this follows from [36, Section 6]. �

For an explicit formula for sw
TCW
Σ(pk,ak,n/dk)(σcan), see [36] or [37].

8. Appendix A

In this section we exemplify some of the theorems, formulas and invariant compu-
tations on a not very complicated, but still sufficiently representative example.

We start with a plane curve singularity f with two Newton pairs: (p1, q1) =
(2, 3) and (p2, q2) = (4, 1). Then (cf. 6.1) a1 = 3 and a2 = 25, and the splice
diagram of (S3, Kf ) is

s s s

s s

Kf
3 251 1

2 4

-

The corresponding minimal good embedded resolution (or plumbing) graph—
decorated with the self-intersections and the corresponding multiplicities—is

s s s s s s

s ?

−3 −5 −1 −2 −2 −2

−2

(8) (24) (100) (75) (50) (25)

(12) (1)
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From this one can compute the Alexander polynomial ∆S3(Kf )(t) by 3.6(8), and
one gets

∆S3(Kf )(t) =
(t − 1)(t24 − 1)(t100 − 1)

(t8 − 1)(t12 − 1)(t25 − 1)
.

Its degree 2r (or the Milnor number of f) is 80.

Now, we take n = 2. One gets the numerical invariants d0 = d1 = 2, d2 = 1,
h1 = 1, h2 = 2, and h̃1 = h̃2 = 1. Let M be the link of the hypersurface singularity
{f(x, y)+ z2 = 0} and Kz be the knot in M determined by z = 0. Then the graph
of (M, Kz) is the following:

s s

s

s s

s

−3 −5

−2

(4) (12)

(6)

(6)

−3 −5

−2

(4) (12)

s

"
"

"
"

"

b
b

b
b

b
−1

(50)

s−2 (25)

(1)-

Then

∆M (Kz)(t) =
(t − 1)(t12 − 1)2(t50 − 1)2

(t4 − 1)2(t6 − 1)2(t25 − 1)
.

In particular, ∆M (Kz)(1) = 25, which also equals the order |H| of the group
H = H1(M).

In fact, H = Z25, and the diagram of the characters is the following:

(where ξ is a 25-root of unity)

s s

s

s s

s

−3 −5

−2

(ξ̄2) (ξ̄6)

(ξ̄3)

(ξ3)

−3 −5

−2

(ξ2) (ξ6)

s

"
"

"
"

"

b
b

b
b

b
−1

(1)

s−2 (1)

One can take for the vertex u (in 3.7) the −1-vertex. Therefore, P̂M,ξ,u(t)
equals

(t12ξ6 − 1)(t12ξ̄6 − 1)(t50 − 1)

(t4ξ2 − 1)(t4ξ̄2 − 1)(t6ξ3 − 1)(t6ξ̄3 − 1)(t25 − 1)
.
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Then by 3.7(16) one has

T̂M,σcan
(ξ̄) = 2 ·

(ξ6 − 1)(ξ̄6 − 1)

(ξ2 − 1)(ξ̄2 − 1)(ξ3 − 1)(ξ̄3 − 1)

= 1 +
ξ

ξ̄ − 1
+

ξ̄

ξ − 1
+

1

(ξ − 1)(ξ̄ − 1)
.

By a computation (via the identity (∗∗) used in the proof of 5.7), one gets

TM,σcan
(1) =

1

25

∑

ξ 6=1=ξ25

T̂M,σcan
(ξ) =

108

25
.

We continue with the additivity, respectively non-additivity formulas for the
signature, torsion and Casson–Walker invariant.

For the signature, by 7.2(e), one has

σ(f + z2) = 2 · σ(2, 3, 1) + σ(4, 25, 2) = σ(4, 25, 2).

In fact, the value of σ(a, b, c) was not needed in the body of the paper; for precise
formulas see [36] or [37]. In our case, σ(4, 25, 2) can be computed fast as follows.
The Milnor number µ(4, 25, 2) of the Brieskorn singularity (4, 25, 2) is 3·24·1 = 72.
Its geometric genus pg is #{i ≥ 1 : 1/2+1/4+i/25 < 1}, which is 6. In particular,
σ(4, 25, 2) = 4pg − µ = −48. Hence σ(f + z2) = −48 as well.

