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Introduction

The torsion of a cellular (simplicial) complex was introduced in the 30s by W. Franz
[29] and K. Reidemeister [90] in their study of lens spaces. The lens spaces L(p, q)
(p fixed) have the same fundamental groups and thus the same homology groups.
However, they are not all homeomorphic. They are not even homotopically equivalent.
This can be observed by detecting some below the radar interactions between the
fundamental group and the simplicial structure. The torsion captures some of these
interactions. In particular, it is able to distinguish lens spaces which are homotopically
equivalent but not homeomorphic, and moreover completely classify these spaces up
to a homeomorphism. This suggests that this invariant is reaching deep inside the
topological structure.

What is then this torsion? What does is compute? These are the kind of ques-
tions we try to address in these notes, through many examples and various equivalent
descriptions of this invariant.

From an algebraic point of view, the torsion is a generalization of the notion of
determinant. The most natural and general context to define the torsion would involve
the Whitehead group and algebraic K-theory as in the very elegant and influential
Milnor survey [72], but we did not adopt this more general point of view. Instead we
look at what Milnor dubbed R-torsion.

This invariant can be viewed as a higher Euler characteristic type invariant. Much
like the Euler characteristic, the torsion satisfies an inclusion-exclusion (a.k.a. Mayer–
Vietoris) principle which can be roughly stated as

Tors(A ∪ B) = Tors(A)+ Tors(B)− Tors(A ∩ B)
which suggests that the torsion could be interpreted as counting something.

The classical Poincaré–Hopf theorem states that the Euler–Poincaré characteristic
of a smooth manifold counts the zeros of a generic vector field. If the Euler-Poincaré
characteristic is zero then most vector fields have no zeroes but may have periodic
orbits. The torsion counts these closed orbit, at least for some families of vector fields.
As D. Fried put it in [34], “the Euler characteristic counts points while the torsion
counts circles”.

One of the oldest results in algebraic topology equates the Euler-Poincaré char-
acteristic of simplicial complex, defined as the alternating sums of the numbers of
simplices, with a manifestly combinatorial invariant, the alternating sum of the Betti
numbers. Similarly, the R-torsion can be given a description in terms of chain com-
plexes or, a plainly invariant description, in homological terms. Just like the Euler
characteristic, the R-torsion of a smooth manifold can be given a Hodge theoretic
description, albeit much more complicated.

More recently, this invariant turned up in 3-dimensional Seiberg–Witten theory, in
the work of Meng–Taubes ([68]). This result gave us the original impetus to understand
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the meaning of torsion.
This is a semi-informal, computationally oriented little book which grew out of

our efforts to understand the intricacies of the Meng–Taubes–Turaev results, [68, 115].
For this reason a lot of emphasis is placed on the Reidemeister torsion of 3-manifolds.
These notes tried to address the author’s own struggle with the overwhelming amount
of data involved and the conspicuously scanty supply of computational examples in
the traditional literature on the subject. We considered that at an initial stage a good
intuitive argument or example explaining why a certain result could be true is more
helpful than a complete technical proof. The classical Milnor survey [72] and the
recent introductory book [117] by V. Turaev are excellent sources to fill in many of
our deliberate foundational omissions.

When thinking of topological issues it is very important not to get distracted by the
ugly looking but elementary formalism behind the torsion. For this reason we devoted
the entire first chapter to the algebraic foundations of the concept of torsion. We give
several equivalent definitions of the torsion of an acyclic complex and in particular,
we spend a good amount of time constructing a setup which coherently deals with the
torturous sign problem. We achieved this using a variation of some of the ideas in
Deligne’s survey [18].

The general algebraic constructions are presented in the first half of this chapter,
while in the second half we discuss Turaev’s construction of several arithmetically
defined subrings of the field of fractions of the rational group algebra of an Abelian
group. These subrings provide the optimal algebraic framework to discuss the torsion
of a manifold. We conclude this chapter by presenting a dual picture of this Turaev
subrings via Fourier transform. These results seem to be new and simplify substantially
many gluing formulæ for the torsion, to the point that they become quasi-tautological.

The Reidemeister torsion of an arbitrary simplicial (or CW) complex is defined in
the second chapter. This is simply the torsion of a simplicial complex with Abelian
local coefficients, or equivalently the torsion of the simplicial complex of the maximal
Abelian cover. We present the basic properties of this invariant: the Mayer–Vietoris
principle, duality, arithmetic properties and an Euler–Poincaré type result. We com-
pute the torsion of many mostly low dimensional manifolds and in particular we explain
how to compute the torsion of any 3-manifold with b1 > 0 using the Mayer–Vietoris
principle, the Fourier transform, and the knowledge of the Alexander polynomials of
links in S3. Since the literature on Dehn surgery can be quite inconsistent on the
various sign conventions, we have devoted quite a substantial appendix to this subject
where we kept an watchful eye on these often troublesome sings.

The approach based on Alexander polynomials has one major drawback, namely it
requires a huge volume of computations. We spend the whole section §2.6 explaining
how to simplify these computation for a special yet very large class of 3-manifolds,
namely the graph manifolds. The links of isolated singularities of complex surfaces are
included in this class and the recent work [75, 76] proves that the Reidemeister torsion
captures rather subtle geometrical information about such manifolds. We conclude
this chapter with some of the traditional applications of the torsion in topology.
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Chapter 3 focuses on Turaev’s ingenious idea of Euler structure and how it can
be used to refine the concept of torsion by removing the ambiguities in choosing the
bases needed for computing the torsion. Turaev later observed that for a 3-manifold
a choice of an Euler structure is equivalent to a choice of spinc-structure. After we
review a few fundamental properties of this refined torsion for 3-manifolds we then
go on to present a result of Turaev which in essence says that the refined torsion of a
3-manifold with positive b1 is uniquely determined by the Alexander polynomials of
links in S3 and the Mayer–Vietoris principle.

This uniqueness result does not include rational homology spheres, and thus offers
no indication on how to approach this class of manifolds. We spend the last part of
this chapter analyzing this class of 3-manifolds.

In §3.8 we describe a very powerful method for computing the torsion of such
3-manifolds, based on the complex Fourier transform results in Chapter 1, and an
extremely versatile holomorphic regularization technique. These lead to explicit for-
mulæ for the Fourier transform of the torsion of a rational homology sphere in terms of
surgery data. These formulæ still have the two expected ambiguities: a sign ambiguity
and a spinc ambiguity. In §3.9 we describe a very simple algorithm for removing the
spinc ambiguity. This requires a quite long topological detour in the world of quadratic
functions on finite Abelian groups, and surgery descriptions of spin and spinc struc-
tures, but the payoff is worth the trouble. The sign ambiguity is finally removed in
§3.10 in the case of plumbed rational homology spheres, relying on an idea in [75],
based on the Fourier transform, and a relationship between the torsion and the linking
form discovered by Turaev.

Chapter 4 discusses more analytic descriptions of the Reidemeister torsion: in
terms of gauge theory, in terms of Morse theory, and in terms of Hodge theory. We
discuss Meng–Taubes theorem and the improvements due to Turaev. We also out-
line our recent proof [83] of the extension of the Meng–Taubes–Turaev theorem to
rational homology spheres. As an immediate consequence of this result, we give a
new description of the Brumfiel–Morgan [7] correspondence for rational homology
3-spheres which associates to each spinc structure a refinement of the linking form.

On the Morse theoretic side we describe Hutchinson–Pajitnov results which give
a Morse theoretic interpretation of the Reidemeister torsion. We barely scratch the
Hodge theoretic approach to torsion. We only provide some motivation for the ζ -
function description of the analytic torsion and the Cheeger–Müller theorem which
identifies this spectral quantity with the Reidemeister torsion.
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Notations and conventions

• For simplicity, unless otherwise stated, we will denote byH∗(X) the homology with
integral coefficients of the topological space X.

• For K = R,C, we denote by KnX the trivial rank n, K-vector bundle over the space
X.

• i := √−1.

• u(n) = the Lie algebra of U(n), su(n)= the Lie algebra of SU(n) etc.

• Z+ = Z≥0 := {n ∈ Z; n ≥ 0}.
• For all integers m < n we set m, n := Z ∩ [m, n].
• For any Abelian group G we will denote by Tors(G) its torsion subgroup. We will
use the notation Zn := Z/nZ.

• If R is a commutative ring with 1, then R× denotes the group of invertible elements
of R.

•Also, we will strictly adhere to the following orientation conventions.

• If M is an oriented manifold with boundary then the induced orientation of ∂M is
determined by the outer-normal-first convention

or (M) = outer normal ∧ or (∂M).

• If F ↪→ E � B is a smooth fiber bundle, where F and B are oriented, then the
induced orientation of E is determined by the fiber-first convention

or (E) = or (F ) ∧ or (B).
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Chapter 1

Algebraic preliminaries

§1.1 The torsion of acyclic complexes of vector spaces

The notion of torsion is a multifaceted generalization of the concept of determinant of
an isomorphism of vector spaces. We begin with a baby example to give the reader a
taste of the ingredients which enter into the fabric of torsion, and of the type of issues
it addresses.

Example 1.1. Suppose that U0 and U1 are finite dimensional real vector spaces and
S, T : U1 → U0 are two linear isomorphisms. If we take into account only the vector
space structures then we could consider S and T to be equivalent, i.e. there exist
Ai ∈ Aut(Ui), i = 0, 1, such that

T = A0SA
−1
1 . (1.1)

Suppose now that �i ⊂ Ui , i = 0, 1 are lattices and S, T are compatible with
them, i.e. S(�1) ⊂ �0, T (�1) ⊂ �0. We could then ask whether there exist
Ai ∈ Aut(�i) ⊂ Aut(Ui), i = 0, 1, such that (1.1) holds. We can easily construct an
invariant to show that S and T need not always be equivalent in this more restricted
sense. Consider for example the finite Abelian groups

I (S) = �0/S(�1), I (T ) = �0/T (�1).

If S is equivalent to T then |I (S)| = |I (T )| and we see that the quantity S 
→ |I (S)| is
an invariant of this restricted equivalence relation. It is very easy to compute it. Pick
Z-bases of �i , i = 0, 1. We can then identify S and T with integral matrices and, up
to a sign, |I (S)| and |I (T )| are the determinants of these matrices.

The torsion tackles a slightly more general question than this. This generality
entails several aspects, all motivated by topological issues. First, instead of lattices in
real vector spaces we will work with free modules over a commutative ringR. Instead
of the field of real numbers we will work with a fieldK related toR via a nontrivial ring
morphism χ : R→ K. If F is a freeR module then F ⊗χ K is aK-vector space. The
role of the groups Aut(�i) we will played by certain subgroups of AutR(F ), which
act in an obvious way on F ⊗χ K. Finally, instead of morphisms of R-modules we
will consider chain complexes of R-modules. �


We will begin our presentation by discussing the notion of torsion (or determinant)
of a chain complex of finite dimensional vector spaces. In the sequel, K will denote
a field of characteristic zero. A basis of a K-vector space will be a totally ordered
generating set of linearly independent vectors.
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Suppose f : U1 → U0 is an isomorphism of n-dimensional K-vector spaces.
Once we fix bases ui = (ui,1, . . . , ui,n) of Ui , i = 0, 1, we can represent f as an
n× n-matrix

A = A(u0,u1) ∈ GLn(K),

and as such it has a determinant detA ∈ K∗.
Suppose additionally that A is a group1 acting linearly on Ui , i = 0, 1. We denote

by Fr (Ui), the set of bases of Ui . There is an obvious right action of A on Fr (Ui),
and we will denote by [ui]A the A-orbit of ui ∈ Fr (Ui), i = 0, 1. If we change ui by
elements in A,

ui 
→ ui · gi,
then the matrix description of f changes according to the rule

A = A(u1,u0) 
→ A(u1g1,u0g0) := (u1g1/u1)
−1A(u0g0/u0), (1.2)

where for any u, v ∈ Fr (U)we denoted by v/u the matrix describing the base change
u 
→ v,

v = u · (v/u), (u/v) = (v/u)−1.

Also, we set
[v/u] := det(v/u)

det A = {[ug/u]; g ∈ A, u ∈ Fr (U0) ∪ Fr (U1)
}
.

Observe that det A is a subgroup of the multiplicative group K∗. In particular, the
determinant of A changes by an element in the subgroup det(A) ⊂ K∗.

Definition 1.2. The correspondence

(u0,u1) 
→ 1/ detA(u1,u0) ∈ K∗ � K∗/ det(A)

defines an element in K∗/ det(A) which depends only on the A-orbits of ui , i = 0, 1.
We denote it by

T(f, [u0]A, [u1]A)
and we call it the torsion of the map f with respect to the A-equivalence classes of
bases u, v. �


To ease the presentation, in the remainder of this section we will drop the group A
from our notations since it introduces no new complications (other than notational).

Observe that an isomorphism f : U1 → U0 can be viewed as a very short acyclic
chain complex

0 → U1
f−→ U0 → 0.

1Intuitively, A is the group of ambiguities. All the vectors in the same orbit of A are equal partners and
in a given concrete setting there is no canonical way of selecting one vector in a fixed orbit.
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The notion of torsion described above extends to acyclic chain complexes of arbitrary
sizes. Suppose that

C := 0 → Cn
∂n→ Cn−1

∂n−1→ · · · ∂1→ C0 → 0

is an acyclic, complex of finite dimensional K-vector spaces. Fix bases ci of Ci .
Because C is acyclic there exists an algebraic contraction, i.e. a degree one map

η : Ci → Ci+1

such that
∂η + η∂ = 1C.

(See Appendix §A.1.) Set η̂ = η∂η.

Exercise 1.1. (a) Prove that η̂ is an algebraic contraction satisfying η̂2 = 0.

(b) Show that if η2 = 0 then η = η̂. �


Consider the operator
∂ + η̂ : C → C.

It satisfies
(∂ + η̂)2 = ∂η̂ + η̂∂ = 1,

so that it is an isomorphism. Moreover, with respect to the direct sum decomposition

C = Ceven ⊕ Codd

it has the block form

∂ + η̂ =
[

0 T01
T10 0

]
, T01 : Codd → Ceven, T10 : Ceven → Codd.

We deduce that T10 is an isomorphism of vector spaces and T −1
10 = T01. We can define

T
(
C, c
) := T

(
∂ + η̂, [ceven

]
,
[
codd

]) = det
(
∂ + η : Codd → Ceven

)−1

= det
(
∂ + η̂ : Ceven → Codd

)
.

We need to be more specific about codd and ceven. If we denote by 2m+ 1 (resp. 2ν)
the largest odd (resp. even) number not greater than the length of C then

codd = c2m+1 ∪ · · · ∪ c3 ∪ c1, ceven = c2ν ∪ · · · ∪ c2 ∪ c0. (1.3)

Proposition 1.3([19]). det
(
∂+η : Ceven → Codd

)
is independent of the choice of η.
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Proof. Suppose η0, η1 are two algebraic contractions. Set η̇ := η1−η0, ηt = η0+ t η̇.
Observe that η̇∂ = −∂η̇ and ηt is an algebraic contraction of C. Moreover

η̂t+s = (ηt + sη̇)∂(ηt + sη̇) = η̂t + s(η̇∂ηt + ηt∂η̇)+ s2η̇∂η̇.

We set Tt := ∂ + η̂t and η̂′t = d
ds
|s=0η̂t+s = η̇∂ηt + ηt∂η̇. Derivating2 the identities

η̂2
t = 0, ∂η̂t + η̂t ∂ = 1,

we deduce that
η̂t η̂

′
t = −η̂′t η̂t , ∂η̂′t = −η̂′t ∂.

This shows that Tt η̂′t = −η̂′t Tt . Using the identity T 2
t = 1 we obtain

Tt+s = ∂ + η̂t+s = Tt + sη̂t = Tt
(
1+ sTt η̂′t

)
.

To prove that det(Tt : Ceven → Codd) is independent of t it suffices to show that

tr(Tt η̂
′
t : Ceven → Ceven) = 0.

Observe that
Tt η̂

′
t = (η̂t η̇∂ηt + η̂t ηt ∂η̇)+ ∂η̇ =: A+ B.

Since A(Ck) ⊂ Ck+2, we deduce tr(A) = 0. Next, consider the filtration Ceven ⊃
ker ∂ ⊃ Im ∂ ⊃ 0. Observe that BCeven ⊂ Im ∂ and B acts trivially on ker ∂ . This
shows that trB = 0 and completes the proof of the proposition. �


Definition 1.4. The quantity T(C, c) is called the torsion of the acyclic complex C
with respect to the bases c. �


Observe that if c′ is another basis of C then using (1.2) we deduce

T(C, c′) = T(C, c)

n∏
i=0

[c′i/ci](−1)i . (1.4)

Convention. When the complex C is not acyclic we define its torsion to be 0.

We can alternatively define the torsion as follows. Choose finite, totally ordered
collections bi ⊂ Ci of such that the restriction of ∂ to bi is one-to-one for all i, b0 = ∅,
and

∂bi+1 ∪ bi is a basis of Ci . (†)

(This condition uses the acyclicity of C.) Now set c := ⊕ici , and define the torsion
of C with respect to the bases ci by

T(C, [c]A) :=
n∏
i=0

[(∂bi+1)bi/ci](−1)i+1 ∈ K∗/ det(A). (1.5)

2The derivatives are understood in the formal sense, as linearizations.
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The relationship between these two definitions is very simple. Let us first introduce
a notation. If X is a basis of a vector space U , and u is a vector in U , then the
decomposition of u along this basis will be denoted by

u :=
∑
x∈X
〈u|x〉x.

Given collections bi as above we define a contraction η : C → C,

Ci � u =
∑
b∈bi+1

〈u|∂b〉∂b +
∑
b′∈bi

〈u|b′〉b′ 
→
∑
b∈bi+1

〈u|∂b〉b ∈ Ci+1.

We define c′i = ∂bi+1 ∪ bi . Then

T(C, c′) = det
(
∂ + η : (Ceven, c

′
even)→ (Codd, c

′
odd)
) = 1.

The equality (1.5) now follows by invoking the transition formula (1.4).
We present below another simple and effective way of performing concrete com-

putations.

Proposition 1.5([38, 110]).3 Suppose C is an acyclic complex of finite dimensional
K-vector spaces. Denote by � the length of C, fix a basis c of C and denote byDi the
matrix of the linear operator

∂ : Ci+1 → Ci

with respect to the chosen bases. Set

ni := dimK Ci, si := dimK ker(∂ : Ci → Ci−1).

Assume there exists a τ -chain, i.e. a collection{
(Si, D̃i); Si ⊂ 1, ni, si = |Si |, i = 0, 1, . . . , �− 1, D̃i : Kni+1−si+1 → Ksi

}
such that the matrix D̃i obtained from Di by deleting the columns belonging to Si+1
and the rows belonging to 1, ni \ Si is quadratic and nonsingular (see Figure 1.1).
Then

T(C, c) =
�−1∏
i=0

det(D̃i)
(−1)i+1+νi

,

where
νi :=

∣∣{(x, y) ∈ Z× Z; 1 ≤ x < y, x ∈ 1, ni \ Si, y ∈ Si
}∣∣.

3This result has a long history, going back to A. Cayley [12].
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Si+1

1, ni+1 \ Si+1
D̃i+1

ni+1 − si+1 = si

1, ni \ Si

Si

Figure 1.1. Visualizing a τ -chain.

Proof. Let
ci := {ci,1, . . . , ci,ni }.

Define
bi := {ci,j ; j �∈ Si}

where the above vectors are arranged in the increasing order given by j . The bases bi
satisfy the condition (†) and moreover,

[∂bi+1bi/ci] = (−1)νi det(D̃i). �


Example 1.6(Algebraic mapping torus, [33, 34]). A useful operation one can per-
form on chain complexes is the algebraic mapping torus construction, [33]. More
precisely, suppose (C, ∂) is a chain complex of K-vector spaces, c is a basis of C and

f : C → C

is a chain morphism, i.e. a degree zero map commuting with ∂ . The algebraic mapping
torus of C with respect to f is the chain complex

(T (f ), ∂f ), T (f )k := Ck ⊕ Ck−1,

∂f :
Ck
⊕
Ck−1

→
Ck−1
⊕
Ck−2

,

 u
v

 
→
 ∂ (1− f )

0 −∂

 ·
 u
v


The bases c define bases T (c) in T (f ), unique up to ordering. Assume det(1− f ) ∈
K∗. Then the map

η : T (f )k → T (f )k+1, η =
 0 0

(1− f )−1 0


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is an algebraic contraction, and the operator

∂ + η : T (f )odd = Codd ⊕ Ceven → T (f )even = Ceven ⊕ Codd

is given by

∂ + η =
 ∂ (1− f )

(1− f )−1 −∂


=
 ∂ (1− f )

(1− f )−1 0

 ·
 1 −∂(1− f )

0 1


We conclude

T
(
T (f ), T (c)

) = ±dets
(
(1− f ) : C → C

)−1 = ±ζ̂f (1) (1.6)

where the s-determinant dets and the s-zeta function ζ̂f (t) are discussed in §A.2. �


§1.2 The determinant line of a chain complex

We want to offer yet another interpretation for the torsion, in terms of determinant
lines, [18, 23, 38, 53]. This has the conceptual advantage that it deals in a coherent
way with the thorny issue of signs. Assume again that K is a field of characteristic
zero.

Definition 1.7. A weighted K-line is a pair (L,w), where w is an integer called the
weight, and L is a one-dimensional K-vector space L together with a linear action of
K∗ on L of the form

K∗ × L � (t, u) 
→ t ∗ u := tw · u ∈ L
An isomorphism of weighted lines (Li, wi), i = 0, 1, is a an isomorphism L0 → L1
which commutes with the K∗-action. �


Example 1.8. SupposeV isK-vector space of dimensiond. Then the one-dimensional
space �dV is naturally a weighted line of weight d. The pair (�dV, d) is called the
determinant line of V and is denoted by Det(V ). The trivial line equipped with the
weight w-action of K∗ will be denoted by (K, w). By definition Det(0) = (K, 0). �


We can define the tensor product of two weighted spaces (Li, wi), i = 0, 1

(L0, w0) ⊗̂ (L1, w1) = (L0 ⊗ L1, w0 + w1).
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The dual of a weighted line (L,w) is the weighted line

(L,w)−1 := (L∗,−w).

We can organize the collection of weighted lines as a category where

Hom((L0, w0), (L1, w1)) =
{

0 if w0 �= w1

Hom(L0, L1) if w0 = w1.

Remark 1.9 (Koszul’s sign conventions). We would like to discuss an ubiquitous but
quite subtle problem concerning signs. Suppose (Li, wi), i = 0, 1, are weighted lines.
The tensor products

U = L0 ⊗̂ L1 and V = L1 ⊗̂ L0

are not equal as sets but are isomorphic as vector spaces. We will identify them, but
not using the obvious isomorphism. We well use instead the Koszul transposition

ϒL0,L1 : U → V, �0 ⊗ �1 
→ (−1)w0w1�1 ⊗ �0.

Similarly, given a weighted line (L,w), we will identify the tensor product (L,w)−1⊗̂
(L,w) with Det(0) using in place of the obvious pairing, the Koszul contraction
TrL : (L,w)−1 ⊗̂ (L,w)→ Det(0) defined by

L⊗ L∗ � (u, u∗) 
→ u∗ u := (−1)w(w−1)/2〈u∗, u〉 ∈ K,

where 〈•, •〉 : L∗ × L→ K denotes the canonical pairing.
Note that (L−1)−1 �= L but we will identify them using the tautological map

ıL : L←→ (L−1)−1.

The identifications ϒL0,L1 , TrL and ıL are compatible in the sense that the diagram
below is commutative.

(L−1)−1 ⊗̂ L−1
L ⊗̂ L−1 L−1 ⊗̂ L

Det(0).

�ıL⊗1

�����
Tr
L−1

�ϒ
L,L−1

������ TrL

Finally note that L0 ⊗̂ (L1 ⊗̂ L2) �= (L0 ⊗̂ L1) ⊗̂ L2 but we will identify them via
the tautological isomorphism

L0 ⊗̂ (L1 ⊗̂ L2)→ (L0 ⊗̂ L1) ⊗̂ L2, �0 ⊗ (�1 ⊗ �2) 
→ (�0 ⊗ �1)⊗ �2.
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The tautological identification (L0 ⊗̂ L1)
−1 ı←→ L−1

0 ⊗̂ L−1
1 is compatible with the

above rules in the sense that the diagram below is commutative.

(L−1
0 ⊗̂L−1

1 )⊗̂(L0⊗̂L1)

(L0⊗̂L1)
−1⊗̂(L0⊗̂L1) (L−1

0 ⊗̂L0)⊗̂(L−1
1 ⊗̂L1)

Det(0) .

�������
ϒ
L
−1
1 ,L0

��������TrL0⊗̂L1

���
����ı⊗̂1

�������� TrL0 ⊗̂TrL1

To simplify the presentation we will use the following less accurate descriptions of
the above rules.

L0 ⊗̂L1 = (−1)w0w1L1 ⊗̂L1, L−1 ⊗̂L = (−1)w(w−1)/2 Det(0), (L−1)−1 = L
(L0 ⊗̂ L1) ⊗̂ L2 = L0 ⊗̂ (L1 ⊗̂ L2), (L0 ⊗̂ L1)

−1 = L−1
0 ⊗̂ L−1

1 .

Two weighted lines U , V are said to be equal up to permutation, and we write this
U =p V , if there exist weighted lines (Li, wi), i = 1, . . . , n and a permutation

ϕ : {1, . . . , n} → {1, . . . , n}
such that

U =
⊗̂n

i=1
Li, V =

⊗̂n

i=1
Lϕ(i).

We denote by ϒ = ϒϕ the composition of Koszul transpositions which maps U to V .
We can generalize the Koszul contraction to the following more general context.

Suppose for example that (Li, wi), i = 0, 1, 2, 3, are weighted lines. Then define

Tr : U := L1 ⊗̂ L∗0 ⊗̂ L2 ⊗̂ L0 ⊗̂ L3 → V := L1 ⊗̂ L2 ⊗̂ L3,

u1 ⊗̂ u∗0 ⊗̂ u2 ⊗̂ u0 ⊗̂ u3 
→ (−1)w0w2(u∗0 u0) · u0 ⊗̂ u2 ⊗̂ u3.

This contraction continues to be compatible with the Koszul transpositions in the
following sense. For any permutation ϕ of the five factors

L1, L∗0, L2, L0, L3

we get a new line ϒϕ(U) equipped as above with a trace

Tr : ϒϕ(U)→ V

and the diagram below is commutative

U ϒϕ(U)

V .

�ϒϕ

�
�
��

Tr
�

��� Tr

�
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Example 1.10. Suppose that Li , i = 0, 1 are weighted lines with the same weight w
and u ∈ L−1

0 ⊗̂L1 is a nontrivial element. Then u defines an element in Hom(L0, L1)

u0 
→ u u1.

If u = u∗0 ⊗̂ u1 then

u u0 = (−1)w(w+1)/2〈u∗0, u0〉u1. �

IfW∗ =⊕j∈ZWj is a finite dimensional Z-graded K-vector space then its deter-

minant line is the weighted line

Det(W) =
⊗̂

j∈Z
Det(W−j )(−1)j .

Its weight is the Euler characteristic

χ(W) =
∑
j∈Z

(−1)j dimWj .

For example, ifW = W0 ⊕W1 ⊕W2, then

Det(W) = Det(W2) ⊗̂ Det(W1)
−1 ⊗̂ Det(W0).

To perform numerical computations we need to work with richer objects, namely
based vector spaces and based weighted lines. All the tensorial operations on vector
spaces have a based counterpart. The dual of a based vector space (W,w) is the
based vector space (W ∗,w∗), where w∗ denotes the dual basis. The dual of a based
weighted line (L,w, δ) is the based weighted line (L,w, δ)−1 := (L∗,−w, δ∗)where
δ∗ denotes the basis of L∗ dual to δ,

〈δ∗, δ〉 = 1.

We can define the ordered tensor product of based weighted lines

(L0, w0, δ0) ⊗̂ (L1, w1, δ1) = (L0 ⊗̂ L1, w0 + w1, δ0 ∧ δ1).
To any based vector space (W,w) we can associate in a tautological fashion a based
weighted line (Det(W), dimW, det w). If

(W,w) =
⊕
n∈Z

(Wn,wn)

is a based graded vector space, the associated based determinant line is

(Det(W), χ(W), det w) =
⊗(

Det(W−n), dimW−n, det w−n
)(−1)n

.

Given two based weighted lines (Li, wi, δi), i = 0, 1, and a morphismf : (L0, w0)→
(L1, w1) we define its torsion to be the scalar 〈δ1|f |δ0〉 ∈ K uniquely determined by
the equality

f (δ0) = 〈δ1|f |δ0〉δ1.
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Example 1.11. Suppose W = ⊕n∈ZWn is a finite dimensional Z-graded K-vector
space, dn := dimKWn. Define

Det+(W) :=
⊗
n∈Z

Det(W−2n), Det−(W) :=
⊗
n∈Z

Det(W−2n−1),

Dets (W) = Det+(W) ⊗̂ Det−(W)−1 =p Det(W).

For example, ifW = W0 ⊕W1 ⊕W2 then

Dets(W) = Det(W2) ⊗̂ Det(W0) ⊗̂ Det(W1)
−1

= (−1)d0d1 Det(W) = (−1)d0d1 Det(W2)⊗ Det(W1)
−1 ⊗̂ Det(W0). �


We have the following important result.

Proposition 1.12. Suppose

0 → A
f→ C

g→ B → 0

is a short exact sequence of finite dimensional K-vector spaces. Then there exist
natural isomorphisms

Trf,g : Det(A) ⊗̂ Det(C)−1 ⊗̂ Det(B)→ Det(0),

and
detf,g : Det(A) ⊗̂ Det(B)→ Det(C).

Proof. Fix an isomorphismh : C → A⊕B such that the diagram below is commutative

0 A C B 0

0 A A⊕ B B 0.

� �f �g �

�

�
1A

� �

�
h

��

�
1B

�
We obtain an isomorphism

Det(A) ⊗̂ (Det(A) ⊗̂ Det(B)
)−1 ⊗̂ Det(B)

[f⊗g−1]−→ Det(A) ⊗̂ Det(C)−1 ⊗̂ Det(B)

which is independent of the choice h. Define Trf,g as the composition

Trf,g = Tr ◦[f ⊗ g−1]−1,
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i.e.

Det(A) ⊗̂ (Det(A) ⊗̂ Det(B)
)−1 ⊗̂ Det(B)

Det(A) ⊗̂ Det(C)−1 ⊗̂ Det(B) Det(0),
�

[f⊗g−1]
���������

Tr

�
Trf,g

where the map

Tr : Det(A) ⊗̂ (Det(A) ⊗̂ Det(B)
)−1 ⊗̂ Det(B)→ Det(0)

is the Koszul contraction. By taking tensor products we obtain an isomorphism

Det(A) ⊗̂ Det(C)−1 ⊗̂ Det(B) ⊗̂ Det(C)→ Det(C),

and if we take the Koszul contraction on the left hand side we obtain another isomor-
phism

Det(A) ⊗̂ Det(B)
Tr←− Det(A) ⊗̂ Det(C)−1 ⊗̂ Det(B) ⊗̂ Det(C)

The definition of detf,g is now obvious. �


Proposition 1.13. Suppose (C, ∂) is a finite dimensional chain complex. Then there
exists a natural isomorphism

det∂ : Det
(
H∗(C, ∂)

)→ Det(C).

Proof. We have short exact sequences

0 → Ri+1(:= Im ∂i+1)
ı
↪→ Ki(:= ker ∂i)

π→ Hi(C, ∂)→ 0,

and
0 → Ki

ı
↪→ Ci

∂→ Ri → 0.

Using Proposition 1.12 we have isomorphisms

det(−1)i
ı,π : Det(Ri+1)

(−1)i ⊗̂ Det
(
Hi(C, ∂)

)(−1)i → Det(Ki)
(−1)i ,

and
det(−1)i

ı,∂ : Det(Ki)
(−1)i ⊗̂ Det(Ri)

(−1)i → Det(Ci)
(−1)i .

By taking tensor products we obtain isomorphisms

Ui := Det(Ri+1)
(−1)i ⊗̂ Det

(
Hi(C, ∂)

)(−1)i ⊗̂ Det(Ri)
(−1)i → Det(Ci)

(−1)i ,
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and

[det ∂] :
⊗̂∞

−n=−∞Un→ Det(C).

Taking the Koszul contractions of the pairs (R−1
i , Ri) in the left-hand-side we obtain

an isomorphism
Tr : L→ Det

(
H∗(C, ∂)

)
.

Then det∂ is the unique isomorphism which renders commutative the diagram below.

L

Det
(
H∗(C, ∂)

)
Det(C).

�����
[det ∂]�����

Tr

�
det∂ �


Definition 1.14. The inverse of the above isomorphism is known as the Euler isomor-
phism and will be denoted by EulC = Eul(C,∂). �


Example 1.15. Consider the elementary complex

0 ↪→ C1 = V 1V→ V = C0 → 0

Then the Euler isomorphism

Det(V )−1 ⊗̂ Det(V )→ Det(0)

coincides with the Koszul contraction. This simple fact lies at the core of the remark-
able compatibility between the Euler isomorphism and the various Koszul identifica-
tions, and keeps in check what Deligne called in [18] “le cauchemar de signes”. �


Example 1.16. Suppose that (C, c, ∂) is a finite dimensional acyclic complex. We
can choose as in the previous section linearly ordered finite collections bi ⊂ Ci such
that the restriction of ∂ to the span of bi is one-to-one, and the linearly ordered set
∂bi+1 ∪ bi is a basis of Ci . We then get a basis

δ := · · · ∧ (det ∂bi+1 ∧ det bi
)(−1)i ∧ (det ∂bi ∧ bi−1

)(−1)i−1 ∧ · · · ∈ Det(C).

The Euler isomorphism maps Det(C) to Det(0), and the basis δ to the canonical basis
(−1)ν of Det(0), where

ν =
n∑
i=1

|bi |(|bi | + (−1)i)

2
.

�
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Exercise 1.2.Prove that the isomorphism detf,g constructed in the above proposition
has the following compatibility properties.

(a) Consider the elementary acyclic complex

0 ↪→ 0 = C2
ι
↪→ K = C1

π
� K = C0 → 0.

Then detι,π is the tautological isomorphism Det(K)→ Det(K).

(b) Consider the commutative diagram

0 A0 C0 B0 0

0 A0 C1 B1 0

� � �f0

�
α

�
γ

��g0

�
β

�

� � �f1 ��g1 �
in which the vertical arrows are isomorphisms. Then the diagram below is commutative

Det(A0) ⊗̂ Det(B0) Det(C0)

Det(A1) ⊗̂ Det(B1) Det(C1).

�detf0,g0

�
det α⊗det β

�
det γ

�detf1,g1 �


Exercise 1.3.Show that for any short exact sequence of vector spaces

0 → A
α→ B

β→ C → 0,

and for every s, t ∈ K∗ we have

detsα,tβ = sdimAt− dimCdetα,β . �


Exercise 1.4.Show that for every t ∈ K∗ we have

Eul(C,t∂) = tζEul(C,∂), ζ =
∑
n∈Z

(−1)nn
(
dimCn − dimHn(C)

)
.

�


Suppose now that (C, c, ∂) is a based acyclic complex. Det(C) is a based weighted
line with basis det c. Since

Det(H∗(C, ∂)) = Det(0).

we deduce that Det(H∗(C, ∂)) has a natural basis ,1.
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Proposition 1.17.
T(C, c) = (−1)ν

〈
1
∣∣EulC

∣∣ det c
〉
.

where ν is defined as in Example 1.16.

Exercise 1.5.Prove the above equality. �


WhenK = Rwe can be even more explicit. More precisely, fix Euclidean metrics
on each of Ci . Then, as explained in §A.1, we can explicitly write down a generalized
contraction (Definition A.7), i.e. a degree one map

η : Ck → Ck+1

such that η2 = 0 andP = ∂η+η∂ = (∂+η)2 is a projector onto a perfect subcomplex
with the same homology as C. More precisely, we can choose η of the form

η = (ii∗ +�)−1∂∗

where� = (∂+∂∗)2, and i is the natural inclusion i : ker�→ C. The formal Hodge
theorem shows that ker� ∼= H∗(C). Consider the linear operator

ker�odd ⊕ Ceven → ker�even ⊕ Codd,

[
kodd
ceven

]

→
[

0 i∗even
iodd ∂ + η

]
·
[
kodd
ceven

]
.

We thus get an isomorphism

Det ker�odd ⊗̂ Det(Ceven)→ Det ker�even ⊗̂ Det(Codd)

This yields the isomorphisms

Det ker�odd ⊗̂ Dets (C)→ Det ker�even,

and

I : Dets (C)→ Det(ker�odd)
−1 ⊗̂ Det ker�even → Dets

(
H∗(C)

)
.

Up to a permutation, this is the Euler isomorphism. More precisely, we have a com-
mutative diagram

Dets (C) Dets
(
H∗(C)

)

Det(C) Det
(
H∗(C)

)
.

�I

�
ϒ

�
ϒ

�EulC
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§1.3 Basic properties of the torsion

The torsion behaves nicely with respect to the basic operations on chain complexes.
Consider first a short exact sequence of chain complexes

0 → (A, ∂A)
f→ (C, ∂C)

g→ (B, ∂B)→ 0.

Using Proposition 1.12 we obtain canonical isomorphisms

detfn,gn ∈ Det(An) ⊗̂ Det(Bn)→ Det(Cn),

and thus an isomorphism

detf,g :
⊗̂∞

n=−∞
(
Det(An) ⊗̂ Det(Bn)

)(−1)n → Det(C).

Now observe that⊗̂∞
−n=−∞

(
Det(An) ⊗̂ Det(Bn)

)(−1)n =p Det(A) ⊗̂ Det(B).

We get an isomorphism

detf,g : Det(A) ⊗̂ Det(B)→ Det(C)

compatible with the Koszul permutation identifying the two weighted lines,

Det(A) ⊗̂ Det(B),
⊗̂∞

−n=−∞
(
Det(An) ⊗̂ Det(Bn)

)(−1)n
.

On the other hand, we have a long exact sequence

· · · ∂→ Hq(A)
f∗→ Hq(C)

g∗→ Hq(B)
∂→ Hq−1(A)→ · · · .

We can regard this sequence as an acyclic complex which we denote by H(A,B,C).
The Euler isomorphism of this acyclic complex induces an isomorphism

EulH(A,B,C) : Det(H(A,B,C))→ Det(0).

Taking the tensor product of Det(H(A,B,C)) with Det(H∗(C)) and then applying
the Koszul contraction to the pair

Det(H∗(C))−1, Det(H∗(C))

we obtain an isomorphism

H(detf,g) : Det(H∗(A)) ⊗̂ Det(H∗(B))→ Det(H∗(C)).
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Proposition 1.18. The diagram below is commutative.

Det(A) ⊗̂ Det(B) Det(C)

Det
(
H∗(A)

) ⊗̂ Det
(
H∗(B)

)
Det
(
H∗(C)

)
.

�detf,g

�
EulA⊗EulB

�
EulC

�H(detf,g)

(1.7)

To better understand the meaning of the above result suppose we fix bases a, b, c

of A, B and respectively C, and bases [a], [b], [c] of H∗(A), H∗(B) and respectively
H∗(C). We assume that

c = f (a) ∪ b′, g(b′) = b.

We can now identify EulA, EulB , EulC with scalars in K∗. H(detf,g) can also be
identified with a scalar, the torsion of the acyclic complex H(A,B,C). Then (1.7)
implies

EulC ·T−1
H(A,B,C) = ±EulA ·EulB . (1.8)

Exercise 1.6.Prove (1.7) and (1.8). �


The above result implies immediately that the torsion is multiplicative with respect
to direct sums. More precisely, we have the following elementary, but extremely
versatile result.

Theorem 1.19. Consider a short exact sequence of, based acyclic complexes of K-
vector spaces

0 → (A, a)
f→ (C, c)

g→ (B, b)→ 0,

such that
c = f (a) ∪ b′, g(b′) = b.

Then H(detf,g) = 1, 〈
det c|detf,g| det a ⊗̂ det b

〉 = ±1,

and 〈
1|EulA | det a

〉 · 〈1|EulB | det b
〉 = 〈1|EulC | det c

〉 · 〈det c|detf,g|a ⊗̂ b
〉
.

In particular,
T(C, c) = ±T(A, a) · T(B, b).
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For any chain complex (C, ∂) and any k ∈ Z we denote by (C[k], ∂) the degree
shifted complex defined by

C[k]i = Ci+k, ∀i ∈ Z.
Observe that

Det(C[k]) =p Det(C)(−1)k ,

and we have a commutative diagram

Det(C[k]) (
Det(C)

)(−1)k

Det
(
H∗+k(C)

) (
DetH∗(C)

)(−1)k
.

�Koszul

�
EulC[k]

�
Eul (−1)k

C

�Koszul

Given a chain complex

(C, ∂) =
⊕
j∈Z

(Cj , ∂j )

of K-vector spaces we can form its dual C− defined by

C−j := C∗−j := Hom(C−j ,K),

and whose boundary maps are the duals of the boundary maps of C. We have a
commutative diagram

Det(C−) ⊗̂ Det(C) Det
(
H∗(C−1)

) ⊗̂ Det
(
H∗(C)

)
Det(0).

�������Tr

�EulC− ⊗̂EulC

������ Tr

In particular, if C is acyclic, and c is a basis, then

T(C, c) · T(C−, c−) = ±1, (1.9)

where c−n = c∗−n. Suppose now that the field K is equipped with an involutive
automorphism

ε : K→ K.

Example 1.20. IfK = C we can take ε to be the complex conjugation. IfK = Q(t),
the field of rational functions in one variable, then the correspondence t 
→ t−1 induces
such an involution. �
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The ε-conjugate of a K-vector space V is the vector space V̄ = V̄ ε which coincides
with V as an Abelian group while the scalar multiplication is given by

K× V � (λ, v) 
→ ε(λ)v.

We denote by ε = εV : V → V̄ ε the tautological bijection. A linear map A : U → V

tautologically induces a linear map Āε : Ū ε → V̄ ε.
An ε-pairing between the K-vector spaces U , V is a bilinear map

〈•, •〉 : U × V̄ ε → K.

Observe that such a pairing induces a K-linear map

T : V̄ ε → U∗, v 
→ 〈•, v〉.

The K-pairing is called perfect (or a duality) if the induced K-linear map

T : V̄ ε → U∗

is an isomorphism. If U , V happen to be Z2-graded

U ∼= U+ ⊕ U−, V = V+ ⊕ V−
then the duality is called supersymmetric if the operator T is supersymmetric, i.e. it
is either purely odd, T (V̄ ε±) = U∗∓, or purely even, T (V̄ ε±) = U∗±. Correspondingly,
a supersymmetric duality can be even or odd. We will denote by ν the parity of a
supersymmetric duality.

Consider the length n chain complexes of C = ⊕ni=0Ci and D = ⊕nj=0Dj of
K-vector spaces with ambiguities A. A chain complex pairing is a pairing

〈•, •〉 : C × D̄ε → K

such that the induced map T is a degree zero morphism between the chain complexes

T : D̄ε → C−[n].

Observe that such pairings are supersymmetric with respect to the naturalZ2-gradings
on the chain complexes. The parity of the pairing is the same as the parity of n- the
length of the chain complexes. A pairing is called perfect if the induced morphism is
an isomorphism. We have the following immediate result.

Proposition 1.21(Abstract duality theorem). Suppose

〈•, •〉 : C × D̄ε → K
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is a perfect pairing of acyclic complexes of length n. Then the following diagram is
commutative:

Det(D) Det(D̄
ε
) Det(C−)(−1)n

Det(H∗(D)) Det(H∗(D̄
ε
)) Det(H∗(C−))(−1)n .

�
EulD

�det ε �det T

�
Eul (−1)n

C−

�det ε∗ �det T∗

In particular, if C is acyclic and c is a basis then the equality (1.9) implies

ε
(
T(D, [d])) = T(D̄

ε
, [d̄]) = ±T(C, [c])(−1)n+1

,

where d = εT −1(c−).

§1.4 Some generalizations

The notion of torsion can be defined in a much more general context than the one
discussed above. We refer the reader to [19, 72] for a more in depth study. We will
need only a mild generalization of the ideas developed so far.

Often, instead of complexes of vector spaces over a field K one encounters com-
plexes C of free modules over an integral domain R. Denote by K the quotient field
of R. An R-basis of C canonically induces a K-basis of C ⊗R K. The torsion of C
(with respect to some R-basis) is, by definition, the torsion of the complex C ⊗R K
with respect to the induced basis. There is no canonical choice ofR-basis and thus we
must consider any two of them equivalent. This ambiguity is encoded by the group
A = GL(C,R) of automorphisms of R-modules. This group acts transitively on the
set of R-bases and thus the torsion is well defined as an element of K/R×, where R×
denotes the multiplicative subgroup of invertible elements of R.

Suppose more generally that R is only a commutative ring with unit, and ϕ : R→
K is a nontrivial morphism from R to a field K. If C is a chain complex of free
R-modules, then we can form the complex of K-vector spaces

Cϕ = C ⊗ϕ K.
Then a R-basis of C defines a K-basis of Cϕ , and we define

T ϕ(C, •) := T(Cϕ, •).

Suppose R is a quasi-field, i.e. a commutative ring with 1 which decomposes as
a finite direct sum of fields of characteristic 0

R = ⊕mj=1Kj .
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Denote by ϕj the natural projection R → Kj . Suppose C is a chain complex of free,
R-modules. A R-basis c of C induces a Kj -basis of Cϕj and as above we obtain a
torsion

T ϕj (C, [c]A) ∈ K∗j / det A ∪ {0}.
The direct sum

m⊕
j=1

T ϕj (C, [c]A) ∈
(⊕jKj )/ det A

is an element in R/ det A – the space of orbits of the determinant action of A on R.
We can further extend the class of coefficient rings to include the quasi-integral

domains, i.e. the commutative ringsR with 1 such that the associated ring of fractions
Q(R) (i.e. the localization with respect to the prime ideal of zero divisors) is a quasi-
field

Q(R) = ⊕jKj .
Denote by ϕj : R → Kj the natural morphism. If C is a chain complex of free,
R-modules then, by definition, its torsion is the direct sum

T(C, •) :=
⊕
j

T ϕj (C, •) ∈ Q(R)/ det A.

Let us observe the following simple fact.

Proposition 1.22. Suppose R is a quasi-integral domain of characteristic zero, K is
a field of characteristic zero and ϕ : R→ K is a nontrivial morphism. If C is a chain
complex of free R-modules then

ϕ
(
T(C, •)

) = T ϕ(C, •).

§1.5 Abelian group algebras

In this section we want to describe a few special features of the group algebras of
finitely generated Abelian groups since they will play a central role in topological
applications.

Suppose H is a finitely generated Abelian group. It can be non-canonically de-
composed as

H = FH ⊕ Tors(H),

where FH denotes the free part of H , FH ∼= H/Tors(H). Denote by Q(H) the ring
of fractions of the group algebra Z[H ].

Proposition 1.23. Z[H ] is a quasi-integral domain of characteristic zero.
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Proof. Let us first consider the two extremes, Tors(H) = 0, or FH = 0.

• If Tors(H) = 0 thenH = FH , and if rankH = n, thenQ(H) is the field of rational
functions in n variables with rational coefficients.

• If FH = 0, so thatH = Tors(H), thenQ[H ] is a semisimple, commutative algebra,
and thus decomposes as a sum of fields; see [55]. In particular, Q[H ] = Q(H).

In general we have

Q[H ] = Q[Tors(H)][FH ] ∼=
⊕
i

Ki[FH ],

where the summands Ki are the fields entering into the direct sum decomposition of
Q[Tors(H)]. Thus,

Q(Z[H ]) = Q(H) =
⊕
i

Ki (FH ).

Each of the above summands is a field of rational functions in n = rank(H) variables.
�


Example 1.24. If H is finite cyclic, then the fields in the decomposition of Q[H ] are
all cyclotomic fields. We illustrate this on the special case when H is a finite cyclic
group of order n > 1,

H ={1, x, . . . , xn−1}.
Then

Q[H ] ∼= Q[t]/(tn − 1).

The decomposition in Q[t] of tn − 1 into irreducible factors is (see [55])

tn − 1 =
∏
d|n
�d(t),

where �m denotes the m-th cyclotomic polynomial

�m(t) =
∏

(r,m)=1

(t − ζ r ), ζ = ζm := exp(2π i/m).

Thus Q[t]/(tn − 1) decomposes as a direct sum of cyclotomic fields

Q[H ] ∼= Q[t]/(tn − 1) ∼=
⊕
d|n
Q[t]/(�d(t)) =:

⊕
d|n

Fd .
�


Remark 1.25. Since every finite Abelian groupH is a direct sum of cyclic groups we
deduce inductively that all the fields Kj in the decomposition

Q[H ] ∼=
⊕
j

Kj
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are isomorphic to subfields of C. The natural projections πj : Q[H ] → Kj ⊂ C
induce group morphisms

πj : H → C∗.

These are known as the characters ofH and determine the harmonic (Fourier) analysis
on H . An element f ∈ Q[H ] can be regarded as a function

f : H → Q.

Its components πj (f ) are determined by the Fourier transform of f . We refer to §1.6
for more details. �


The natural morphism Q(H)→ Q(FH ) induced by the projection

π : H → FH = H/Tors(H)

is called the augmentation map, and we will denote it by aug. It has a natural right
inverse

aug−1 : Q(FH )→ Q(H),

FH � f 
→ 1

νH

∑
π(h)=f

h, (νH := |π−1(0)| = |Tors(H)|).

Set I := aug−1(1). Observe that

aug−1(aug(q)
) = qI, ∀q ∈ Q(H).

The ideal ofQ(H) generated by I will be denoted by (I). It is the kernel of aug. The
above identity shows that, as a ring, the ideal (I) is isomorphic to the field Q(FH ).
From the identity I2 = I we deduce the following consequence.

Corollary 1.26. The map

Q(H)→ ker aug, x 
→ x − xI
is a surjective morphism of algebra. Moreover the element

1̂ := 1− I ∈ ker aug

is the identity element in the subalgebra ker aug.

Following Turaev [111], we define a family of subrings Nk(H) ⊂ Q(H), k =
0, 1, 2, . . . as follows.
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A. If rank(H) ≥ 1 then

N0(H) := Z[H ],
Nk(H) = {q ∈ Q(H); (1− h)q ∈ Nk−1(H),∀h ∈ H }.

Roughly speaking, Nk(G) consists of all solutions in x ∈ Q(G) of the linear system

(1− g)kx ∈ Z[G], ∀g ∈ G.
B. If rank(H) = 0 then

Nk(H) = ker aug ⊂ Q(H), ∀k = 0, 1, . . . .

Observe that
N0(H) ⊂ N1(H) ⊂ · · · ⊂ Nk(H) ⊂ · · · .

We set
N(H) = lim

k→∞Nk(H),

S := νHI =
∑

u∈Tors(H)

u ∈ Z[H ], νH = |Tors(H)|.

Proposition 1.27([111]). Let H be a finitely generated Abelian group of rank ≥ 1.

(a) If rank(H) ≥ 2 then Nk(H) = Z[H ], ∀k = 0, 1, 2, . . . .

(b) Suppose rank(H) = 1. Denote by t a generator of F := H/Tors(H) and set
T = aug−1(t). Then

x ∈ Nk(H) = Z[H ] +SZ[H ](1− T )−k.

Proof. (a) It suffices to prove N1(H) = N0(H). The equality is obvious if H is
torsion free. Suppose now Tors(H) �= 0. Any x ∈ Q(H) decomposes uniquely as

x := x̄ + x⊥

where
x̄ := Ix = aug−1aug(x), x⊥ := (1− I)x.

Suppose x ∈ Q(H) is such that

(1− h)x ∈ Z[H ], ∀h ∈ H.
Observe that aug(x̄) ∈ N1(H/Tors(H)) = Z[H/Tors(H)] so that

x̄ = aug−1aug(x̄) ∈ IZ[H ].
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By summing over h ∈ Tors(H) we deduce

νHx
⊥ = νH (1− I)x =

∑
h∈Tors(H)

(1− h)x ∈ Z[H ].

We conclude that x ∈ Q[H ] and thus we can write

x =
∑
h∈S
xhh,

where S ⊂ H is a finite set and xh ∈ Q. Since H is infinite we can find h0 ∈ H such
that S is disjoint from h0 + S. Then

Z[H ] � (1− h0)x =
∑
h∈S
xh(h− h0h).

This shows xh ∈ Z.

(b) Again, the conclusion is obvious when H is torsion free. Set

N′
k(H) = Z[H ] + Z ·SZ[H ](1− T )−k.

We will first prove the equality
N1 = N′

1.

Next, using induction, we will establish the general identity

Nk = N′
k, k ≥ 2.

Pick τ ∈ H such that aug(τ ) = t ⇐⇒ T = Iτ . Since

(1− τ)I(1− T )−1 = I(1− T )(1− T )−1 = I

we deduce

I(1− T )−1 = I(1− τ)−1 ⇐⇒ S(1− T )−k = S(1− τ)−k, ∀k.
We can now prove that N′

k ⊂ Nk , ∀k ≥ 1. Indeed, if x ∈ N′
k , h ∈ Tors(H) and

m ∈ Z then
(1− hτm)S = (S− τmS) = S(1− T m),

so that
(1− hτm)x ∈ N′

k−1 = Nk−1.

To prove the reverse inclusion, consider x ∈ Nk(H). Then

aug(x) ∈ Nk
(
H/Tors(H)

)
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so that

x̄ = Ix = aug−1aug(x) ∈ IZ[τ ] + IZ[τ ](1− τ)−k = 1

νH
SZ[H ](1− τ)−k.

Summing the congruences (1− h)x ∈ Nk−1(H) over h ∈ Tors(H) we deduce

νHx
⊥ ∈ Nk−1(H) = Z[H ] +SZ[H ](1− T )−(k−1).

Thus

x ∈ 1

νH

(
Z[H ] +SZ[H ](1− T )−k)

and
(1− h)x ∈ Z[H ] +SZ[H ](1− τ)−(k−1), ∀h ∈ H.

We write
x⊥ = A, x̄ = SB(1− τ)−k.

We need to consider two cases.

A. k = 1. In this case

x⊥ = A ∈ 1

νH
Z[H ], x̄ = SB(1− τ)−1 ∈ 1

νH
SZ[H ](1− τ)−1,

and we can write

A =
∑
m∈Z

( ∑
u∈Tors(H)

am,uu
)
τm, B =

∑
m∈Z

( ∑
u∈Tors(H)

bm,uu
)
τm.

Set
b̄m =

∑
u

bm,u.

Then
SB = S

∑
m

b̄mτ
m.

Denote by αm,u (resp. βm) the image of am,u (resp. b̄m) in Q/Z. Observe that

νhβm = 0 = νHαm,u.
Since (1− u)S = 0, ∀u ∈ Tors(H) we deduce

(1− u)x = (1− u)A ∈ Z[H ], ∀u ∈ Tors(H) ⇐⇒ αm,v = αm,u, (1.10)

∀u, v ∈ Tors(H), ∀m. Denote by αm the common value of αm,u, u ∈ Tors(H) and
by km the integer 0 ≤ km < νH such that

km

νH
= αm in Q/Z.
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Define

K :=
∑
m

km

νH
τm ∈ 1

νH
SZ[H ].

The identities (1.10) can be rephrased in the following compact form,

A−SK ∈ Z[H ].
On the other hand, the identities

(1− τ)x ∈ Z ⇐⇒ αm+1 − αm + βm+1 = 0, ∀m
can now be rewritten

S(1− τ)K +SB ∈ SZ[H ]
so that

x = (A−SK)+S
(
B + (1− τ)K)(1− τ)−1 ∈ Z[H ] +SZ[H ](1− τ)−1 = N′

1.

B. k > 1. Set
S := {h ∈ H ; ahbh �= 0}.

Then if h0 ∈ H is such that S ∩ (h0 + S) = ∅ and we conclude as in part (a). �


The above proposition has the following immediate consequence.

Corollary 1.28. Suppose that H is a finitely generated Abelian group. Denote by
ı : H → N(H) the natural morphism. If P,Q ∈ N(H) then

P |Q ⇐⇒ P |Q(ı(h)− 1), ∀h ∈ H.

Example 1.29. Suppose H ∼= Z⊕G whereG is a finite Abelian group. Denote by t
the generator of Z. Then

T = It = 1

N
St =

(
1

N

∑
g∈G

g

)
t, N := |G|

The group algebra Q[H ] is isomorphic to the ring of Laurent polynomials

Q[H ] ∼= Q[G][t, t−1] ∼=
⊕

Ki[t, t−1].
Then

N[H ] = Z[H ] +SZ[T , T −1, (1− T )−1]. �


The correspondence H 
→ N(H) is functorial. More precisely we have the
following result due to V. Turaev.
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Proposition 1.30([111]). Every epimorphism

f : H1 → H2

induces a morphism of Q-algebras f� : N(H1) → N(H2) such that the diagram
below is commutative.

