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1. TRANSVERSALITY AND TUBULAR NEIGHBORHOODS

We need to introduce a bit of microlocal terminology. We begin by reviewing a few facts of linear
algebra.

If V is a finite dimensional real vector space and U is a subspace of V , then its annihilator is the
subspace

U# :=
{
v∗ ∈ V ∗; 〈v∗, u〉 = 0, ∀u ∈ U

}
.

Note that
dimU + dimU# = dimV = dimV ∗.

If we identify the bidual V ∗∗ with V in a canonical fashion, then we deduce

(U#)# = U.

If U0, U1 are subspaces in V then

(U0 + U1)# = U#
0 ∩ U

#
1 , (U0 ∩ U1)# = U#

0 + U#
1 . (1.1)

If T : V0 → V1 is a linear map between finite dimensional vector spaces, then it has a dual

T ∗ : U∗1 → U∗0 .

It satisfies the equalities
(kerT )# = R(T ∗), R(T )# = ker(T ∗) (1.2)

where R denotes the range of a linear operator.
Two linear maps Ti : U0 → V , i = 0, 1 are said to be transversal, and we write this T0 t T1, if

R(T0) + R(T1) = V.
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Using (1.1) and (1.2) we deduce that

T0 t T1⇐⇒ kerT ∗0 ∩ kerT ∗1 = 0, (1.3)

i.e., T0 t T1 if and only if the systems of linear equations T ∗0 v
∗ = 0, T ∗1 v

∗ = 0, v∗ ∈ V ∗, has only
the trivial solution v∗ = 0.

Suppose now that U1 is a subspace in V and T1 is the natural inclusion. In this case we say that T0

is transversal to U1 and we write this T0 t U1. From (1.3) we deduce

T0 t U1 ⇐⇒ the restriction of T ∗0 to U#
1 is injective. (1.4)

Proposition 1.1. Supposet that T0 t U1. Then

T−1
0 (U1)# = T ∗0 (U#

1 ).

In particular, the codimension of T−1
0 (U1) in U0 is equal to the codimension of U1 in V .

Proof. Fix surjection T : V →W such that kerT = U1. Then

T−1
0 (U1) = kerTT0.

Using (1.2) we deduce
T−1

0 (U1)# = R(T ∗0 T
∗) = T ∗0 (R(T ∗)).

On the other hand
R(T ∗) = (kerT )# = U#

1 .

ut

Suppose now that M is a smooth manifold of dimension m and S is a closed submanifold of M .
The tangent bundle of S is naturally a subbundle of the restriction to S of the tangent bundle of M ,

TS ↪→ (TM)|S .
The quotient bundle (TM)|S/TS is called the normal bundle of S in M and it is denoted by TSM .
In particular, we have a short exact sequence of vector bundles over S

0→ TS → (TM)|S → TSM → 0. (1.5)

Dualizing this sequence we obtain a short exact sequence

0→ (TSM)∗ → (T ∗M)|S → T ∗S → 0.

The bundle (TSM)∗ is called the conormal bundle of S in M and it is denoted by T ∗SM . It can be
given the following intuitive description. Suppose that (x1, . . . , xm) are local coordinates on an open
set O ⊂M such that in these coordinates the intersection O ∩ S has the simple description

xs+1 = · · · = xm = 0,

i.e., in these coordinates O∩ S can be identified with the coordinate plane (x1, . . . , xs, 0, . . . , 0). We
can regard the differentials dxs+1, . . . , dxm as defining a local trivialization of T ∗SM on O ∩ S. Note
that for any x ∈ S we have

(T ∗S)x = (TxS)#. (1.6)
Any Riemann metric on M defines an isomorphism between the normal and conormal bundles of S.

From the exact sequence (1.5) we deduce that if two of the bundles TS, (TM)|S TSM are ori-
entable , then so is the third, and orientations on two induce orientations on the third via the base-first
convention

or(TM)|S = or TS ∧ or TSM. (1.7)
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A co-orientation on a closed submanifold S ⊂M is by definition an orientation on the normal bundle
TSM . Thus, an orientation on the ambient space M together with a co-orientation on S induce an
orientation on S.

Definition 1.2. Suppose that S is a closed submanifold of the smooth manifold M . A tubular
neighborhood of S in M is a pair (N,Ψ), where N is an open neighborhood of S in M , and
Ψ : TSM → N is a diffeomorphism such that its restriction to S ↪→ TSN coincides with the
identity map 1S : S → S. ut

We have the following fundamental result, [2, 3].

Theorem 1.3. (a) Let S and M be as in the above definition. Then for any open neighborhood U of
S in M there exists a tubular neighborhood (N,Ψ) such that N ⊂ U.
(b) If (N0,Ψ0) and (N1,Ψ1) are two tubular neighborhoods of S, then there exists a smooth map

H : [0, 1]×M →M, x 7→ Ht(x),

with the following properties.1

(i) H0 = 1M .
(ii) Ht is a diffeomorphism of M .

(iii) Ht(x) = x ∀x ∈ S, t ∈ [0, 1].
(iv) H1(N0) = N1.
(v) The diagram below is commutative

TSM

N0 N1

�
���

Ψ0

[
[[]

Ψ1

w

H1

ut

If (N,Ψ) is a tubular neighborhood of S in M , then we have a natural projection

πN : N
Ψ−→ TSM

π−→M.

We will denote by Nx the fiber of πN over x ∈ S. Observe that x ∈ Nx.

