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1. TRANSVERSALITY AND TUBULAR NEIGHBORHOODS

We need to introduce a bit of microlocal terminology. We begin by reviewing a few facts of linear
algebra.

If V is a finite dimensional real vector space and U is a subspace of V, then its annihilator is the
subspace

U# .= {v* ev® (v,u) =0, Yue€ U}.
Note that
dimU +dimU?” = dimV = dim V*.

If we identify the bidual V** with V in a canonical fashion, then we deduce

UH)# =U.
If Uy, Uy are subspaces in V' then
Uo +UN)* =UF nUF, (UonU)* =UF +UF. (1.1)
If T : Vo — Vi is a linear map between finite dimensional vector spaces, then it has a dual
T :Uf — Ug.
It satisfies the equalities
(ker T)# = R(T™), R(T)" = ker(T™) (1.2)

where R denotes the range of a linear operator.
Two linear maps T; : Uy — V', i = 0, 1 are said to be transversal, and we write this Ty h 11, if

R(Ty) + R(Ty) = V.
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Using (1.1) and (1.2) we deduce that
To h Th<=ker Ty Nker T} = 0, (1.3)

i.e., Tp M T if and only if the systems of linear equations 7jv* = 0, T7v* = 0, v* € V*, has only
the trivial solution v* = 0.

Suppose now that U; is a subspace in V' and 7} is the natural inclusion. In this case we say that Tj
is transversal to Uy and we write this Ty M Uy. From (1.3) we deduce

Ty th Uy <= the restriction of 7§ to Ul# is injective. (1.4)
Proposition 1.1. Supposet that Ty th Uy. Then
Ty (Un* = T3 (U7).
In particular, the codimension of T, 1 (Uy) in Uy is equal to the codimension of Uy in'V.
Proof. Fix surjection T': V' — W such that ker T' = U;. Then
Ty ' (Uh) = ker TT,.
Using (1.2) we deduce
Ty H(U)* = R(T3T*) = Tg (R(T)).
On the other hand
R(T*) = (ker T)# = U},
O

Suppose now that M is a smooth manifold of dimension m and S is a closed submanifold of M.
The tangent bundle of S is naturally a subbundle of the restriction to S of the tangent bundle of M,

TS — (TM)|s.

The quotient bundle (7'M )|s/T'S is called the normal bundle of S in M and it is denoted by Ts M.
In particular, we have a short exact sequence of vector bundles over .S

0—-TS— (T'M)|s — TsM — 0. (1.5)
Dualizing this sequence we obtain a short exact sequence
0— (TsM)* — (T*M)|s — T*S — 0.
The bundle (T'sM)* is called the conormal bundle of S in M and it is denoted by T¢M. It can be
given the following intuitive description. Suppose that (2!, ..., 2™) are local coordinates on an open

set O C M such that in these coordinates the intersection O N S has the simple description

xs+1:_“:xm:07

i.e., in these coordinates © N S can be identified with the coordinate plane (z', ..., z%,0,...,0). We
can regard the differentials dz**!, ... dx™ as defining a local trivialization of TEM on ONS. Note
that for any x € S we have
(T§)z = (Tu5)7. (1.6)
Any Riemann metric on M defines an isomorphism between the normal and conormal bundles of .S.
From the exact sequence (1.5) we deduce that if two of the bundles TS, (T'M)|s T'sM are ori-
entable , then so is the third, and orientations on two induce orientations on the third via the base-first
convention
or(TM)|s =orTS NorTsM. (1.7)
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A co-orientation on a closed submanifold S C M is by definition an orientation on the normal bundle
TsM. Thus, an orientation on the ambient space M together with a co-orientation on S induce an
orientation on S.

Definition 1.2. Suppose that S is a closed submanifold of the smooth manifold M. A tubular
neighborhood of S in M is a pair (N, ¥), where N is an open neighborhood of S in M, and
VU : TgM — N is a diffeomorphism such that its restriction to S — TgN coincides with the
identity map 1g: § — S. O

We have the following fundamental result, [2, 3].

Theorem 1.3. (a) Let S and M be as in the above definition. Then for any open neighborhood U of
S in M there exists a tubular neighborhood (N, V) such that N C U.
(b) If (No, Vo) and (N1, V1) are two tubular neighborhoods of S, then there exists a smooth map

H:[0,1] x M - M, xw~ Hyx),
with the following properties.'
(1) Ho = 1p.
(i1) Hy is a diffeomorphism of M.
(iii) Hy(x) =z Vx e S, t€]0,1].
(IV) Hl(N[)) = Nl.

(v) The diagram below is commutative

TsM
RN

N
0 o

Ny

If (N, @) is a tubular neighborhood of S in M, then we have a natural projection
N N v, TsM = M.
We will denote by N, the fiber of my over z € S. Observe that z € N,.