H1 H2

N(H1) N(H2).

�f

�
ı1

�
ı2

�f�

Proof. f� is defined as follows. Observe first that f induces a morphism

f∗ : Z[H1] → Z[H2] → N(H2).

If rank(H1) ≥ 2 then we set f� = f∗. If rank(H1) = 0 then f� denotes the restriction
of f∗ to ker aug ⊂ Q[H1].

When rank(H1) = 1 the definition is a bit more intricate. Denote by t a generator
of FH1 = H1/Tors(H1), choose τ ∈ H1 an element projecting to t and set T :=
aug−1(t). We claim that there exists an unique X = Xf ∈ N(H2) such that

Xf∗(τ −1) = Xf∗(T −1) = f∗(S1), Xf∗(h−1) = 0, ∀h ∈ Tors(H1). (1.11)

Uniqueness. If X,X′ are two solutions of (1.11) then

(X −X′)f∗(u− 1) = 0, ∀u ∈ H1.

Since f : H1 → H2 is onto we deduce from Corollary 1.28 that X −X′ = 0.

Existence. Any element u ∈ H decomposes uniquely as

u = hτk, h ∈ TH1 , k ∈ Z.
Then

f∗(S1)f∗(u− 1) = f∗(S1hτ −S1) = f∗(I1)f∗(τ k − 1).

Thus
f∗(τ − 1)|f∗(u− 1)f∗(S1), ∀u ∈ H1.

Since f : H1 → H2 is surjective we deduce from Corollary 1.28

f∗(τ − 1)|f∗(S1) in N(H2).

Thus, there exists X1 ∈ N(H2) such that

f∗(S1) = X1f∗(τ − 1).
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We then set
Xf := X1f∗(I1).

Finally, define f� = f∗ on Z[H ] and

f�(S1(T − 1)−1) := Xf . �


Remark 1.31. If H1
f1→ H2

f2→ H3 is are epimorphisms of Abelian groups then

(f2 ◦ f1)� = (f2)� ◦ (f1)�.

Thus the correspondence G 
→ N(G) defines a covariant functor from the category
of finitely generated Abelian groups with epimorphisms as arrows to the category of
commutativeQ-algebras. We refer to the next section for a more geometric description
of the morphism f� in terms of Fourier transform. �


Example 1.32. Suppose f is the natural projection Z→ Zn = Z/(nZ). Then

N(Z) ∼= Z[t, t−1, (1− t)−1], N(Zn) =
(

1− 1

n

n∑
j=1

sj
)
· Z[s], sn = 1.

Then f� is determined by

1 
→ 1̂= (1− I), t 
→ (1− I)s, I = s
(

1− 1

n

n∑
j=1

sj
)
.

Observe that
(t − 1) 
→ (s − 1)(1− I).

The inverse of (1− s) in the algebra ker aug with unit 1̂= 1− I is (see [81] or §1.6)

(1− s)−1 =
(

1̂
2
− d(s)

)
,

where

d(s) :=
n∑
k=1

((
k

n

))
sk,

and ((x)) is denotes Dedekind’s symbol

((x)) :=
{

0 x ∈ Z
x − #x$ − 1

2 x ∈ R \ Z.
(#x$ := the largest integer ≤ x.) �
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§1.6 Abelian harmonic analysis

When studying the torsion of a 3-manifold one is often lead to solving linear equations
of the form ax = b, where a, b belong to the group algebraC[G] of a finitely generated
Abelian group G. When G has torsion elements the ring Z[G] has zero divisors and
thus the above equation may have more than one solution. Finding the annihilator of a
given elementa ∈ C[H ] is never an easy job due to the complexity of the multiplication
operation in this algebra. This complexity is only artificial and magically disappears if
we perform a simple but extremely versatile trick, namely taking the Fourier transform
of the above equation. In the Fourier picture the above equation simplifies dramatically
to the point that it can be solved explicitly.

The versatility of the Fourier transform can be very clearly seen in the very simple
description of the rings N(G) and morphisms f� introduced in the previous section.
These rings are essentially described in terms of linear equations in the ring Z[G].
More precisely, N(G) is obtained by adjoining to Z[G] certain solutions x ∈ Q(G)
of the family of linear equations linear equations

(1− g)k · x = f, g ∈ G, f ∈ Z[G].
The Fourier transform fits these equations like a glove. The goal of the present section
is to explain in detail these claims.

Suppose G is a finitely generated Abelian group. We denote by µG the counting
measure on G, µG({x}) = 1, ∀x ∈ G. The group algebra C[G] can be thought of as
the vector space C0(G,C) of continuous, compactly supported functions f : G→ C
equipped with the convolution product. More precisely, if δg : G → C denotes the
Dirac function concentrated at g ∈ G,

δg(x) =
{

1 if x = g
0 if x �= g,

then the correspondence C[G] → C0(G;C) is given by

C[G] ∈ A :=
∑
g∈G

agg 
→ A(•) :=
∑
g∈G

agδg(•) ∈ C0(G,C).

The convolution product on C0(G,C) is given by

(f0 ∗ f1)(g) =
∑
h∈G

f (g − h)g(h).

We denote by Ĝ := Hom(G,U(1)) the Pontryagin dual ofG, i.e. the group of charac-
ters. Ĝ is a locally compact topological group, and we denote by µ̂G the Haar measure
on Ĝ normalized so that µ̂G is the counting measure if Ĝ is finite and µ̂G = dθ if
Ĝ = S1. The Fourier transform is a linear isomorphism

F : L2(G,µG)→ L2(Ĝ, µ̂G)
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defined by

f̂ (χ) := 〈f, χ〉 =
∫
G

f (g)χ(g) dµG(g), ∀χ ∈ Ĝ.
Its inverse is described by the Fourier inversion formula

f (g) = 1

µ̂G(Ĝ)

∫
Ĝ

f̂ (χ)χ(g)dµ̂G(χ), ∀f ∈ C0(G,C).

If f ∈ C0(G,C) then f̂ ∈ C(Ĝ,C) and

f̂ ∗ g(χ) = f̂ (χ) · ĝ(χ), ∀f, g ∈ C0(G,C), χ ∈ Ĝ.
The Fourier transform produces a morphism of C-algebras(

C[G],+, ∗)→ (C(Ĝ,C),+, ·), A 
→ Â,

where “ · ” denotes the pointwise multiplications of functions.

Remark 1.33. In applications it is convenient to consider the holomorphic counterpart
of the Pontryagin dual. Thus, if G is a finitely generated Abelian group, we set

G̃ := Hom(G,C∗).

We will refer to the elements of G̃ as holomorphic characters. Note that Ĝ ⊂ G̃. G̃
is an union of complex tori of dimension rank(G). Given a function f ∈ C[G] we
define its complex Fourier transform by

f̂ (χ) =
∑
g∈G

f (g)χ−1(g), ∀χ ∈ G̃.

Observe that the restriction of the complex Fourier transform to Ĝ is the usual Fourier
transform. �


We want to discuss in detail a few concrete situations relevant in topological
problems.

1. rank(G) = 0. We denote the group operation multiplicatively. For any χ ∈ Ĝ we
denote by Rχ ⊂ S1 the range of χ . Rχ is a finite cyclic group. The integration along
the fibers of χ : G→ Rχ produces a linear map

χ∗ : C[G] → C[Rχ ], f 
→ f χ .

More explicitly,

f χ(α) =
∑
χ(g)=α

f (g), ∀f : G→ Q, α ∈ Rχ.
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When χ is the trivial character 1 then

f 1 = aug(f ).

Observe the following identities

f̂ (χ) =
∑
α∈Rχ

f χ(α) · ᾱ, f̂ (1) = aug(f ),

N(G) = {f ∈ Q[G]; f̂ (1) = 0
}
.

We conclude that a function f : G→ C is completely determined by the functions

f χ : Rχ → C, ∀χ ∈ Ĝ.
In the special case f ∈ Q[G], the components of f with respect to the decomposition
ofQ[G] as a direct sum of fields are all amongst the elements of f χ ∈ Q[Rχ ]. Thus, in
order to understand the components of f we need to understand the Fourier transform
of f .

The Fourier transform of δ1 is the constant function 1 on Ĝ. The Fourier transform
of the idempotent I (with respect to the convolution product) is the Dirac function

δ1 : Ĝ→ C

concentrated at the origin. This is an idempotent with respect to the pointwise multi-
plication. In particular, the function 1− Î can be interpreted as the identity element
on the algebra of functions f : Ĝ \ {1} → C.

We have seen that if φ : G0 → G1 is an epimorphism of finite Abelian groups
there is an induced morphism

φ� : N(G0)→ N(G1).

We want to present a description of this morphism using Fourier analysis.
Let Ĝ∗i = Ĝi \ {1}, i = 0, 1. The Fourier transform maps N(Gi) isomorphically

onto a subring N(Ĝi) of the ring of functions Ĝi → C consisting of functions vanish-
ing at 1. We will identify this subring with a space of continuous functions Ĝ∗i → C.
The epimorphism φ induces a monomorphism φ̂ : G1 → G0 and thus a pull-back map

φ̂∗ : C(Ĝ∗0,C)→ C(Ĝ∗1,C).

Proposition 1.34. The following diagram is commutative.

N(G0) C(Ĝ∗0,C)

N(G1) C(Ĝ∗1,C).

�F

�
φ�

�
φ̂∗

�F
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Proof. The morphism φ� is the restriction of the integration-along-fibers map

φ∗ : C[G0] → C[G1]
to the augmentation ideal, ker augG0

. Since

augG1
(φ∗(f )) = augG0

(f ), ∀f ∈ C[G0]
we deduce that φ∗(ker augG0

) ⊂ ker augG1
. The proposition follows from the more

general statement
φ̂∗ ◦ F = F ◦ φ∗.

Indeed for every χ ∈ Ĝ1 and f ∈ C[G0] we have

φ̂∗(f̂ )(χ) = f̂ (φ̂(χ)) = 〈f, φ̂(χ)〉 =
∑
g∈G0

f (g)φ̂(χ)(g) =
∑
g∈G0

f (g)χ(φ(g))

=
∑
g1∈G1

( ∑
φ(g)=g1

f (g))
)
χ̄(g1) =

∑
g1∈G1

φ∗(f )(g1)χ̄(g1) = F ◦ φ∗(f ).
�


Example 1.35. Suppose that the finite Abelian groupG is equipped with a nondegen-
erate, symmetric, pairing

q : G×G→ S1, (u, v) 
→ q(u, v) =: u · v.
In this case we have a natural isomorphism

G→ Ĝ, g 
→ g� = q(g, •).

Observe that

Rg := Rg� ∼= G/g⊥, g⊥ := {u ∈ G; q(g, u) = 1 ∈ S1}.
The element f g := f g� ∈ Q[Rg] can be alternatively described by

f g(α) =
∑
u·g=α

f (u).

�


2. rank(G) = 1. In this case there exist isomorphismsG = Z⊕H whereH is finite.
Then

Ĝ ∼= S1 × Ĥ .
More invariantly, H is the torsion subgroup of G, and if ı : H → G denotes the
inclusion map, the subgroup S1 ⊂ Ĝ can be identified with the kernel of the dual map
ı̂ : Ĝ→ Ĥ . This kernel is the component of 1 ∈ Ĝ.
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To define the Fourier transform we need to have a way of identifying the elements
in N(G) with functions on G. Such an identification requires a bit of additional
data. Fix an orientation o on G⊗ R. This is equivalent to choosing an isomorphism
G/Tors(G) ∼= Z. This induces an epimorphism

deg = dego : G→ Z.

Fix t ∈ G such that deg t = 1. This defines a splittingG ∼= Z⊕H , and an identification

N(G) ∼= Z[G,S(1− t)−1].
Using the formal equality

1

1− t =
∑
n≥0

tn

we can identify the element S(1− t)−1 with the function

ωo : G→ Z, ωo(g) =
{

1 if dego(g) ≥ 0

0 if dego(g) < 0.

More generally, we can identify S · (1− t)−k with the function

G � g 
→ ωo(g) ·
( −k

deg+o g

)
∈ Z,

where deg+o = max(dego, 0). Define the Novikov ring �o(G)

�o(G) := {f : G→ Z; ∃C ∈ R such that f (g) = 0 if deg0(g) < C}.
The multiplication in this ring is again the convolution product which is well defined
due to the support constraint on the functions in this ring. We have an injective
morphism

N(G) ↪→ �o(G), f 
→ fo,

uniquely determined by the requirements

Z[G] �
∑
g∈G

Pgg = P 
→ Po ∈ �o(G), Po(g) = Pg,

and
S(1− t)−k 
→ So ∗ ωo ∗ · · · ∗ ωo︸ ︷︷ ︸

k

.

This morphism depends on o, but not on the choice of t such that dego t = 1. We
denote by No(G) the image of this morphism. Note that a function f ∈ No(G) need
not have a compact support. In fact, the function ωo is not even L1 with respect to the
discrete measure on G.
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The characters of G have the form

χ := eθ · ϕ, ϕ ∈ Ĥ , eθ (tn) := einθ , 0 ≤ θ < 2π.

If f ∈ L1(G,µG) then

f̂ (χ) =
∑
g∈G

f (g)χ̄(g) =
∑
n∈Z

(∑
h∈H

f (n, h)ϕ̄(h)
)
e−inθ .

In particular, if δh : Z⊕H → C denotes the Dirac function concentrated at (0, h) ∈ G
then

δ̂t (χ) = χ̄(t), δ̂h(χ) = χ̄(h), Î(χ) = 1

|H |
∑
h∈H

χ̄(h).

Î is an idempotent in the algebra of continuous functions Ĝ → C. One can check
immediately that Î is the characteristic function the identity component of Ĝ. If we
set T = I ∗ t then

T̂ (χ) = δ̂t (χ)Î(χ).
T̂ is a function on Ĝ supported on the identity component S1 ↪→ Ĝ where it is equal
to

T (θ) = e−iθ .

The Fourier transform extends in a natural way to the ring No(G), but its range will
contain distributions on Ĝ of a special kind. We begin with the simplest situation.

A. Tors G = 0. Fix an orientation o on G ⊗ R. In this case there exists an unique
t = to ∈ G such that dego t = 1. We also have an identification

C∗ o→ G̃ := Hom(G,C∗), z 
→ χz, χz(t) = z.
Denote by M(C∗) the field of meromorphic functions on C∗. To each function f ∈
C0(G,C) ∼= C[G] we associate its complex Fourier transform f̃ : G̃→ C which can
be identified with a Laurent polynomial in M(C∗),

f̃ (χz)←→
∑
n∈Z

f (tn)z−n, χz(t) = z.

Observe f̂ = f̃ ||z|=1. The Fourier transform F : C0(G,C)→ C(S1,C) is completely
determined by algebra morphism

Fo : C[G] � f 
→ f̃ ∈M(C∗).

To understand the obstacle we face when trying to extend the Fourier transform to No

we only need to look at a simple example. Observe that

u(χ) := (̃1− t) = 1− z−1 ∈M(C∗).
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This has an inverse in the ring M(C∗). However, its restriction to the circle |z| = 1 is
not invertible in the ringC(S1,C) because u(1) = 0. This degeneracy can be detected
working directly with the Fourier transform.

We have identified (1 − t)−1 with the function ωo which does not have compact
support, and it does not belong to L1(Z). Its Fourier transform is no longer a function
on S1, it is a distribution ω̂o described by

〈ω̂o, ϕ〉 =
∑
n≥0

∫ 2π

0
ϕ(θ)e−inθdθ, ∀ϕ ∈ C∞0 (S1,C).

The above sum is convergent because∣∣∣∫ 2π

0
ϕ(θ)e−inθdθ

∣∣∣ = O(n−k), as n→∞, ∀k > 0.

Observe that
〈ω̂o, e

imθ 〉 = 2πω(tm).

However, this distribution can be suitably identified with the boundary value4 of the
holomorphic function 1/u(z) = (1 − z−1)−1 = z

z−1 ∈ H . More precisely, we have
the following result. (For more information on this type of distributions we refer to
[37].)

Proposition 1.36.

〈ωo, ϕ〉 = lim
r↘1

∫ 2π

0

ϕ(θ)

u(reiθ )
dθ, ∀ϕ ∈ C∞0 (S1,C)

so that
ω̂o = lim

r↘1
(1/u)||z|=r

in the sense of distributions. Moreover (1−e−iθ ) ·ω̂o = 1 in the sense of distributions,
i.e. ω̂ is indeed a distributional inverse of the smooth function u(ζ ) = (1 − ζ−1),
|ζ | = 1.

Proof. For simplicity, we write ω instead of ωo since we will be using the same
orientation throughout the proof below. Observe that if ϕ is constant, ϕ ≡ c, then

〈ω̂, c〉 = 2πc = lim
r↘1

∫ 2π

0
cu(reiθ )dθ.

Thus, it suffices to prove that

〈ω̂, ϕ〉 = lim
r↘1

∫ 2π

0
u(reiθ )ϕ(θ)dθ, ∀ϕ : S1 → C, ϕ(1) = 0.

4We are indebted to Brian Hall for this observation



§1.6 Abelian harmonic analysis 37

Observe that

Kr(ζ ) := u(rζ )ϕ(ζ ) = rϕ(ζ )
r − ζ , |ζ | = 1.

Since ϕ(1) = 0 we deduce from the dominated convergence theorem that the series
of L1(S1) functions

∞∑
n=0

ϕ(ζ )ζ−n, |ζ | = 1.

converges in the L1-norm to

K0(ζ ) := ϕ(ζ )

1− ζ−1 , |ζ | = 1.

Thus

〈ω̂, ϕ〉 =
∫ 2π

0
K0(e

iθ )ϕ(θ)dθ

and we need to show that

lim
r↘1

∫ 2π

0

(
Kr(e

iθ )−K0(e
iθ )
)
ϕ(θ)dθ = 0.

This follows easily from the dominated convergence theorem.
To prove that ω̂ is the distributional inverse of u(ζ )we need to show that for every

smooth function ϕ : S1 → C we have the identity

〈ω̂, uϕ〉 =
∫ 2π

0
ϕ(eiθ )dθ.

Since u(1) = 0 the above arguments show that

〈ω̂, uϕ〉 =
∫ 2π

0
K0(e

iθ )u(eiθ )ϕ(eiθ ) =
∫ 2π

0
ϕ(eiθ )dθ

because K0(e
iθ )u(eiθ ) = 1. �


Every element f ∈ N(G) can be uniquely written as

f = P(t)

(1− t)k , P (t) ∈ Z[t, t−1].

Arguing as above we deduce that the Fourier transform of fo is the distribution f̂o ∈
D′(S1), with singular support concentrated at 1 ∈ S1 defined by

f̂o := lim|z|↘1

P(z−1)

(1− z−1)k
.
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Definition 1.37. The complex Fourier transform of a function f ∈ No(G) is by
definition the unique meromorphic function Fo(f ) onC∗ whose restriction to S1 \{1}
coincides with the Fourier transform f̂o of f . �


In view of the above discussion we deduce that

f̂o = lim|z|↘1
Fo(f ).

The complex Fourier transform maps the ring N(G) to a space of meromorphic func-
tions on G̃ via the composition

N(G)
o→ No(G)

Fo−→M(C∗) := meromorphic functions on C∗.

We denote by No(G̃) the image of N(G) via the complex Fourier transform Fo.
Observe that

No(G̃)
o∼= Z[z, z−1, (1− z)−1],

where z is the function χ 
→ χ(to). Similarly, we can defined the (real) Fourier
transform on N(G)

N(G) � f 
→ f̂o := lim
r↘1

Fo(f )||z|=r ∈ D′(S1)

where the limit is in the sense of distributions as in Proposition 1.36.
We want to describe the dependence of these construction on the choice of orien-

tation o. Denote by t± the unique element in G such that deg±o(t±) = 1. Set

u := (1− t+) = (1− t−1− ) ∈ N(G).

For every χ ∈ G̃ we set z± = χ(t±), so that z− = 1/z+.

Fo(1/uo)(χ) = 1

1− z−1+
= 1

1− z− = F−o(1/u−o)(χ).

This shows that the complex Fourier transform of 1/u is a meromorphic function on G̃,
independent of the orientation o. Thus the complex Fourier transform is a morphism

N(G)→M(G̃)

independent of the orientation. We denote its range by N(G̃).
The situation with the real Fourier transform is a bit more subtle. In this case the

range of the real Fourier transform consists of distributions on Ĝ. To be able to identify
the space of smooth functions on G̃ with a subspace5 of the space of distributions on
Ĝwe need to have an integration, i.e. an orientation on Ĝ. This is equivalent to fixing
an orientation o on G.

The following proposition summarizes the facts established so far.

5We do not want to get into a discussion about densities as in [42].
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Proposition 1.38. Suppose rank(G) = 1, Tors(G) = 0. Then an orientation o on
G⊗Rdefines isomorphismsG←→ Z, Ĝ←→ S1 ⊂ C∗, G̃←− C∗, andN(G)←→
No(G). The (real) Fourier transform on Z[G] ⊂ N0(G) extends to a map

N(G)→ No(G)→ D′(S1), f 
→ f̂o

whose range No(Ĝ) is a space of distributions on S1 with singular support concen-
trated at 1 ∈ S1 which are solutions of certain division problems.

The complex Fourier transform on Z[G] extends to a morphism of algebras
F : N(G)→M(G̃) independent of o such that

f̂o|S1\{1} = F(f )|S1\{1}.

We denote by N(G̃) the range of the complex Fourier transform.

SupposeG = Z, and o is the natural orientation. Denote byπ the natural projection
π : Z→ Zn. We know that it induces in a natural way a morphism

π� : N(Z)→ N(Zn).

We would like to give a very intuitive definition of this morphism using the Fourier
transform. Note that π induces an inclusion

p̂ : Ẑn→ Ẑ ∼= S1

The Fourier transform of N(Zn) is a ring N(Ẑn) of functions h on Ẑn such that
h(1) = 0. This can be naturally identified with the ring of functions on the subset
Ẑ∗n = Ẑn \ {1}. We can use p̂ to pullback the functions on S1 to functions on Ẑn, and
more generally, we can pullback to Ẑ∗n the distributions in N(Ẑ). We thus have a map

π̂∗ : N(Ẑ)→ C(Ẑ∗n,C), N(Ẑ) � � 
→ �|Ẑ∗n .

Note that if � ∈ N(Ẑ) is the distributional restriction of the holomorphic function
�̃ ∈ N(Z̃), then

�|Ẑ∗n = �̃|Ẑ∗n
where the above restriction exists classically, not just as a distribution.

Proposition 1.39. The diagram below is commutative.

N(Z) N(Ẑ)

N(Zn) C(Ẑ∗n,C).
�

π�

�F

�
π̂∗

�F
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Proof. Note first that

π�(f ) = (1− I) ∗ π∗(f ), ∀f ∈ C[t, t−1]
(∗ = convolution product) while π�((1− t)−1) is uniquely determined by the division
problem

π�((1− t)−1) ∗ (1− t) = 1− I.

If f =∑j∈Z f (j)t
j ∈ C[t, t−1], and ζ n = 1, ζ �= 1, then

F ◦ π�(f )(ζ ) = F
(
(1− I) ∗ π∗(f )

) = (1− δ1(ζ )) · π̂∗(f )(ζ ) (δ1(ζ ) = 0)

=
n∑
k=1

π∗(f )(k)ζ−k =
n∑
k=1

∑
j∈Z

f (nj + k)ζ−k = f̃ (ζ ) = π̂∗(f̃ )(ζ ).

Set V := π�((1− t)−1) ∈ N(Zn). Then V̂ (1) = 0 and

V̂ (ζ )(1− ζ−1) = (1− δ1(ζ )), ∀ζ n = 1.

We conclude that if ζ �= 1 we have

V̂ (ζ ) = 1/u(ζ ) = ω̂(ζ ).
This concludes the proof of Proposition 1.39. �


Example 1.40. The Fourier transform of π�((1− t)−1) is the function

V̂ (ζ ) :=
{

0 ζ = 1
ζ
ζ−1 ζ �= 1.

On the other hand, the Fourier transform of the Dedekind symbol

�n : Zn→ Q, k mod nZ 
→ �n(k) = ((k/n))
is (see [88, Chap 2, Sec. C])

�̂n(ζ ) =
{

0 ζ = 1
1
2 − ζ

ζ−1 ζ �= 1

We conclude that

V = 1

2
(1− I)−�n. �


B. rank(G) = 1, Tors(G) �= 0. Set H := Tors(G), F := G/H and

S =
∑
h∈H

h ∈ Z[G].
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Fix an orientation o onG⊗R. Then G̃ = Hom(G,C∗) is an union of one-dimensional
complex tori, and the orientation o defines an orientation on Ĝ, and thus identifies the
identity component of G̃ with C∗.

A function f ∈ No(G) has noncompact support, but has temperate growth, and
thus it has a Fourier transform as a temperate distribution. Denote by No(Ĝ) ⊂ D′(Ĝ)
the Fourier transform of No(G).

Since δ̂g(χ) = χ̄(g) we conclude that δ̂1 is the constant function 1 on Ĝ and

Ŝ(χ) =
∑
h∈H

δ̂h(χ) =
∑
h∈H

χ̄(h).

We set Kχ := ker χ |H and we deduce

Ŝ(χ) = |Kχ |
∑
α∈Rχ

α =
{
|H | χ |H = 1

0 otherwise.

Fix t ∈ G such that dego t = 1. 1
|H |Ŝ = Î is the characteristic function of the

identity component of Ĝ, so that the Fourier transform of So · (1− t)−k ∈ No(G) is
a distribution supported on the identity component of Ĝ. Via the isomorphism

Z⊕H → G, (n, h) 
→ htn,

which identifies the identity component of Ĝ with S1, this distribution is defined by
the limit

S1 � z lim
r↘1

|H |(
1− r−1z−1

)k .
We deduce that

No(Ĝ) := N̂o(G) ∼= Ẑ[G] +No(F̂ ).

Arguing as in part A we obtain a complex Fourier transform F : N(G) → M(G̃)

which is independent of the orientation o, such that for every f ∈ N(G) we have

f̂o|Ĝ\{1} = F(f )|
Ĝ\{1}.

Observing that we have a diagram

Ĝ

F̂ Ĥ

����π
����
ı

we can represent the range N(G̃) of the complex Fourier transform as a sum of
the space of Laurent polynomials on G̃ with a space of holomorphic functions on
G̃ \ {1}, supported on the identity component of G̃. To simplify the presentation we
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will denote the Fourier transform of g ∈ N by f̂ . Suppose now that φ : G1 → G2 is
an epimorphism of Abelian groups and rank(G1) = 1. It induces a monomorphism

φ̂ : G̃2 → G̃1.

This induces by pullback a morphism

φ̂∗ : N(G̃1)→ N(G̃2).

Arguing as in the proofs of Propositions 1.34 and 1.39 we deduce that the following
diagram is commutative

N(G1) N(G̃1)

N(G2) N(G̃2).

�

φ�

�F

�

φ̂∗

�F

3. rank(G) ≥ 2. Set r := rank(G), H = Tors(G), F := G/H . Then F̂ is an
r-dimensional torus which can be identified with the identity component of Ĝ.

In this case N(G) = Z[G], and thus N(Ĝ) := F(N(G)) ⊂ C(Ĝ,C). More
precisely, N(Ĝ) coincides with the subring generated by the Fourier transforms of the
Dirac functions δg . Observe that

δ̂g(χ) = χ̄(g), ∀χ ∈ Ĝ.
The complex Fourier transform is defined in the obvious way.

Arguing as before we deduce that if φ : G1 → G2 is an epimorphism of Abelian
groups, rank(G1) ≥ 2, then the diagram below is commutative

N(G1) N(G̃1)

N(G2)⊗ C N(G̃2).

�
φ�

�F

�
φ̂∗

�F

The above analysis has the following elementary consequence.

Corollary 1.41. (a) SupposeG is a finitely generated Abelian group of positive rank,
and f ∈ N(G). Then the complex Fourier transform of f is holomorphic on G̃ \ {1}.
If moreover rank(G) > 1 then the complex Fourier transform of f is holomorphic
on G̃.
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(b) Suppose that α : G → H is an epimorphism of finitely generated Abelian
groups. This induces an injection α̂ : H̃ ↪→ G̃, and for every f ∈ N(G) we have

α̂�f = α̂∗
(
f̂
) = f̂ ◦ α̂.



Chapter 2

The Reidemeister torsion

We now begin in earnest our topological journey. In this chapter we present the basic
definitions and facts concerning the Reidemeister torsion of a CW (or simplicial)
complex. We have decided that it would be more profitable to the reader to limit to
an acceptable minimum the foundational arguments, and instead present many, and
diverse examples which in our view best convey the reason why a particular fact could
be true. The reader interested in filling in our deliberate foundational gaps can consult
the classical survey [72] of J. Milnor, or the recent monograph [117] by V. Turaev.

§2.1 The Reidemeister torsion of a CW-complex

Suppose X is a compact metric space and S(X) is a finite CW-decomposition of X.
Set H := H1(X).

Remark 2.1. To eliminate any ambiguity, let us mention that for us a CW-decompo-
sition is a filtration of X by closed subsets

X(0) ⊂ X(1) ⊂ · · · ⊂ X(n) ⊂ · · ·
such that there exist homeomorphisms(

Jn ×Dn 
X(n−1))/ ∼→ X(n)

in which Jn is a finite set, Dn denotes the closed n-dimensional ball, and ∼ denotes
the equivalence relation defined by an attaching map

ϕn : Jn × ∂Dn→ X(n−1).

The setX(n) is called the n-skeleton ofX. The components ofX(n) \X(n−1) are called
the (open) n-cells. We denote by Sn(X) the set of n-cells. An orientation of a cell
σ ∈ Sn(X) is a choice of an isomorphism

Hn(σ, ∂σ ;Z)→ Z. �

Consider the maximal Abelian cover π : X̂ → X of X, that is the cover of X

defined by the Hurewicz morphism

π1(X)→ H.



§2.1 The Reidemeister torsion of a CW-complex 45

We can view X as a quotient X = X̂/H .
The CW-decomposition of X canonically defines a chain complex C(X) of free

Abelian groups,
C(X) :=

⊕
n

⊕
σ∈Sn(X)

Hn(σ, ∂σ ).

By orienting the n-cells and ordering Sn(X) we obtain bases of this chain complex.
We will refer to these as geometric bases. The ambiguities in fixing such bases are
encoded by the action of the group

SX :=
∏
k≥0

SSk(X) × ZSk(X)2

where SS denotes the group of permutations of a set S. The CW-decomposition ofX
lifts to a CW-decomposition S(X̂) of X̂ which, as a Z-module, is generated by all the
lifts of the cells in S(X). Denote by C(X̂) the associated chain complex. The group
H can be identified with the group of deck transformations of X̂→ X and as such it
acts on C(X̂). Hence, C(X̂) has a natural structure of free Z[H ]-module.

We can obtain Z[H ]-bases of C(X̂) as follows. Fix a basis c of C(X). Choose a
lift α̂ of each oriented cell α of c. We obtain the following Z[H ]-basis ĉ of C(X̂).

ĉ := {α̂; α ∈ c, }
This construction is not unique, for two reasons. Firstly, the choice c depends on a
re-ordering, and a change in orientations. Secondly, the lifts are not unique. These
ambiguities can be gathered in the group

A = SX ×
∏
k≥0

∏
α∈Sk(X)

H.

Observe that

det A ∼= ±H ↪→ (Q(H), ·), Q(H)−Q(Z[H ]).
Definition 2.2. The torsion of the chain complex C(X̂) of free Z[H ]-modules with
respect to the above A-orbit of Z[H ]-bases is called the Reidemeister torsion of S(X)
and is denoted by T(S(X)), (or TX when the CW-structure is clear from the context).
It is well defined as an element of Q(H)/±H . �


Notation. If x, y ∈ Q(H) then x ∼ y ⇐⇒ ∃h ∈ H, ∃ε = ±1 : x = εhy.

If Y ⊂ X is a subcomplex of X then we can define the relative torsion as follows.
First form the chain complex ofZ[H ]-modulesC(S(X̂, Ŷ )) associated to the CW-pair
(X̂, Ŷ ), Ŷ := π−1(Y ). Next, choose a basis c/Y of the relative complex C(S(X, Y )),
and then lift it to a Z[H ]-basis of S(X̂, Ŷ ) of the form

c/Y = {α̂; α ∈ S(X) \ S(Y )}.



46 2 The Reidemeister torsion

As before, the ambiguities of this construction form a group A and

det A ∼= ±H ↪→ (Q(H), ·).
The torsion T(S(X̂, Ŷ ), [c/Y ]A) is well defined as an element of Q(H)/±H which
we denote by TX,Y .

If R is an integral domain and ϕ is a morphism Z(H)→ R then we can form the
complex of free R-modules

Cϕ(X, Y ) := C(S(X̂, Ŷ ))⊗ϕ R.
The cell decomposition ofX provides us as above with natural choices of bases in this
complex. The torsion will be an element

T
ϕ
X,Y ∈ K/± ϕ(H),

where K is the field of fractions of R. Using Proposition 1.22 we deduce that if
char(K) = 0 then

T
ϕ
X,Y = ϕ(TX,Y ).

Remark 2.3. A morphism ϕ : Z[H ] → R defines a system of local coefficients Rϕ
on X and the homology of the complex C(S(X̂, Ŷ ))⊗ϕ R is canonically isomorphic
with the homology of (X, Y ) with coefficients in the local system Rϕ (see [17, Chap.
5], [102] or [121, Chap. VI]).

In dealing with the gluing properties of the torsion it is perhaps more convenient
to adopt this new point of view because, as explained in [17, ibid], the homology with
local coefficients satisfies the same set of defining axioms the ordinary homology. �


Example 2.4(The circle). SupposeX is the circle S1 with the natural CW-decompo-
sition consisting of a single 0-cellα0, and a single 1-cellα1. ThenH = H1(S

1,Z) = 0.
We write it multiplicatively, and we denote its natural generator by t . The group Z
acts on X̂ = R by translations

tn · x = x + n.
Define

α̂0 = 0, α̂1 = [0, 1].
In C(X̂) we have

∂α̂1 = 〈1〉 − 〈0〉 = (t − 1)α̂0, ∂α̂0 = 0.

This shows C(X̂) is acyclic. Define

c0 = {α̂0}, c1 = {α̂1}, b0 = ∅, b1 = {α̂1}.
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Then
[∂b1b0/c0] = (t − 1), [b1/c1] = 1

so that
TS1 ∼ (t − 1)−1 ∼ ±tn(t − 1)−1 ∈ Q(t)/(±t). �


Example 2.5(The two-dimensional torus). SupposeX is the torus T 2 equipped with
the CW structure consisting of

• One 0-cell α.
• Two 1-cells β1, β2.
• One 2-cell γ .

with attaching maps described by the classical diagram in Figure 2.1.

α

αα

α

β1

β1

β2β2 γ

Figure 2.1. The CW-structure of a 2-torus.

Observe that X̂ ∼= R2 and H = Z2 with (multiplicative) generators t1 and t2. We
choose the bases ci as follows.

• c0 =
{
α̂ = 〈0〉 ∈ R2

}
.

• c1 =
{
β̂1 = I × {0} ⊂ R2, β̂2 = {0} × I ⊂ R2, I = [0, 1]}.

• c2 =
{
γ̂ = I × I ⊂ R2

}
.

Inspecting Figure 2.1 we deduce

∂α̂ = 0,

∂β̂1 = (t1 − 1)α̂, ∂β̂2 = (t2 − 1)α̂,

∂γ̂ = (1− t2)β̂1 − (1− t1)β̂2.

Now choose
b2 = {γ̂ }, b1 = {β̂1}, b0 = ∅

Then

[b2/c2] = 1, [(∂b2)b1/c1] = det

[
(1− t2) 1
−(1− t1) 0

]
= (t1 − 1),

[(∂b1)b0/c0] = (t1 − 1).

We conclude that
TT 2 ∼ 1 ∼ ±tn1

1 t
n2
2 . �




48 2 The Reidemeister torsion

Example 2.6(The higher dimensional tori). Suppose X is the n-dimensional torus
X := Rn/Zn. Denote by ti the generators of the (multiplicative) group H := Zn ∼=
π1(X). They determine a basis (ei) of the (additive) group Zn. For each ordered
multi-index I = 1 ≤ i1 < · · · < ik ≤ n we set

eI := ei1 ∧ · · · ∧ eik ∈ �kZn.
The universal Abelian cover is Rn→ Rn/Zn and

Ck(X̂) ∼= Z[H ] ⊗Z �
kH.

The monomials {eI ; |I | = k} determine a Z[ti , t−1
j ]-basis (êI ) of Ck(X̂) defined by

êI =
{
(x1, . . . , xn) ∈ [0, 1]n; xj = 0 ∀j �∈ I}.

We use the wedge product to introduce a Z2-graded Z[H ]-algebra structure on C(X̂).
The boundary operator

∂ : C(X̂)→ C(X̂)

is then more than just a morphism of Z[H ]-modules. It is an odd derivation uniquely
determined by the conditions

∂e∅ = 0, ∂ei := (ti − 1)e∅, i = 1, . . . , n.

Equivalently, it can be defined as the contraction with the formal vector field

T :=
∑
k

(tk − 1)ek.

Fix an element u ∈ H , and form the Koszul map

κu : Ck(X̂)→ Ck+1(X̂), ω 
→ u ∧ ω.
For simplicity we let u := e1. Observe that

∂(e1 ∧ •)+ e1 ∧ ∂• = (1− t1)•
so that, if we define

η : C(X̂)→ C(X̂), ω 
→ (t1 − 1)−1e1 ∧ ω
then ∂η+η∂ = 1. Hence η is a contraction of the complex C(X̂). As in §1.1 we form
the operators

D = ∂ + η.
The torsion of C(X̂) is then

TX ∼ det
(
D : Ceven(X̂)→ Codd(X̂)

)
.
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Set Ln := Zn. We have produced a sequence of operators

Dn : �evenLn ⊗Z Z[Ln] → �oddLn ⊗Z Z[Ln]
such that det(Dn) = τ(T n). If we write Ln+1 = Ln ⊕ Z · en+1 then we obtain
decomposition

�evenLn+1 = �evenLn⊕�oddLn∧en+1, �oddLn+1 = �oddLn⊕�evenLn∧en+1.

Using these splittings we obtain the following block decomposition for Dn+1

Dn+1 =
[
Dn ∗
0 D̃n

]
,

where
D̃n = ∂ + η : �oddLn ⊗ Z[Ln] → �evenLn ⊗ Z[Ln].

Since DnD̃n = 1 we deduce

det(Dn+1) = 0, ∀n ≥ 1.

Thus
TT n ∼ 1, ∀n > 1. �


The above identity is a consequence the following more general principle.

Example 2.7(The torsion of S1 ×X, X-finite cell complex). Denote by π both the
natural morphism

H1(S
1 ×X)→ H1(S

1),

and the induced map

Q(H1(S
1 ×X))→ Q(t) ∼= Q(H1(S

1)).

Then
Tπ
S1×X ∼ (t − 1)−χ(X) ∼ T

χ(X)

S1 .

Observe that Tπ
S1×X can be computed using the coverR×X→ S1×X. The associated

cell complex has a Z[t]-module structure. More precisely

C(R×X) ∼= C(R)⊗Z C(X),

where C(R) is the chain complex of Z[t]-modules discussed in Example 2.4,

0 → Z[t] (t−1)·−→ Z[t] → 0.

Then
Ck(R×X) = Z[t]e1 ⊗ Ck−1(X)⊕ Z[t]e0 ⊗ Ck(X),
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with basis
e1 ⊗ Sk−1(X) ∪ e0 ⊗ Sk(X).

The boundary operator ∂ : Ck(R × X) → Ck−1(R × X) acts according to the pre-
scriptions

∂̂(e1 ⊗ σk−1) = (1− t)e0 ⊗ σk−1 − e1 ⊗ ∂σk, ∂̂(e0 ⊗ σk) = e0 ⊗ ∂σk−1.

Define the morphism of Z[t]-module

η : Ck−1(R×X)→ Ck(R×X),

e0 ⊗ σk−1 
→ 1

t − 1
e1 ⊗ σk−1, e1 ⊗ σk−2 
→ 0.

Observe that η2 = 0 and ∂̂η + η∂̂ = 1, i.e. η is an algebraic contraction. Then

Tπ
S1×X = det

(
∂̂ + η : Ceven(R×X)→ Codd(R⊗X)

)
.

With respect to the bases

e0 ⊗ S0(X) ∪ e1 ⊗ S1(X) ∪ e0 ⊗ S2(X) ∪ · · ·
of Ceven, and

e1 ⊗ S0(X) ∪ e0 ⊗ S1(X) ∪ e1 ⊗ S2(X) ∪ e0 ⊗ S3(X) ∪ · · ·
of Codd, the operator ∂̂ + η has the description

n0 columns n1 columns n2 columns · · ·

n0 rows (t − 1)−1 −∂ 0 · · ·

n1 rows 0 (t − 1) ∂ · · ·

n2 rows 0 0 (t − 1)−1 · · ·
...

...
...

...

where nk := #Sk(X). We deduce

Tπ
S1×X = (t − 1)−

∑
k(−1)knk = (t − 1)−χ(X) = T

χ(X)

S1 . �


Example 2.8(The torsion of a product). The computations in the above example gen-
eralize as follows. Suppose X and Y are compact CW-complexes. Denote by π both
the natural map

H1(X × Y )→ H1(X),
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and the induced morphism

Q(H1(X × Y ))→ Q(H1(X)).

Then
TπX×Y = T

χ(Y )
X . (2.1)

To prove this consider the Abelian cover of X × Y induced by π . It coincides with
X̃× Y , where X̃ is the universal Abelian cover of X. Denote by (C(X̃), ∂̃0) the chain
complex of Z[H1(X)]-modules generated by the CW-decomposition of X̃. Then
the chain complex of Z[H1(X)] modules corresponding to the CW-decomposition of
X̃ × Y has the form(

C(X̃ × Y ), ∂̃) ∼= (C(X̃), ∂̃0
) ⊗̂Z

(
C(Y ), ∂Y

)
,

where the hat ˆover the ⊗ signs signifies that we are taking a graded tensor product.
Suppose for simplicity (C(X̂), ∂̃0) is acyclic and denote by η an algebraic contraction.
Now define

η̂ : Ck−1(X̃ × Y )→ Ck(X̃ × Y )
by the equality

η̂(σ̃ ⊗̂ δ) = (ησ̃ ) ⊗̂ δ,
for every cell σ̃ of X̃ and every cell δ of Y . This morphism is an algebraic contraction
of the complex C(X̃ × Y ). Now order the cells of Y

δ1, δ2, . . .

as in (1.3) such that
dim δi ≥ dim δi+1.

Using the decomposition

Ceven/odd(X̃ × Y ) ∼=
⊕
i

Cνi (X̃)⊗ δi,

where νi + dim δi = even/odd, we deduce that the operator

∂̃ + η̂ : Ceven(X̃ × Y )→ Codd(X̃ × Y )
has lower triangular form, and the i-th diagonal element

Cνi (X̃)⊗ δi → Cνi−1(X̃)⊗ δi
has the form (

∂̃0 + η
)(−1)νi

.

Formula (2.1) is now obvious. We refer to [31, 34, 35] for more information about the
torsion of a fiber bundle. �
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Example 2.9(The torsion of lens spaces). The lens space L(p, q) is defined as the
quotient

L(p, q) := S3/(1,q ,

where for (r, p) = (s, p) = 1 we denote by (r,s the action of cyclic group Zp on

S3 := {(z1, z2) ∈ C2; |z1|2 + |z2|2 = 1
}

defined by the rule

ζ (r,s (z1, z2) = (ζ rz1, ζ
sz2), ∀ζp = 1.

The maximal Abelian cover of L(p, q) is the sphere S3. To compute the torsion of
the lens space L(p, q) we first need to produce a Zp-equivariant CW-decomposition
of S3. For j ∈ Zp define

E0
j =
{
(ζ j , 0) ∈ S3},

E1
j =
{
(eiθ , 0) ∈ S3; 2πj

p
≤ θ ≤ 2π(j + 1)

p

}
,

E2
j =
{
(z1, sζ

j ) ∈ S3; t ∈ [0, 1]} = {(z1, sζ
j ) ∈ C2; s ∈ R,

√
|z1|2 + s2 = 1

}
,

E3
j =
{
(z1, z2) ∈ S3; 2πj

p
≤ arg z2 ≤ 2π(j + 1)

p

}
.

Each Ekj is homeomorphic to a closed k-ball, and the collection{
Ekj
}

0≤k≤3,j∈Zp

forms a Zp-equivariant decomposition of S3. Set

ckj := Int(Ekj ).

We orient the cells inductively over k such that, taking into account the orientations,
we have

∂c2
j =

p−1∑
i=0

c1
i ,

and
∂c1
j = c0

j+1 − c0
j , ∂c3

j = c2
j+1 − c2

j .

Observe that

ζ · ckj = ckj+1, k = 0, 1 and ζ · ckj = ckj+q, k = 2, 3.

Hence

∂c2
0 =
( p−1∑
j=0

ζ j
)
c1

0,
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and
∂c1
j = (ζ − 1)c0

j , ∂c3
j = (ζ r − 1)c2

j ,

where r · q = 1 mod pZ. Suppose K is a field and ϕ : Z[ζ ] = Z[Zp] → K is a
nontrivial ring morphism. Set t := ϕ(ζ ) and Cϕ∗ := C∗(S3)⊗ϕ K. Observe that

C
ϕ
k = K · ck0, k = 0, . . . , 3.

This shows the chain complex Cϕ∗ is acyclic and an elementary computation yields

T
ϕ

L(p,q) ∼ (1− t)−1(1− t r )−1.

Observe that if we choose a different generator s of H1
(
L(p, q)

)
defined by sq = t

we have
T
ϕ

L(p,q) ∼ (1− sq)−1(1− s)−1. �

The torsion of a CW-complex depends on the CW-structure. The following result

states this more precisely. For a proof and more details we refer to [16, Chap. IV] or
[72, §7].

Theorem 2.10(Combinatorial invariance of torsion). The torsion TX,Y is invariant
under subdivision of the CW-pair (X, Y ).

It is known that any compact smooth manifold admits C1-triangulations, and any
two have a common finer subdivision (see [72, §9] for more details). This shows that
we can define the torsion of a smooth manifold using C1-triangulations and the result
will be independent of triangulations. In other words the following true.

Theorem 2.11. The torsion of a compact smooth manifold is a diffeomorphism in-
variant.

Remark 2.12. The absolute torsion TX of a simplicial complex X is known to be
a topological invariant of the cellular complex X; see [13]. However, the relative
torsion TX,Y is not a topological invariant; see the beautiful paper [69] or Remark 2.62,
page 105. �


From the exact homology sequence of a pair and the multiplicativity of the torsion
we deduce the following result.

Theorem 2.13. Suppose (X, Y ) is a CW-pair, K is a field and ϕ : Z[H1(X)] → K is
a ring morphism. If j denotes the inclusion induced morphism

j : Q(H1(Y ))→ Q(H1(X))

and either T
j
Y �= 0 or T

ϕ◦j
X,Y �= 0. Then

T
ϕ
X ∼ T

ϕ
X,Y · T ϕ◦jY .
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If f : X→ Y is a cellular map then we can form its mapping cylinder

Mf := (X × [0, 1] ∪ Y )/{(x, 1) = f (x)}.
Y is a strong deformation retract of Mf and in particular, H1(Mf ) ∼= H1(Y ). We
define the torsion of f by the equality1

Tf := TMf ,X ∈ Q(H1(Y )).

If f is a homotopy equivalence then H1(X) ∼= H1(Y ) so the torsion of f is also an
element of Q(H1(X)). In general, the torsion of a homotopy equivalence may not
be ∼ 1. However, we have the following fundamental result of J. H. C. Whitehead
([16, 19, 72]).

Theorem 2.14. If f is a simple homotopy equivalence then

Tf ∼ 1.

We will not present a formal, geometric definition of the notion of simple homotopy.
We only want to mention a typical example of such homotopy: the collapse of a simplex
onto one of its faces (see Figure 2.2). In general, a simple homotopy is a composition
of such elementary collapses.

Figure 2.2. Elementary collapse.

For example, a 3-manifold with boundary equipped with a simplicial decomposi-
tion is simple homotopy equivalent to a 2-dimensional simplicial complex.

Using Theorem 2.13 and 2.14 we deduce that if two cellular complexes X, Y are
simple homotopy equivalent then

TX ∼ TY .

1The torsion of the pair (Mf , Y ) is known to be trivial, ∼ 1, (see [72, §7]).
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Example 2.15(The solid torus). The inclusion S1 ↪→ D2 × S1, p 
→ (0, p) is a
simple homotopy equivalence so that the torsion of a solid torsion is identical to the
torsion of a circle

TD2×S1 ∼ (t − 1)−1. �

Using the multiplicativity property of the torsion and the Mayer–Vietoris sequence

we deduce the following consequence.

Theorem 2.16(Gluing Formula). Suppose X1, X2 are subcomplexes of X such that

X = X1 ∪X2 and X1 ∩X2 = Y.
Suppose K is a field and ϕ : Q[H1(X)] → K is a ring morphism. Let

j : Q(H1(Y ))→ Q(H1(X)), jk : Q(H1(Xr))→ Q(H1(X)), k = 1, 2

denote the inclusion induced morphisms. If T
ϕ◦j
Y �= 0 then

T
ϕ
X · T ϕ◦jY ∼ T

ϕ◦j1
X1

· T ϕ◦j2X2
.

Example 2.17(The torsion of fibrations over a circle). We follow closely the presen-
tation in [33]. Suppose

F X

S1

� �j

��
π

is a smooth fiber bundle over S1, with compact, closed, connected, oriented fiber F .
Fix a Riemann metric onX such that π is a Riemann submersion. π defines a gradient
flow which covers the canonical rotational flow on S1 (with period 2π ). We denote
by h : X→ X the time 2π -map of this flow. It induces a map

µ = h|F : F = π−1(0)→ π−1(2π) = F
known as the geometric monodromy of this fibration.

Fix a cellular structure on F and a cellular approximation µ′ of the monodromy
map µ and form the mapping torus X′ of µ′. One can show (see [33, 49]) that the
torsion of X is equal to the torsion of X′ and we will compute the torsion of X′. The
group Z acts on C∗(π̃−1(F );Z) by

t (k, σ ) = (k + 1, σ ),

so that we have the isomorphism of Z[t, t−1]-modules

C∗(π̃−1(F );Z) ∼= C∗(F,Z)⊗ Z[t, t−1].
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The natural projection π : X′ → S1 defines an infinite cyclic cover

π̃ : X′π → X′,

the pullback of exp : R → R/2π iZ = S1 via π . The space X′ has a natural CW-
structure which lifts to a CW-structure on the cover X′π . The cellular chain complex
C∗(X′π ;Z) has a structure of Z[t, t−1]-module given by the actions of the group of
deck transformations of X′π and can be described as the algebraic mapping torus of
the morphism of Z[t, t−1]-cellular complexes

µ′π = tµ′ : C∗(π̃−1(F );Z)→ C∗(π̃−1(F );Z),
(k, σ ) 
→ (k + 1, µ′(σ )) = t (k, µ′(σ ))

Using the identity (1.6) in Example 1.6 we conclude that

T
(
C∗(X′π ;Z)

) ∼ ζµ(t),
where ζµ(t) is the s-zeta function of the induced morphism µ∗ on the Z2-graded
vector space H∗(F,R). The map π induces a morphism H := H1(X)→ Z and thus
a morphism

π : Q(H)→ Q(t).

The last equality can now be formulated

T πX ∼ ζµ(t).
We refer to [33] for a description of the whole torsion ofX. The final result is however
not so explicit.

To understand how much information about the torsion of X is contained in the
above equality we need to understand H1(X,Z). This homology can be determined
from the Wang exact sequence, [121, Chap. VII], which is a consequence of the fact
that the chain complexC∗(X;Z) is the algebraic mapping torus ofC∗(F )with respect
to µ∗,

· · · → Hk(F )
1−µ∗−→ Hk(F )

j∗→ Hk(X)
∩F−→ Hk−1(F )

1−µ∗−→ · · · .
We obtain a short (split) exact sequence

0 → coker(1− µ∗)→ H1(X)→ Z→ 0.

The linear map H1(X)→ Z has a simple geometric interpretation: it is given by the
integral of the angular form

ω := 1

2π
π∗(dθ)

along a cycle c ∈ H1(X). Note that if

det
(
(1− µ∗) : H1(F )→ H1(F )

) �= 0,
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then H1(X) has rank 1. In this case we have

T
aug
X ∼ ζµ(t).

If F happens to be a Riemann surface of genus g then, using the computations in §A.2
we deduce

T
aug
X ∼ det

(
1− tH1(µ)

)
(1− t)2 . �


Example 2.18(The torsion of connected sums). Suppose N1 and N2 are two closed,
oriented, triangulated, smooth 3-manifolds such that

ri := rankH1(Ni) > 0, i = 1, 2.

We want to prove that
TN1#N2 = 0,

i.e.
H∗(N1#N2;Kπ ) �= 0,

where K is an arbitrary field entering into the decomposition of Q
(
H1(N1#N2)

)
, π

denotes the natural projection

Q
(
H1(N1#N2)

)→ K,

and Kπ denotes the corresponding local system of coefficients. We will follow an
approach we learned from Frank Connolly. We refer to [110, §4.3] for a different
proof of a slightly weaker result. Set N := N1#N2,

Gi := H1(Ni), G := H1(N1#N2) ∼= G1 ⊕G1.

Let Mi denote Ni with a small open disk Di removed and πi : N̂i → Ni denote the
universal Abelian cover of Ni . Set

M̂i := π−1
i (Mi).

Finally denote by S the 2-sphere M1 ∩M2 ⊂ N . The universal Abelian cover Ñ of
N is obtained as follows.

• Fix a lift D̂i of Di to N̂i , i = 1, 2 we can identify ∂M̂i ∼= Gi × S2 so that

∂(G1 × M̂2) ∼= (G1 ⊕G2)× S2 ∼= ∂(G2 × M̂1).

For (g1, g2) ∈ G1 ×G2 we denote by ∂gi M̂i the component of ∂M̂i labelled by gi .

• Glue G1 × M̂2 to G2 × M̂1 along the boundary using the identifications (see Fig-
ure 2.3).

{g1} × ∂g2M̂2 ∼ {g2} × ∂g1M̂1.
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1

2

2

3

Figure 2.3. Covering a connected sum.

Suppose K is one of the fields entering into the decomposition of Q(G). The
discussion in §1.5 shows that K is the field of rational functions in r1 + r2 variables
with coefficients in some finite extension of Q. In particular, since ri > 0 this shows
that the monodromy groups

Mi = Rangeπi, πi := Gi ↪→ G→ Q(G)
π→ K

are infinite, so that the coverings ofMi andNi defined by the morphismsπi are infinite,
thus noncompact. SinceMi is an open 3-dimensional manifold we deduce

H3(Mi;Kπi ) = H3(Ni;Kπi ) = 0. (∗)

We deduce similarly that

H3(N;Kπ ) = 0.

The Mayer–Vietoris sequence for the homology with local coefficients (see [17,
Chap. 5]) now implies

0 → H2(S;K)→ H2(M1;Kπ1)⊕H2(M2;Kπ2)→ H2(N;Kπ )→ H1(S;K).
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Since S is simply connected we deduce that the last group is trivial and the first is
isomorphic to K. We thus have a short exact sequence of K-vector spaces

0 → K→ H2(M1;Kπ1)⊕H2(M2;Kπ2)→ H2(N;Kπ )→ 0. (∗∗)

The middle part of (∗∗) can be determined from the long exact sequence of the pair
(Ni,Mi):

0 → H3(Ni,Mi;K•)→ H2(Mi;Kπi )→ H2(Ni;Kπi )→ H2(Ni,Mi;K•)→ .

Using excision we deduce

0 → H3(Di, S;K)→H2(Mi;Kπi )→H2(Ni;Kπi )→H2(Di, S;K)→ 0. (∗∗∗)

The sequence (∗∗) implies

dimKH2(N;Kπ ) = dimKH2(M1;Kπ1)+ dimKH2(M2;Kπ2)− 1,

while (∗∗∗) implies
dimKH2(Mi;Kπi ) ≥ 1,

so that dimKH2(N;Kπ ) ≥ 1. �


§2.2 Fitting ideals

We interrupt for a little while the flow of topological arguments to discuss some basic
algebraic notions needed to go deeper inside the structure of torsion.