Remark 1.4. When S is compact, we can construct a tubular neighborhood of S as follows.
• Fix a Riemann metric g on M .
• Then for any ε > 0 sufficiently small, the set

Nε
g :=

{
x ∈M ; distg(x, S) < ε

}
determines a tubular neighborhood of S.
• The natural projection πN : Nε

g → S has the following description: for x ∈ Nε
g, the point

πN(x) is the point on S closest to x.
If Nε

g is as above, then the diffeomorphism Ψ : TSM → Nε
g can be constructed as follows. The

normal bundle TSM can be identified with the orthogonal complement (TS)⊥ of TS in (TM)S and
if x ∈ S, X ∈ (TxS)⊥ ⊂ TxM , then

Ψ(X) = expg,x
(
β( |X|g )X

)
,

1A map H with the properties (i), (ii), (iii) above is called an isotopy (or diffeotopy) of M rel S.
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where expg,x : TxM →M is the exponential map defined by the metric g, |X|g is the g-length of X ,
and β : [0,∞)→ [0, ε) is a diffeomorphism such that β(t) = t if t < ε

4 . ut

Suppose M (respectively R,S) is a smooth manifold of dimension m (respectively r, s) and f :
R→M , g : S →M are smooth maps. We say that f is transversal to g, and we write this f t g, if
for any x ∈ R and y ∈ S such that f(x) = g(y) = z ∈ M the differentials ḟx : TxR → TzM and
ġ : TyS → TzM are transversal. When S is a closed submanifold ofM and g is the natural inclusion,
we say that f is transversal to S and we write this f t S.

Proposition 1.5. Suppose M is a manifold of dimension m, S is a closed submanifold of M of
codimension c, R is a smooth manifold of dimension r and f : R → M is a smooth map transversal
to S. Then f−1(S) is a closed submanifold of R of codimension c and there exists natural bundle
isomorphism

ḟ∗ : f∗T ∗SM → T ∗f−1(S)R, ḟ : Tf−1(S) → f∗TSM.

Proof. The first claim is local so it suffices to prove it in the special case when M coincides with a
vector space of dimension V and S is a subspace U of V of codimension c. Consider a surjection
T : V → Rc such that kerT = U = S.

Fix x ∈ R, set y = f(x) and denote by ḟx the differential of f at x, ḟx : TxR → TyM = V .
Observe that

f−1(S) = {z ∈ R; T (f(z)) = 0}

The differential of T ◦ f at x ∈ R is T ◦ ḟx. Since

ḟx(TxR) + TyS = ḟx(TxR) + U0 = TyM = V

and the linear map T is surjective with kernel U we deduce that T ◦ ḟx is surjective. We can now
invoke the implict function theorem to conclude that that f−1(S) is a submanifold. Using Proposition
1.1 and (1.6) we deduce that the dual of ḟx defines a linear isomorphism

ḟ∗x : (T ∗SM)f(x) → (T ∗S−1(S)R)x, ∀x ∈ f−1(S).

Observing that (T ∗SM)f(x) is the fiber at x ∈ f−1(S) of the pullback f∗(T ∗SM) we deduce that these
isomorphisms define a bundle isomorphism

ḟ∗ : f∗(T ∗SM)→ T ∗f−1(S)R.

The isomorphism ḟ : Tf−1(S)R→ f∗TSM is the dual of the above isomorphism. ut

2. THE POINCARÉ DUAL OF A SUBMANIFOLD

Let M be a finite type, oriented smooth manifold of dimension m. A (Borel-Moore) cycle of
dimension s in M is defined to be a linear map map

C : Hs
c (M)→ R, Hs

c (M) 3 ω 7→ 〈C,ω〉.

The Poincaré dual of the cycle C is the cohomology class ηC ∈ Hm−s(M) uniquely determined by
the equality ∫

M
ω ∧ ηC = 〈C,ω〉, ∀ω ∈ Hs

c (M).
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Suppose that S is a closed oriented submanifold of dimension s of the oriented manifold M of di-
mension m. It defines an s-dimensional cycle [S] via the equality

〈[S], ω〉 =
∫
S
ω, ∀ω ∈ Hs

c (M).

The Poincaré dual of S in M is the Poincaré dual of the cycle [S], i.e., cohomology class ηS = ηMS ∈
Hm−s(M) uniquely determined by the equality∫

M
ω ∧ ηS =

∫
S
ω, ∀ω ∈ Hs

c (M).

Theorem 2.1. Suppose that π : E → S is an oriented real vector bundle of rank n over the oriented
manifold S. Denote by ΦE the Thom class of E and equip the total space of E using the base first
convention. Denote by i : S ↪→ E the inclusion of S as zero section. Then

ηES = φE . (2.1)

Moreover, if S is compact then∫
E
ω ∧ ΦE =

∫
S
ω, ∀ω ∈ Ωs(E), dω = 0. (2.2)

We want to emphasize that in the above equality we do not require that ω have compact support.

Proof. Define

H : E × [0, 1]→ E, E × [0, 1] 3 (z, t) 7→ Ht(z) := (1− t) ∗ z + t ∗ i ◦ π(z),

where t∗ denotes the multiplication by t along the fibers of E. Observe that H is proper, H0 = 1E ,
H1 = i ◦ π. Thus for any closed, compactly supported ω ∈ Ωs

c(E) there exists a τ ∈ Ωs−1
c (E) such

that
ω − π∗i∗ω = H∗0ω −H∗1ω = dτ.

We have ∫
E
ω ∧ ΦE =

∫
E
π∗(i∗ω) ∧ ΦE +

∫
E
d(τ ∧ ΦE)︸ ︷︷ ︸

=0

(use the projection formula)

=
∫
S
i∗ω ∧ π∗ΦE =

∫
S
i∗ω.

This proves (2.1). To prove (2.2) use the same argument and the fact that when S is compact, the
Thom class has compact support. ut

Corollary 2.2. Suppose that S is a compact s-dimensional oriented submanifold of the smooth, finite
type oriented manifold M of dimension m. Denote by ΦTSN the Thom class of the normal bundle
with the orientation induced via the base-first convention (1.7). Fix a tubular neighborhood (N,Ψ)
of S in M , denote by ηN

S the Poincaré dual of S in N, and by j∗ the extension by 0 morphsim
H∗c (N)→ H∗(M). Then

ηNS = (Ψ−1)∗ΦTSM , ηMS = j∗η
N
S . (2.3)

ut
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Remark 2.3. Let us point out a rather subtle phenomenon. Suppose that S is a compact s-dimensional
oriented submanifold of the oriented manifold M of dimmension m. Suppose further that N is a
tubular neighborhood of S in M Observe that S defines defines a linear map

Hs(M) 3 ω 7→
∫
S
ω ∈ R.