Remark 1.4. When S is compact, we can construct a tubular neighborhood of S as follows.
e Fix a Riemann metric g on M.
e Then for any € > 0 sufficiently small, the set
Ng = {z € M; disty(z,5) <e}

determines a tubular neighborhood of S.
e The natural projection my : Ny — S has the following description: for x € N, the point
7n(x) is the point on S closest to .
If Ny is as above, then the diffeomorphism ¥ : TgM — Ny can be constructed as follows. The

normal bundle T M can be identified with the orthogonal complement (7°'S)* of T'S in (T M) s and
ifr €S, X € (T,S)*+ C T, M, then

U(X) = expy . (B(|1X]g)X),

N map H with the properties (i), (ii), (iii) above is called an isotopy (or diffeotopy) of M rel S.
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where exp,, , : T, M — M is the exponential map defined by the metric g, | X|, is the g-length of X,
and (3 : [0,00) — [0, ¢) is a diffeomorphism such that 3(t) = tif ¢ < §. O

Suppose M (respectively R,S) is a smooth manifold of dimension m (respectively r, s) and f :
R — M,g:S — M are smooth maps. We say that f is transversal to g, and we write this f h g, if
forany z € Rand y € S such that f(z) = g(y) = z € M the differentials f, : T, R — T, M and
g :T,S — T, M are transversal. When S is a closed submanifold of M and g is the natural inclusion,
we say that f is transversal to S and we write this f M S.

Proposition 1.5. Suppose M is a manifold of dimension m, S is a closed submanifold of M of
codimension ¢, R is a smooth manifold of dimension r and f : R — M is a smooth map transversal
to S. Then f=Y(S) is a closed submanifold of R of codimension c and there exists natural bundle
isomorphism

f*PTEM = Tj )R, [ Tp1(s) — fTsM.

Proof. The first claim is local so it suffices to prove it in the special case when M coincides with a
vector space of dimension V' and S is a subspace U of V' of codimension c. Consider a surjection
T:V — RsuchthatkerT =U = S. ) )

Fix z € R, set y = f(x) and denote by f, the differential of f at z, f, : T,R — T,M = V.
Observe that

f7US) ={z € R; T(f(»)) =0}
The differential of T'o f atx € RisT o fgC Since
fo(TeR) + T,S = fo(TuR) + Uy = T,M =V

and the linear map T is surjective with kernel U we deduce that T' o f, is surjective. We can now
invoke the implict function theorem to conclude that that £ ~1(S) is a submanifold. Using Proposition
1.1 and (1.6) we deduce that the dual of f, defines a linear isomorphism

1 (T5M) ) = (Ts1()R)z Y € F7H(S).

Observing that (T§M) f(,) is the fiber at = € f~1(.5) of the pullback f*(T§M ) we deduce that these
isomorphisms define a bundle isomorphism

[ fUTEM) — Tj oy )R
The isomorphism f : Ty-1(s5yR — [*TsM is the dual of the above isomorphism. O

2. THE POINCARE DUAL OF A SUBMANIFOLD

Let M be a finite type, oriented smooth manifold of dimension m. A (Borel-Moore) cycle of
dimension s in M is defined to be a linear map map

C:H;(M)—R, H(M)>wr— (C,w).

The Poincaré dual of the cycle C' is the cohomology class no € H™*(M) uniquely determined by
the equality

/ wAne ={(C,w), Ywe H(M).
M
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Suppose that .S is a closed oriented submanifold of dimension s of the oriented manifold M of di-
mension m. It defines an s-dimensional cycle [S] via the equality

(1S, ) :/Sw, Ve € HE(M).

The Poincaré dual of S in M is the Poincaré dual of the cycle [S], i.e., cohomology class ng = ng/[ €
H™=%(M) uniquely determined by the equality

/ w/\nsz/w, Yw e H(M).
M S

Theorem 2.1. Suppose that m : EE — S is an oriented real vector bundle of rank n over the oriented
manifold S. Denote by @ the Thom class of E and equip the total space of E using the base first
convention. Denote by i : S — FE the inclusion of S as zero section. Then

ng = ép. 2.1)

Moreover, if S is compact then

/w/\CDE:/w, Yw e Q¥(E), dw=0. (2.2)
E S
We want to emphasize that in the above equality we do not require that w have compact support.
Proof. Define

H:Ex[0,1] = E, Ex[0,1] 5 (z,t)— Hy(z):=(1—t)*z+t*iom(z),

where ¢ denotes the multiplication by ¢ along the fibers of E. Observe that H is proper, Hy = 1,
Hy = i o . Thus for any closed, compactly supported w € Q3(E) there exists a 7 € Q57 1(E) such
that

w—7m""'w = Hjw— Hjw = dr.