Let R be a Noetherian integral domain and denote by K its field of fractions.
Suppose T : U → V is a morphism of free R-modules

U ∼= Rp, V ∼= Rq.
Choosing bases in U and V we can represent T by a q × p matrix with entries in R,
and we denote by I1(T ) ⊂ R the ideal generated by the entries of T . Clearly I1(T ) is
independent of the chosen bases of U and V . Equivalently, this means that I1(T ) is
invariant under elementary row and column operations on T . T induces morphisms

�kT : �kU → �kV,

and we set
Ik(T ) := I1(�kT ) ⊂ R.

In more concrete terms, Ik(T ) is the ideal generated by all the k × k minors of T .
Observe that

R := I0(A) ⊃ I1(T ) ⊃ I2(T ) ⊃ · · ·
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and

Ik(T1 ⊕ T2) ⊃ Ik(T1)+ Ik(T2), Ik(T1 · T2) ⊂ Ik(T1) · Ik(T2), ∀k, T1, T2.

Suppose

U
T→ V → M → 0

is a presentation of the finitely generated R-moduleM . Let g = rank V , r = rankU .
Then g is the number of generators, while r is the number of relations of this presen-
tation. Assume r ≥ g. Define

Fk(T ) := Ig−k(T ).
Any other presentation can be obtained from the above by performing a succession of
elementary transformations described below, [92].

1. Change bases in U and V .

2. Replace U , V by R ⊕ U and R ⊕ V and T by 0 ⊕ T , where 0 denotes the trivial
map R→ R.

3. The reverse of 2.

4. Replace U by R ⊕ U T by T ◦ πU , where πU denotes the natural projection
R ⊕ U → U .

5. The reverse of 4.

Clearly the ideal Fk(T ) is invariant under these elementary transformations. This
shows it is an invariant of the moduleM . It is called the k-th Fitting ideal, ofM and
is denoted by Fk(M). Observe that

F0(M) ⊂ F1(M) ⊂ · · · ⊂ Fk(M) ⊂ · · · .
F0(M) is called the order ideal of M and is denoted by O(M). In case M admits a
presentation in which there are fewer relations than generators then we set O(M) =
(0).

If R happens to be factorial then we define the order of M , ord(M) ∈ R/R×, as
the greatest common divisor of the elements in F0(M).

Example 2.19.

Fk(R
q) =

{
0 if 0 ≤ k < q
R if k ≥ q �


Example 2.20. SupposeG is the Abelian group generated by e1, e2, e3 subject to the
relations

e1 + e2 + e3 = 0, 2e1 − e2 + 3e3 = 0, e1 = 3e3.
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Then it admits the presentation

Z3 A→ Z3 → G→ 0

where A is the 3× 3 matrix  1 2 1
1 −1 0
1 3 −3

 .
The order ideal is the ideal generated by | det(A)| = 13. It coincides with the order
of the group. In particular, ord(G) = ±13 ∈ Z/± 1. �


Example 2.21. Suppose M = R/I , I ⊂ R is an ideal of R. Then O(M) ∼= I .
Indeed, if I is generated by n elements, thenM admits a presentation

Rn
L−→ R→ M → 0

so that
O(M) ∼= I1(L) = I. �


Example 2.22. SupposeM = Zn. Then

F0(M) = nZ, F1(M) = Z. �

Proposition 2.23. SupposeM can be generated by q elements. Then(

annR(M)
)q ⊂ O(M) ⊂ annR(M) := {r ∈ R; r ·M = 0}.

Proof. Let x1, . . . , xq be generators ofM . If a1, . . . , rq ∈ annR(M) then we can form
a presentation ofM containing the relations

aixj = 0, i, j = 1, . . . , q

which proves the first inclusion. To prove the second inclusion, consider a q × q-
matrix of relations between the xi’s. Then, det(A)xi = 0, thus proving the second
inclusion. �


Corollary 2.24. Suppose R is a Noetherian integral domain. IfM is a submodule of
a free R module then O(M) ⊂ annR(M) = 0.

For a proof of the next result we refer to [55, XIX,§2].

Proposition 2.25.

Fn(M
′ ⊕M ′′) =

∑
r+s=n

Fr(M
′)Fs(M ′′).
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Corollary 2.26.

Fk(M ⊕ Rq) = 0, ∀k < q, Fq(M ⊕ Rq) = O(M).

Example 2.27. Suppose R = Z and

M = Zn1 ⊕ · · · ⊕ Znk , nk|nk−1| · · · |n1.

Set N := n1 . . . nk . Then

F0(M) = NZ, F1(M) = N

n1
Z, . . . , Fk−1(M) = N

n1 . . . nk−1
Z, Fk(M) = Z. �


Example 2.28(The elementary invariants of a matrix). SupposeR = Z[t, t−1]. Any
matrix A ∈ SLn(Z) defines a R-module structure on Zn

p(t, t−1) · u := p(A,A−1)u, ∀p(t, t−1) ∈ R, u ∈ Zn.

We denote this is R-module by (Zn, A). It admits the presentation

Rn
t−A−→ Rn

fA−→ (Zn, A)→ 0,

where fA is the map

Rn ∼= Zn ⊗Z R→ Zn,
∑
j

)uj tj 
→ Aj )uj .

Denote by qi ∈ Z[t] the elementary invariants of A (see [55, XIV, §2]), i.e. the monic
polynomials uniquely determined by the conditions

qk|qk−1| · · · |q1, pA(t) := det(t − A) = q1 . . . qk,

such that, as aQ[t]-module, (Qn, A) is isomorphic to the direct sum of cyclic modules

(Qn, A) ∼=
k⊕
j=1

Q[t]/(qj ).

(Observe that qk is the minimal polynomial of A.) We deduce

F0(Zn, A) = ( pA(t) ), F1(Zn, A) =
(pA(t)
q1

)
, F2(Zn, A) =

(pA(t)
q1q2

)
, . . . . �
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§2.3 The Alexander function and the Reidemeister torsion

Assume R is a Noetherian, unique factorization domain with 1 and

(C, ∂) : 0 → C�→ C�−1 → · · · → C1 → C0 → 0

is a chain complex of finitely generatedR-modules. We define the Alexander function
A(C) to be zero if ord

(
Hi(C)

) = 0 for some i. Otherwise, we set

A(C) :=
�∏
j=0

ord
(
Hi(C)

)(−1)i+1
.

Example 2.29(The circle revisited). The ring Z[t, t−1] is the localization of a fac-
torial Noetherian ring and so itself must be factorial and Noetherian. Consider the
complex of Z[t, t−1]-modules discussed in Example 2.4,

C : 0 → C1 = Z[t, t−1] ∂→ C0 = Z[t, t−1] → 0,

where δ is the multiplication by (t − 1). Then

H1(C) ∼= Z[t, t−1], ord
(
H1(C)

) ∼ 1,

H0(C) ∼= Z[t, t−1]/(1− t),
so that (see Example 2.21)

ord
(
H0(C)

) ∼ (t − 1).

Thus A(C) ∼ (t − 1)−1. �


Example 2.30. Suppose U is a torsion module over R = Z[t, t−1] which is free as
a Z-module. We deduce that the rank of U over Z is finite, say r . The polynomial t
defines an automorphism

A ∈ AutZ(U) ∼= SL(U) ∼= SL(r,Z), u 
→ t · u.
Then, according to Example 2.28 we have

ordZ[t,t−1] U ∼ pA(t) := det(t − A). �


Suppose (X, Y ) is a compact CW-pair. Set H := H1(X), F = H/Tors(H),
denote by X̂→ X the universal (maximal) Abelian cover of X, and by aug : H → F

the natural projection. We can form the complex of Z[F ]-modules

Caug(X, Y ) := C(S(X̂), S(Ŷ ))⊗aug Z[F ]. (2.2)
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Z[F ] is Noetherian and factorial so the Alexander function of this complex is an
element in Q(F ), well defined up to multiplication by a unit in the ring Z[F ]. We
denote this Alexander function by A(X, Y ) and we will refer to it as the Alexander
function of the pair (X, Y ). The next result, due to Turaev, generalizes the computation
in Example 2.29.

Theorem 2.31([33, 73, 111]). If (X, Y ) is a compact CW-pair then

T
aug
X,Y ∼ A(X, Y ) ∈ Q(F ).

Remark 2.32. The above result is similar in spirit with the classical Euler–Poincaré
theorem which states that the Euler characteristic of a simplicial complex is equal to
the Euler characteristic of its homology. In the above theorem, T aug is defined in
terms of a simplicial (CW) decomposition while the Alexander function is defined
entirely in homological terms. �


Proof. We follow the approach in [111]. This theorem is a consequence of the
following abstract result.

Lemma 2.33. Suppose R is a Noetherian, factorial ring of characteristic zero, K is
its field of fractions and

C : 0 → Cm→ Cm−1 → · · · → C1 → C0 → 0

is a chain complex of free R-modules, equipped with a basis c such that

rankK H∗(C) = 0, i.e. H∗(C) = TorsH∗(C).

Then

T(C, [c]) = ζ
m∏
j=0

ord
(
Hj(C)

)(−1)j+1
,

where ζ is a unit of R.

Proof. Denote by Ji the cokernel of ∂i+1 : Ci+1 → Ci , and byAi the matrix describing

∂i+1 : Ci+1 → Ci

with respect to the basis c. Set ni := dimK Ci ⊗K and ri := dimKAi ⊗K. We have
an exact sequence

0 → Hi(C)→ Ji → Ci−1,

and since Ci−1 is free we deduce that TorsHi(C) = Tors(Ji). Hence,

O
(
Hi(C)

) = O
(
Tors(Ji)

) *⇒ ord(Hi(C)) = ord
(
Tors(Ji)

)
. (2.3)
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On the other hand, observe that if B2i is any nonsingular square submatrix of A2i of
order r2i , 0 ≤ i ≤ #(m− 1)/2$, then there exists an unique τ -chain

{(S0, D̃0), . . . , (Sm−1, D̃m−1)}
such that D̃2i = B2i . Thus

det D̃2i = det(B2i ) ∈ O
(
Tors(J2i )

)
. (2.4)

If we write T(C, c) as an irreducible fraction x/y, we deduce from Proposition 1.5
that

x/y =
∏
i≥0

det D̃2i+1/ det D̃2i

Since the r2i × r2i sub-matrix B2i in the equality (2.4) is arbitrary, we deduce that the
denominator y of T divides all the generators of

∏
i≥0 O

(
Tors (J2i )

)
because they are

all of the form
∏
i≥0 detB2i . Hence

T(C, c) ·
∏
i≥0

O
(
Tors(J2i )

) ⊂∏
i≥0

O
(
Tors(J2i+1)

)
.

The opposite inclusion

T(C, c)−1 ·
∏
i≥0

O
(
Tors(J2i+1)

) ⊂∏
i≥0

O
(
Tors(J2i )

)
is proved in a similar fashion. By writing T(C) = x/y, x, y ∈ R we deduce

x ·
∏
i≥0

O
(
Tors(J2i )

) = y ·∏
i≥0

O
(
Tors(J2i+1)

)
.

Replacing O→ ord, and using (2.3) we deduce

x ·
∏
i≥0

ord
(
H2i (C)

) ∼ y ·∏
i≥0

ord
(
H2i+1(C)

)
,

so that

T(C) ∼
m∏
j=0

ord(Hj (C))
(−1)j+1

,

where we recall that ∼ denotes the equality up to multiplication by a unit of R. �


Definition 2.34. Suppose X is a finite CW-complex of dimension ≤ 2 and denote by
F the free part of H1(X), F := H1(X)/Tors(H1(X)). The Alexander polynomial of
X is by defined by the equality

�(X) ∼ ord
(
H1
(
Caug(X̂)

)) ∈ Z[F ]
where Caug(X̂) is defined as in (2.2). �
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Theorem 2.35([110, 111]). Let X be a finite CW-complex with χ(X) = 0 having
the simple homotopy type of a finite two-dimensional cell complex. Then

TX ∈ N1(H1(X))/±H1(X),

and

T
aug
X ∼


�(X) if b1(X) ≥ 2

�(X)
(t−1) if b1(X) = 1,

where in the second line t denotes a generator of the free part of H1(X).

Proof. We can consider X to be a finite two-dimensional cell complex with a single
zero-cell. Denote by m the number of 2-cells which we label by

t1, . . . , tm.

Since χ(X) = 0 the number of 1-cells is m+ 1 and we label them by

�0, �1, . . . , �m.

SetH := H1(X) and denote the maximal Abelian cover by X̂→ X. The 1× (m+1)-
matrix with entries in Z[H ] representing the boundary operator

∂ : C1(X̂)→ C0(X̂)

has the form [
�̂0 − 1 �̂1 − 1 · · · �̂m − 1

]
,

where �̂i denotes the element of H determined by the cell �i .
The boundary operator ∂ : C2(X̂) → C1(X) is represented by a (m + 1) × m,

matrix D. Now choose

b2 = {t1, . . . , tm}, b1 = {�0, . . . , �m} \ {�k}

where �k is such that �̂k �= 0 ∈ H . Then

�(X) · (�̂k − 1) ∼ detD(k),

where D(k) is the matrix obtained from D by deleting the row corresponding to the
cell �k . Thus

(1− h)TX ∈ Z(H), ∀h ∈ H.
Using Proposition 1.27 we deduce that TX ∈ N1(H). The second part follows imme-
diately from Theorem 2.31. We leave the details to the reader. �
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§2.4 The Reidemeister torsion of 3-manifolds

The smooth, oriented manifolds are very special topological spaces and this special
structure is reflected in their Reidemeister torsion as well. We will discuss in some
detail the simplest nontrivial situation, that of 3-manifolds.

One important distinguishing characteristic of an oriented manifold is the Poincaré
duality. J. Milnor has shown that this phenomenon has a Reidemeister torsion coun-
terpart; see [70].

Consider a smooth, compact, oriented n-dimensional manifold M . (We do not
exclude the possibility that ∂M �= ∅.) We assumeM is triangulated and we denote by
C(M) the corresponding simplicial chain complex. Denote by C�(M, ∂M) the dual
cellular chain complex [67, §5.3], and by 〈•, •〉 the natural Poincaré pairing

〈•, •〉 : C�n−k(M, ∂M)× Ck(M)→ Z, k = 0, . . . , n.

More precisely, if σ is a k-simplex ofM andD(σ) denotes is dual (n−k)-polyhedron
then

〈D(σ), η〉 =
{

1 if σ = η
0 if σ �= η.

Set H := H1(M), and denote as usual by M̂ → M the universal Abelian cover. The
simplicial decomposition of M induces a simplicial decomposition (σ̂ ) on M̂ . This
produces a dual cellular decomposition

(
D(σ̂ )

)
. This is equivariant in the sense that

D(h · σ̂ ) = h ·D(σ̂ ), ∀σ̂ , h ∈ H.
C(M̂) has a natural structure ofZ[H ]-module. Using the involution ε ofZ[H ] induced
by the automorphism h→ −h of the additive group H we obtain a conjugate Z[H ]-
module Cε(M̂). The equivariance of σ̂ 
→ D(σ̂ ) shows that the Poincaré pairing
extends to a Z[H ]- bilinear pairing

〈•, •〉 : C�(M̂)× Cε(M̂)→ Z[H ].
SetF := H/Tors (H). Q(F ) is the field of rational functions in the variables t1, . . . , tb
(b := b1(M)), and is equipped with the involution ε defined by ti 
→ t−1

i . We get
complexes

Caug(M̂) := C(M̂)⊗Z[H ] Q(F ), C�aug(M̂) := C�(M̂, ∂M̂)⊗Z[H ] Q(F ),

and a Q(F )-bilinear ε-pairing

C�aug(M̂, ∂M̂)× Cεaug(M̂)→ Q(F ).

The Poincaré duality implies that the complex C� computes the homology of the pair
(M, ∂M) (with various twisted coefficient systems) and the above pairing is perfect.
Using the abstract duality result in Proposition 1.21 we deduce

ε
(
T

aug
M

) · (T aug
M,∂M

)(−1)dimM+1 ∼ 1. (2.5)
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In particular, ifM is a 3-manifold then

ε
(
T

aug
M

) ∼ T
aug
M,∂M. (2.6)

If moreover χ(M) = 0 (which means that either ∂M is empty or it is an union of tori)
then we deduce from the short exact sequence of the pair (M, ∂M) that

T
aug
M ∼ T

aug
M,∂M,

because T∂M ∼ 1. Thus, if χ(M) = 0 we have

ε
(
T

aug
M

) ∼ T
aug
M . (2.7)

More generally, ifK is one of the fields in the decomposition ofQ(H) andπ : Q(H)→
K denotes the natural projection, then the involution ε on Q[H ] descends to an invo-
lution on K we deduce that if TπM ∈ K \ {0} then

ε
(
T πM
) ∼ T πM,∂M.

In particular, if we (non-canonically) regard TM as a function TM : H → Q, then the
above duality statements can be rephrased as

TM(h) ∼ TM(h
−1)

meaning there exist ε = ε(M, ∂M) = ±1 and h0 ∈ H such that

TM(h
−1) = εTM(hh0), ∀h ∈ H. (2.8)

Example 2.36. The smooth 3-manifolds with boundary admit cell decompositions
which are simple homotopic to 2-dimensional cell complexes and thus they are covered
by Theorem 2.35. Suppose M is the complement of a knot K ↪→ S3, M ∼= S3 \K.
Then H1(M) ∼= Z and

TM ∼ T
aug
M ∼ �K(t)/(1− t),

where �K(t) is the Alexander polynomial of S3 \K. The duality (2.7) is equivalent
to

�K(t) ∼ �K(t
−1).

The polynomial�K(t) is usually referred to as the Alexander polynomial of the knotK .
More generally, if K ↪→ S3 is a link with n ≥ 2 components, then the torsion of

its exterior is an element in the group algebra Z[Zn] called the Alexander polynomial
of the link. We refer to Appendix §B.1 on methods of computing the Alexander
polynomial of a knot or link in S3. �


Exercise 2.1.SupposeK ↪→ S3 is a split link, i.e. there exists an embeddedS2 ↪→ S3,
disjoint from K, such that each component of S3 \S2 contains at least one component
of K. Prove that the Alexander polynomial of K is trivial. (Hint: Use the same
strategy as in Example 2.18.) �




§2.4 The Reidemeister torsion of 3-manifolds 69

The Reidemeister torsion of a closed 3-manifold has special arithmetic properties.
The next result, due to V. Turaev, summarizes some of them. Later on in §3.6 we will
discuss more refined versions of these arithmetic properties.

Theorem 2.37([110, 111, 114]). LetM be a smooth, closed, oriented, three-manifold.
Then

TM ∈ N2(H1(M))/±H1(M)),

and

T
aug
M ∼


�(M) if b1(M) ≥ 2

�(M)

(t−1)2
if b1(M) = 1

0 if b1(M) = 0.

The original proof of this theorem can be found in [110] and is based on a clever
use of the gluing formula (see also [112]). For a more elementary approach, based
on the definition of torsion, we refer to [114]. Corollary 1.41 implies the following
result.

Corollary 2.38. Suppose M is a 3-manifold, possibly with boundary, and let G :=
H1(M). If b1(M) > 0 then the complex Fourier transform of the torsion of M is
a holomorphic on G̃ \ {1}. If b1(M) > 1 then the complex Fourier transform is a
holomorphic function on G̃.

The following result generalizes the classical fact stating that the sum of the coef-
ficients of the Alexander polynomial of a knot in S3 is ±1.

Theorem 2.39(Alexander formula). SupposeM is an oriented 3-manifold such that
b1(M) = 1, r := |TorsH1(M)|. Then |�M(1)| = r .

Proof. Set H := H1(M), F : H/Tors(H) ∼= Z. We will consider only the special
case when ∂M �= ∅. (For example, M is the complement of a knot in a rational
homology sphere.) For the general case we refer to [112].

In this case M is simple homotopy equivalent to a 2-dimensional CW-complex
X with a single 0-cell. We can assume that the closure of a one-dimensional cell is
a circle which describes a generator t of F . We denote this circle by Y . From the
multiplicativity properties of the torsion we deduce

�M(t) = T
aug
X · (t − 1) = T

aug
X,Y .

The chain complex Caug(X, Y ) of Z[H ] modules is very simple. It has no cells in
dimensions other that 1, 2 and the torsion is given by the determinant of the boundary
map

∂ : Caug
2 (X, Y )→ C

aug
1 (X, Y ).
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Ifmdenotes the number of 2-cells of (X, Y ) then we can regard ∂ as am×mmatrix with
entries inZ[t, t−1]. We will write ∂(t) to emphasize this. The matrix ∂(1) := ∂(t)|t=1
is the boundary map

C2(X, Y )→ C1(X, Y ),

and
|�M(1)| = | det ∂(1)| = |H1(X, Y )| = |TorsH1(M)|. �


Remark 2.40. The above argument can be significantly strengthened. More precisely,
suppose M is a closed oriented 3-manifold without boundary such that b1(M) = 1
which is equipped with a CW decomposition. Fix an orientation of H1(M,R) and
choose a generator t of the free part ofH1(M) compatible with the above orientation.
Fix ordered bases ck of the cellular complex Ck(M), k = 0, . . . , 3. The Alexander
polynomial of M depends on these bases and we will denote this dependence by
�M(t; c).

The Poincaré duality on M induces a canonical orientation on H∗(M,R) so that
the canonical Euler isomorphism

Eul : DetC∗(M)⊗ R→ DetH∗(M,R)

can be identified with an real number

ε(c) ∈ {±1}.

Then one can show (see [114, Thm. 4.2.3]) that

ε(c)�M(1; c) = |TorsH1(M,Z)|.

We will have more to say about his issue later on in §3.5. �


§2.5 Computing the torsion of 3-manifolds using surgery
presentations

One of the most efficient methods for computing the torsion of a 3-manifold is based
on the following surgery formula due V. Turaev.

Theorem 2.41(Surgery Formula, [111]). Suppose K = K1∪· · ·∪Kn is an oriented
link in the interior of a compact, oriented 3-manifold X such that χ(X) = 0. Denote
by UK a tubular neighborhood of K in X. Then the natural morphism

α : H1(X \ UK)→ H1(X)
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is an epimorphism and

α�
(
TX\UK

) = TX ·
n∏
i=1

(
1− [Ki]

)
, (2.9)

where α� : N
(
H1(X \ UK)

) → N
(
H1(X)

)
is the morphism induced by α described

in §1.5.

This result is an application of the multiplicativity property of the homological ex-
act sequence of the pair (X,X \ UK). For more details about surgery we refer to
Appendix §B.2.

Exercise 2.2.Prove Theorem 2.41. �


In applications it is much more convenient to use the Fourier transform of this formula.
Set G = H1(X \ UK) and H = H1(X). The morphism α induces an injection

α̂ : Ĥ ↪→ Ĝ

while the element [Ki] ∈ H defines via the Fourier transform a function

[̂Ki] : Ĥ → C, [̂Ki](χ) = χ̄([Ki]), ∀χ ∈ Ĥ .
The surgery formula can now be rewritten as

α̂∗
(
T̂X\UK

) = T̂X ·
n∏
i=1

(
1− [̂Ki]

)
. (2.10)

The formulation (2.10) has one major advantage over the formulation in (2.9). More
precisely, the product in (2.10) is the pointwise product in the algebra of complex
valued functions on Ĥ and the zero divisors of are given by the functions which are
zero at some point of Ĥ . On the other hand, the zero divisors of the group algebra
C[H ] are much harder to detect. From (2.10) we deduce

T̂X(χ) =


α̂∗
(
T̂X\UK

(χ)
)

∏n
i=1

(
1−χ̄([Ki ])

) if
∏n
i=1(1− χ̄([Ki])) �= 0

? if
∏n
i=1

(
1− χ̄([Ki])

) = 0.

(2.11)

We can sometime fill in the question mark above using the following simple observa-
tion.

Lemma 2.42. Suppose b1(X) > 0 and the homology classes [K1], . . . , [Kn] have
infinite orders in H1(X). Then (2.11) uniquely determines T̂X.
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Proof. Set H̃ = Hom(H,C∗). The complex Fourier transform T̃X of TX is holomor-
phic on H̃ \ {1} if b1(X) = 1, and in fact holomorphic on H̃ if b1(X) > 1. If the
homology classes [Ki] have infinite orders in H for all i = 1, . . . , n then the zero set

Z :=
{
χ ∈ Ĥ \ {1};

n∏
i=1

(
1− χ−1([Ki])

) = 0
}

is an analytic subvariety of H̃ \ {1} of positive codimension. This implies that H̃ \ Z
is dense in H̃ . The function T̃X is unambiguously defined on H̃ \ Z by (2.11), and
admits an unique holomorphic extension to H̃ \ {1}. �


In the remainder of this section we will describe through examples how the above
results work in concrete applications.

Example 2.43(Trivial circle bundles over Riemann surfaces). Suppose X = S1 ×
�g , where�g is an oriented Riemann surface of genus g. We will consider separately
three cases.

1. g = 0, X = S1 × S2. Then X is obtained by gluing two solid tori along their
boundaries via the tautological identification. This shows that H1(X) = Z and using
the surgery formula we deduce

TX = (1− t)−2.

2. g = 1, X = T 3. In this case we have

TX ∼ 1.

3. g ≥ 2. For simplicity we consider only the case g = 2. The manifold S1 ×� can
be obtained from two copies of S1 × T 2 using the fiber connect sum operation. More
precisely, consider two copies Y1, Y2 of the complement of a tiny open disk D ⊂ T 2

and set
Xi := S1 × Yi.

Then
T 3 = D × S1 ∪Xi,

and the inclusion induced morphism α : H1(Xi)→ H1(T
3) is an isomorphism. From

the surgery formula (2.10) we deduce that

TXi ∼ TT 3 · (1− t) ∼ (1− t),
where t denotes the homology class carried by the fiber. We have the decomposition

X := S1 ×�2 = X1 ∪X2, X0 := X1 ∩X2 ∼= T 2.
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Denote by j k : H1(Xk) → H1(X), k = 0, 1, 2, the inclusion induced morphisms.
The Mayer–Vietoris gluing formula implies

T
j 0
X · TX0 ∼ T

j 1
X1
· Tj 2
X2
= (1− t)2. (2.12)

This shows j0 �= 0. We conclude that j0TX0 = 1 and

TX = (1− t)2.
For Riemann surfaces of genus g we have

TS1×�g ∼ (ϕ − 1)2g−2.

This is in perfect agreement with the computations in Example 2.7. �


Example 2.44(Nontrivial circle bundles over Riemann surfaces). Consider a degree
� circle bundle

S1 ↪→ N�→ �

over a Riemann surface of genus g ≥ 0. N� can be obtained form N0 using the
following procedure.

• Remove a tubular neighborhood U of a fiber of N0 so that U ∼= S1 ×D2 and set

V := N0 \ U ∼= S1 × (� \D2).

• Orient ∂U using the obvious diffeomorphism

∂U ∼= ∂D2 × S1.

Observe that the above diffeomorphism produces a canonical basis of H1(∂U) and
hence an identification with Z2. Similarly, orient ∂V using the obvious diffeomor-
phism

∂V ∼= ∂(� \D2)× S1.

This diffeomorphism produces a natural basis of H1(∂V ) and thus an identification
with Z2. As in the previous example we deduce

TV ∼ (ϕ − 1)2g−3

where ϕ denotes the homology class carried by the fiber.

• Glue back U to V using the attaching map

�� :=
[−1 0
−� 1

]
.

To obtain more explicit results we need to rely on the Mayer–Vietoris sequence.
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Denote by α the natural morphism α : H1(V )→ H1(N�), and set G = H1(N�).
Denote by β the natural morphism H1(U) → H1(N�). First, notice that H2(N�) is
torsion free, of rank 2g and H2(V ) is torsion free of rank 2g, so that we can split the
following short exact portion off the Mayer–Vietoris sequence

0 → H1(T
2)

jU⊕jV−→
H1(U)

⊕
H1(V )

β−α−→ H1(N�)→ 0.

Denote by c1, c2 the natural generators of T 2, and by ϕ, x1, . . . , x2g the natural gener-
ators of H1(V ) (so that ϕ corresponds to the fiber and the xi’s generate H1(� \D2)).
Also, denote by y the natural generator of H1(U). Finally, denote by IU and respec-
tively IV the morphisms

IU : H1(∂U)→ H1(U), IV : H1(∂V )→ H1(V ).

In terms of the above generators we have

IV (c1) = 0, IV (c2) = ϕ, IU (c1) = 0, IU (c2) = y.
Then jU = IU ◦ �−1

� , jV = IV , so that

jV : c1 
→ 0, c2 
→ y.

Since �−1
� = �� we deduce

jU : c1 
→ −c1 − �c2 
→ −�ϕ, c2 
→ c2 
→ ϕ.

Using the bases {c1, c2} in H1(T
2) and {y;ϕ, x1, . . . , x2g} in H1(U) ⊕ H1(V ) we

deduce that jU ⊕ jV has the (2g + 2)× 2-matrix description

A :=


0 1
−� 1
0 0
...
...

0 0

 . (2.13)

Denote by � the sublattice of Z2g+2 generated by �ϕ, y + ϕ. Since ker(β − α) = �
we deduce

α(ϕ�) = 0 and k := β(y) = α(ϕ)−1.

Re-label ϕ := α(ϕ). ϕ generates the torsion part ofH1(N�)which is a cyclic subgroup
of order |�|. Moreover, k = ϕ−1 and using (2.11) we deduce

T̂N�(χ) ∼

(
χ̄(ϕ)− 1

)2g−2 if χ(ϕ) �= 1

? if χ(ϕ) = 1.



§2.5 Computing the torsion of 3-manifolds using surgery presentations 75

Observe that Lemma 2.42 is unapplicable in this case since ϕ is a torsion class. When
g = 0, then N� can be identified with the lens space L(1,−�), and the only character
χ such that χ(ϕ) = 1 is the trivial character. In this case H1(N�) is a torsion group,
and we have (see Theorem 2.37 of §2.4)

T̂N�(1) = 0.

To complete the determination of TN� for g > 0 we will rely on a twisted version of
the Gysin sequence.

Consider a nontrivial character χ : H1(N�)→ S1 such that χ(ϕ) = 1. The usual
Gysin sequence of the fibrationN�→ � implies that χ factors through the morphism
π∗ : H1(N�)→ H1(�), i.e. there exists a nontrivial character χ̃ : H1(�)→ S1 such
that the diagram below is commutative:

H1(N�)

H1(�) S1.

�
π∗

�
�
�
��
χ

�χ̃

The induced map χ : Z[H1(N�)] → C defines a system of local coefficients on N�
which we denote by Cχ . Since χ factors through the morphism π∗ we deduce that
it defines a system of local coefficients on the total space X̃ of the associated disk
bundle. We denote this induced local system by Cχ̃ . Using the Poincaré duality we
deduce that we have isomorphisms

Hk(X̃,N�;Cχ ) ∼= H 4−k(X̃,Cχ̃ ) ∼= H 4−k(�,Cχ̃ ) ∼= Hk−2(�,Cχ̃ ).

The homological long exact sequence of the pair (X̃, N�) can now be rewritten

· · · → Hk(N�,Cχ )→ Hk(�,Cχ̃ )→ Hk−2(�,Cχ̃ )→ · · · . (2.14)

Set bk(χ) := dimCHk(�,Cχ̃ ) and e(χ) = b0(χ) − b1(χ) + b2(χ). Then e(χ) is
independent of χ and we have

e(χ) = e(1) = 2− 2g, ∀χ.
On the other hand, when χ �= 1 then b0(χ) = b2(χ) = 0. This can be seen as follows.
The 0-th cohomology space is naturally identified with the space global sections of
the locally constant sheaf Cχ̃ . Since χ is nontrivial there are no such sections. Hence

b0(χ) = 0, ∀χ �= 1.

On the other hand we have a Hodge–DeRham duality

∧: H 2(�,Cχ̃ )×H 0(�,Cχ̃−1)→ H 2(�,C)
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so that
b2(χ̃) = b0(χ̃

−1) = 0, ∀χ �= 1.

Thus b0(χ) = b2(χ) = 0, ∀χ �= 1 and since e(χ) = 2− 2g we deduce

b1(χ) = 2− 2g, ∀χ �= 1.

Using this information in the fragment k = 1 of the sequence (2.14) we deduce that
we have a surjection

H1(N�,Cχ )� H1(�,Cχ̃ ).

In particular, if g > 1 we deduce H1(N�,Kχ ) �= 0 so that in this case

T̂N�(χ) = 0, ∀χ �= 1, χ(ϕ) = 1.

When g = 1 then H∗(N�,Cχ ) = 0 and from the sequence (2.14) we deduce

T̂N�(χ) ∼ 1.

Later in Example 2.57 we will explain how to extend the above technique to the more
general case of Seifert manifolds. For a different approach we refer to [31, 35]. We
also want to refer to [34, §1,2] where it is explained how to obtain information about
the torsion of the total space of an arbitrary fiber bundle. �


It is known (see [41, 92, 96]) that any 3-manifold can be obtained from S3 by an
integral Dehn surgery on an oriented link in S3. A description of a 3-manifolds as a
Dehn surgery on a link is known as a surgery presentation of a 3-manifold and it is a
very convenient way of operating with 3-manifolds. Many topological invariants can
be algorithmically read off a surgery presentation. We will spend the remainder of this
section explaining how to obtain almost complete information about the Reidemeister
torsion using surgery presentations. For the very basics concerning Dehn surgery we
refer to Appendix §B.2 which we follow closely as far as the terminology and the
orientation conventions are concerned. For a more in depth look at this important
topological operation we refer to [41, 92, 96].

Suppose K = K1∪ · · ·∪Kn is an n-component oriented link in S3. We denote by
E the complement of a tubular neighborhood U of K ↪→ S3. Then E is an oriented
3-manifold with boundary. Moreover, H1(E) is a free Abelian group of rank n, and
the collection of oriented meridians

{µi; i = 1, . . . , n}
defines an integral basis. We denote by λi the canonical longitude of Ki ↪→ S3

oriented such that
λi · µi = 1,
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where the above intersection pairing is defined using the canonical orientation of ∂E
as boundary of E. H1(∂E) is a free Abelian group of rank 2n and the collection

{λi, µj ; i, j = 1, . . . n}
is an integral basis. Set

�ij = Lk(Ki ,Kj ) = Lk(Kj ,Ki ),

where Lk denotes the Z-valued linking number of two disjoint knots in S3. Then the
inclusion induced morphism

j : H1(∂E)→ H1(E)

is described in the above bases by

µj 
→ µj , λi 
→
∑
k �=i
�kjµk.

We perform an integral Dehn surgery on this link with coefficients )d = (d1, . . . , dn) ∈
Zn. The attaching curves of this surgery are

ci = diµi + λi, i = 1, . . . n.

Denote resulting manifold byM )d . The natural morphism

α : H1(E)→ H1(M )d ,Z)

is onto, and leads to the following presentation of H1(N,Z)

H1(∂E) ⊃ spanZ{ci; i = 1, . . . , n} j−→ H1(E)� H1(M )d)→ 0,

ci 
→ diµi +
∑
k �=i
�kiµk.

We denote by P = P )d the symmetric n× n matrix with entries

pij =
{
�ij if i �= j
di if i = j.

The above presentation can be rewritten in the computationally friendly from

Zn
P )d−→ Zn � H1(M )d)→ 0. (2.15)

The cores of the attaching solid tori define homology classes inM )d which for simplicity
we denote by ki . Algebraically, these homology classes are the images via α of
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Ki ∈ H1(E), i = 1, . . . , n, where Ki = jλ′i , and λ′i ∈ H1(E) are homology classes
determined by the conditions

λ′j · ci = δij , i, j = 1, . . . , n.

For example, we can pick
λ′j = −µj .

To compute the torsion ofM )d we use the following consequence of Turaev’s surgery
formula Theorem 2.41.

Corollary 2.45.

α�
(
TE
) ∼ TM )d ·

n∏
i=1

(1− ki ), (2.16)

where α� : N
(
H1(E)

) → N
(
H1(M )d)

)
is the morphism induced by α described in

§1.5.

As explained before, it is convenient to use the Fourier transform trick described
in §1.6. To ease the presentation we set

G := H1(E), H = H1(M )d).

Then α : G→ H is an epimorphism, and by passing to duals we get an injection

α̂ : Ĥ ↪→ Ĝ.

We can thus view Ĥ as a subgroup of Ĝ. The Fourier transform of TE is a (generalized)
function T̂E on Ĝ, and the Fourier transform of TM )d is a (generalized) function T̂M )d
on Ĥ . Then (2.16) becomes the linear equation

T̂E(χ) = T̂M )d (χ) ·
n∏
i=1

(
1− χ̄(Ki)

)
, ∀χ ∈ Ĥ ↪→ Ĝ. (2.17)

The homology classes ki ∈ H are represented by the vectors

Ki = −µi ∈ G ∼= Zn.
For each χ ∈ Ĥ we set χi := χ([µi]), where [µi] := α(µi) ∈ H . We can now
rewrite (2.16) as

T̂E(χ1, . . . , χn) = T̂M )d (χ1, . . . , χn) ·
n∏
i=1

(
1− χi

)
. (2.18)

The next example will illustrate the strengths and limitations of the above surgery
formula.
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Example 2.46(Surgery on the Borromean rings). Consider the Borromean rings de-
picted in Figure 2.4. Denote by E the complement of this link. This link has the
property that any two of its components are unlinked unknots. Hence �ij = 0,
∀i, j = 1, 2, 3. However, this link is nontrivial since its Alexander polynomial is
(see [8])

TE ∼ (µ1 − 1)(µ2 − 1)(µ3 − 1).

3

0
0

K1

K2

K3

Figure 2.4. Surgery on the Borromean rings.

SetM = M(3,0,0). Note that j has the simple form

µi 
→ µi, λi 
→ 0.

The attaching curves of this surgery are

c1 = 3µ1 + λ1, c2 = λ2, c3 = λ3.

We can pick
K1 = −µ1, K2 = −µ2, K3 = −µ3.

The first homology group ofM has the presentation

Z3 P−→ Z3 � H1(M)→ 0

where P is the 3× 3 matrix

P =
 3 0 0

0 0 0
0 0 0

 .
Thus H = H1(M) = Z3 ⊕ Z2 with generators [µ1], [µ2], [µ3]. We deduce

Ĥ = U3 × (S1)2, Um := {z ∈ C∗; zm = 1},
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and (2.18) becomes

(χ1 − 1)(χ2 − 1)(χ3 − 1) ∼ T̂M(χ1, χ2, χ3)(1− χ1)(1− χ2)(1− χ3),

∀χ1, χ2, χ3 ∈ S1, χ3
1 = 1. We deduce

T̂M(χ1, χ2, χ3) ∼ 1, ∀χ1 �= 1, χ2 �= 1, χ3 �= 1.

Fix χ1 �= 1. Then T̂M(χ1, χ2, χ3) is a Laurent polynomial in χ2, χ3 so that we deduce

T̂M(χ1, χ2, χ3) ∼ 1, ∀χ1, χ2, χ3, χ1 �= 1.

We notice that the surgery formula contains no information about T̂M(1, χ2, χ3). This
is the Fourier transform of T

aug
M , which according to Theorem 2.37 is the Alexander

polynomial ofM . �


Motivated by Lemma 2.42 we isolate a special class of surgeries.

Definition 2.47. A closed 3-manifold M satisfying b1(M) > 0 is said to admit a
nondegenerate surgery presentation if there exists an oriented link K = K1 ∪ · · · ∪
Kn ⊂ S3, and surgery coefficients )d ∈ Zn such that ifM ∼= M )d , and all the homology
classes kj have infinite orders in H1(M )d). �


The nondegenerate surgeries can be easily recognized using the following elemen-
tary algebraic result.

Proposition 2.48. Consider an n-component oriented link K ↪→ S3, and a vector
)d ∈ Zn. Set G := H1(S

3 \ K). The surgery defined by the coefficients )d is non-
degenerate if and only if for every i = 1, . . . , n there exists )wi ∈ Hom(G,Z) such
that

〈 )wi, P )dµj 〉 = 0, ∀j = 1, . . . , n, and 〈 )wi, µi〉 �= 0.

Exercise 2.3.Prove Proposition 2.48. �


The proof of the following result is a simple exercise in Kirby calculus ([115,
§3.8]).

Proposition 2.49. Any 3-manifoldM withb1(M) > 0 admits a nondegenerate surgery
presentation.

Example 2.50. To fix the “deficiency” of the surgery described in Example 2.46 we
slide K2 over K1. The link and the surgery coefficients change as indicated in Fig-
ure 2.5. This surgery is nondegenerate and produces the same 3-manifold as the
surgery in Example 2.46. The new problem we are facing is the computation of the
Alexander polynomial of the new link. We leave the quite unpleasant computation to
the reader.

�
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3

3

0

K1

K2

K3

Figure 2.5. The effect of a Kirby move.

The above discussion shows that we can compute the torsion of any 3-manifold
with b1 > 0 provided we have a way to compute the Alexander polynomials of links in
S3. There are algorithms for computing Alexander polynomials of links (see e.g. §B.1
and the references therein), but this may not always be a pleasant task. We will take up
this issue again in the next chapter and explain how to extend the above consideration
to rational homology 3-spheres.

Example 2.51. We want to illustrate the above observations by computing the Reide-
meister torsion of the 3-manifold obtained by Dehn surgery on the two component link
depicted in Figure 2.6. The torsion of the complement E of the link is the Alexander
polynomial of this link which was computed in [26] and is

�K(µ1, µ2) = (1− µ1 + µ2
1)
(
(1− 2µ1)− µ2

1µ2(2− µ1)
)
.

The linking number of these two knots with the orientations indicated in the figure is
Lk(K1,K2) = 2.

K1

K2

Figure 2.6. A two-component link.
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We perform a (4, 1) surgery on this link, and we denote by M the resulting
3-manifold. The group H = H1(M) admits the presentation

F1 = spanZ(c1, c2)
P−→ F0 = spanZ(µ1, µ2)→H → 0,

where

P =
[

4 2
2 1

]
Also,

K1 = −µ ∈ F1, K2 = −µ2 ∈ F1.

Using the MAPLE procedure ismith we obtain[
1 0
0 0

]
= UPV, U =

[
0 1
1 −2

]
, V =

[
0 −1
1 2

]
This means that the bases {V c1, V c2} in F0 and {U−1µ1, U

−1µ2} diagonalize the
presentation matrix P . The coordinates of µ1 and µ2 in the new basis are

µ1 →
[

0
1

]
, µ2 →

[
1
2

]
.

We denote by g the generator in H . We deduce that

k1 = −g, k2 = 2g,

so that both these homology classes have infinite orders. In other words, this surgery
is nondegenerate. Let χ ∈ Ĥ \ {1}. The surgery formula (2.17) becomes

(1− χ + χ2) · ((1− 2χ)− χ2χ−2(2− χ)) ∼ T̂M(χ) · (1− χ−1)(1− χ2)

so that
(1− χ + χ2)(1+ χ) ∼ T̂M(χ)(1− χ)2(1+ χ)

which implies

T̂M(χ) ∼ 1− χ + χ2

(1− χ)2 .

�


Exercise 2.4.Compute the torsion of the 3-manifold obtained from the Dehn surgery
depicted in Figure 2.5. �
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§2.6 Plumbings

In this section we want to describe a special yet large class of 3-manifolds, and then
outline a method for computing their torsions. These 3-manifolds, known as graph
manifolds, or plumbings, play an important role in the study of isolated singularities
of complex surfaces. They are all obtained by gluing elementary pieces of the form
S1×�, where� is a surface with boundary. We begin by describing a combinatorial
method of cataloging these manifolds.

Start with a graphG. We denote by V the set of vertices and byE the set of edges.
The edges are oriented. We do not exclude the possibility that the graph has tails2.
We denote by T the set of tails, so that T ∩ E = ∅. Multiple edges connecting the
same pair of vertices or loops are also allowed. For each edge e we denote by v±(e)
the final/initial point. For each vertex we denote by E±v the set of outgoing/incoming
edges, and by Tv the set of tails at v. Set Ev = E+v ∪ E−v , deg± v = |E±v |, tv = |Tv|,
and deg v = deg+ v + deg− v + tv .

A decoration of G is a function

� : E→ SL2(Z), e 
→ �(e).

A weight on G is a function g : V → Z≥0. Denote by C the 2× 2 matrix

C =
[−1 0

0 1

]
.

Suppose (G, V,E, T , g, �) is a weighted decorated graph. We construct a 3-manifold
with boundary as follows.

• Associate to each v ∈ V a Riemann surface �v with deg v boundary components.
Fix a bijection between the components of ∂�v and Ev ∪ Tv . Set Mv := S1 × �v ,
and denote by  v the fiber of this trivial fibration over �v .

• For each v ∈ V and each e ∈ Ev fix an orientation preserving diffeomorphism
between the component ∂eMv ofMv and the oriented standard torus  v × ∂e�v .
• For each edge e ∈ E glue the torus ∂eMv−(e) to the torus ∂eMv+(e) using the
orientation reversing diffeomorphism which is described by the matrix C ◦�(e) with
respect to the oriented bases([∂e�v−(e)], [ v−(e)]), ([∂e�v+(e)], [ v+(e)])
of H1(∂eMv±(e)).

After the above identifications we obtain an oriented 3-manifold with |T | boundary
components. We denote it byM(G) and we will say thatM is a generalized plumbing
described by the weighted decorated graphG. G is also known as the plumbing graph.

2A tail is an arc with one boundary component a vertex of the graph, while the other is free.
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This is related to the traditional plumbing construction described in [46, §8] where
the decorations have the special form

�(e) = ±Pm,n := ±
[

m 1
mn− 1 n

]
= ±Tn�Tm,

where

� =
[

0 1
−1 0

]
, Tk =

[
1 0
k 1

]
, ∀k ∈ Z.

To see this, note that

CPm,n =
[ −1 0
−n 1

]
.

[
0 1
1 0

] [ −1 0
−m 1

]
,

and the expression in the right hand side is exactly the description of the attaching
map in [46, p.67]. Observe also that �2 = −1 and Tm ◦ Tn = Tm+n, ∀m, n ∈ Z.

Despite its name, the generalized plumbing construction does not produce more
manifolds that the usual plumbing. To see this we will describe a few simple methods
of simplifying the combinatorics of a decorated graph G which do not affect the
topology ofM(G). Assume for simplicity that there are no tails.

If G(V,E, {Mv}, �) is a weighted, decorated graph we define its conjugate with
respect to a subset S ⊂ E to be the graph ḠS(V , ĒS, S, �̄S) such ḠS has the same
edges asG but the ones in S have opposite orientations while the others are unchanged.
Moreover

�̄S(e) =
�e if e ∈ E \ S
C�−1

e C if e ∈ S
Observe that CT −1

m C = Tm and CP−1
m,nC = Pn,m.

Proposition 2.52. For any weighted decorated graphG(V,E, {Mv}, �) and any sub-
set S ⊂ E the generalized plumbingsM(G) andM(ḠS) are diffeomorphic.

Exercise 2.5.Prove the above proposition. �


Figures 2.7 and 2.8 represent pairs of conjugate weighted decorated graphs de-
scribing in one instance a circle bundle over a Riemann surface and in the second
instance a simple plumbing.

00 TdTd gg
=

Figure 2.7. A degree d circle bundle over a Riemann surface of genus g.
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g0g0 Pm,n g1g1
=

Pn,m

Figure 2.8: Plumbing a degree m bundle over a Riemann surface of genus g0 with a degree n
bundle over a genus g1 Riemann surface.

Suppose (G, V,E, g, �) is a decorated graph and v0 is a vertex of G of genus 0
as depicted in Figure 2.9. The concatenation of G at v0 is the decorated graph Gv0

obtained via the transformation of the graph G depicted in Figure 2.9. It consists of
replacing the two edges at v0 decorated by �± by a single edge connecting the two
neighbors of v0 by a single edge decorated by �+ · �−. The following result is now
obvious.

Proposition 2.53. The manifoldsM(G) andM(Gv0) are diffeomorphic.

G

ν−

ν− �− �+

ν+

ν+
g = 0

Gν0
�+�−

ν0

Figure 2.9. Concatenation.

To proceed further we need the following algebraic result.

Proposition 2.54. Denote by G ⊂ SL2(Z) the semigroup generated by the matrices
P+n,m, n,m ∈ Z. Then

G = SL2(Z).

Proof. Since �2 = −1 we deduce that −1 = �2 ∈ G. In particular

�−1 = −� ∈ G.

Observe next that

S =
[

1 1
0 1

]
= P+1,1 ∈ G and S−1 =

[
1 −1
0 1

]
= �2P+−1,−1 ∈ G.

Thus G contains the semigroup generated by {±1, S, S−1,�,�−1} which coincides
with SL2(Z) (see [100, Chap. VIII]). �
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The above proposition implies that by applying the concatenation trick several
times we can transform any decorated graph into one in which all the decorations are
of the formP±m,n. Thus any manifold which can be obtained by a generalized plumbing
can also by obtained by a traditional plumbing.

Figure 2.10. A sphere with several holes.

Any compact, oriented Riemann surface, possibly with boundary, can be decom-
posed into Riemann surfaces of genus zero of the type depicted in Figure 2.10. We
have thus proved the following result.

Corollary 2.55. Any generalized plumbing is diffeomorphic with a regular plumbing
of circle bundles over Riemann surfaces of genus zero.

When the plumbing graph has no loops3 the combinatorics of the problem simpli-
fies somewhat in the case of usual plumbings of circle bundles over spheres. First, we
no longer have to keep track of the genera of the vertices, since g(v) = 0, for all v. A
decoration can now be identified with a pair of integers m±(e), and a sign ε(e) = ±1
so that

�(e) = ε(e)Tm+�Tm−
Due to the equality CP−1

m,nC = Pn,m we deduce from the conjugation trick that the
orientation of the edge e is irrelevant. The decorated graph of a plumbing can be
simplified by performing the changes indicated in Figure 2.11.

±Pm,n

m ± n

Figure 2.11. Describing a regular plumbing.

Define the Chern number of a vertex to be

c1(v) =
∑
e∈E−v

m−(e)+
∑
e∈E+v

m+(e).

3These correspond to selfplumbings and lead to quite subtle phenomena; see [37].
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The decorated graph then describe plumbings of circle bundles of degree c1(v) over
spheres, according to the undecorated graph. In the left-hand-side Figure 2.12 we

00

00

++

++++

++

−1

−1

−1−1

−1

−1−1−1

−2

−2−2

−2

Figure 2.12. Plumbing −2-bundles over spheres.

have the decorated graph describing a plumbing of bundles over spheres. Each vertex
has Chern number −2. The usual graphical representation of this plumbing (defined
in [46, §8]) is shown in the right-hand side of Figure 2.12. In general, we will drop the
numbersm±(e) attached to the edges of the graph, and we replace them with numbers
c1(v) attached to the vertices. From now own, we will use only this description of
plumbings over spheres. We will refer to this plumbing description as the usual,
regular, traditional etc. If additionally, all the edges have the same sign + we will no
longer indicated it on the plumbing graph.

An usual plumbing diagram can be transformed so that the resulting manifold does
not change. For more details on this calculus with plumbings we refer to [78].

To compute the torsion of a plumbing we need to produce a surgery description
of such a 3-manifold. Fortunately there is a simple way to do this. We follow closely
the prescriptions in [37, 78]. Assume for simplicity that there are no loops4.

mm

m

nn

n+/−

(+) (−)

Figure 2.13. Surgery description of plumbings.

First, mark edges e1, . . . , em of the graphG so that the graph obtained by removing

4We can eliminate them by concatenation.
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the marked edges is a connected tree. Now replace each vertex v of the graphGwith an
oriented unknotKv with surgery coefficient c1(v). If two vertices v1, v2 are connected
by a (marked or unmarked) edge of G, then locally link Kv1 to Kv2 away from the
other components as in Figure 2.13 so that the local linking between these to unknots
is equal to the sign along the edge connecting them. If the vertices v1 and v2 are
connected by several edges we have to perform this local linking procedure several
times. The unknots Kvi will be transformed into two unknots with linking number
equal the signed number of edges between v1 and v2.

Next, for every marked edge ei introduce an unknot Ki with surgery coefficient 0
which links the unknots corresponding to the vertices of ei as in Figure 2.14. For exam-
ple, the plumbing described in Figure 2.12 has the surgery description in Figure 2.15.

0

m n

Figure 2.14. Simulating the cycles of the plumbing graph.

−2

−2

−2

−2

0

Figure 2.15. A circular plumbing of −2-spheres.

Exercise 2.6.Show that the surgery presentation in Figure 2.15 is nondegenerate in
the sense of Definition 2.47. �


The determination of torsion via surgery descriptions has one computational limitation:
it requires the computation of Alexander polynomials of links with many components
and crossings which often can be a very challenging task. However, the links involved
in plumbings are quite special, and if the combinatorics of the plumbing graph is not
too sophisticated they can be obtained quite easily using the following simple facts.
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Proposition 2.56. (a) If the link K′ is obtained from the link K by adding an additional
component C which is the meridian of a component Ki of K then

�K′ ∼ (µi − 1) ·�K. (2.19)

(b) (Seifert–Torres formula, [98, 109].) Denote by K′ the link is obtained from the
link K = K1 ∪ · · · ∪Kn by adding a component Kn+1 which is a simple closed curve
on the boundary a thin tubular neighborhood of Kn of the form pλn + qµn, p �= 0.
Then

�K′(µ1, . . . , µn+1) = �K(µ1, . . . , µ
p
nµn+1)(T

pµn+1 − 1), (2.20)

where T =∏ni=1 µ
�i
i , �i = Lk(Ki ,Kn+1). Moreover, if K′′ denotes the link obtained

from K′ by removing the component Kn then

�K′′(µ1, . . . , µn−1, µn+1) = �K(µ1, . . . , µn−1, µ
p
n ) · T

p − 1

T − 1
. (2.21)

Exercise 2.7.Prove, without relying on (2.19), that the Alexander polynomial of the
link depicted in Figure 2.16 is∼ (1−µ), where µ denotes the meridian of the middle
component. (Hint: Find a simple CW-decomposition of the exterior of this link, or
use the Fox free calculus in §B.1.) �


Figure 2.16. A simple link.

Exercise 2.8.Prove the identity (2.19). (Hint: Fix a tubular neighborhood Ui of Ki
containing C. This allows us to regard the exterior of K as a subset of the exterior
of K′. Now use the Mayer–Vietoris theorem coupled with the computation in the
previous exercise.) �


Exercise 2.9.Prove (2.20) and (2.21). �


Exercise 2.10.Use (2.21) to compute the Alexander polynomial of the (3, 5)-torus
knot depicted in Figure 2.17. �


If the graph G of a plumbing is a (connected) tree, all its edges are positive, and
K = (Kv)v∈V is its associated link, then an iterated application of the trick (2.19)
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Figure 2.17. A MAPLE rendition of the (3, 5)-torus knot.

produces the equality

TS3\K ∼
n∏
i=1

(µv − 1)deg v−1. (2.22)

Things get much more complicated when the plumbing graph has cycles. In our
next examples we want to describe how to compute the torsion for simply connected
plumbing graphs and for the simplest non simply connected plumbing graphs.

Example 2.57(The torsion of Seifert manifolds. The case b1 > 0.). Consider the
star-shaped generalized plumbing graph depicted in Figure 2.18. The center of the
star has genus g. All the other vertices have genus zero. All Seifert manifolds can be
described by such star-shaped plumbing graphs, with possibly more than three rays
(see [46]).

Applying the concatenation trick we obtain the simpler generalized plumbing de-
scription at the bottom of Figure 2.18 where �1, �2, �3 ∈ SL2(Z). Denote the result-
ing manifold by M = M(g, �1, �2, �3). Let H := H1(M). To compute the torsion
ofM we use the surgery formula in Theorem 2.41. First we need to find a presentation
of H .

Denote by� an oriented Riemann surface of genus gwith 3 boundary components.
Then G := H1(S

1 ×�) has a presentation

G = {ϕ, b1, b2, b3, c1, . . . , c2g; b1 + b2 + b3 = 0}
where ϕ denotes the homology class carried by the fiber S1, b1, b2, b3 denote the
cycles carried by the boundary components of �, and c1, . . . , c2g form a symplectic
basis of 1-cycles obtained by capping the boundary components of �. The boundary
of S1 ×� consists of three tori, and the manifoldM is obtained by filling them with
solid tori Ui , i = 1, 2, 3, attached according to the prescription given by �1, �2, �3.
Suppose

�i =
[
pi xi
qi yi

]
, i = 1, 2, 3.



§2.6 Plumbings 91

b3

b2

b1

b0

a3 a2 a1 a0 c0 c1 c2 c3

[g]

[g]

�3

�1 �2

+
+

+ + +

+

Figure 2.18. A star-shaped plumbing.