From the Poincaré duality we deduce that there exists a unique compactly supported cohomology
class ηcomp

S ∈ Hm−s
c (M) such that∫

M
ω ∧ ηcomp

S =
∫
S
ω, ∀ω ∈ Hs(M).

We have a natural morphism j# : Hm−s
c (M)→ Hm−s(M) and the above corollary proves that ηS =

j#(ηcomp
S ). In particular, we deduce that two closed compactly supported forms η0, η1 representing

ηS must be cohomologous as compactly supported forms, i.e., there exists a compactly supported
form α such that η1 − η0 = dα. ut

Corollary 2.4. Suppose that S is a compact s-dimensional oriented submanifold of the smooth finite
type oriented manifold M of dimension m. A cohomology class u ∈ Hm−s(M) is the Poincaré dual
of S if and only if there exists a tubular neighborhood (N,Ψ) of S in M such that u is represented by
a closed form η with compact support contained in N and such that∫

Nx

η = 1, ∀x ∈ S,

where Nx is oriented as the fiber of (TSM)x via the diffeomorphism Ψ : (TSM)x → Nx. ut

Definition 2.5. Let S, and L be closed, oriented submanifolds of the oriented manifold N such that
dimS + dimL = dimN

(a) If p ∈ L∩S is a point where the two submanifolds intersect transversally, i.e., TpL+TpS = TpN ,
then we define ε(p) = ε(S,L,p) ∈ {±1} via the rule

or(TpS) ∧ or(TpL) = ε(S,L,p) or(TpN).

We will refer to or(L, Sp) as the local intersection number of L and S at p. Note that

or(L, S,p) = (−1)dimL·dimS or(S,L,p).

(b) If S is compact, and L t S, then L ∩ S is finite, and we define the intersection number of the
cycles L and S to be the integer

[S] • [L] :=
∑

p∈S∩L
ε(S,L,p). ut

Theorem 2.6. Suppose that S,L are closed oriented submanifolds of the smooth, finite type, oriented
manifold N satisfying the following conditions.

• S is compact.
• dimL+ dimS = dimN .
• L t S.
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If ηS is compactly supported closed form representing the Poincaré dual of S., and ηL is a closed
form representing the Poincaré dual of [L],Then

[S] • [L] =
∫
M
ηL ∧ ηS =

∫
L
ηS . (2.4)

Proof. Set s := dimS, ` := dimL, n = s+ ` = dimN . For simplicity, for any p ∈ S ∩ L we will
set ε(p) = ε(S,L,p).

From the transversality of the intersection we deduce that for any p ∈ L ∩ S we can find local
coordinates (x1, . . . , xn) defined on an open neighborhood Up of p such that

Up ∩ S =
{
xs+1 = · · · = xs+` = 0

}
, Up ∩ L =

{
x1 = · · · = xs = 0

}
,

the orientation of S ∩U is described by the volume form dx1 ∧ · · · ∧ dxs, the orientation of L∩U is
given by dxs+1 ∧ · · · ∧ dxs+`. Under these assumptions we deduce that

or(Up) = ε(p)dx1 ∧ · · · ∧ dxn. (2.5)

We can additionally assume that Up ∩ Uq = ∅ if p 6= q.
We can find neighborhoods Vp of p in Up and a Riemann metric g on N such that along Vp the

metric g has the Euclidean form g = (dx1)2 + · · ·+ (dxn)2.

L

S

Vp

p

N

FIGURE 1. Two manifolds of complementary dimensions intersecting transversally

Construct a thin tubular neighborhood (N,Ψ) of S in N such that for every p ∈ L ∩ S we have
(see Figure 1)

Np = (L ∩ Vp) ∩N =: Lp

where we recall that Np denotes the fiber of N over p with respect to the natural projection πN : N→
S. We can choose N thin enough so that we have the aditional equality

L ∩N =
⋃

p∈S∩L
Np.

Consider a compactly supported closed form ηN
S ∈ Ω`

c(N) representing the Poincaré dual of S in N.
The fiber Np is equipped with a natural orientation, given by the co-orientation of S in N . On

the other hand Lp is equipped with an orientation induced by the orientation of L. The equality (2.5)
implies

or(Lp) = ε(p) or(Np).
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Now observe that∫
M
ηS ∧ ηL =

∫
L
ηS =

∑
p∈S∩L

∫
Lp

ηS =
∑

p∈S∩L
ε(p)

∫
Np

ηS =
∑

p∈S∩L
ε(p).

ut

3. SMOOTH CYCLES AND THEIR INTERSECTIONS

Suppose that M is a smooth, compact oriented manifold of dimension m, R is a smooth compact
oriented manifold of dimension r and f : R → M is a smooth map. The pair (R, f) defines a linear
map

Hr(M)→ R, Hr(M) 3 ω 7→
∫
R
f∗ω.

We will denote this element of Hr(M)∗ by f∗[R] and we will refer to it as the smooth cycle of
dimension r determined by the pair (R, f). From the Poincaré duality we deduce that there exists
ηf∗[R] ∈ Hm−r(M) such that∫

R
f∗ω =

∫
M
ω ∧ ηf∗[R], ∀ω ∈ Hr(M).

We will refer to the cohomology class ηf∗[R] as the Poincaré dual of the smooth cycle f∗[R].
Suppose that R0, R1 are two compact oriented manifolds of the same dimension r and fi : Ri →

M are smooth maps, i = 0, 1. We say that the pairs (R0, f), (R1, f1) are cobordant, and we write this
(R0, f0) ∼c (R1, f1) if there exists a compact, oriented (r+ 1)-dimensional manifold with boundary
R̂ and a smooth map f̂ : R̂→M such that the following hold.

• ∂R̂ = R0 tR1.
• The orientation induced by R̂1 coincides with the orientation of R1, while the orientation

induced by R̂ on R0 is the opposite orientation of R0.
• f̂ |Ri = fi, i = 0, 1.