/wA‘I’EZ/ﬂ*(i*w)A‘I)E+/d(T/\(I)E)
E E E

=0
:/i*w/\m@E:/i*w.
S S

This proves (2.1). To prove (2.2) use the same argument and the fact that when S is compact, the
Thom class has compact support. O

We have

(use the projection formula)

Corollary 2.2. Suppose that S is a compact s-dimensional oriented submanifold of the smooth, finite
type oriented manifold M of dimension m. Denote by @1y the Thom class of the normal bundle
with the orientation induced via the base-first convention (1.7). Fix a tubular neighborhood (N, V)
of S in M, denote by ng\f the Poincaré dual of S in N, and by j, the extension by 0 morphsim
H}(N) — H*(M). Then

n§ = (WY g, nY =3 (2.3)
0



6 LIVIU I. NICOLAESCU

Remark 2.3. Let us point out a rather subtle phenomenon. Suppose that S'is a compact s-dimensional
oriented submanifold of the oriented manifold M of dimmension m. Suppose further that N is a
tubular neighborhood of .S in M Observe that S’ defines defines a linear map

HS(M)SwH/wER.
S

From the Poincaré duality we deduce that there exists a unique compactly supported cohomology
class ng™"" € H!"~*(M) such that

We have a natural morphism jy : H*~*(M) — H™~*(M) and the above corollary proves that ng =
J#(M$™"). In particular, we deduce that two closed compactly supported forms 7, 7; representing
1ns must be cohomologous as compactly supported forms, i.e., there exists a compactly supported
form « such that 17 — ng = da. O

Corollary 2.4. Suppose that S is a compact s-dimensional oriented submanifold of the smooth finite
type oriented manifold M of dimension m. A cohomology class uw € H™ (M) is the Poincaré dual
of S if and only if there exists a tubular neighborhood (N, V) of S in M such that u is represented by
a closed form n with compact support contained in N and such that

/ n=1, Vxes,
Nz

where N, is oriented as the fiber of (Ts M), via the diffeomorphism V : (T's M), — Nj. a

Definition 2.5. Let S, and L be closed, oriented submanifolds of the oriented manifold /N such that
dimS +dim L =dim N

(a) If p € LNS is a point where the two submanifolds intersect transversally, i.e., T, L+T1,S = T, N,
then we define €(p) = €(S, L, p) € {£1} via the rule

or(TpS) Nor(TpL) = €(S, L, p) or(TpN).
We will refer to or (L, Sp) as the local intersection number of L and S at p. Note that
or(L, 8,p) = (=1)" S or(S, L, p).

(b) If S is compact, and L M S, then L N S is finite, and we define the intersection number of the
cycles L and S to be the integer

[S]e[L]:= > €(S,L,p). O

peSNL

Theorem 2.6. Suppose that S, L are closed oriented submanifolds of the smooth, finite type, oriented
manifold N satisfying the following conditions.

e S is compact.
e dim L 4+ dim S = dim V.
e L MS.
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If ng is compactly supported closed form representing the Poincaré dual of S., and ny, is a closed
form representing the Poincaré dual of [L|, Then

(] o [L] = /M ne Ams = /L ns. 2.4)

Proof. Set s :=dim S, ¢ := dim L, n = s + ¢ = dim . For simplicity, for any p € S N L we will

set e(p) = €(S, L, p).
From the transversality of the intersection we deduce that for any p € L N S we can find local
coordinates (z!,...,z") defined on an open neighborhood Uy, of p such that

UpﬂS:{xs+1:--~:x5+£:0}, UpﬂL:{xlz---:xS:O},

the orientation of S N U is described by the volume form dz! A - - - A dx®, the orientation of L N U is
given by dz*t! A - -+ A dz®+t. Under these assumptions we deduce that

or(Up) = e(p)dz A -+ A dx™. (2.5)

We can additionally assume that Up N Uy = 0 if p # q.
We can find neighborhoods V}, of p in U, and a Riemann metric g on N such that along V,, the
metric g has the Euclidean form g = (dz!)? + - - - + (da™).

=

FIGURE 1. Two manifolds of complementary dimensions intersecting transversally

Construct a thin tubular neighborhood (N, ¥) of S in N such that for every p € L N S we have
(see Figure 1)
Np=(LNVp)NN=:Lp
where we recall that N}, denotes the fiber of N over p with respect to the natural projection 7wy : N —
S. We can choose N thin enough so that we have the aditional equality

LnN= |J Np.

peSNL

Consider a compactly supported closed form nfg\f € QL(N) representing the Poincaré dual of S in N.
The fiber Ny, is equipped with a natural orientation, given by the co-orientation of S in N. On
the other hand L, is equipped with an orientation induced by the orientation of L. The equality (2.5)
implies
or(Lp) = e(p) or(Np).
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Now observe that

775/\77L:/7752
I, 2

peSNL

/Lpns= > 6(10)/ ns= > €p)

peSNL Np peSNL

3. SMOOTH CYCLES AND THEIR INTERSECTIONS

Suppose that M is a smooth, compact oriented manifold of dimension m, R is a smooth compact
oriented manifold of dimension 7 and f : R — M is a smooth map. The pair (R, f) defines a linear
map

H" (M) — R, H’"(M)Bwl—>/Rf*w.