We obtain the following presentation of H

H = {ϕ, b1, b2, b3, c1, . . . , c2g; b1 + b2 + b3 = 0, −pibi + qiϕ = 0}.
The cores of the attaching solid tori Ui define the homology classes Ki represented
by −xibi + yiϕ. If we denote by π the natural projection G→ H we deduce

π�
(
TS1×�

) = TM · (1−K1)(1−K2)(1−K2).

This implies

π�(1− ϕ)2g+1 = TM · π�
( 3∏
i=1

(1− ϕyi b−xii )
)
.

To see how this works in practice we consider the special case g = 1 and

�1 = �2 = �3 =
[

4 5
3 4

]
.

Identify the free Abelian group generated by b1, b2, b3, ϕ (in this order) with Z4, and
the free Abelian group generated by b1, b2, b3, ϕ, c1, c2 with Z6. Then H admits the
presentation

Z4 P−→ Z6 → H → 0,
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where

P =


1 −4 0 0
1 0 −4 0
1 0 0 −4
0 3 3 3
0 0 0 0
0 0 0 0

 .

We now use MAPLE’s ismith procedure to reduce P to the Smith normal form

P = USV,
where

S :=


1 0 0 0
0 1 0 0
0 0 4 0
0 0 0 36
0 0 0 0
0 0 0 0

 , U =


3 3 −5 4 0 0
2 2 −4 3 0 0
3 2 −5 4 0 0
−24 −15 39 −32 0 0

0 0 0 0 1 0
0 0 0 0 0 1

 ,

and

V :=


1 0 −32 −32
0 1 −18 −17
0 0 −7 −8
0 0 1 1

 .
We deduce that

H := Z2 ⊕ Z4 ⊕ Z36.

We denote by e1, . . . , e6 the new basis ofZ given by the matrixU−1. Then e3 generates
the Z4-summand, e4 generates the Z36-summand. The vectors e5, e6 determine an
integral basis of the free summand ofH . They are images of the basis vectors c1, c2 ∈
H1(T

2). The coordinates of ϕ in the new basis are given by the fourth column of U
and we see that ϕ = 4e4 inH . From the first three columns ofU we read the following
equalities in H .

b1 = e3 + 12e4, b2 = 2e3 − 15e4, b3 = e3 + 3e4.

Thus Ki = −5bi + 4ϕ = −5bi + 16e4 and we deduce

K1 = −e3 + 28e4 = −e3 − 8e4, K2 = −2e3 + 19e4, K3 = −e3 + e4.

We obtain the following equation in Z[H ]
(1− e4

4)
3 = TM(1− e−1

3 e
28
4 )(1− e2

3e
19
4 )(1− e−1

3 e4).
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The characters of H have the form χ = ρζz1z2, ρ4 = ζ 36 = 1, z1, z2 ∈ S1. When
we Fourier transform the above equation we obtain

(1− ζ−4)3 = T̂M(ρ, ζ, z1, z2)(1− ρζ 8)(1− ρ2ζ 17)(1− ρζ̄ ),
∀ρ4 = ζ 36 = 1, ∀z1, z2 ∈ S1. Observe that

4 · 17 ≡ −4 mod 36, 4 · 8 ≡ −4 mod 36,

so that if we set

ω0 = ω0(χ) = ζ−1, ω1 = ω1(χ) = ρζ 8,

ω2 = ω2(χ) = ρ2ζ 17, ω3 = ω3(χ) = ρζ−1,

then ω4
0 = ω4

1 = ω4
2 = ω4

3 and

(1− ω4
0)

3 =
3∏
k=1

(
1− ω4

k

)
.

Note that the functions ω4
0, ωi , i = 1, 2, 3 are precisely the Fourier transforms of

ϕ, [Ki] ∈ Z[H ], i = 1, 2, 3. We conclude

T̂M(ρ, ζ, z1, z2) ∼


(1−ω4

0)
3

(1−ω1)(1−ω2)(1−ω3)
if
∏3
i=1(1− ωi) �= 0

? if
∏3
i=1(1− ωi) = 0.

(2.23)

To resolve the ambiguity in the last equality we will analyze in greater detail the gluing
process. Set X := S1 ×�. We have an inclusion

π̂ : Ĥ ↪→ Ĝ, G = H1(X).

The functions ω4
0, ωi : Ĥ → S1, i = 1, 2, 3 are restrictions of functions on Ĝ, namely

the Fourier transforms of ϕ, [Ki] ∈ Z[G]. We will continue to denote these functions
on Ĝ by the same symbols as their restrictions to Ĥ .

Suppose χ ∈ Ĥ is a character such that ωi(χ) = 1, for some i = 1, 2, 3. Then
ω4

0(χ) = 1. We now regard χ as a character ofGwith the property χ(ϕ) = 1. In other
words, χ factors through a character χ̃ of H1(�). As in Example 2.44, the character
χ̃ determines a local coefficient system on � which we denote by Kχ̃ . We can now
use the Künneth formula for homology with local coefficients, [6], to conclude that

H∗(X,Kχ ) = H∗(S1,C)⊗H∗(�,Kχ̃ ).
The groups H∗(�,Kχ̃ ) can be easily determined since � is simple homotopy equiv-
alent to a wedge of circles (see Figure 2.19).
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c1

c1

c2

c2

b1

b1

b2

b2

Figure 2.19. A cellular Morse decomposition of the torus with three holes.

More precisely, H∗(�,Kχ̃ ) is determined by the based chain complex

C1(c1, c2, b1, b2)
∂→ C0(v)→ 0, ∂ci = (zi − 1)v, ∂bi = (βi − 1)v, (2.24)

where zi = χ(ci), βi = χ(bi), i = 1, 2. If we set bk(χ) = dimCHk(�,Kχ̃ ) and
e(χ) = b0(χ)− b1(χ)+ b2(χ) then

e(χ) = 3, b2(χ) = 0,

b0(χ) =
{

1 if χ = 1

0 if χ �= 1.

We deduce that if χ �= 1 then

dimCH0(X,Kχ ) = dimCH3(X,Kχ ) = 0,

dimCH1(X,Kχ ) = dimCH2(X,Kχ ) = 3.

The manifold M decomposes as an union X ∪ U , where U denotes the union of
the attached solid tori Ui , i = 1, 2, 3. Denote by V the overlap of these two parts,
V = X ∩ U . V is an union of three tori, T1, T2, T3. Fix χ ∈ Ĥ \ {1} such that(

1− ω1(χ)
)(

1− ω2(χ)
)(

1− ω3(χ)
) = 0.

Set
Iχ := {1 ≤ i ≤ 3; ωi(χ) = 1}.
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We distinguish two cases.

1. |Iχ | < 3. The character χ induces a local coefficient systems on each of the
parts X, Ui , Tj , i, j = 1, 2, 3, in the above decomposition of M . Moreover, the
local coefficient system induced by χ on Ti is trivial if and only if i ∈ Iχ . This
follows from the fact that along both Ki , and the attaching curve of the Dehn gluing
of Ui the character χ is equal to one. These two curves form a basis of H1(Ti). The
Mayer–Vietoris sequence has the form

0 → H3(M,Kχ )→ H2(V ,Kχ )→ H2(X,Kχ )→ H2(M,Kχ )→ · · ·
Now observe that

dimCH2(V ,Kχ ) = |Iχ | < 3 = dimH2(X,Kχ ).

This forces H2(M,Kχ ) �= 0 so that T̂M(χ̄) = 0 whenever |Iχ | < 3.

2. |Iχ | = 3. In this case the Mayer–Vietoris sequence implies thatH∗(M,Kχ ) = 0 so
that T̂M(χ) �= 0. To compute the torsion we use the more refined version (1.8) of the
multiplicative property of the Mayer–Vietoris sequence. The Mayer–Vietoris sequence
for the homology with local coefficients defined by χ reduces to three isomorphisms

0 → Hk(V,Kχ )
φ→ Hk(U,Kχ )⊕Hk(X,Kχ )→ 0, k = 0, 1, 2, (2.25)

where φ is the direct sum �−1
1 ⊕ �−1

2 ⊕ �−1
3 ⊕ j , and

j : Hk(V,Kχ )→ Hk(X,Kχ )

is the morphism induced by the inclusion V ↪→ X. We need to fix cellular structures
on U,V,X,M such that the attaching maps �i are cellular. On the other hand, as
explained in [72] on smooth manifolds the choice of cellular structure is irrelevant
as far as torsion computations are concerned, and we may as well work with cellular
complexes simple homotopic to the original choices. Next, we need to pick bases in
Hk(U,Kχ ), Hk(V,Kχ ), Hk(X,Kχ ). Denote by dk(χ), k = 0, 1, 2, the determinants
of the isomorphisms (2.25) with respect to these bases. The cellular structures onX,U ,
V , and the bases in the corresponding homologies produce via the Euler isomorphisms
scalars

EulV , EulU , EulX ∈ K∗χ .
The generalized multiplicative formula now implies that

EulU ·EulX = ±EulV ·T̂M(χ̄) · d2(χ)d0(χ)

d1(χ)
.

Let us now explain how to carry out the computations. Observe first that the restrictions
of the local coefficients system to V andU are trivial. The spacesH0(U),H0(V ) have
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canonical bases and since H0(X,Kχ ) = 0 we deduce d0(χ) = 1. Next observe that
H2(U) = 0 and H2(V ) has a canonical basis induced by the orientation.

We denote by C the complex defined in (2.24) and by D the trivial complex

0 → D1 = C 0→ D0 = C→ 0

describing the homology of the fiber of X. We use the based complex C ⊗̂ D to
compute the twisted homology of X. As basis of H1(�,Kχ ) we choose

{b1, b2, (1− z2)c1 + (z1 − 1)z2}.
A quick look at Figure 2.20 shows that (1− z2)c1 + (z1 − 1)c2 = b1 + b2 + b3. As
basis of H2(X,Kχ ) we choose

{b1 × ϕ, b2 × ϕ, b3 × ϕ}.

z2c1

b1 b2

c2
z1c2

b3

c1

Figure 2.20. The twisted homology of the torus with three holes.

We deduce that d2(χ) = 1. We now choose {bi, ϕ} as basis of H1(Ti), i = 1, 2, 3.
Since

�−1
i =

[
4 −5
−3 4

]
we deduce that

φ(bi) = −3ϕ ⊕ bi ∈ H1(Ui)⊕H1(X,Kχ ),

φ(ϕ) = 4ϕ ⊕ 0 ∈ H1(Ui)⊕H1(X,Kχ ).

We conclude that d1(χ) = ±43. It is easy to check that EulU = ±1 and EulV = ±1.
It remains to compute EulX. This can be done using the based complex

0 → A2 = C1 ⊗D1 → A1 = (C0 ⊗D1)⊕ A0 = (C1 ⊗D0)→ C0 ⊗D0 → 0.

Concretely, this is the torsion of the acyclic based complex

0 → H2(X,Kχ )→ A2 ⊕H1(X,Kχ )→ A1 ⊕H0(X,Kχ )→ A0 → 0,
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where Hk(X,Kχ ) is identified with a subspace in Ak . A simple computation shows
that this torsion is ±1. Hence

T̂M(χ) = ±43.

To determine the torsion we need to use the inverse Fourier transform,

TM =
∑

h∈Tors(H)

TM(h)h, TM(h) = 1

4 · 36

∑
ρ4=ζ 36=1

T̂M(ρ, ζ, z1, z2)ρ(h)ζ(h).

The surprising thing about the above formula is that a priori it is not immediately
clear that the inverse Fourier transform will produce an integer valued function. We
will present below an elementary argument proving this arithmetic fact directly. In
the process we will shed additional light on the algebraic structure of the torsion of a
3-dimensional Seifert manifolds.

The correspondences χ 
→ ωi(χ) define morphisms Ĥi → S1, i = 1, 2, 3.
We denote by Gi the range of the morphism ωi , and by Zi its kernel. Observe
that Z0 := Z1 ∩ Z2 ∩ Z3 coincides with the identity component of Ĥ Denote by
IZi : Ĥ → C the characteristic function of the subset Zi ↪→ Ĥ . Set

fi : Ĥ → C, fi(ρ, ζ, z1, z2) =
3∑
k=0

ωki − 4IZi , i = 1, 2, 3.

Observe that

fi(χ) =


1−ω4

i

1−ωi if ωi �= 1

0 if ωi = 1.

This shows that

T̂M(χ) = f1(χ) · f2(χ) · f3(χ)± 43IZ0 , ∀χ ∈ Ĥ .
Denote by F −1[•] the inverse Fourier transform. We get

TM =
3∏
k=1

F −1[fk]

where the above product is the convolution product on C[H ]. Now observe that the
Pontryagin dual ofGi can be naturally identified with a torsion subgroup of H , more
precisely the cyclic subgroup generated by [Ki].

F −1[IZi ] = I〈[Ki ]〉.
Next observe that

F −1[ω1] = e3e
−8
4 = [K1] ∈ Z[H ],

F −1[ω2] = e2
3e

19
4 = [K2] ∈ Z[H ],

F −1[ω3] = e3 · e4 = [K3] ∈ Z[H ].
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Hence

TM =
3∏
j=1

(
[Kj ] − 4

3∑
�=0

[Kj ]�
)
±

3∏
j=1

4
( 3∑
�=0

[Kj ]�
)
.

The sign ambiguity can be resolved using the Casson–Walker–Lescop invariant ofM ,
[58], but we will not get into details. �


Consider a generalized plumbing given by the circular decorated graph at the top
of Figure 2.21. Such plumbings arise naturally in the study of cusp singularities (see
[45]). Using the concatenation trick we see that this graph is equivalent with the
one-loop graph at the bottom of Figure 2.21. This 3-manifold fibers over S1, and
the monodromy is S = �ν . . . �1. Equivalently, this is the mapping torus of the
diffeomorphism S : T 2 → T 2. We will denote it by MS . Given this very explicit
description ofMS we will adopt a direct approach.

�ν

�1 �2

�ν . . . �2�1

Figure 2.21. An arbitrary circular plumbing.

Example 2.58(The torsion of circular plumbings). Denote by�0 the standard lattice
in R2. We view S as an automorphism of �0 and we denote by �S the sublattice

�S := (1− S)(�0).

From the Wang exact sequence we deduce that we have a short exact sequence

0 → �0/�S → H1(MS)→ Z→ 0.

Now we need to distinguish three cases.

1. S is elliptic, i.e. |Tr S| ≤ 1. There are very few such elements in SL2(Z) and the
manifoldMS is very special. More preciselyMS is finitely covered by a 3-dimensional
torus so that it admits a flat metric. Moreover its diffeomorphism type belongs to a
very short list of Seifert fibrations over S2 (see [97, p. 443]). In particular, it can be
alternatively represented by a simply connected plumbing graph and the computation
is an iterated application of the Mayer–Vietoris principle which we leave to the reader.
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2. S is parabolic, i.e. |Tr S| = 2. For example the plumbing in Figure 2.12 leads to

S = P 4
1,1 =

[
1 4
0 1

]
.

In this case MS is an S1-bundle over a torus (see [97, p. 470]) and its Reidemeister
torsion is 1.

3. S is hyperbolic, i.e. |Tr S| ≥ 3. In this case det(1 − S) �= 0, i.e. rank�S =
rank(�0) = 2. Fix a splitting of H = H1(MS)

H = GS ⊕ Z, GS = �0/�S.

Observe that S(�S) ⊂ �S so that S induces an action on R2/�S which commutes
with the action of the deck group �0/�S of the cover

�S := R2/�S
π→ R2/�0 =: �0. (2.26)

We have an explicit description of the universal Abelian cover M̃S of MS . More
precisely

M̃S = R2/�S × R.
The action of (g, n) ∈ GS ⊕ Z = H on M̃S is given by

(u, n) · (x, t) = (Sn(g · x), t + n) = (g · Snx, t + n), ∀(x, t) ∈ R2/�S × R.
Denote by 0 < d1|d2, d1d2 = | det(1 − S)|, the elementary divisors of the sublattice
�S . Fix a Z-basis {e1, e2} of �0 such that {d1e1, d2e2} is a basis of �S . We denote
by S0 the matrix representing S with respect to this basis,

S0 :=
[
a b

c d

]
,

and set B := 1− S0. Then

d1d2 = | detB| = |TrB| = |2− Tr S0| = |(a − 1)+ (d − 1)|,
and d1 = gcd((a − 1), b, c, (d − 1)). Denote byD the 2× 2 matrix diag(d1, d2) and
set

S̃0 := D−1S0D =
 a d2

d1
b

d1
d2
c d

 ∈ SL2(Z).

The diffeomorphism S of �0 is described by the matrix S0. It is covered by a diffeo-
morphism S̃ of �S described by the matrix S̃0. S̃ commutes with the action of the
deck groupGS . Note that we can identifyGS with a subgroup of R2/�S and as such
it acts on �S by translations.
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Fix n ∈ Z>0 and denote by Fixn the fixed point set of Sn : �0 → �0. For any
x ∈ Fixn the diffeomorphism S̃ defines a permutation of the fiber π−1(x) of the cover
(2.26). This fiber is an orbit of the action of GS on �S . Since S̃ commutes with this
action of GS we deduce that there exists gx ∈ GS such that

S̃nx̃ = gx · x̃, ∀x̃ ∈ π−1(x).

Following [32, 33] we define the twisted Lefschetz index of Sn

L̂(Sn) =
∑
x∈Fixn

L(Sn, x)gx ∈ Z[GS],

where L(Sn, x) denotes the local Lefschetz index of the fixed point x of Sn. More
precisely

L(Sn, x) = sign(1− Sn0 ) = sign(2− Tr Sn0 ) =: εn.
It is convenient to write

L̂(Sn) =
∑
g∈GS

L̂g(S
n)g.

Observe that

L̂g(S
n) = 1

|GS |L(S̃
n − g).

The homeomorphisms S̃n and S̃n − g of �S are homotopic and using the Lefschetz
fixed point theorem we deduce

L(S̃n − g) = L(S̃n) = 2− Tr(S̃n0 ) = 2− Tr Sn0 .

Hence

L̂(Sn) = L(S̃n)IS, IS = 1

|GS |
∑
g∈GS

g. (2.27)

Define the twisted Lefschetz zeta function

ζ̂ (S) = exp
(∑
n>0

L̂(Sn)
tn

n

)
∈ Q[GS][[t]]. (2.28)

The results in [32, 33] show that the Reidemeister torsion ofMS is equal to the above
twisted zeta function. To obtain a more explicit description we introduce a new variable

T := ISt.

Since I2
S = IS in Q[GS] we deduce that

T n = ISt
n.
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We can now rewrite (2.28) as

ζ̂ (S) = exp
(∑
n>0

L(Sn)
T n

n

)
∈ Q[GS][[T ]].

As shown in Appendix §A.2 the last expression simplifies to

ζ̂ (S) = det(1− T S0)

(1− T )2 = 1− (Tr S0)T + T 2

(1− T )2 = T
2 − 2T + 1+ (2− Tr S0)T

(1− T )2 .

If we now recall that |GS | = | det(1 − S0)| = |2 − Tr S0| = |2 − Tr S| and we set
SS =∑g∈GS g we can now rewrite the last equality as

TMS = ζ̂ (S) = 1+ sign(2− Tr S)
SS

(1− T )2 .

The last quantity belongs to the ring N2(H1(MS)) as predicted by Theorem 2.37. �


Remark 2.59. The computational examples presented in this section conspicuously
avoided plumbings defining rational homology spheres, i.e. 3-manifolds with finite
H1. These plumbings graphs are trees, and all the vertices have genus zero. In the
next chapter we will deal with this issue in great detail and explain an algorithm for
computing the torsion of any rational homology 3-sphere. �


Exercise 2.11.Compute the Alexander polynomial of the link in Figure 2.22, and
then compute the Reidemeister torsion of the 3-manifold described by the surgery
presentation indicated in this figure. Compare with the computation in the previous
example. �


−2

−3 0

−5

Figure 2.22. A non-simply connected plumbing.
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§2.7 Applications

As mentioned in the introduction, the torsion captures rather subtle topological inter-
actions. We will illustrate the strength of this invariant by presenting the classifications
of the 3-dimensional lens spaces.

Recall that L(p, q) is defined as the quotient

L(p, q) := S3/(1,q

where for (r, p) = (s, p) = 1 we denote by (r,s the action of cyclic group Zp on

S3 := {(z1, z2) ∈ C2; |z1|2 + |z2|2 = 1
}

defined by the rule

ζ (r,s (z1, z2) = (ζ rz1, ζ
sz2), ∀ζp = 1.

Observe that
L(p, q) ∼= S3/(k,qk, ∀(p, k) = 1.

This shows immediately that π1(L(p, q)) = Zp so that the integer p is a homotopy
invariant of the lens space. The lens spaces

L(p, q), 1 ≤ q < p, (p, q) = 1

have identical fundamental groups and homology so these classical invariants alone
do not suffice to distinguish them.

Theorem 2.60(Franz–Rueff–Whitehead, [30, 94, 120]). Two lens spaces L(p, q0)

and L(p, q1) are homotopically equivalent if and only if

q0 = ±�2q1 mod p (2.29)

for some � ∈ Z.

Proof. We denote the homotopy equivalences by , .
Step 1.

q1 = ±�2q0 mod p *⇒ L(p, q0) , L(p, q1)

For every integers k1, k2 such that (p, ki) = 1 define map fk1,k2 : S3 → S3 by

fk(z1, z2) =
(|z1|(1−k1)z

k1
1 , |z2|(1−k2)z

k2
2

)
.

Observe that f has degree k1k2, and it is equivariant, i.e.

fk1,k2

(
ζ (r,s (z1, z2)

) = ζ (k1r,k2s (z1, z2).
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This shows that fk1,k2 induces a map

[fk1,k2 ] : S3/(r,s → S3/(k1r,k2s

of degree k1k2. Fix a point p ∈ S3 and a small ball B centered at p such that
ζ k (r,s B ∩ B = ∅, ∀0 < k < p. Set

U =
p−1⋃
k=0

ζ k (r,s B.

We can equivariantly modify fk1,k2 in U to change its degree by any multiple of p.
Suppose for simplicity that q1 = �2q0 mod p. Denote by r0 the inverse of q0 mod
p. The map f�,�q1r0 is ((1,q0 ,(�,�q1)-equivariant so that it induces a map

[f�,�q1r0 ] : L(p, q0)→ L(p, q1).

We can arrange that deg f�,�q1r0 is any number congruent to �2q1r0 = 1 mod p.
In particular, we can arrange so that it has degree 1. Thus f�,�q1r0 induces an iso-
morphisms H∗(S3) → H∗(S3). Using the Hurewicz and Whitehead’s theorems we
deduce that f is a homotopy equivalence.

Clearly, [f�,�q1r0 ] induces an isomorphism between fundamental groups. Since
πk(L(p, qi)) = πk(S3), i = 0, 1, k ≥ 2, and the morphisms

[f�,�q1r0 ]∗ : πk(L(p, q0)→ πk
(
L(p, q1)

)
coincide with the morphisms (f�,�q1r0)∗ : πk(S3)→ πk(S

3) which are isomorphisms
we deduce from Whitehead’s theorem that f is a homotopy equivalence.

Step 2.
L(p, q0) , L(p, q1) *⇒ q0 = ±�2q1 mod p.

To see this we will use the linking form of L(p, q) (see the classical but very intuitive
[57, Chap. V] or [99, §77] or the more formal [5, p.366] for details). This is a
symmetric, bilinear map

�p,q : H1
(
L(p, q)

)×H1
(
L(p, q)

)→ Q/Z

defined as follows. Pick c, d ∈ H1(L(p, q)) represented by smoothly embedded
circles then pd bounds a 2-chain D which we can represent as an embedded surface
with boundary pd . Denote by c ·D the (signed) intersection number of c and D and
set

�p,q(c, d) := 1

p
c ·D mod Z.

Up to a sign, the linking form is a homotopy invariant of the lens space. In fact, we
have (see [99] or Example B.8)

�p,q(ku, ku) = −k2q/p mod Z,
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where u is a generator ofH1(L(p, q)). IfL(p, q0) , L(p, q1) the linking forms must
be isomorphic. Thus there exists generators ui of H1(L(p, qi)) ∼= Zp, i = 0, 1 such
that u0 = �u1 in Zp and

q0/p = �p,q0(u0, u0) = ±�p,q1(�u1, �u1) = ±�2q1/p mod Z. �


Since ±2 is not a quadratic residue modulo 5 we deduce

L(5, 1) �, L(5, 2).
On the other hand, since 2 is a quadratic residue modulo 7 we deduce

L(7, 1) , L(7, 2).
The reader can verify easily that two lens spaces L(p, qi), i = 0, 1 such that

q0 = ±q1 or q0q1 = ±1 mod p

are homeomorphic. We can thus parametrize the homeomorphism classes of lens
spaces by pairs (p, q) such that

1 ≤ q < p/2, (p, q) = 1. (2.30)

In this list, some spaces are homotopically equivalent, e.g.L(7, 1) , L(7, 2). We will
show that no two lens spaces in this list are homeorphic. In fact, we have the following
result.

Theorem 2.61(Reidemeister–Franz [29, 90]). If (p0, q0) and (p1, q1) satisfy (2.30)
then

TL(p0,q0) ∼ TL(p1,q1) ⇐⇒ (p0, q0) = (p1, q1).

Proof. The implication ⇐* is obvious. Conversely, if TL(p0,q0) ∼ TL(p1,q1) then
clearly p0 = p1 =: p. We have to show that if there exist r ∈ Z, −p/2 ≤ r ≤ p/2
and ε ∈ {±1}

(1− ζ )(1− ζ q0) = εζ r (1− ζ )(1− ζ q1), ∀ζp = 1

then q0 = q1. The above identities are equivalent to

1− ζ q0 = εζ r (1− ζ q1)

for all ζp = 1. Assume for simplicity that r ≥ 0. This implies that the polynomial of
degree < p

P(x) = εxr+q1 − xq0 − εxr + 1.

has p distinct roots. This implies r = 0, ε = 1 and q0 = q1. �


The last result implies that the Reidemeister torsion distinguishes the homeomor-
phism types of the homotopically equivalent spaces L(7, 1) and L(7, 2).
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Remark 2.62. The Hauptvermutung (Main Conjecture) asks if two of homeomorphic
simplicial complexes are necessarily combinatorially equivalent. The answer is known
to be positive for manifolds of dimension≤ 3. In a very beautiful paper [69], J. Milnor
has shown that the Hauptvermutung is false in dimensions ≥ 6. More precisely he
considered the manifolds with boundary

X1 := L(7, 1)×Dn, X2 = L(7, 2)×Dn, n ≥ 3

and then defined Yi as the (simplicial) space obtained from Xi by adjoining the cone
on ∂Xi . He showed that the simplicial spaces Yi are homeomorphic but not com-
binatorially equivalent. The relative Reidemeister torsion captures the finer com-
binatorial structure. Surprisingly, the absolute torsion is a topological invariant (see
[101, 13]) and thus it is blind to the combinatorial structure. A few years later, R. Kirby
and L. Siebenmann (see [101]) have constructed topological manifolds violating the
Hauptvermutung. �




Chapter 3

Turaev’s refined torsion

In the previous chapter we have defined the torsion of a cell complexX as an element
of Q(H1(X))/±H1(X).

In the beautiful paper [113],Vladimir Turaev has explained the •/H1(X) ambiguity
of the torsion in terms Euler structures. In the special case of 3-manifolds, these Euler
structures are equivalent to spinc-structures. In other words, the Reidemeister torsion
of a 3-manifold is rather an invariant of a spinc structure. In this chapter we will
survey these results of Turaev. We assume the reader is familiar with the basic facts
concerning spin and spinc structures on smooth manifolds, as discussed for example
in [37].

§3.1 Combinatorial Euler structures

Suppose X is a connected, finite simplicial complex. Denote by |X| the associated
topological space, and by X′ the first barycentric subdivision of X. For each simplex
σ of X we denote by [σ ] its barycenter. Form the 0-chain

eX =
∑
σ∈X
(−1)dim σ [σ ] ∈ C0(X

′).

If |X| were a compact, oriented manifold without boundary then, according to [43],
eX would be the Poincaré dual of the Euler class ofX. Observe that χ(X) = 0 implies
that eX is a boundary.

Definition 3.1 (V. Turaev, [113]). Suppose χ(X) = 0.

(a) An Euler chain on X is a singular 1-chain c ∈ C1(|X|) such that

∂c = eX.
(b) Two Euler chains c, c′ are called homologous if the chain c − c′ is a boundary.

(c) A combinatorial Euler structure is a homology class of Euler chains . We denote
by Eulc (X) the set of combinatorial Euler structures. �


A special case of Euler chain is a star-shaped 1-chain (suggestively called spider
by Turaev), consisting of a center O ∈ |X|, and paths from O to [σ ] for dim σ even
and paths from [σ ] to O, for dim σ odd (see Figure 3.1). One can prove easily that
any Euler structure is homologous to a spider. If Y is a subcomplex of X such that
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Figure 3.1. A spider.

χ(X, Y ) = 0 then a relative Euler structure is a singular 1-chain c in |X| such that

∂c = eX/Y :=
∑
σ∈X\Y

(−1)dim σ [σ ].

We can define similarly a homology relation between relative Euler structure and
obtain a space Eulc(X, Y ).

The first homology group H := H1(X) acts on Eulc (X, Y ) in a natural way

ker ∂ × ∂−1(eX) � (z, c) 
→ z · c := z+ c.
This action is clearly free and transitive so that Eulc (X, Y ) is an H -torsor.

Denote by ˜|X| the universal Abelian cover of |X|. ˜|X| is equipped with a triangu-
lation X̃. A family F of simplices of X̃ is called fundamental if it defines a Z[H ] basis
of the simplicial chain complex C(X̃) viewed in a natural way as a Z[H ]-module.
Equivalently, this means that each simplex of X is covered by exactly one simplex
in F.

FixO ∈ |X|, and Õ ∈ ˜|X| aboveO. If c is a spider with center atO, then any path
γ of c admits an unique lift γ̃ in ˜|X| starting at Õ. The family of endpoints of the lifts
γ̃ are the barycenters of a fundamental family. Conversely, if F ⊂ X̃ is a fundamental
family, then any collection of paths γ̃ starting at Õ, and ending at the barycenters of
the simplices in F is the lift of a spider, whose homology class is independent of the
choices of γ̃ . We can thus identify1 the space of combinatorial Euler structures on X
with the set of fundamental families of X̃.

One can prove that if X1 is a subdivision of X then there exists a natural H -
equivariant isomorphism

Eul(X)→ Eul(X1).

1The idea of using spiders to construct Z[H ]-bases goes back to Reidemeister [91]. See [102] for a
particularly nice presentation.
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Exercise 3.1.Prove the above claim. �


Since any two piecewise smooth triangulations of a smooth manifold have a common
subdivision, the above considerations unambiguously define the space of combinato-
rial Euler structures on a smooth manifold.

In the next section we will present a different description of the notion of Euler
structure on a smooth manifold where the combinatorial structure does not intervene.

§3.2 Smooth Euler structures

Suppose X is a compact, oriented, m-dimensional manifold, possibly with boundary.
We assume that the space of components of Y is decomposed into two disjoint parts
(possibly empty) and we write this ∂X = ∂+X ∪ ∂−X. It is convenient to think of X
as an oriented cobordism between the two distinguished parts ∂± of its boundary (see
Figure 3.2).

∂−X

X

∂+X

Figure 3.2. An oriented cobordism.

Definition 3.2 (V. Turaev, [113]). A smooth Euler structure on (X, ∂+X, ∂−X) is a
nowhere vanishing vector field V on X pointing outwards on ∂+X and inwards on
∂−X. �


By the Poincaré–Hopf theorem we deduce that smooth Euler structures exist if
and only if χ(X, ∂±X) = 0.

Two smooth Euler structures V , V ′ are called homologous if there exists a closed
m-dimensional ball D ⊂ IntM such that the restrictions of V and V ′ to M \ IntD
are homotopic as nowhere vanishing vector fields pointing outwards along ∂+X and
inwards along ∂−X. (The homotopy can behave arbitrarily along ∂D.) One can verify
easily that this is an equivalence relation. We denote by Euls(X, ∂+X) the space
of homology classes of smooth Euler structures on this oriented cobordism. When
∂−X = ∅ we write simply Euls(X, ∂X).

It is useful to compare the relation of being homologous with the stronger relation
of being homotopic. Consider a cellular decomposition of (X, ∂X)which has a single
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m-dimensional cell. Given two nonsingular vector fields V , V ′, the first obstruction
to them being homotopic is given by an element (see [103])

V/V ′ ∈Hm((X, ∂+X)× (I, ∂I );πm−1(S
m−1)
)

∼= Hm−1(X, ∂+X)
PD∼= H1(X, ∂−X),

where PD denotes the Poincaré duality. This obstruction vanishes if the vector fields
are homologous. If this happens, there is still a secondary obstruction

δ′(V , V ′) ∈Hm+1((X, ∂+X)× (I, ∂I );πm(Sm−1)
)

∼= Hm(X, ∂+X;πm(Sm−1)
)
,

where

πm(S
m−1) =


0 m = 2

Z m = 3

Z2 m ≥ 4.

The above discussion shows that we have a well defined map

/ : Euls (X, ∂+X)× Euls (X, ∂+X)→ H1(X, ∂−X), (U, V ) 
→ U/V,

which describes the first obstruction to U being homotopic to V . This operation
satisfies a few elementary properties. (Below we will think of H1(X, ∂−X) as a
multiplicative group.)

U/V = 1 ⇐⇒ U = V. (E1)

(U/V ) · (V/W) = U/W. (E2)

∀h ∈ H1(X, ∂X), ∀V ∈ Euls (X, ∂+X),

∃ a unique U ∈ Euls (X, ∂+X) such that h = U/V. (E3)

We will denote by h · V the unique element U postulated by (E3).
We have thus obtained a free and transitive action ofH1(X, ∂−X)onEuls (X, ∂+X),

H1(X, ∂−X)× Euls (X, ∂+X) � (h, V ) 
→ h · V ∈ Euls (X, ∂+X).

In particular, if ∂X = ∅, the spaces of combinatorial and smooth structures on
(X, ∂+X) must be isomorphic. A little bit later we will prove that there exists a
canonical isomorphism between these two spaces of Euler structures. We want to
present an explicit description of the action of H1(X) on Euls(X, ∂+X). Assume
∂−X = ∅, so that ∂+X = ∂−X.

Consider an element h ∈ H1(X,Z), and an Euler structure represented by a vector
field U . Choose an oriented, simple closed curve � representing h and denote by N
a tubular neighborhood of � ↪→ IntX. Thus N ∼= Dm−1 × S1 where � = {0} × S1.
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S1 acts in an obvious way by rotations on N , and we denote by )R the infinitesimal
generator of this 1-parameter group of rotations on N . Also, we denote by )ν the
obvious extension toN of the (origin pointing) radial vector field onDm−1 to a vector
field onN . (Think of )ν as the gradient of the function dg(x) = distg (x, �)where both
the distance and the gradient are computed using a Riemann metric g. This shows that
the choice of )ν is unique up to a homotopy.) Modulo a homotopy we can assume that

U = − )R on N.

Assuming Dm−1 is the disk of radius π define

V =
{
U on X \ IntN

cos(r) )R + sin(r))ν on IntN,

where r : Dm−1 → R denotes the radial distance. We call this operation the Reeb
surgery along h. In Figure 3.3 we tried to illustrate the differences between the flow
ofU , on the left, and the flow of V , on the right. Then V/U = h ∈ Hm−1(X, ∂X;Z).
To see this notice that given any smooth (m− 1)-cell σ of (X, ∂X) we get a map

f : Sm−1 → Sm−1, f |
Sm−1+

= V, f |
Sm−1−

= U

such that deg(f ) = #(�∩ σ). The degree of the map f is precisely the obstruction to
deforming V |σ to U |σ keeping V |∂σ fixed.

Figure 3.3. Reeb surgery

Remark 3.3. In dimension m = 3 there are countably many possibilities of framing
N ∼= D2 × S1, and any two differ by a sequence of Dehn twists. Thus the choice )R
may not be canonical. However, any two such choices will be homotopic as nowhere
vanishing vector fields on D2 × S1 because the only possible obstruction lives in
H 2(S1×D2;Z) ∼= 0. Thus the Reeb surgery operation is a well defined operation on
homology classes of Euler structures. �
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Let us observe that the involution U 
→ −U on the space of vector fields induces
a bijection

Euls (X, ∂+X)→ Euls (X, ∂−X).
We will denote this bijection by U 
→ Ū , and we will call this map the conjugation of
Euler structures WhenX is closed the above bijection defines an involution on Eul(X),

Euls(X) � e 
→ ē ∈ Euls(X).

For every e ∈ Euls(X) we set

c(e) := e/ē ∈ H1(X).

Proposition 3.4. If e ∈ Euls(X) is represented by the nonsingular vector field U
on X then c(e) is the Poincaré dual of the Euler class e(U⊥) ∈ Hm−1(X), where
m = dimX, and U⊥ denotes the (m− 1)-plane sub-bundle of TX orthogonal to U .

Proof. Fix a CW-decomposition ofXwith a singlem-cell. Denote by S1(U
⊥) the unit

sphere bundle of U⊥ and by S1(T X) the unit sphere bundle of TX. Set U± = ±U
and denote by V a section of S1(U

⊥) over the (m−2)-skeleton. The section V defines
a natural homotopy (see the left-hand side of Figure 3.4)

Ũ : [−1, 1] ×X(m−2)→ S1(T X), (t, x) 
→ Ũt (x), Ũ±1 = U±,
connecting U− to U+ inside the plane spanned by U± and V .

V

U− t U+ A−1 A0 A1

Ũt

Figure 3.4. PD c(e) = e(U⊥).

Suppose σ is an (m− 1)-cell of X with attaching map f : ∂σ → X(m−2) and set
Y = X(m−2) ∪f σ . Then both U± extend to Y . Set

S = {−1} × σ ∪ [−1, 1] × ∂σ ∪ {1} × σ =: A−1 ∪ A0 ∪ A1.

Fix a trivialization of TX over σ so that we can viewU± as constants maps σ → Sm−1

and V |∂σ as a map V : ∂σ → Sm−2, where we identify Sm−2 to the Equator on Sm−1

perpendicular to U . Now define (see right-hand side of Figure 3.4)

H : S → Sm−1 =
{
U± on A±1

Ũ on A0.
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Observe that degH is precisely the obstruction to extending the homotopy Ũ over the
σ , i.e.

degH = 〈PD(e/ē), σ
〉 = 〈PD

(
c(e)
)
, σ
〉
.

On the other hand,H is homotopic to the suspension�V of the map V : ∂σ → Sm−2.
By Freudenthal suspension theorem [5, 44] we deduce

degV = deg�V = degH.

Now observe that degV is precisely the obstruction to extending V over σ , i.e.

degV = 〈PD
(
c(e)
)
, σ
〉
.

This concludes the proof of the proposition. �


Theorem 3.5(Turaev, [113]). Suppose X is a compact, oriented, smooth, m-dimen-
sional manifold (possibly with boundary) equipped with a smooth triangulation

(K,L)←→ (X, ∂X).

Assume χ(X, ∂X) = 0. Then there exists a natural H1(X)-equivariant isomorphism

ρ : Eulc(K,L)→ Euls(X, ∂X).

This isomorphism is compatible in a natural way with the barycentric subdivisions.

Proof. We will describe only the construction of ρ. For simplicity, we will do this
only in the case ∂X = ∅. First we need to introduce a bit of terminology.

Consider a line segment [α, β] ⊂ Rm which we can assume to be of length 3.
Denote by V the set of points in R situated at a distance ≤ 1 from this segment but
at a distance ≥ 1 from its endpoints α and β; see Figure 3.5. We denote by Dα

Dα

Bα

V Bβ

Dβ

indα = 1

Figure 3.5. A special vector field near a 1-dimensional simplex.

(resp. Dβ ) the closed disk of radius 1 centered at α (resp. β). We set Bα := Dα ∩ V ,
Bβ := Dβ ∩ V (see Figure 3.5).
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A special vector field near this segment is by definition a nowhere vanishing vector
field )u on V such that )u = −→αβ on ∂V \ (Bα ∪ Bβ). A special vector field defines a
map

gα : Bα → Sm−1, x 
→ 1

|)u(x)| )u(x)

which is constant on ∂Bα . We can regard gα as a continuous map Bα/∂Bα → Sm−1.
As such it has a degree which we denote by indα,β )u. We can define indβ,α )u in a
similar fashion. Observe that

indα,β + indβ,α = 0.

Clearly, for every n ∈ Z we can find a special vector field )vn near [α, β] such that
indα,β )vn = n.

Denote by K ′ the first barycentric subdivision of the triangulation K . For each
simplex σ of K we denote by [σ ] its barycenter. If S = 〈[σ0], [σ1], . . . , [σp]〉 is a
simplex of K ′ , (σ0 < σ1 · · · < σp are simplices of K) then define a vector field V1
on Int S by

V1(x) =
∑

0≤i<j≤p
λi(x)λj (x)([σj ] − x).

Above, λ0(x), λ1(x), . . . , λp(x) denote the barycentric coordinates of x ∈ Int S.
These vector fields define a flow onK we will refer to as the Stiefel flow. The vertices
of K ′ coincide with the stationary points of this flow (see Figure 3.6).

Figure 3.6. The Stiefel flow on a 2-simplex.

For any 1-dimensional simplex 〈[σ0], [σ1]〉 of K ′, the vector field V1 is special
near this segment. Moreover, we have

ind[σ0],[σ1]) V1 = 0.

Surround every vertex [σ ] ofK ′ by a tiny open ballD(σ). For every edge 〈[σ0], [σ1]〉
of K ′ we denote by T (σ0, σ1) as

T (σ0, σ1) :=
(
tubular neighborhood of 〈[σ0], [σ1]〉

) \ (D(σ0) ∪D(σ1)
)
.
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Suppose now that
ξ =

∑
σ0<σ1

ξ(σ0, σ1)〈[σ0], [σ1]〉

is an Euler chain. We can find a nowhere vanishing vector field Vξ onK \⋃σ<K D(σ)
such that the following hold.

• Vξ is special near each segment 〈[σ0], [σ1]〉 , σ0 < σ1, and

ind[σ0],[σ1] Vξ = ξ(σ0, σ1).

• Outside the union of tubes
⋃
σ0<σ1

T (σ0, σ1) we have

Vξ ≡ V1.

We will show that Vξ extends to a nowhere vanishing vector field on K . This is
equivalent to the fact that the induced map

Vξ : ∂D(σ)→ Sm−1

is homotopically trivial, i.e.

d(σ ) := deg
(
Vξ : ∂D(σ)→ Sm−1) = 0.

Set
d0(σ ) := deg

(
V1 : ∂D(σ)→ Sm−1).

In [43] it was shown that d0(σ ) = (−1)dim σ . (This identity is intuitively clear in
Figure 3.6.) Observe that

d(σ ) = d0(σ )+
∑
σ<η

(indσ,η Vξ − indσ,η V1)+
∑
η<σ

(indσ,η Vξ − indσ,η V1)

= (−1)dim σ +
(∑
σ<η

ξ(σ, η)−
∑
η<σ

ξ(η, σ )
)
.

On the other hand∑
σ

(−1)dim σ [σ ] = ∂ξ =
∑
σ

(∑
η<σ

ξ(η, σ )−
∑
σ<η

ξ(σ, η)
)
[σ ]

from which it follows that d(σ ) = 0, ∀σ < K . Thus Vξ extends to a nowhere
vanishing vector field on X. The correspondence

ξ 
→ Vξ

establishes the isomorphism postulated in Theorem 3.5. �


In the sequel we will frequently switch between combinatorial and/or smooth Euler
structures so that we will drop the subscripts c and s in Eulc/s .
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Remark 3.6. (a) One can define a notion of Euler structure which combines both
the combinatorial and the differential combinatorial aspects. If X is a closed, com-
pact, oriented smooth manifold such that χ(X) = 0, then following [49], we can
define an Euler structure as a pair (V , c) where V is a smooth vector field on X with
nondegenerate zero set v−1(0) and c is a smooth 1-chain such that

∂c = v−1(0)

where the zeros of v are weighted by the Poincaré–Hopf signs. The notion of isomor-
phism is defined in an obvious way.

(b) One can give a combinatorial description of the conjugation of Euler structure.
Suppose X is a smooth, closed oriented manifold such that χ(X) = 0. Fix a smooth
triangulation ofX so we can identifyXwith a polyhedron. Suppose the Euler structure
e is represented by the Euler chain c ∈ C1(X). Then the Euler structure ē is represented
by the Euler chain

c̄ =
∑
σ0<σ1

(−1)dim σ0+dim σ1〈σ0, σ1〉 + (−1)dimXc.

If we think of combinatorial Euler structures in terms of fundamental families of
simplices in the universal Abelian cover, then we can give an even simpler description
of this involution.

Suppose F is a fundamental family representing the Euler structure e. Then the
Euler structure ē is represented by the fundamental family F̌, were F̌ consists of the
cells dual to the cells in F. For proofs of these facts we refer to [113, Appendix B]. �


§3.3 U(2) and Spinc(3)

V. Turaev observed in [114] that the space of smooth Euler structures on 3-manifolds
can be identified with the space of isomorphisms of spinc structures. This identi-
fication has its origin in some low dimensional representation theoretic “accidents”
which we will be discussed in the present section. In the following section we will
explain in detail the connection between spinc structures and smooth Euler structures
on 3-manifolds.

Recall that

Spinc(n) ∼= Spin(n)× U(1)/Z2, Z2 ∼= {(1, 1), (−1,−1)} ⊂ Spin(n)× U(1).

In dimension 3 we have an isomorphism Spin(3) ∼= SU(2), and the natural map

SU(2)× S1 � (T , z) 
→ zT ∈ U(2)

descends to an isomorphism Spinc(3) ∼= U(2).
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We want to discuss several facets of this isomorphism. We denote by u(n) the Lie
algebra of U(n), su(n) the Lie algebra of SU(n) etc. We begin by presenting a more
explicit description of the morphism U(2)→ SO(3).

Consider the adjoint representation

Ad : U(2)→ Aut(u(2)).

The diagonal U(1) ↪→ U(2) is the center of U(2) and thus u(2) splits into irreducible
parts

u(2) = u(1)⊕ (u(2)/u(1)).
We denote by Ad0 : U(2)→ SO(3) the morphism induced by the above representation
of U(2) on the real 3-dimensional space u(2)/u(1).

More explicitly, the space u(2)/u(1) can be identified with the orthogonal comple-
ment of δ∗u(1) inside u(2). This complement is precisely su(2). A matrix A ∈ su(2)
has the form

A =
[

ix z̄

−z −ix

]
, x ∈ R, z ∈ C.

From this description we get a natural decomposition su(2) ∼= R ⊕ C. The rep-
resentation Ad0 associates to each unitary frame )f := (f 1,f 2) of C2 a matrix
Ad0( )f ) ∈ Aut(su(2)) as follows. If

f i =
[
ui
vi

]
, ui, vi ∈ C, |ui |2 + |vi |2 = 1, i = 1, 2,

u1ū2 + v1v̄2 = 0.

so that
)f :=

[
u1 u2
v1 v2

]
∈ U(2),

then Ad0( )f ) acts on su(2) by

Ad0( )f ) ·
[

ix z̄

−z −ix

]
= )f ·

[
ix z̄

−z −ix

]
· )f ∗

=
[
u1 u2
v1 v2

]
·
[

ix z̄

−z −ix

]
·
[
ū1 v̄1
ū2 v̄2

]

=
 i
(
(|u1|2 − |u2|2)x + 2Im(u1ū2z)

)
i(u1v̄1 − u2v̄2)x + u1v̄2z̄− u2v̄1z

∗ ∗

 .
Observe that if

)f =
[
u −v̄
v ū

]
∈ SU(2)
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then

)f ·
[

ix z

−z̄ −ix

]
· )f ∗ =

 i(|u|2 − |v|2)x − 2iIm(uvz) 2iuv̄x + u2z̄− v̄2z

∗ ∗

 .
In particular,

Ad0( )f )
[

i 0
0 −i

]
= 2i

 1
2 (|u|2 − |v|2) uv̄

ūv − 1
2 (|u|2 − |v|2)

 .
Let us point out that the matrix which appears on the right hand side of the above equal-
ity is precisely the quadratic term which enters into the formulation of the Seiberg–
Witten equations.

The above description of the morphism U(2) 
→ SO(3) is obviously coordinate
dependent. We will now present a coordinate free description of this isomorphism.
Suppose now that V is a real, 3-dimensional, oriented, Euclidean vector space. Ob-
serve first that, as an SO(V )-module, V is isomorphic to the adjoint representation
of SO(V ) on its Lie algebra. (This is a purely 3-dimensional phenomenon.) This is
given by the correspondence

V � v 
→ Xv := (v × •) ∈ so(V ). (3.1)

Above, “×” denotes the cross product. It can be alternatively defined by

u× v := ∗(u ∧ v),
where ∗ is the Hodge operator. By fixing a nonzero vector τ ∈ V we determine several
things.

•A subgroup Gτ ⊂ SO(V ), the stabilizer of τ with respect to the tautological action
of SO(V ) on V . Gτ is a maximal torus in SO(V ) so that Gτ ∼= S1. The Lie algebra
of Gτ is generated by the infinitesimal rotation Xτ in (3.1).

• An action of Gτ ∼= S1 on the orthogonal complement Vτ of τ in V . Thus, Vτ is
equipped with a complex structure J , and a Hermitian metric

〈u, v〉 := (u, v)− i(Ju, v),

where (•, •) denotes the Euclidean (real) inner product.

Now form the space

V̂τ := R⊕ V ∼=
(
R⊕ R · τ)⊕ Vτ ∼= C⊕ Vτ .

V̂τ is equipped with a complex structure and Hermitian metric which depend on τ .
We will construct a representation

ϕτ : U(V̂τ )→ SO (Rτ ⊕ Vτ ) = SO (V )
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as follows. Define a vector space isometry

Iτ : V → su(V̂τ ), Rτ ⊕ Vτ � (t, φ) 
→
 it · ( 〈•, φ〉

− ( ·φ −it · •

 .
If T ∈ U(V̂τ ) then ϕτ (T ) ∈ SO(V ) is defined by the commutative diagram

su(V̂τ ) su(V̂τ )

V V .

�Ad0(T )

�

Iτ

�ϕτ (T )

�

Iτ

More explicitly, if

T :=
[
z1 〈•, φ2〉
φ1 z2

]
, zi ∈ C, φi ∈ Vτ ,

then

ϕτ (T )

[
t

φ

]
=
 (|z1|2 − |φ2|2)t + 2Im〈z1φ, φ2〉

−it (z̄1φ1 − z2φ2)+ z̄1z2φ − 〈φ1, φ〉φ2

 .
Let us point out a confusing fact. We have produced two U(2)-representations on
R⊕ V . The first one is the tautological representation

θ : U(C⊕ Vτ )→ Aut(C⊕ Vτ ),
and it is a complex representation. The second one is

1⊕ ϕτ : U(2)→ Aut(R⊕ V ),
and it is real. The first representation is the complex spinor representation of Spinc(3)
and has (infinitesimal) weights {θ1, θ2}. The second representation is precisely the
adjoint representation and its complexification has weights {0, 0,±(θ2 − θ1)}.

We have thus shown that a choice of an unit vector τ ∈ V canonically defines a
complex structure Jτ on R⊕ V and a morphism

U(R⊕ V, Jτ )→ SO(V ).

Let us point out another low dimensional accident.
Denote by Herm(V ) the space of hermitian structures on V̂ := R⊕V compatible

with the natural orientation. More precisely,

Herm(V ) = {J ∈ SO(R⊕ V ); J 2 = −1}.
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Denote by e0 the vector 1⊕ 0 ∈ R⊕ V . One can check that the map

Herm(V ) � J 
→ Je0 ∈ S1(V ) = unit sphere in V,

is a bijection. We denote its inverse by

S1(V ) � τ 
→ Jτ ∈ Herm(V ).

The complex space V̂τ is precisely (V̂ , Jτ ). Moreover, ϕτ is a morphism

ϕτ : U(V̂ , Jτ )→ SO(V ).

Finally, we want to explain why the map between classifying spaces

π : BU(2)→ BSO(3)

induced by the morphism Ad0 : U(2)→ SO(3) is a homotopic fibration with homo-
topic fiber BS1. We will prove a more general result.

Lemma 3.7. Suppose

1 ↪→ H ↪→ Ĝ
φ→ G� 1

is an extension of compact Lie groups. Then the induced map between the correspond-
ing classifying spaces

Bφ : BĜ→ BG

is (homotopically) a fibration with homotopic fiber BH .

Proof.2 Denote by EG → BG (resp. EĜ → BĜ) the universal (classifying) G-
bundle (resp. Ĝ-bundle). The natural projection

EG× EĜ→ EG

is naturally Ĝ-equivariant, where Ĝ acts on EG via φ and diagonally on EG× EĜ.
We thus have a map

BĜ ∼= (EG× EĜ)/Ĝ→ EG/φ(Ĝ) ∼= BG.

One can check easily this is a fibration with fiber EĜ/H ∼= BH . �

2I am indebted to Stephan Stolz for this simple argument.
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§3.4 Euler structures on 3-manifolds

Suppose X is a smooth, compact, oriented 3-manifold. Assume for the purpose of
this preliminary discussion that ∂X = ∅. Then Eul (X) is an H1(X)-torsor. On the
other hand, the space Spinc(X) of isomorphism classes of spinc structures on X is an
H 2(X)-torsor. By Poincaré duality we have

H1(X) ∼= H 2(X)

which shows there exist bijections Eul (X) → Spinc(X). In this subsection we will
construct one such canonical bijection. This will require a fresh look at spinc structures.

As we have explained in the previous section, Spinc(3) ∼= U(2) and

SO(3) ∼= U(2)/U(1),

where U(1) lies inside U(2) as the diagonal subgroup. We denote by Ad0 : U(2)→
SO(3) the ensuing morphism.

Definition 3.8. Suppose X is a finite cell complex and P → X is a principal SO(3)-
bundle. We define a spinc structure on (X, P ) as a pair (F, α) where F → X is a
principal U(2)-bundle over X, and α is a surjective, U(2)-equivariant map

α : F → P.

where U(2) acts on P via the morphism Ad0 : U(2)→ SO(3). �


The notion of isomorphism of spinc-structures is obvious. We will denote by
Spinc(X, P ) set of isomorphism classes of spinc structures on X.

To obtain a homotopic theoretic description of Spinc(X, P ) we need to use the
classifying spaces B SO(3) and B U(2). The morphism U(2) → SO(3) induces a
map

π : BU(2)→ BSO(3)

which is a homotopic fibration with fiber BS1 ∼= CP∞ ∼= K(Z, 2). Since the fiber is
2-connected there is only one obstruction to the lifting problem below.

BU(2)

X BSO(3).
�

π

�
�
�
���

?

�
f

It is given by a three dimensional integral class, the third Stiefel–Whitney class
W3(f ) ∈ H 3(X,Z). Two such lifts will be homotopic once they are homotopic
over the two skeleton. The obstruction to homotopy is given by a single primary
obstruction in H 2(X,Z). We obtain the following result, very similar in spirit to
J. Milnor’s characterization of spin structure in [71].
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Proposition 3.9(Gompf, [40]). Suppose X is a compact CW-complex, and P → X

is a principal SO(3)-bundle. Denote by X(k) the k-skeleton of X. A spinc-structure
on P is a U(2) structure on P |X(2) which extends to P |X(3) .

Two spinc-structures (Fi, αi), i = 1, 2 on P are isomorphic if and only if the
restrictions of Fi to the 2-skeleton of X are isomorphic as U(2)-bundles. Moreover,
the group H 2(X,Z) acts freely and transitively on Spinc(X, P ), i.e. Spinc(X, P ) is
naturally an H 2(X,Z)-torsor.

SupposeY ↪→ X is a subcomplex,P → X is a principal SO(3)-bundle onX, and s
is a homotopy class of sections ofP |Y . ThenP defines an SO(3)-bundle [P ] → X/Y .
We define a spinc structure on P relative to (Y, s) to be a spinc structure on P induced
by a spinc structure on [P ] via the natural projection X → X/Y . The notion of
isomorphism is the obvious one.

We can provide a more geometric description of the notion of spinc structure.
Denote by V the rank 3 real vector bundle P ×ρ R3 where ρ : SO(3) → Aut(R3)

is the tautological representation. Any nowhere vanishing section τ of V defines a
spinc-structure on στ on P as follows.

• Form the rank 2-real vector sub-bundle Vτ ↪→ V spanned by the vectors orthogonal
to τ . We orient Vτ using the convention

or(V ) = 〈τ 〉 ∧ or(Vτ ).