The pair (R̂, f̂) is called an oriented cobordism between (R0, f0) and (R1, f1).

Proposition 3.1. If (R0, f0) ∼ (R1, f1) then

(f0)∗[R0] = (f1)∗[R1].

Proof. We have to show that for any ω ∈ Hr
c (M), r = dimR0 = dimR1 we have∫

R0

f∗0ω =
∫
R1

f∗1ω.

Let (R̂, f̂) be an oriented cobordism between (R0, f0) and (R1, f1) and ω ∈ Hr
c (M) then∫

R1

f∗1ω −
∫
R0

f∗0ω =
∫
∂ bR F̂ ∗ω =

∫
bR df̂∗ω

=
∫

bR f̂∗(dω) = 0.

ut
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Suppose that S is a smooth, compact, oriented submanifold of M of codimension k. Its conormal
bundle T ∗SM is equipped with a natural orientation given by the rule

or(TM)|S = or(T ∗M)|S = or(S) ∧ or(T ∗SM).

Denote by i the canonical inclusion S ↪→M . Observe that

ηS = ηi∗[S] ∈ Hk(M).

Two compact, oriented submanifolds i0 : S0 ↪→M , (i1 : S1 ↪→M of the same dimension s are said
to be cobordant if the pairs (S0, i0) and (S1, i1) are cobordant. We write this S0 ∼c S1. Proposition
3.1 shows that

S0 ∼c S1 ⇒ ηS0 = ηS1 .

Corollary 3.2. Suppose that S0, S1 are two compact, oriented s-dimensional manifolds of the ori-
ented, finite type smooth manifold M of dimension m, and L is a closed, oriented submanifold of M
of dimension m− s that intersects transversally both S0 and S1. If S0 ∼c S1, then

[S0] • [L] = [S1 • [L].

Proof. Since S0 ∼c S1 we have ηS0 = ηS1 . The corollary now follows form Theorem 2.6. ut

Example 3.3. For t ∈ [0, 1] define

Ft : CP1 → CP2, CP1 3 [z0, z1] 7→ [tz0, (1− t)z1, z1] ∈ CP2,

where [z0, z1, . . . , zn] denote the homogeneous coordinates in CPn. Observe that each Ft is an em-
bedding. The image of F0 is the projective line

H0 =
{

[ζ0, ζ1, ζ2]; ζ0 = 0
}
,

while the image of F1 is the projective line

H1 =
{

[ζ0, ζ1, ζ2] ∈ CP2; ζ1 = 0
}
.

We deduce that
ηH0 = ηH1 =: ηH .

Observe that H0 t H1 and the unique intersection point is p0[0, 0, 1]. An lementary computation
shows that ε(p0) = 1. Hence ∫

CP2

ηH ∧ ηH = [H0] • [H1] = 1. ut

Suppose that R is a compact oriented manifold of dimension r, S ⊂ M is a compact oriented
submanifold of codimension k, and f : R→M is a smooth map transversal to S. Using Proposition
1.5 we deduce that the submanifold f−1(S) of R carries a co-orientation induced by the bundle
isomorphism

ḟ∗ : f∗(T ∗SM)→ T ∗f−1(S)R.

We thus have an orientation on f−1(S). We obtain a smooth (r − k)-dimensional cycle

[S] ∩ f∗[R] := f∗[f−1(S)].

Denote by η[S]∩f∗[R] the Poincaré dual of this cycle, i.e.,∫
M
ω ∧ η[S]∩f∗[R] =

∫
f−1(S)

f∗ω, ∀ω ∈ Hr−k(M). (3.1)
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Theorem 3.4. Let M,R, S and f as above. Then

f∗ηMS = ηRf−1(S). (3.2)

η[S]∩f∗[R] = ηS ∧ ηf∗[R]. (3.3)

Proof. Let first observe that (3.3) is an immediate consequence of (3.2). Indeed, for any ω ∈
Hr−k(M) we have ∫

M
ω ∧ ηS ∧ ηf∗[R] =

∫
R
f∗(ω ∧ ηS) =

∫
R
f∗ω ∧ f∗ηS

(3.2)
=
∫
R
f∗ω ∧ ηRf−1(S) =

∫
f−1(S)

f∗ω
(3.1)
=
∫
M
ω ∧ η[S]∩f∗[R].

To prove (3.2) we will rely on Corollary 2.4. Fix a Riemann metric h on M and a metric g on R.
For simplicity we set X = f−1(S) ⊂ R. Form the tubular neighborhood Nε

h of S in M and N
ρ
g of

X in R as explained in Remark 1.4. For x ∈ X we denote by N
ρ
g(x) the fiber over x of the natural

projection N
ρ
g → X and by Nε

h(y), y = f(x) the fiber of the natural projection Nε
h → S. Observe

that
Nρ
g(x) =

{
z ∈ R; distg

(
z,X

)
= distg(z, x) < ρ

}
.

Lemma 3.5. There exists ρ0 > 0 sufficiently small such that the restriction of f to N
ρ0
g (x) is an

embedding for any x ∈ X .

Proof. Denote by ḟx the differential of f at x. It is a linear operator ḟx : TxR→ TyM , whose kernel
is TxX . Thus, its restriction to TxN

ρ
g(x) = (TxX)⊥ is injective. We can then find a neighborhood

Ux of x ∈ S and ρ(x) > 0 such that for any x′ ∈ U the restriction of f to N
ρ(x)
g (x′) is an embedding.

Now cover X with finitely many neighborhood Ux1 , . . . , Uxν and set

ρ0 = min
{
ρ(x1), . . . , ρ(xν)

}
.

ut

For ρ < ρ0 we set
Lρx := f

(
Nε
g(x)

)
.

R M

X

S

x f(x)

N x(x)
L

g

ρρ
f

FIGURE 2. Mapping the normal slice N
ρ
g(x).