We will denote this element of H"(M)* by f.[R] and we will refer to it as the smooth cycle of
dimension r determined by the pair (R, f). From the Poincaré duality we deduce that there exists
Ny k) € H™™" (M) such that

/f*w:/ w ANy R, Yw € H'(M).
R M

We will refer to the cohomology class 7y, (g as the Poincaré dual of the smooth cycle f. [R].
Suppose that Ry, R; are two compact oriented manifolds of the same dimension r and f; : R; —
M are smooth maps, i = 0, 1. We say that the pairs (Ry, f), (R1, f1) are cobordant, and we write this
(Ro, fo) ~c (R1, f1) if there exists a compact, oriented (r + 1)-dimensional manifold with boundary
R and a smooth map f: R — M such that the following hold.
° 8§ = Ry U R;. N
e The orientation induced by R; coincides with the orientation of R;, while the orientation
iEduced by Ron Ry is the opposite orientation of Ry.

] f|Rz = fi,i: 0,1.
The pair (E, f) is called an oriented cobordism between ( Ry, fo) and (Rq, f1).

Proposition 3.1. If (Ry, fo) ~ (R1, f1) then
(fo)«[Ro] = (f1)«[Ba].

Proof. We have to show that for any w € H. (M), r = dim Ry = dim R; we have

fow= [ fiw.
Ro R

~

Let (]SL, ) be an oriented cobordism between (Ry, fo) and (Ry, f1) and w € H] (M) then

flw— fgw:/Aﬁ*w:/Adf*w
Ry Ro OR R

- /f{f%dw) —o.
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Suppose that S is a smooth, compact, oriented submanifold of M of codimension k. Its conormal
bundle TG M is equipped with a natural orientation given by the rule

or(TM)|s = or(T*M)|s = or(S) ANor(TeM).
Denote by i the canonical inclusion .S — M. Observe that
ns =115 € H*(M).
Two compact, oriented submanifolds ig : Sy — M, (i1 : S; < M of the same dimension s are said
to be cobordant if the pairs (S, ig) and (S1,71) are cobordant. We write this Sy ~,. S1. Proposition

3.1 shows that
So ~e S1= N5y = 15 -

Corollary 3.2. Suppose that Sy, S1 are two compact, oriented s-dimensional manifolds of the ori-
ented, finite type smooth manifold M of dimension m, and L is a closed, oriented submanifold of M
of dimension m — s that intersects transversally both Sy and S1. If Sg ~. S1, then

[So] @ [L] = [S1 e [L].

Proof. Since Sy ~. S we have ng, = 7g,. The corollary now follows form Theorem 2.6. a

Example 3.3. For ¢ € [0, 1] define
F; : CP! — CP?, CP' 3 [20, 21] = [tz0, (1 — t)21, 21] € CP?,
where [zo, 21, . . ., 2| denote the homogeneous coordinates in CP". Observe that each F} is an em-
bedding. The image of Fj is the projective line
Ho={[¢0,¢,¢]; =0},

while the image of F} is the projective line

Hy = {[¢0,¢1,¢) € CP% (1 =0}
We deduce that
NMHo = MHy =-1H -
Observe that Hy th H; and the unique intersection point is py[0,0, 1]. An lementary computation
shows that €(p,) = 1. Hence

/ ng Ang = [Ho] @ [Hi] = 1. O
CP?

Suppose that R is a compact oriented manifold of dimension r, S C M is a compact oriented
submanifold of codimension k, and f : R — M is a smooth map transversal to S. Using Proposition
1.5 we deduce that the submanifold f~'(S) of R carries a co-orientation induced by the bundle
isomorphism

P (IgM) — Tioa g R
We thus have an orientation on f~!(.S). We obtain a smooth (r — k)-dimensional cycle

[S]N £ulB] = £ulf7H(S)):

Denote by 7);5)n, [r] the Poincaré dual of this cycle, i.e.,

/ W A NSINf.[R] :/ ffw, Ywe Hrfk(M). 3.1)
M 719
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Theorem 3.4. Let M, R, S and f as above. Then
Fndt = nftg). (3.2)

NS)nf.[R] = NS N1, [R]- (3.3)

Proof. Let first observe that (3.3) is an immediate consequence of (3.2). Indeed, for any w €
H™ k(M) we have

/wAnst*[R]Z/f*(wAns)Z/f*wAf*ns
M R R

32) [ . %, B4
= /fwAnf_l(s)z/ frw = / w ANS|nf.IR]-
R £S) M

To prove (3.2) we will rely on Corollary 2.4. Fix a Riemann metric h on M and a metric g on R.
For simplicity we set X = f~!(S) C R. Form the tubular neighborhood N5 of S in M and N of
X in R as explained in Remark 1.4. For z € X we denote by N4 (z) the fiber over z of the natural
projection Nj — X and by N (y), y = f(x) the fiber of the natural projection N5 — S. Observe
that

Nf(z) = {z € R; disty(z,X) =distg(z,2) <p}.

Lemma 3.5. There exists py > 0 sufficiently small such that the restriction of f to N§°(z) is an
embedding for any x € X.