Since Σ(2, 3, 1) = S3, its torsion is trivial. Nevertheless, it is not true (for
the canonical spinc structure) that TM (1) = TΣ(4,25,2)(1). By 5.3(d) one has
TΣ(4,25,2)(1) = 104/25. Therefore,

TM (1) = TΣ(4,25,2)(1) + 4/25.

For the Casson–Walker invariant, by 7.2(i), one has

−λW(M)/2 = −λW(Σ(4, 25, 2))/2 − 4/25.

Therefore,

sw
TCW(M) = sw

TCW(Σ(4, 25, 2)).

In particular, the main identity for f + z2 reduces to the corresponding identity
valid for the Brieskorn singularity (4, 25, 2) (which was verified in [36] and [37]).

In order to complete the discussion, we will compute the Casson–Walker
invariant of M using the formula (5.3) of [36] (in terms of the plumbing graph
of M):

−12λW(M) =
∑

v

ev + 3 · #V +
∑

v

(2 − δv)I−1
vv .

After computing the inverse matrix I−1, one gets −λW(M) = 42/25. This shows
that sw

TCW(M) = 108/25 + 42/25 = 6, which is the same as −σ(f + z2)/8 =
48/8 = 6, as the main result of the article predicts.



448 A. Némethi and L. I. Nicolaescu Sel. math., New ser.

9. Appendix B: Index

Ak (7.2.k)
additivity obstruction O (5.5)
Alexander matrix V (3.6)
Alexander polynomial

∆♮
M (K), ∆L

M (K), ∆M (K), ∆M (gu) (3.6)
twisted ∆M,χ(gu) (3.6)
∆(f) (6.1)

∆c(k)(t) (7.2.f)
alternating set (5.5)
canonical divisor K (2.1)

K2 + s (2.1)

characters χ ∈ Ĥ (3.6) (3.7) (7.3)
born at level s (7.3)
Bk (7.9)
support S(χ), its complement S̄(χ) (7.9)

closures M̄i (4.2)
D(c1, . . . , cr), D(∆♮) (5.5)
Da (5.8)
Dehn fillings (3.2)
invariants of oriented knots (3.1)

longitude λ (3.1)

oriented meridian m (3.1)
tubular neighborhood T (K) (3.1)
parallel ℓ (3.1)
o, δ (3.1)

invariants of singularities
analytical (2.1)
geometric genus (2.1)
topological (2.1)
smoothing (2.1)

invariants of 3-manifolds
Casson–Walker invariant λ(M), λW(M) (2.4)

Walker–Lescop surgery formula (4.4)
splicing formula (4.9)

Seiberg–Witten invariant sw
∗

M (σ) (2.4)
Reidemeister–Turaev torsion TM,σ (2.4)

its Fourier transform T̂M,σ(χ) (3.7)

P̂M,χ,u(t) (3.7)
H = H1(M, Z) (2.4)

link of a singularity (2.1)
linking form bM (3.3)
linking numbers LkM (·, ·) (3.3)
Loc(χ) (7.9)
(M(l), K(l)) (7.2)

Milnor number µ (2.1)
Milnor fiber F (2.1)
monodromy operator M (3.6)

M(l) (7.2)
singularities

normal surface singularities (Sec. 2)
elliptic, rational (2.3)

hypersurface (Sec. 2)
Gorenstein, Q-Gorenstein (Sec. 2)
suspension (1.2)

plane curve singularities (6.1)
Newton pairs {(pi, qi)}

s
i=1 (6.1)

splice diagram decorations ak (6.1)

dk, hk, h̃k (7.1)
A’Campo’s formula (6.1)

plumbing graph Γ (2.1) (3.4)
intersection matrix I (3.4)
V, ev , δv , δ̄v , gv (3.4)
weights {wv(u)} (3.4)
Γ+, Γ−, Γst (7.9)

Reg(χ), Reg(k) (7.9)

resolution X̃ (2.1)

resolution graph (2.1)
Seifert manifolds (5.2), Σ(a, b, c) (Sec. 7)

invariants αi, βi, α, e (5.2)
σ(l) (7.2)

signature σ(F ) = µ+ − µ− (2.1)
splice diagram (3.5)
splicing data (4.1)
splicing formulae

Fujita’s formula (4.3)
other: (4.6) (4.7) (4.9)

Sylvester invariant (µ0, µ+, µ−) (2.1)
working assumptions WA1 (4.1) and WA2
(4.7)
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