Lemma 3.6. Fix ρ < ρ0. There exists ε = ε(ρ) > 0 such that for any x ∈ X the intersection Lρx∩Nε
h

is closed in Nε
h.
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Proof. Set
Σρ :=

{
z ∈ R; distg

(
z,X

)
= ρ

}
.

The set f(Σρ) ⊂M is compact and disjoint from S and thus

d(ρ) := disth
(
f(Σρ), S

)
> 0.

Let ε = 1
2d(ρ). We claim that that Lρx ∩ Nε

h is closed in Nε
h. Suppose that (yn) is a sequence in

Lρx ∩Nε
h that converges to a point y∗ ∈ Nε

h. We need to show that y∗ ∈ Lρx.
By construction, there exist points pn ∈ N

ρ
g(x) such that f(pn) = xn. The sequence (pn) has a

subsequence that converges to a point p∗ ∈ Ng(x) such that dist (p∗, x) ≤ r. Then f(p∗) = y∗ and

dist(y∗, S) < ε < d(ρ).

This implies that p∗ 6∈ Σρ because dist(f(Σρ), S) > d(ρ). Hence dist(p∗, x) = dist(p∗, S) < ρ so
that p∗ ∈ N

ρ
g(x) and thus y∗ ∈ Lρx. ut

Let ε = ε(ρ) as in the above Lemma. Denote by ηεS a closed form representing the Poincaré dual
of S having support in Nε

h. According to Corollary 2.4 the differential form f∗ηεS represents the
Poincaré dual of X = f−1(S) in R if∫

Nρ
g(x)

f∗ηεS = 1, ∀x ∈ X.

We have ∫
Nρ
g(x)

f∗ηεS =
∫
LρX

ηεS =
∫
Lρx∩Nε

h

ηεS ,

where Lρx is equipped with the orientation induced by the diffeomorphism f : N
ρ
g(x) → Lρx. The

orientation on the normal slice N
ρ
g(x) is the co-orientation of X which is determined by the co-

orientation of S. Hence the tangent space of Lρx at x is equipped with the coorientation of S at x. Our
choice of ε guarantees that Lρx ∩Nε

h is closed in Nε
h. Theorem 2.6 now implies that∫

Lρx∩Nε
h

ηεS = [S] • [Lρx] = 1.

ut

In the special case when f : R ↪→ M is an embedding, the equality (3.2) can be reformulated as
follows.

Corollary 3.7. Suppose that R,S are compact oriented submanifolds of the oriented finite type man-
ifold M and S t R. Then S ∩ R is a smooth submanifold of R. We orient S ∩ R using the natural
isomorphism

TS∩RR ∼= (TSM)|S∩R.
Then the Poincaré dual of S ∩ R in R is equal to the restriction to R of the Poincaré dual of S in
M . ut

We want to define a new operation on smooth cycles. Suppose that M0,M1 are smooth oriented,
finite type manifolds of dimensions m0 and respectively m1. Let fi : Ri → Mi, i = 0, 1 be smooth
maps, where Ri is a smooth compact manifold of dimension ri. These maps define smooth cycles
(fi)∗[Ri], i = 0, 1, with Poincaré duals

η(fi)∗[Ri] ∈ H
mi−ri(Mi).
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We have a natural bilinear map

� : H∗(M0)×H∗(M1)→ H∗(M0 ×M1), α0 � α1 = (π∗0α0) ∧ (π∗1α1),

where πi : M0 ×M1 →Mi, i = 0, 1, denotes the canonical projection. We have a smooth map

f0 × f1 : R0 ×R1 →M0 ×M1.

Equip R0 ×R1 and M0 ×M1 with the product orientations. We obtain a smooth cycle

(f0 × f1)∗[R0 ×R1]

with Poincaré dual
η(f0×f1)∗[R0×R1] ∈ H(m0+m1)−(r0+r1)(M0 ×M1).

Proposition 3.8.
η(f0×f1)∗[R0×R1] = (−1)r1(m0−r0)η(f0)∗[R0] � η(f1)∗[R1]. (3.4)

Proof. We have∫
M0×M1

α0 � α1 ∧ η(f0×f1)∗[R0×R1] =
∫
R0×R1

(f0 × f1)∗(α0 � α1) =
∫
R0×R1

f∗0α0 � f
∗
1α1

=
(∫

R0

f∗0α0

)(∫
R1

f∗0α1

)
.

On the other hand∫
M0×M1

(α0 � α1) ∧ (η(f0)∗[R0] � η(f1)∗[R1]) =
∫
M0×M1

π∗0α0 ∧ π∗1α1 ∧ π∗0η(f0)∗[R0] ∧ π∗1η(f1)∗[R1]

= (−1)r1(m0−r0)

∫
M0×M1

π∗0(α0 ∧ η(f0)∗[R0]) ∧ π∗1(α1 ∧ η(f1)∗[R1])

= (−1)r1(m0−r0)

(∫
M0

α0 ∧ η(f0)∗[R0]

)(∫
M1

α0 ∧ η(f1)∗[R1]

)
= (−1)r1(m0−r0)

(∫
R0

f∗0α0

)(∫
R1

f∗0α1

)
.

Künneth theorem implies that any cohomology class in M0 ×M1 is a linear combination of coho-
mology classes of the form α0 � α1. The equality (3.4) is now obvious.

ut

Example 3.9. Suppose thatM is a smooth compact oriented manifold of dimensionM and f : M →
M is a smooth map. Then the graph of f is a smooth submanifold Γf ⊂ M ×M equipped with a
natural orientation induced by the diffeomorphism

δf : M → Γf , x 7→ (x, f(x)).

We want to offer a description of of the Poincaré dual ηΓf ∈ Hm(M ×M).
Fix a basis (ωj)1≤i≤b(M) of H∗(M), b(M) =

∑
k bk(M), where ωi denotes a closed from of

degree |ωi|. Denote by (ωj)1≤j≤N the Poincaré dual basis of H∗(M), i.e., the forms ωj satisfy the
equalities2 ∫

M
ωi ∧ ωj = δij :=

{
1, i = j

0, i 6= j.