We have thus equipped Vτ with a U(1)-structure.

• Form the oriented, rank 4 real vector bundle

V̂τ = R⊕ V ∼= R⊕ 〈τ 〉 ⊕ Vτ .
The above decomposition equips V̂τ with a complex structure defining a principal
U(2)-bundle FV = Fr (V̂τ ) → X. As explained in §3.3, the vector field τ defines a
lift

ϕτ : Fr (V̂τ )→ Fr (V ) = P
which is the spinc structure associated to the vector field τ . We denote it by στ . The
associated bundle of complex spinors is the complex bundle V̂τ and it has determinant
line bundle Vτ . We denote it by det(σ ) = det(στ ). Observe that if h ∈ H 2(X) and
σ ∈ Spinc(X, P ) then

det(h · σ) = det(σ )+ 2h, (3.2)

where
H 2(X)× Spinc(X, P ) � (h, σ ) 
→ h · σ ∈ Spinc(X, P )

denotes the action of H 1(X) on Spinc(X, P ), and we have used the identification
between complex line bundles on X and H 2(X) given by the (integral) first Chern
class.

The discussion at the end of §3.3 shows that a choice of spinc structure is equivalent
to a choice of a nowhere vanishing section of TX. Two choices of such sections lead
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to isomorphic spinc-structures if and only if they are homotopic over the two skeleton
of X.

Exercise 3.2.Formulate and prove the counterparts of the above statements for rela-
tive spinc structures. �


In the special case whenX is a closed, oriented three manifold such thatχ(X) = 0,
and V ∼= TX we deduce that the correspondence

nowhere vanishing vector field τ on X→ στ ∈ Spinc(X)

induces a bijection
Eul (X)→ Spinc(X), e 
→ σe.

Proposition 3.4 implies that
PD c(e) = det(σe).

The above discussion also shows that the above map is H 2(X,Z)-equivariant.
Finally, we can equivalently describe a spinc-structure as an elementu ∈ H 2(FrX),

FrX := the principal bundle of oriented orthonormal frames of TX, whose restriction
to each fiber is a generator of H 2(SO(3)) ∼= Z2. The correspondence between these
two descriptions is clear.

A nowhere vanishing section τ of TX defines a trivial complex line sub-bundle of
the rank two complex vector bundle V̂τ := 〈τ 〉 ⊕ TX. We thus obtain a trivial U(1)
sub-bundle of F = Fr

V̂τ
. We then construct the line bundle

Lτ := F → F/U(1)
τ∼= FrX .

Then the class u := c1(Lτ ) ∈ H 2(FrX) restricts to the generator on each fiber.
In terms of the second interpretation, the action ofH 2(X,Z) on Spinc(X) has the

description
x · u = π∗Xx + u, u ∈ H 2(FrX), x ∈ H 2(X),

where πX : FrX → X is the natural projection. (The above action of H 2(X) on
H 2(FrX) obviously preserves Spinc(X) ⊂ H 2(FrX).)

The group of orientation preserving diffeomorphisms ofX induces a natural action
on Eul (X), and thus an action on Spinc(X).

The case of 3-manifolds with boundary deserves special consideration. Suppose
X is a compact, oriented 3-manifold with boundary ∂X a union of 2-tori. Let us
now point out the remarkable fact that the tangent bundle of a torus S has a canonical
framing induced by an arbitrary diffeomorphism

φ : S → S1 × S1.

Exercise 3.3.Prove that the homotopy class of the framing of T S described above is
independent of the diffeomorphism φ : S → S1 × S1. �
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The restriction of the SO(3) bundle TX to the boundary ∂X has a canonical
trivialization induced by the outer normal section

)ν : ∂X→ TX|∂X,
and the canonical framing of T ∂X. We can thus define spinc structures onX relative to
∂X and the above canonical framing of TX|∂X. The notion of relative spinc structure
can be given a more geometric description.

Fix for convenience a Riemann metric g on X and denote by )n the unit outer
normal. Recall that R denotes the trivial real line bundle over a (generic) space.
Observe that the rank 4- vector bundle

V0 :=
(
R⊕ TX)|∂X ∼= (R⊕ 〈)n〉)⊕ T ∂X,

is canonically a trivialized U(2)-bundle. We denote by J0 the complex structure on
V0. A relative spinc structure is then a U(2)-structure J on V := R ⊕ TX together
with an isomorphism φ : V |∂X → V0. Two relative spinc structures σi := (Ji, φi),
i = 0, 1 are called isomorphic if there exists an isomorphism � : (V , J0)→ (V , J1)

which makes the following diagram commutative.

(V , J0)|∂X (V, J1)|∂X

(V0, J0).

��

���	
φ0

			
 φ1

The space Spinc(X, ∂X) of isomorphism classes of relative spinc structures is naturally
an H 2(X, ∂X)-torsor. We have an obvious H 2(X, ∂X) map

Eul(X, ∂X)→ Spinc(X, ∂X), e 
→ σ(e),

which must be an isomorphism. The group of orientation preserving diffeomorphisms
of (X, ∂X) acts naturally Eul(X, ∂X), and thus on the space of relative spinc-structures
as well.

For any σ = (V , J ) ∈ Spinc(X, ∂X), the determinant line bundle det(σ )|∂X is
equipped with a canonical nowhere vanishing section so that we have a well defined
class

c1(det(σ )) ∈ H 2(X, ∂X).

The identity (3.2) shows that the map

c : Spinc(X, ∂X)→ H 2(X, ∂X), σ 
→ c(σ ) := c1(det σ)

is one-to-one if H 2(X, ∂X) has no 2-torsion.

Example 3.10. Suppose X is the solid torus S1 × D2. The relative spinc-structures
σ on X are uniquely determined by

c(σ ) := c1(det σ) ∈ H 2(X, ∂X) ∼= H1(X) ∼= Z.
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Denote by (r, θ) the polar coordinates on D2 and by ϕ the angular coordinate on S1.
Consider the nowhere vanishing vector field V on X defined by

V (r, θ, ϕ) := cos(πr/2)∂ϕ + sin(πr/2)∂r .

The vector field sin(πr/2)∂r−cos(πr/2)∂ϕ is a section ofV ⊥which vanishes transver-
sally exactly along the core of the solid torus. Thus, if σV denotes the relative spinc

structure determined by V then

cσV = ±[C] ∈ H1(X)

where [C] denotes the oriented core, i.e. the cycle S1 × {0} ∈ X. We deduce that for
any spinc structure σ ∈ Spinc(X, ∂X) we have

c(σ ) = (2n+ 1)[c], n ∈ Z.
The canonical spinc structure on the solid torus is the spinc structure σcan uniquely
determined by the condition

c(σcan) = −[C]. �


Example 3.11. Suppose

X = I × S1 × S1, I = [−1, 1].
We can regard it as a trivial cobordism between ∂−X := {−1} × T 2 and ∂+X :=
{1} × T 2. The longitudinal vector field ∂t induces a canonical spinc structure σ0 ∈
Spinc(X, ∂+X).

On the other hand, we can regardX as a 3-manifold with (disconnected) boundary
∂X. The space Spinc(X, ∂X) is an H1(X) = Z2-torsor. Since H1(X) ∼= H 2(X, ∂X)

has no 2-torsion we deduce that the map

Spinc(X, ∂X) � σ 
→ c1(det(σ )) ∈ H 2(X, ∂X) ∼= Z
is one-to-one. Hence, in this case a relative spinc-structure is uniquely specified by
the associated determinant line bundle.

Observe first that the image of Spinc(X, ∂X) in Z2 via the above map is

ε + 2Z, )ε ∈ Z2.

We claim that )ε = 0. To see this, frame TX using the moving frame

(e1, e2, e3) := (∂t , ∂θ1 , ∂θ2).

Now define �0 ∈ Vect (X) by

�0(t, θ
1, θ2) = sin(πt/2)e0 + cos(πt/2)e1.
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Clearly �0 points outwards on ∂X. Moreover, the vector e2 defines a nowhere vanish-
ing section of 〈�0〉⊥. This shows that the relative spinc structure induced by �0 has
trivial determinant and thus )ε = 0.

We will denote by σ0 the spinc structure induced by �0 and we will refer to it as
the trivial spinc structure on the trivial cobordism. �


The vector field �0 constructed in the above example has the following obvious
universality property.

Lemma 3.12. Suppose X is an oriented 3-manifold with boundary an union of tori.
Fix a tubular neighborhood U of ∂X ↪→ X of the form [−1, 1] × ∂X oriented such
that ∂t is the outward pointing longitudinal vector field. Then any nowhere vanishing
vector field V pointing outward on ∂X is homologous to a vector which coincides with
�0 along U .

Fix a tubular neighborhood U of ∂X as in the above lemma. Suppose V is a
nowhere vanishing vector field on X which is equal to ∂t along U . Define the vector
field V̄ by

V̄ =
{
−V in X \ U
�0 in U.

This operation induces an involution

Eul(X, ∂X)→ Eul(X, ∂X), e 
→ ē.

Proposition 3.13. Let e ∈ Eul(X, ∂X). Then

e = c(σ (e)) · ē
i.e. c(σ (e)) = c(e/ē).

Exercise 3.4.Prove the above result. �


The conjugation operation on Euler structure translates to an involution

Spinc(X, ∂X)→ Spinc(X, ∂X), σ 
→ σ̄ .

Suppose now that a closed, oriented 3-manifoldX is decomposed into two, manifolds
with boundary by an embedded torus (or union of tori) �,

X = X0 ∪X1, ∂Xi ∼= (−1)i�, i = 0, 1.
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Fix a tubular neighborhoodU of� ↪→ X which is orientedly diffeomorphic to I ×�.
Enlarge

Xi → X̂i := Xi ∪ I ×�, i = 0, 1.

Any nowhere vanishing vector field Vi on X̂i which points outwards on ∂X̂i can be
assumed to coincide with �0 on U = I ×� ⊂ X̂i , i = 0, 1. Thus

V0 = V1 on I ×� = X̂0 ∩ X̂1,

so that we can form the glued vector field on X

V := V0#V1.

It is easy to see that this induces a map

# : Eul (X0, ∂X0)× Eul (X1, ∂X1)→ Eul (X).

This pairing is not necessarily injective and/or injective. We will refer to this pairing
as the gluing operation.

§3.5 The Reidemeister–Turaev torsion of Euler structures

SupposeX is a connected, finite simplicial complex such that χ(X) = 0. Fix p0 ∈ X.
Set H := H1(X) and denote by

π : X̂→ X ∼= X̂/H
the universal Abelian cover. Fix p̂0 ∈ X̂ covering p0.

Pick now an Euler structure e ∈ Eul (X) which we can represent by a spider s
centered at p0. s admits a unique lift to a spider ŝ on X̂ centered at p̂0. The 0-chain ∂ ŝ
depends only on the homology class of the spider s, i.e. only on the Euler structure e!
Every point q ∈ ∂ ŝ is the barycenter of a simplex ĉq of the triangulation of X̂ induced
by the triangulation of X. It is clear that if q1 �= q2 then ĉq1 and ĉq2 do not cover the
same simplex of X. This means that the collection

ce =
{
ĉq; q ∈ ∂q̂

}
is a geometric basis of the Z[H ]-module C(X̂), and we can now define

TX,e,p̂0 := T(C(X̂), ce, p̂0) ∈ Q(H)/± 1.

The ±1 is due to the multiple choices of orderings/orientations of c. Moreover, since
χ(X) = 0 we can see that TX,e,p̂0 is independent of p̂0. Thus, we can use the notation
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TX,e. We will call it the Reidemeister–Turaev torsion of the Euler structure e. Observe
that

TX,h·e ≈ h · TX,e, ∀h ∈ H, e ∈ Eulc(X).

Above, “≈” denotes the equality in Q(H)/± 1.
This refined torsion was defined in terms of a simplicial structure on X. One can

prove, much like in the un-refined situation, that this torsion is invariant in an obvious
sense under subdivisions and simple homotopy equivalences. For details we refer to
[113, §3,4].

One can get rid of the±1 ambiguity by ordering and orienting the simplices ofX.
A choice of ordering and orientations on c clearly induces an ordering and orientation
on any lift ce. An equivalence class of orderings and orientations of the simplices of
X is completely determined by an orientation of the homology space H∗(X,R). This
can be seen using the Euler isomorphism

Eul : Det(C∗(S(X))⊗ R→ Det(H∗(X,R)).

We define a homology orientation on a simplicial complex X to be a trivialization of
the determinant line Dets H∗(X,R). Fix a homology orientation o. For any geometric
basis c of C∗(X) we define as in Remark 2.40.

ε(c, o) = sign Eul(det(c)) ∈ Det(H∗(X,R)) ∼= R.
If c is a geometric basis of C∗(X) and s is a spider representing a fixed combinatorial
Euler structure e, then we get a geometric basis ĉs of the Z[H1(X)]-module C∗(X̂)
which covers c. We use this basis to compute the torsion, and we define the sign-refined
torsion of (X, e) to be

TX,e,o := ε(c, o)T(C∗(X̂), ĉs).

This quantity is independent of the geometric basis c. The relative Reidemeister–
Turaev torsion is defined in a similar way (see [113, 117]).

§3.6 Arithmetic properties of the Reidemeister–Turaev torsion
of 3-manifolds

This section is a refinement of §2.4 where we proved several arithmetic properties
of the torsion of 3-manifolds. We take-up this subject again, emphasizing the new
aspects due to the sign, and spinc-refinements introduced in the previous section. For
more information, and details we refer to [114, 116] which served as our main sources
of information.

Denote byX+ the collection consisting of triplets (M, σ, o) satisfying the following
conditions.
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•M is a compact, smooth, oriented 3-manifold, possibly with boundary consisting of
an union of tori.
• σ ∈ Spinc(M, ∂M).
• o is an enhanced homology orientation. This means that if b1(M) �= 1, then o
is an usual homology orientation, and if b1(M) = 1, then o is an orientation of the
one-dimensional real vector space H1(M,R).

We denote by X+1 the subfamily of X+ consisting of manifolds with positive b1.

Remark 3.14. A closed oriented 3-manifold admits a natural homology orientation
defined by the Poincaré duality. Similarly, the complement of an oriented link in a
rational homology sphere admits a natural homology orientation (see [116, §3]) for
details. In the sequel if an admissible manifold is either closed or it is the complement
of a link in a rational homology sphere we will tacitly assume it is equipped with the
natural orientation, unless indicated otherwise. �


For (M, σ, o) ∈ X+ we denote by TM,σ,o ∈ Q(H1(M)) the sign refined Reide-
meister–Turaev torsion of the pair (M, ∂M) and the Euler structure σ . It satisfies the
following properties.

TM,h·σ,o ≈ hTM,σ,o, h ∈ H1(M), σ ∈ Spinc(M, ∂M), (3.3)

where we recall that ≈ denotes equality up to a sign. In particular

TM,σ,o ≈ TM,σ̄ ,o = c(σ̄ /σ )TM,σ,o = c(σ )−1TM,σ,o. (3.4)

We can be much more precise about the signs in the above formula. More precisely,
we have (see [113, Appendix B], [116, Appendix 3])

TM,σ,o = (−1)b0(∂M)TM,σ̄ ,o = (−1)b0(∂M)c(σ )−1TM,σ . (3.5)

Example 3.15. We have defined the canonical spinc structure σcan on the homologi-
cally oriented solid torus Z = D2 × S1 with axis K = {0} × S1 by the equality (see
Example 3.10)

c(σcan) = K−1 ∈ H1(Z).

The torsion of the canonical spinc structure σcan is then

TZ ≈ (1−K)−1. �


Remark 3.16. SupposeM is closed (and equipped with the canonical homology ori-
entation). We denote by Spin(M) the space of isomorphism classes of spin structures
onM . It is naturally an H 1(M,Z2)-torsor. There exists a natural map

Spin(M)→ Spinc(M), Spin(M) � ε 
→ σ(ε) ∈ Spinc(M).
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Its image consists exactly of the fixed points of the involution σ 
→ σ̄ on Spinc(M).
For every spin structure ε onM we set

TM,ε := TM,σ(ε) ∈ Q(H).
The symmetry properties (3.4) and (3.5) imply

TM,ε = T̄M,ε, ∀ε ∈ Spin(M).

WhenM is a rational homology sphere the map ε 
→ σ(ε) is an injection. �


To list the other properties of the sign-refined Reidemeister–Turaev torsion we need
to discuss separately several cases. LetM,σ, o) ∈ X+, and set H := H1(M).

A. b1(M) ≥ 2. We already know that TM,σ,o ∈ N2[H ] (see §2.4).

B. b1(M) = 1. Here we distinguish two subcases.

B.1. ∂M = ∅. We already know that TM,σ ∈ N2(H) (see §2.4). We can be much
more precise. The orientation o on H1(M,R) defines a bijection H/TorsH → Z,
and thus a surjection

dego : H → Z.

Fix an element T ∈ H such that dego T = 1. As in §1.5 we set

SH :=
∑

h∈Tors(H)

h ∈ Z[H ].

Then (see [114, §4.2])

TM,σ + dego(c(σ ))+ 2

2
(1− T )−1SH − (1− T )−2SH ∈ Z[H ]

Suppose that σ = σ(ε), ε ∈ Spin(M). Then dego(c(ε)) = 0, and the above equality
takes the form

TM,ε,o − T

(T − 1)2
SH ∈ Z[H ].

Set deg+o := max(deg, 0), and define

WM :=
∑
h∈H

deg+o (h−1)h = T

(T − 1)2
SH ∈ Q(H), T 0

M,ε = TM,ε −WM.

Observe that
WM = W̄M

which implies that T 0
M,ε is an element of Z[H ] symmetric with respect to the conju-

gation in Z[H ]. We will refer to T 0
M,ε as the modified Reidemeister–Turaev torsion
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of M . It is independent of the orientation of H1(M,R) For reasons which will be-
come apparent in §4.1, we will refer to WM as the wall crossing term defined by the
orientation of H1(M,R). Thus

TM,ε,o = T 0
M,ε,o +WM. (3.6)

We set
�M,ε,o := (1− T )2 TM,ε,o ∈ Z[H ].

As our choice of notation suggests, one should think of �M,ε,o as a refined version
of the Alexander polynomial of M . This intuition agrees with the identities in Theo-
rem 2.37. We deduce from the equality (3.6) that

�M,ε,o = (1− T )2 T 0
M,ε + TS.

If we take the Fourier transform of the above equality we deduce

�̂M,ε(1) = |TorsH |
which is precisely the Alexander formula.

B.2. ∂M = S1 × S1. In this case M can be viewed as the complement of a knot in
a rational homology sphere. An orientation of the knot induces a natural homology
orientation. In this case Hk(M) = 0 for k > 1 and the homology orientation defines
as above a surjection degoH → Z. Choose an element T such that dego T = 1. Then
(see [114, §4.2])

TM,σ,o − (1− T )−1SH ∈ Z[H ]. (3.7)

In particular, this implies TM,σ ∈ N1(H) as established in Theorem 2.35.

C. b1(M) = 0. Thus ∂M = ∅ and we know that TM,σ ∈ N(H). In terms of Fourier
transform this means that

T̂M,σ (1) = 0.

This time TM,σ �∈ Z[H ] but the torsion still has some extra arithmetical properties.
More precisely, if o0 is the canonical homology orientation, then (see [114])

TM,σ,o0(g − 1)(h− 1) = − lkM(g, h) mod Z, ∀g, h ∈ H1(M), (3.8)

where lkM : H1(M) × H1(M)→ Q/Z is the linking form of the rational homology
3-sphereM .

Observe that if (M, σ, o) ∈ X+, then any orientation preserving diffeomorphism
f ofM induces a new enhanced homology orientation f ∗o and a new spinc structure.
Define ε(f ) ∈ ±1 by the equality f ∗o = ε(f )o. Then

TM,f ∗σ,f ∗o = ε(f )c(f ∗σ/σ)f∗
(
TM,σ,o

)
. (3.9)
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§3.7 Axiomatic description of the Reidemeister–Turaev torsion
of 3-manifolds

Denote by X the collection consisting of pairs (M, σ) satisfying the following condi-
tions.

•M is a compact, smooth, oriented 3-manifold, possibly with boundary consisting of
an union of tori. We will refer to such a manifold as admissible.
• σ ∈ Spinc(M, ∂M).

We denote by X1 the subfamily of X consisting of manifolds with positive b1.
We summarize the results established so far. The Reidemeister–Turaev torsion is an
invariant

X � (M, σ) 
→ TM,σ ∈ Q
(
H1(M)

)
/± 1

satisfying the following properties.

Axiom 0. Integrality.

TM,σ ∈
{

N2[H ] if ∂M = ∅
N1[H ] if ∂M �= ∅, ∀σ ∈ Spinc (M, ∂M).

Axiom 1. Topological invariance. The map

TM,• : Spinc (M, ∂M)→ N[H ]/± 1, σ 
→ TM,σ ,

is H1(M)-equivariant, and moreover, if f : M → M ′ is an orientation preserving
diffeomorphism then

TM,f ∗σ ′ ≈ c(f ∗σ/σ)f∗
(
TM ′,σ ′

)
.

Axiom 2. Excision. SupposeM is an admissible 3-manifold, and L = L1 ∪ · · · ∪Ln
is an oriented link in M such that [L1], . . . , [Ln] have infinite orders in H1(M). (In
other words,M is the result of a nondegenerate Dehn surgery.) Denote by Zi a small,
open tubular neighborhood of Li ↪→ M and set

E := M \
( n⋃
i=1

Zi

)
.

Denote by σi the canonical spinc structure on the solid torus. Then, the elements
(1 − [Li]) are invertible in N1

(
H1(M)

)
(cf. Lemma 2.42 in §2.5), and for every

σ ∈ Spinc(E, ∂E) we have

TM,σ#σ1#...#σn ≈
i#
(
TE,σ
)∏n

i=1

(
1− [Li]

) ,
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where i : H1(E)→ H1(M) denotes the inclusion induced morphism.

Axiom 3. Normalization. Suppose L ↪→ S3 is a link with at least two components.
Denote by E the exterior of E. Then for every σ ∈ Spinc(E, ∂E) the torsion TE,σ is
a representative of the Alexander polynomial of the link E, i.e.

TE,σ ∼ �L,
where we recall (see page 45) that ∼ denotes the equality in N2(H)/ ± H , while ≈
denotes the equality in N2(H)/± 1.

Suppose H is a finitely generated Abelian group of rank ≥ 1. In §1.5 we have
identified N2(H) with a ring of functions

f : H → Z

with semi-infinite support, with multiplication given by the convolution product. For
every f ∈ Z[[H ]] we can define

supp(f ) := {h ∈ H ; f (h) �= 0}.
Observe that if (M, σ0) ∈ X we define

supp(M) := {σ ∈ Spinc(M, ∂M); σ := h · σ0, h ∈ supp TM,σ0

}
= {σ ∈ Spinc(M, ∂M); 0 ∈ supp(TM,σ )

}
.

Clearly, supp(M) is independent of the initial choice σ0 ∈ Spinc(M, ∂M). The
group�M of isotopy classes of orientation preserving diffeomorphisms ofM preserves
Spinc(M, ∂M) and Axiom 1 implies that supp(M) is �M invariant. This is a very
powerful restriction when b1(M) ≥ 2 because in this case

TM,σ ∈ Z[H ]
so that supp(M) is a finite �M -invariant subset of Spinc(M, ∂M).

Theorem 3.17(Uniqueness Theorem; Turaev [115]). If#1, #2 are two invariants on
X1 satisfying the above axioms then

#1 ≈ #2.

Proof. Let us first observe that if H is a finitely generated Abelian group of rank ≥ 1
then an element U ∈ N(H) is trivial if and only if there exists a non-torsion class h
such that

(1− h)U = 0.

Define as above supp#i (M) ⊂ Spinc(M, ∂M) for any admissibleM and set

Y := {(M, σ) ∈ X1; #1(M, σ) ≈ #2(M, σ)
}
,
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Y′ := {(M, σ) ∈ X1; #1(M, σ) ∼ #2(M, σ)
}
.

Clearly Y ⊂ Y′.
The normalization axiom implies that Y′ contains the complements of links in S3

with at least two components. Moreover, the H1(M)-equivariance implies

(M, σ) ∈ Y (respectively Y′) ⇐⇒ (M, σ ′) ∈ Y (respectively Y′),

∀σ ′ ∈ Spinc(M, ∂M). For this reason, we will say thatM ∈ Y (or Y′) if (M, σ) ∈ Y
(or Y′ ) for some σ .

Since any admissible 3-manifold can be obtained by a nondegenerate Dehn surgery
we deduce from the excision axiom that Y′ contains all the admissible manifolds. At
this point however, it is not even clear that Y �= ∅. The uniqueness theorem is
equivalent to the equality Y′ = Y whose proof will be carried out in several steps.

Step 1.I × S1 × S1 ∈ Y.

Step 2.D2 × S1 ∈ Y.

Step 3. If K1, . . . , Km, m ≥ 2 are disjoint unknots in S3 such that

Lk (K1,Km) �= 0, ∀i = 2, . . . , m

then the exterior of the link L = ∪iKi belongs to Y.

Step 4. The exterior of any weakly trivial link in S3 in Y. (A link is called weakly
trivial if its components are unknots.)

Step 5.The exterior of any link in S3 is in Y.

Step 6.Y′ = Y.

The proof of Step 1 is based on the observation that I × S1 × S1 is the exterior E
of the Hopf link in S3. Moreover, using Axiom 3 we deduce supp#i (E) consists of a
single σi ∈ Spinc(E, ∂E) which must be �E-invariant. There is only one such Euler
structure, namely the trivial one constructed in Example 3.11. Using Step 1 and the
excision axiom we deduce that if K denotes the core of a solid torus X = D2 × S1

then (
1− [K])#1(X) ≈ #1(X \K) ≈ #2(X \K) ≈

(
1− [K])#2(X),

so that (
1− [K])(#1(X)±#2(X)

) = 0, #i(X) ∈ N2(H1(X)).

Thus #1(X) ≈ #2(X), and this completes Step 2.
Step 3 follows by induction on the number m of components. The case m = 1

is covered by Step 2. We assume the claim is true for k < m and we prove it for
links with m components. Denote by E the exterior of a link L = ⋃mi=1 Li with m
components such that Lk (L1, Lj ) �= 0, ∀j �= 1. Let us first show that #1(L) �= 0.
Denote byM the complement of L1 in S3. Then we can regard E as the complement
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of L2 ∪ · · · ∪ Lm in M . Since Lk(L1, Li) �= 0 we deduce that Li determines a
nontrivial homology class in H1(M). If #1(E) = 0 then the excision axiom would
imply #1(M) �= 0 which we know is not the case.

Fix σ0 ∈ Spinc(E, ∂E). Since E ∈ Y′, there exists g ∈ H1(E) such that

#1(E, σ0) = εg#2(E, σ0), ε = ±1.

From the H1(E)-equivariance we deduce

#1(E, σ ) = εg#2(E, σ ), ∀σ ∈ Spinc(E, ∂E).

g is uniquely determined by the above equality since #1(E) �= 0. Denote by µi an
oriented meridian of Li . The cycles µi form a basis of H1(E) and thus we can write

g =
m∏
i=1

µ
ki
i , ki ∈ Z.

We can now conclude by gluing back to E the tubular neighborhood of Li , i > 1, we
have removed and then using the excision axiom. We get a link with fewer components
to which we apply the induction hypothesis to conclude

kj = 0, ∀j �= i.
Step 4 follows from the excision axiom and Step 3. Step 5 follows from Step 4 using
the excision axiom, and the fact that given any link L ↪→ S3 there exists a disjoint
link K ↪→ S3 such that the exterior of K ∪ L is diffeomorphic to the exterior of a
weakly trivial link; see Lemma 3.18 below. Finally, Step 6 follows from Step 5 using
the excision axiom and the fact that any admissible 3-manifold can be obtained by a
nondegenerate Dehn surgery. �


Figure 3.7. Two spanning disks with different piercing properties.

Lemma 3.18. For any link L ↪→ S3 there exists a disjoint link K ↪→ S3 such that
the exterior of K ∪ L is diffeomorphic to the exterior of a weak link.

Proof. Present L by a link diagram. We can transform L into a weak link L′ by
switching certain over/under- crossings into under/over-crossings. In fact, we only
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need to do this at self-crossings of the components of L. At each such crossing q
consider a small unknotted circle Cq bounding a small disk Dq pierced twice by L.
We choose Cq so that Dq is pierced in the same direction; see Figure 3.7.

The circle Cq represents a nontrivial element in S3 \ L. We denote by K the link
formed by all these unknotted circles. ClearlyK ∪L′ is trivial. Also it is clear that the
exterior of K ∪ L is diffeomorphic to the complement of K ∪ L′ because the change
of an over/under-crossing to an under/over-crossing can be performed by a Dehn twist
of the complement of Cq localized on the fattened spanning disk. �


Remark 3.19. In concrete problems, the most difficult to deal with is the normal-
ization axiom because the Alexander polynomial of a link is computationally very
involved. Fortunately V. Turaev has indicated in [112, §4] an elegant way to bypass
this difficulty.

Denote by L the family of links in S3 and for eachL denote byA(L) its Alexander
polynomial. To prove that

#(S3 \ L) = A(L), ∀L ∈ L

it suffices to know that #(S3 \ unknot) = A(unknot) and that #(S3 \ L) changes
exactly as the Alexander polynomial when the link L is subjected to some elementary
universal transformations which can be described by certain universal Dehn surgeries
on S3 \ L. Thus the difficulty in proving that an invariant coincides with the refined
Reidemeister–Turaev torsion boils down to computing that invariant in the for the
complement of the unknot in S3 and to proving a few surgery formulæ. �


By design, the above approach cannot deal with rational homology spheres due
mainly to the excision axiom. In §4.1 we will outline an uniqueness statement of
a totally different nature, which involves additive gluing formulae, but only closed
manifolds satisfying b1 ≤ 1. For now we are content to do the next best thing, that
is to explain how to compute the torsion of a rational homology 3-spheres relying on
surgery presentations.

§3.8 The torsion of rational homology 3-spheres. Part 1.

Suppose N is a rational homology 3-sphere described by the Dehn surgery on the
oriented link K = K1 ∪ · · · ∪Kn ⊂ S3 with rational surgery coefficients

)r = (p1/q1, . . . , pn/qn) ∈ Qn, qi > 0, (pi, qi) = 1, ∀i = 1, . . . , n.

We denote by E the complement of this link, and we set G = H1(E), H = H1(N).
We denote by µi ∈ G the meridian of Ki , oriented by the condition

LkS3(Ki , µi) = 1.
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The manifold N is obtained from E by attaching n solid tori which we denote by
Z1, . . . , Zn. The meridians µi determine homology classes µi ∈ G, and [µi] in H .
The collection

{[µi]}1≤i≤n generatesH , while the collection {µi}1≤i≤n is an integral
basis of G. We thus have a natural isomorphism G ∼= Zn. In particular G⊗ R ∼= Rn
is equipped with a natural Euclidean inner product which we denote by (•, •).

The linking matrix of the link is the n× n symmetric matrix L with entries

�ij =
{

LkS3(Ki ,Kj ) if i �= j
0 if i = j.

For any vector )x ∈ Qn we denote by D)x the diagonal matrix

D)x = diag(x1, . . . , xn).

We form the symmetric n× n matrix

P := LD)q +D )p. (3.10)

More explicitly, its entries are

pij =
{
qj �ij if i �= j
pi if i = j.

Define
P0 := PD−1

)q = L+D)r .
Note thatP0 is a symmetric matrix with rational coefficients. As explained inAppendix
§B.2, det P �= 0, and in fact |H | = | det P |. Moreover the linking form of N is
completely determined by the inverse of P0, in the sense that

lkN([µi], [µj ]) = −(P−1
0 µi, µj ) mod Z.

Choose vectors )α, )β ∈ Zn such that

piβi − qiαi = 1.

Moreover, if qi = 1 we choose (αi, βi) = (−1, 0). Form the matrix

K := L ·Dβ +Dα. (3.11)

The matrix K has the following interpretation. Denote by π : G → H the natural
projection. The cores of the attached solid toriZi determine homology classes ki ∈ H ,
i = 1, . . . , n. The columns of K define elements K1, . . . , Kn ∈ G. Then (see
Appendix §B.2)

ki = πKj , i = 1, . . . , n.
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For every S ⊂ 1, n := {1, . . . n}we denote byES the manifold obtained by performing
the surgery only along the knotsKi , i ∈ S̄ := 1, n\S. Equivalently,ES is the exterior
of the link in N determined by the cores of the attaching solid tori {Zi; i ∈ S}.

We set GS = H1(ES). Thus N = E∅ and H = G∅. Observe that to every
inclusion S1 ↪→ S2 there corresponds a projection GS2 � GS1 , and an inclusion
ĜS1 ↪→ ĜS2 . In particular we get a projection πS : G � GS , and an injection
iS : Ĥ ↪→ ĜS , ∀S. From the identity

D )pD )β −D)qD)α = 1

we deduce that
PD)α −KD)q = 1.

In particular, this implies that

qiπSKi = −πSµi ∈ GS, ∀i ∈ S̄. (3.12)

When S = {j} we set ES := Ej , GS := Gj , we denote the projection G → Gj by
πj , and the injection Ĥ ↪→ Ĝj by ij .

Definition 3.20. A surgery presentation of a rational homology sphere is called non-
degenerate if for any i �= j the homology class πjKi , has infinite order in Gj . �


Here is an algebraic criterion for recognizing nondegenerate surgeries.

Lemma 3.21. The following statements are equivalent.

(i) The surgery is nondegenerate.

(ii) The matrix P is nondegenerate, i.e. every off-diagonal element of P−1 is
nontrivial.

Proof. (ii) *⇒ (i). We argue by contradiction. Suppose there exist i0 �= j0 such that
the class πj0Ki0 has finite order in Gj0 . The equality (3.12) implies that πj0µi0 has
finite order in Gj . Then there exists n ∈ Z∗ and )v ∈ Zn such that

vj0 = 0, nµi0 = P · )v ⇐⇒ )v = nP−1µi0 . (3.13)

Thus, the coordinates of )u := 1
n
)v are given by the i0-th column of P−1. Since P is

nondegenerate we deduce that vk �= 0, ∀k �= i0. This contradicts the condition vj0 = 0
proving that (ii) *⇒ (i). The implication (i) *⇒ (ii) is proved in a similar fashion. �


Exercise 3.5.Prove that any rational homology 3-sphere can be described by a non-
degenerate Dehn surgery. �




138 3 Turaev’s refined torsion

Definition 3.22. Suppose G is finitely generated Abelian group. Two meromorphic
function f1, f2 on G̃ := Hom(G,C∗) are called t-equivalent, and we write this f1 ∼
f2 if there exists g0 ∈ G and ε = ±1 such that

f1(χ) = εχ(g0)f2(χ), ∀χ ∈ G̃ \ (f−1
1 (∞) ∪ f−1

2 (∞)). �

Suppose now that the surgery presentation (3.10) is nondegenerate. Then G̃ is

a complex n-dimensional torus, and the complex Fourier transform of the torsion
of E is a holomorphic function T̂E(χ) on G̃. Observe that for every g ∈ G the
complex Fourier transform of g viewed as element inZ[G] is the holomorphic function
G̃ � χ 
→ δg(χ) = χ(g)−1 ∈ C∗. The complex Fourier transforms of 1−Ki ∈ Z[G],
1 ≤ i ≤ n, are the holomorphic functions on G̃,

χ 
→ 1− δKi (χ) = 1− χ(Ki)−1.

Since rankGS = |S|, we deduce that the space of representations G̃S := Hom(GS,C∗)
is an union of complex tori of dimension |S| and, according to Corollary 2.38, the com-
plex Fourier transform of TES is a holomorphic function T̂ES (χ) on G̃S \{1}. Since the
elements πSKi , i ∈ S̄ have infinite orders inGS we deduce from the surgery formula
Theorem 2.41 and Lemma 2.42 that T̂ES is t-equivalent to the unique holomorphic
extension of the meromorphic function

G̃S \ {1} � χ 
→ T̂E(χ)∏
i∈S̄ (1− χ−1(K̃i))

.

Let χ ∈ Ĥ \ {1}. Since the collection
{[K1], . . . , [Kn]

}
generates H there exists j

such that χ([Kj ]) �= 1. We deduce from the surgery formula Theorem 2.41 that

T̂N(χ) ∼ 1

1− χ([Kj ])−1 T̂Ej (ijχ), ∀χ ∈ Ĥ \ {1}.

The above observations show that for nondegenerate surgeries, the computation of
the torsion of Ej simplifies considerably. We have thus proved the following surgery
formula.

Theorem 3.23. Suppose that the rational homology 3-sphere N is described by a
nondegenerate Dehn surgery on an oriented link K = K1∪· · ·∪Kn. SetE := S3\K ,
G := H1(E), H := H1(N), G̃ := Hom(G,C∗), and define Ki by (3.11). Denote
by π the natural surjection G → H . Its dual π̂ is an embedding Ĥ ↪→ G̃. Then
the complex Fourier transform of TE is a holomorphic function on G̃ \ {1}, and the
meromorphic function

FP (χ) := T̂E(χ)∏n
i=1(1− χ−1(Ki))

is regular at the points χ ∈ Ĥ \ {1} ↪→ G̃. Moreover if we set FP (1) = 0, then the
restriction of FP to Ĥ is t-equivalent to the Fourier transform of the torsion of N .
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Let us now explain how to use the above theoretical result in concrete computations.
For each χ ∈ Ĥ \ {1} we set

Sχ := {i; χ(πKi) �= 1}.
Pick i ∈ Sχ . Then χ belongs to G̃i \ {1}. The group G̃i is an union of complex tori,
and we denote by Tχ,i the connected component containing χ . More precisely there
exists )wi ∈ Hom(G,Z) such that

Tχ,i = {t ∗wi χ; t ∈ C∗},
where3

(t ∗ )wi χ)()v) := t−〈 )wi,)v〉χ()v), ∀t ∈ C∗, )v ∈ G.
We think of )wi as a row vector, and of µi as column vectors. Observe the following.
If we set zj := χ(µj ), and nj := 〈 )wi, µj 〉, and g =∑j γjµj ∈ G then

δg(χ) =
∏
j

z
−γj
j , δg(t ∗ )wi χ) =

∏
j

tnj γj z
γj
j = t 〈 )wi,g〉δg(χ). (3.14)

The weight )wi is determined as follows. Gi is an Abelian group of rank 1. Then its
dual Ǧi := Hom(Gi,Z) is a free Abelian group of rank 1 which injects in Hom(G,Z).
Then )wi is nontrivial integral multiple of one of the two generators of Hom(Gi,Z) ↪→
Hom(G,Z). More explicitly this means that

〈 )wi, Pi〉 �= 0, 〈 )wi, Pj 〉 = 0, ∀j �= i,
where Pj denotes the j -th column of the presentation matrix P . If we consider the
basis ej ∈ Hom(G,Z),

〈ej , µi〉 = δji ,
we deduce that there exists k ∈ Z∗ such that

)wi = k · niei · P−1, ∀i,
where ni is the least common multiple of the denominators of the entries on the i-th
row of P−1. In other words )wi ∈ Zn \ {0}must be an integral multiple of the i-th row
of P−1. We see that t 
→ t ∗ )wi χ is a complex curve inside G̃i which passes through
χ at t = 1. Hence

FP (χ) = 1(
1− χ(Ki)−1

) · lim
t→1

T̂E(t ∗wi χ)∏
j �=i
(
1− t 〈 )wi,Kj 〉χ(Kj )−1

) .
We can write the above equality in a more symmetric form. Namely

i ∈ Sχ *⇒ FP (χ) = lim
t→1

T̂E(t ∗ )wi χ)∏
j

(
1− t 〈 )wi,Kj 〉χ(Kj )−1

) , ∀m ∈ Z∗. (3.15)

3Pay attention to the negative sign in the definition of t∗ )wi .
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We can improve this formula, to take into account all i ∈ Sχ . More precisely, the
above argument shows that for every weight )w ∈ Hom(G,Z) \ {0} such that

〈 )w,Pj 〉 = 0, 〈 )w,Kj 〉 �= 0, ∀j ∈ S̄χ , (3.16)

we have

FP (χ) = 1∏
i∈Sχ
(
1− χ(Ki)−1

) · lim
t→1

T̂E(t ∗w χ)∏
j∈S̄χ
(
1− t 〈 )w,Kj 〉) . (3.17)

Definition 3.24. (a) A weight )w ∈ Hom(G,Z)\ {0} satisfying (3.16) is called admis-
sible for χ .

(b) We will refer to the process of computing FP (χ) described in (3.17) as regu-
larization along an admissible weight. �


Remark 3.25. (a) The function FP determines the Reidemeister–Turaev torsion ofN
only up to a sign and spinc structure ambiguity. Later on in §3.9 and §3.10 we will
explain how to remove these ambiguities.

(b) The nondegeneracy condition is a technical assumption which we use only
because it simplifies considerably the final appearance of the surgery formula. In the
recent preprint [116], V. Turaev has established very general surgery formulæ which do
not require the nondegeneracy condition. As one can expect, for degenerate surgeries
they involve many more terms then our (3.17) and are computationally more complex.

�


Before we present several concrete computations based on the above formula, we
want to describe an important class of nondegenerate surgery presentations which
arises in singularity theory.

Proposition 3.26. Suppose P is an n × n matrix with rational entries satisfying the
following conditions.

(i) P is symmetric and negative definite.

(ii) Every off-diagonal element is non negative.

(iii) For any collection S � 1, n, there exist i ∈ S and j ∈ S̄ such that pij > 0.

Then the matrix P is nondegenerate.

Proof. Denote by e1, . . . , en the canonical basis of Qn. We define an order relation
on Qn

)u =
∑
i

uiei ≥ )v =
∑
i

viei ⇐⇒ ui ≥ vi, ∀i = 1, . . . , n.
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We will first prove that if )u is a vector such that P )u ≥ 0 then )u ≤ 0. We write

)u = )a − )b, )a, )b ∈ Qn+, ai · bi = 0, ∀i.
Then

0 ≤ (P )u, )a) = (P ()a − )b), )a) = (P )a, )a)− (P )a, )a) ≤ (P )a, )a).
On the other hand

(P )a, )b) =
∑
i �=j
pij aibj ≥ 0.

Hence we conclude that 〈P )a, )a〉 = 0, and since P is negative definite we deduce
)a = 0.

We can now prove that form every i �= j we have (P−1ei , ej ) �= 0. Set f :=
P−1ei . Then

Pf = ei ≥ 0

so that f ≤ 0. We will prove that

fj := (f , ej ) = (P−1ei , ej ) < 0, ∀j.
We argue by contradiction. Define

S := {j ∈ 1, n; fj < 0} �= ∅.
If S �= 1, n then we can find i0 ∈ S̄ such that pi0j0 > 0 for some j0 ∈ S. Then
fi0 :=

(
f , ei0

) = 0.

0 ≤ (Pf , ei0) =
∑
j �=i0

pji0fj ≤ pi0j0fj0 < 0.

This completes the proof of the proposition. �


We will now focus exclusively on a very special class of surgery presentations,
namely rational plumbings along trees. Consider a connected tree (G,V, E) whose
vertices weighted by rational numbers rv = pv/qv , v ∈ V. As in §2.6, we associate to
such a weighed graph the 3-manifoldM(G, )r) described by a surgery on an oriented
link K = KG ⊂ S3 defined as follows.

• There is a bijection between the vertices of G and the components of K, v 
→ Kv .

•All the components are unknots.

• If u, v ∈ V are connected by an edge then the sublink {Ku,Kv} is the Hopf link.
Otherwise these two components are unlinked.

• The surgery coefficient corresponding to Kv is rv .
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When all the surgery coefficients are integral we re-obtain the surgery description
of the usual plumbings. The plumbing matrix P0(G) = P0(G, )r) is defined by

puv =
{

Lk(Ku,Kv) if u �= v
pu/qu if u = v.

Set P(G, )r) = D)q · P0(G, )r). Observe that the matrix P0(G) coincides with what
we called P0 = L + D)r , and P(G, )r) coincides with the presentation matrix asso-
ciated to the surgery. We say that the weighted graph (G, )r) is nondegenerate if the
associate surgery it describes is nondegenerate. Note the following consequence of
Proposition 3.26.

Corollary 3.27. Suppose that the plumbing matrixP0(G, )r) is negative definite. Then
the presentation matrix P(G, )r) = D)qL+D )p is nondegenerate.

Plumbings defined by negative definite matrices arise naturally in the resolution
of isolated singularities of complex surfaces.

We can use the slam-dunk operation in [37, §5.3] to transform one weighted graph
to an equivalent one. This operation is described in Figure 3.8, where n is an integral
surgery coefficient. We have the following elementary fact whose proof is left to the
reader.

r n
n− 1/r

Figure 3.8. Slam-dunk.

Proposition 3.28. If the weighted tree (G′, )r ′) is obtained from (G, )r) by a slam-dunk,
and P0(G, )r) is nondegenerate or negative definite, then so is P0(G

′, )r ′).

Exercise 3.6.Prove Proposition 3.28.

We illustrate the above theoretical facts on a concrete example.

Example 3.29(A plumbed rational homology 3-sphere). Considered the 3-manifold
M described by the plumbing in Figure 3.9.
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Figure 3.9. A plumbed rational homology 3-sphere.

In this case the matrix P is

P :=


3 1 0 0 1 1
1 3 1 1 0 0
0 1 2 0 0 0
0 1 0 2 0 0
1 0 0 0 2 0
1 0 0 0 0 2


with determinant 48 so thatM is a rational homology 3-sphere. Its inverse is

P−1 :=


2/3 −1/3 1/6 1/6 −1/3 −1/3
−1/3 2/3 −1/3 −1/3 1/6 1/6

1/6 −1/3 2/3 1/6 −1/12 −1/12
1/6 −1/3 1/6 2/3 −1/12 −1/12

−1/3 1/6 −1/12 −1/12 2/3 1/6
−1/3 1/6 −1/12 −1/12 1/6 2/3

 , (3.18)

so we see that the surgery is nondegenerate. Invoking the MAPLE procedure ismith we
deduce that H := H1(M) := Z4 ⊕ Z12,

P := UDV,
where

D :=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 4 0
0 0 0 0 0 12

 , U :=


0 0 0 0 0 1
1 0 0 0 0 −3
0 −1 1 2 1 0
−1 0 0 1 0 3
−2 0 0 2 1 5
14 2 −1 −19 −1 −43

 .

The above decomposition of P defines a new integral basis e1, . . . , e6, and the coor-
dinates of µj in this new basis are given by the entries in the j -th column Uj of U .
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e5 defines a generator of the Z4 summand, while e6 defines a generator of the Z12-
summand.

The manifold M can also be described as a Dehn surgery on the link depicted in
Figure 3.9. Using the formula (2.22) on page 90 we deduce that the torsion of the
complement E of this link is

TE ∼ (µ1 − 1)2(µ2 − 1)2,

where µi denotes the meridian of the component Ki of this link. Denote by E the
complement of this link, and by G its first homology group. In this case, the matrix
K is −1. For every χ ∈ G̃ = Hom(G,C∗) we set

ζi := χ(ei ), zi := χ(µi) ∈ C∗, i = 1, . . . , 6.

The Fourier transform of the Alexander polynomial defines the holomorphic function

T̂E(z) = (z−1
1 − 1)2(z−1

2 − 1)2.

Note that if χ ∈ Ĥ then ζi = 1 for 1 ≤ i ≤ 4. We set (u, v) := (ζ5, ζ6) ∈ C∗ × C∗.
Observe now that u4 = v12 = 1. Then zi = ζUi and

ζU1 = u−2v14 = u2v2, ζU2 = v2, ζU3 = v−1,

ζU4 = u2v−19 = u2v5, ζU5 = uv−1, ζU6 = uv5.

We conclude that for χ ∈ G̃.

T̂M(χ) ∼ FP (χ) = (z
−1
1 − 1)2(z−1

2 − 1)2∏6
j=1(1− zj )

= z−2
1 z

−2
2
(z1 − 1)(z2 − 1)∏6

j=3(zj − 1)
.

Recall that this means that for every spinc structure σ onM , there exist )kσ ∈ Z6 and
ε = ±1 (independent of σ ) such that

T̂M,σ (χ) = εχ−1(µ)kσ )FP (χ), ∀χ ∈ Ĥ \ {1}.
The value of FP at χ is obtained by regularization along a χ -admissible weight. We
consider a special case.

Suppose for example that the character χ is such that v−1 = 1 = v, but u2 �= 1.
Then u2 = −1 and z1 �= 1, i.e. 1 ∈ Sχ . Then

ζU1 = −1,

ζU4 = −1,

ζU2 = v2 = 1,

ζU5 = u,
ζU3 = 1,

ζU6 = u, u = ±i.
(3.19)

We use the surgery formula (3.15) with the admissible weight )w described by an
integral multiple of the first row of P−1. We take

)w := (4,−3, 1, 1,−2,−2) =: (w1, . . . , w6), wi := 〈 )w,µi〉.
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FP (t ∗ )w χ) = t2w1+2w2z−2
1 z

−2
2
(t−w1z1 − 1)(t−w2z2 − 1)∏6

j=3

(
t−wj zj − 1

)
= t2 (−t−4 − 1)(t3 − 1)

(t−1 − 1)(−t−1 − 1)(ut2 − 1)(ut2 − 1)

= −t3 t−3(t4 + 1)(t3 − 1)

(t − 1)(t + 1)(ut−2 − 1)(ut−2 − 1)
.

We conclude

lim
t→1

FP (t ∗ )w χ) = − 3

(u− 1)2
.

In Example 3.49 on page 162 we explain how to determine the vector )kσ for a particular
spinc structure. �


There is one important lesson to be learned from the above example. It is possible
that different characters of H may not have a common admissible weight, and thus
the computation of FP for these characters may require regularizations along different
weights. If however the plumbing graph has a rich symmetry the computations simplify
considerably. We will describe below one such class of surgery presentations which
arises in the study of isolated quasihomogeneous singularities. In this case a miracle
happens. We can find a weight which is admissible for all characters!

Example 3.30(Seifert fibered rational homology 3-spheres). Consider the surgery
presentation in Figure 3.10. It describes a Seifert fibered rational homology 3-sphere.
We assume

� := −
ν∑
i=1

βi

αi
< 0

since this condition arises naturally in the study of the singularities and guarantees the
nondegeneracy of the surgery presentation.

Using the surgery trick (2.19) on page 90 we deduce that the Reidemeister–Turaev
torsion of the exterior of this link is

�K ∼ (µ0 − 1)ν−1.

We denote by N the 3-manifold obtained by the surgery in Figure 3.10, by E the
complement of the link, and we set G := H1(E), H := H1(N). Then H admits the
presentation

〈µj , j = 0, 1, . . . , ν; µ1 . . . µν = 1, µαii µ
βi
0 = 1, i = 1, . . . , ν〉. (3.20)

We now pick integers (pi, qi), i = 1, . . . , ν such that

αiqi − βipi = 1,
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0

K0

Kν

K1

K2

α1/β1

α1/β1

α2/β2

α2/β2

αν/βν

αν/βν

Figure 3.10. Surgery presentation of a Seifert fibered rational homology sphere.

and set as usualKi := µpii µqi0 . The central surgery coefficient is integral and we have
K0 = µ−1

0 . Later on we will be more specific about the choices pi, qi . For each
χ ∈ Hom(G,C∗) we set

zi = χ−1(µi), ζi = χ−1(Ki) = zqi0 z
pi
i , i ∈ Iν := {1 . . . , ν}.

If χ ∈ Ĥ then (3.20) implies

z0 = ζ αii , zi = ζ βii ∀i ∈ Iν. (3.21)

For every χ ∈ Ĥ we define its support to be

Sχ := {i ∈ Iν; ζi �= 1}.

Lemma 3.31(Support lemma). Letχ ∈ Ĥ \{1} such thatχ(µ0) = 1. Then |Sχ | ≥ 2.

Proof. Since the classes Ki generate H we deduce Sχ �= ∅. Suppose |Sχ | = 1, say
Sχ = {1}. Thus ζi = 1, ∀i �= 1. The relations (3.21) imply that

1 = ζ αii , ∀i ∈ Iν
The equalities zi = ζ βii together with the relation z1 . . . zn = 1 imply ζ β1

1 = 1. Hence

ζ
α1
1 = ζ β1

1 = 1.
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Since gcd(α1, β1) = 1 we must conclude that ζ1 = 1 as well. This contradicts the
condition Sχ �= ∅ and concludes the proof of the lemma. �


Suppose now that χ ∈ Ĥ \ 1. We distinguish two cases.

1. z0 �= 1. Using (3.21) we conclude that ζi �= 1, ∀i = 0, 1, . . . , ν. We deduce

FP (χ) = (z0 − 1)ν−2∏ν
i=1(1− ζi)

.

2. z0 = 1. Using the Support Lemma we deduce |Sχ | ≥ 2. Assume {1, 2} ⊂ Sχ , i.e.
ζ1 �= 1, ζ2 �= 1. We want to choose a weight )w ∈ Hom(G,Z) \ {0} satisfying the
conditions (3.16). In this case these conditions take the form

w0βi + wiαi = 0, ∀i > 2.

where wi := )w(µi). In other words wi = −βiαi w0. Observe that for every i > 2 we
have

ni := 〈 )w,Ki〉 = w0qi + piwi = w0(qi − piβi
αi
) = w0

αi
.

Let α = lcm (α1, . . . , αν). We set w0 = −α so that ni = − α
αi

. Using (3.17) with
〈 )w,K1〉 = α

α1
, 〈 )w,K2〉 = α

α2
, we deduce

FP (χ) = lim
t→1

z0t
α − 1∏ν

i=1(1− ζi tα/αi )
. (3.22)

�


Remark 3.32. (a) Observe that the surgery formula (3.22) holds in both cases z0 = 1
or z0 �= 1. In other words, the weight we have constructed is admissible for all the
characters! This formula, first appeared in [75], where it plays a central role in the
proof of some conjectures arising in singularity theory. For a complete and explicit
description of the limit in the right hand side of (3.22) we refer to [76].

(b) The rational function in the right-hand-side of (3.22) also appears in [77] under
an algebraic-geometric guise. More precisely, in that paper it is proved that this rational
function (of t) coincides with the Poincaré series of associated to the graded ring of
regular functions on the singular, quasihomogeneous, affine surface associated to the
plumbing in Figure 3.10. This similarity played an important role in [76]. It would
be interesting to know if there is a deeper connection between these two apparently
unrelated incarnations of this rational function. �
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§3.9 Quadratic functions, spinc structures and charges

The surgery formulæ we have developed so far have one drawback. They produce the
torsion up to a sign and a spinc structure ambiguity. In this section we will describe
several methods of keeping track of the spinc structures when working with surgery
presentations.

The first method of keeping track of spinc structures is algebraic in nature. To
present it we need an algebraic digression.

Definition 3.33. Suppose H is a finite Abelian group. A quadratic function on H is
a function q : H → Q/Z such that the map b = bq : H ×H → Q/Z defined by

H ×H � (x, y) 
→ b(x, y) := q(xy)− q(x)− q(y) ∈ Q/Z
is a bilinear form b : H ×H → Q/Z. We say that q is a refinement of b.

A quadratic form is a quadratic function q satisfying q(nx) = n2q(x) for all
x ∈ H , n ∈ Z. In this case we say that q is a quadratic refinement of bq .

Given a bilinear form b on H we denote by Qc(b) the set of refinements of b and
by Q(b) the set of quadratic refinements. Clearly Q(b) ⊂ Qc(b). �


Note that if χ ∈ Ĥ and q ∈ Qc(b) then χ + q ∈ Qc(b). Conversely, if q1, q2 ∈
Qc(b) then q1 − q2 ∈ Ĥ . This shows that we have a free and transitive action

Ĥ ×Qc(b)→ Qc(b), Ĥ ×Qc(b) � (χ, q) 
→ χ + q.
In other words, Qc(b) is a Ĥ -torsor.