Proof. Denote by fx the differential of f at z. It is a linear operator fx : T, R — Ty M, whose kernel
is T,, X . Thus, its restriction to T,Nf(z) = (T X)* is injective. We can then find a neighborhood

U, of z € S and p(x) > 0 such that for any =’ € U the restriction of f to Ng(x) (2') is an embedding.
Now cover X with finitely many neighborhood Uy, , . .., U, and set

po = min{p(z1),...,p(z,) }.

For p < pg we set

R M o
e P L
X ]

FIGURE 2. Mapping the normal slice Njj(z).

Lemma 3.6. Fix p < po. There exists € = (p) > 0 such that for any x € X the intersection L5 NN,
is closed in Nj,.



INTERSECTION THEORY 11

Proof. Set
X, = {z € R; distg(z,X) = p}.
The set f(¥,) C M is compact and disjoint from .S and thus
d(p) :=dist( f(2,),S) > 0.

Lete = %d(p). We claim that that L7 N N5 is closed in N5. Suppose that (y,) is a sequence in
LY N N3 that converges to a point y, € N} . We need to show that y, € L.

By construction, there exist points p, € Nj(z) such that f(p,) = z,. The sequence (p,,) has a
subsequence that converges to a point p, € Ny(z) such that dist (p,, ) < 7. Then f(ps) = y» and

dist(y«, S) < e < d(p).

This implies that p, ¢ ¥, because dist(f(3,),.S) > d(p). Hence dist(p., z) = dist(p«, S) < p so
that p, € N§(z) and thus y, € Lf. O

Let € = ¢(p) as in the above Lemma. Denote by 75 a closed form representing the Poincaré dual
of S having support in Nj. According to Corollary 2.4 the differential form f*75 represents the
Poincaré dual of X = f~1(S) in R if

/ ffmg=1, vz € X.
Ng ()

/ f*n%z/ nfi;:/ NS,
AE) L% LENNG,

where L% is equipped with the orientation induced by the diffeomorphism f : Nj(z) — L7. The
orientation on the normal slice Nj(z) is the co-orientation of X which is determined by the co-
orientation of S. Hence the tangent space of L% at x is equipped with the coorientation of S at z. Our
choice of € guarantees that L7 N N5 is closed in N5 . Theorem 2.6 now implies that

[, m=isieizz-1
LENNG

We have

O

In the special case when f : R — M is an embedding, the equality (3.2) can be reformulated as
follows.

Corollary 3.7. Suppose that R, S are compact oriented submanifolds of the oriented finite type man-
ifold M and S h R. Then S N R is a smooth submanifold of R. We orient S N R using the natural
isomorphism

TsnrR = (TsM)|snr-
Then the Poincaré dual of S N R in R is equal to the restriction to R of the Poincaré dual of S in
M. O

We want to define a new operation on smooth cycles. Suppose that My, M; are smooth oriented,
finite type manifolds of dimensions mq and respectively m;. Let f; : R; — M;, ¢ = 0, 1 be smooth
maps, where ?; is a smooth compact manifold of dimension 7;. These maps define smooth cycles
(fi)«[Ri], ¢ = 0, 1, with Poincaré duals

N(f:)«[Ri] © H™ T (M),
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We have a natural bilinear map
X: H*(Mp) x H*(My) — H*(My x M), agXay = (mhap) A (o),
where m; : My x My — M;, i = 0, 1, denotes the canonical projection. We have a smooth map
fox f1: Ry x Ry — My x M.
Equip Ry x R; and My x M; with the product orientations. We obtain a smooth cycle
(fo x f1)«[Ro x Ri]

with Poincaré dual
Nfox f1)e[Rox B1] € H(m0+m1)*(ro+r1)(M0 % Ml)-
Proposition 3.8.

mo—ro)

Mo fi)e[Rox ] = (1) (fo)«[Ro] B 1(f1). [R1]- (3.4)

Proof. We have

/ o B a1 An(fox f1)s[Rox Ri] =/ (foxfl)*(ao@m):/ foao X ffag
Mo x My Rox Ry

Rox Ry
:<A%ﬁwﬁ<z;ﬁag.

/ (a0 X ax) A (0(fo)u(ro] B 0(f1).[Re]) = / moo A T A TG fo)*[Ro) N TLI(f1). [Ra]
Mo x My Mo x My

On the other hand

= (—1)r1(mo—ro) / 71'6‘(0[0 A n(fo)*[Ro]) VAN WT(OQ A n(fl)*[Rl])
M()XM1

= (—1)"(mo=ro) </ g An(fo)*[Ro]> (/ @0 N?(fn*[Rl])
Mo Ml
= ([ e} ([ fien).
Ro Ry

Kiinneth theorem implies that any cohomology class in My x Mj is a linear combination of coho-
mology classes of the form ag X ;. The equality (3.4) is now obvious.
O

Example 3.9. Suppose that M is a smooth compact oriented manifold of dimension M and f : M —
M is a smooth map. Then the graph of f is a smooth submanifold I'y C M x M equipped with a
natural orientation induced by the diffeomorphism

S M =Ty, v (z, f(z)).
We want to offer a description of of the Poincaré dual nr, € H™ (M x M).
Fix a basis (w;)1<i<p(ar) of H*(M), b(M) = >, br.(M), where w; denotes a closed from of
degree |w;|. Denote by (w?)1<j<n the Poincaré dual basis of H*(M), i.e., the forms w’ satisfy the

equalities?
, . 1, i=j
WAwj =08 =17
Af T Lhi#j

Above w’ is a form of degree |w!| = n — |w;].