Above ωj is a form of degree |ωj | = n− |ωj |.

2Throughout we use the convention that
R
M
α = 0 if α is a differential form such that degα 6= m.
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Kunneth’s theorem then implies that the collection Ωi
j := ωi×ωj ∈ H∗(M×M), 1 ≤ i, j ≤ b(M)

is a basis of H∗(M). Similarly, the collection

Θi
j = ωj × ωi

is a basis of H∗(M ×M) and therefore, Poincaré dual of Γf has the form

ηΓf =
∑
i,j

cjiΘ
i
j .

There exist real numbers (aij) such that

f∗ωj =
∑
i

aijωi, ∀j.

More precisely

aij =
∫
M
ωi ∧ f∗ωj .

We want to express the coefficients cij in terms of the coefficients aij . To achieve this we use the
defining property of ηΓf , i.e. ∫

M×M
Ωk
` ∧ ηΓf =

∫
Γf

Ωk
` =

∫
M
δ∗fΩk

` .

Observe first that∫
M
δ∗fΩk

` =
∫
M
ωk ∧ f∗ωl =

∑
j

aj`

∫
M
ωk ∧ ωj =

∑
j

aj`δ
k
j = ak` .

For i = 0, 1 denote by πi : M ×M →M the projection (x0, x1) 7→ xi.
We have ∫

M×M
Ωk
` ∧ ηΓf =

∑
i,j

cji

∫
M×M

Ωk
` ∧Θi

j

=
∑
i,j

cji

∫
M×M

(π∗0ω
k ∧ π∗1ω`) ∧ (π∗0ωj ∧ π∗1ωi)

=
∑
i,j

(−1)|ω`|·|ωj |cji

∫
M×M

π∗0(ωk ∧ ωj) ∧ π∗1(ω` ∧ ωi)

=
∑
i,j

(−1)|ω`|·(|ωj |+|ω
i|)cji

(∫
M
ωk ∧ ωj

)(∫
M
ωi ∧ ω`

)

=
∑
i,j

(−1)|ω`|·(|ωj |+|ω
i|)cji δ

k
j δ
i
` = (−1)|ω`|·(|ωk|+|ω

`|)ck` .

Hence

ck` := (−1)|ω`|·(|ωk|+|ω
`|)ak` = (−1)|ω`|·(|ωk|+|ω

`|)
∫
M
ωk ∧ f∗ω`. (3.5)

ut
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4. APPLICATIONS

Suppose that N is a compact oriented smooth manifold of even dimension 2m. For any compact
oriented submanifold S of middle dimension m we define the self intersection number [S] • [S] to be

[S] • [S] :=
∫
M
ηS ∧ ηS .

One can show (see [2, Thm. 14.6]) then there exists a smooth map

F : [0, 1]× S →M, (t, x) 7→ Ft(x)

such that for any t the map Ft is an embedding, F0 coincides with the inclusion i : S ↪→ M and for
any t > 0 the map Ft is transversal to S. If we denote by St the image of Ft then we deduce that
St t S , ηSt = ηS and thus

[S] • [S] = [St] • [S] =
∑

p∈St∩S
ε(St, S, p) ∀t ∈ (0, 1].

The computations in Example 3.3 can be reformulated as

[H] • [H] = 1.

Theorem 4.1 (Lefschetz fixed point theorem). Suppose M is a compact oriented smooth manifold of
dimension m and f : M →M is a smooth map. We define its Lefschetz number to be the quantity

L(f) =
m∑
k=0

(−1)k trk f∗, trk f∗ := tr
(
f∗ : Hk(M)→ Hk(M)

)
Then ∫

M×M
ηΓf ∧ η∆ = L(f).

Hence, if Γf t ∆ then
[Γf ] • [∆] = L(f).

In particular, we deduce that if L(f) 6= 0, then the map f must have at least one fixed point.

Proof. We continue to use the notations in Example 3.9. We have

ηΓf =
∑
i,j

cjiωj × ω
i.

Then ∫
M×M

ηΓf ∧ η∆ =
∫

∆
ηΓf =

∑
i,j

cji

∫
∆
ωj × ωi =

∑
i,j

cji

∫
M
ωj ∧ ωi

=
∑
i,j

(−1)|ω
i|·|ωi|cji

∫
M
ωi ∧ ωj =

∑
i,j

(−1)|ω
i|·|ωj |cji δ

i
j

=
∑
i

(−1)|ω
i|·|ωi|cii

(3.5)
=
∑
i

(−1)|ω
i|·|ωi|+m|ωi|aii =

∑
i

(−1)|ωi|aii =
∑
k

(−1)k
∑
|ωi|=k

aii︸ ︷︷ ︸
=trk f∗

.

ut
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Corollary 4.2. Suppose that M is a compact oriented manifold of dimension m and ∆ denotes the
diagonal in M ×M , i.e., the submanifold

∆ =
{

(x, x); x ∈M
}
.

It is tautologically diffeomorphic to M and thus it carries a natural orientation. Then

[∆] • [∆] = χ(M) = the Euler characteristic of M. (4.1)

Proof. This follows from the Lefschetz fixed point theorem by observing that ∆ is the graph of the
identity map 1M and that

trk(1∗M ) = bk(M).
ut

Definition 4.3. Suppose that E →M is a smooth, oriented vector bundle of rank r over the compact
smooth manifold M . The Euler class of E is the cohomology class e(E) ∈ Hr(M) defined by the
equality

e(E) = i∗ΦE ,

where ΦE ∈ Hr
c (E) denotes the Thom class of E and i : M → E denotes the inclusion of M into E

as zero section. ut

Theorem 4.4. Let π : E → M be as above.3 If E admits a nowhere vanishing section s : M → E,
then e(E) = 0.

Proof. Fix a metric g on E. For any ε > 0 we denote by Dε(E) ⊂ the open subset consisting of the
vectors of length < ε in all the fibers of E. Fix ε > 0 such that

|s(x)|g > ε, ∀x ∈M.