Suppose now that M is a rational homology sphere, H := H1(M). We set
Qc(M) := Qc(lkM). The identity (3.8) on page 130 implies that the sign refined
Reidemeister–Turaev torsion defines a map

qtors : Spinc(M)→ Qc(M), σ 
→ qtors(σ )

by setting
qtors(σ )(h) = TM,σ,o0(1)− TM,σ,o0(h) mod Z,

where o0 is the canonical homology orientation.
The linking form lkM produces an isomorphism H → Ĥ , and thus we can regard

Spinc(M) as an Ĥ -torsor via this isomorphism. The map qtors is then a Ĥ -equivariant
bijection. This fact suggests an algebraic encoding for spinc structures. A spinc

structure is completely determined by the refinement qtors(σ ) of lkM .
In [7], Brumfiel and Morgan have constructed another Ĥ -equivariant bijection

qtop : Spinc(M)→ Qc(M) which we now proceed to describe. Fix a spinc structure
on M . Then (see e.g. [37, §5.7]) there exists at least one simply connected spinc

4-manifold (M̂, σ̂ ) such that M ∼= ∂M̂ (as oriented manifolds) and σ ∼= σ̂ |∂M̂ . Set
c(σ̂ ) := c1(det σ) ∈ H 2(M,Z) so that c1(det σ) = c(σ̂ )|

∂M̂
.
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Let L := H 2(M̂, ∂M̂)
PD∼= H2(M̂), and denote byQ the intersection pairing

Q : L× L→ Z, Q(x, y) = 〈x ∪ y, [M̂, ∂M̂]〉.
Since M is a rational homology sphere the intersection pairing Q is nonsingular, i.e.
the natural map IQ : L → Ľ := Hom(L,Z) induced by Q is an injection. Observe

that Ľ ∼= H 2(M̂)
PD∼= H2(M̂, ∂M̂ . We have a short exact sequence

L
IQ
↪→ Ľ� H 2(M) ∼= H → 0.

For every x̌ ∈ Ľ we denote by [x̌] its image in H . Set ν := |H |. Observe that for
every x̌ ∈ Ľ we have νx̌ ∈ IQ(L) so that I−1

Q (νx̌) ∈ L. The intersection form Q

defines a nonsingular pairing

Q̌ : Ľ× Ľ→ Q, Q̌(x̌, y̌) = 1

ν2Q
(
I−1
Q (νx̌), I

−1
Q (νy̌)

)
We say that Q̌ is the dual ofQ. Then

lkM([x̌], [y̌]) = −Q̌(x̌, y̌) mod Z, ∀x̌, y̌ ∈ L.
A vector κ ∈ Ľ is called characteristic if

〈κ, x〉 = Q(x, x) mod 2, ∀x ∈ L.
A characteristic vector κ defines a quadratic function

qκ : H → Q/Z, qκ([x̌]) = −1

2

(
Q̌(κ, x̌)+ Q̌(x̌, x̌)) mod Z

Exercise 3.7.Prove that qκ is well defined, i.e.

[x̌1] = [x̌2] *⇒ 1

2

(
Q̌(κ, x̌1)+Q̌(x̌1, x̌1)

) = 1

2

(
Q̌(κ, x̌2)+Q̌(x̌2, x̌2)

)
mod Z. �


The quadratic function qκ is a refinement of lkM . The element c(σ̂ ) is character-
istic, and we set

qtop(σ ) = qc(σ̂ ).

Lemma 3.34. The refinement qtop(σ ) is independent of the choice (M̂, σ̂ ).

Proof. Suppose (M̂i, σ̂i), i = 0, 1 are two simply connected, oriented, spinc-manifolds
such that ∂(M̂, σ̂i) = (M, σ), i = 0, 1. Form as above Li , Qi , and κi := c(σ̂i),
i = 0, 1. Denote by−M̂1 the manifoldM1 equipped with the opposite orientation, and



150 3 Turaev’s refined torsion

by Q−1 the intersection form on L1 = H 2(−M̂1,−∂M̂1;Z) induced by the opposite
orientation. ThenQ−1 = −Q1. Form the closed spinc-manifold M̂ := M̂0 ∪M −M̂1.
The spinc structures σ̂i on (−1)iM̂i glue up to a spinc structure σ̂ on M . Set L̂ :=
H 2(M,Z) and denote by Q̂ the intersection form on M̂ . We have the identifications

L̂ ∼= {(x̌0, x̌1) ∈ Ľ0 ⊕ Ľ1; [x̌0] = [x̌1]
}
,

and
Q̂ = (Q̌0 ⊕−Q̌1)|L̂.

The cohomology class κ = c1(det σ̂ ) ∈ L̂ is a characteristic element of Q̂, and
κ = (κ0, κ1) ∈ Ľ0 ⊕ Ľ1.

Fix an element h ∈ H and elements x̌i ∈ Ľi such that h = [x̌i], i = 0, 1. These
elements define x = (x̌0, x̌1) ∈ L̂. Then

qκ0(h)− qκ1(h) =
1

2

(
Q̂(κ̂, x)+ Q̂(x, x)) = 0 mod Z,

since κ is a characteristic element of Q̂. �


Proposition 3.35. The map qtop : Spinc(M)→ Qc(M) is Ĥ -equivariant.

Proof. Let σ ∈ Spinc(M) and (M̂, σ̂ ) as in the definition of qtop. Set κ := c1(det σ̂ ).
Recall that Spinc(M) is a Ĥ -torsor via the isomorphism H ∼= Ĥ , h 
→ χh :=
lkM(h, •). Let χ ∈ Ĥ and h ∈ H such that χ = χh. We can find x̌ ∈ Ľ such that
h = [x̌]. Then

(M, h · σ) = ∂(M̂, x̌ · σ̂ ), c1(x̌ · σ̂ ) = 2x̌ + κ.
Clearly qtop(h · σ) = χh + qtop(σ ). �


In §4.1 we will prove that qtop = qtors. Now we want to provide a different,
intrinsic description of qtop(ε), ε ∈ Spin(M).

Let us first recall that according to Milnor [71], any spin structure on an oriented
vector bundle E of rank r ≥ 3 over a compact CW-complex X is described by an
extension to the 2-skeleton of X of the framing (trivialization) over the 1-skeleton
defined by the orientation. Two such extensions define isomorphic spin structures if
and only if they are homotopic. In particular, if X is a compact oriented 3-manifold,
and E = TX, we deduce that a spin structure on X is defined by a framing4 of TX.
Two framings define isomorphic spin structures if and only if they are homologous, i.e.
they are homotopic outside a three-dimensional ball. We will thus label spin structures
by homology classes of framings of the tangent bundle.

4Here we have implicitly used the condition π2(SO(n)) = 0, ∀n ≥ 2 which implies that any framing of
TX outside a 3-ball extends to a framing of X everywhere.
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To proceed further we need to recall another simple fact. SupposeE is an oriented,
real vector bundle of rank r ≥ 3 over S1. There are two homotopy classes of framings
ofE. Of these two there is a trivial one described as follows. ExtendE to an oriented
vector bundle Ê over the 2-dimensional disk D. A framing of E is trivial if it can be
extended to a framing of Ê. We associate two each framing )F of E → S1 its parity,
denoted by [ )F ] ∈ Z2, by declaring the parity of the trivial framing to be 0. Note that
two framings )F i , i = 1, 2, on Ei → S1 induce a framing )F 1 ⊕ )F 2 on E1 ⊕ E2 and

[ )F 1 ⊕ )F 2] = [ )F 1] + [ )F 2].
We can extend the notion of parity of framings of to bundles over S1 of rank≤ 2 using
the stabilization trick. More precisely if )F is a framing of a real, oriented 2-plane
bundle E → S1, then we define its parity as the parity of the induced framing on
Rs⊕E whereR=the trivial real line bundle, s ≥ 2. In this case the condition [ )F ] = 0
implies that there exists a gauge transformation g : S1 → SO(2) ∼= S1 of even degree
such that the induced framing )F ′ = )F · g of E extends over the disk bounding S1.
Because of this fact, when speaking of even framings of a 2-plane bundle over S1, we
will always understand framings which extend over the disk.

A spin structure on S1 is equivalent to a homotopy class of framings of its stable
tangent bundle, TsS1 ∼= Rs ⊕ T S1, s is an arbitrary integer ≥ 2. The canonical spin
structure corresponds to the canonical framing of the stable tangent bundle.

Suppose now that M is a rational homology 3-sphere, H := H1(M), and ε ∈
Spin(M). Fix a framing )F εM of TM which induces this spin structure. Fix h ∈ H \{1}.
We represent h by an oriented knot K ↪→ M . The chosen framing of TM defines a
distinguished class of framings of the normal bundle νK of K ↪→ M . We will refer
to these framings of νK as even with respect to the spin structure ε. They are defined
as follows. Equip the stable tangent bundle TsK = Rs ⊕ TK of K with the trivial
framing )FK . Any framing )F ν of νK defines two framings )FK ⊕ )F ν and )F νM of
Rs ⊕ TM|K via the isomorphisms(

Rs ⊕ TK)⊕ νK ∼= Rs−1 ⊕ (R⊕ TM|K).
Then the framing )F ν of νK if called even with respect to the spin structure ε if the
stable framings )F νM and )F εM are homotopic, that is

[ )F ν] = [ )FM ].
Suppose now that ZK is a tubular neighborhood of K ↪→ M . We can identify ZK
with the unit disk bundle of νK . If we represent a framing )F ν of νK as an orthonormal
pair of sections (f 1,f 2), then the first section traces an oriented simply closed curve
on ∂ZK . We will denote it by )F ν(K).

Lemma 3.36. The Q-valued linking number LkM
(
K, )F ν(K)

)
of K and )F ν(K) is

independent mod 2Z of the even framing )F ν , and the homology class of H .
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Exercise 3.8.Prove the above result. �


We have thus obtained a map

Spin(M)×H � (ε,H) 
→ q′top(ε)(h) =
1

2
LkM
(
K, )F ν(K)

)
mod Z,

)F ν = some framing of νK which is even with respect to ε.

Proposition 3.37. For every ε ∈ Spin(M) the map

H � h 
→ q′top(ε)(h) ∈ Q/Z
is a quadratic refinement of lkM . Moreover

qtop(ε) = q′top(ε).

Proof. First of all, let us recall that (see [37, Thm. 5.7.14]) that there exists a spin
4-manifold (M̂, ε̂) with the following properties.

• ∂(M̂, ε̂) = (M, ε).
•M is obtained by attaching 2-handlebodies {H1, . . . , Hn}to the four-ball D4.

Denote by �i the co-cores of the handlebodies. These disks define a generating
family [�i] of H2(M̂, ∂M̂), and their boundaries trace oriented knots Ki ↪→ M ,
which define a generating family of H1(M). Denote by Q the intersection form on
H 2(M̂) and by Q̌ its dual on Hom

(
H2(M),Z

) ∼= H2(M̂, ∂M̂).

Since M̂ has the homotopy type of a 2-dimensional CW-complex we deduce that
spin structure ε̂ on M defines a framing )F

M̂
of T M̂ . We denote by )n the unit outer

normal along ∂M̂ , and by )FM a framing of TM defining the spin structure ε. The
condition ∂ε̂ = ε signifies that, for each surface � in M̂ with boundary on ∂M̂ , the
framing )n⊕ )FM of T M̂|

∂M̂
extends over � to a framing homotopic to the ε̂-framing

of T M̂|� .
Denote by ν̂i the normal bundle of �i ↪→ M̂ , and by νi the normal bundle of

Ki ↪→ M . Observe that TsKi ∼= Ts�i |Ki . Denote by )FKi the trivial framing of
Ts�i |Ki . The framing of νi which is even with respect to the spin structure ε, is the
framing )F i such that the framing )F

M̂
|Ki , and the framing

(
T�i |Ki , )FKi

)⊕ (νi, )F i )
on TsM̂|Ki are homotopic. Since the framing )F

M̂
|Ki extends over�i we deduce that

[ )F i] = 0, i.e. )F i extends (modulo an even degree gauge transformation) to a framing
of ν̂i .

Fix a pair of orthonormal sections (f i ,gi ) defining the framing )F i . Extend f i
to a nowhere vanishing section f̂ i of ν̂i . Denote by f i (Ki) the pushforward inside
M of Ki along the normal vector f i . Define f̂ (�i) in a similar fashion. Clearly

�i ∩ f̂ i (�i) = ∅. This last condition implies (see e.g. the proof of [20, Proposition
A31]) that

LkM
(
Ki,f i (Ki)

) = −Q̌(�i,�i).
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This shows

q′top(ε)(Ki) =
1

2
LkM(Ki,f i (Ki)) modZ = −1

2
Q̌
(
�i, f̂ i (�i)

)
modZ

= −1

2
Q̌
(
�i, f̂ i (�i)

)
modZ = qtop(ε)(Ki), ∀i. �


The above result suggests a simple way of cataloging the spin structures on a
rational homology 3-sphere M . It goes as follows. Fix a generating set S ⊂ H , and
represent each s ∈ S by a knot Ks ⊂ H . Then we can describe a spin structure ε
on H by indicating the framings of the normal bundle of each Ks which ar even with
respect to the spin structure ε. In the remainder of this section we will explain how
to use this simple strategy to produce surgery descriptions of the spin structures on a
rational homology spheres. We begin with a topological digression.

Suppose now thatM is an oriented 3-manifold with boundary � = ∂M . Given a
spin structure ε on � we can define a relative Stiefel–Whitney class

w2(M, ε) ∈ H 2(M, ∂M;Z2).

This class is the obstruction to the existence of a spin structure ε̂ on M such that
∂ε̂ = ε. We will identifyw2(M, ε) via the Poincaré–Lefschetz duality with an element
in H1(M,Z2). Observe that the spin structures on a surface � can be equivalently
described by homotopy classes of framings of the stable tangent bundle Ts�.

Example 3.38. Suppose M = I × �, I = [0, 1], and εi are spin structures of
TM|{i}×� defined by framings )F i of TM|{i}×� ∼= Ts�. We denote the relative
class

w2(M; ε0, ε1) ∈ H1(M,Z2) ∼= H1(�,Z2)

by δ(ε1, ε0), or δ( )F 1, )F 0). It can be alternatively described as follows. These two
framings define a map g : M → SO(3) with the property

)F 1 = )F 0 · g.
We obtain an element

g∗ : Hom
(
H1(M),H1(SO(3))

) = Hom
(
H1(M),Z2

) ∼= H 1(�,Z2).

Then g∗ is the Poincaré dual of δ( )F 1, )F 0), that is

〈g∗, c〉 = δ( )F 1, )F 0) · c mod 2Z, ∀c ∈ H1(�). �

We have the following immediate result

Proposition 3.39. SupposeM is a 3-manifold with boundary �. Denote by

j2 : H1(�,Z2)→ H1(M,Z2)
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the inclusion induced morphism. If εi , i = 0, 1, are two spin structures on � then

w2(M, ε1)− w2(M, ε0) = j2
(
δ(ε1, ε0)

)
.

On a torus S there are four spin structures{
εc; c ∈ H1(S,Z2)

}
,

where ε0 is the unique spin structure on with the property

(S, ε0) �= 0 ∈ $spin
2 .

Equivalently, ε0 is the spin structure induced by the canonical framing of T S defined at
page 122. In particular, the tangent bundle of an union � of 2-tori admits a canonical
framing which we will denote by ε0. For every c ∈ H 1(�,Z2) the spin structure εc
is the unique spin structure on � such that

δ(εc, ε0) = c. (3.23)

Example 3.40(Spin structures on the solid torus). Consider the solid torusZ = S1×
D2. Set λ = [S1 × {1}] ∈ H1(∂Z), and µ = [{1} × ∂D2] ∈ H1(∂Z). It has a natural
spin structure ε̂e induced by the obvious embedding of Z into the Euclidean space
R. Equivalently, ε̂e is the spin structure on the solid torus induced by the unique
spin structure on the handlebody D2 × D2. This defines a spin structure εe on the
torus ∂Z. We will refer to it as the Euclidean spin structure. We want to compute
δ(εe, ε0) = δ(ε0, εe) ∈ H1(∂Z,Z2).

We denote by )F 0 the framing of R⊕ T ∂Z which induces the spin structure ε0 on
∂Z. We define )F e in a similar fashion. Choose g : ∂Z→ SO(3) such that

)F 0 = )F e · g.
Define g∗ ∈ H 1(∂Z,Z2) as in Example 3.38. Then a little soul searching shows that

〈g∗, µ〉 = [ )F 0|µ] + [ )F e|µ] = 1,

and
〈g∗, λ〉 = [ )F e|λ] + [ )F 0|λ] = 1.

This shows that δ( )F e, )F 0) = µ+ λ mod 2Z so that εe = ελ+µ.
Using Proposition 3.39 we deduce that for every κ ∈ H1(∂Z,Z2) we have

w2(Z, εk) = j2(κ − λ− µ) = j2κ + λ.
Thus εk extends to a spin structure on Z if and only if k = λ+ nµ mod 2, n ∈ Z. �
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Example 3.41. Consider the solid torusZ = S1×D2. Set λ = [S1×{1}] ∈ H1(∂Z),
and µ = [{1}× ∂D2] ∈ H1(∂Z). If f is a framing of the normal bundle of the axis of
solid torus, then the curve on ∂Z traced by the first vector in f carries the homology
class nµ+λ, n ∈ Z. The integer n is called the degree of the framing, and completely
characterizes its homotopy class.

A spin structure ε̂ on Z induces a spin structure ε on ∂Z. In particular, it has the
form εκ , κ ∈ H1(∂Z,Z2). Since ε extends over Z we deduce that κ has the form

κ = nκµ+ λ mod 2.

We claim that the framings of the normal bundle of axis K of the solid torus which
are even with respect to the spin structure ε̂ are exactly the framings of degree n =
nκ mod 2. To prove this fact we need to verify this statement for a single spin structure.
We will do this for the Euclidean spin structure ε̂e defined in Example 3.40. Denote
by )F e a framing of T Z which induces the Euclidean spin structure ε̂e. In this case

δ(εe, ε0) = λ+ µ mod 2.

We have to show that the framings νK which are ε̂e-even must have odd degrees.
Observe that framing )F ν of the normal bundle νK of K ↪→ Z which is even with

respect to ε̂e is determined by the condition [ )F ] = [ )F e] = 0. The canonical framing
[ )F can] of νK given by the direct product description S1×D2 has degree 0, and parity
[ )F can] = 1. Thus )F ν must have odd degree. �


Suppose now that M is a 3-manifold whose boundary � = ∂M is an union of
tori. Fix a relative spinc structure σ ∈ Spinc(M, ∂M). As explained on page 122,
the canonical framing of T� defines a section sσ of det σ |� , and we have a relative
Chern class

c(σ ) = c1(det σ, sσ ) ∈ H 2(M, ∂M) ∼= H1(M).

The following result follows immediately from the description of a relative spinc

structure in terms of the canonical framing of the tangent bundle of a torus.

Proposition 3.42.
c(σ ) = w2(M, ε0) mod 2.

Exercise 3.9.Prove the above result. �


Suppose K = K1 ∪ · · · ∪ Kn is an oriented link in S3. Denote by Zi an open
tubular neighborhood of Ki . The exterior of the link is

E := S3 \
n⋃
i=1

Zi,
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and set G := H1(E). ∂E has n boundary components which we denote by ∂iE,
i = 1, . . . , n. Denote by µi and λi the meridian and longitude of Ki oriented such
that

λi · µi = 1,

where the intersection product is defined in terms of the orientation of ∂Zi as boundary
component ofE. As in §3.8 we define the linking matrix of K to be then×n symmetric
matrix L with entries

�ij =
{

Lk(Ki ,Kj ) if i �= j
0 if i = j.

We denote the inclusion induced morphism H1(∂E,Z) → H1(E,Z) by j . j2 will
denote the similar morphism for Z2-coefficients. The images jµi of the meridians
define a basis of G, and thus an isomorphism G ∼= Zn. Since there is no danger
of confusion we will write µi instead of jµi . Denote by )e ∈ G ∼= Zn the vector
(1, . . . , 1) =∑i µi . Then

jλi =
∑
k �=i
�kiµk = L)e.

We have the following result.

Proposition 3.43.

w2(E, ε0) =
n∑
i=1

j2(µi + λi) =
n∑
i=1

xiµi ∈ H1(E,Z2), xi = 1+
∑
k �=i
�ki mod 2.

Proof. E is equipped with a natural spin structure ε̂e induced by the embedding
E ↪→ S3. It induces on each boundary component exactly the Euclidean spin structure
described in Example 3.40. Using the computations in that example we deduce

∂ε̂ = εκ0 ,

where

κ0 =
n∑
i=1

(µi + λi) mod 2 ∈ H 1(∂E,Z2).

Using Proposition 3.39 we deduce

w2(E, ε0) = w2(E, ε0)− w2(E, ∂ε̂e) = j2κ0 = )e + L)e mod 2. (3.24)

�


Remark 3.44. For a different proof of this result we refer to [116, Lemma 1.3]. �
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Consider the spin structure ε = εκ on ∂E labelled by an element κ ∈ H1(∂E,Z2).
The above identity coupled with Proposition 3.39 implies

w2(E, εκ) = 0 ⇐⇒ κ − κ0 ∈ ker j2 ⇐⇒ j2κ = )e + L)e mod 2. (3.25)

Suppose we perform a Dehn surgery on this link with rational surgery coefficients
)r ∈ Qn, ri = pi/qi where qi > 0, (pi, qi) = 1, ∀i = 1, . . . n. We denote by Zi the
attaching solid tori, by M = M)r the 3-manifold obtained by this surgery, and by H
its first homology group, H := H1(M). Set )p = (p1, . . . , pn), )q = (q1, . . . , qn).

For every )r ∈ Qn we denote by D)r the diagonal matrix

D)r = diag(r1, . . . , rn).

Then H admits the presentation

G
P−→ G

π
� H → 0,

where P is the n× n matrix

P := L ·D)q +D )p. (3.26)

The axes of the attaching solid tori Zi define homology classes inM which we denote
by ki . Here is how one can determine them.

For each i we choose a pair of integers (αi, βi) such that

piβi − αiqi = 1, αi ≡ qi + βi ≡ 1 mod 2 (3.27)

If qi = 1, i.e. the surgery coefficient ri is integral, then we set αi = −1, βi = 0. The
2× 2 matrices

�i :=
[
pi αi
qi βi

]
, i = 1, . . . , n,

define the attaching maps of the Dehn surgery. Note that the entries in the i-th column
of P are the coordinates of j�iµi with respect to the natural basis in G. We set

Ki := j(�iλi) = αiµi + βi
∑
j �=i
�jiµj ∈ G.

Then ki = π(Ki), ∀i. We denote by K the matrix

K := L ·D )β +D)α. (3.28)

Note that the entries in the i-th column of K are the coordinates of Ki . Then

K)e =
∑
i

Ki.
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A spin structure ε̂ on M induces spin structures on ε̂ext on E and ε̂i on Zi with the
property that

�iε̂i |∂Zi = ε̂ext|∂iEK .
We write ε̂i |∂Zi = εci , ε̂ext|∂iE = εκi , where ci, κi ∈ H1(∂Zi,Z2). Set

κ =
⊕
i

κi ∈ H1(∂E,Z2),

so that ε̂ext|∂E = εκ . The homology classes ci , κi satisfy the compatibility conditions

κi = �ici .
Since εci extends over Zi we deduce

ci = λi + uiµi ∈ H 1(∂Zi,Z2), ui ∈ Z2.

Since εκi extends over E we deduce that

j2κi = j2(µi + λi), ∀i.
We conclude that

j2�i(λi+uiµi) = j2(µi+λi) ⇐⇒ Ki+uij(piµi+qiλi) = j2(µi+λi) ∈ G⊗Z2,

for all i. If we set )u =∑i uiµi ∈ G we can rewrite this in the more compact form

K)e + P )u = )e + L)e mod 2
(3.25)= j2κ0 = j2κ mod 2. (3.29)

The next proposition summarizes the above observations.

Proposition 3.45. Let M , P , K as above. Every spin structure ε̂ on M can be
described by a vector )u ∈ Z satisfying

P )u+K)e = )e + L)e mod 2. (3.30)

Conversely, every vector u ∈ Zn satisfying the above condition determines spin struc-
ture on ε̂()u) on M . Moreover, for every 1 ≤ i ≤ n, the curve (λi + uiµi) ⊂ ∂Zi
defines a framing of the normal bundle of the core of Zi ↪→ M which is even with
respect to ε̂()u).

The correspondence described in Proposition 3.45 can be further refined. Every
relative spinc structure σ on E is completely determined by its characteristic class
c(σ ) ∈ G. We can write

c(σ ) = µ)ν, ν ∈ Zn.
Proposition 3.42 and 3.43 imply that is )ν is , in the terminology of [116], a charge, i.e.

)ν = )e + L)e mod 2 ⇐⇒ )ν = j2κ0 mod 2. (3.31)
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From now on, we will freely identify the spinc structures onE with charges. For every
)m ∈ Zn we denote by µ )m ∈ Z[G] the monomial µm1

1 . . . µ
mn
n .

E is equipped with a natural homology orientation (see [116]), and if TK,σ is the
sign-refined torsion of E corresponding to the spinc structure σ then (see (3.5))

TK,σ (µ
−1
1 , . . . , µ

−1
n ) = (−1)nµ−)ν TK,σ (µ1, . . . , µn). (3.32)

The attaching solid tori are equipped with canonical spinc structures and we get a
surjection

π : Spinc(E, ∂E)→ Spinc(M), Spinc(E, ∂E) � )ν 
→ )νM ∈ Spinc(M).

The above correspondence is equivariant in the sense that if σ1, σ2 are two relative
spinc structures on E, σ2 = g · σ1, g = µ)λ ∈ G, then

1

2

()ν2 − )ν1
) = )λ, νM2 = π(g) · νM1 .

Moreover
c()νM) = π(c(σ )) ·

∏
i

k−1
i = π(µ)ν−K )e). (3.33)

Observe that two charges )ν1, )ν2 induce identical spinc structures onM if and only if

1

2
()ν1 − )ν2) ∈ Im(P ).

An integral characteristic vector of the surgery presentation (see [37, Def. 5.7.19]) is
a vector )c ∈ Zn such that, for all i,

pi ≡ pici +
∑
j �=i
�ij cj qj mod 2 ⇐⇒ P )c ≡ D )p)e mod 2. (3.34)

Proposition 3.46. Suppose σ is a spinc structure on E with charge )ν. Then the
following conditions are equivalent.

(i) The spinc structure )νM onM is induced by a spin structure.

(ii) There exists a )u ∈ Zn such that )ν = K)e + P )u.

(iii) There exists an integral characteristic vector )c ∈ Zn such that )u = )c + )e
satisfies )ν = P()u)+K)e.

Proof. (i)⇐⇒ (ii) The spinc structure σM is induced by a spin structure iff c(σM) = 1,
iff π(µ)ν−K )e) = 1 ∈ H , iff )ν −K)e ∈ Im(P ).

(ii) *⇒ (iii) Suppose there exists )u ∈ Zn such that

)ν = K)e + P )u.
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We want to prove that )u− )e is an integral characteristic vector. Since )ν is a charge

)ν − )e ≡ L)e mod 2.

We then have the following mod 2 equalities.

P()u− )e) = )ν −K)e − P )e = )e + L)e −K)e − P )e
(use the identities (3.26), (3.28))

= )e + L)e + L(D )β +D)q))e +D)α)e +D )p)e.
At this point we recall the conditions (3.27) which imply

D)α)e = )e mod 2, (D )β +D)q))e ≡ )e mod 2.

We deduce that
P()u− )e) ≡ D )p)e mod 2,

i.e. ()u − )e) mod 2 is a characteristic vector, proving the desired implication. The
implication (iii) *⇒ (ii) is trivial. �


We denote by CharP the space of integral characteristic vectors, and set Char2
P :=

CharP mod 2. We denote by NP the space of charges )ν such that the spinc structure
)νM on M is induced by a spin structure. We have a natural equivalence relation on
NP

)ν1 ∼ )ν2 ⇐⇒ )νM1 = )νM2 ⇐⇒ 1

2

()ν1 − )ν2
) ∈ Im(P ).

Assume now that M is a Q-homology sphere. Then for every )ν ∈ NP the element )u
postulated in Proposition 3.46(iii) is unique

)ν −K)e = P )u ⇐⇒ )u = P−1()ν −K)e),
and thus we have a well defined bijection

%P = %P,)α, )β : CharP → NP , )c 
→ K)e + P()x + )e) = (K + P))e + P )c.
Lemma 3.47.% = %P descends to a bijection

%P : Char2
P → NP / ∼ .

Proof. SinceM is a rational homology sphere, the above spaces of equivalence classes
are finite, so it suffices to prove only that % descends to a well defined injection.

Clearly if )c1 = )c2 mod 2 there exists )x ∈ Zn such that )c2 − )c1 = 2)x. Then

1

2

(
%P ()c2)−%()c1)

) = P )u *⇒ %P ()c1) ∼ %P ()c2).

The opposite implication%P ()c1) ∼ %P ()c2) *⇒ )c1 = )c2 mod 2 is proved similarly.�


A priori, this identification could depend on the choice of )α, )β satisfying (3.27).
We now prove that this is not the case.
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Lemma 3.48. The correspondence

% = %P,)α, )β : Char2
P → NP / ∼ .

is independent of )α, )β satisfying (3.27).

Proof. Suppose we have two pairs ()α′, )β ′) and ()α′′, )β ′′) satisfying (3.27). Then there
exists a vector )k ∈ Zn such that

D)α′′ = D)k ·D )p +D)α′′ , D )β ′′ = D)k ·D)q +D )β ′ .

Moreover,
D)α′′ −D)α′′ ≡ (D )β ′′ −D )β ′) ≡ 0 mod 2.

Since (pi, qi) = 1 we deduce that all the components of )k must be even so that

)k0 := 1

2
)k ∈ Zn.

Suppose )x ∈ CharP . Then

%)α′′, )β ′′()x)−%)α′, )β ′()x) = L(D )β ′′ −D )β ′))e + (D)α′′ −D)α′′))e
= LD)k ·D)q)e +D)k ·D )p)e = LD)q ·D)k)e +D )pD)k · )e.

Set )u0 = D)k0
)e. We can rewrite the above equality as

%)α′′, )β ′′()x)−%)α′, )β ′()x) = 2(LD)q +D )p))u0 = 2P )u0.

This proves that
%)α′′, )β ′′()x) ∼ %)α′, )β ′()x) in NP ,

and completes the proof of the lemma. �


In view of Proposition 3.45 we can identify NP / ∼with the space of spin structures
onM ,

� : (NP / ∼)→ Spin(M).

We have thus proved that the surgery presentation P of the rational homology sphere
M produces an explicit, canonical identification

#P : Char2
P

%→ (NP / ∼) �→ Spin(M).

The Euclidean spin structure on S1×D2 is the restriction of the unique spin structure
on the handlebody D2 ×D2. We deduce form the computation in Example 3.41 that
the above identification is precisely the identification described in [37, §5.7] between
the space Char2

P and the space Spin(M) of spin structures onM .
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There is a simple way to represent the integral characteristic vectors on a surgery
diagram using colors,5 or on the plumbing graph, using ’s and ◦’s. If )c ∈ CharP
then the components of K corresponding to ci = 1 mod 2 will be colored in black,
and the corresponding vertex of the plumbing graph will be indicated by ◦, while the
components corresponding to ci = 0 mod 2 will be colored in grey and the corre-
sponding vertex of the plumbing graph will be indicated by a (grey) . As explained
in [37, §5.7], the colors of the vertices left after a slam-dunk stay the same. We define
a surgery spin diagram to be a surgery diagram with a characteristic vector indicated
by coloring of the vertices by the rule explained above.

(a)

(b)

−2−2−2

−2−2−2

n

n

=

=

−(n+ 1)/n

−(n+ 1)/n

Figure 3.11. The two spin structures on the boundary of the An plumbing, n ≡ 1 mod 2.

Consider for example the boundary of the An-plumbing. Its associated plumbing
graph is a“bamboo” of length nwhich can be iteratively slam-dunked to a single point
with surgery coefficient −(n+ 1)/n as in Figure 3.11.

Suppose n + 1 is even. The boundary of this plumbing has two spin structures
corresponding to the two characteristic vectors )c0 = (0, . . . , 0), )c1 = (1, . . . , 1). The
first spin structure is depicted Figure 3.11 (a), and the second is depicted in Figure
3.11 (b). On the right hand side we depicted the equivalent diagrams obtained after
iterated slam-dunks.

The importance of the above abstract results to torsion computations is best grasped
on a concrete example.

Example 3.49. Consider again the plumbed rational homology sphere discussed in
Example 3.29, page 142. We continue to use the same notations as in that example.
We have

P :=


3 1 0 0 1 1
1 3 1 1 0 0
0 1 2 0 0 0
0 1 0 2 0 0
1 0 0 0 2 0
1 0 0 0 0 2

 .
5 = the spin structure extends over the corresponding handle, whence the full grey disk, ◦ = the spin

structure does not extend over the corresponding handle, whence the holed black disk.
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In this case we can chooseK = −1. A vector )c ∈ Z6 is characteristic iff the following
mod 2 equalities hold: 

1 = c1 + c2 + c5 + c6
1 = c1 + c2 + c3 + c4
0 = c2
0 = c1.

Hence )c = (0, 0, c3, c4, c5, c6) where c3 + c4 = c5 = c6 = 1 mod 2. In particular
the vector )c0 = (0, 0, 1, 0, 1, 0) is characteristic. Denote by ε0 the associated spin
structure. It is depicted using ’s and ◦’s in Figure 3.9. A charge on the complement
of the plumbing link K which induces this spin structure is

)ν0 = (K + P))e + P )c0 =


5+ 1
5+ 1
2+ 2

2
2+ 2

2

 .

Denote by σ0 the relative spinc structure on E corresponding to )ν0. We deduce that
there exists ε = ±1 and )k ∈ Z4 such that

TE,σ0 = εµ)k(µ1 − 1)2(µ2 − 1)2,

where the vector )k is uniquely determined by the condition (3.32)

µ−)k(µ−1
1 − 1)2(µ−1

2 − 1)2 = µ)k−)ν0(µ1 − 1)2(µ2 − 1)2.

This means
µ−2

1 µ
−2
2 = µ2)k−)ν0 *⇒ )k = (3, 3, 2, 1, 2, 1).

Thus
TE,σ0 = εµ3

1µ
3
2µ

2
3µ4µ

2
5µ6(µ1 − 1)2(µ2 − 1)2.

As in Example 3.29 suppose now that χ ∈ Ĥ is such that v = 1 but u2 �= 1. Then

T̂M,ε0(χ) = εχ−1(µ3
1µ

3
2µ

2
3µ4µ

2
5µ6
)

lim
t→1

FP (t ∗ )w χ).

= −εz−3
1 z

−3
2 z

−2
3 2z−1

4 z
−2
5 z

−1
6

3

(u− 1)2
.

We now use the identities (3.19) to conclude that

T̂M,ε0(χ) = ε
3u

(u− 1)2
.

Observe that the last equality confirms the symmetry relation

T̂M,ε0(χ) = T̂M,ε0(χ̄),



164 3 Turaev’s refined torsion

expected for the torsion associated to a spin-structure. We are left with one last
ambiguity, the sign ε. In the next section we will explain how to remove it. �


§3.10 The torsion of rational homology 3-spheres. Part 2.

The identity (3.8) of §3.6 can be used to remove the sign ambiguity in the surgery
formula of Theorem 3.23. We will explain how to achieve this for a special class
of rational homology spheres, namely those described by a nondegenerate, rational
plumbing along trees. We will follow closely the strategy in [75, Appendix A].

Consider a tree �, and denote by V its set of vertices. For each vertex v ∈ V we
denote by dv its degree. As in §3.8, page 141 we associate to � a link

K� = (Kv)v∈V

whose components are unknots. Denote E = E� the exterior of this link, and by
L the linking matrix of this link (or equivalently, the incidence matrix of �). Set
G := H1(E).

Define S = S� ⊂ QV as the set consisting of all possible choices of surgery
coefficients )r = (rv = pv/qv)v∈V so that the corresponding presentation matrix

P = P)r = LD)q +D )p

is nondegenerate. We need to fix a convention. In the sequel we will assume that

qv > 0 and gcd(pv, qv) = 1, ∀v ∈ V.

Suppose S �= ∅. In this case S is an open subset of QV. For every )r ∈ S we denote
byM)r the rational homology sphere obtained by Dehn surgery along � with surgery
coefficients )r . We denote by Zv the solid torus attached to the boundary of the v-
component of K� . We set H = H)r = H1(M)r ), and we denote by π : G → H the
natural projection. Set ν := | det P | so that |H | = ν.

For each )r fix )α, )β ∈ ZV as in (3.27) of §3.9, page 157, and then define a V× V-
matrix K = K)r as in (3.28)

K = LD )β +D)α.
The equality D )pD )β −D)qD)α = 1 implies

PD )β −KD)q = 1 and KD )p − PD)α = L.
The v-th column ofK , which we will denote byKv , defines homology class j(αvµv+
βvλv) inG, which we will continue to denote byKv . Its image inH is the homology
class of the axis of the attaching solid torus Zv .
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Fix a relative spinc structure σ on Eγ . Using the surgery trick (2.19) on page 90
we deduce that there exists ε� ∈ {±1} and )kσ ∈ ZV such that

TE,σ = ε�µ)kσ
∏
v∈V

(µv − 1)dv−1.

Define the meromorphic function

FP = F�,)r : G̃ ��� C,
∏
v∈V

(
χ−1(µv)− 1

)dv−1∏
v∈V

(
1− χ−1(Kv)

) , G̃ = Hom(G,C∗).

Theorem 3.23 states that FP is holomorphic near each χ ∈ Ĥ)r , and there exists
ε(�, )r) = ±1 such that

T̂M)r ,[σ ](χ) = ε(�, )r)χ−1(µ
)kσ )FP (χ). (3.35)

Above we have denoted by [σ ] the spinc structure onM induced by σ . The ambiguous
)kσ can be determined using the strategy outlined in the previous section.

To determine the sign ε(�, )r) note first that it depends continuously on )r . Thus by
slightly changing the surgery coefficients we can arrange that H)r contains elements
of order > 2. Since the curves Kv define a generating subset of H we deduce that
there exists at least one v0 ∈ V such that πKv0 has order > 2 in H)r . Write TM,[σ ] as
a function

TM : H → Q.

Using the identity (3.8) on page 130 we deduce

TM(1)− TM(Kv0)− TM(h)+ TM(hKv0) = − lkM(Kv0 , h) mod Z.

Using the Fourier inversion formula, and (3.35) we deduce that for every h ∈ H we
have

ε()r)
|H |
∑
χ

′
FP (χ)

(
1− χ−1(Kv0)

)(
1− χ(h)) = lkM(Kv0 , h) mod Z, (3.36)

for all h ∈ H , where
∑′
χ denotes summation over all the nontrivial characters of H .

The nontrivial terms in the above sum correspond to characters χ ∈ Ĥ such that
χ(πKv0) �= 1, i.e. v0 ∈ Sχ , where as in §3.8 Sχ denotes the support of the character
χ . Denote by X0 the set of such characters.

The integral basis (µv)v∈V ofG defines a natural Euclidean inner product (•, •) on
G⊗Q. Define )�0 ∈ Ǧ := Hom(G,Q) by

〈)�0, µv〉 = (µv0 , P
−1µv), ∀v ∈ V.
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More intuitively, )�0 is described by the v0-th row of P−1. There exists a positive
integer ν0 such that Im()�0) = 1

ν0
ZV. Set )w0 = ν0 )�0, so that )w0 ∈ Ǧ. For simplicity

we set
mv := 〈 )w0, µv〉, kv := 〈 )w0,Kv〉.

From the identity PD )β −KD)q = 1 we deduce

−qvkv = mv − ν0βvδvv0 , (3.37)

where δuv denotes the Kronecker symbol. The weight )w0 is admissible for all the
characters in X0, and thus we can perform the regularization along this weight for all
the characters in X0. Using (3.15) we deduce that for every χ ∈ X0 we have

FP (χ) = lim
t→1

∏
v∈V

(
tmvχ−1(µv)− 1

)dv−1∏
v∈V

(
1− tkvχ−1(Kv)

) , ∀χ ∈ X0. (3.38)

Denote byE0 the manifold obtained fromE� attaching only the solid toriEv , v �= v0.
Set

Gv0 := H1(Ev0 ,Z), S0 :=
∑

g∈Tors(Gv0 )

g ∈ Z[G0].

As explained in §B.2 we have

Tors(Gv0)
∼= 〈Kv0〉⊥ := {h ∈ H ; lkM(h,Kv0) = 0}

so that

|Tors(Gv0)| =
|H |

ordH (Kv0)
= ν

ν0
.

Set G̃v0 = Hom(Gv0 ,C
∗), Ǧv0 = Hom(Gv0 ,Z), and denote by G̃0

v0
the identity

component of G̃v0 . The complex Fourier transform of S0 is

Ŝ0(χ) = |Tors(Gv0)| · 1G̃0
v0
(χ) = ν

ν0
·
{

1 if χ ∈ G̃0
v0

0 if χ �∈ G̃0
v0
.

We have a natural projection πv0 : G� Gv0 , and thus inclusions G̃v0 ↪→ G̃, Ǧv0 ↪→
Ǧ. The weight )w0 generates the image of Ǧv0 ↪→ Ǧ. There exist exactly two
isomorphisms G̃0

v0
→ C∗, and the weight )w0 fixes one such isomorphism. Via this

isomorphism, the tautological action of G̃0
v0

on G̃v0 can be written as

C∗ × G̃v0 � (t, χ) 
→ χt := t ∗ )w0 χ ∈ G̃v0 .

Define Rv0 : G̃v0 \ {1} → C by

Rv0(χ) =
(
1− χ−1(Kv0)

)
FP (χ)

= (χ−1(µv0)− 1
)dv0−1

∏
v �=v0

(
χ−1
(
µv)− 1

)dv−1∏
v �=v0

(
1− χ−1(Kv)

) .
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Up to a sign, this is the complex Fourier transform of the torsion of E0, and thus it is
a holomorphic function.

Fix g ∈ Gv0 such that 〈 )w0, g〉 = 1. According to (3.7) in §3.6 there exists
A ∈ Z[Gv0 ] and ε = ±1 such thatRv0 is the complex Fourier transform ofA+ε S0

1−g ∈
N1(Gv0). Hence

Rv0(χ)
(
1− χ−1(g)

)− Â(χ)(1− χ−1(g)
) = εŜ0(χ)

We deduce

ε
ν

ν0
= lim
t→1

Rv0(1t )(1− t) = lim
t→1
(1− t)(tmv0 − 1)dv0−1

∏
v �=v0

(tmv − 1)dv−1

(1− tkv ) .

Thus the sign ε coincides with the sign of the limit on the right hand side. To determine
this sign it is convenient to introduce the following notation. If f (t) is a meromorphic
function of the complex variable t then the notation f (t) ∼ ε(t−1)n, ε = ±1, n ∈ Z,
signifies that the function g(t) = (t − 1)−nf (t) is holomorphic in a neighborhood of
1, g(1) ∈ R, εg(1) > 0. Observe that

(tm − 1)k ∼ sign(m)k(t − 1)k.

Since the plumbing graph is a tree we deduce∑
v

(δv − 2) = −2× Euler characteristic of � = −2.

This identity shows that if mv0 = 0, then Rv0(1t )(1 − t) would have a pole of order
dv0 − 1 at t − 1. Since this function has a limit at t = 1 we deduce that whenmv0 = 0
we must have dv0 = 1, in which case the term (χ−1(µv0)−1)dv0−1 has no contribution
to the torsion. Hence, if we set sign(0) := 1 we deduce that for every v ∈ V we have

(tmv − 1)dv−1 ∼ sign(mv)
δv−1(t − 1)dv−1.

Moreover, for v �= v0 we have

(1− tkv ) ∼ − sign(kv)(t − 1)
(3.37)∼ sign(mv) · (t − 1).

We conclude that

Rv0(1t ) ∼ (−1)dv0−1 − sign(mv0)
∏
v∈V

sign(kv)
dv−2 := ε(v0). (3.39)

Thus

Rv0(χ) = Â(χ)+ ε(v0)
Ŝ0

1− χ−1(g)
.
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Set � := A(1− g)+ ε0S0 ∈ Z[Gv0 ] and �̂(t) := �̂(1t ). Note that

Rv0(χ) =
�̂(χ)

1− χ−1(g)
, �̂(1) = ε(v0)

ν

ν0
.

The equality (B.4) in Appendix §B.2, page 224, implies

lkM(Kv0 , g) = 〈)�0, g〉 modZ = 1

ν0
〈 )w0, g〉 modZ = 1

ν0
.

In particular, since the order ν0 of Kv0 is > 2 we deduce

lkM(Kv0 , g) �= − lkM(Kv0 , g) mod Z. (3.40)

Using (3.36) we deduce

ε()r)1
ν

lim
t→1

∑
χ

′
Rv0(χt )

(
1− χt (g)

)= 1

ν0
mod Z. (3.41)

To compute the expression in the left hand side we need an algebraic digression.

Lemma 3.50.
1

|H |
∑′

χ∈Ĥ P̂ (χt ) = −
1

|H | P̂ (1t ) mod Z, (3.42)

for all P ∈ Z[Gv0 ], t ∈ C∗.

Proof. Denote by p0 : Gv0 � H the natural projection. We can then write

P =
∑
n∈Z

h∈Tors(Gv0 )

pn,hhg
n, pn ∈ Q.

For every χ ∈ Ĥ we have

P̂ (χt ) =
∑
n∈Z

h∈Tors(Gv0 )

pn,hχ̄(p0(hg
n))tn.

Now observe that

1

|H |
∑′

χ∈Ĥ
χ̄(p0(hg

n)) = − 1

|H | mod Z

The equality (3.42) follows by summing over h and n. �


Observe now that

Rv0(χ) =
�̂(χ)

1− χ−1(g)
= χ(g) �̂(χ)

χ(g)− 1
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so that
Rv0(χ)(1− χ(g)) = −χ(g)�̂(χ).

Since � ∈ Z[Gv], Lemma 3.50 implies

1

ν

∑′

χ

Rv0(χt )
(
1− χt (g)

)= 1

ν
1t (g)�̂(t)

Hence

ε()r)1
ν

lim
t→1

∑′

χ

Rv0(χt )
(
1− χt (g)

)= ε()r)�̂(1)
ν

= ε()r)ε(v0)

ν0
.

Using (3.40) and (3.41) we deduce

ε()r) = ε()v0) = (−1)dv0−1 sign(mv0)
dv0−1

∏
v �=v0

sign(kv)
dv−2. (3.43)

Remark 3.51. (a) If P0 := L+D)r is negative definite then Proposition 3.26 implies
mv < 0, ∀v and kv = −mv/qv > 0 for all v �= v0. In this case we conclude that
ε()r) = ε(v0) = 1. This agrees with the conclusions in [75, Appendix A].

(b) A priori ε(v0) depends on v0 but formula (3.43) shows that this is not the case.
If P is not negative definite it is not clear why such a fact should be true. Take for
example the plumbing matrix

P :=


2 1 0

1 −3 1

0 1 5

 , P−1 =


16
37

5
37 − 1

37

5
37 − 10

37
2
37

− 1
37

2
37

7
37

 .
This corresponds to the plumbing

2• −− −3• −− 5• .
For example

ε(v1) = − sign(16/37) sign(5/37) sign(−1/37) = 1,

ε(v2) = − sign(−10/37) sign(5/37) sign(2/37) = 1.

ε(v3) = − sign(7/37)2 sign(−1/37) = 1. �

Exercise 3.10.Suppose P is given by an integral, negative definite plumbing. Prove
that the quantity

W(v0) := mdv0−1
v0

∏
v �=v0

mdv−2
v

is independent of the vertex v0. �
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The following result summarizes the facts proved so far.

Corollary 3.52.

T̂M)r ,[σ ] = − sign
((
P−1µv0 , µv0

) ·∏
v

(
µv0 , P

−1µv
)dv−2)

× χ−1(µ
)kσ ) ·
∏
v

(
χ−1(µv)− 1

)dv−1(
1− χ−1(Kv)

) ,

v0 an arbitrary vertex of �. In the above formula the inner product (µv0 , P
−1µv) is

equal to the v0v-entry in the matrix P−1.

For example, the correct sign for the torsion computed in Example 3.49 in §3.8 is
determined by inspecting an arbitrary row of the matrix P−1 in (3.18).

Suppose v0 corresponds to the first row ofP−1. Note that the only terms that matter
correspond to odd degree vertices v of the plumbing graph such the corresponding
entry

(
µv0 , P

−1µv) is negative. We deduce

ε(v0) = − sign(2/3) · sign(−1/3) sign(−1/3) sign(−1/3) = 1.

If v0 corresponds to the second row then

ε(v0) = − sign(2/3) sign(−1/3) · sign(−1/3) sign(−1/3) = 1.

In our next example we illustrate how to compute the sign refined Reidemeister–Turaev
torsion a rational homology sphere relevant in singularity theory.

(a)

(b)

νn

ν1

ν1

ν2

ν2
−2

−2

−2

−2

−2

−2

−2

−2

ν3

−p/(p − 1)

n− 2

Figure 3.12. The Dn-plumbing.

Example 3.53(The Dn plumbing.). TheDn plumbing is described in Figure 3.12(a).
It consists of n ≥ 4-vertices. The vector (0, . . . , 0) is characteristic, and we have
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indicated this in the figure. After several slam-dunks it can transformed to the equiv-
alent spin surgery diagram in Figure 3.12(b), where p = n − 2, and we have also
indicated the result of the slam-dunks on the characteristic vector. More precisely
the new characteristic vector is also the trivial vector. Assume for simplicity that n is
even. We denote byM the boundary of this plumbing and define H and G as before.
We denote by ε the spin structure described by the above characteristic vector.

The plumbing matrix is

P :=


−2 1 1 p − 1
1 −2 0 0
1 0 −2 0
1 0 0 −p

 , P−1 = 1

4


−4p −2p −2p 4− 4p
−2p −p − 2 −p −2p + 2
−2p −p −p − 2 −2p + 2
−4 −2 −2 −4

 .
Since det P = 4 we deduce H ∼= Z4,Z2 ⊕ Z2. When p is even we have

H ∼= Z2 ⊕ Z2,

H is generated by µ1, µ2, µ3, µ4 subject to the relations

µ1 = µ2
2 = µ2

3, µ
p−1
1 = µp4 , µ2

1 = µ2µ3µ4.

from which we deduce that µ1 = 1, and H is generated by the elements of order two
µ2, µ3. As for the matrixK we can choose αi = −1, βi = 0, 1 ≤ i ≤ 3, α4 = p+ 1,
β4 = −p (recall that α4 and β4 must satisfy the congruences (3.27) on page 157) so
that

K =


−1 0 0 −p

0 −1 0 0
0 0 −1 0
0 0 0 p + 1

 .
Then

T̂M,ε(χ) = εχ−1(µ
)k)
(
χ−1(µ1)− 1

)2∏
j

(
1− χ−1(Ki)

) .
Corollary 3.52 shows that the sign ε = 1. The monomial µ)k is determined using the
arguments developed in §3.9. We can choose the trivial vector as integral lift of our
characteristic vector. The corresponding charge is

)ν = (K + P)e = (−2,−2,−2,−2)t .

The exponent )k is determined from the equality

µ−)k(µ−1
1 − 1)2 = µ)k−)ν(µ2 − 1)2 ⇐⇒ µ2)k−)ν−2µ2

1 = 1.

so that 2)k = (0,−2,−2,−2), i.e. )k = (0,−1,−1,−1). Hence, for everyχ ∈ Ĥ \{1}
we have

T̂M,ε(χ) = χ(µ2µ3µ4)

(
χ−1(µ1)− 1

)2(
1− χ(µ1)

)(
1− χ(µ2)

)(
1− χ(µ3)

)(
1− χ(µp1µ−p−1

4 )
) ,
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where the expression in the right hand side should be interpreted in the regularized
sense, using admissible weights. In this case, the first row of 4P−1 produces such
an admissible weight )w. The character χ is completely determined by the complex
numbers zi := χ(µi) = ±1, i = 2, 3, 4. Instead of χ we will write (z2, z3, z4). Set
wi := 〈 )w,µi〉. Since µ1 = µ2µ3µ4 = 1 ∈ H have

T̂M,ε(χ) = lim
t→1

(tw1 − 1)(
1− t−w2z2

)(
1− t−w3z3

)(
1− t−pw1+(p+1)w4z

−(p+1)
4

)
= lim
t→1

(
t−4p − 1

)(
1− z2t2p

)(
1− z3t2p

)(
1− z4t4

) .
There are exactly three possibilities.

• z4 = 1:

T̂M,ε(−1,−1, 1) = lim
t→1

(
t−4p − 1

)(
1+ t2p)(1+ t2p)(1− t4) = p4 .

• z3 = 1:

T̂M,ε(−1, 1,−1) = lim
t→1

(
t−4p − 1

)(
1+ t2p)(1− t2p)(1+ t4) = 1

2
.

• z2 = 1:

T̂M,ε(1,−1,−1) = lim
t→1

(
t−4p − 1

)(
1− t2p)(1+ t2p)(1+ t4) = 1

2
.

Hence

TM,ε(1) = 1

4

(
p

4
+ 1

)
= p + 4

16
.

Similarly,

TM,ε(µ2) = 1

4

∑
χ

TM,ε(χ)χ(µ2) = 1

4

(
− p

4
− 1

2
+ 1

2

)
= − p

16
,

TM,ε(µ3) = 1

4

∑
χ

TM,ε(χ)χ(µ3) = 1

4

(
− p

4
+ 1

2
− 1

2

)
− p

16

TM,ε(µ4) = 1

4

∑
χ

TM,ε(χ)χ(µ4) = 1

4

(
p

4
− 1

2
− 1

2

)
= p − 4

16
.

The above computations have an interesting topological consequence. On the manifold
M there are four spin structures {εi; i = 1, . . . , 4},

ε1 = ε, εi = µi · ε1, i = 2, 3, 4.
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If f is an orientation preserving diffeomorphism ofM such that f ∗(ε1) = εi , then we
would have

TM,ε(1) = TM,εi (1) = TM,ε(µi).

The above computations show that this is possible if and only if εi = ε1, so that the
spin structure ε1 is a topological invariant of the oriented manifold M! The same is
the case for ε4.

We denote by �M the group of components of the group of orientation preserving
diffeomorphisms ofM . �M acts on Spin(M), and the above computations show that
ε1, ε4 are fixed points of this action. Moreover these computations suggest that ε2, ε3
might belong to the same orbit of �M . The exercise below shows that this is indeed
the case. �


Exercise 3.11.(a) For each spin structure εi , i = 1, 2, 3, 4 indicate a characteristic
vector representing it.

(b) Describe an orientation preserving diffeomorphism f ofM such that

f ∗ε2 = ε3. �




Chapter 4

Alternative interpretations of the Reidemeister torsion

The Reidemeister torsion of an admissible 3-manifold can be given various equivalent
interpretations. It is the goal of this final chapter to sketch three analytic methods of
describing this invariant: gauge theoretic, Morse theoretic, and Hodge theoretic.

§4.1 A gauge theoretic interpretation: Seiberg–Witten invariants

Consider (M, σ, o) ∈ X. Recall that this means that M is an admissible 3-manifold,
σ is a (relative) spinc structure, and o is an enhanced homology orientation. The
attribute enhanced signifies that when b1 = 1, the spaceH1(M,R) is oriented as well.
We setH := H1(M), and we denote by Sσ the associated bundle of complex spinors.

If ∂M �= ∅ we attach a semi-infinite cylinder [0,∞) × ∂M , and we equip the
ensuing noncompact manifold M̂ with a metric ĝ which coincides with the cylindrical
metric

dt2 + g
on the cylindrical end, where g denotes a flat metric on a torus. Observe that if ∂M �= 0
then the vector field V coincides with ∂t along the cylindrical end.

The Seiberg–Witten equations depend on an additional deformation parameter.
This is a co-closed 1-form η on M̂ with the following properties.

P1. The restriction of η to the cylindrical end is nontrivial, t-covariant constant and
harmonic. As such it defines a cohomology class η|∂M ∈ H 1(∂M,R).

P2. If ∂M �= ∅ and b1(M) = 1 then

η|∂M ∈ Im
(
H 1(M,R)→ H 1(∂M,R)

) \ {0}.
The configuration space of the Seiberg–Witten theory is

Cσ := �(Sσ )×Aσ ,

where Aσ denotes the space of hermitian connections on the complex line bundle
det σ := det Sσ → M̂ . When ∂M �= ∅, so that M̂ is noncompact, we require∫

M̂

|FA|2dv(ĝ) <∞, (E)
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where FA denotes the curvature of A. Observe that PD(c1(det σ)) = c(σ ).
Every A ∈ Aσ defines a symmetric Dirac operator DA : �(Sσ ) → �(Sσ ). A

finite energy monopole is a configuration C = (ψ,A) ∈ Cσ satisfying (E) and the
Seiberg–Witten equations {

DAψ = 0

c(∗FA + iη) = 1
2q(ψ),

(SW)

where q(ψ) ∈ End(Sσ ) is defined by

�(Sσ ) � φ 
→ 〈φ,ψ〉ψ − 1

2
|ψ |2φ ∈ �(Sσ ),

and c : �∗T ∗M → End(Sσ ) denotes the Clifford multiplication “oriented” by the
condition

c(dvM) = −1.