2Thlroughout we use the convention that f ar @ = 0if « is a differential form such that deg o # m.
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Kunneth’s theorem then implies that the collection Q; = wixwj € H¥(MxM),1<4,5 <b(M)
is a basis of H*(M). Similarly, the collection

i i
G)j—wjxw

is a basis of H*(M x M) and therefore, Poincaré dual of Iy has the form
=>_ ;.
/L"j
There exist real numbers (aé-) such that
[fw; = Z a?wi, 7.
i

More precisely

aj—/w/\fwj.
M

We want to express the coefficients c§ in terms of the coefficients aé-. To achieve this we use the

defining property of nr,, 1.e.
/ Q0 A, :/ ng:/ 559
MxM Ty M
Observe first that

/5f§24—/w A frup = Zaz/w ANwj = Zajék—ae

For i = 0,1 denote by m; : M x M — M the projection (xg, x1) — ;.

We have
[ ok, - za/ 2% 76
MxM MxM
= Z 07 / (maw® A miwe) A (mdw; A mhwt)
MxM
_ Z p)loelles 75 (WF Awy) AT (we Aw)
M x M
_ Z |we\ |wj|+|wl|)cg </ Wk /\wj> (/ W' /\we)
M M
_ Z p)leel |w3|+|wl|)cj(5k51 (—1)lwel-Ceorl+rD) ok
Hence

o i (=1l (el g — (el () /M A Frup (3.5)
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4. APPLICATIONS

Suppose that N is a compact oriented smooth manifold of even dimension 2m. For any compact
oriented submanifold S of middle dimension m we define the self intersection number [S]  [S] to be

S)e1)i= [ ns s
M
One can show (see [2, Thm. 14.6]) then there exists a smooth map
F:[0,1] xS — M, (t,x)— Fy(x)

such that for any ¢ the map F} is an embedding, Fp coincides with the inclusion ¢ : .S < M and for
any t > 0 the map F} is transversal to S. If we denote by S; the image of F}; then we deduce that
Sy h S, ns, = ns and thus

[Sle[S)=[Se[S]= D> (SSp) Ve (0,1].
peESNS
The computations in Example 3.3 can be reformulated as
[H] o [H] = 1.

Theorem 4.1 (Lefschetz fixed point theorem). Suppose M is a compact oriented smooth manifold of
dimension m and f : M — M is a smooth map. We define its Lefschetz number to be the quantity

m

L(f) = Y (- twy f*, trg f* o= tr(f* L HE(M) — H*(M))

k=0
Then

/ nr; Ana = L(f).
MxM

Hence, if I'y th A then
[Cy] e [A] = L(f).
In particular, we deduce that if L(f) # 0, then the map f must have at least one fixed point.

Proof. We continue to use the notations in Example 3.9. We have
77Ff = ZCZWJ' X w'.
2
Then

/ an/\nA_/an—ch/ijwi—ZCg/ wj/\wi
MxM A i A i M

_ Z(—nlwil'wcg/ W nwy = S (1)l
ij M

LY
= D (el BTNyl Hebtmledal = S (n)laf = ST(-DF Y al
i i i k |ws |=k
N e
=try, f*
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Corollary 4.2. Suppose that M is a compact oriented manifold of dimension m and A denotes the
diagonal in M x M, i.e., the submanifold
A={(z,z); z€M}.
It is tautologically diffeomorphic to M and thus it carries a natural orientation. Then
[A] @ [A] = x(M) = the Euler characteristic of M. 4.1)

Proof. This follows from the Lefschetz fixed point theorem by observing that A is the graph of the
identity map 1, and that
O

Definition 4.3. Suppose that E — M is a smooth, oriented vector bundle of rank r over the compact
smooth manifold M. The Euler class of E is the cohomology class e(F) € H" (M) defined by the
equality

e(FE)=1i"dp,
where @ € H(F) denotes the Thom class of F and i : M — E denotes the inclusion of M into F
as zero section. O

Theorem 4.4. Let 7 : E — M be as above.® If E admits a nowhere vanishing section s : M — E,
then e(E) = 0.