Next choose a representative Φε ∈ Ωr
c(E) of ΦE such that supp Φε ⊂ Dε(E). By construction, the

image of s and the support of Φε are disjoint. Hence

s∗Φε = 0.

On the other hand, the form s∗Φε represents the cohomology class e(E). Indeed consider

H : [0, 1]×M → E, (t, x) 7→ t ∗ s(x),

where t∗ denotes the multiplication by t along the fibers of E. Observe that H0 = i and H1 = s.
Hence the maps i and s are homotopic and therefore the forms i∗Φε and s∗Φε are cohomologous. ut

Remark 4.5. The above theorem implies that if E is a trivial vector bundle, then e(E) = 0 because
trivial vector bundles admit nowhere vanishing sections. We can turn this result on its head and
conclude that if e(E) 6= 0, then the bundle E cannot be trivial. In other words, the Euler class can be
interpreted as a measure on nontriviality of E. ut

Theorem 4.6. Suppose that E → M is a smooth, oriented real vector bundle of rank r over the
smooth, compact, oriented manifold M of dimension m ≥ r. Suppose that s : M → E is a smooth
section that is transversal to the zero section i : M → E. Denote by Z the zero set of s. Then Z is a
smooth submanifold of M of codimension r and we have a natural bundle isomorphism

TZM ∼= E|M .
3Observe that we impose no orientability assumption on M .
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The above isomorphism equips Z with a coorientation and orientation and the Poincaré dual of the
cycle [Z] is equal to the Euler class e(E).

Proof. This is a special case of Corollary 3.7 applied to the submanifolds R = i(M) and S = s(M)
of the total space of E. ut

Theorem 4.7. Suppose that E → M is a smooth, oriented real vector bundle of rank m over the
smooth, compact, oriented manifold M of dimension m. Suppose that s : M → E is a smooth
section that is transversal to the zero section i : M → E. Then

[M ] • [s(M)] =
∫
M

e(E). (4.2)

Proof. Denote by ηM The Poincaré dual of M in E and by ηs(M ] the Poincaré dual of s(M) in E.
Then ηM = ΦE = the Thom class of E. We have

[M ] • [s(M)] =
∫
E
ηM ∧ ηs∗[M ] =

∫
E

ΦE ∧ ηs∗[M ] =
∫
M
s∗ΦE .

As in the proof of Theorem 4.4 we observe that s∗ΦE = i∗ΦE = e(E) in Hm(M) since the sections
s and i are homotopic.

ut

Remark 4.8. Observe that the intersection M ∩ s(M) = i(M) ∩ s(M) is the set of zeros of the
section s. The above theorem then states that a certain signed count of zeros of a transversal section
is equal to the integral of the Euler class over the base when the dimension of the base is equal to the
rank of the bundle.

The sign associated to a transverse zero can be computed as follows. Suppose thatU is a coordinate
patch diffeomorphci to Rn with local coordinates x1, . . . , xm such that the orientation of M along
U is given by dx1 ∧ · · · ∧ dxm. Fix an orientation preserving trivialization E|U → Rm

U . we get
m-function y1, . . . , ym : E|U → R, describing linear coordinates long fibers such that the orientation
of each fiber is given by dy1 ∧ · · · ∧ dym. A section of s is described over U as a map

U → Rm, yj = yj(x1, . . . , xm), j = 1, . . . ,m.

If p0 = (x1
0, . . . , x

m
0 ) is a zero of s in U , then the intersection of s(M) with M at p0 is transversal if

and only if

det
∂(y1, . . . , ym)
∂(x1, . . . , xm)

|p0 6= 0.

If this is the case, then zero p0 is counted with sign

ε(p0) = sign det
∂(y1, . . . , ym)
∂(x1, . . . , xm)

|p0 .

One can show that this sign is independent of the various choices. ut

Definition 4.9. Let M be a compact oriented smooth manifold of dimension m. Then the Euler class
of M is the cohomology class e(M) := e(TM) ∈ Hm(M). ut

Theorem 4.10 (Poincaré-Hopf). ∫
M

e(M) = χ(M).
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Proof. Consider the diagonal ∆ ⊂ M ×M and its normal bundle E := T∆M ×M . We identify E
with a tubular neighborhood N of ∆ in M ×M and the Thom class ΦE of E with the Poincaré dual
η∆ of ∆ in N, and by extension, with the Poincaré dual of ∆ in M ×M . We have∫

∆
e(E) =

∫
∆

ΦE =
∫

N
η∆ ∧ η∆

(4.1)
= χ(M).

The diagonal ∆ is clearly isomorphic to M . To complete the proof the theorem wee need the follow-
ing result.

Lemma 4.11. The normal bundle T∆(M×M) is orientation preservingly isomorphic to TM = T∆.

Proof of the Lemma. Note that we have a short exact sequence of bundles over M = ∆,

0→ TM
δ−→ TM ⊕ TM p−→ TM → 0

where for any x ∈M the map
δx : TxM → TxM ⊕ TxM

is given by v 7→ v ⊕ v, while the map

px : TxM ⊕ TxM → TxM

is given by px(v0, v1) = v1−v0
2 . The image of δ coincides with the tangent bundle T∆ and thus p

induces an isomorphism
T∆(M ×M)→ TM.

This isomorphism is orientation preserving. To see this observe first that the above short exact se-
quence sequence admits a splitting

σ : TM → TM ⊕ TM, p ◦ σ = 1TM ,

given by
σx(v) = −v ⊕ v, ∀x ∈M, ∀v ∈ TxM.

To check that the isomorphism p : T∆(M ×M)→ TM is orientation preserving it suffices to check
that for any x ∈M we have

or δ(TxM) ∧ or σ(TxM) = or(TxM ⊕ TxM).

Fix an oriented basis e1, . . . , em of TxM . Set

ui := ei ⊕ 0 ∈ Tx ⊕ TxM, vj = 0⊕ ej ∈ TxM ⊕ TxM.