The group of gauge transformations

Gσ := C∞ (M, S1)

acts on the configuration space by

Gσ × Cσ � (γ,C = (ψ,A)
) 
→ (γ · ψ,A− 2dγ /γ

) ∈ Cσ .

It transforms monopoles to monopoles. The quotient Cσ /Gσ is equipped with a natural
(Sobolev type) metric. We denote by Mσ ⊂ Cσ /Gσ the set of orbits of monopoles.

Mσ is a compact subset of Cσ /Gσ , and its infinitesimal deformations are described
by an elliptic complex of index 0. For any ĝ and a generic η these deformation
complexes are acyclic showing that Mσ is a finite set. By fixing a homology orientation
of H∗(M,R) we can associate a sign ε(C) = ±1 to any orbit [C] ∈ Mσ (see [68])
and define

swM(σ, o, ĝ, η) :=
∑

[C]∈Mσ

ε(C).

At this point we need to discuss separately three cases.

A. b1 > 1. A cobordism argument shows that swM(σ, o, ĝ, η) is independent of the
choices (ĝ, η). We denote this common value by swM(σ, o), and we refer to it as the
Seiberg–Witten invariant1 of (M, σ, o). It has the following properties.

• swM(σ, o) = 0 for all but finitely many σ ’s.

• If ∂M = ∅ then swM(σ) = swM(σ̄ ), ∀σ .

1When working on closed manifolds, the homology orientation is the tautological one and we will not
include it in the notation of the Seiberg–Witten invariant.
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For every σ we can form the element

SWM,σ,o ∈ Z[H ], SWM,σ,o =
∑
h∈H

swM(h−1σ, 0)h.

Note that for every h0 ∈ H we have

SWM,h0σ,o = h0SWM,σ,o.

Moreover, when ∂M = ∅
SWM,σ = c(σ )SWM,σ̄ = c(σ )SWM,σ .

In this case for any spin structure ε we have det(σ (ε)) = 1 so that

SWM,σ(ε) = SWM,σ(ε).

For simplicity we set SWM,ε := SWM,σ(ε).

B. b1 = 1. This situation is a bit more delicate. We discuss separately the two cases
∂M = ∅ and ∂M �= ∅.

B.1. ∂M = ∅. Fix a metric g. The enhanced homology orientation defines an
orientation on H ⊗ R. Choose a harmonic 1-form ωg which induces the chosen
orientation on H ⊗ R, and ‖ωg‖L2(g) = 1. Note that this orientation also produces a
surjection

deg = deg0 : H → H/Tors(H) = Z.
We identifyH 2(M)withH via the Poincaré duality, and for every complex line bundle
L→ M , we set

degL := deg(PD c1(L)).

For σ ∈ Spinc(M) denote by Pσ (g) the space of co-closed 1-forms η such that

wo(σ, η) :=
∫
M

(
η − 2π ∗ c1(det σ)

) ∧ ∗ωg �= 0.

The wall
Wσ := {η ∈ Pσ (g); w(σ, η) = 0}

decomposes Pσ (g) into two chambers

P±σ,o(g) = {η ∈ Pσ (g); ±wo(σ, η) > 0}.
For generic η ∈ Pσ (g) we denote by swM(σ, o, η) the signed count of (σ, g, η)-
monopoles. It is known that

swM(σ, o, η) = swM(σ̄ , o, η),
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swM(σ, o, η) = 0 for all but finitely many σ ’s, and

swM(σ, o, η1) = swM(σ, o, η2),

if wo(σ, η1) · wo(σ, η2) > 0. We set

sw±M(σ, o) := swM(σ, o, η),

where ±wo(σ, η) > 0. The wall crossing formula (see [61]) states that

sw+M(σ, o)− sw−M(σ, o) =
1

2
deg(det σ).

We define
SWM,σ,o,η =

∑
h∈H

swM(h−1σ, η)h ∈ Z[H ],

SW+
M,σ,o =

∑
h∈H

sw+M(h
−1σ)h ∈ Z[[H ]].

Suppose we pick σ0 = σ(ε), where ε is a spin structure, and η = η0 such that∫
M
η0 ∧ ∗ωg is a very small positive number. Fix T ∈ H such that deg(T ) = 1. We

deduce that

wo(h
−1 · σ0, η0) > 0 ⇐⇒

∫
M

η0 ∧ ∗ωg > −2π dego h ⇐⇒ dego h ≥ 0

Hence
(g, η0) ∈ P−

h−1·σ0,o
(g) ⇐⇒ dego(h) < 0.

We can rephrase the wall crossing formula in the more compact form using the wall
crossing termWM introduced in §3.6. More precisely

SW+
M,σ(ε) = SWM,σ(ε),η0 +

∑
h∈H

deg+(h−1)h = SWM,σ(ε),η0 +
SMT

(1− T )2 ,

where
deg+ = max(deg, 0), SM =

∑
h∈Tors(H)

h ∈ Z[H ].

Observe that

SW0
M,σ(ε) := SW+

M,σ(ε) −WM = SWM,σ(ε),η0 ∈ Z[H ] (4.1)

is a topological invariant, independent on the orientation o onH ⊗R, which satisfies
the symmetry condition

SW0
M,σ(ε) = SW

0
M,σ(ε),

and the equivariance property

SW0
M,σ(h0ε)

= h0SW0
M,σ(ε), ∀h0 ∈ Tors2(H).

We will refer to SW0
M,σ(ε) as the modified Seiberg–Witten invariant of M associated

to the spin structure ε.



178 4 Alternative interpretations of the Reidemeister torsion

Example 4.1(The Seiberg–Witten invariants of S1 × S2). Suppose M = S1 × S2,
and g0 is the Cartesian product of the round metrics on S1 and S2. The scalar curvature
of g0 is a positive constant s0. H1(M) is generated by the fiber S1, and thusM carries
a natural enhanced homology orientation o. We denote by ω0 = dϕ the angular form
along S1. It defines a generator of H 1(M,R) which is positive with respect to the
above enhanced homology orientation. ω0 is a harmonic 1-form. After a possible
rescaling of the metric g0 we can assume it has L2-norm 1. Choose η0 = cω0 where
c is a very small positive number.

Note that for every spinc structure σ we have deg(det σ) ∈ 2Z. For every n ∈ Z,
we denote by σn the unique spinc structure onM such that deg(det σn) = 2n. Observe
now that

η0 ∈
P+σn(g) if n ≤ 0

P−σn(g) if n > 0.
(4.2)

We want to prove that for any n ∈ Z there are no (σn, g0, η0)-monopoles so that

swM(σn, η0) = 0, ∀n ∈ Z.
Indeed, suppose C = (ψ,A) is a σn-monopole. Using the first equation in (SW) we
deduce D2

Aψ = 0. The Weitzenböck formula now yields

(∇A)∗∇Aψ + s0
4
ψ + 1

2
c(FA)ψ = 0.

The second equation in (SW) implies

c(FA) = c(∗FA) = 1

2
q(ψ)− c(iη).

Hence (
(∇A)∗∇A + s0

4
− 1

2
c(iη0)+ 1

4
q(ψ)

)
ψ = 0.

Taking the L2-inner product of the last equality with ψ , and then integrating by parts
we get ∫

M

(
|∇Aψ |2 + s0

4
|ψ |2 − 1

2
(c(iη0)ψ,ψ)+ 1

16
|ψ |4
)
dvM = 0.

Since η0 = cω0 and 0 < c 1 1 we deduce that all the terms in the above equality
must be zero so that ψ ≡ 0. Using this information in the second equation of (SW)
we deduce

FA = −i ∗ η0 *⇒ i
2π

∫
M

FA ∧ ∗ω0 = c

2π

∫
M

ω0 ∧ ∗ω0 = c

2π
.

Hence

2π
∫
M

c1(det σn) ∧ ∗ω0 = c.
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This equality is impossible when

0 < c < min
{
2π〈c1(det σn), ω0〉L2; n ∈ Z \ {0}},

which confirms our claim. We deduce that

swM(σn, η0) = 0, ∀n.
Using (4.2) we conclude that

sw+M(σn) = swM(σ,η0) = 0, ∀n ≤ 0.

The wall crossing formula implies that for all n > 0 we have

sw+M(σn) = n+ sw−M(σn) = n+ sw−M(σn, η0) = n.
Now interpret H1(M) as a multiplicative group, and denote by T the generator of H
satisfying deg T = 1. We deduce

SW+
M,σ0

=
∑
n∈Z

sw+M(σ−n)T
n −
∑
n<0

nT n =
∑
n>0

nT −n = T −1(
1− T −1

)2 = T

(1− T )2 .
�


B.2. ∂M ∼= T 2. Using the orientation2 of H1(M,R) we can choose a cycle �+ ∈
H1(M,Z) inducing the positive orientation on 1-dimensional real space H1(M,R).
For each Riemann metric g pick a harmonic 1-form ωg on M such that along the
end [0,∞) × ∂M the restriction ωg|t×∂M converges exponentially as t → ∞ to a
nontrivial harmonic 1-form on ∂M and∫

�+
ωg = 1.

The space of parameters (g, η) decomposes into

P±o =
{
(g, sωg + ϕ); ±s > 0, ϕ ∈ $2(M), d∗ϕ = 0, ϕ has compact support

}
.

Then one can show that swM(σ, ĝ, η) is independent of (ĝ, η) ∈ P+. We denote this
common value by sw+M(σ). sw−M(σ) is defined similarly. Now define

SW+
M : Spinc(M, ∂M)→ Z[[H1(M)]], σ 
→

∑
h∈H1(M)

sw+M(h
−1σ)h. (sw)

This is an H1(M)-equivariant map and (see [68])

SW+
M(σ) ∈ N1(H1(M)), ∀σ ∈ Spinc(M, ∂M).

2If ∂M �= ∅ then the homology orientation on H∗(M,R) induces an orientation of H1(M,R) which
will be the one we choose.
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Example 4.2. (a) ([3, 80]) If M is the total space of a degree d circle bundle over a
Riemann surface � of genus g then for any spinc structure σ onM we have

swM(σ) ∼ (1− t)2g−2 ∈ Z[H1(M)]
where t denotes the homology class of the fiber.

(b) If N1 and N2 are closed, oriented 3-manifolds such that b1(Ni) > 1 then

swN1#N2 = 0. �

The above examples and the computations in §2.1 suggest that the Reidemeister

torsion and the Seiberg–Witten invariant swM could be related. We have the following
more accurate statement.

Theorem 4.3(Meng–Taubes [68], Turaev [115]). The Seiberg–Witten invariant swM ,
b1(M) > 0, satisfies the Axioms 1–3 in §3.5 and thus coincides with the Reidemeister–
Turaev torsion (up to a sign).

Remark 4.4. For a general outline of the proof (based in essence on gauge theoretic
gluing results) we refer to [68, 115]. As explained in Remark 3.19, the proof reduces to
proving surgery formulæ for the Seiberg–Witten invariant of admissible 3-manifolds,
and verifying that in the simplest case of a solid torus this invariant equals the torsion,
(1− t)−1. This is very easily deduced from the surgery formulæ, and the computation
in Example 4.1.

Most of the analytical work needed to prove the gauge theoretic surgery results can
be found in the recent paper [108]. The topological counterparts of these analytical
gluing formulæ which are required in the proof can be found in [112].

D. Salamon outlines in [95] a different, more geometric approach in the special
case of 3-manifolds which fiber over S1. In [21] S. Donaldson describes yet another
approach to the case b1 = 1 of Meng–Taubes theorem based on Topological Quantum
Field Theory. This approach was recently extended to any b1 > 0 by T. Mark in [66].

�


Exercise 4.1.Assuming that the Seiberg–Witten invariant satisfies the excision for-
mula in §3.7, prove that in the case of the canonical spinc structure on the solid torus
Z = S1 ×D2 it is equal, up to a sign, with the Reidemeister–Turaev torsion. �


We can eliminate the sign ambiguity in Theorem 4.3 at least when b1(M) = 1
and ∂M = ∅. In §3.6 we defined the modified Reidemeister–Turaev torsion of closed
3-manifolds such that b1(M) = 1 by the equality

T0
M,ε := TM,ε −WM ∈ Z[H ], ∀ε ∈ Spin(M). (4.3)

We observed that
T0
M,ε = T

0
M,ε.



§4.1 A gauge theoretic interpretation: Seiberg–Witten invariants 181

Proposition 4.5. If b1(M) = 1 and ∂M = ∅ then

SW+
M,ε = TM,ε, ε ∈ Spin(M).

Proof. We have an equality

SW+
M,ε = ±TM,ε ⇐⇒ (SW0

M,ε +WM) = ±(T0
M,ε +WM)

To prove that the correct choice of signs is “+” we argue by contradiction. Suppose

SW+
M,ε = −TM,ε.

Then this implies that

TM,ε −WM = −SW0
Mε
− 2WM �∈ Z[H ]

which contradicts (4.3). �


Remark 4.6. We see that we can remove the sign ambiguity in the case b1(M) = 1,
∂M = ∅ by relying on the wall cross formula for the Seiberg–Witten invariant and the
structural equality (3.6) for the torsion. It is natural to expect that we could similarly
remove the sign ambiguity in the case b1(M) = 1, ∂M ∼= T 2, by using the structural
identity (3.7) and an as yet non existent wall crossing formula for the Seiberg–Witten
invariants ofM . Things are more delicate in this case. Lim’s proof in [61] of the wall
crossing formula in the closed case does not extends to the cylindrical end situation for
a simple reason. In the noncompact case the Fredholm property of a partial differential
operator is not decided by the symbol of the operator alone, as is the case in the closed
case. For manifolds with cylindrical ends this is decided by global objects which are
no longer invariant under lower order deformations of the operator. �


Proposition 4.7. If M is a closed, homologically oriented 3-manifold such that
b1(M) = 1 then

T̂0
M(1) = ŜW

0
M(1) =

1

2
�′′M(1),

where �M ∈ Z[[T 1/2, T −1/2]] denotes the symmetrized Alexander polynomial of M
normalized such that �M(1) = |Tors(H1(M))|.

Proof. Set H := H1(M) and

SM :=
∑

h∈TorsH

h ∈ Z[H ].

The projection dego : H � Z defined by the homology orientation o induces the
augmentation morphism

aug : Z[[H ]] → Z[[t, t−1]].



182 4 Alternative interpretations of the Reidemeister torsion

Fix T ∈ H such that dego T = 1. The symmetrized Alexander polynomial �M is
uniquely determined by the condition

aug TM,ε = T k/2 �M(T )
(1− T )2 ,

for some k ∈ Z. Using Theorem 4.9(a) we deduce

T k/2
�M(T )

(1− T )2 = aug SWM = aug SW0
M + aug (SM)

T

(1− T )2

= aug SW0
M + |Tors(H)| T

(1− T )2 .

We conclude that

T k/2−1�M(T ) = (T − 2+ T −1)aug SW0
M(T )+ |Tors(H)|.

The symmetry of SW0 implies SW0
M(T ) = SW0

M(T
−1), and since �M satisfies a

similar symmetry we conclude k/2− 1 = 0. Hence

�M(T ) = (T − 2+ T −1)aug SW0
M(T )+ |Tors(H)|.

Differentiating the above equality twice at T = 1 we deduce

�′′M(1) = 2aug SWM(1) = 2ŜW
0
(1). �


Remark 4.8. Observe a nice “accident”. SupposeM is as in Proposition 4.7. Then

WM = SM
∑
n≥1

nT −n.

Formally

ŴM(1) = ŜM(1)
∑
n≥1

n = |Tors(H)|
∑
n≥1

n

= |Tors(H)|ζ(−1) = − 1

12
|Tors(H)|,

where ζ(s) denotes Riemann’s zeta function. In particular

ŜWM(1) = ŜW
0
M(1)+ ŴM(1) =

1

2
�′′M(1)−

1

12
|Tors(H)|.

The expression in the right-hand-side is precisely the Casson–Walker–Lescop invariant
ofM , [58]. �
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C. Suppose now that b1(M) = 0, i.e. M is a rational homology sphere. Fix σ ∈
Spinc(M). In this case the signed count of (σ, g, η)-monopoles depends on (g, η) in a
more complicated way. To produce a topological invariant we need to add a correction
to this count. For simplicity, we describe this correction only when η = 0.

The line bundle det σ = det Sσ admits a unique equivalence class of flat connec-
tions. Pick one such flat connection Aσ and denote by DAσ the Dirac operator on Sσ
determined by the twisting connection Aσ . We denote its eta invariant by η dir(g, σ ).
Also, denote by η sign(g) the eta invariant of the odd signature operator determined by
g. Finally define the Kreck–Stolz invariant of (g, σ ) by

KS(g, σ ) = 4η dir(g, σ )+ η sign(g).

Define the modified Seiberg–Witten invariant of (M, σ) by

sw0
M(σ) =

1

8
KS(g, σ )+ swM(σ) ∈ Q.

As shown in [61], the above quantity is independent of the metric, and it is a topological
invariant. Set

SW0
M,σ :=

∑
h∈H

sw0
M(h

−1σ)h ∈ Q[H ].

If σ = σ(ε) we have

SW0
M,σ(ε) = SW

0
M,σ(ε).

To establish a relationship between the Reidemeister torsion and the Seiberg–
Witten invariants for rational homology spheres we need to define a more sophisticated
modification of the torsion.

Suppose b1(M) = 0. We denote by CWM ∈ Q the Casson–Walker invariant of
M (see [58, 118] for more information about this invariant) and define

T0
M,ε = TM,ε − 1

2
CWM  M.

Observe that T̂0
M,ε(1) = augT0

M,ε = 1
2 |H |CWM= Lescop invariant of M (see [58,

p. 80]).
We we will refer to the quantitiesT0

M,ε forb1(M) = 0, 1 the modified Reidemeister–
Turaev torsion of M . The Seiberg–Witten invariant and the modified Reidemeister
torsion are related. More precisely we have the following result.

Theorem 4.9. (a) [60, 65, 85]. ŜW
0
M(1) = T̂0

M(1) if b1(M) = 0.

(b) [81]. SW0
M = T0

M ifM is a lens space.3

3We have to warn the reader of a sign convention in [118, Prop. 6.2], where the lens space L(p, q)
is defined as the p/q-surgery on the unknot. However, the lens space L(p, q) as defined in §2.7 is the
−p/q-surgery on the unknot, [37, p.158], [46, p. 65-66].
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Part (b) of the above theorem can be slightly strengthened to

SW0
M = T0

M, ifM is a connected sum of lens spaces. (4.4)

This equality follows from the vanishing of the torsion under connected sums, the
additivity4 of the Casson–Walker invariant, and the additivity of the Kreck–Stolz
invariant.

Theorem 4.10([83]).
SW0

M = T0
M

for any rational homology 3-sphereM .

Outline of the proof. The first temptation would be to prove an extension of the
Uniqueness Theorem 3.17 which is limited to manifolds satisfying b1(M) > 0. There
is however a major obstacle.

The Uniqueness Theorem 3.17 involves invariants of admissible manifolds with
boundary, and for such manifolds the functional set-up for the Seiberg–Witten equa-
tions requires perturbation parameters satisfying the nondegeneracy condition P2de-
scribed at the beginning of this section. If we glue along their boundaries two manifolds
Mi , i = 0, 1, such that b1(Mi) = 1, ∂Mi = T 2, aiming to produce a rational homology
sphere N = M0#T 2M1, then we would have to use perturbation parameters νi match-
ing along the boundaries. These would produce a non-exact closed 2-form ∗ν0# ∗ ν1
on N which would contradict the condition b1(N) = 0. Thus, whatever uniqueness
statement we would attempt to prove, it cannot involve the torsion of manifolds with
boundary.

On the analytical side, the way out of this quandary is to work with a different
class of allowable perturbations, the compactly supported ones. This creates a serious
problem. It substantially changes the structure of the deformation complex for the
Seiberg–Witten equations on manifolds with boundary. Its index will no longer of be
zero, as desired. However this choice of perturbation is forced upon us, and cannot
be avoided. We must renounce all the analytical achievements in [68, 108] and prove
new gluing formulæ.

All is not lost. The analytical results in [62, 65, 85] can produce gluing results
for the modified Seiberg–Witten invariant, albeit much weaker than the ones in [108].
These new formulæ for the Seiberg–Witten invariant do not involve manifolds with
boundary.

On the topological side, one has to renounce the multiplicative gluing formulæ
discussed so far and use additive ones [116, §6]. We outline below some the difficulties
of this approach and the method we propose to get out of trouble.

We denote by DM the difference SW0
M − T0

M . Proving the equality of these two
invariants is equivalent to showing thatDM ≡ 0. At this point the harmonic analysis in
§1.6 comes in extremely handy. For example, the Marcolli–Wang result [65] translates

4This follows from the very general surgery results for eta invariants in [52].
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into D̂M(1) = 0, for all rational homology spheres. The true nature of the surgery
formulæ is best displayed in the Fourier picture. To explain the gist of these formulæ
consider a 3-manifold N with b1 = 1 and boundary T 2. N can be thought of as the
complement of a knot in a QHS. Pick two simple closed curves c1, c2 on ∂N with
nontrivial intersection numbers with the longitude λ ∈ H1(∂N,Z).

By Dehn surgery with ci as attaching curves we obtain two rational homology
spheres M1, M2 and two knots Ki ↪→ Mi , i = 0, 1. Let Hi := H1(Mi,Z), G :=
H1(N, ∂N;Z). Denote by j the inclusion induced morphism H1(∂N) → H1(N).
The knot Ki determines a subgroup K⊥i ⊂ Ĥi , consisting of the characters vanishing
on Ki . These subgroups are naturally isomorphic to the group of characters χ of
H1(N) with the property that the composition

H1(∂N)
j−→ H1(N)

χ−→ C∗

is trivial (see §B.2). We thus have a natural isomorphism

f : K⊥1 → K⊥2 .

Putting together the gluing formulæ in [62, 65, 85] and the additive gluing formulaæ
in [116, §6] we get a gluing formula for D̂M of the form5

〈λ, c2〉D̂M1(χ) = 〈λ, c1〉D̂M2

(
f (χ)

)+ |G|K, ∀χ ∈ K⊥1
where 〈•, •〉 denotes the intersection pairing on H1(∂N,Z), and K is a universal
correction term which depends only on the divisibility m0 of the longitude and the
SL2(Z)-orbit of the pair (c1, c2)with respect to the obvious action of this group on the
space of pairs of primitive vectors in a 2-dimensional lattice (see §B.2). We will thus
write Km0;[c1,c2], and call the triplet (m0; [c1, c2]) the arithmetic type of the surgery.
The results of [85] prove that

K1;[c1,c2] ≡ 0, ∀[c1, c2].
We call surgeries with m0 = 1 primitive, and the surgeries with trivial correction
term, admissible. We denote by R the class of rational homology spheres M such
that D̂M ≡ 0. Both the family of admissible surgeries and the family R are “time
dependent” families, and during our proof we gradually produce larger and larger
classes of surgeries/manifolds inside these families.

The class R is closed under connected sums and certain primitive surgeries. Using
this preliminary information and basic Kirby calculus one can show6 that all homology
lens spaces belong to R. As a bonus, we can include many more arithmetic types of
Dehn surgeries in the class of admissible surgeries.

5The reader should compare this description of the surgery formula with the ones in [65, 85] to truly
appreciate the amazing simplifying power of the Fourier transform.

6I learned this fact from Nikolai Saveliev.
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Loosely speaking, the homology lens spaces have the simplest linking forms. We
take this idea seriously and define an appropriate notion of complexity of a linking
form. The proof then proceeds by induction, including in X manifolds of larger and
larger complexity. This process also increases the class of admissible surgeries, which
can be used at the various inductive steps. Such a proof is feasible if we can produce
a large supply of complexity reducing Dehn surgeries. Fortunately, this can be done
using elementary arithmetic. We refer for more details to [83]. �


Using Theorem 4.10 we can now establish a relationship between the maps qtors
and qtop introduced in §3.9.

Proposition 4.11.
qtors = qtop.

Proof. Since both maps are Ĥ -equivariant it suffices to prove that qtop(ε) = qtors(ε)

for some spin structure ε onM . Using Theorem 4.10 we deduce that

qtors(ε)(h) = 1

8

(
KS(ε)−KS(h · ε)) mod Z, ∀h ∈ H.

To compute qtop(ε) consider a simply connected spin four-manifold (M̂, ε̂) such that
(see [37])

∂(M̂, ε̂) = (M, ε).
Next, choose ĥ ∈ H 2(M̂,Z) such that [ĥ] := ĥ|∂M ∈ Ĥ is the Poincaré dual of h, i.e.

[ĥ](•) = lkM(h, •).

Set σ̂h := ĥ · ε̂.
Fix a metric g on M and extend it to a metric ĝ on M̂ which is a product near

the boundary. Denote by Ŝh the Z2-graded of spinors associated to σ̂h. Extend the
flat connection Aσ on det σ to a connection Âh on det Ŝ+h . We get in this fashion an

operator �Dh on Ŝh. Using the Atiyah–Patodi–Singer index theorem [2] for �Dh and the
signature operator on M̂ we deduce

− 1

24

∫
M̂

p1(M̂, ĝ)+ 1

2
Q̌
M̂
(ĥ, ĥ) = 1

2
η dir(hε, g) mod Z,

and
1

24

∫
M̂

p1(M̂, ĝ)− 1

8
sign(M̂ = 1

8
η sign mod Z.

Thus
1

8
KS(hε) = 1

2
Q̌
M̂
(ĥ, ĥ)− 1

8
sign(M̂) mod Z.

Hence

qtors(h) = 1

8

(
KS(ε)−KS(h · ε)) modZ = −1

2
Q̌
M̂
(ĥ, ĥ) modZ = qtop(ε)(h). �
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Remark 4.12. While the book was in print, F. Deloup and G. Massuyeau have given
a purely topological proof of Proposition 4.11. For details we refer to their preprint
math.GT/0207/188. This result plays a key role in the investigations in [75]. �


§4.2 A Morse theoretic interpretation

The Reidemeister torsion resembles in many respects the Euler characteristic. Accord-
ing to the classical Poincaré–Hopf theorem, we can interpret the Euler characteristic
as counting stationary points of smooth vector fields.

In the early 80’s, D. Fried [33, 34] has shown that the Reidemeister torsion of
a smooth manifold X can too be interpreted as counting closed orbits of nowhere
vanishing Morse–Smale vector fields, i.e. gradient vector fields associated to smooth
maps X→ S1 without critical points (see also [28] for earlier results of this nature).
M. Hutchings and Y. Lee have recently extended Fried’s result to any generic map
α : X→ S1. The goal of this subsection is to formulate this result and loosely explain
it. For details and proof we refer to [49] which served as our main source of inspiration.
For different approaches we refer to [47, 48, 87].

Suppose X is a closed, compact, oriented, smooth manifold such that χ(X) = 0.
Fix a Riemann metric g on X and a smooth function

α : X→ S1

such that the pair (α, g) is admissible, i.e.

• The critical points of α and the closed orbits of ∇α are nondegenerate.

•The ascending and descending manifolds of the critical points of α intersect transver-
sally.

A closed orbit of ∇α is a nonconstant map

u : S1 → X

such that
du

dt
= −λ∇α(u)

for some positive constant λ. Two orbits are considered equivalent if they differ
by a reparametrization. We denote by O the set of equivalence classes of closed
orbits. Each equivalence class of closed orbits u determines an unique homology
class [u] ∈ H1(X).

The period of a closed orbit u is the largest positive integer p such that u factors
through a p-fold covering

S1 → S1, z 
→ zp.
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Equivalently, the period is the largest positive integer p such that

1

p
[u] ∈ H1(X).

A closed orbit u defines a return map

φu :
〈
u̇(0)
〉⊥ → 〈 u̇(0) 〉⊥,

where
〈
u̇(0)
〉⊥ denotes a neighborhood of the origin in the orthogonal complement of

u̇(0) in Tu(0)X. The orbit is called nondegenerate if

det(1−Dφu) �= 0.

In this case we define the Lefschetz sign

ε(u) := sign det(1−Dφu).
The function α defines a cohomology class

ω = ωα := 1

2π
f ∗(dθ) ∈ H 1(X,Z).

Define the Novikov ring

�α :=
{
s =∑h shh ∈ Z[[H1(X)]]; ∀C ∈ R, #{h, sh �= 0, ω(h) < C} <∞},

and the zeta function of α

ζα := exp
(∑
u∈O

ε(u)

p(u)
[u]
)
∈ �α.

It is not a priori clear that ζα is a Laurent series with integral coefficients. This follows
from the equivalent description (see [34, 48, 95])

ζα =
∏
u∈O∗

(
1− (−1)i−([u])[u])(−1)i0([u])

,

where O∗ denotes the set of primitive orbits (period 1), i−/0([u]) denotes the number of
real eigenvalues of the return map in the intervals (−∞,−1) and respectively (−1, 1).

The Morse–Novikov complex associated to α and g is a chain complex (C, ∂) =
(C(α; g), ∂) of free�α-modules defined as follows (see [47, 84, 86] for more details).

• Ck is the free �α module generated by the critical points of f of index k. Denote
by X̃ the universal abelian cover and by α̃ the induced smooth function

α̃ : X̃→ R.
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Choose a lift x̂ ∈ X̃ of any critical point x of f . Each such lift is a critical point
of α̃. Then the collection {x̂; ind(x) = k} is a �α-basis of Ck . A choice of Euler
structure uniquely specifies such a lift. Here, we prefer to think of an Euler structure
as a 1-chain γ on X such that

∂γ =
∑

∇α(x)=0

(−1)ind(x)x.

• The boundary map ∂ : Ck → Ck−1 is defined by

∂x̂ =
∑

ind (y)=k−1

〈x, y〉y,

where
〈x, y〉 =

∑
h∈H1(X)

〈x, y〉h · h.

We denote by τg(α) the torsion of the Novikov complex (C(α, g), ∂), τg(α) ∈
Q(�α)/±. Denote by iα the natural morphism

Q(H1(X))→ Q(�α).

We have the following result.

Theorem 4.13(Hutchings–Lee, Pajitnov [49, 87]). For any admissible pair (α, g)
and for any Euler structure σ we have

iα(τ (X, σ )) = Iα,g(σ ) := ζατg(α, σ ).
For a proof of this result we refer to [47, 48, 49, 66, 87]. The strategy is easy

to describe. One constructs a homotopy equivalence between (C(α, g), ∂) and the
cellular chain complex of X̃ with coefficients in �α . This is not a simple homotopy
equivalence, and its torsion is precisely the zeta function of the flow determined by α.
The theorem is then a consequence of the multiplicativity properties of the torsion.

We will however sketch an argument of M. Hutchings [47] showing that the above
identity follows immediately if we assume Iα,g is a topological invariant. More pre-
cisely, we have an apparently weaker result.

Theorem 4.14([47, 87]). The invariant Iα,g depends only on the classωα ∈H 1(X,Z).

We will show, following [47], that

Theorem 4.14 *⇒ Theorem 4.13.

The proof will be carried out in two steps.

Step 1. Theorem 4.13 is true when ωα = 0, i.e. α lifts to a map f : X → R. In this
case ζα = 1 and the result is classical; see [72, Sec.9] or [86].

Step 2. Reduce the general case to Step 1. This can be achieved immediately using
the following technical result, [47, 87].
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Lemma 4.15([56]). Fix an Euler structure σ on X and a smooth map α : X → S1.
Then there exist a metric g on X and a smooth map f : X→ R such that

• The pairs (α, g) and (β = α + exp(if ), g) is admissible.

• The vector field ∇gβ has no nontrivial periodic orbits.

• There is a canonical isomorphisms of chain complexes

(C(f, g), ∂)⊗�α → (C(β, g), ∂).

Proof. The result is obviously true when α is homotopically trivial. Thus we only
need to consider the case when ωα �= 0 ∈ H 1(X,Z). By eventually perturbing α
within its homotopy class we can find a metric g so that (α, g) is admissible. Pick a
smooth function ξ : X → R. We look for f of the form nξ , where n is a very large
positive integer. This assumption will guarantee the existence of a bijection between
the zeroes of ∇f and

∇βn = n∇f + ∇α,
and the corresponding stable and unstable manifolds of these vector fields. Let us now
show that for large n the vector field ∇βn will have no nontrivial periodic orbits.

We argue by contradiction. Suppose that for every n 2 0 there is such an orbit
γn. We denote by 2πsn ∈ 2πZ its principal period. Then [γn] has infinite order in
H1(X,Z) since∫

γn

dβn =
∫ 2πsn

0
|dβn|2dt > 0, (dβn := β∗n(dθ) = 2πωβn).

In fact, since ωβn = ωα ∈ H 1(X,Z) there exists c > 0 such that

〈dβn, [γn]〉 ≥ c, ∀n.
Isolate the critical set Crit(f ) of f in a tiny neighborhood Ur consisting of geodesic
balls of radii r > 0 centered at the critical points of f . We denote by L = Lr the
minimum distance between two distinct components of Ur . Denote by λn,r the part
of the path γn outside Ur and by µn,r the part inside Ur . For each 0 < r 1 1 we can
find N = N(r) > 0 such that

Crit(βn) ⊂ Ur, ∀n ≥ N(r).
λn,r and µn,r consist of the same number of components

λn,r,k, µn,r,k, k = 1, . . . , ν(n).

We label the components so that µn,r,k follows λn,r,k . Using the Morse Lemma for
1
n
βn|Ur we deduce that the length of each component of µn,r is O(r). We need to

distinguish several cases.
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Ur

Figure 4.1. A periodic orbit.

Case 1. The path γn intersects several of the components of Ur ; (Figure 4.1). We
reparametrize

γn(t) := γn(t/n)
so that

γ̇n = Vn := ∇ξ + 1

n
∇αn.

Assume first that λn,r has no “loops”, i.e. components which start and end at the same
component of Ur . We deduce that there exists C > 0 such that

inf |dλn,r (t)| ≥ inf
X\Ur

|∇ξ + 1

n
∇α| ≥ Cr − 1

Cn
.

Hence

0 =
∫
γn

dξ =
∫
λn,r

|dλn,r |2 − 1

n
g(dλn,r , dα)ds +

∫
µn,r

g(dξ, dµn,r )ds

=
ν(n)∑
k=1

{∫
λn,r,k

(
|dλn,r,k|2 − 1

n
g(dλn,r,k, dα)

)
+
∫
µn,r,k

g(dξ, dµn,r )ds

}
≥ ν(n)C

(
Lr

(
r − 1

Cn

)
− r2
)
= Cν(n)

(
− r2 + rLr − Lr

nC

)
(*)

If we now choose

n > max

(
N(r),

C

rLr(Lr − r)
)
, 0 < r < Lr
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we obtain a contradiction in (*).
If λn,r contains “loops”, we can shortcut them away, by connecting the initial

point and the final point of such a loop by a geodesic segment inside Ur . We obtain
a new closed path γ̂n which is tangent to Vn outside Ur . This leads as above to a
contradiction.

Case 2. γn intersects a single component of Ur so that λn,r consists only of loops.
Suppose the component of Ur in question is a ball of radius r centered at the critical
point x0 of f . We assume r is considerably smaller than the injectivity radius R0 of
X at x0,

0 < r 1 R0.

Let us observe that γn cannot be included in any contractible open set of X because it
carries a nontrivial homology class. Thus, one of the components, say λn,r,1, must go
out of the geodesic ball of radius R0/2 centered at x0, and in particular

length(λn,r,1) >
R0

2
.

Now form a closed path γ̂n by joining the endpoints of λn,r,1 by a path of lengthO(r)
inside Ur . The equality ∫

γ̂n

dξ = 0

leads as in the previous case to a contradiction. This concludes the proof of the lemma.
�


Remark 4.16. The Meng–Taubes–Turaev theorem in the previous section shows that
the Morse invariant Iα of a closed 3-manifolds coincides with the Seiberg–Witten in-
variant. At this moment there is no proof which directly identifies these two invariants.
However, the work of C.H. Taubes, [104, 105, 106, 107], on the invariants of (degen-
erate) symplectic manifolds suggests one explanation. We consider for simplicity the
case when X is a 3-manifold which fibers over a circle

F X

S1

� �j

��
π

where F is a compact, oriented Riemann surface of genus g. We can find a metric g0
on X such that ω0 := π∗(dθ) is harmonic. Then the 4-manifold

M := S1 ×X
is symplectic. Indeed, if dϕ denotes the angular form on the component S1 ofM and
g := dϕ2 + g0 then

ω := dϕ ∧ ω0 + ∗g0ω0
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is a symplectic form.
The Seiberg–Witten invariant of M coincides with the Seiberg–Witten invariant

of X. On the other hand, the closed trajectories γ : S1 → X of the gradient flow of
π , which contribute to the Morse invariant Iπ lead to symplectically embedded tori

1× γ : S1 × S1 → S1 ×X.
According the work of Taubes, the Seiberg–Witten invariants of M count precisely
such tori. The equality between the Seiberg–Witten invariant and the Morse invariant
of X implies that the correspondence

closed orbits of the gradient flow −→ symplect tori −→ monopoles

is in some sense a bijection. The work of Taubes explains why the second arrow above
is a bijection. The work of D. Salamon [95] offers strong evidence that the first arrow
is a bijection as well.

§4.3 A spectral interpretation: the Ray–Singer analytic torsion

Like the Euler characteristic, the Reidemeister torsion too has a Hodge theoretic in-
terpretation. Suppose X is a closed, connected, compact, oriented, smooth manifold
of odd dimension n = 2m+ 1.

A morphism ρ : π1(X) → S1 defines a pair (Lρ,Aρ) consisting of a hermitian
line bundle Lρ → X and a flat hermitian connection Aρ on it.

We denote by $k(L) the space of smooth L-valued degree k-differential forms
on X, i.e. sections of the bundle L ⊗ �kT ∗X. Since A is flat we obtain a co-chain
complex

0 → $0(L)
dA−→ $1(L)

dA−→ · · · dA−→ $n(L)→ 0.

For consistency reasons, we will think of it as a chain complex

(C(ρ), ∂), Ck := $n−k(L).
This is an infinite dimensional complex.

Suppose (C(ρ), ∂) is acyclic. We would like to define a notion of torsion for
this complex. Clearly the definitions we have used so far are useless. However, the
formula (A.1) in §A.1 will provide a way out of this trouble.

A Riemann metric g on X induces a Hermitian metric on $∗(L) and Laplacians

�j(ρ) = d∗AdA + dAd∗A : $j(L)→ $j(L).

The equality (A.1) shows that, provided we can make some rigorous sense of det�i(ρ),
then we can define the torsion of this complex by the equality

τ(ρ)2 =
∏
j odd det(�j (ρ))j∏
k even det(�k(ρ))k

.
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Since the operator �j is elliptic, selfadjoint and positive, its possibly nonexistent
determinant ought to be positive. We can pass to logarithms and obtain

log |τ(ρ)| = 1

2

n∑
k=0

(−1)k+1k log det�k(ρ).

If � were a positive symmetric matrix, then we would have

log det� =
∑
λ∈σ(�)

log λ (σ(�) = the spectrum of �, multiplicities included)

= − d
ds
|s=0

( ∑
λ∈σ(�)

λ−s
)
= − d

ds
|s=0 Tr(�−s).

Using the classical formula

�(s)λ−s =
∫ ∞

0
t s−1e−λtdt

we can further write

log det� = − d
ds
|s=0

(
1

�(s)

∫ ∞
0
t s−1 Tr e−t�dt

)
.

Fortunately, the last expression makes sense in infinite dimensions as well. We have
the following result, going back to H. Weyl.

Theorem 4.17([39], Chap. 1). Suppose � is a second order, selfadjoint, positive,
elliptic operator on a closed, compact Riemannian manifold (X, g) of dimension n.
Then, the operator e−t� is of trace class, the integral∫ ∞

0
t s−1 Tr e−t�dt

converges for all s ∈ C |s| 2 0, and the function

s 
→ ζ�(s) = 1

�(s)

∫ ∞
0
t s−1 Tr e−t�dt

admits an extension to C as a meromorphic function with only simple poles located at
s = n+2−j

2 , j = 0, 1, 2, . . . . In particular, if n is odd, then ζ�(s) is analytic at s = 0.

Thus we can define the Ray–Singer analytic torsion of the acyclic representation
ρ : π1(X)→ S1

RS(ρ) = RSX(ρ, g) := 1

2

n∑
k=0

(−1)kkζ ′�k(ρ)(0). (4.5)

The above heuristic argument suggests that exp(RS(ρ)) is a natural candidate for the
torsion of C(ρ).
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Example 4.18(The analytic torsion of the circle). Suppose X = S1. All the lines
bundles on S1 are trivial. The flat connections on the trivial bundle C → X are
parameterized by a ∈ R mod Z. Given a ∈ [0, 1) we can form the connection

∇a = d − i adθ : $0(C)→ $1(C)

with holonomy
ρa(t) = exp(2π i a),

where t denotes the canonical generator of π1(S
1).

We have two Laplacians

�0(a) = �1(a) = �a : C∞(C)→ C∞(C),

�a = − d
2

dθ2 + 2i
d

dθ
+ a2 =

(
−i
d

dθ
− a
)2

with identical spectra

{λn = (n− a)2; n = 0, 1, . . . }.
We see that the representation ρa is acyclic if and only if a = 0. The eigenvalue λn
has an one-dimensional eigenspace generated by en := exp(nθ i). The zeta function
of �a is

ζ�a (s) =
∑
n∈Z

1

(n− a)2s =
∑
n≥0

1

(n+ 1− a)2s +
∑
n≥0

1

(n+ a)2s
= ζ(2s; 1− a)+ ζ(2s; a),

where ζ(s; a) denotes the Riemann–Hurwitz function, [122, Chap. XIII]. Thus

RS(ρa) = −1

2

d

ds
|s=0
(
ζ(2s; a)+ ζ(2s; 1− a))

= −(ζ ′(0; a)+ ζ ′(0; 1− a).
To proceed further we need the Lerch identity [122, §13.21],

ζ ′(0; a) = log�(a)− 1

2
log(2π).

Thus

RS(ρa) = − log�(a)�(1− a)+ log(2π) = − log
( π

sin(πa)

)
+ log(2π)

= − log(2 sin(πa)) = log

(
1

|1− ρa(t)|2
)
.

We now interpret the holonomy function t 
→ ρa(t) as a character of H1(S
1) so that

the last identity can be rephrased as

exp(RS(ρa)) =
∣∣τ̂S1(ρa)

∣∣2. �
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The identity proved in the above example is no accident. In fact, we have the
following remarkable results.

Theorem 4.19(Ray–Singer, [89]). Suppose (X, g) is a compact, oriented Riemann
manifold and ρ is a nontrivial character of H1(X). The quantity RSX(ρ, g) is inde-
pendent of the metric so that it is a topological invariant of the pair (X, ρ).

Theorem 4.20(Cheeger–Müller, [4, 9, 14, 74]).

exp(RSX(ρ)) =
∣∣T̂X(ρ)∣∣2.

(Observe that the ±tn multiplicative ambiguity of TX does not affect the value of
|T̂X(ρ)|.)

We refer to [22, 23] for a more conceptual interpretation of these results in terms of
metrics on determinant lines. Also, we want to mention that the proof in [4] directly
identifies the Ray–Singer analytic torsion to the Morse theoretic description of the
torsion.



Appendix A

Algebra

§A.1 Formal Hodge theory

Suppose K is a field of characteristic �= 2.

Definition A.1. A formal metric on aK-vector space V is a bilinear, symmetric, map

g : V × V → K.

such that the induced map

Dg : V → V ∗, v 
→ g(v, •).

is an isomorphism. Dg is called the metric duality. A metric K-vector space is a
K-space equipped with a formal metric. �


If T is a linear operator between two metric K-spaces

T : (V0, g0)→ (V1, g1)

then its formal metric adjoint is the operator

T � : (V1, g1)→ (V0, g0)

defined by the commutative diagram

V1 V0

V ∗1 V ∗0
�

Dg1

�T �

�
Dg0

�T ∗

,

where T ∗ denotes the adjoint.
If (V , g) is a metric K-space and U ⊂ V is a subspace, then the orthogonal

complement U⊥ of U in V is defined in the usual fashion.

Lemma A.2. Suppose (V , g) = 〈•, •〉 is a metric K-space, and U ↪→ V is a metric
subspace, i.e. the restriction of g to U is a metric. Then

U ∩ U⊥ = 0, V = U + U⊥
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Proof. Denote by i the inclusion U ↪→ V . The equality

U ∩ U⊥ = 0

follows from the fact that U is a metric subspace. Thus

U + U⊥ ∼= U ⊕ U⊥.
If v ∈ V then

i�(v) ∈ U, v − i�(v) ∈ U⊥.
Indeed, the statement i�(v) ∈ U is tautological. The second follows from

〈v − i�(v), u〉 = 〈v, u〉 − 〈v, i(u)〉 = 0,∀u ∈ U.
Thus

v = i�(v)+ (v − i�(v)) ∈ U + U⊥. �


Corollary A.3. If U is a metric subspace of a metric space V and i denotes the
inclusion U → V then i� is the orthogonal projection onto U . Moreover, there exists
a natural isomorphism

U⊥ ∼= V/U.

Proposition A.4 (Formal Hodge theorem). Consider a length n chain complex of fi-
nite dimensional K-vector spaces

(C, ∂) : 0 → Cn
∂→ Cn−1

∂→ · · · ∂→ C1
∂→ C0 → 0.

equipped with formal metrics 〈•, •〉 such that both Range(∂) and ker(∂) are metric
subspaces. Then there exist natural isomorphisms

Hodd(C, ∂)→ ker
(
∂ + ∂� : Codd → Ceven

)
,

and
Heven(C, ∂)→ ker

(
∂ + ∂� : Ceven → Codd

)
.

Proof. Using the above corollary we deduce

H∗(C, ∂) ∼= Range(∂)⊥ ∩ ker ∂.

Suppose u ∈ ker(∂ + ∂�). Thus

0 = ∂�∂u+ (∂�u)2 = ∂�∂u
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so that
〈∂u, ∂v〉 = 0, ∀v.

Thus
∂u ∈ Range(∂)⊥.

Since Range(∂)⊥ ∩ Range(∂) = 0 we deduce ∂u = 0. Thus

u ∈ ker(∂ + ∂�) ⇐⇒ ∂u = ∂�u = 0.

The condition ∂u = 0 implies u ∈ ker ∂ while the condition ∂�u = 0 implies that

∀v 0 = 〈∂�u, v〉 = 〈u, ∂v〉 ⇐⇒ u ∈ Range(∂)⊥

so that
ker(∂ + ∂�) ⊂ Range(∂)⊥ ∩ ker ∂.

The opposite inclusion is immediate. �


Corollary A.5. Suppose (C, ∂) is an acyclic complex of K-spaces. Then there exists
an algebraic contraction.

Proof. Fix a formal metric on C such that both Range(∂) and ker ∂ are metric sub-
spaces. Since the complex is acyclic, we deduce from the formal Hodge theorem
that

∂ + ∂� : C → C

is an odd isomorphism. In particular, the even map

� := (∂ + ∂�)2 = ∂∂� + ∂�∂
is a selfadjoint isomorphism which commutes with ∂ . The map

η := �−1∂�

is a contraction satisfying η2 = 0. �


The last results admits the following generalization.

Corollary A.6. Assume (C, ∂) is a finite length chain complex of finite dimensional
K-spaces. Then there exists a subcomplex X ⊂ C which is perfect i.e.

X ⊂ ker ∂,

and also an algebraic deformation retract. The last condition means that there exist
maps

p : Ck → Xk, η : Cj → Cj+1
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such that
p ◦ i = 1X, 1− i ◦ p = ∂η + η∂, η2 = 0

where i denotes the inclusion X ↪→ C. In particular, i induces an isomorphism

i∗ : X→ H∗(C, ∂).

Proof. Pick a formal metric onC such that both ker ∂ and Range ∂ are metric subspaces.
Define

X := ker(∂ + ∂�) = (Range ∂)⊥ ∩ ker ∂.

X is a metric subspace and we can define

p := i�.
Corollary A.3 now implies p ◦ i = 1X.

Set
� := (∂∂� + ∂�∂) and J := ii� +�.

The finite dimensionality of the complex implies that J is selfadjoint, invertible, com-
mutes with ∂ and for every x ∈ X we have

Jx = x.
The last equality implies

J ii� = J−1ii� = ii�.
Now define

η := J−1∂�.

Then
∂η + η∂ = J−1� = J−1(J − ii�) = 1− J−1ii� = 1− ii�. �


Definition A.7. A generalized contraction of a chain complex of K-vector spaces
(C, ∂) is a degree one map

η : Ck → Ck+1

such that η2 = 0, the chain morphism

P := (∂η + η∂)
is a projector (P 2 = P ) and Range(P ) is a perfect subcomplex. �


According to Corollary A.6, every finite dimensional complex of vector spaces
admits a generalized contraction. Observe that any contraction of a necessarily acyclic
complex is a generalized contraction.

Suppose now that (C, ∂) is an acyclic complex of finite dimensional K-vector
spaces and c is a basis of C. It determines a canonical metric g = g(c) on C by
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requiring that c is an orthonormal basis. Suppose moreover that ker ∂ is a metric
subspace of (C, g(c) ). Then

T(C, c) = det
(
∂ + η : Ceven → Codd

)
, η := �−1∂�.

We deduce
T(C)2 = det

(
(∂� + η�)(∂ + η) : Ceven → Ceven

)
= det

(
∂�∂ +�−2∂∂� : Ceven → Ceven

)
To compute this determinant we decompose

Cj := Kj ⊕ Bj ,
where

Kj = ker(∂ : Cj → Cj−1), Bj = K⊥j = Range(∂�;Cj−1 → Cj ).

Observe that the Laplacian is compatible with these splittings, i.e.

�(Kj ) ⊂ Kj , �(Bj ) ⊂ Bj ,
and

�|Kj = ∂∂�, �|Bj = ∂�∂.
Set

kj := det(�|Kj ), bj := det(�|Bj ), δj := det(�|Cj ) = kjbj .
Using the decompositions

Ceven = B0 ⊕K2 ⊕ B2 ⊕ · · ·
we deduce that ∂∗∂ +�−2∂∂∗ has the diagonal block decomposition

∂∗∂ +�−2∂∂∗ =


� 0 0 . . .

0 �−1 0 . . .

0 0 � . . .
...

...
...
. . .

 .
Thus

T(C)2 = b0b2 . . . b2j . . .

k2k4 . . . k2j . . .
.

Now observe that since ∂ induces bijections Bj → Kj+1 and ∂∗ induces bijections
Kj+1 → Bj we have

bj = det(∂�∂ : Bj → Bj ) = det(∂� : Kj+1 → Bj ) det(∂ : Bj → Kk+1kj+1)

= det(∂∂� : Kj+1 → Kj+1) = kj+1,
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so that

T(C)2 =
∏
i even bi∏
j odd bj

,

and

bjbj+1 = δj+1 ⇐⇒ bj+1 = δj+1

bj
⇐⇒ bj+1 =

∏
i≥0 δj+1−2i∏
i≥0 δj−2i

,

where δk = 1 if k < 0. If n > 0 denotes the length of the chain complex (Ck = 0,
∀k ≥ n and Cn−1 �= 0) then we deduce

T(C, c)2 =
∏
k even δ

n−k
k∏

j odd δ
n−j
j

. (A.1)

The terms on the right hand side depend on the metric g(c). Let us point out that this
formula holds for any metric, not just g(c).

§A.2 Determinants and zeta functions

Suppose K is a field of characteristic �= 2, U is a finite dimensional K-vector space,
and A : U → U is an endomorphism. The characteristic polynomial of A is defined
by

pA(t) := det(t − A).
Using the identity

det(1− A) =
∑
j≥0

(−1)j Tr(�jA), (A.2)

where �jA denotes the linear map �jU → �jU induced by A, we deduce

pA(t) = tdimU det(1− t−1A) = tdimU
∑
j≥0

(−1

t

)j
tr
(
�jA
)
.

The characteristic polynomial is intimately related to the zeta function ofA, defined
by

ζA(s) := exp
(∑
ν≥1

Tr(Aν)
sν

ν

)
.

We define ζ(A) := ζA(1) so that, formally

ζA(s) = ζ(sA).
To explain the relationship between ζA and pA we use the elementary identity

− log(1− (as)) =
∑
ν≥1

(as)ν

ν
⇐⇒ 1

1− as = exp
(∑
ν≥1

(as)ν

ν

)
,
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which implies that

ζA(s) = 1

det(1− sA) ⇐⇒ ζA(t
−1) = t r

pA(t)
.

If we denote by SkV the k-th symmetric power of a vector space V , then for every
endomorphism B : V → V we have

1

det(1− B) =
∑
k≥0

tr
(
SkB
)
. (A.3)

Hence
ζA(t) =

∑
k≥0

tk tr
(
SkA)

)
.

If U is a superspace, U = Ueven ⊕ Uodd, and A is an even endomorphism

A = Aeven ⊕ Aodd

then we can define the s-characteristic polynomial

p̂A(t) = dets(t − A) := det(t − Aeven)

det(t − Aodd)
.

We deduce that for any even endomorphism A of U we have

p̂A(t) = tχ(U)
(∑
j≥0

(−1

t

)j
tr(�jAeven)

)(∑
k≥0

(
1

t

)k
tr(SkAodd)

)
, (A.4)

where the Euler characteristic of U is the s-trace of the identity map 1U

χ(U) := trs 1U := dimK Ueven − dimK Uodd.

There is a super-version of the zeta function

ζ̂A(t) := exp

(∑
ν≥1

trs(A
ν)
tν

ν

)
,

where trs denotes the s-trace. We then have the identities

ζ̂A(t
−1) · p̂A(t) = tχ(U) ⇐⇒ ζ̂A(t) = 1

dets(1− tA) =
det(1− tAodd)

det(1− tAeven)
. (*)

Using (A.2) and (A.3) we deduce

ζ̂A(t) =
(∑
k≥0

Tr(SkAeven)
)
·
(∑
j≥0

(−1)j tj Tr(�jAodd)
)

=
∑
d≥0

td
( d∑
j=0

(−1)j Tr(�jAodd) · Tr(Sd−jAeven)
)
.

(**)
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IfX is a compact, closed, oriented smooth manifold and f : X→ X is a smooth map,
then its Lefschetz number is

L(f ) := trs
(
f∗ : H∗(X;R)→ H∗(X;R)

)
.

The celebrated Lefschetz fixed point theorem states that (see [57, VIII.5]) if all the
fixed points of f are nondegenerate, i.e.

δx(f ) := det
(
(1− df ) : TxX→ TxX

) �= 0, ∀f (x) = x
then

L(f ) =
∑

x∈Fix(f )

L(f, x)

where the local Lefschetz number L(f, x) is defined by

L(f, x) = sign δx(f ).

The zeta function of f is defined by

ζf (t) := exp
(∑
k≥1

tk

k
L(f k)

)
.

Using the identities (*) and (**) we deduce

ζf (t) = det
(
1− tHodd(f )

)
det
(
1− tHeven(f )

)
=
∑
d≥0

td
( d∑
j=0

(−1)j Tr
(
�jHodd(f )

) · Tr
(
Sd−jHeven

))
.

The last sum can be expressed in terms of the symmetric powers ofX. SnX is defined as
the quotient of the Cartesian product ofXn modulo the natural action of the symmetric
group Sn. Then (see [63])

Hodd(S
nX) =

⊕
j odd

�jHodd(X;R)⊗ Sn−jHeven(X;R),

Heven(S
nX) =

⊕
j even

�jHodd(X;R)⊗ Sn−jHeven(X;R).

Hence

L(Sdf ) =
d∑
j=0

(−1)j Tr
(
�jHodd(f )

) · Tr
(
Sd−jHeven(f )

)
,
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so that
ζf (t) =

∑
tdL(Sdf ).

If for example X is a Riemann surface of genus g, then H0(f ) = H2(f ) = 1. If
we denote by A ∈ Sp2g(Z) a symplectic matrix representing H1(f ) then we deduce

ζf (t) = det(1− tA)
(1− t)2 .

§A.3 Extensions of Abelian groups

In this section we survey some basic facts concerning extensions of Abelian groups
needed in surgery theory. We will denote by T the rational circle Q/Z and, for any
Abelian group A we will denote by Â its dual

Â := Hom(A,T).

SupposeA andC areAbelian groups. An extension ofA byC is a short exact sequence
of Abelian groups

0 → A→ B → C → 0.

Two extensions 0 → A→ Bi → C → 0, i = 0, 1 are isomorphic if there exists an
isomorphism f : B0 → B1 such that the diagram below is commutative.

0 A B0 C 0

0 A B1 C 0.

�

�
1A

�

�
f

�

�
1C

�

� � � �
We denote by Ext(C,A) the set of isomorphism classes of extensions.

Proposition A.8 ([64]). (a)The correspondence Ext(C,−) is a covariant functor from
the category of Abelian groups to the category of sets.