Proof. Fix a metric g on E. For any € > 0 we denote by D.(E) C the open subset consisting of the
vectors of length < ¢ in all the fibers of F. Fix € > 0 such that

|s(x)]g > €, Yoe M.
Next choose a representative ®¢ € Q. (F) of ® g such that supp ®° C D.(FE). By construction, the
image of s and the support of ®¢ are disjoint. Hence
s*P° = 0.
On the other hand, the form s*®¢ represents the cohomology class e(E). Indeed consider
H:[0,1]x M — E, (t,x)— tx*s(x),

where ¢+ denotes the multiplication by ¢ along the fibers of E. Observe that Hy = ¢ and H; = s.
Hence the maps ¢ and s are homotopic and therefore the forms ¢*®* and s*®* are cohomologous. O

Remark 4.5. The above theorem implies that if E is a trivial vector bundle, then e(E) = 0 because
trivial vector bundles admit nowhere vanishing sections. We can turn this result on its head and
conclude that if e(E) # 0, then the bundle E' cannot be trivial. In other words, the Euler class can be
interpreted as a measure on nontriviality of E. a

Theorem 4.6. Suppose that E — M is a smooth, oriented real vector bundle of rank r over the
smooth, compact, oriented manifold M of dimension m > r. Suppose that s : M — FE is a smooth
section that is transversal to the zero section it : M — FE. Denote by Z the zero set of s. Then Z is a
smooth submanifold of M of codimension r and we have a natural bundle isomorphism

Ty M = E|y.

30bserve that we impose no orientability assumption on M.
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The above isomorphism equips Z with a coorientation and orientation and the Poincaré dual of the
cycle [Z] is equal to the Euler class e(E).

Proof. This is a special case of Corollary 3.7 applied to the submanifolds R = ¢(M) and S = s(M)
of the total space of F. O

Theorem 4.7. Suppose that E — M is a smooth, oriented real vector bundle of rank m over the
smooth, compact, oriented manifold M of dimension m. Suppose that s : M — FE is a smooth
section that is transversal to the zero section i : M — E. Then

[M] o [5(M)] = /M e(E). 42)

Proof. Denote by 1 The Poincaré dual of M in E and by 7, the Poincaré dual of s(M) in E.
Then 7p; = &g = the Thom class of £. We have

) o (5OD) = [ s Ay = [ @ nne = [ S0,
E E M

As in the proof of Theorem 4.4 we observe that s*®p = i*®p = e(E) in H™ (M) since the sections
s and ¢ are homotopic.
O

Remark 4.8. Observe that the intersection M N s(M) = (M) N s(M) is the set of zeros of the
section s. The above theorem then states that a certain signed count of zeros of a transversal section
is equal to the integral of the Euler class over the base when the dimension of the base is equal to the
rank of the bundle.

The sign associated to a transverse zero can be computed as follows. Suppose that U is a coordinate
patch diffeomorphci to R” with local coordinates z', ..., 2™ such that the orientation of M along
U is given by dz' A --- A do™. Fix an orientation preserving trivialization E|y — R7;. we get
m-function y', ..., 4™ : E|y — R, describing linear coordinates long fibers such that the orientation
of each fiber is given by dy' A --- A dy™. A section of s is described over U as a map

U—R™ o =4t 2™), j=1,...,m.

If po = (x4, ...,27") is a zero of s in U, then the intersection of s(M) with M at p is transversal if
and only if
Ay, y™)
det ————"~ 0.
A(zt,...,am) oo 7
If this is the case, then zero py is counted with sign
. oy, .-, y™)
€ = signdet ———=|,,-
(po) g a(xl”xm) |P0
One can show that this sign is independent of the various choices. O

Definition 4.9. Let M be a compact oriented smooth manifold of dimension m. Then the Euler class
of M is the cohomology class e(M) := e(T'M) € H™(M). O

Theorem 4.10 (Poincaré-Hopf).
| etan) = xan).
M
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Proof. Consider the diagonal A C M x M and its normal bundle £ := TAoM x M. We identify FE
with a tubular neighborhood N of A in M x M and the Thom class ® g of F with the Poincaré dual
na of A in N, and by extension, with the Poincaré dual of A in M x M. We have

/Ae(E):/A®E=/N77A/\77A (451)X(M)-

The diagonal A is clearly isomorphic to M. To complete the proof the theorem wee need the follow-
ing result.

Lemma 4.11. The normal bundle Ta(M x M) is orientation preservingly isomorphic to TM = TA.

Proof of the Lemma. Note that we have a short exact sequence of bundles over M = A,

0—TM - TM&TM 2 TM -0
where for any x € M the map
Op : TpM — T, M & T, M
is given by v — v @ v, while the map
Py Ty M ST, M — T, M
is given by p;(vo,v1) = “5*. The image of § coincides with the tangent bundle 7'A and thus p

induces an isomorphism
TA(M x M) — TM.

This isomorphism is orientation preserving. To see this observe first that the above short exact se-
quence sequence admits a splitting

c:TM —-TM®TM, pooc =1y,
given by

ox(v) =—v®v, Vee M, Yvoe T, M.
To check that the isomorphism p : TA(M x M) — T M is orientation preserving it suffices to check
that for any x € M we have

ord(TyM)Noro(T,M) = or(T,M & T, M).