The collection u1, . . . ,um,v1, . . . ,vm is an oriented basis of TxM ⊕ TxM . Observe that

δ(ei) = ui + vi, σ(ej) = vj − uj .

Then
or δ(TxM) ∧ or σ(TxM) = or

(
δ(e1) ∧ · · · ∧ δ(em) ∧ σ(ei) ∧ · · ·σ(em)

)
.

We have

δ(ei) ∧ · · · ∧ δ(em) ∧ σ(ei) ∧ · · ·σ(em) = (−1)
m(m−1)

2 δ(e1) ∧ σ(e1) ∧ · · · ∧ δ(em) ∧ σ(em).

Now we observe that
δ(ej) ∧ σ(ej) = 2uj ∧ vj

and we conclude

(−1)
m(m−1)

2 δ(ei) ∧ · · · ∧ δ(em) ∧ σ(ei) ∧ · · ·σ(em) = u1 ∧ v1 ∧ · · · ∧ um ∧ vm

= (−1)
m(m−1)

2 2mu1 ∧ · · · ∧ um ∧ v1 ∧ · · · ∧ vm.

This completes the proof of the lemma and thus of Theorem 4.10. ut
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5. THE EULER CLASS OF AN ORIENTED RANK TWO REAL VECTOR BUNDLE

Suppose that π : E →M is an oriented rank two real vector bundle. We denote by ΦE ∈ H2
cv(E)

its Thom class and by e(E) ∈ H2(M) its Euler class defined by

e(E) = i∗ΦE ,

where i : M → E denotes the inclusion of M in E as zero section. We want to give an explicit
description of ΦE and e(E). To this aim we fix a metric onE and a good (coordinate cover) {Uα}α∈A
that trivializes E. Thus E is defined by a gluing cocycle

gβα : Uαβ → SO(2).

More precisely, we can write

gβα(x) =
[

cosϕβα − sinϕβα
sinϕβα cosϕβα

]
,

where ϕβα : Uαβ → R is a smooth function. Moreover

ϕβα = −ϕαβ, . (5.1)

The cocycle condition
gαγ(x) · gγβ(x) · gβα(x) = 1, ∀x ∈ Uαβγ

is then equivalent to the condition

ϕαγ(x) + ϕγβ(x) + ϕβ(x) ∈ 2πZ, ∀x ∈ Uαβγ .

Since Uαβγ is connected we deduce that for any α, β, γ there exists nγβα ∈ Z such that

ϕαγ(x) + ϕγβ(x) + ϕβα(x) = 2πnγβα, ∀x ∈ Uαβγ . (5.2)

the correspondence (α, β, γ) 7→ nγβα is skew-symmetric in its arguments, i.e.,

nγβα = −nβγα = −nγαβ = −nαβγ .

The metric and the orientation on E induce polar coordinates (rα, θα) on E0|Uα where E0 denotes
complement of the zero section, E \ i(M). On the overlap E0|Uαβ we have rα = rβ , but the angular
coordinates θβ and θα are related by the equalities

θβ − θα = π∗ϕβα. (5.3)

Lemma 5.1. There exist ξα ∈ Ω1(Uα) such that for any α, β we have

1
2π
dϕβα = ξβ − ξα on Uαβ. (5.4)

Proof. Consider a partition of unity (ργ) subordinated to (Uγ). Now define

ξα = − 1
2π

∑
γ

ργdϕγα.

Then

ξβ − ξα =
1

2π

∑
γ

ργd(ϕγα − ϕγβ)

(5.1)
= − 1

2π

∑
γ

ργd(ϕαγ + ϕγβ)
(5.2)
=

1
2π

∑
γ

ργd(ϕβα − 2πnγβα) =
1

2π
dϕβα.

ut
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From (5.4) we deduce that
dξα = dξβ on Uαβ.

Thus the collection of closed 2-forms (ωα = dξα) defines a closed form ω ∈ Ω2(M).

Proposition 5.2. The cohomology class determined by ω is the Euler class e(E).

Proof. The equalities (5.3) and (5.4) show that for any α, β we have the equality
1

2π
dθα − π∗ξα =

1
2π
dθβ − π∗ξβ, on E0|Uαβ .

We deduce that the collection of 1-forms ψα := 1
2πdθα − π∗ξα determines a global 1-form ψ ∈

Ω1(E0) with the property that for any Uα and any x ∈ Uα the restriction to the fiber E0
x coincides

with the angular form 1
2πdθα. For this reason we say that ψ is a global angular form.

The form ψ is defined outside the zero section. Note that

dψα = −π∗dξα = −π∗ωα
so that

dψ = −π∗ω,
so that dψ extends to a form on E.

Consider a smooth function ρ : [0,∞)→ [−1, 0] whose graph has the shape depicted in Figure 3

-1

FIGURE 3. A smooth cut-off function ρ(r).

Define
Φ = d

(
ρ(r)ψ

)
∈ Ω2(E0),

where r : E → [0,∞) denotes the radial distance function defined by the metric on E. We have

Φ = dρ(r) ∧ ψ − ρ(r)π∗ω. (5.5)

The form dρ is identically zero near the zero section and we deduce that Φ extends as a closed 2-form
on E. From the shape of ρ we deduce that it has compact vertical support. If x ∈M then∫

Ex

Φ =
∫
Ex

dρ(r) ∧ ψ.

On Ex we have ψ = 1
2πdθ= the angular form on Ex. We deduce∫

Ex

Φ =
1

2π

∫
R2

dρ(r) ∧ dθ,

where (r, θ) denote the angular coordinates on R2. We have
1

2π

∫
R2

dρ(r) ∧ dθ = lim
ε↘0

1
2π

∫
r≥ε

dρ(r) ∧ dθ
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(use Stokes formula)

= − lim
ε↘0

1
2π

∫
r=ε

ρ(ε)dθ = 1

since ρ(ε) = −1 if ε is sufficiently small. Thus Φ represents the Thom class of E. We deduce

i∗Φ = −ρ(0)ω = ω.

The conclusion follows from the definition of the Euler class as the pullback of the Thom class via
the zero section. ut
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