(b) The correspondence Ext(−, A) is a contravariant functor from Abelian groups
to sets.

Consider the group morphisms

∇A : A⊕ A→ A, a1 ⊕ a2 
→ a1 + a2

and
�C : C → C ⊕ C, c 
→ c ⊕ c.



206 A Algebra

Given two extensions Ei ∈ Ext(C,A)

Ei : 0 → A→ Bi → C → 0, i = 0, 1

we can construct in the obvious fashion E0 ⊕ E1 ∈ Ext(C ⊕ C,A ⊕ A). The Baer
sum of the two extensions is

E0 + E1 := ∇A∗ �∗C ∈ Ext(C,A)

where ∇A∗ �∗C is the composition

Ext(C ⊕ C,A⊕ A) �
∗
C−→ Ext(C,A⊕ A) ∇A∗−→ Ext(C,A).

Proposition A.9 ([64, 93]). The Baer sum introduces a structure of Abelian group on
Ext(C,A). The trivial (zero) extension is the split extension

0 → A→ A⊕ C → C → 0.

Moreover, for any short exact sequence of Abelian groups

0 → X→ Y → Z→ 0

and any Abelian group A we have the exact sequences

0 −→ Hom(Z,A) −→ Hom(Y,A) −→ Hom(X,A)
δ−→ Ext(Z,A) −→ Ext(Y,A) −→ Ext(X,A) −→ 0

and

0 −→ Hom(A,X) −→ Hom(A, Y ) −→ Hom(A,Z)
δ−→ Ext(A,X) −→ Ext(A, Y ) −→ Ext(A,Z) −→ 0.

Example A.10. Since Z is a projective Z-module we deduce that every extension

0 → C → B → Z→ 0

is split so that Ext(Z, C) = 0 for any Abelian group C. �


The next result is particularly relevant in topology.

Proposition A.11. Suppose C is a finite Abelian group. Given

λ : C → T := Q/Z
we define

Cλ = {q ∈ Q⊕ C; λ(c) = q modZ}.
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(a) The sequence Eλ defined by

0 → Z
ı→ Cλ

π→ C → 0

is exact, where ı is induced by the inclusions Z ↪→ Q⊕ 0 ↪→ Cλ while π is induced
by the natural projection Q⊕ C → C.

(b) The correspondence ψ : Ĉ := Hom(C,T)→ Ext(C,Z) defined by

Ĉ � λ 
→ Eλ ∈ Ext(C,Z)

is a group isomorphism.

Proof. Part (a) is obvious. We will show that the correspondence in part (b) is a
bijection. For simplicity we will confine ourselves to the special case when C is a
cyclic group of order N .

Fix a generator t of C. Given an extension E ∈ Ext(C,Z)

0 → Z→ B → C → 0

we can find b0 ∈ B which maps to t . Then Nb0 maps to 0 ∈ C so that there exists
m ∈ Z ↪→ B such that

Nb0 = m.
(Abusing notations we can write b0 = m/N .) Now define

λE : C → T, kt 
→ km/N mod Z.

The morphism λE does not depend on the choice of the generator t and the element
b0 ∈ B mapping to t . We have thus constructed a map

φ : Ext(C,Z)→ Hom(C,T), E 
→ λE.

We let the reader check that

EλE = E ⇐⇒ ψ ◦ φ = 1,

and
λEλ = λ ⇐⇒ φ ◦ ψ = 1. �


The result in the above proposition allows us to determine Ext(C, F ) where F is
a free Abelian group of rank m. More precisely, we have a natural isomorphism

Ext(C, F )→ Hom(C, FQ/F )

where FQ := F ⊗Q. A morphism )λ : C → FQ/F ∼= F ⊗ T defines the extension

C)λ := {()q, c) ∈ (FQ)⊕ C; )λ(c) = )q modF }. (A.5)



208 A Algebra

Example A.12. Consider the inclusions ik : Z2 → Z2, k = 1, 2, given by the matrices

A1 :=
[

4 0
0 1

]
, A2 :=

[
2 0
0 2

]
.

These lead to the Abelian extensions

0 → Z2 A1−→ Z2 → Z4 → 0,

and
0 → Z2 A2−→ Z2 → Z2 ⊕ Z2 → 0.

The first extension is given by the morphism

λ1 : Z4 → (T)2, 1 
→ (1/4, 0)

while the second is given by the morphism

λ2 : Z2 × Z2 → (T)2, (1, 0) 
→ (1/2, 0), (0, 1) 
→ (0, 1/2).

More generally, if G is a finite abelian group which admits a presentation

0 → F
A−→ F → G→ 0

then this extension is classified by a morphism

G→ FQ/F.

This can be easily describes as follows. Consider the inverse

A−1 : FQ → FQ.

Observe that A−1(A(F )) = F ⊂ FQ so that we have an induced map

G ∼= F/(AF)→ FQ/F.

It is precisely the classifying map of the presentation. The mapG→ FQ/F is clearly
an inclusion. Conversely, every inclusion

G ↪→ FQ/F

produces a (class of) presentation(s) of G.
It is perhaps instructive to see how this works in a concrete situation and to point

out a confusing fact. Suppose F ∼= Zn and A is described by an n× n matrix

Aej =
∑
i

aij ei, i, j = 1, . . . , n,
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where ei denotes the canonical integral basis of Zn. Suppose

A−1ej =
∑
i

a′ij ei , a′ij ∈ Q, i, j = 1, . . . , n.

Set G := Zn/AZn, and denote by [ei] the image of ei in G. Then the morphism
G→ Tn corresponding to the extension

0 → Zn
A−→ Zn→ G→ 0

is described by

[ej ] 
→
 a

′
1j
...

a′nj

 mod Z.

The right-hand-side of the above equality is the j -th column of A−1.
In topological applications the map G → Tn is described by n characters of G.

Since the dual Ĝ embeds in the dual ofZn it is customary to describe the map Ĝ→ Tn

as a vector consisting of n characters of Zn. In this case they are

)λ = (λ1, . . . , λn), λi([ej ]) = a′ij modZ, i, j = 1, . . . , n.

In other words, λi is the character of Zn described by the i-th row of A−1. �




Appendix B

Topology

§B.1 How to compute the Alexander polynomial of a knot

In this section we will survey a few methods of computing the Alexander polynomial
of a knot. As testing ground for each of these methods we will use the trefoil knot (see
Figure B.2). For details and proofs we refer to [27, 92].

The Alexander polynomial of a knot K ⊂ S3 is determined by the universal
Abelian cover of its complement XK := S3 \ K . By Alexander duality we have
H := H1(XK,Z) ∼= Z and we denote by X̂K → XK the universal Abelian cover. Set
R := Z[t, t−1]. The homology group H1(X̂K,Z) has a natural R-module structure
induced by the deck transformations of the covering X̂K → XK .

The ring R is a unique factorization domain and the Alexander polynomial is by
definition

�K := ordR
(
H1(X̂K)

)
.

It is an element of R uniquely determined up to a multiplicative term ±tk , k ∈ Z. To
concretely compute �K we need to produce a presentation

R→ G→ H 1(X̂K)→ 0

where R and G are finitely generated freeR-modules. We will present two algorithms
for producing such presentations.

1. Seifert matrices.Consider an oriented Seifert surface � ⊂ S3 such that ∂� = K
and a small tubular neighborhood NK of � ↪→ S3. Then NK \ � consists of two
components which we label N±K . (The orientation of� allows us to canonically label
these components with + or −.)
� is a genus g surface with boundary S1 and thus H1(�,Z) ∼= Z2g . Fix a set of

generators x1, . . . , x2g of this homology group represented by embedded circles. By
pushing the circle xi intoN+K we obtain a circle x+i . The Seifert matrix is the 2g× 2g
matrix VK with entries defined by

vij := Lk(xi, x
+
j ).

Lk(K1,K2) denotes the linking number of two disjoint knots and can be computed
using the sign rules in Figure B.1. We refer to [59, 92] for more details.)

The matrix AK(t) := V TK − tVK is called an Alexander matrix of the knot K and
provides a presentation of H1(X̂K,Z)

Z[t, t−1]2g A(t)−→ Z[t, t−1]2g → H 1(X̂K,Z)→ 0.
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K1K1

K2

K2

Linking = +1 Linking = −1

Figure B.1. Sign rules for linking numbers.

In particular, we have
�K(t) ∼ detAK(t).

Example B.1. Consider as promised the case of the trefoil knot. In the second diagram
in Figure B.2 we can clearly visualize a Seifert surface for the knot. It is obtained by
joining two disjoint disks by three twisted bands. This Seifert surface has genus one
and in Figure B.2 we describe a set of generators of H1.

x3

x2

x2 x1

x1

+ −

Figure B.2. Two equivalent diagrams for the trefoil knot.

The “+” and “−” signs in this picture fix the orientation of this two sided surface.
It is clear that x2 and x+1 do not link so that v21 = 0. As for the other entries of the
Seifert matrix, they are described in Figure B.3. Thus

V =
[−1 1

0 −1

]
so that

A(t) =
[
t − 1 −t

1 t − 1

]
, �(t) ∼ t2 − t + 1 = (t6 − 1)(t − 1)

(t2 − 1)(t3 − 1)
.
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x+1

x+2

x+2

x1

x1 x2

Linking = −1 Linking = −1

Linking = 1

Figure B.3. Computing a Seifert matrix for the trefoil knot.

The formula we have just obtained is a special case of the more general description of
the Alexander polynomial of a (p, q)-torus knot (see [96]). The trefoil is a (2, 3)-torus
knot. �


2. Fox free differential calculus.R. Fox has developed [24, 25, 26, 109] an algebraic
machinery of determining a presentation of the Z[t, t−1]-module H1(X̂K) once a
presentation of the knot group π1(XK) is given.

Suppose we are given a finite presentation 〈x1, . . . , xn;R1, . . . , Rm〉 of a group
G. Then there exist natural Z-linear maps

D1, . . . , Dn : Z[G] → Z[G]
uniquely determined by the requirements

D•1 = 0, Dixj = δij
D•(u · v) = D•u+ uD•v, ∀u, v ∈ G.

We can form the Jacobian of the presentation which is the n×mmatrix J = J(xj ; ri)
with entries in Z[G] described by

Jij = DiRj .
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If H denotes the abelianization of G, H := G/D(G), D(G) := [G,G] then we
get a natural morphism ψ : Z[G] → Z[H ] and correspondingly, an n × m matrix
J := ψ(J) with entries in Z[H ]. The transpose of J defines a presentation the
Z[H ]-module D(G)/D2(G)⊕ Z[H ],

Z[H ]m→ Z[H ]n→ D(G)/D2(G)⊕ Z[H ] → 0.

Suppose now that G is the fundamental group of the complement of a knot K ↪→ S3

G = GK := π1(XK), XK = S3 \K.
If we are given a presentation of GK with n generators and m relations then

H = H1(XK) ∼= Z, D(G)/D2(G) ∼= H1(X̂K),

where as before, X̂K → XK denotes the universal Abelian cover. In this case we de-
note by JK the abelianization of the Jacobian matrix J. Then theAlexander polynomial
is the greatest common divisor of the set of (n− 1)× (n− 1)minors of J ; see [27] or
[59, Chap.11] for more details. Equivalently, and more invariantly, we can define the
Alexander polynomial as a generator of the first Fitting ideal F1(H1(X̂K)⊕Z[t, t−1])
which admits a presentation given by the transpose of JK . Using Proposition 2.25 we
deduce that F1(M) = F0(H1(X̂K)).

One can obtain a presentation of GK (called the Wirtinger presentation) from the
diagram of K as follows.

•Orient the knot and mark the undercrossings in the order given by the orientation. We
have thus divided K into n oriented arcs x1, . . . , xn each connecting two consecutive
undercrossings.
• GK admits a presentation with x1, . . . , xn as generators and one relation for each
undercrossing, as described in Figure B.4. We can drop any one relation and still obtain
a correct presentation. It is clear that all the generators of the Wirtinger presentations
are mapped by the abelianization map into the generator t of H1(XK) ∼= Z.

xixi

xjxj

xkxk

xj = xkxixk−1 xj = xk−1xixk

Figure B.4. Wirtinger relations.
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Example B.2. We consider again the trefoil knot. From the top of Figure B.2 we read
the following presentation

〈x1, x2, x3; x2 = x−1
3 x1x3, x3 = x−1

1 x2x1, x1 = x−1
2 x3x2〉.

Observe that only two generators are important since x3 = x−1
1 x2x1. We set a = x1

and b = x2 so that x3 = bab−1. We obtain the equivalent presentation

〈a, b; a = baba−1b−1, b = abab−1a−1〉 ⇐⇒ 〈a, b; bab = aba〉
If we set

R = baba−1b−1a−1

then

DaR = Da(baba−1b−1)−(baba−1b−1)a−1 = Da(bab)−baba−1−baba−1b−1a−1

= Da(ba)− baba−1 − baba−1b−1a−1 = b − baba−1 − baba−1b−1a−1

DbR = Db(baba−1b−1) = Db(baba−1)− baba−1b−1 = Db(bab)− baba−1b−1

= Db(ba)+ ba − baba−1b−1 = 1+ ba − baba−1b−1.

By passing to abelianization we get

DaR = t − t2 − 1, DbR = 1+ t2 − t
so that

JK = [−(t2 − t + 1) t2 − t + 1].
This shows �K(t) ∼ t2 − t + 1. �


Remark B.3. The Fox free calculus works in the more general case of links with
several components as well, with very few but obvious changes. The Wirtinger pre-
sentation is obtained in the similar fashion, and we obtain a presentation of π1(XK)

with the same number ν of generators and relations. A generator g of this presentation
will represent in H1(XK) the same homology class as the meridian of the component
of the link to which g belongs. As in the case of knots, any relation can be dropped
from the presentation. We obtain an exact sequence of Z[H ]-modules

Z[H ]ν J−→ Z[H ]ν → H1(X̂K)⊕ Z[H ]
from which we deduce that

ordH1(X̂K) = F1(H1(X̂K)⊕ Z[H ]). �
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3. Conway’s skein relations. The Alexander polynomial of a knot is uniquely
determined by the manner in which it changes when the crossing patterns of a diagram
are changed; see Figure B.5. A formula describing such a change is called a skein
relation. The Alexander polynomial of a knot K satisfies the symmetry property

�K(t) ∼ �K(t−1).

Any polynomial Q ∈ Z[t, t−1] is equivalent to a polynomial P ∈ Z[t1/2, t−1/2]
satisfying P(t) = P(t−1). The polynomial P is unique up to a sign. E.g., the
polynomial (t − 1) ∼ t1/2 − t−1/2 ∼ t−1/2 − t+1/2.

L+ L− L0

Figure B.5. Changing the crossing patterns

Remarkably, any oriented link L determines a polynomial�L(t) ∈ Z[t1/2, t−1/2]
uniquely determined by the following conditions (see [59, Chap8]).

�L(t) = �L(t−1).

�unknot(t) = 1.

and the Conway’s skein relation (see Figure B.5)

�L+(t)−�L−(t) = (t−1/2 − t1/2)�L0(t).

When L is a knot, �L is equivalent to the Alexander polynomial. We see that this
algorithm picks up a canonical representative for the Alexander polynomial of an
oriented knot. This is called the Conway normalized Alexander polynomial.

Example B.4. We want to compute the (Conway normalized) Alexander polynomial
of the trefoil knot, oriented as in Figure B.2. Look at the top crossing in the first
diagram of Figure B.2. In the conventions of Figure B.5 it is aL+. The corresponding
L− represents the unknot while L0 is the Hopf link H depicted in Figure B.6.

�K(t)− 1 = (t−1/2 − t1/2)�H (t).
The crossing in the left hand side of Figure B.6 is aL+. Changing it to aL− transforms
H into a pair of unlinked unknots, while the move L+ → L0 transforms the Hopf
link to an unknot. Since �L−(t) = 0 we deduce

�H(t) = (t−1/2 − t1/2)
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Figure B.6. The Hopf link.

so that
�K(t) = 1+ (t−1/2 − t−1/2)2 = t − 1+ t−1 ∼ t2 − t + 1. �


We want to explain a basic fact used in the proof of the Uniqueness Theorem 3.17.

§B.2 Dehn surgery and linking forms

The existing literature on Dehn surgery can be quite confusing, especially as far as
the various sign conventions are concerned. For the reader’s convenience, we have
decided to include several useful facts concerning this important concept, paying
special attention to the many orientation conventions.

SupposeM3 is a rational homology 3-sphere, K ↪→ M3 is an oriented link inM3

with components K1, . . . ,Km, U = ⋃mj=1 Uj is a small open tubular neighborhood
of K and

MK := M \ U.
Set T := ∂Ū and H∗(X) := H∗(X,Z) for any topological space X.

1. The homology ofMK as an extension ofH1(M). Since

H2(M) ∼= H 1(M) ∼= 0

we deduce from the long exact sequence of the pair (M,MK) that

0 → H2(M,MK)→ H1(MK)→ H1(M)→ H1(M,MK)→ 0.

Using excision we can rewrite

0 → H2(Ū , T )→ H1(MK)→ H1(M)→ H1(Ū , T )→ 0.

The long exact sequence of the pair (Ū , T ) now implies

H2(Ū , T ) ∼= ker
(
H1(T )→ H1(Ū)

) ∼= Zm
and H1(Ū , T ) ∼= 0. Moreover ker

(
H1(T ) → H1(Ū)

)
admits a natural basis )µ =

(µ1, . . . , µm) consisting of meridians. More precisely, µj is the generator of

ker
(
H1(Tj )→ H1(Ūj )

)
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such that
LkM(µj ,Kj ) = 1

where LkM is theQ-valued linking number of two disjoint embedded circles. Denote
by Z〈 )µ〉 the free Abelian group generated by the meridians. We thus have a short
exact sequence

0 → Z〈 )µ〉 ∼= Zm j→ H1(MK)→ H1(M)→ 0,

where
j : H1(T )→ H1(MK)

is the inclusion induced morphism. As explained in Appendix §A.3, it defines an
element

)λK ∈ Ext(H1(M),Zm) ∼= Hom(H1(M),Tm).

We claim that

)λK(c) =
m∑
i=1

lkM(Ki , c)µi ∈ Q〈 )µ〉/Z〈 )µ〉, ∀c ∈ H1(M),

where
lkM : H1(M)×H1(M)→ T

is the linking form.
To see this, denote by ν the order of H1(M). If c ∈ H1(M) is represented by an

embedded circle C ⊂ MK then

νC =
∑
j

kjµj ∈ H1(MK)

and thus

)λK(C) =
∑ kj

ν
µj .

On the other hand

lkM(C,Ki ) = 1

ν

∑
j

kj LkM(µj ,Ki ) = ki/ν mod Z.

Using the description (A.5) in §A.3 we deduce that

H1(MK) ∼=
{
()α, c) ∈ Qm ×H1(M); αj = lkM(Kj , c) modZ, ∀j ∈ 1,m

}
. (*)
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2. The morphismj : H1(T ) = H1(∂MK) → H1(MK). We use the exact sequence
of the pair (MK, T ) and we deduce

0 → H3(MK, T )→ H2(T )→ H2(MK)→ H2(MK, T )

→ H1(T )
j→ H1(MK)→ H1(MK, T ) (**)

→ H0(T )→ H0(MK)→ 0.

To deal with the relative homology we use excision

H∗(MK, T ) ∼= H∗(M, Ū)
and then the long exact sequence of the pair (M, Ū),

0 → H2(M, Ū)→ H1(U)→ H1(M)

→ H1(M,U)→ H0(Ū)→ H0(M)→ 0.

We deduce that

H2(MK, T ) ∼= ker
(
H1(Ū)→ H1(M)

) ∼= Zm
and that the boundary map

H2(MK, T )→ H1(Ū)

is 1− 1. The above morphism factors through the inclusion induced map

ı : H1(T )→ H1(Ū)

so that the morphisms

H2(MK, T )→ H1(T ) and ker j ⊂ H1(T )
ı→ H1(Ū)

must be 1− 1. Using the sequence (**) we deduce that H2(MK, T ) ∼= ker j so that

ı(ker j) ∼= ker
(
H1(Ū)→ H1(M)

)
. (B.1)

If we denote by 〈K〉 ⊂ H1(M) the subgroup generated by the components of the link
K we deduce that we have the short exact sequences

0 → ı(ker j)→ H1(Ū)→ 〈K〉 → 0

and

0 → H1(M)/〈K〉 → H1(M, Ū)→ Zm−1 ∼= ker(H0(Ū)→ H0(M))→ 0.

Hence,
H1(MK, T ) ∼= H1(M)/〈K〉 ⊕ Zm−1,
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and
coker j ∼= H1(M)/〈K〉. (B.2)

3. Longitudes. Suppose K is a link with a single component, i.e. a knot. IfM is not
an integral homology sphere there is no canonical way of choosing an integral basis
of H1(T )(∼= Z2). On the other hand, there is a natural way of choosing a Q-basis of
H1(T )⊗Q. A longitude is a generator λ of

ker j = ker
(
H1(T )→ H1(MK)

)
such that µ ·λ > 0 where µ denotes a meridian and the intersection product is defined
with respect to the orientation of T as boundary of U . Denote by r the order of K in
H1(M). From the identity (B.1) we deduce that λ = rK in H1(Ū). In particular, this
implies µ · λ = r . Moreover, since λ bounds in the complement of K we deduce that
LkM(λ,K) = 0.

We can now conclude that any homology class c inH1(T ) is uniquely determined
by a pair (α, n) ∈ Q× Z satisfying the conditions

n := µ · c ⇐⇒ ı(c) = nK ∈ H1(Ū),

and

α := 1

r
(c · λ)LkM(c,K) = n lkM(K,K) modZ.

As an element of H1(T ;Q) the cycle c has the decomposition

c = αµ+ n
r
λ.

Using the above basis ofH1(T ;Q)we can identify the inclusionH1(T ) ↪→ H1(T ;Q)
with the inclusion G ↪→ Q2 where G is the additive subgroup of Q2 defined by the
conditions

G =
{ (
α,
n

r

)
∈ Q⊕ 1

r
Z; α = n lkM(K,K) modZ

}
.

Observe that the longitude λ need not be a primitive element in H1(T ). Indeed,

1

m
λ ∈ G ⇐⇒ n = r

m
, n lkM(K,K) ∈ Z.

If we write
lkM(K,K) = ν

r
, 0 ≤ ν < r,

then the above conditions become
r

m
,
ν

m
∈ Z,

so that we can choose m = (r, ν) (:=(g.c.d.(r, ν)). Hence

λ = (ν, r)λ0, λ0 ∈ H1(T ).
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Remark B.5. We would like to discuss a rather subtle point. The pair (r, ν mod rZ)
was determined by the order and the self-linking number of K. We would like to show
that the same information is algebraically encoded by the pair of cyclesµ, λ ∈ H1(T ).

The Abelian group F := H1(T ) is free of rank two, and in order to perform
concrete computations we need to choose Z-bases. This is involves non-canonical
choices, and thus we need to be able to separate the invariant quantities from those
which are not. Clearly, the coordinates of µ and λ with respect to some Z-basis are
not invariant quantities. The determination of numerical invariants of the pair (µ, λ)
boils down to a group theoretic problem.

Describe the space O of orbits of the group G := Aut(F ) acting diagonally on
the space P ⊂ F × F of pairs of linearly independent vectors.

Observe that π := (µ, λ) ∈ F × F , and the orbit{
(T µ, T λ); T ∈ G

}
corresponds to the different choices of bases of F . A pair π = (e1, e2) ∈ P defines
an injection

jπ : Z2 → F, (n1, n2) 
→ n1e1 + n2e2.

The extension

0 → Z2 jπ−→ F → Gπ := F/jπ(Z2)→ 0

is a complete invariant of the orbit (G ·π). It is completely characterized by the group
Gπ , and the characteristic element

χ ∈ Hom(Gπ,T2) = Ext(Gπ,Z2).

In our special case, π = (µ, λ), Gπ is a cyclic group of order r , namely the cyclic
group generated by the knot K ↪→ M . The last statement implicitly assumed the
existence of a canonical generator. This is indeed the case. Pick as generator the
unique vector κ ∈ F ∩ {xµ+ yλ; x, y ∈ [0, 1]} such that µ · κ = 1. Geometrically,
κ is the vertex of the Newton polygon of the cone sµ+ tλ, s, t > 0, closest to µ.

The characteristic element χ is given by the pair of characters χ1, χ2 ∈ Ĝπ .

χ1(K) = 1/r ∈ T, χ2(K) = lkM(K,K) = ν/r ∈ T.
This can be seen easily using theZ-basis (µ, κ) ofH1(T ). In particular, λ = −νµ+rκ .

�


4. The morphism j : H1(T ) → H1(MK) revisited. Denote the components of K

by Kj , a small, open tubular neighborhood of Kj byUj , the meridian of Kj by µj and
the longitude of Kj by λj . Finally, denote by rj the order of Kj in H1(M).

Observe that if i �= j we have

�
j
i := ri LkM(Ki ,Kj ) = LkM(λi,Kj ) ∈ Z.
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Since λi bounds inMKi we deduce we deduce that we have the following equality in
H1(MK)

λi =
∑
j �=i
�
j
i µj .

Using (*) in 1. on page 217 we deduce

H1(MK) =
{(∑

j αjµj , c
) ∈ Q〈 )µ〉 ×H1(M); αj = lkM(c,Kj ) mod Z, ∀j}.

Using the description of H1(T ) in 3., we deduce that the morphism j acts according
to the rule

j : αjµj + ni
ri
λi 
→

(
αjµj + ni

ri

∑
s �=i
�si µs, niKi

)
=
(
αjµj + ni

∑
s �=i

LkM(Ks ,Ki )µs, niKi
)
, i, j = 1, . . . , m.

The natural map H1(MK)→ H1(M) is given by(∑
j

αjµj , c
)

→ c.

5. Mayer–Vietoris interpretation. The Mayer–Vietoris sequence associated to the
decompositionM = Ū ∪MK leads to the Abelian group extension

0 → Z2m ∼= H1(T )
ı⊕j−→ H1(Ū)⊕H1(MK)→ H1(M)→ 0. (B.3)

This extension is classified by a linear map

H1(M)→ H1(T )⊗ T.
Arguing as in 1. we deduce that this classifying map is given by

c 
→
∑
j

lkM(Kj , c)µj ∈ H1(T )⊗ T.

6. Dehn surgery.The manifoldM can be described as a quotient space

Ū ∪f0 MK

where f0 : ∂Ū → ∂MK is an orientation reversing diffeomorphism. Given any orien-
tation preserving diffeomorphism

)γ = (γ1, . . . , γm), γj : ∂Ūj → ∂Ūj
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we can form a new manifold

M )γ := Ū
⋃
f0◦ )γ

MK

called the Dehn surgery determined by )γ . Clearly the diffeomorphism type of M )γ
depends only on the isotopy type of )γ . We denote by � the group of these isotopy
classes. Observe that

� ∼=
m∏
j=1

SL(H1(Tj )).

We denote by �0 the subgroup of � consisting of diffeomorphism which extend to Ū .
It is not difficult to see thatM )γ depends only on the orbit )γ ◦ �0 ∈ �/�0.

The set of orbits �/�0 can be identified with the set of m-uples

)c := (c1, c2, . . . , cm) ∈
m∏
j=1

H1(Tj )

such that cj is a nontrivial primitive element of H1(Tj ). A diffeomorphism )γ belongs
to the orbit labelled by )c if and only if

)γ ( )µ) = )c ⇐⇒ γj (µj ) = cj .
For this reason, the Dehn surgery determined by )γ is often denoted byM)c.

Using the bases (µj , λj ) of H1(Tj ;Q) we can write

cj := αjµj + nj
rj
λj , αj = nj lkM(Kj ,Kj ) mod Z. (***)

It is often convenient to identify cj with the pair of numbers (αj , nj ). These are known
as the surgery coefficients. WhenM is an integral homology sphere then the surgery
coefficients (α, n) are both integers. In this case the (α, n) surgery is traditionally
referred to as the α/n-surgery. Furthermore, if n = 1 then the surgery is called
integral. Two natural question arise.

A. Describe the homology ofM)c in terms of the homology ofM , invariants of the link
K ↪→ M and )c.
B. Describe the linking form of H1(M)c) in similar terms.

7. The homology ofM�c. Arguing exactly as in 1., we obtain the extension

0 → Z〈 )µ〉 j◦γ−→ H1(MK)→ H1(M)c)→ 0

or, equivalently,

0 → Z〈)c〉 j−→ H1(MK)→ H1(M)c)→ 0.
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Using the description of j in 4. we deduce that H1(M)c) is the quotient of H1(MK)

modulo the subgroup generated by(
αiµi + ni

∑
j �=i

LkM(Kj ,Ki )µj , niKi
)
.

If we form the m×m matrix P(K, )c) with rational entries

pji =
{
ni LkM(Kj ,Ki ) j �= i
αi j = i,

we deduce thatM)c is a rational homology sphere if and only if

det P(K, )c) �= 0.

We consider two extreme situations.

a. M is an integral homology sphere.Then P = P(K, )c) defines a presentation of
H1(M)c),

0 → Zm
P−→ Zm→ H1(M)c)→ 0.

Alternatively,M)c can be given the Mayer–Vietoris description

0 → H1(T )
i⊕j◦γ−−−−→ H1(Ū)⊕H1(MK)→ H1(M)c)→ 0.

b. K is consists of a single component,m = 1. Set α := α1, n := n1 etc. α and n
are constrained by

α ≡ n lkM(K,K) mod Z.

Then

H1(Mc) = H1(MK)/Z〈c〉
∼= {(tµ, γ ) ∈ Q〈µ〉 ×H1(M); t = lkM(γ,K) modZ}/Z〈αµ+ nK〉.

8. Linking theory on H1(M�c). We will again consider two cases.

a. The manifold M is an integral homology sphere.In this case H1(M)c) admits a
presentation of the form

0 → Z〈 )µ〉 P(K,)c)−−−−→ Z〈 )µ〉 → H1(M)c)→ 0.

According to the computations in Example A.12, this extension is classified by the
map

$ := P(K, )c)−1 : Z〈 )µ〉/PZ〈 )µ〉 → Q〈 )µ〉/Z〈 )µ〉.
On the other hand, according to the computation in 1., page 216, this classifying map
can be described in terms of the linking theory on H1(M)c). We denote by [Kj ])c the
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homology class of the core of Uj in H1(M)c). These classes define via the linking
form ofM)c a vector of n characters of H1(M)c) which classifies the above extension.
Moreover, we have

lkM)c ([Ki])c, [µj ]) = $ij mod Z, ∀i, j, (B.4)

where $ := ($ij ) = P−1, that is

P−1µj =
∑
i

$ijµi.

If we denote by (•, •) the natural inner product on Q〈µ〉 defined by (µi, µj ) = δij ,
then we can write

$ij = (µi, P−1µj ).

If we are “lucky enough”, so that [Kj ])c generateH1(M)c), then the above trick allows
us to determine the linking form ofM)c. In fact, this is not a matter of luck.

Proposition B.6. Suppose that the surgery coefficient of Ki is pi
qi

so that

P(K, )c) = (pij )1≤i,j≤n
where

pij =
{
qj LkM(Ki ,Kj ) if i �= j
pi if i = j.

Then the classes µi generate H1(M)c), and we have the equalities

qi[Ki])c = −µi in H1(M)c), ∀i.
Moreover,

lkM)c (µi, µj ) = −qi(µi, P−1µj ) mod Z.

Proof. The Dehn surgery is described by a family

)γ = (γ1, . . . , γm) ∈
m∏
j=1

SL(2,Z), γj :=
[
pj αj
qj βj

]
, pjβj − αjqj = 1.

These matrices describe the attaching rules

mi 
→ j(ci) = j(piµi + qiλi) = bi := piµi + qi
∑
j �=i
�jiµj ,

li 
→ j(αiµi + βiλi) = ki := αiµi + βi
∑
j �=i
�ijµj ,
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where mi (resp. li) denotes the meridian (resp. the longitude) of the i-th attaching
solid torus and

�ij = LkM(Ki ,Kj ) ∈ Z.
The group H1(M)c) is the quotient of Z〈 )µ〉 modulo the lattice spanned by the vectors
bi . Using the identities

pjβj − αjqj = 1

we deduce
βibi − qiki = µi

which shows that −qi[Ki])c = [µi] in H1(M)c). The second statement in the proposi-
tion follows from the identity

−qi$ij = −qi lkM)c ([Ki], [µj ]) = lkM)c ([µi], [µj ]) mod Z. �


Remark B.7. Denote by P0 the symmetric matrix defined by

pij =
{
�ij if i �= j
pi
qi

if i = j.

Then P(K, )c) = P0 ·diag(q1, . . . , qn), and the (i, j)-th entry of the symmetric matrix
P−1 is qi$ij , that is

(µi, P
−1
0 µj ) = −qi(µi, P−1µj ).

The linking form ofM)c is completely characterized by P−1
0 via the equalities,

lkM(µi, µj ) = −(µi, P−1
0 µj ). �


Example B.8. The arguments in the proof of the above proposition can be easily
grasped in the following simple situation. Suppose K is a knot in M := S3. The
Dehn surgeries on K are determined by a pair of relatively prime positive integers
(p, q). If K is the unknot in S3 then the (p, q) surgery on K produces the lens space
L(p,−q). Denote by λ and µ the longitude and respectively the meridian of K such
that µ · λ = 1. The complementMK is a solid torus and µ is its core. µ is a generator
of H1(MK). The characteristic curve of the (p, q) surgery is pµ+ qλ.

The first homology group of the manifoldMp/q := Mc admits the presentation

0 → Zµ
p·−→ Z )µ ∼= H1(MK)→ H1(Mp/q)→ 0.

We deduce that H1(Mp,q) and the generator µ of H1(MK) induces a generator of
H1(Mp/q). Moreover, according to Example A.12 the above extension is classified
by the map

Zp → T, 1 mod pZ 
→ 1/p modZ.
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If we now denote by [•]p/q the class in H1(Mp/q) determined by a closed curve • we
deduce

lkMp/q ([K]p/q, [µ]p/q) = 1/p.

Since [µ]p/q is a generator of H1(Mp/q) we can write

[K]p/q = x[µ]p/q, x ∈ Z mod pZ.

Now observe that the gluing map γ of this Dehn surgery is described by a matrix

γ :=
[
p α

q β

]
∈ SL(2,Z)

with inverse

γ−1 =
[
β −α
−q p

]
.

The meaning of the entries of this matrix are given by the attaching rules

µ 
→ c = pµ+ qλ ∈ H1(∂MK), K = λ 
→ αµ+ βλ ∈ H1(∂MK).

Since λ = 0 ∈ H1(MK) deduce from these rules that

[K]p/q = α[µ]p/q .
Since det γ = pβ − αq = 1 we deduce α = −q−1 mod pZ. Hence

lkMp/q (−q−1[µ]p,q, [µ]p,q) = 1/p,

so that
lkMp/q ([µ]p/q, [µ]p/q) = −q/p mod Z. �


b. K has only one component butM may have nontrivial homology. In this case it
is wiser to treatM andMc “democratically”, as equal partners. These two manifolds
have something in common, the 3-manifold with boundary MK. This notation does
not respect our “democracy rule” and we will setN := MK. The Dehn surgery process
can now be described as attaching the solid torus

Ū := S1 ×D2

to the boundary ∂N so that the curve pt × ∂D2 is attached along a primitive curve
µ ∈ H1(∂N). We denote the resulting closed manifold by Nµ. (In the old notations
M = Nµ.)

As an aside, note that the homologies of N and ∂N contain no information about
the homology sphereM . This is determined by an additional internal data, namely the
homology class inH1(T ) carried by the meridian of the knot. We can loosely rephrase
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this by saying that the homology groups of N have no idea about the manifold M .
There is however one element in H1(T ) which carries this information.

As the complement of a knot in a rational homology sphere, the manifold N has
several special topological features we would like to single out and rephrase in a
language which makes no mention ofM .

Observe first that b1(N) = 1. Moreover, the boundary map

H2(N, ∂N)→ H1(∂N)

is injective (see 2., page 218). Its image is a rank one subgroup of H1(∂N) generated
by the longitude λ. This subgroup is isomorphic to the kernel of the morphism

j : H1(∂N)→ H1(N).

λ need not be a primitive element of H1(∂N) and we can write

λ = m0λ0, m0 > 0, λ0 ∈ H1(∂N) is primitive.

At 2. we have shown that H1(N, ∂N) is a torsion group. Using the Universal Coeffi-
cients Theorem we obtain the split exact sequence

0 → Ext(H1(N, ∂N),Z)→ H 2(N, ∂N)→ Hom(H2(N, ∂N),Z)→ 0.

The Poincaré duality now leads to the isomorphisms

H1(N) ∼= H 2(N, ∂N) ∼= Hom(H2(N, ∂N),Z)⊕ Ext(H1(N, ∂N),Z)
∼= Hom(H2(N, ∂N),Z)⊕ Hom(H1(N, ∂N),T).

This isomorphism is most conveniently expressed in intersection theoretic terms. De-
note by Hτ1 (N) the torsion part of H1(N). The above isomorphisms implies that we
have a nondegenerate linking pairing

lkN : Hτ1 (N)×H1(N, ∂N)→ T.

We obtain a bilinear map

l̂kN : Hτ1 (N)×Hτ1 (N)→ T, l̂kN(c1, c2) = lkN(c1, i(c2))

where i denotes the morphism H1(N) → H1(N, ∂N). This is a symmetric, yet
possibly degenerate form. If we identify H2(N, ∂N) with ker j = Z〈λ〉 ⊂ H1(∂N)

we see that we have a map

L : H1(N)→ Hom(Z〈λ〉,Z) ∼= Z ⇐⇒ Lk : H1(N)× Z〈λ〉 → Z

which can be described geometrically as the linking with λ. λ bounds a chain� in N
and we define

L(c) = LkN(c, λ) := #(c ∩�), ∀c ∈ H1(N).
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Observe that
L(jz) = λ · z, ∀z ∈ H1(∂N),

where the dot denotes the (skew-symmetric) intersection pairing on H1(∂N) defined
using the orientation on ∂N as boundary of N . The subgroup jH1(∂N) ⊂ H1(N) is
mapped by L onto the subgroup m0Z ⊂ Z. We obtain a short exact sequence

0 → Hτ1 (N) = kerL→ H1(N)
L−→ Z→ 0.

Any σ0 ∈ H1(N) such that Lk(σ0, λ) = 1 produces a splitting of the above sequence

H1(N) ∼= Hτ1 (N)⊕ Z〈σ0〉.
Moreover, any element c ∈ H1(N) determines a morphism

c� = lkN(c,−) ∈ ̂H1(N, ∂N).

The element c is completely determined by the quantities

c� ∈ ̂H1(N, ∂N), n(c) := LkN(c, λ) ∈ Z.
More precisely, we can write c = [c] + cτ

[c] = n(c)σ0, cτ := c − [c].
Define c∗ ∈ Hom

(
H2(N, ∂N),Z

)⊕ Hom(H1(N, ∂N),T)

c∗ = [c]∗ + c�, [c]∗ := LkN(c,−), c� = lkN(cτ ,−).
The correspondence c←→ c∗ is precisely the Poincaré duality.

Before we continue this line of thought we want to present a guiding example
which will provide some intuition behind the above abstract constructions.

Example B.9. Suppose N is the complement of a knot K in a rational homology
sphere M . Denote by r the order of K in H1(M). (If H1(M) = 0 we set r = 1.)
Since the linking form onM is nondegenerate there exists a knot K� ⊂ M such that

LkM(K,K�) = 1

r
.

Then
H1(N) ∼= {(α, c) ∈ Q×H1(M); α = lkM(c,K) mod Z}.

The pair (1/r,K�), which corresponds to the homology class inN carried by the knot
K�, can be taken as a generator of the free part of H1(N). We will denote this class
simply by K�. Observe that it corresponds to the choice σ0 ∈ H1(N) explained in the
preceding discussion. The torsion part of H1(N) is isomorphic to{
(0, c) ∈ Q×H1(M); lkM(K, c) = 0

} ∼= K⊥ := ker lkM(K,−) : H1(M)→ Zr .
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We have seen in 2., page 218, that

H1(N, ∂N) ∼= H1(M)/〈K〉.
The linking form onM induces a nondegenerate pairing

ker lkM(K,−)×H1(M)/〈K〉 → T.

This is precisely the nondegenerate linking

lkN : H1(N)
τ ×H1(N, ∂N)→ T.

The curve λ ∈ H1(∂N) which generates ker j can be uniquely written asm0λ0 where
λ0 is primitive. If we set

ν

r
= lkM(K,K)

then m0 = (ν, r). Thus m0 can be determined from λ and r using the equality

λ · µ = r,
where ∂N is oriented as boundary of N . We can describe

H1(∂N) � z = αµ⊕ n
r
λ, α = n lkM(K,K).

The morphism j has the form

αµ+ n
r

→ (α, nK) ∈ H1(N).

Suppose we have chosen ω0 ∈ H1(N) such that λ0 · ω0 = 1. There is no unique
choice but each such choice can be represented as

ω0 = a0µ+ n0

r
λ, a0 − n0ν

r
∈ Z.

The equation λ0 · ω0 = 1 implies

ra0 = m0

so that
m0

r
= n0ν

r
mod Z.

If we write
ν = m0ν0, r = m0r0, (ν0, r0) = 1

we deduce
1

r0
= n0ν0

r0
mod Z
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so that

n0ν0 = 1 mod r0Z, a0 = 1

r0

and

jω0 =
(

1

m0
µ, n0K

)
, jλ0 = (0, r0K). �


We can finally explain what do we need to know to compute how the linking form
of a rational homology sphere changes by performing a Dehn surgery along a knot.

Suppose N is the complement of a knot K in a rational homology spheres N1.
µ ∈ H1(∂N) is a primitive curve such that

r := λ · µ > 0.

Fix κ ∈ ∂N such that κ · µ = 1. We can assume that Dehn surgery is given by the
identification

S1 × ∂D2 → ∂N,

S1 × pt 
→ κ, pt × ∂D2 
→ µ.

If O denotes the center of D2, we denote by K the image of S1 ×O in Nµ. At 1. we
have shown that we have an extension

0 → Z〈µ〉 → H1(N)→ H1(Nµ)→ 0

classified by the morphism

lkNµ(K,−) : H1(Nµ)→ T.

We have the following result.

Proposition B.10. The linking form of Nµ is completely determined by the following
data.

I 1. µ, κ ∈ H1(∂N) such that κ · µ = 1.

I 2.The Abelian groupsH1(N),H1(N, ∂N) and the morphism j : H1(∂N)→ H1(N).
Fix a generator λ of ker j and set r = λ ·µ, k = λ · κ . Fix� ∈ H2(N, ∂N) such that
∂� = λ and denote bym0 the positive integer such thatλ = m0λ0 whereλ0 ∈ H1(∂N)

is a primitive class.

I 3. The Poincaré duality linking pairing

lkN : Hτ1 (N)×H1(N, ∂N)→ T.

I 4. A cycle σ0 ∈ H1(N) such that σ0 · � = 1. Algebraically, this is equivalent to
choosing a splitting

H1(N) = free part⊕ torsion part.
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I 5. A positive integer r0 and a cycle

ν = αµ+ n
r
λ ∈ H1(∂N)

such that
r0σ0 − jν = 0 ∈ H1(N).

Remark B.11. The preceding discussion and Example B.9 show that these data are
completely determined by the homological properties of the pair (N1,K). In other
words, the computation of the linking form of a rational homology sphere can be
determined by performing only homological computations. This is certainly not the
case for the Reidemeister torsion which is not a homotopy invariant. �


Proof. Using I 1 and I 2 we can now determine

H1(Nµ) := H1(N)/〈jµ〉
and thus the canonical extension

0 → Z〈µ〉 → H1(N)
proj−−−→ H1(N)/〈jµ〉 ∼= H1(Nµ)→ 0.

The element K ∈ H1(Nµ) is the image of jκ in H1(N)/〈jµ〉. The above extension
completely determines the morphism

lkNµ(K,−) : H1(Nµ)→ T.

Observe that Hτ1 (N) embeds in H1(Nµ) = H1(N)/〈jµ〉 as the kernel Kµ of this
morphism. We can now produce an isomorphism

H1(Nµ)/〈K〉 → H1(N, ∂N) = H1(N)/Range j

by going up-and-down along the diagram below (with exact diagonals)

Range j Z〈µ〉

H1(N)

H1(Nµ) H1(N, ∂N)

H1(Nµ)/〈K〉


���	 �				

			



proj ����		

			



.

Using I 3 we now obtain the nondegenerate pairing

lkNµ : Kµ ×H1(Nµ)/〈K〉 → T.
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In particular, this implies we can now compute all the pairings of the form lkNµ(u, v)
where u, v ∈ H1(Nµ) and at least one of them is in Kµ.

To complete the determination of lkNµ we will need to use the following elementary
results.

Lemma B.12. Suppose K� ∈ H1(Nµ) is such that

lkNµ(K,K
�) = 1/r ∈ T.

Then for all u, v ∈ H1(Nµ) we have

lkNµ(K, u) =
n(u)

r
, lkNµ(K, v) =

n(v)

r
, 0 ≤ n(u), n(v) < r

u0 := u− n(u)K�, v0 := v − n(v)K� ∈Kµ

and

lkNµ(u, v) = lkNµ
(
u0 + n(u)K�, v0 + n(v)K�

)
= lkNµ(u0, v0)+ lkNµ

(
n(v)u0 + n(u)v0,K

�
)+n(u)n(v) lkNµ(K

�,K�).

The above result shows that in order to determine lkNµ we need to find the self-
linking number lkNµ(K

�,K�) for some solution K� of the equation

lkNµ(K,K
�) = 1/r ∈ T.

The cycle σ0 ∈ H1(N) described in I 4 descends to a solution [σ0] ∈ H1(N)/Z〈µ〉 ∼=
H1(Nµ) of above equation. We can now represent the cycle ν of I 5 as a linear com-
bination

ν = αµ+ n
r
�

so that
rr0σ0 = rjν = rαµ+ nλ = nλ = n∂�.

Thus
lkNµ(σ0, σ0) = n

rr0
(σ0 ∩�) = n

rr0
. �


The proof of the above proposition explicitly describes an algorithm for computing
the change in the linking form under a Dehn surgery. As our next example will show,
the concrete implementations of this algorithm can be computationally demanding.

Example B.13(Surgery onM := L(24, 23)). Fix a generator g0 of H1(L(24, 1)) ∼=
Z24 such that the linking form q has the description

q(xg0, yg0) = −
xy

24
∈ T.
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Fix a knot K0 in this lens space representing 4g0 in homology. Denote U0 a small
(open) tubular neighborhood of K0inM , and by µ0 its meridian oriented such that

λ0 · µ0 = 6,

where the above intersection pairing uses the orientation on ∂U0 as boundary of
N := M \ U0. Thus ord (K) = 6 and

q(K0,K0) = −16

24
= −4

6
= −2

3
∈ T.

The kernel of j : H1(∂N)→ H1(N) is generated by a curve λ ∈ H1(∂N). According
to Remark B.5 we can choose a basis of H1(T ) so that µ0 has the coordinates (0, 1)
while λ has the coordinates (6, 4). Then

H1(N) ∼=
{
(αµ0, cg0) ∈ Q〈µ0〉 × Z24〈g0〉; α = −

c

6
modZ

}
.

Thus
Hτ1 (N) = ker lkM(K0,−) ∼= 6Z24 ∼= Z4〈u0 := 6g0〉.

Similarly
H1(N, ∂N) ∼= H1(M)/〈K0〉 ∼= Z4〈v0〉,

where v0 denotes the generator defined as the image of g0 in H1(M)/〈K0〉. Then

lkN(u0, v0) = lkM(6g0,g0) = −
1

4
.

This equality produces I 3. Observe that

lkM
(−g0,K0

) = 1

6
.

Thus σ0 := (1/6µ0,−g0) ∈ H1(N) solves I 4.
A nontrivial Dehn surgery on K0 is described by a primitive curve µ ∈ H1(∂N)

such that µ �= µ0. Suppose µ = (1, 0) := − 2
3µ+ 1

6λ, i.e. we perform a (−2/3, 1)-
surgery. Then we can choose κ := (0, 1) = µ0. Observe that

jµ =
(
− 2

3
µ0,K0 = 4g0

)
∈ H1(N), j(κ) = (1, 0) ∈ H1(N).

Hence H1(Nµ) is defined by the extension

0 →
{(
− 2n

3
, 4ng0

)
; n ∈ Z

}
↪→ {(α, cg0); α +

c

6
∈ Z}→ H1(Nµ)→ 0.

More explicitly, observe that we have the direct sum decomposition

H1(N) = Z〈σ0〉 ⊕ Z4〈u0 := 6g0〉,
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and we can write jµ = −4σ0. We conclude that

H1(Nµ) ∼= Z4〈σ0〉 ⊕ Z4〈u0〉.
The extension

0 → Z
(·4σ0,0)−−−−−→ Z⊕ Z4 → Z4σ0 ⊕ Z4u0 → 0

is classified by the character

χ : Z4σ0 × Z4u0 → T, χ(σ0) = 1

4
, χ(u0) = 0.

The cycle jκ = 6σ0 ⊕ u0 ∈ H1(N) projects to the cycle

K = 2σ0 ⊕ u0 ∈ H1(Nµ),

and we have

lkNµ(K, σ0) = χ(σ0) = 1/4, lkNµ(K,u0) = χ(u0) = 0.

We deduce that
ker lkNµ(K,−) ∼= Z4〈u0〉.

Now observe that σ0 ∈ H1(N) descends to a generator ofH1(Nµ)/〈K〉 ∼= Z4. It must
therefore descend to a generator of

H1(N, ∂N) ∼= H1(N)/Range j .

We have identified H1(N, ∂N) ∼= H1(M)/〈K0〉 with the cyclic group of order 4 with
generator v0 induced by g0 ∈ H1(M). Observe that g0 lifts to −σ0 ∈ H1(N). Thus
the isomorphism

Z4〈σ0〉 ∼= H1(Nµ)/〈K〉 ∼= H1(N, ∂N) ∼= Z4〈v0〉
can be concretely described by the correspondence σ0 
→ −v0. We conclude that the
pairing

lkNµ : ker lkNµ(K,−)×H1(Nµ)/〈K〉 → T

has the form
lkNµ(xu0, yσ0) = − lkN(xu0, yv0) = xy

4
.

Hence the pairing

lkNµ : ker lkNµ(K,−)×H1(Nµ)→ T

is given by

lkNµ(u0, σ0) = 1

4
, lkNµ(u0,u0) = lkNµ(u0,K− 2σ0) = −1

2
.

Since 4σ0 = −jµ we deduce that lkNµ(σ0, σ0) = 0. Summarizing all of the above
we deduce

lkNµ(au0 + bσ0, xu0 + yσ0) = ay + bx
4

+ ax
2
. �
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So far we have discussed only Dehn surgeries which produce rational homology
spheres. We want to spend the rest of this section discussing the remaining case.

Suppose N is homeomorphic to the complement of a tubular neighborhood of
a knot in a rational homology sphere M . Set T := ∂N . Orient T as boundary of
N . Denote by λ ∈ H1(T ) a longitude, i.e a generator1 of the kernel of the inclusion
induced map H1(T ) → H1(N). Denote by m0 the divisibility of λ, i.e. m0 is the
positive integer such that λ = m0λ0 where λ0 is a primitive element of H1(T ).

For any primitive class c ∈ H1(T ) denote byNc the closed three-manifold obtained
from N by Dehn surgery with data c. If λ · c �= 0 the three-manifold Nc is a rational
homology sphere. When c = λ0 the three-manifold Nλ0 is a rational homology
S1 × S2. We denote it by N0. We want to describe the homological invariants of N0
in terms of the homological invariants of N . Denote by Ū the solid torus we attach to
N to produce N0. Note that

H3(N0) ∼= H3(N0, N) = Z, 0 = H1(Ū , T ) ∼= H1(N0, N)

and
H2(N) = 0, H2(N0, N) ∼= H2(Ū , T ) ∼= Z.

As generator of H2(Ū , T ) we can take the disk Dµ spanning the meridian. The long
exact sequence of the pair (N0, N) now implies

0 → H2(N0)→ H2(Ū , T )(∼= Z)→ H1(N)→ H1(N0)→ 0.

Since the generator Dµ of H2(Ū , T ) goes to the torsion class j(λ0) ∈ H1(N) we
deduce that the image of H2(N0) in H2(N0, N) is generated by m0[Dµ]. Moreover,
we have a short exact sequence

0 → 〈jλ0〉 → H1(N)→ H1(N0)→ 0. (B.5)

where 〈jλ0〉 denotes the cyclic group of order m0 generated by jλ0.
Consider now the long exact sequence of the pair (N0, Ū ). Denote by � ∈

H2(N, ∂N) a relative 2-cycle bounding λ. Observe that H2(N, ∂N) ∼= H2(N0, Ū ) is
generated by �. Since H2(Ū) = 0 we deduce

0 → H2(N0)→ H2(N, ∂N) ∼= Z〈�〉 ∂→ H1(Ū)→ H1(N0)→ H1(N, ∂N)→ 0.

The connecting morphism ∂ is trivial because ∂� = λ = m0µ→ 0 ∈ H1(Ū) so that
we obtain an isomorphism

H2(N0) ∼= H2(N, ∂N) ∼= Z〈�〉,
and a short exact sequence

0 → H1(Ū)→ H1(N0)→ H1(N, ∂N) ∼= coker j → 0. (B.6)

1There are two generators, and a choice can be determined by fixing an orientation.
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We denote by K0 the homology class in H1(N0) carried by the core of Ū and by iK
the inclusion induced morphism iK : H1(Ū)→ H1(N0). Hence

H1(N, ∂N) ∼= H1(N0)/〈K0〉.
The extension (B.6) defines a character of H1(N, ∂N) which, in view of the Poincaré
duality on (N, ∂N), can be identified with the linking by a torsion element inH1(N).
Using (B.5) we deduce that this is given by the linking with λ0. Note also that K is
not a primitive class. It has divisibility m0.

Dualizing the sequence (B.6) we deduce

1 → ̂H1(N, ∂N)→ Ĥ1(N0)
ˆiK−→ Ĥ1(Ū)→ 1

Restricting the second map to the identity component of Ĥ1(N0)we obtain a surjection

S1 ∼= Ĥ1(N0)id

ˆiK� Ĥ1(Ū)id
∼= S1.

Since the linking number of j(K0) and � (in N ) is m0 we deduce that the map i�K is

an m0-cover. Denote by z the coordinate on Ĥ1(Ū), and by T the coordinate on the
identity component of Ĥ1(N0). The above map is described by z = T m0 .

Dualizing the sequence (B.5) we obtain the short exact sequence

1 → Ĥ1(N0)→ Ĥ1(N)→ Um0 → 1, (B.7)

whereUm0 is the group ofm0-th roots of 1. Restricting to the identity components we
deduce

Ĥ1(N0)id = Ĥ1(N)id .

Denote by T̂X the Fourier transform of the Reidemeister torsion of X. The surgery
formulæ have the form

T̂N0 · ˆiKT̂U = T̂N |Ĥ1(N0)
. (B.8)

Observe now that sinceH is an Abelian group of positive rank the augmentation map

aug : Map(H,C)→ Map(H/Tors(H),C)

is precisely the integration along the fibers of H → H/Tors(H). If f̂ is the Fourier
transform of f ∈ Map (H,C) then the Fourier transform of aug(f ) is the restriction
of f̂ to the identity component of Ĥ .

If we now further restrict the surgery formula (B.8) to the identity component of
Ĥ1(N0) and then take the inverse Fourier transform we deduce

T
aug
N0
(T )(1− T m0)−1 ≈ T

aug
N (T ).
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Recalling that
T

aug
N (T ) ∼ �N(T )(1− T )−1,

where �N(T ) denotes the Alexander polynomial of N , we conclude

T
aug
N0
(T ) ∼ �N(T )

(1− T )(1− T m0)
.
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determinant line, 7
Dirac operator, 175, 183

eta invariant, 183
Euler

chains, 106
homologous, 106

characteristic, 10, 64
class, 106
structure

combinatorial, 106
conjugation of, 111, 125
homologous, 108
relative, 107
smooth, 108
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Fourier transform, 23, 30
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conventions, 8
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Novikov complex, 188
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quasi-integral domains, 21
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Reidemeister torsion, see torsion
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factorial, 64
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Novikov, 34, 188

Seiberg–Witten
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modified, 177

Seifert manifolds, 90, 145
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presentation, 76
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Ray–Singer, 196
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Hurewicz, 103
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Whitehead, 103
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multiplicativity of, 17
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circle bundles, 73
connected sums, 57
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torsor, 148
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wall, 176
wall crossing

formula, 177
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weight
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