Fix an oriented basis e, ..., e,, of T,, M. Set
u;=e;, 0T, T, M, v; ZO@GJ‘ eT,M®T,.M.
The collection uy, . .., Um, V1,..., Uy is an oriented basis of T, M & T, M. Observe that

5(82) = u; + vy, G'(Ej) =v; — u;.
Then
or §(TyM) ANoro(T,M) =or(6(er) A--- ANd(em) Aal(e;) A---o(en)).
We have
m(m—1)

o(e))N---Ndlen) No(e)N---o(en)=(=1)" 2 dler)Na(er)A---ANd(em) ANo(en).

Now we observe that
5(6]') A 0'(8]') = 2’U,j A vU;

and we conclude
m(m—1)
(-5

d(e)N---Ndlem)No(e)N---o(en) =ur Avi A AU Aoy,

m(m—1)
=(—1)" 2 2"ug A AU AVL A AUy,

This completes the proof of the lemma and thus of Theorem 4.10. O
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5. THE EULER CLASS OF AN ORIENTED RANK TWO REAL VECTOR BUNDLE

Suppose that 7 : E'— M is an oriented rank two real vector bundle. We denote by & € H2 (E)
its Thom class and by e(E) € H?(M) its Euler class defined by

e(E) = i*dp,

where ¢ : M — FE denotes the inclusion of M in E as zero section. We want to give an explicit
description of @ and e(E). To this aim we fix a metric on F and a good (coordinate cover) {Uy, }ac 4
that trivializes E. Thus E is defined by a gluing cocycle

98a : Uag — SO(2).
More precisely, we can write

| cospge  —singg,
950 = | Gnguy  cospga |

where g, : Uy — R is a smooth function. Moreover
PBa = —Pas - 5.1
The cocycle condition
Gary(x) - g48(T) - ga(x) = 1, Vo € Uypy
is then equivalent to the condition
Par (@) + pyg(x) + pa(2) € 21Z, Yz € Uapy.

Since U, is connected we deduce that for any «, 3, 7y there exists n,g, € Z such that

Pary () + 018(2) + Ppa(r) = 2TN480, Yo € Usgy. (5.2)
the correspondence (v, 3,7) + N34 is skew-symmetric in its arguments, i.e.,

NyBa = ~NBya = "Nyap = ~Nafy-

The metric and the orientation on E induce polar coordinates (74, 0,) on E°|y;, where EY denotes
complement of the zero section, E \ i(M). On the overlap E|, 5 We have o = rg, but the angular
coordinates 63 and ¢, are related by the equalities

0 — b0 = T pg3q. (5.3)

Lemma 5.1. There exist £, € QY (U,) such that for any o, 3 we have

1
gdg%a =& — & onUgyp. 54
Proof. Consider a partition of unity (p-) subordinated to (U, ). Now define

1
o = _g ; p'depva-

Then .
fﬁ —&a = % E p“/d(SD'yoz - So'yﬁ)
Y

(1) 1 (5.2) 1 1
= Tor ; Pyd(Pay +0y8) = Gy ; PyA(Ppa — 2TNyga) = gd%@a‘
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From (5.4) we deduce that
déo = d€g on Ugyg.
Thus the collection of closed 2-forms (w, = d&,) defines a closed form w € Q2(M).

Proposition 5.2. The cohomology class determined by w is the Euler class e(E).

Proof. The equalities (5.3) and (5.4) show that for any «, 3 we have the equality
1 * 1 *
5000 = 70 = 5—dfs — 75, on E%u, -

We deduce that the collection of 1-forms v, = %d@a — "¢, determines a global 1-form ¢ €
Q' (E®) with the property that for any U, and any = € U, the restriction to the fiber EO coincides
with the angular form %d&a. For this reason we say that ¢ is a global angular form.

The form 1 is defined outside the zero section. Note that

dipg = —m¥dEy = —T wa
so that
dip = —m*w,
so that dv extends to a form on E.
Consider a smooth function p : [0, 00) — [—1, 0] whose graph has the shape depicted in Figure 3

|/

FIGURE 3. A smooth cut-off function p(r).

Define
O =d(p(r)y) € Q*(EY),
where r : E' — [0, 00) denotes the radial distance function defined by the metric on E. We have
O =dp(r) N — p(r)m*w. (5.5)

The form dp is identically zero near the zero section and we deduce that ® extends as a closed 2-form
on E. From the shape of p we deduce that it has compact vertical support. If x € M then

/EmCI):/xdp(r)/\w.

On E, we have ¢ = %d&z the angular form on E,. We deduce

1
o= — d N df
/Ex 5= |, dotr) n s

where (7, ) denote the angular coordinates on R2. We have
1

1
— d df = lim — d db
o o, WP A0 = Tl o / pr) A
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(use Stokes formula)
1
= —lim — dd =1
i o /T B p(e)

since p(e) = —1 if  is sufficiently small. Thus ® represents the Thom class of E. We deduce
"0 = —p(0)w = w.

The conclusion follows from the definition of the Euler class as the pullback of the Thom class via
the zero section. O
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